Ibrahim, Muhammad; Ahmed, Naseer; Ullah, Faizan; Shinwari, Zabta Khan; Bano, Asghari
2016-04-01
This research work documents the comparative impact of genetically modified (GM) (insect resistance) and non modified maize (Zea mays L.) on growth and germination of succeeding crop wheat (Triticum aestivum L.) and associated weed (Avena fatua L.). The aqueous extracts of both the GM and non-GM maize exhibited higher phenolic content than that of methanolic extracts. Germination percentage and germination index of wheat was significantly decreased by GM methanolic extract (10%) as well as that of non-GM maize at 3% aqueous extract. Similarly germination percentage of weed (Avena fatua L.) was significantly reduced by application of 3% and 5% methanolic GM extracts. All extracts of GM maize showed non-significant effect on the number of roots, root length and shoot length per plant but 5% and 10% methanolic extracts of non-GM maize significantly increased the number of roots per plant of wheat seedling. Similarly, 10% methanolic extract of GM maize significantly increased the number of roots per plant of weed seedling. Methanolic extracts of GM and non-GM maize (3% and 5%) significantly decreased the protease activity in wheat as compared to untreated control. © The Author(s) 2013.
Buzoianu, Stefan G.; Walsh, Maria C.; Rea, Mary C.; Quigley, Lisa; O'Sullivan, Orla; Cotter, Paul D.; Ross, R. Paul; Lawlor, Peadar G.
2013-01-01
The aim was to investigate transgenerational effects of feeding genetically modified (GM) maize expressing a truncated form of Bacillus thuringiensis Cry1Ab protein (Bt maize) to sows and their offspring on maternal and offspring intestinal microbiota. Sows were assigned to either non-GM or GM maize dietary treatments during gestation and lactation. At weaning, offspring were assigned within sow treatment to non-GM or GM maize diets for 115 days, as follows: (i) non-GM maize-fed sow/non-GM maize-fed offspring (non-GM/non-GM), (ii) non-GM maize-fed sow/GM maize-fed offspring (non-GM/GM), (iii) GM maize-fed sow/non-GM maize-fed offspring (GM/non-GM), and (iv) GM maize-fed sow/GM maize-fed offspring (GM/GM). Offspring of GM maize-fed sows had higher counts of fecal total anaerobes and Enterobacteriaceae at days 70 and 100 postweaning, respectively. At day 115 postweaning, GM/non-GM offspring had lower ileal Enterobacteriaceae counts than non-GM/non-GM or GM/GM offspring and lower ileal total anaerobes than pigs on the other treatments. GM maize-fed offspring also had higher ileal total anaerobe counts than non-GM maize-fed offspring, and cecal total anaerobes were lower in non-GM/GM and GM/non-GM offspring than in those from the non-GM/non-GM treatment. The only differences observed for major bacterial phyla using 16S rRNA gene sequencing were that fecal Proteobacteria were less abundant in GM maize-fed sows prior to farrowing and in offspring at weaning, with fecal Firmicutes more abundant in offspring. While other differences occurred, they were not observed consistently in offspring, were mostly encountered for low-abundance, low-frequency bacterial taxa, and were not associated with pathology. Therefore, their biological relevance is questionable. This confirms the lack of adverse effects of GM maize on the intestinal microbiota of pigs, even following transgenerational consumption. PMID:24096421
Prevalence of genetically modified rice, maize, and soy in Saudi food products.
Elsanhoty, Rafaat M; Al-Turki, A I; Ramadan, Mohamed Fawzy
2013-10-01
Qualitative and quantitative DNA-based methods were applied to detect genetically modified foods in samples from markets in the Kingdom of Saudi Arabia. Two hundred samples were collected from Al-Qassim, Riyadh, and Mahdina in 2009 and 2010. GMOScreen 35S and NOS test kits for the detection of genetically modified organism varieties in samples were used. The positive results obtained from GMOScreen 35S and NOS were identified using specific primer pairs. The results indicated that all rice samples gave negative results for the presence of 35S and NOS terminator. About 26 % of samples containing soybean were positive for 35S and NOS terminator and 44 % of samples containing maize were positive for the presence of 35S and/or NOS terminator. The results showed that 20.4 % of samples was positive for maize line Bt176, 8.8 % was positive for maize line Bt11, 8.8 % was positive for maize line T25, 5.9 % was positive for maize line MON 810, and 5.9 % was positive for StarLink maize. Twelve samples were shown to contain <3 % of genetically modified (GM) soy and 6 samples >10 % of GM soy. Four samples containing GM maize were shown to contain >5 % of GM maize MON 810. Four samples containing GM maize were shown to contain >1 % of StarLink maize. Establishing strong regulations and certified laboratories to monitor GM foods or crops in Saudi market is recommended.
Mathur, Chandni; Kathuria, Pooran C.; Dahiya, Pushpa; Singh, Anand B.
2015-01-01
Background Genetically modified, (GM) crops with potential allergens must be evaluated for safety and endogenous IgE binding pattern compared to native variety, prior to market release. Objective To compare endogenous IgE binding proteins of three GM maize seeds containing Cry 1Ab,1Ac,1C transgenic proteins with non GM maize. Methods An integrated approach of in silico & in vitro methods was employed. Cry proteins were tested for presence of allergen sequence by FASTA in allergen databases. Biochemical assays for maize extracts were performed. Specific IgE (sIgE) and Immunoblot using food sensitized patients sera (n = 39) to non GM and GM maize antigens was performed. Results In silico approaches, confirmed for non sequence similarity of stated transgenic proteins in allergen databases. An insignificant (p> 0.05) variation in protein content between GM and non GM maize was observed. Simulated Gastric Fluid (SGF) revealed reduced number of stable protein fractions in GM then non GM maize which might be due to shift of constituent protein expression. Specific IgE values from patients showed insignificant difference in non GM and GM maize extracts. Five maize sensitized cases, recognized same 7 protein fractions of 88-28 kD as IgE bindng in both GM and non-GM maize, signifying absence of variation. Four of the reported IgE binding proteins were also found to be stable by SGF. Conclusion Cry proteins did not indicate any significant similarity of >35% in allergen databases. Immunoassays also did not identify appreciable differences in endogenous IgE binding in GM and non GM maize. PMID:25706412
A multiplex PCR method of detecting recombinant DNAs from five lines of genetically modified maize.
Matsuoka, T; Kuribara, H; Akiyama, H; Miura, H; Goda, Y; Kusakabe, Y; Isshiki, K; Toyoda, M; Hino, A
2001-02-01
Seven lines of genetically modified (GM) maize have been authorized in Japan as foods and feeds imported from the USA. We improved a multiplex PCR method described in the previous report in order to distinguish the five lines of GM maize. Genomic DNA was extracted from GM maize with a silica spin column kit, which could reduce experimental time and improve safety in the laboratory and potentially in the environment. We sequenced recombinant DNA (r-DNA) introduced into GM maize, and re-designed new primer pairs to increase the specificity of PCR to distinguish five lines of GM maize by multiplex PCR. A primer pair for the maize intrinsic zein gene (Ze1) was also designed to confirm the presence of amplifiable maize DNA. The lengths of PCR products using these six primer pairs were different. The Ze1 and the r-DNAs from the five lines of GM maize were qualitatively detected in one tube. The specific PCR bands were distinguishable from each other on the basis of the expected length. The r-DNA could be detected from maize samples containing 0.5% of each of the five lines of GM maize. The sensitivity would be acceptable to secure the verification of non-GMO materials and to monitor the reliability of the labeling system.
Han, Shiwen; Zou, Shiying; He, Xiaoyun; Huang, Kunlun; Mei, Xiaohong
2016-08-01
The food safety of stacked trait genetically modified (GM) maize GH5112E-117C containing insect-resistance gene Cry1Ah and glyphosate-resistant gene G2-aroA was evaluated in comparison to non-GM Hi-II maize fed to Sprague-Dawley rats during a 90-day subchronic feeding study. Three different dietary concentrations (12.5, 25 and 50 %, w/w) of the GM maize were used or its corresponding non-GM maize. No biologically significant differences in the animals' clinical signs, body weights, food consumption, hematology, clinical chemistry, organ weights and histopathology were found between the stacked trait GM maize groups, and the non-GM maize groups. The results of the 90-day subchronic feeding study demonstrated that the stacked trait GM maize GH5112E-117C is as safe as the conventional non-GM maize Hi-II.
Akiyama, Hiroshi; Sakata, Kozue; Kondo, Kazunari; Tanaka, Asako; Liu, Ming S; Oguchi, Taichi; Furui, Satoshi; Kitta, Kazumi; Hino, Akihiro; Teshima, Reiko
2008-03-26
In many countries, the labeling of grains and feed- and foodstuffs is mandatory if the genetically modified organism (GMO) content exceeds a certain level of approved GM varieties. The GMO content in a maize sample containing the combined-trait (stacked) GM maize as determined by the currently available methodology is likely to be overestimated. However, there has been little information in the literature on the mixing level and varieties of stacked GM maize in real sample grains. For the first time, the GMO content of non-identity-preserved (non-IP) maize samples imported from the United States has been successfully determined by using a previously developed individual kernel detection system coupled to a multiplex qualitative PCR method followed by multichannel capillary gel electrophoresis system analysis. To clarify the GMO content in the maize samples imported from the United States, determine how many stacked GM traits are contained therein, and which GM trait varieties frequently appeared in 2005, the GMO content (percent) on a kernel basis and the varieties of the GM kernels in the non-IP maize samples imported from the United States were investigated using the individual kernel analysis system. The average (+/-standard deviation) of the GMO contents on a kernel basis in five non-IP sample lots was determined to be 51.0+/-21.6%, the percentage of a single GM trait grains was 39%, and the percentage of the stacked GM trait grains was 12%. The MON810 grains and NK603 grains were the most frequent varieties in the single GM traits. The most frequent stacked GM traits were the MON810xNK603 grains. In addition, the present study would provide the answer and impact for the quantification of GM maize content in the GM maize kernels on labeling regulation.
[Literature review of the dispersal of transgenes from genetically modified maize].
Ricroch, Agnès; Bergé, Jean Baptiste; Messéan, Antoine
2009-10-01
This article aims at reviewing the theoretical and experimental data published in 562 publications referring to genetically modified (GM) maize dispersal. Our choice was limited to this since in the European Union (EU), GM maize is the only GM crop currently grown commercially. The pollen dispersal of transgenic maize is due to two factors: (i) pollen-mediated gene flow; (ii) seed admixture during harvest and post-harvest processes. The pollen dispersal decreases rapidly with the distance from GM plots. Climatic and topographic factors and factors of relative density between GM and non-GM maize plots impact on the pollen dispersal. The combination of both isolation distance and flowering date between source plots and sink plots limits the adventitious presence of transgenes in non-GM plots. All publications we reviewed demonstrate that the EU 0.9% threshold is technically manageable if the measures of isolation distances as well as harvesting and post harvesting processes and fully synchronous flowering are implemented.
Dinon, Andréia Z; Bosco, Kenia T; Arisi, Ana Carolina M
2010-07-01
The first genetically modified (GM) maize lines were approved for trading in Brazil after December 2007 and they were T25, MON810, Bt11, NK603 and GA21. The polymerase chain reaction (PCR) method was employed to monitor the presence of Bt11 and nested PCR was used to detect the presence of Bt176 in 81 maize-derived products (maize flour, corn meal, maize flour flakes and polenta) that were sold in Brazilian market from 2005 to 2007, before the release of GM maize in Brazil. The PCR detection limit for Bt11 was 10 g kg(-1) and for nested PCR of Bt176 it was 1 g kg(-1). All Brazilian samples analyzed showed no positive signal for these GM maize events. Bt11 and Bt176 GM maize lines were not detected by specific PCR in 81 maize-derived food samples sold in Brazil from 2005 to 2007, before the commercial release of GM maize in Brazil. These Brazilian food industries were in compliance with the rules stipulated by the current legislation with respect to consumer requirements about GMO labeling.
Szénási, Ágnes; Pálinkás, Zoltán; Zalai, Mihály; Schmitz, Oswald J; Balog, Adalbert
2014-06-17
There is concern that genetically modified (GM) plants may have adverse affects on the arthropod biodiversity comprising agricultural landscapes. The present study report on a two year field experimental test of whether four different genotypic lines, some are novel with no previous field tests, of GM maize hybrids alter the structure of arthropod food webs that they harbour, relative to non-GM maize (control) that is widely used in agriculture. The different GM genotypes produced either Bt toxins, conferred glyphosate tolerance or a combination of the two traits. Quantitative food web analysis, based on short-term assessment assigning a total of 243,896 arthropod individuals collected from the treatments to their positions in food webs, revealed that complex and stable food webs persisted in each maize treatment. Moreover, food web structure remained relatively unchanged by the GM-genotype. The results suggest that at least in short-term period these particular GM maize genotypes will not have adverse effects on arthropod biota of agricultural landscapes.
Waminal, Nomar Espinosa; Ryu, Ki Hyun; Choi, Sun-Hee; Kim, Hyun Hee
2013-01-01
Monitoring of genetically modified (GM) crops has been emphasized to prevent their potential effects on the environment and human health. Monitoring of the inadvertent dispersal of transgenic maize in several fields and transport routes in Korea was carried out by qualitative multiplex PCR, and molecular analyses were conducted to identify the events of the collected GM maize. Cytogenetic investigations through fluorescence in situ hybridization (FISH) of the GM maize were performed to check for possible changes in the 45S rDNA cluster because this cluster was reported to be sensitive to replication and transcription stress. Three GM maize kernels were collected from a transport route near Incheon port, Korea, and each was found to contain NK603, stacked MON863 x NK603, and stacked NK603 x MON810 inserts, respectively. Cytogenetic analysis of the GM maize containing the stacked NK603 x MON810 insert revealed two normal compact 5S rDNA signals, but the 45S rDNA showed a fragile phenotype, demonstrating a “beads-on-a-string” fragmentation pattern, which seems to be a consequence of genetic modification. Implications of the 45S rDNA cluster fragility in GM maize are also discussed. PMID:24040165
USDA-ARS?s Scientific Manuscript database
Since 1996, genetically modified (GM) crops have been grown on an ever increasing area worldwide. Maize producing a Cry protein from the bacterium Bacillus thuringiensis (Bt) was among the first GM crops released for commercial production and it is the only GM crop currently cultivated in Europe. A ...
Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi
2011-01-01
In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.
Arthropods dataset from different genetically modified maize events and associated controls
NASA Astrophysics Data System (ADS)
Pálinkás, Zoltán; Zalai, Mihály; Szénási, Ágnes; Dorner, Zita; Kiss, József; North, Samuel; Woodward, Guy; Balog, Adalbert
2018-02-01
Arthropods from four genetically modified (GM) maize hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant+herbicide tolerant and coleopteran resistant and herbicide tolerant) and non-GM varieties were sampled during a two-year field assessment. A total number of 363 555 arthropod individuals were collected. This represents the most comprehensive arthropod dataset from GM maize, and together with weed data, is reasonable to determine functional groups of arthropods and interactions between species. Trophic groups identified from both phytophagous and predatory arthropods were previously considered non-target organisms on which possible detrimental effects of Bacillus thuringiensis (Bt) toxins may have been directly (phytophagous species) or indirectly (predators) detected. The high number of individuals and species and their dynamics through the maize growing season can predict that interactions are highly correlational, and can thus be considered a useful tool to assess potential deleterious effects of Bt toxins on non-target organisms, serving to develop biosafety risk hypotheses for invertebrates exposed to GM maize plants.
Practicable group testing method to evaluate weight/weight GMO content in maize grains.
Mano, Junichi; Yanaka, Yuka; Ikezu, Yoko; Onishi, Mari; Futo, Satoshi; Minegishi, Yasutaka; Ninomiya, Kenji; Yotsuyanagi, Yuichi; Spiegelhalter, Frank; Akiyama, Hiroshi; Teshima, Reiko; Hino, Akihiro; Naito, Shigehiro; Koiwa, Tomohiro; Takabatake, Reona; Furui, Satoshi; Kitta, Kazumi
2011-07-13
Because of the increasing use of maize hybrids with genetically modified (GM) stacked events, the established and commonly used bulk sample methods for PCR quantification of GM maize in non-GM maize are prone to overestimate the GM organism (GMO) content, compared to the actual weight/weight percentage of GM maize in the grain sample. As an alternative method, we designed and assessed a group testing strategy in which the GMO content is statistically evaluated based on qualitative analyses of multiple small pools, consisting of 20 maize kernels each. This approach enables the GMO content evaluation on a weight/weight basis, irrespective of the presence of stacked-event kernels. To enhance the method's user-friendliness in routine application, we devised an easy-to-use PCR-based qualitative analytical method comprising a sample preparation step in which 20 maize kernels are ground in a lysis buffer and a subsequent PCR assay in which the lysate is directly used as a DNA template. This method was validated in a multilaboratory collaborative trial.
No Adjuvant Effect of Bacillus thuringiensis-Maize on Allergic Responses in Mice
Dekan, Gerhard; Epstein, Michelle M.
2014-01-01
Genetically modified (GM) foods are evaluated carefully for their ability to induce allergic disease. However, few studies have tested the capacity of a GM food to act as an adjuvant, i.e. influencing allergic responses to other unrelated allergens at acute onset and in individuals with pre-existing allergy. We sought to evaluate the effect of short-term feeding of GM Bacillus thuringiensis (Bt)-maize (MON810) on the initiation and relapse of allergic asthma in mice. BALB/c mice were provided a diet containing 33% GM or non-GM maize for up to 34 days either before ovalbumin (OVA)-induced experimental allergic asthma or disease relapse in mice with pre-existing allergy. We observed that GM-maize feeding did not affect OVA-induced eosinophilic airway and lung inflammation, mucus hypersecretion or OVA-specific antibody production at initiation or relapse of allergic asthma. There was no adjuvant effect upon GM-maize consumption on the onset or severity of allergic responses in a mouse model of allergic asthma. PMID:25084284
Definition and feasibility of isolation distances for transgenic maize cultivation.
Sanvido, Olivier; Widmer, Franco; Winzeler, Michael; Streit, Bernhard; Szerencsits, Erich; Bigler, Franz
2008-06-01
A major concern related to the adoption of genetically modified (GM) crops in agricultural systems is the possibility of unwanted GM inputs into non-GM crop production systems. Given the increasing commercial cultivation of GM crops in the European Union (EU), there is an urgent need to define measures to prevent mixing of GM with non-GM products during crop production. Cross-fertilization is one of the various mechanisms that could lead to GM-inputs into non-GM crop systems. Isolation distances between GM and non-GM fields are widely accepted to be an effective measure to reduce these inputs. However, the question of adequate isolation distances between GM and non-GM maize is still subject of controversy both amongst scientists and regulators. As several European countries have proposed largely differing isolation distances for maize ranging from 25 to 800 m, there is a need for scientific criteria when using cross-fertilization data of maize to define isolation distances between GM and non-GM maize. We have reviewed existing cross-fertilization studies in maize, established relevant criteria for the evaluation of these studies and applied these criteria to define science-based isolation distances. To keep GM-inputs in the final product well below the 0.9% threshold defined by the EU, isolation distances of 20 m for silage and 50 m for grain maize, respectively, are proposed. An evaluation using statistical data on maize acreage and an aerial photographs assessment of a typical agricultural landscape by means of Geographic Information Systems (GIS) showed that spatial resources would allow applying the defined isolation distances for the cultivation of GM maize in the majority of the cases under actual Swiss agricultural conditions. The here developed approach, using defined criteria to consider the agricultural context of maize cultivation, may be of assistance for the analysis of cross-fertilization data in other countries.
[Assessment of the impact of GMO of plant origin on rat progeny development in 3 generations].
Tyshko, N V; Zhminchenko, V M; Pashorina, V A; Seliaskin, K E; Saprykin, V P; Utembaeva, N T; Tutel'ian, V A
2011-01-01
The publication presents the results of assessment of impact of genetically modified (GM) maize Liberty Link on prenatal and postnatal development of progeny of 3 generations of Wistar rats. A total of 630 adult animals and 2837 pups were used in the experiment. The animals were divided into 5 groups which got the diets with inclusion of maize: the animals of the experimental group got the diet with the GM-maize, animals of the control group - with near isogenic conventional analogue of the GM-maize, animals of the 1st, 2nd and 3rd reference groups - conventional varieties of maize ROSS 144 MV, ROSS 197 MVW, Dokuchayevskaya 250 MV respectively. The maize was included in the diet at maximum possible level not violating the balance of basic nutrients. Analysis of the data obtained during the study did not reveal any impact of GM-maize on rat progeny development.
Turkec, Aydin; Kazan, Hande; Karacanli, Burçin; Lucas, Stuart J
2015-08-01
In this paper, DNA extraction methods have been evaluated to detect the presence of genetically modified organisms (GMOs) in maize food and feed products commercialised in Turkey. All the extraction methods tested performed well for the majority of maize foods and feed products analysed. However, the highest DNA content was achieved by the Wizard, Genespin or the CTAB method, all of which produced optimal DNA yield and purity for different maize food and feed products. The samples were then screened for the presence of GM elements, along with certified reference materials. Of the food and feed samples, 8 % tested positive for the presence of one GM element (NOS terminator), of which half (4 % of the total) also contained a second element (the Cauliflower Mosaic Virus 35S promoter). The results obtained herein clearly demonstrate the presence of GM maize in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of maize food and feed products.
Unconventional P-35S sequence identified in genetically modified maize
Al-Hmoud, Nisreen; Al-Husseini, Nawar; Ibrahim-Alobaide, Mohammed A; Kübler, Eric; Farfoura, Mahmoud; Alobydi, Hytham; Al-Rousan, Hiyam
2014-01-01
The Cauliflower Mosaic Virus 35S promoter sequence, CaMV P-35S, is one of several commonly used genetic targets to detect genetically modified maize and is found in most GMOs. In this research we report the finding of an alternative P-35S sequence and its incidence in GM maize marketed in Jordan. The primer pair normally used to amplify a 123 bp DNA fragment of the CaMV P-35S promoter in GMOs also amplified a previously undetected alternative sequence of CaMV P-35S in GM maize samples which we term V3. The amplified V3 sequence comprises 386 base pairs and was not found in the standard wild-type maize, MON810 and MON 863 GM maize. The identified GM maize samples carrying the V3 sequence were found free of CaMV when compared with CaMV infected brown mustard sample. The data of sequence alignment analysis of the V3 genetic element showed 90% similarity with the matching P-35S sequence of the cauliflower mosaic virus isolate CabbB-JI and 99% similarity with matching P-35S sequences found in several binary plant vectors, of which the binary vector locus JQ693018 is one example. The current study showed an increase of 44% in the incidence of the identified 386 bp sequence in GM maize sold in Jordan’s markets during the period 2009 and 2012. PMID:24495911
Multiplex Droplet Digital PCR Protocols for Quantification of GM Maize Events.
Dobnik, David; Spilsberg, Bjørn; Bogožalec Košir, Alexandra; Štebih, Dejan; Morisset, Dany; Holst-Jensen, Arne; Žel, Jana
2018-01-01
The standard-curve based simplex quantitative polymerase chain reaction (qPCR) has been the gold standard for DNA target quantification for more than a decade. The large and growing number of individual analyses needed to test for genetically modified organisms (GMOs) is reducing the cost-effectiveness of qPCR. Droplet digital PCR (ddPCR) enables absolute quantification without standard curves, avoids the amplification efficiency bias observed with qPCR, allows more accurate estimations at low target copy numbers and, in combination with multiplexing, significantly improves cost efficiency. Here we describe two protocols for multiplex quantification of GM maize events: (1) nondiscriminating, with multiplex quantification of targets as a group (12 GM maize lines) and (2) discriminating, with multiplex quantification of individual targets (events). The first enables the quantification of twelve European Union authorized GM maize events as a group with only two assays, but does not permit determination of the individual events present. The second protocol enables the quantification of four individual targets (three GM events and one endogene) in a single reaction. Both protocols can be modified for quantification of any other DNA target.
Noguchi, Akio; Nakamura, Kosuke; Sakata, Kozue; Sato-Fukuda, Nozomi; Ishigaki, Takumi; Mano, Junichi; Takabatake, Reona; Kitta, Kazumi; Teshima, Reiko; Kondo, Kazunari; Nishimaki-Mogami, Tomoko
2016-04-19
A number of genetically modified (GM) maize events have been developed and approved worldwide for commercial cultivation. A screening method is needed to monitor GM maize approved for commercialization in countries that mandate the labeling of foods containing a specified threshold level of GM crops. In Japan, a screening method has been implemented to monitor approved GM maize since 2001. However, the screening method currently used in Japan is time-consuming and requires generation of a calibration curve and experimental conversion factor (C(f)) value. We developed a simple screening method that avoids the need for a calibration curve and C(f) value. In this method, ΔC(q) values between the target sequences and the endogenous gene are calculated using multiplex real-time PCR, and the ΔΔC(q) value between the analytical and control samples is used as the criterion for determining analytical samples in which the GM organism content is below the threshold level for labeling of GM crops. An interlaboratory study indicated that the method is applicable independently with at least two models of PCR instruments used in this study.
Walsh, Maria C.; Buzoianu, Stefan G.; Gardiner, Gillian E.; Rea, Mary C.; Gelencsér, Eva; Jánosi, Anna; Epstein, Michelle M.; Ross, R. Paul; Lawlor, Peadar G.
2011-01-01
We assessed the effect of short-term feeding of genetically modified (GM: Bt MON810) maize on immune responses and growth in weanling pigs and determined the fate of the transgenic DNA and protein in-vivo. Pigs were fed a diet containing 38.9% GM or non-GM isogenic parent line maize for 31 days. We observed that IL-12 and IFNγ production from mitogenic stimulated peripheral blood mononuclear cells decreased (P<0.10) following 31 days of GM maize exposure. While Cry1Ab-specific IgG and IgA were not detected in the plasma of GM maize-fed pigs, the detection of the cry1Ab gene and protein was limited to the gastrointestinal digesta and was not found in the kidneys, liver, spleen, muscle, heart or blood. Feeding GM maize to weanling pigs had no effect on growth performance or body weight. IL-6 and IL-4 production from isolated splenocytes were increased (P<0.05) in response to feeding GM maize while the proportion of CD4+ T cells in the spleen decreased. In the ileum, the proportion of B cells and macrophages decreased while the proportion of CD4+ T cells increased in GM maize-fed pigs. IL-8 and IL-4 production from isolated intraepithelial and lamina propria lymphocytes were also increased (P<0.05) in response to feeding GM maize. In conclusion, there was no evidence of cry1Ab gene or protein translocation to the organs and blood of weaning pigs. The growth of pigs was not affected by feeding GM maize. Alterations in immune responses were detected; however, their biologic relevance is questionable. PMID:22132091
Yoshimura, Tomoaki; Kuribara, Hideo; Matsuoka, Takeshi; Kodama, Takashi; Iida, Mayu; Watanabe, Takahiro; Akiyama, Hiroshi; Maitani, Tamio; Furui, Satoshi; Hino, Akihiro
2005-03-23
The applicability of quantifying genetically modified (GM) maize and soy to processed foods was investigated using heat treatment processing models. The detection methods were based on real-time quantitative polymerase chain reaction (PCR) analysis. Ground seeds of insect resistant GM maize (MON810) and glyphosate tolerant Roundup Ready (RR) soy were dissolved in water and were heat treated by autoclaving for various time intervals. The calculated copy numbers of the recombinant and taxon specific deoxyribonucleic acid (DNA) sequences in the extracted DNA solution were found to decrease with time. This decrease was influenced by the PCR-amplified size. The conversion factor (Cf), which is the ratio of the recombinant DNA sequence to the taxon specific DNA sequence and is used as a constant number for calculating GM% at each event, tended to be stable when the sizes of PCR products of two DNA sequences were nearly equal. The results suggested that the size of the PCR product plays a key role in the quantification of GM organisms in processed foods. It is believed that the Cf of the endosperm (3n) is influenced by whether the GM originated from a paternal or maternal source. The embryos and endosperms were separated from the F1 generation seeds of five GM maize events, and their Cf values were measured. Both paternal and maternal GM events were identified. In these, the endosperm Cf was lower than that of the embryo, and the embryo Cf was lower than that of the endosperm. These results demonstrate the difficulties encountered in the determination of GM% in maize grains (F2 generation) and in processed foods from maize and soy.
Melé, Enric; Nadal, Anna; Messeguer, Joaquima; Melé-Messeguer, Marina; Palaudelmàs, Montserrat; Peñas, Gisela; Piferrer, Xavier; Capellades, Gemma; Serra, Joan; Pla, Maria
2015-01-01
Genetically modified (GM) crops have been commercially grown for two decades. GM maize is one of 3 species with the highest acreage and specific events. Many countries established a mandatory labeling of products containing GM material, with thresholds for adventitious presence, to support consumers’ freedom of choice. In consequence, coexistence systems need to be introduced to facilitate commercial culture of GM and non-GM crops in the same agricultural area. On modeling adventitious GM cross-pollination distribution within maize fields, we deduced a simple equation to estimate overall GM contents (%GM) of conventional fields, irrespective of its shape and size, and with no previous information on possible GM pollen donor fields. A sampling strategy was designed and experimentally validated in 19 agricultural fields. With 9 samples, %GM quantification requires just one analytical GM determination while identification of the pollen source needs 9 additional analyses. A decision support tool is provided. PMID:26596213
Zeljenková, Dagmar; Ambrušová, Katarína; Bartušová, Mária; Kebis, Anton; Kovrižnych, Jevgenij; Krivošíková, Zora; Kuricová, Miroslava; Líšková, Aurélia; Rollerová, Eva; Spustová, Viera; Szabová, Elena; Tulinská, Jana; Wimmerová, Soňa; Levkut, Mikuláš; Révajová, Viera; Ševčíková, Zuzana; Schmidt, Kerstin; Schmidtke, Jörg; La Paz, Jose Luis; Corujo, Maria; Pla, Maria; Kleter, Gijs A; Kok, Esther J; Sharbati, Jutta; Hanisch, Carlos; Einspanier, Ralf; Adel-Patient, Karine; Wal, Jean-Michel; Spök, Armin; Pöting, Annette; Kohl, Christian; Wilhelm, Ralf; Schiemann, Joachim; Steinberg, Pablo
2014-12-01
The GMO Risk Assessment and Communication of Evidence (GRACE; www.grace-fp7.eu ) project is funded by the European Commission within the 7th Framework Programme. A key objective of GRACE is to conduct 90-day animal feeding trials, animal studies with an extended time frame as well as analytical, in vitro and in silico studies on genetically modified (GM) maize in order to comparatively evaluate their use in GM plant risk assessment. In the present study, the results of two 90-day feeding trials with two different GM maize MON810 varieties, their near-isogenic non-GM varieties and four additional conventional maize varieties are presented. The feeding trials were performed by taking into account the guidance for such studies published by the EFSA Scientific Committee in 2011 and the OECD Test Guideline 408. The results obtained show that the MON810 maize at a level of up to 33 % in the diet did not induce adverse effects in male and female Wistar Han RCC rats after subchronic exposure, independently of the two different genetic backgrounds of the event.
Turkec, Aydin; Lucas, Stuart J; Karlık, Elif
2016-07-01
EU legislation strictly controls use of genetically modified (GM) crops in food and feed products, and requires them to be labelled if the total GM content is greater than 9 g kg(-1) (for approved GM crops). We screened maize-containing food and feed products from Turkey to assess the prevalence of GM material. With this aim, 83 food and feed products - none labelled as containing GM material - were screened using multiplex real-time polymerase chain reaction (PCR) for four common GM elements (35S/NOS/bar/FMV). Of these, 18.2% of feeds and 6% of food samples tested positive for one or more of these elements, and were subjected to event-specific PCR to identify which GM organisms they contained. Most samples were negative for the approved GM events tested, suggesting that they may contain adventitious GM contaminants. One sample was shown to contain an unapproved GM event (MON810, along with GA21) at a concentration well above the statutory labelling requirement. Current legislation has restricted the penetration of GM maize into the Turkish food industry but not eliminated it, and the proliferation of different GM events is making monitoring increasingly complex. Our results indicate that labelling requirements are not being followed in some cases. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Zahradnik, Celine; Kolm, Claudia; Martzy, Roland; Mach, Robert L; Krska, Rudolf; Farnleitner, Andreas H; Brunner, Kurt
2014-11-01
In 2003 the European Commission introduced a 0.9% threshold for food and feed products containing genetically modified organism (GMO)-derived components. For commodities containing GMO contents higher than this threshold, labelling is mandatory. To provide a DNA-based rapid and simple detection method suitable for high-throughput screening of GMOs, several isothermal amplification approaches for the 35S promoter were tested: strand displacement amplification, nicking-enzyme amplification reaction, rolling circle amplification, loop-mediated isothermal amplification (LAMP) and helicase-dependent amplification (HDA). The assays developed were tested for specificity in order to distinguish between samples containing genetically modified (GM) maize and non-GM maize. For those assays capable of this discrimination, tests were performed to determine the lower limit of detection. A false-negative rate was determined to rule out whether GMO-positive samples were incorrectly classified as GMO-negative. A robustness test was performed to show reliable detection independent from the instrument used for amplification. The analysis of three GM maize lines showed that only LAMP and HDA were able to differentiate between the GMOs MON810, NK603, and Bt11 and non-GM maize. Furthermore, with the HDA assay it was possible to realize a detection limit as low as 0.5%. A false-negative rate of only 5% for 1% GM maize for all three maize lines shows that HDA has the potential to be used as an alternative strategy for the detection of transgenic maize. All results obtained with the LAMP and HDA assays were compared with the results obtained with a previously reported real-time PCR assay for the 35S promoter in transgenic maize. This study presents two new screening assays for detection of the 35S promoter in transgenic maize by applying the isothermal amplification approaches HDA and LAMP.
Safety evaluation of genetically modified DAS-40278-9 maize in a subchronic rodent feeding study.
Zou, Shiying; Lang, Tianqi; Liu, Xu; Huang, Kunlun; He, Xiaoyun
2018-07-01
Genetically modified (GM) maize, DAS-40278-9, expresses the aryloxyalkanoate dioxygenase-1 (AAD-1) protein, which confers tolerance to 2,4-dichlorophenoxyacetic acid (2,4-D) and aryloxyphenoxypropionate (AOPP) herbicides. The aad-1 gene, which expresses the AAD-1 protein, was derived from Gram-negative soil bacterium, Sphingobium herbicidovorans. A 90-day sub-chronic toxicity study was conducted on rats as a component of the safety evaluation of DAS-40278-9 maize. Rats were given formulated diets containing maize grain from DAS-40278-9 or a non-GM near isogenic control comparator at an incorporation rate of 12.5%, 25%, or 50% (w/w), respectively for 90 days. In addition, another group of rats was fed a basic rodent diet. Animals were evaluated by cage-side and hand-held detailed clinical observations, ophthalmic examinations, body weights/body weight gains, feed consumption, hematology, serum chemistry, selected organ weights, and gross and histopathological examinations. Under the condition of this study, DAS-40278-9 maize did not cause any treatment-related effects in rats compared with rats fed diets containing non-GM maize. Copyright © 2018 Elsevier Inc. All rights reserved.
Pálinkás, Zoltán; Kiss, József; Zalai, Mihály; Szénási, Ágnes; Dorner, Zita; North, Samuel; Woodward, Guy; Balog, Adalbert
2017-04-01
Four genetically modified (GM) maize ( Zea mays L.) hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant and herbicide tolerant, coleopteran and herbicide tolerant) and its non-GM control maize stands were tested to compare the functional diversity of arthropods and to determine whether genetic modifications alter the structure of arthropods food webs. A total number of 399,239 arthropod individuals were used for analyses. The trophic groups' number and the links between them indicated that neither the higher magnitude of Bt toxins (included resistance against insect, and against both insects and glyphosate) nor the extra glyphosate treatment changed the structure of food webs. However, differences in the average trophic links/trophic groups were detected between GM and non-GM food webs for herbivore groups and plants. Also, differences in characteristic path lengths between GM and non-GM food webs for herbivores were observed. Food webs parameterized based on 2-year in-field assessments, and their properties can be considered a useful and simple tool to evaluate the effects of Bt toxins on non-target organisms.
Detection of airborne genetically modified maize pollen by real-time PCR.
Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc
2012-09-01
The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves. © 2012 Blackwell Publishing Ltd.
Pla, Maria; La Paz, José-Luis; Peñas, Gisela; García, Nora; Palaudelmàs, Montserrat; Esteve, Teresa; Messeguer, Joaquima; Melé, Enric
2006-04-01
Maize is one of the main crops worldwide and an increasing number of genetically modified (GM) maize varieties are cultivated and commercialized in many countries in parallel to conventional crops. Given the labeling rules established e.g. in the European Union and the necessary coexistence between GM and non-GM crops, it is important to determine the extent of pollen dissemination from transgenic maize to other cultivars under field conditions. The most widely used methods for quantitative detection of GMO are based on real-time PCR, which implies the results are expressed in genome percentages (in contrast to seed or grain percentages). Our objective was to assess the accuracy of real-time PCR based assays to accurately quantify the contents of transgenic grains in non-GM fields in comparison with the real cross-fertilization rate as determined by phenotypical analysis. We performed this study in a region where both GM and conventional maize are normally cultivated and used the predominant transgenic maize Mon810 in combination with a conventional maize variety which displays the characteristic of white grains (therefore allowing cross-pollination quantification as percentage of yellow grains). Our results indicated an excellent correlation between real-time PCR results and number of cross-fertilized grains at Mon810 levels of 0.1-10%. In contrast, Mon810 percentage estimated by weight of grains produced less accurate results. Finally, we present and discuss the pattern of pollen-mediated gene flow from GM to conventional maize in an example case under field conditions.
Sissener, Nini H; Johannessen, Lene E; Hevrøy, Ernst M; Wiik-Nielsen, Christer R; Berdal, Knut G; Nordgreen, Andreas; Hemre, Gro-Ingunn
2010-01-01
A 20-d zebrafish (Danio rerio) feeding trial, in which a near doubling of fish weight was achieved, was conducted with GM feed ingredients to evaluate feed intake, growth, stress response and uptake of dietary DNA. A partial aim of the study was to assess zebrafish as a model organism in GM safety assessments. Roundup Ready soya (RRS), YieldGard Bt maize (MON810) and their non-modified, maternal, near-isogenic lines were used in a 2 x 2 factorial design. Soya variety and maize variety were the main factors, both with two levels; non-GM and GM. Compared with fish fed non-GM maize, those fed GM maize exhibited significantly better growth, had lower mRNA transcription levels of superoxide dismutase (SOD)-1 and a tendency (non-significant) towards lower transcription of heat shock protein 70 in liver. Sex of the fish and soya variety had significant interaction effects on total RNA yield from the whole liver and transcription of SOD-1, suggesting that some diet component affecting males and females differently was present in different levels in the GM and the non-GM soya used in the present study. Dietary DNA sequences were detected in all of the organs analysed, but not all of the samples. Soya and maize rubisco (non-transgenic, multicopy genes) were most frequently detected, while MON810 transgenic DNA fragments were detected in some samples and RRS fragments were not detected. In conclusion, zebrafish shows promise as a model for this application.
Benevenuto, Rafael Fonseca; Agapito-Tenfen, Sarah Zanon; Vilperte, Vinicius; Wikmark, Odd-Gunnar; van Rensburg, Peet Jansen; Nodari, Rubens Onofre
2017-01-01
Some genetically modified (GM) plants have transgenes that confer tolerance to abiotic stressors. Meanwhile, other transgenes may interact with abiotic stressors, causing pleiotropic effects that will affect the plant physiology. Thus, physiological alteration might have an impact on the product safety. However, routine risk assessment (RA) analyses do not evaluate the response of GM plants exposed to different environmental conditions. Therefore, we here present a proteome profile of herbicide-tolerant maize, including the levels of phytohormones and related compounds, compared to its near-isogenic non-GM variety under drought and herbicide stresses. Twenty differentially abundant proteins were detected between GM and non-GM hybrids under different water deficiency conditions and herbicide sprays. Pathway enrichment analysis showed that most of these proteins are assigned to energetic/carbohydrate metabolic processes. Among phytohormones and related compounds, different levels of ABA, CA, JA, MeJA and SA were detected in the maize varieties and stress conditions analysed. In pathway and proteome analyses, environment was found to be the major source of variation followed by the genetic transformation factor. Nonetheless, differences were detected in the levels of JA, MeJA and CA and in the abundance of 11 proteins when comparing the GM plant and its non-GM near-isogenic variety under the same environmental conditions. Thus, these findings do support molecular studies in GM plants Risk Assessment analyses. PMID:28245233
Heredia Díaz, Oscar; Aldaba Meza, José Luis; Baltazar, Baltazar M; Bojórquez Bojórquez, Germán; Castro Espinoza, Luciano; Corrales Madrid, José Luis; de la Fuente Martínez, Juan Manuel; Durán Pompa, Héctor Abel; Alonso Escobedo, José; Espinoza Banda, Armando; Garzón Tiznado, José Antonio; González García, Juvencio; Guzmán Rodríguez, José Luis; Madueño Martínez, Jesús Ignacio; Martínez Carrillo, José Luis; Meng, Chen; Quiñones Pando, Francisco Javier; Rosales Robles, Enrique; Ruiz Hernández, Ignacio; Treviño Ramírez, José Elías; Uribe Montes, Hugo Raúl; Zavala García, Francisco
2017-02-01
Environmental risk assessment (ERA) of genetically modified (GM) crops is a process to evaluate whether the biotechnology trait(s) in a GM crop may result in increased pest potential or harm to the environment. In this analysis, two GM insect-resistant (IR) herbicide-tolerant maize hybrids (MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6) and one herbicide-tolerant GM hybrid (MON-ØØ6Ø3-6) were compared with conventional maize hybrids of similar genetic backgrounds. Two sets of studies, Experimental Phase and Pilot Phase, were conducted across five ecological regions (ecoregions) in Mexico during 2009-2013, and data were subject to meta-analysis. Results from the Experimental Phase studies, which were used for ERA, indicated that the three GM hybrids were not different from conventional maize for early stand count, days-to-silking, days-to-anthesis, root lodging, stalk lodging, or final stand count. Statistically significant differences were observed for seedling vigor, ear height, plant height, grain moisture, and grain yield, particularly in the IR hybrids; however, none of these phenotypic differences are expected to contribute to a biological or ecological change that would result in an increased pest potential or ecological risk when cultivating these GM hybrids. Overall, results from the Experimental Phase studies are consistent with those from other world regions, confirming that there are no additional risks compared to conventional maize. Results from Pilot Phase studies indicated that, compared to conventional maize hybrids, no differences were detected for the agronomic and phenotypic characteristics measured on the three GM maize hybrids, with the exception of grain moisture and grain yield in the IR hybrids. Since MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6 confer resistance to target insect pests, they are an alternative for farmers in Mexico to protect the crop from insect damage. Additionally, the herbicide tolerance conferred by all three GM hybrids enables more cost-effective weed management.
Fantozzi, Anna; Ermolli, Monica; Marini, Massimiliano; Scotti, Domenico; Balla, Branko; Querci, Maddalena; Langrell, Stephen R H; Van den Eede, Guy
2007-02-21
An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis.
Koc, Anna; Cañuelo, Ana; Garcia-Reyes, Juan F; Molina-Diaz, Antonio; Trojanowicz, Marek
2012-06-01
In this work, the use of liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC-TOFMS) has been evaluated for the profiling of relatively low-molecular weight protein species in both genetically modified (GM) and non-GM maize. The proposed approach consisted of a straightforward sample fractionation with different water and ethanol-based buffer solutions followed by separation and detection of the protein species using liquid chromatography with a small particle size (1.8 μm) C(18) column and electrospray-time-of-flight mass spectrometry detection in the positive ionization mode. The fractionation of maize reference material containing different content of transgenic material (from 0 to 5% GM) led to five different fractions (albumins, globulins, zeins, zein-like glutelins, and glutelins), all of them containing different protein species (from 2 to 52 different species in each fraction). Some relevant differences in the quantity and types of protein species were observed in the different fractions of the reference material (with different GM contents) tested, thus revealing the potential use of the proposed approach for fast protein profiling and to detect tentative GMO markers in maize. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Svobodová, Z; Skoková Habuštová, O; Boháč, J; Sehnal, F
2016-08-01
Staphylinid beetles are recommended bioindicators for the pre-market environmental risk assessment of genetically modified (GM) insect protected maize expressing the Cry3Bb1 toxin. Our multiannual study is a unique European analysis of a staphylinid community within a 14 ha maize field. GM maize, its near-isogenic hybrid (with or without insecticide treatment), and two other reference hybrids were each grown in five 0.5 ha plots. The opportunity for exposure to Cry toxin from plant residues ploughed into the soil was shown by the presence of saprophagous dipteran larvae that are common prey of predatory staphylinid species and hosts of the parasitoid species. 2587 individuals belonging to 77 staphylinid species were sampled using pitfall traps. Lesteva longoelytrata (31%), Oxypoda acuminata (12%), Aloconota sulcifrons (8%) and Anotylus rugosus (7%) were the most abundant beetles in the field. Bionomics, food specialization, temperature requirements and size group were assigned for 25 most common species. These traits determine the occurrence of staphylinid beetles in the field, the food sources they could utilize and thus also their likely contact with the Cry3Bb1 toxin. Statistical analysis of activity abundance, Rao indices and multivariate analysis of distribution of particular categories of functional traits in the field showed negligible effects of the experimental treatments, including the GM maize, upon the staphylinid community. Staphylinid beetles represent a considerably diverse part of epigeic field fauna with wide food specialization; these features render them suitable for the assessment of environmental safety of GM insect protected maize. However, the availability of prey and the presence of particular staphylinid species and their abundance are highly variable; this complicates the interpretation of the results.
Korwin-Kossakowska, A; Sartowska, K; Tomczyk, G; Prusak, B; Sender, G
2016-06-01
The hypothesis assumes that feed containing GMOs affects animal health and results in the transgene product accumulating in the body. Therefore, the objective of the study was to evaluate the impact of genetically modified (GM) ingredients used in poultry diets on aspects of bird health status and accumulation of transgenic DNA in eggs, breast muscle and internal organs. A total of 10 generations of Japanese quail were fed three types of diets: group A - containing GM soya (Roundup Ready) and non-GM maize, group B - containing GM maize (MON810) and non-GM soya, and group C - containing non-GM soya and maize. Bird performance traits were monitored throughout the trial. In 17-week-old animals of each generation, health examination took place on birds from each group including post-mortem necropsy and histological organ evaluation. For the purpose of transgenic DNA detection, samples of selected important tissues were taken. A molecular screening method of PCR amplification was used. The analysis of the sectional examination of birds used in the current experiment did not indicate the existence of the pathological changes caused by pathogens, nutritional factors or of environmental nature. The histopathological changes occurred in all three dietary groups and there were no statistically significant differences between the groups. There was no transgene amplification - neither CaMV35S promoter sequence nor nos terminator sequence, in the samples derived from breast muscle, selected tissues and germinal discs (eggs). According to the obtained results, it was concluded that there was no negative effect of the use of GM soya or maize with regard to bird health status or to the presence of transgenic DNA in the final consumable product.
Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan
2013-11-01
The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg(-1) GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25.
Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25
Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan
2013-01-01
The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg−1 GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25. PMID:24804053
Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi
2016-01-01
A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize, 3272. We first attempted to obtain genome DNA from this maize using a DNeasy Plant Maxi kit and a DNeasy Plant Mini kit, which have been widely utilized in our previous studies, but DNA extraction yields from 3272 were markedly lower than those from non-GM maize seeds. However, lowering of DNA extraction yields was not observed with GM quicker or Genomic-tip 20/G. We chose GM quicker for evaluation of the quantitative method. We prepared a standard plasmid for 3272 quantification. The conversion factor (Cf), which is required to calculate the amount of a genetically modified organism (GMO), was experimentally determined for two real-time PCR instruments, the Applied Biosystems 7900HT (the ABI 7900) and the Applied Biosystems 7500 (the ABI7500). The determined Cf values were 0.60 and 0.59 for the ABI 7900 and the ABI 7500, respectively. To evaluate the developed method, a blind test was conducted as part of an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSDr). The determined values were similar to those in our previous validation studies. The limit of quantitation for the method was estimated to be 0.5% or less, and we concluded that the developed method would be suitable and practical for detection and quantification of 3272.
Biotech/GM crops in horticulture: plum cv. HoneySweet resistant to plum pox virus
USDA-ARS?s Scientific Manuscript database
Commercialization of Biotech crops started in 1995. By 2011, genetically modified (GM) crops were grown world-wide on 160 million ha. Only 114.507 ha of GM crops were grown in Europe, of that, 114.490 ha were Bt maize and 17 ha were potato for industrial starch production. Currently, developing c...
Sissener, Nini H; Hemre, Gro-Ingunn; Lall, Santosh P; Sagstad, Anita; Petersen, Kjell; Williams, Jason; Rohloff, Jens; Sanden, Monica
2011-07-01
The present study was conducted to follow up on apparent differences in growth, relative organ sizes, cellular stress and immune function in Atlantic salmon fed feed containing GM Bacillus thuringiensis maize compared with feed containing the non-modified parental maize line. Gene expression profiling on the distal intestinal segment and liver was performed by microarray, and selected genes were followed up by quantitative PCR (qPCR). In the liver, qPCR revealed some differentially regulated genes, including up-regulation of gelsolin precursor, down-regulation of ferritin heavy subunit and a tendency towards down-regulation of metallothionein (MT)-B. This, combined with the up-regulation of anti-apoptotic protein NR13 and similar tendencies for ferritin heavy chain and MT-A and -B in the distal intestine, suggests changes in cellular stress/antioxidant status. This corresponds well with and strengthens previous findings in these fish. To exclude possible confounding factors, the maize ingredients were analysed for mycotoxins and metabolites. The GM maize contained 90 μg/kg of deoxynivalenol (DON), while the non-GM maize was below the detection limit. Differences were also observed in the metabolite profiles of the two maize varieties, some of which seemed connected to the mycotoxin level. The effects on salmon observed in the present and previous studies correspond relatively well with the effects of DON as reported in the literature for other production animals, but knowledge regarding effects and harmful dose levels in fish is scarce. Thus, it is difficult to conclude whether the observed effects are caused by the DON level or by some other aspect of the GM maize ingredient.
Metabolic changes in transgenic maize mature seeds over-expressing the Aspergillus niger phyA2.
Rao, Jun; Yang, Litao; Guo, Jinchao; Quan, Sheng; Chen, Guihua; Zhao, Xiangxiang; Zhang, Dabing; Shi, Jianxin
2016-02-01
Non-targeted metabolomics analysis revealed only intended metabolic changes in transgenic maize over-expressing the Aspergillus niger phyA2. Genetically modified (GM) crops account for a large proportion of modern agriculture worldwide, raising increasingly the public concerns of safety. Generally, according to substantial equivalence principle, if a GM crop is demonstrated to be equivalently safe to its conventional species, it is supposed to be safe. In this study, taking the advantage of an established non-target metabolomic profiling platform based on the combination of UPLC-MS/MS with GC-MS, we compared the mature seed metabolic changes in transgenic maize over-expressing the Aspergillus niger phyA2 with its non-transgenic counterpart and other 14 conventional maize lines. In total, levels of nine out of identified 210 metabolites were significantly changed in transgenic maize as compared with its non-transgenic counterpart, and the number of significantly altered metabolites was reduced to only four when the natural variations were taken into consideration. Notably, those four metabolites were all associated with targeted engineering pathway. Our results indicated that although both intended and non-intended metabolic changes occurred in the mature seeds of this GM maize event, only intended metabolic pathway was found to be out of the range of the natural metabolic variation in the metabolome of the transgenic maize. Therefore, only when natural metabolic variation was taken into account, could non-targeted metabolomics provide reliable objective compositional substantial equivalence analysis on GM crops.
Treml, Diana; Venturelli, Gustavo L; Brod, Fábio C A; Faria, Josias C; Arisi, Ana C M
2014-12-10
A genetically modified (GM) common bean event, namely Embrapa 5.1, resistant to the bean golden mosaic virus (BGMV), was approved for commercialization in Brazil. Brazilian regulation for genetically modified organism (GMO) labeling requires that any food containing more than 1% GMO be labeled. The event-specific polymerase chain reaction (PCR) method has been the primary trend for GMO identification and quantitation because of its high specificity based on the flanking sequence. This work reports the development of an event-specific assay, named FGM, for Embrapa 5.1 detection and quantitation by use of SYBR Green or hydrolysis probe. The FGM assay specificity was tested for Embrapa 2.3 event (a noncommercial GM common bean also resistant to BGMV), 46 non-GM common bean varieties, and other crop species including maize, GM maize, soybean, and GM soybean. The FGM assay showed high specificity to detect the Embrapa 5.1 event. Standard curves for the FGM assay presented a mean efficiency of 95% and a limit of detection (LOD) of 100 genome copies in the presence of background DNA. The primers and probe developed are suitable for the detection and quantitation of Embrapa 5.1.
Kuramae, Eiko E.; Hillekens, Remy; de Hollander, Mattias; Kiers, E. Toby; Röling, Wilfred F. M.; Kowalchuk, George A.; van der Heijden, Marcel G. A.
2012-01-01
The cultivation of genetically modified (GM) crops has increased significantly over the last decades. However, concerns have been raised that some GM traits may negatively affect beneficial soil biota, such as arbuscular mycorrhizal fungi (AMF), potentially leading to alterations in soil functioning. Here, we test two maize varieties expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) for their effects on soil AM fungal communities. We target both fungal DNA and RNA, which is new for AM fungi, and we use two strategies as an inclusive and robust way of detecting community differences: (i) 454 pyrosequencing using general fungal rRNA gene-directed primers and (ii) terminal restriction fragment length polymorphism (T-RFLP) profiling using AM fungus-specific markers. Potential GM-induced effects were compared to the normal natural variation of AM fungal communities across 15 different agricultural fields. AM fungi were found to be abundant in the experiment, accounting for 8% and 21% of total recovered DNA- and RNA-derived fungal sequences, respectively, after 104 days of plant growth. RNA- and DNA-based sequence analyses yielded most of the same AM fungal lineages. Our research yielded three major conclusions. First, no consistent differences were detected between AM fungal communities associated with GM plants and non-GM plants. Second, temporal variation in AMF community composition (between two measured time points) was bigger than GM trait-induced variation. Third, natural variation of AMF communities across 15 agricultural fields in The Netherlands, as well as within-field temporal variation, was much higher than GM-induced variation. In conclusion, we found no indication that Bt maize cultivation poses a risk for AMF. PMID:22885748
Yoshimura, Tomoaki; Kuribara, Hideo; Kodama, Takashi; Yamata, Seiko; Futo, Satoshi; Watanabe, Satoshi; Aoki, Nobutaro; Iizuka, Tayoshi; Akiyama, Hiroshi; Maitani, Tamio; Naito, Shigehiro; Hino, Akihiro
2005-03-23
Seven types of processed foods, namely, cornstarch, cornmeal, corn puffs, corn chips, tofu, soy milk, and boiled beans, were trial produced from 1 and 5% (w/w) genetically modified (GM) mixed raw materials. In this report, insect resistant maize (MON810) and herbicide tolerant soy (Roundup Ready soy, 40-3-2) were used as representatives of GM maize and soy, respectively. Deoxyribonucleic acid (DNA) was extracted from the raw materials and the trial-produced processed food using two types of methods, i.e., the silica membrane method and the anion exchange method. The GM% values of these samples were quantified, and the significant differences between the raw materials and the trial-produced processed foods were statistically confirmed. There were some significant differences in the comparisons of all processed foods. However, our quantitative methods could be applied as a screening assay to tofu and soy milk because the differences in GM% between the trial-produced processed foods and their raw materials were lower than 13 and 23%, respectively. In addition, when quantitating with two primer pairs (SSIIb 3, 114 bp; SSIIb 4, 83 bp for maize and Le1n02, 118 bp; Le1n03, 89 bp for soy), which were targeted within the same taxon specific DNA sequence with different amplicon sizes, the ratios of the copy numbers of the two primer pairs (SSIIb 3/4 and Le1n02/03) decreased with time in a heat-treated processing model using an autoclave. In this report, we suggest that the degradation level of DNA in processed foods could be estimated from these ratios, and the probability of GM quantification could be experimentally predicted from the results of the trial producing.
Stacking transgenic event DAS-Ø15Ø7-1 alters maize composition less than traditional breeding.
Herman, Rod A; Fast, Brandon J; Scherer, Peter N; Brune, Alyssa M; de Cerqueira, Denise T; Schafer, Barry W; Ekmay, Ricardo D; Harrigan, George G; Bradfisch, Greg A
2017-10-01
The impact of crossing ('stacking') genetically modified (GM) events on maize-grain biochemical composition was compared with the impact of generating nonGM hybrids. The compositional similarity of seven GM stacks containing event DAS-Ø15Ø7-1, and their matched nonGM near-isogenic hybrids (iso-hybrids) was compared with the compositional similarity of concurrently grown nonGM hybrids and these same iso-hybrids. Scatter plots were used to visualize comparisons among hybrids and a coefficient of identity (per cent of variation explained by line of identity) was calculated to quantify the relationships within analyte profiles. The composition of GM breeding stacks was more similar to the composition of iso-hybrids than was the composition of nonGM hybrids. NonGM breeding more strongly influenced crop composition than did transgenesis or stacking of GM events. These findings call into question the value of uniquely requiring composition studies for GM crops, especially for breeding stacks composed of GM events previously found to be compositionally normal. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Sanden, M; Berntssen, M H G; Krogdahl, A; Hemre, G-I; Bakke-McKellep, A-M
2005-06-01
This study was conducted to investigate the long-term effects of feeding plant products from both traditional breeding and from biotechnology on intestinal somatic indices, histology and cell proliferation in first-feeding Atlantic salmon, Salmo salar L. (initial weight 0.21 +/- 0.02 g). A standard fishmeal diet (standard fishmeal) was formulated to contain fishmeal as the sole protein source and suprex maize as the main starch source. Six experimental diets were then developed: two in which some of the fishmeal was replaced with commercially available, genetically modified Roundup Ready full-fat soybean meal (GM-soy) or commercially available, non-GM full-fat soybean meal (nGM-soy) at a level of 12.5% of the total diet, and four diets in which the suprex maize was replaced with two lines of GM-maize (Dekalb 1; D1 and Pioneer 1; P1), both products of event MON810, and their half-sibling non-GM counterparts (Dekalb 2; D2 and Pioneer 2; P2), at a level of 12.1% of total diet. Each diet was fed to fish in triplicate tanks and the experiment lasted for 8 months, during which the fish reached a final weight of 101-116 g. There was no significant effect of diet on the intestinal indices, nor were histological changes observed in the pyloric caeca or mid intestine. In the distal intestine, one of nine sampled fish fed nGM-soy showed moderate changes, two of nine sampled fish fed GM-soy showed changes, one with moderate and one with severe changes, and two of nine fish fed nGM-maize D2 had moderate changes. Using a monoclonal antibody against proliferating cell nuclear antigen (PCNA), cell proliferative responses to the experimental diets were assessed. In fish fed both soy diets, a significantly higher (P < 0.05) cell proliferation response was observed in the distal intestine concomitant with an increased localization of PCNA positive cells along the whole distal intestinal folds. The PCNA response among the nGM-soy group was significantly higher compared with all the other diet groups. In contrast, for fish exposed to dietary maize (type D) compared with fish fed the standard fishmeal, the soy-diets (GM-soy and nGM-soy) and maize (type P), a significantly lower (P < 0.05) cell proliferation response was observed in the distal intestine. Results indicated that the GM plant products investigated in this study, at about 12% inclusion level, were as safe as commercially available non-GM products, at least in terms of their effect on indices and histological parameters of the Atlantic salmon intestinal tract.
NASA Astrophysics Data System (ADS)
Bøhn, Thomas; Aheto, Denis W.; Mwangala, Felix S.; Fischer, Klara; Bones, Inger Louise; Simoloka, Christopher; Mbeule, Ireen; Schmidt, Gunther; Breckling, Broder
2016-10-01
Gene flow in agricultural crops is important for risk assessment of genetically modified (GM) crops, particularly in countries with a large informal agricultural sector of subsistence cultivation. We present a pollen flow model for maize (Zea mays), a major staple crop in Africa. We use spatial properties of fields (size, position) in three small-scale maize farming communities in Zambia and estimate rates of cross-fertilisation between fields sown with different maize varieties (e.g. conventional and transgene). As an additional factor contributing to gene flow, we present data on seed saving and sharing among farmers that live in the same communities. Our results show that: i) maize fields were small and located in immediate vicinity of neighboring fields; ii) a majority of farmers saved and shared seed; iii) modeled rates of pollen-mediated gene flow showed extensive mixing of germplasm between fields and farms and iv) as a result, segregation of GM and non-GM varieties is not likely to be an option in these systems. We conclude that the overall genetic composition of maize, in this and similar agricultural contexts, will be strongly influenced both by self-organised ecological factors (pollen flow), and by socially mediated intervention (seed recycling and sharing).
Bøhn, Thomas; Aheto, Denis W.; Mwangala, Felix S.; Fischer, Klara; Bones, Inger Louise; Simoloka, Christopher; Mbeule, Ireen; Schmidt, Gunther; Breckling, Broder
2016-01-01
Gene flow in agricultural crops is important for risk assessment of genetically modified (GM) crops, particularly in countries with a large informal agricultural sector of subsistence cultivation. We present a pollen flow model for maize (Zea mays), a major staple crop in Africa. We use spatial properties of fields (size, position) in three small-scale maize farming communities in Zambia and estimate rates of cross-fertilisation between fields sown with different maize varieties (e.g. conventional and transgene). As an additional factor contributing to gene flow, we present data on seed saving and sharing among farmers that live in the same communities. Our results show that: i) maize fields were small and located in immediate vicinity of neighboring fields; ii) a majority of farmers saved and shared seed; iii) modeled rates of pollen-mediated gene flow showed extensive mixing of germplasm between fields and farms and iv) as a result, segregation of GM and non-GM varieties is not likely to be an option in these systems. We conclude that the overall genetic composition of maize, in this and similar agricultural contexts, will be strongly influenced both by self-organised ecological factors (pollen flow), and by socially mediated intervention (seed recycling and sharing). PMID:27694819
Bøhn, Thomas; Aheto, Denis W; Mwangala, Felix S; Fischer, Klara; Bones, Inger Louise; Simoloka, Christopher; Mbeule, Ireen; Schmidt, Gunther; Breckling, Broder
2016-10-03
Gene flow in agricultural crops is important for risk assessment of genetically modified (GM) crops, particularly in countries with a large informal agricultural sector of subsistence cultivation. We present a pollen flow model for maize (Zea mays), a major staple crop in Africa. We use spatial properties of fields (size, position) in three small-scale maize farming communities in Zambia and estimate rates of cross-fertilisation between fields sown with different maize varieties (e.g. conventional and transgene). As an additional factor contributing to gene flow, we present data on seed saving and sharing among farmers that live in the same communities. Our results show that: i) maize fields were small and located in immediate vicinity of neighboring fields; ii) a majority of farmers saved and shared seed; iii) modeled rates of pollen-mediated gene flow showed extensive mixing of germplasm between fields and farms and iv) as a result, segregation of GM and non-GM varieties is not likely to be an option in these systems. We conclude that the overall genetic composition of maize, in this and similar agricultural contexts, will be strongly influenced both by self-organised ecological factors (pollen flow), and by socially mediated intervention (seed recycling and sharing).
Monma, Kimio; Araki, Rie; Sagi, Naoki; Satoh, Masaki; Ichikawa, Hisatsugu; Satoh, Kazue; Tobe, Takashi; Kamata, Kunihiro; Hino, Akihiro; Saito, Kazuo
2005-06-01
Investigations of the validity of labeling regarding genetically modified (GM) products were conducted using polymerase chain reaction (PCR) methods for foreign-made processed foods made from corn and potato purchased in the Tokyo area and in the USA. Several kinds of GM crops were detected in 12 of 32 samples of processed corn samples. More than two GM events for which safety reviews have been completed in Japan were simultaneously detected in 10 samples. GM events MON810 and Bt11 were most frequently detected in the samples by qualitative PCR methods. MON810 was detected in 11 of the 12 samples, and Bt11 was detected in 6 of the 12 samples. In addition, Roundup Ready soy was detected in one of the 12 samples. On the other hand, CBH351, for which the safety assessment was withdrawn in Japan, was not detected in any of the 12 samples. A trial quantitative analysis was performed on six of the GM maize qualitatively positive samples. The estimated amounts of GM maize in these samples ranged from 0.2 to 2.8%, except for one sample, which contained 24.1%. For this sample, the total amount found by event-specific quantitative analysis was 23.8%. Additionally, Roundup Ready soy was detected in one sample of 21 potato-processed foods, although GM potatoes were not detected in any sample.
Séralini, Gilles-Eric; Clair, Emilie; Mesnage, Robin; Gress, Steeve; Defarge, Nicolas; Malatesta, Manuela; Hennequin, Didier; de Vendômois, Joël Spiroux
2014-01-01
The health effects of a Roundup-tolerant NK603 genetically modified (GM) maize (from 11% in the diet), cultivated with or without Roundup application and Roundup alone (from 0.1 ppb of the full pesticide containing glyphosate and adjuvants) in drinking water, were evaluated for 2 years in rats. This study constitutes a follow-up investigation of a 90-day feeding study conducted by Monsanto in order to obtain commercial release of this GMO, employing the same rat strain and analyzing biochemical parameters on the same number of animals per group as our investigation. Our research represents the first chronic study on these substances, in which all observations including tumors are reported chronologically. Thus, it was not designed as a carcinogenicity study. We report the major findings with 34 organs observed and 56 parameters analyzed at 11 time points for most organs. Biochemical analyses confirmed very significant chronic kidney deficiencies, for all treatments and both sexes; 76% of the altered parameters were kidney-related. In treated males, liver congestions and necrosis were 2.5 to 5.5 times higher. Marked and severe nephropathies were also generally 1.3 to 2.3 times greater. In females, all treatment groups showed a two- to threefold increase in mortality, and deaths were earlier. This difference was also evident in three male groups fed with GM maize. All results were hormone- and sex-dependent, and the pathological profiles were comparable. Females developed large mammary tumors more frequently and before controls; the pituitary was the second most disabled organ; the sex hormonal balance was modified by consumption of GM maize and Roundup treatments. Males presented up to four times more large palpable tumors starting 600 days earlier than in the control group, in which only one tumor was noted. These results may be explained by not only the non-linear endocrine-disrupting effects of Roundup but also by the overexpression of the EPSPS transgene or other mutational effects in the GM maize and their metabolic consequences. Our findings imply that long-term (2 year) feeding trials need to be conducted to thoroughly evaluate the safety of GM foods and pesticides in their full commercial formulations.
Wisniewski, Jean-Pierre; Frangne, Nathalie; Massonneau, Agnès; Dumas, Christian
2002-11-01
Maize is a major crop plant with essential agronomical interests and a model plant for genetic studies. With the development of plant genetic engineering technology, many transgenic strains of this monocotyledonous plant have been produced over the past decade. In particular, field-cultivated insect-resistant Bt-maize hybrids are at the centre of an intense debate between scientists and organizations recalcitrant to genetically modified organisms (GMOs). This debate, which addresses both safety and ethical aspects, has raised questions about the impact of genetically modified (GM) crops on the biodiversity of traditional landraces and on the environment. Here, we review some of the key points of maize genetic history as well as the methods used to stably transform this cereal. We describe the genetically engineered Bt-maizes available for field cultivation and we investigate the controversial reports on their impacts on non-target insects such as the monarch butterfly and on the flow of transgenes into Mexican maize landraces.
Meng, Yanan; Liu, Xin; Wang, Shu; Zhang, Dabing; Yang, Litao
2012-01-11
To enforce the labeling regulations of genetically modified organisms (GMOs), the application of DNA plasmids as calibrants is becoming essential for the practical quantification of GMOs. This study reports the construction of plasmid pTC1507 for a quantification assay of genetically modified (GM) maize TC1507 and the collaborative ring trial in international validation of its applicability as a plasmid calibrant. pTC1507 includes one event-specific sequence of TC1507 maize and one unique sequence of maize endogenous gene zSSIIb. A total of eight GMO detection laboratories worldwide were invited to join the validation process, and test results were returned from all eight participants. Statistical analysis of the returned results showed that real-time PCR assays using pTC1507 as calibrant in both GM event-specific and endogenous gene quantifications had high PCR efficiency (ranging from 0.80 to 1.15) and good linearity (ranging from 0.9921 to 0.9998). In a quantification assay of five blind samples, the bias between the test values and true values ranged from 2.6 to 24.9%. All results indicated that the developed pTC1507 plasmid is applicable for the quantitative analysis of TC1507 maize and can be used as a suitable substitute for dried powder certified reference materials (CRMs).
Carstens, Keri; Anderson, Jennifer; Bachman, Pamela; De Schrijver, Adinda; Dively, Galen; Federici, Brian; Hamer, Mick; Gielkens, Marco; Jensen, Peter; Lamp, William; Rauschen, Stefan; Ridley, Geoff; Romeis, Jörg; Waggoner, Annabel
2012-08-01
Environmental risk assessments (ERA) support regulatory decisions for the commercial cultivation of genetically modified (GM) crops. The ERA for terrestrial agroecosystems is well-developed, whereas guidance for ERA of GM crops in aquatic ecosystems is not as well-defined. The purpose of this document is to demonstrate how comprehensive problem formulation can be used to develop a conceptual model and to identify potential exposure pathways, using Bacillus thuringiensis (Bt) maize as a case study. Within problem formulation, the insecticidal trait, the crop, the receiving environment, and protection goals were characterized, and a conceptual model was developed to identify routes through which aquatic organisms may be exposed to insecticidal proteins in maize tissue. Following a tiered approach for exposure assessment, worst-case exposures were estimated using standardized models, and factors mitigating exposure were described. Based on exposure estimates, shredders were identified as the functional group most likely to be exposed to insecticidal proteins. However, even using worst-case assumptions, the exposure of shredders to Bt maize was low and studies supporting the current risk assessments were deemed adequate. Determining if early tier toxicity studies are necessary to inform the risk assessment for a specific GM crop should be done on a case by case basis, and should be guided by thorough problem formulation and exposure assessment. The processes used to develop the Bt maize case study are intended to serve as a model for performing risk assessments on future traits and crops.
USDA-ARS?s Scientific Manuscript database
Gentically modified (GM) crops were grown world-wide on 160 million ha in 2011. Only 114.57 ha of GM crops were grown in Europe, of that, 114.90 ha were Bt maize and 17 ha were potato for industrial starch production. Commercialization of Biotech crops started in 1995. Currently, developing count...
Bánáti, Hajnalka; Darvas, Béla; Fehér-Tóth, Szilvia; Czéh, Árpád; Székács, András
2017-02-22
Levels of mycotoxins produced by Fusarium species in genetically modified (GM) and near-isogenic maize, were determined using multi-analyte, microbead-based flow immunocytometry with fluorescence detection, for the parallel quantitative determination of fumonisin B1, deoxynivalenol, zearalenone, T-2, ochratoxin A, and aflatoxin B1. Maize varieties included the genetic events MON 810 and DAS-59122-7 , and their isogenic counterparts. Cobs were artificially infested by F. verticillioides and F. proliferatum conidia, and contained F. graminearum and F. sporotrichoides natural infestation. The production of fumonisin B1 and deoxynivalenol was substantially affected in GM maize lines: F. verticillioides , with the addition of F. graminearum and F. sporotrichoides , produced significantly lower levels of fumonisin B1 (~300 mg·kg -1 ) in DAS-59122-7 than in its isogenic line (~580 mg·kg -1 ), while F. proliferatum , in addition to F. graminearum and F. sporotrichoides , produced significantly higher levels of deoxynivalenol (~18 mg·kg -1 ) in MON 810 than in its isogenic line (~5 mg·kg -1 ). Fusarium verticillioides , with F. graminearum and F. sporotrichoides , produced lower amounts of deoxynivalenol and zearalenone than F. proliferatum , with F. graminearum and F. sporotrichoides . T-2 toxin production remained unchanged when considering the maize variety. The results demonstrate the utility of the Fungi-Plex™ quantitative flow immunocytometry method, applied for the high throughput parallel determination of the target mycotoxins.
Makowski, David; Bancal, Rémi; Bensadoun, Arnaud; Monod, Hervé; Messéan, Antoine
2017-09-01
According to E.U. regulations, the maximum allowable rate of adventitious transgene presence in non-genetically modified (GM) crops is 0.9%. We compared four sampling methods for the detection of transgenic material in agricultural non-GM maize fields: random sampling, stratified sampling, random sampling + ratio reweighting, random sampling + regression reweighting. Random sampling involves simply sampling maize grains from different locations selected at random from the field concerned. The stratified and reweighting sampling methods make use of an auxiliary variable corresponding to the output of a gene-flow model (a zero-inflated Poisson model) simulating cross-pollination as a function of wind speed, wind direction, and distance to the closest GM maize field. With the stratified sampling method, an auxiliary variable is used to define several strata with contrasting transgene presence rates, and grains are then sampled at random from each stratum. With the two methods involving reweighting, grains are first sampled at random from various locations within the field, and the observations are then reweighted according to the auxiliary variable. Data collected from three maize fields were used to compare the four sampling methods, and the results were used to determine the extent to which transgene presence rate estimation was improved by the use of stratified and reweighting sampling methods. We found that transgene rate estimates were more accurate and that substantially smaller samples could be used with sampling strategies based on an auxiliary variable derived from a gene-flow model. © 2017 Society for Risk Analysis.
Panda, R; Ariyarathna, H; Amnuaycheewa, P; Tetteh, A; Pramod, S N; Taylor, S L; Ballmer-Weber, B K; Goodman, R E
2013-02-01
Premarket, genetically modified (GM) plants are assessed for potential risks of food allergy. The major risk would be transfer of a gene encoding an allergen or protein nearly identical to an allergen into a different food source, which can be assessed by specific serum testing. The potential that a newly expressed protein might become an allergen is evaluated based on resistance to digestion in pepsin and abundance in food fractions. If the modified plant is a common allergenic source (e.g. soybean), regulatory guidelines suggest testing for increases in the expression of endogenous allergens. Some regulators request evaluating endogenous allergens for rarely allergenic plants (e.g. maize and rice). Since allergic individuals must avoid foods containing their allergen (e.g. peanut, soybean, maize, or rice), the relevance of the tests is unclear. Furthermore, no acceptance criteria are established and little is known about the natural variation in allergen concentrations in these crops. Our results demonstrate a 15-fold difference in the major maize allergen, lipid transfer protein between nine varieties, and complex variation in IgE binding to various soybean varieties. We question the value of evaluating endogenous allergens in GM plants unless the intent of the modification was production of a hypoallergenic crop. © 2012 John Wiley & Sons A/S.
Sánchez, Miguel A; Cid, Pablo; Navarrete, Humberto; Aguirre, Carlos; Chacón, Gustavo; Salazar, Erika; Prieto, Humberto
2016-02-01
The potential impact of genetically modified (GM) crops on biodiversity is one of the main concerns in an environmental risk assessment (ERA). The likelihood of outcrossing and pollen-mediated gene flow from GM crops and non-GM crops are explained by the same principles and depend primarily on the biology of the species. We conducted a national-scale study of the likelihood of outcrossing between 11 GM crops and vascular plants in Chile by use of a systematized database that included cultivated, introduced and native plant species in Chile. The database included geographical distributions and key biological and agronomical characteristics for 3505 introduced, 4993 native and 257 cultivated (of which 11 were native and 246 were introduced) plant species. Out of the considered GM crops (cotton, soya bean, maize, grape, wheat, rice, sugar beet, alfalfa, canola, tomato and potato), only potato and tomato presented native relatives (66 species total). Introduced relative species showed that three GM groups were formed having: a) up to one introduced relative (cotton and soya bean), b) up to two (rice, grape, maize and wheat) and c) from two to seven (sugar beet, alfalfa, canola, tomato and potato). In particular, GM crops presenting introduced noncultivated relative species were canola (1 relative species), alfalfa (up to 4), rice (1), tomato (up to 2) and potato (up to 2). The outcrossing potential between species [OP; scaled from 'very low' (1) to 'very high' (5)] was developed, showing medium OPs (3) for GM-native relative interactions when they occurred, low (2) for GMs and introduced noncultivated and high (4) for the grape-Vitis vinifera GM-introduced cultivated interaction. This analytical tool might be useful for future ERA for unconfined GM crop release in Chile. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Ahmad, Aqeel; Negri, Ignacio; Oliveira, Wladecir; Brown, Christopher; Asiimwe, Peter; Sammons, Bernard; Horak, Michael; Jiang, Changjian; Carson, David
2016-02-01
As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1%). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual-site comparisons (94.6 %) of NTA pest damage to the crop. In each case where a significant difference was observed in arthropod abundance or damage, the mean value for MON 87411 was within the reference range and/or the difference was not consistently observed across collection methods and/or sites. Thus, the differences were not representative of an adverse effect unfamiliar to maize and/or were not indicative of a consistent plant response associated with the GM traits. Results from this study support a conclusion of no adverse environmental impact of MON 87411 on NTAs compared to conventional maize and demonstrate the utility of relevant transportable data across regions for the ERA of GM crops.
Pray, Carl; Ledermann, Samuel
2016-01-01
In Africa and South Asia, where nutrition insecurity is severe, two of the most prominent production technologies are genetically modified (GM) crops and certified organic agriculture. We analyze the potential impact pathways from agricultural production to nutrition. Our review of data and the literature reveals increasing farm-level income from cash crop production as the main pathway by which organic agriculture and GM agriculture improve nutrition. Potential secondary pathways include reduced prices of important food crops like maize due to GM maize production and increased food production using organic technology. Potential tertiary pathways are improvements in health due to reduced insecticide use. Challenges to the technologies achieving their impact include the politics of GM agriculture and the certification costs of organic agriculture. Given the importance of agricultural production in addressing nutrition security, accentuated by the post-2015 sustainable development agenda, the chapter concludes by stressing the importance of private and public sector research in improving the productivity and adoption of both GM and organic crops. In addition, the chapter reminds readers that increased farm income and productivity require complementary investments in health, education, food access and women's empowerment to actually improve nutrition security. © 2016 S. Karger AG, Basel.
Mano, Junichi; Masubuchi, Tomoko; Hatano, Shuko; Futo, Satoshi; Koiwa, Tomohiro; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Takabatake, Reona; Kitta, Kazumi
2013-01-01
In this article, we report a novel real-time PCR-based analytical method for quantitation of the GM maize event LY038. We designed LY038-specific and maize endogenous reference DNA-specific PCR amplifications. After confirming the specificity and linearity of the LY038-specific PCR amplification, we determined the conversion factor required to calculate the weight-based content of GM organism (GMO) in a multilaboratory evaluation. Finally, in order to validate the developed method, an interlaboratory collaborative trial according to the internationally harmonized guidelines was performed with blind DNA samples containing LY038 at the mixing levels of 0, 0.5, 1.0, 5.0 and 10.0%. The precision of the method was evaluated as the RSD of reproducibility (RSDR), and the values obtained were all less than 25%. The limit of quantitation of the method was judged to be 0.5% based on the definition of ISO 24276 guideline. The results from the collaborative trial suggested that the developed quantitative method would be suitable for practical testing of LY038 maize.
Akiyama, Hiroshi; Nakamura, Fumi; Yamada, Chihiro; Nakamura, Kosuke; Nakajima, Osamu; Kawakami, Hiroshi; Harikai, Naoki; Furui, Satoshi; Kitta, Kazumi; Teshima, Reiko
2009-11-01
To screen for unauthorized genetically modified organisms (GMO) in the various crops, we developed a multiplex real-time polymerase chain reaction high-resolution melting-curve analysis method for the simultaneous qualitative detection of 35S promoter sequence of cauliflower mosaic virus (35SP) and the nopaline synthase terminator (NOST) in several crops. We selected suitable primer sets for the simultaneous detection of 35SP and NOST and designed the primer set for the detection of spiked ColE1 plasmid to evaluate the validity of the polymerase chain reaction (PCR) analyses. In addition, we optimized the multiplex PCR conditions using the designed primer sets and EvaGreen as an intercalating dye. The contamination of unauthorized GMO with single copy similar to NK603 maize can be detected as low as 0.1% in a maize sample. Furthermore, we showed that the present method would be applicable in identifying GMO in various crops and foods like authorized GM soybean, authorized GM potato, the biscuit which is contaminated with GM soybeans and the rice which is contaminated with unauthorized GM rice. We consider this method to be a simple and reliable assay for screening for unauthorized GMO in crops and the processing food products.
Gu, Jinni; Bakke, Anne Marie; Valen, Elin C.; Lein, Ingrid; Krogdahl, Åshild
2014-01-01
Responses in Atlantic salmon (Salmo salar L.) juveniles (fry) fed diets containing genetically modified maize (Bt-maize, MON810) expressing Cry1Ab protein from first-feeding were investigated during a 99-day feeding trial. Four experimental diets were made; each diet contained ∼20% maize, either Bt-maize or its near-isogenic maternal line (non-GM maize). One pair was fishmeal-based while the other pair included standard (extracted) soybean meal (SBM; 16.7% inclusion level), with the intention of investigating responses to the maize varieties in healthy fish as well as in immunologically challenged fish with SBM-induced distal intestinal inflammation, respectively. Three replicate tanks of fry (0.17±0.01 g; initial mean weight ± SEM) were fed one of the four diets and samples were taken on days 15, 36, 48 and 99. Survival, growth performance, whole body composition, digestive function, morphology of intestine, liver and skeleton, and mRNA expression of some immune and stress response parameters in the distal intestine were evaluated. After 99 days of feeding, survival was enhanced and the intended SBM-induced inflammatory response in the distal intestine of the two groups of SBM-fed fish was absent, indicating that the juvenile salmon were tolerant to SBM. Mortality, growth performance and body composition were similar in fish fed the two maize varieties. The Bt-maize fed fish, however, displayed minor but significantly decreased digestive enzyme activities of leucine aminopeptidase and maltase, as well as decreased concentration of gut bile salts, but significantly increased amylase activity at some sampling points. Histomorphological, radiographic and mRNA expression evaluations did not reveal any biologically relevant effects of Bt-maize in the gastrointestinal tract, liver or skeleton. The results suggest that the Cry1Ab protein or other compositional differences in GM Bt-maize may cause minor alterations in intestinal responses in juvenile salmon, but without affecting overall survival, growth performance, development or health. PMID:24923786
Gu, Jinni; Bakke, Anne Marie; Valen, Elin C; Lein, Ingrid; Krogdahl, Åshild
2014-01-01
Responses in Atlantic salmon (Salmo salar L.) juveniles (fry) fed diets containing genetically modified maize (Bt-maize, MON810) expressing Cry1Ab protein from first-feeding were investigated during a 99-day feeding trial. Four experimental diets were made; each diet contained ∼20% maize, either Bt-maize or its near-isogenic maternal line (non-GM maize). One pair was fishmeal-based while the other pair included standard (extracted) soybean meal (SBM; 16.7% inclusion level), with the intention of investigating responses to the maize varieties in healthy fish as well as in immunologically challenged fish with SBM-induced distal intestinal inflammation, respectively. Three replicate tanks of fry (0.17±0.01 g; initial mean weight ± SEM) were fed one of the four diets and samples were taken on days 15, 36, 48 and 99. Survival, growth performance, whole body composition, digestive function, morphology of intestine, liver and skeleton, and mRNA expression of some immune and stress response parameters in the distal intestine were evaluated. After 99 days of feeding, survival was enhanced and the intended SBM-induced inflammatory response in the distal intestine of the two groups of SBM-fed fish was absent, indicating that the juvenile salmon were tolerant to SBM. Mortality, growth performance and body composition were similar in fish fed the two maize varieties. The Bt-maize fed fish, however, displayed minor but significantly decreased digestive enzyme activities of leucine aminopeptidase and maltase, as well as decreased concentration of gut bile salts, but significantly increased amylase activity at some sampling points. Histomorphological, radiographic and mRNA expression evaluations did not reveal any biologically relevant effects of Bt-maize in the gastrointestinal tract, liver or skeleton. The results suggest that the Cry1Ab protein or other compositional differences in GM Bt-maize may cause minor alterations in intestinal responses in juvenile salmon, but without affecting overall survival, growth performance, development or health.
Assessment of the influence of field size on maize gene flow using SSR analysis.
Palaudelmàs, M; Melé, E; Monfort, A; Serra, J; Salvia, J; Messeguer, J
2012-06-01
One of the factors that may influence the rate of cross-fertilization is the relative size of the pollen donor and receptor fields. We designed a spatial distribution with four varieties of genetically-modified (GM) yellow maize to generate different sized fields while maintaining a constant distance to neighbouring fields of conventional white kernel maize. Samples of cross-fertilized, yellow kernels in white cobs were collected from all of the adjacent fields at different distances. A special series of samples was collected at distances of 0, 2, 5, 10, 20, 40, 80 and 120 m following a transect traced in the dominant down-wind direction in order to identify the origin of the pollen through SSR analysis. The size of the receptor fields should be taken into account, especially when they extend in the same direction than the GM pollen flow is coming. From collected data, we then validated a function that takes into account the gene flow found in the field border and that is very useful for estimating the % of GM that can be found in any point of the field. It also serves to predict the total GM content of the field due to cross fertilization. Using SSR analysis to identify the origin of pollen showed that while changes in the size of the donor field clearly influence the percentage of GMO detected, this effect is moderate. This study demonstrates that doubling the donor field size resulted in an approximate increase of GM content in the receptor field of 7%. This indicates that variations in the size of the donor field have a smaller influence on GM content than variations in the size of the receptor field.
Effect of volunteers on maize gene flow.
Palaudelmàs, Montserrat; Peñas, Gisela; Melé, Enric; Serra, Joan; Salvia, Jordi; Pla, Maria; Nadal, Anna; Messeguer, Joaquima
2009-08-01
Regulatory approvals for deliberate release of GM maize events into the environment have lead to real situations of coexistence between GM and non-GM, with some fields being cultivated with GM and conventional varieties in successive seasons. Given the common presence of volunteer plants in maize fields in temperate areas, we investigated the real impact of GM volunteers on the yield of 12 non-GM agricultural fields. Volunteer density varied from residual to around 10% of plants in the field and was largely reduced using certain cultural practices. Plant vigour was low, they rarely had cobs and produced pollen that cross-fertilized neighbour plants only at low--but variable--levels. In the worst-case scenario, the estimated content of GMO was 0.16%. The influence of GM volunteers was not enough to reach the 0.9% adventitious GM threshold but it could potentially contribute to adventitious GM levels, especially at high initial densities (i.e. above 1,000 volunteers/ha).
Dobnik, David; Spilsberg, Bjørn; Bogožalec Košir, Alexandra; Holst-Jensen, Arne; Žel, Jana
2015-08-18
Presence of genetically modified organisms (GMO) in food and feed products is regulated in many countries. The European Union (EU) has implemented a threshold for labeling of products containing more than 0.9% of authorized GMOs per ingredient. As the number of GMOs has increased over time, standard-curve based simplex quantitative polymerase chain reaction (qPCR) analyses are no longer sufficiently cost-effective, despite widespread use of initial PCR based screenings. Newly developed GMO detection methods, also multiplex methods, are mostly focused on screening and detection but not quantification. On the basis of droplet digital PCR (ddPCR) technology, multiplex assays for quantification of all 12 EU authorized GM maize lines (per April first 2015) were developed. Because of high sequence similarity of some of the 12 GM targets, two separate multiplex assays were needed. In both assays (4-plex and 10-plex), the transgenes were labeled with one fluorescence reporter and the endogene with another (GMO concentration = transgene/endogene ratio). It was shown that both multiplex assays produce specific results and that performance parameters such as limit of quantification, repeatability, and trueness comply with international recommendations for GMO quantification methods. Moreover, for samples containing GMOs, the throughput and cost-effectiveness is significantly improved compared to qPCR. Thus, it was concluded that the multiplex ddPCR assays could be applied for routine quantification of 12 EU authorized GM maize lines. In case of new authorizations, the events can easily be added to the existing multiplex assays. The presented principle of quantitative multiplexing can be applied to any other domain.
Testing Pollen of Single and Stacked Insect-Resistant Bt-Maize on In vitro Reared Honey Bee Larvae
Hendriksma, Harmen P.; Härtel, Stephan; Steffan-Dewenter, Ingolf
2011-01-01
The ecologically and economic important honey bee (Apis mellifera) is a key non-target arthropod species in environmental risk assessment (ERA) of genetically modified (GM) crops. Honey bee larvae are directly exposed to transgenic products by the consumption of GM pollen. But most ERA studies only consider responses of adult bees, although Bt-proteins primarily affect the larval phases of target organisms. We adopted an in vitro larvae rearing system, to assess lethal and sublethal effects of Bt-pollen consumption in a standardized eco-toxicological bioassay. The effects of pollen from two Bt-maize cultivars, one expressing a single and the other a total of three Bt-proteins, on the survival and prepupae weight of honey bee larvae were analyzed. The control treatments included pollen from three non-transgenic maize varieties and of Heliconia rostrata. Three days old larvae were fed the realistic exposure dose of 2 mg pollen within the semi-artificial diet. The larvae were monitored over 120 h, until the prepupal stage, where larvae terminate feeding and growing. Neither single nor stacked Bt-maize pollen showed an adverse effect on larval survival and the prepupal weight. In contrast, feeding of H. rostrata pollen caused significant toxic effects. The results of this study indicate that pollen of the tested Bt-varieties does not harm the development of in vitro reared A. mellifera larvae. To sustain the ecosystem service of pollination, Bt-impact on A. mellifera should always be a crucial part of regulatory biosafety assessments. We suggest that our approach of feeding GM pollen on in vitro reared honey bee larvae is well suited of becoming a standard bioassay in regulatory risk assessments schemes of GM crops. PMID:22194811
Testing pollen of single and stacked insect-resistant Bt-maize on in vitro reared honey bee larvae.
Hendriksma, Harmen P; Härtel, Stephan; Steffan-Dewenter, Ingolf
2011-01-01
The ecologically and economic important honey bee (Apis mellifera) is a key non-target arthropod species in environmental risk assessment (ERA) of genetically modified (GM) crops. Honey bee larvae are directly exposed to transgenic products by the consumption of GM pollen. But most ERA studies only consider responses of adult bees, although Bt-proteins primarily affect the larval phases of target organisms. We adopted an in vitro larvae rearing system, to assess lethal and sublethal effects of Bt-pollen consumption in a standardized eco-toxicological bioassay. The effects of pollen from two Bt-maize cultivars, one expressing a single and the other a total of three Bt-proteins, on the survival and prepupae weight of honey bee larvae were analyzed. The control treatments included pollen from three non-transgenic maize varieties and of Heliconia rostrata. Three days old larvae were fed the realistic exposure dose of 2 mg pollen within the semi-artificial diet. The larvae were monitored over 120 h, until the prepupal stage, where larvae terminate feeding and growing. Neither single nor stacked Bt-maize pollen showed an adverse effect on larval survival and the prepupal weight. In contrast, feeding of H. rostrata pollen caused significant toxic effects. The results of this study indicate that pollen of the tested Bt-varieties does not harm the development of in vitro reared A. mellifera larvae. To sustain the ecosystem service of pollination, Bt-impact on A. mellifera should always be a crucial part of regulatory biosafety assessments. We suggest that our approach of feeding GM pollen on in vitro reared honey bee larvae is well suited of becoming a standard bioassay in regulatory risk assessments schemes of GM crops.
Perry, J N; Devos, Y; Arpaia, S; Bartsch, D; Gathmann, A; Hails, R S; Kiss, J; Lheureux, K; Manachini, B; Mestdagh, S; Neemann, G; Ortego, F; Schiemann, J; Sweet, J B
2010-05-07
Genetically modified (GM) maize MON810 expresses a Cry1Ab insecticidal protein, derived from Bacillus thuringiensis (Bt), toxic to lepidopteran target pests such as Ostrinia nubilalis. An environmental risk to non-target Lepidoptera from this GM crop is exposure to harmful amounts of Bt-containing pollen deposited on host plants in or near MON810 fields. An 11-parameter mathematical model analysed exposure of larvae of three non-target species: the butterflies Inachis io (L.), Vanessa atalanta (L.) and moth Plutella xylostella (L.), in 11 representative maize cultivation regions in four European countries. A mortality-dose relationship was integrated with a dose-distance relationship to estimate mortality both within the maize MON810 crop and within the field margin at varying distances from the crop edge. Mortality estimates were adjusted to allow for physical effects; the lack of temporal coincidence between the susceptible larval stage concerned and the period over which maize MON810 pollen is shed; and seven further parameters concerned with maize agronomy and host-plant ecology. Sublethal effects were estimated and allowance made for aggregated pollen deposition. Estimated environmental impact was low: in all regions, the calculated mortality rate for worst-case scenarios was less than one individual in every 1572 for the butterflies and one in 392 for the moth.
Perry, J. N.; Devos, Y.; Arpaia, S.; Bartsch, D.; Gathmann, A.; Hails, R. S.; Kiss, J.; Lheureux, K.; Manachini, B.; Mestdagh, S.; Neemann, G.; Ortego, F.; Schiemann, J.; Sweet, J. B.
2010-01-01
Genetically modified (GM) maize MON810 expresses a Cry1Ab insecticidal protein, derived from Bacillus thuringiensis (Bt), toxic to lepidopteran target pests such as Ostrinia nubilalis. An environmental risk to non-target Lepidoptera from this GM crop is exposure to harmful amounts of Bt-containing pollen deposited on host plants in or near MON810 fields. An 11-parameter mathematical model analysed exposure of larvae of three non-target species: the butterflies Inachis io (L.), Vanessa atalanta (L.) and moth Plutella xylostella (L.), in 11 representative maize cultivation regions in four European countries. A mortality–dose relationship was integrated with a dose–distance relationship to estimate mortality both within the maize MON810 crop and within the field margin at varying distances from the crop edge. Mortality estimates were adjusted to allow for physical effects; the lack of temporal coincidence between the susceptible larval stage concerned and the period over which maize MON810 pollen is shed; and seven further parameters concerned with maize agronomy and host-plant ecology. Sublethal effects were estimated and allowance made for aggregated pollen deposition. Estimated environmental impact was low: in all regions, the calculated mortality rate for worst-case scenarios was less than one individual in every 1572 for the butterflies and one in 392 for the moth. PMID:20053648
The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments
Campos, Renata Calixto; Hernández, Malva Isabel Medina
2015-01-01
Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h), a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional) associated with maize management techniques. In Southern Brazil’s scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost. PMID:26694874
The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments.
Campos, Renata Calixto; Hernández, Malva Isabel Medina
2015-01-01
Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h), a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional) associated with maize management techniques. In Southern Brazil's scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost.
Truter, J; Van Hamburg, H; Van Den Berg, J
2014-02-01
The biodiversity of an agroecosystem is not only important for its intrinsic value but also because it influences ecological functions that are vital for crop production in sustainable agricultural systems and the surrounding environment. A concern about genetically modified (GM) crops is the potential negative impact that such crops could have on diversity and abundance of nontarget organisms, and subsequently on ecosystem functions. Therefore, it is essential to assess the potential environmental risk of the release of a GM crop and to study its effect on species assemblages within that ecosystem. Assessment of the impact of Bt maize on the environment is hampered by the lack of basic checklists of species present in maize agroecosystems. The aims of the study were to compile a checklist of arthropods that occur on maize in South Africa and to compare the diversity and abundance of arthropods and functional groups on Bt maize and non-Bt maize. Collections of arthropods were carried out during two growing seasons on Bt maize and non-Bt maize plants at two localities. Three maize fields were sampled per locality during each season. Twenty plants, each of Bt maize and non-Bt maize, were randomly selected from the fields at each site. The arthropods collected during this study were classified to morphospecies level and grouped into the following functional groups: detritivores, herbivores, predators, and parasitoids. Based on feeding strategy, herbivores and predators were further divided into sucking herbivores or predators (piercing-sucking mouthparts) and chewing herbivores or predators (chewing mouthparts). A total of 8,771 arthropod individuals, comprising 288 morphospecies and presenting 20 orders, were collected. Results from this short-term study indicated that abundance and diversity of arthropods in maize and the different functional guilds were not significantly affected by Bt maize, either in terms of diversity or abundance.
WITHDRAWN: Monitoring the prevalence of genetically modified (GM) maize in Iran food products.
Hosseini, Motahreh Sadat; Eslami, Gilda; Hajimohammadi, Bahador; Fallahzadeh, Hossein; Derakhshan, Zahra; Conti, Gea Oliveri; Ferrante, Margherita
2018-01-11
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal. Copyright © 2018.
Iversen, Marianne; Grønsberg, Idun M.; van den Berg, Johnnie; Fischer, Klara; Aheto, Denis Worlanyo; Bøhn, Thomas
2014-01-01
Small-scale subsistence farmers in South Africa have been introduced to genetically modified (GM) crops for more than a decade. Little is known about i) the extent of transgene introgression into locally recycled seed, ii) what short and long-term ecological and socioeconomic impacts such mixing of seeds might have, iii) how the farmers perceive GM crops, and iv) to what degree approval conditions are followed and controlled. This study conducted in the Eastern Cape, South Africa, aims primarily at addressing the first of these issues. We analysed for transgenes in 796 individual maize plants (leaves) and 20 seed batches collected in a village where GM insect resistant maize was previously promoted and grown as part of an governmental agricultural development program over a seven year period (2001–2008). Additionally, we surveyed the varieties of maize grown and the farmers’ practices of recycling and sharing of seed in the same community (26 farmers were interviewed). Recycling and sharing of seeds were common in the community and may contribute to spread and persistence of transgenes in maize on a local or regional level. By analysing DNA we found that the commonly used transgene promoter p35s occurred in one of the 796 leaf samples (0.0013%) and in five of the 20 seed samples (25%). Three of the 20 seed samples (15%) included herbicide tolerant maize (NK603) intentionally grown by the farmers from seed bought from local seed retailers or acquired through a currently running agricultural development program. The two remaining positive seed samples (10%) included genes for insect resistance (from MON810). In both cases the farmers were unaware of the transgenes present. In conclusion, we demonstrate that transgenes are mixed into seed storages of small-scale farming communities where recycling and sharing of seeds are common, i.e. spread beyond the control of the formal seed system. PMID:25551616
Kiddle, Guy; Hardinge, Patrick; Buttigieg, Neil; Gandelman, Olga; Pereira, Clint; McElgunn, Cathal J; Rizzoli, Manuela; Jackson, Rebecca; Appleton, Nigel; Moore, Cathy; Tisi, Laurence C; Murray, James A H
2012-04-30
There is an increasing need for quantitative technologies suitable for molecular detection in a variety of settings for applications including food traceability and monitoring of genetically modified (GM) crops and their products through the food processing chain. Conventional molecular diagnostics utilising real-time polymerase chain reaction (RT-PCR) and fluorescence-based determination of amplification require temperature cycling and relatively complex optics. In contrast, isothermal amplification coupled to a bioluminescent output produced in real-time (BART) occurs at a constant temperature and only requires a simple light detection and integration device. Loop mediated isothermal amplification (LAMP) shows robustness to sample-derived inhibitors. Here we show the applicability of coupled LAMP and BART reactions (LAMP-BART) for determination of genetically modified (GM) maize target DNA at low levels of contamination (0.1-5.0% GM) using certified reference material, and compare this to RT-PCR. Results show that conventional DNA extraction methods developed for PCR may not be optimal for LAMP-BART quantification. Additionally, we demonstrate that LAMP is more tolerant to plant sample-derived inhibitors, and show this can be exploited to develop rapid extraction techniques suitable for simple field-based qualitative tests for GM status determination. We also assess the effect of total DNA assay load on LAMP-BART quantitation. LAMP-BART is an effective and sensitive technique for GM detection with significant potential for quantification even at low levels of contamination and in samples derived from crops such as maize with a large genome size. The resilience of LAMP-BART to acidic polysaccharides makes it well suited to rapid sample preparation techniques and hence to both high throughput laboratory settings and to portable GM detection applications. The impact of the plant sample matrix and genome loading within a reaction must be controlled to ensure quantification at low target concentrations.
A practical approach to screen for authorised and unauthorised genetically modified plants.
Waiblinger, Hans-Ulrich; Grohmann, Lutz; Mankertz, Joachim; Engelbert, Dirk; Pietsch, Klaus
2010-03-01
In routine analysis, screening methods based on real-time PCR are most commonly used for the detection of genetically modified (GM) plant material in food and feed. In this paper, it is shown that the combination of five DNA target sequences can be used as a universal screening approach for at least 81 GM plant events authorised or unauthorised for placing on the market and described in publicly available databases. Except for maize event LY038, soybean events DP-305423 and BPS-CV127-9 and cotton event 281-24-236 x 3006-210-23, at least one of the five genetic elements has been inserted in these GM plants and is targeted by this screening approach. For the detection of these sequences, fully validated real-time PCR methods have been selected. A screening table is presented that describes the presence or absence of the target sequences for most of the listed GM plants. These data have been verified either theoretically according to available databases or experimentally using available reference materials. The screening table will be updated regularly by a network of German enforcement laboratories.
Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong
2014-01-01
Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37–42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15–25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops. PMID:25310647
Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong
2014-10-10
Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37-42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15-25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops.
Is genetically modified crop the answer for the next green revolution?
Basu, Saikat Kumar; Dutta, Madhuleema; Goyal, Aakash; Bhowmik, Pankaj Kumar; Kumar, Jitendra; Nandy, Sanjib; Scagliusi, Sandra Mansun; Prasad, Rajib
2010-01-01
Post-green revolution advances made in biotechnology paved the way of cultivating the high-yielding, stress and disease resistant genetically modified (GM) varieties of wheat, rice, maize cotton and several other crops. The recent rapid commercialization of the genetically modified crops in Asia, Americas and Australia indicates the potentiality of this new technology. GM crops give higher yields and are rich in nutritional values containing vitamins and minerals and can thus can help to alleviate hunger and malnutrition of the growing population in the under developed and developing countries. It could also be possible to develop more biotic and abiotic stress resistant genotypes in these crops where it was difficult to develop due to the unavailability of genes of resistance in the crossing germplasms. However, further research and investigations are needed to popularize the cultivation of these crops in different parts of the world. This review provides an insight of the impact of GM crops on contemporary agriculture across the past few decades, traces its' history across time, highlights new achievements and breakthroughs and discusses the future implication of this powerful technology in the coming few decades.
European Union's Moratorium Impact on Food Biotechnology: A Discussion-Based Scenario
ERIC Educational Resources Information Center
Snyder, Lori Unruh; Gallo, Maria; Fulford, Stephen G.; Irani, Tracy; Rudd, Rick; DiFino, Sharon M.; Durham, Timothy C.
2008-01-01
Genetically modified (GM) crops such as maize (Zea mays L.), cotton (Gossypium hirsutum L.), soybean [Glycine max (L.) Moench], and canola (Brassica rapa L.) have been widely adopted by American farmers. In spite of their use in the United States, the European Union (EU) imposed a 6-year de facto moratorium (1998-2004) on the cultivation/import of…
Niu, Chenqi; Xu, Yuancong; Zhang, Chao; Zhu, Pengyu; Huang, Kunlun; Luo, Yunbo; Xu, Wentao
2018-05-01
As genetically modified (GM) technology develops and genetically modified organisms (GMOs) become more available, GMOs face increasing regulations and pressure to adhere to strict labeling guidelines. A singleplex detection method cannot perform the high-throughput analysis necessary for optimal GMO detection. Combining the advantages of multiplex detection and droplet digital polymerase chain reaction (ddPCR), a single universal primer-multiplex-ddPCR (SUP-M-ddPCR) strategy was proposed for accurate broad-spectrum screening and quantification. The SUP increases efficiency of the primers in PCR and plays an important role in establishing a high-throughput, multiplex detection method. Emerging ddPCR technology has been used for accurate quantification of nucleic acid molecules without a standard curve. Using maize as a reference point, four heterologous sequences ( 35S, NOS, NPTII, and PAT) were selected to evaluate the feasibility and applicability of this strategy. Surprisingly, these four genes cover more than 93% of the transgenic maize lines and serve as preliminary screening sequences. All screening probes were labeled with FAM fluorescence, which allows the signals from the samples with GMO content and those without to be easily differentiated. This fiveplex screening method is a new development in GMO screening. Utilizing an optimal amplification assay, the specificity, limit of detection (LOD), and limit of quantitation (LOQ) were validated. The LOD and LOQ of this GMO screening method were 0.1% and 0.01%, respectively, with a relative standard deviation (RSD) < 25%. This method could serve as an important tool for the detection of GM maize from different processed, commercially available products. Further, this screening method could be applied to other fields that require reliable and sensitive detection of DNA targets.
Phillips, Peter W B
2016-01-01
For almost a generation now, scientists and policy makers have enthusiastically advanced genetically modified (GM) crops as a solution to both global food security and, specifically, the micronutrient needs of the hidden hungry. While genetic modification offers the prospect of overcoming technological barriers to food security, the gap between the vision and reality remains large. This chapter examines the impact of GM crops at three levels. Undoubtedly, at the micro level, bio-fortification offers a real opportunity to enhance the availability of micronutrients. However, the inexorable 'research sieve' ruthlessly culls most technical candidates in the agri-food system. GM bio-fortified foods, such as Golden RiceTM, remain only a promise. At the meso level, GM crops have generated benefits for both producers and consumers who have adopted GM crops, but given that the technology has been differentially applied to maize, the average diet for the food insecure has become somewhat less balanced. Finally, while GM crops have increased yields and the global food supply, these have come at the cost of more complex and costly trade and market systems, which impair access and availability. In essence, while biotechnology offers some tantalizing technological prospects, the difficulties of getting the corresponding benefits to the most needy have dampened some of the enthusiasm. © 2016 S. Karger AG, Basel.
Paternò, Annalisa; Marchesi, Ugo; Gatto, Francesco; Verginelli, Daniela; Quarchioni, Cinzia; Fusco, Cristiana; Zepparoni, Alessia; Amaddeo, Demetrio; Ciabatti, Ilaria
2009-12-09
The comparison of five real-time polymerase chain reaction (PCR) methods targeted at maize ( Zea mays ) endogenous sequences is reported. PCR targets were the alcohol dehydrogenase (adh) gene for three methods and high-mobility group (hmg) gene for the other two. The five real-time PCR methods have been checked under repeatability conditions at several dilution levels on both pooled DNA template from several genetically modified (GM) maize certified reference materials (CRMs) and single CRM DNA extracts. Slopes and R(2) coefficients of all of the curves obtained from the adopted regression model were compared within the same method and among all of the five methods, and the limit of detection and limit of quantitation were analyzed for each PCR system. Furthermore, method equivalency was evaluated on the basis of the ability to estimate the target haploid genome copy number at each concentration level. Results indicated that, among the five methods tested, one of the hmg-targeted PCR systems can be considered equivalent to the others but shows the best regression parameters and a higher repeteability along the dilution range. Thereby, it is proposed as a valid module to be coupled to different event-specific real-time PCR for maize genetically modified organism (GMO) quantitation. The resulting practicability improvement on the analytical control of GMOs is discussed.
Safety assessment of GM plants: An updated review of the scientific literature.
Domingo, José L
2016-09-01
In a wide revision of the literature conducted in 2000, I noted that the information in scientific journals on the safety of genetically modified (GM) foods in general, and GM plants in particular, was scarce. Of course, it was not sufficient to guarantee that the consumption of these products should not mean risks for the health of the consumers. Because of the scientific interest in GM organisms (GMOs), as well as the great concern that the consumption of GM foods/plants has raised in a number of countries, I conducted two subsequent revisions (2007 and 2011) on the adverse/toxic effects of GM plants. In the present review, I have updated the information on the potential adverse health effects of GM plants consumed as food and/or feed. With only a few exceptions, the reported studies in the last six years show rather similar conclusions; that is to say, the assessed GM soybeans, rice, corn/maize and wheat would be as safe as the parental species of these plants. However, in spite of the notable increase in the available information, studies on the long-term health effects of GM plants, including tests of mutagenicity, teratogenicity and carcinogenicity seem to be still clearly necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mano, Junichi; Hatano, Shuko; Nagatomi, Yasuaki; Futo, Satoshi; Takabatake, Reona; Kitta, Kazumi
2018-03-01
Current genetically modified organism (GMO) detection methods allow for sensitive detection. However, a further increase in sensitivity will enable more efficient testing for large grain samples and reliable testing for processed foods. In this study, we investigated real-time PCR-based GMO detection methods using a large amount of DNA template. We selected target sequences that are commonly introduced into many kinds of GM crops, i.e., 35S promoter and nopaline synthase (NOS) terminator. This makes the newly developed method applicable to a wide range of GMOs, including some unauthorized ones. The estimated LOD of the new method was 0.005% of GM maize events; to the best of our knowledge, this method is the most sensitive among the GM maize detection methods for which the LOD was evaluated in terms of GMO content. A 10-fold increase in the DNA amount as compared with the amount used under common testing conditions gave an approximately 10-fold reduction in the LOD without PCR inhibition. Our method is applicable to various analytical samples, including processed foods. The use of other primers and fluorescence probes would permit highly sensitive detection of various recombinant DNA sequences besides the 35S promoter and NOS terminator.
Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi
2014-01-01
A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162.
Gao, Hongfei; Wen, Luke; Wu, Yuhua; Fu, Zhifeng; Wu, Gang
2017-11-15
The development of genetically modified (GM) insect-resistant crops has aroused great public concern about the risks on the eco-environment resulting from a release of toxic Cry proteins (such as Cry1Ab) to the soil. Therefore, it is of crucial importance to measure the Cry proteins level and the GM crops content. Here, we have tested for the first time a method that uses novel carbon nanospheres (CNPs) label-free electrochemiluminescent (ECL) immunosensor for the ultrasensitive quantification of Cry1Ab and GM crops. In this work, novel CNPs were prepared from printer toner with a very facile approach, and linked with anti-Cry1Ab antibodies to modify a golden working electrode. The immunoreaction between Cry1Ab and its antibody formed an immunocomplex on the bioreceptor region of the sensor, which inhibited electron transfer between the electrode surface and the ECL substance, leading to a decrease of ECL response. Under the optimal conditions, the fabricated label-free ECL immunosensor determined Cry1Ab down to 3.0pgmL -1 within a linear range of 0.010-1.0ngmL -1 , showing significant improvement of sensitivity than that of most previous reports. Meanwhile, the proposed method was successfully applied for GM rice BT63 and GM maize MON810 detections down to 0.010% and 0.020%, respectively. Due to its outstanding advantages such as high sensitivity, ideal selectivity, simple fabrication, rapid detection, and low cost, the developed method can be considered as a powerful and pioneering tool for GM crops detection. Its use can also be extended to other toxin protein sensing in foods. Copyright © 2017. Published by Elsevier B.V.
de Santis, Barbara; Stockhofe, Norbert; Wal, Jean-Michel; Weesendorp, Eefke; Lallès, Jean-Paul; van Dijk, Jeroen; Kok, Esther; De Giacomo, Marzia; Einspanier, Ralf; Onori, Roberta; Brera, Carlo; Bikker, Paul; van der Meulen, Jan; Kleter, G
2018-07-01
Within the frame of the EU-funded MARLON project, background data were reviewed to explore the possibility of measuring health indicators during post-market monitoring for potential effects of feeds, particularly genetically modified (GM) feeds, on livestock animal health, if applicable. Four case studies (CSs) of potential health effects on livestock were framed and the current knowledge of a possible effect of GM feed was reviewed. Concerning allergenicity (CS-1), there are no case-reports of allergic reactions or immunotoxic effects resulting from GM feed consumption as compared with non-GM feed. The likelihood of horizontal gene transfer (HGT; CS-2) of GMO-related DNA to different species is not different from that for other DNA and is unlikely to raise health concerns. Concerning mycotoxins (CS-3), insect-resistant GM maize may reduce fumonisins contamination as a health benefit, yet other Fusarium toxins and aflatoxins show inconclusive results. For nutritionally altered crops (CS-4), the genetic modifications applied lead to compositional changes which require special considerations of their nutritional impacts. No health indicators were thus identified except for possible beneficial impacts of reduced mycotoxins and nutritional enhancement. More generally, veterinary health data should ideally be linked with animal exposure information so as to be able to establish cause-effect relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.
Meng, Lingbo; Zhang, Aiyuan; Wang, Fei; Han, Xiaoguang; Wang, Dejiang; Li, Shumin
2015-01-01
The tripartite symbiosis between legumes, rhizobia and mycorrhizal fungi are generally considered to be beneficial for the nitrogen (N) uptake of legumes, but the facilitation of symbiosis in legume/non-legume intercropping systems is not clear. Therefore, the aims of the research are as follows: (1) to verify if the dual inoculation can facilitate the N uptake and N transfer in maize/soybean intercropping systems and (2) to calculate how much N will be transferred from soybean to maize. A pot experiment with different root separations [solid barrier, mesh (30 μm) barrier and no barrier] was conducted, and the 15N isotopic tracing method was used to calculate how much N transferred from soybean to maize inoculated with arbuscular mycorrhizal fungi (AMF) and rhizobium in a soybean (Glycine max L.cv. Dongnong No. 42)/maize (Zea mays L.cv. Dongnong No. 48) intercropping system. Compared with the Glomus mosseae inoculation (G.m.), Rhizobium SH212 inoculation (SH212), no inoculation (NI), the dual inoculation (SH212+G.m.) increased the N uptake of soybean by 28.69, 39.58, and 93.07% in a solid barrier system. N uptake of maize inoculated with both G. mosseae and rhizobium was 1.20, 1.28, and 1.68 times more than that of G.m., SH212 and NI, respectively, in solid barrier treatments. In addition, the amount of N transferred from soybean to maize in a dual inoculation system with a mesh barrier was 7.25, 7.01, and 11.45 mg more than that of G.m., SH212 and NI and similarly, 6.40, 7.58, and 12.46 mg increased in no barrier treatments. Inoculating with both AMF and rhizobium in the soybean/maize intercropping system improved the N fixation efficiency of soybean and promoted N transfer from soybean to maize, resulting in the improvement of yield advantages of legume/non-legume intercropping. PMID:26029236
Meng, Lingbo; Zhang, Aiyuan; Wang, Fei; Han, Xiaoguang; Wang, Dejiang; Li, Shumin
2015-01-01
The tripartite symbiosis between legumes, rhizobia and mycorrhizal fungi are generally considered to be beneficial for the nitrogen (N) uptake of legumes, but the facilitation of symbiosis in legume/non-legume intercropping systems is not clear. Therefore, the aims of the research are as follows: (1) to verify if the dual inoculation can facilitate the N uptake and N transfer in maize/soybean intercropping systems and (2) to calculate how much N will be transferred from soybean to maize. A pot experiment with different root separations [solid barrier, mesh (30 μm) barrier and no barrier] was conducted, and the (15)N isotopic tracing method was used to calculate how much N transferred from soybean to maize inoculated with arbuscular mycorrhizal fungi (AMF) and rhizobium in a soybean (Glycine max L.cv. Dongnong No. 42)/maize (Zea mays L.cv. Dongnong No. 48) intercropping system. Compared with the Glomus mosseae inoculation (G.m.), Rhizobium SH212 inoculation (SH212), no inoculation (NI), the dual inoculation (SH212+G.m.) increased the N uptake of soybean by 28.69, 39.58, and 93.07% in a solid barrier system. N uptake of maize inoculated with both G. mosseae and rhizobium was 1.20, 1.28, and 1.68 times more than that of G.m., SH212 and NI, respectively, in solid barrier treatments. In addition, the amount of N transferred from soybean to maize in a dual inoculation system with a mesh barrier was 7.25, 7.01, and 11.45 mg more than that of G.m., SH212 and NI and similarly, 6.40, 7.58, and 12.46 mg increased in no barrier treatments. Inoculating with both AMF and rhizobium in the soybean/maize intercropping system improved the N fixation efficiency of soybean and promoted N transfer from soybean to maize, resulting in the improvement of yield advantages of legume/non-legume intercropping.
Séralini, Gilles-Eric; Mesnage, Robin; Defarge, Nicolas; Gress, Steeve; Hennequin, Didier; Clair, Emilie; Malatesta, Manuela; de Vendômois, Joël Spiroux
2013-03-01
Our recent work (Séralini et al., 2012) remains to date the most detailed study involving the life-long consumption of an agricultural genetically modified organism (GMO). This is true especially for NK603 maize for which only a 90-day test for commercial release was previously conducted using the same rat strain (Hammond et al., 2004). It is also the first long term detailed research on mammals exposed to a highly diluted pesticide in its total formulation with adjuvants. This may explain why 75% of our first criticisms arising within a week, among publishing authors, come from plant biologists, some developing patents on GMOs, even if it was a toxicological paper on mammals, and from Monsanto Company who owns both the NK603 GM maize and Roundup herbicide (R). Our study has limits like any one, and here we carefully answer to all criticisms from agencies, consultants and scientists, that were sent to the Editor or to ourselves. At this level, a full debate is biased if the toxicity tests on mammals of NK603 and R obtained by Monsanto Company remain confidential and thus unavailable in an electronic format for the whole scientific community to conduct independent scrutiny of the raw data. In our article, the conclusions of long-term NK603 and Roundup toxicities came from the statistically highly discriminant findings at the biochemical level in treated groups in comparison to controls, because these findings do correspond in an blinded analysis to the pathologies observed in organs, that were in turn linked to the deaths by anatomopathologists. GM NK603 and R cannot be regarded as safe to date. Copyright © 2012 Elsevier Ltd. All rights reserved.
Eugster, Albert; Murmann, Petra; Kaenzig, Andre; Breitenmoser, Alda
2014-10-01
In routine analysis screening methods based on real-time PCR (polymerase chain reaction) are most commonly used for the detection of genetically modified (GM) plant material in food and feed. Screening tests are based on sequences frequently used for GM development, allowing the detection of a large number of GMOs (genetically modified organisms). Here, we describe the development and validation of a tetraplex real-time PCR screening assay comprising detection systems for the regulatory genes Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens nos terminator, Cauliflower Mosaic Virus 35S terminator and Figwort Mosaic Virus 34S promoter. Three of the four primer and probe combinations have already been published elsewhere, whereas primers and probe for the 35S terminator have been developed in-house. Adjustment of primer and probe concentrations revealed a high PCR sensitivity with insignificant physical cross-talk between the four detection channels. The sensitivity of each PCR-system is sufficient to detect a GMO concentration as low as 0.05% of the containing respective element. The specificity of the described tetraplex is high when tested on DNA from GM maize, soy, rapeseed and tomato. We also demonstrate the robustness of the system by inter-laboratory tests. In conclusion, this method provides a sensitive and reliable screening procedure for the detection of the most frequently used regulatory elements present in GM crops either authorised or unauthorised for food.
Use of Carabids for the Post-Market Environmental Monitoring of Genetically Modified Crops
Skoková Habuštová, Oxana; Svobodová, Zdeňka; Cagáň, Ľudovít; Sehnal, František
2017-01-01
Post-market environmental monitoring (PMEM) of genetically modified (GM) crops is required by EU legislation and has been a subject of debate for many years; however, no consensus on the methodology to be used has been reached. We explored the suitability of carabid beetles as surrogates for the detection of unintended effects of GM crops in general PMEM surveillance. Our study combines data on carabid communities from five maize field trials in Central Europe. Altogether, 86 species and 58,304 individuals were collected. Modeling based on the gradual elimination of the least abundant species, or of the fewest categories of functional traits, showed that a trait-based analysis of the most common species may be suitable for PMEM. Species represented by fewer than 230 individuals (all localities combined) should be excluded and species with an abundance higher than 600 should be preserved for statistical analyses. Sixteen species, representing 15 categories of functional traits fulfill these criteria, are typical dominant inhabitants of agroecocoenoses in Central Europe, are easy to determine, and their functional classification is well known. The effect of sampling year is negligible when at least four samples are collected during maize development beginning from 1 April. The recommended methodology fulfills PMEM requirements, including applicability to large-scale use. However, suggested thresholds of carabid comparability should be verified before definitive conclusions are drawn. PMID:28353663
A global overview of biotech (GM) crops: adoption, impact and future prospects.
James, Clive
2010-01-01
In the early 1990s, some were skeptical that genetically modified (GM) crops, now referred to as biotech crops, could deliver improved products and make an impact at the farm level. There was even more skepticism that developing countries would adopt biotech crops. The adoption of and commercialization of biotech crops in 2008 is reviewed. The impact of biotech crops are summarized including their contribution to: global food, feed and fiber security; a safer environment; a more sustainable agriculture; and the alleviation of poverty, and hunger in the developing countries of the world. Future prospects are discussed. Notably, Egypt planted Bt maize for the first time in 2008 thereby becoming the first country in the Arab world to commercialize biotech crops.
Romeis, Jörg; Meissle, Michael; Alvarez-Alfageme, Fernando; Bigler, Franz; Bohan, David A; Devos, Yann; Malone, Louise A; Pons, Xavier; Rauschen, Stefan
2014-12-01
Worldwide, plants obtained through genetic modification are subject to a risk analysis and regulatory approval before they can enter the market. An area of concern addressed in environmental risk assessments is the potential of genetically modified (GM) plants to adversely affect non-target arthropods and the valued ecosystem services they provide. Environmental risk assessments are conducted case-by-case for each GM plant taking into account the plant species, its trait(s), the receiving environments into which the GM plant is to be released and its intended uses, and the combination of these characteristics. To facilitate the non-target risk assessment of GM plants, information on arthropods found in relevant agro-ecosystems in Europe has been compiled in a publicly available database of bio-ecological information during a project commissioned by the European Food Safety Authority (EFSA). Using different hypothetical GM maize case studies, we demonstrate how the information contained in the database can assist in identifying valued species that may be at risk and in selecting suitable species for laboratory testing, higher-tier studies, as well as post-market environmental monitoring.
Xu, Xiaodan; Li, Yingcong; Zhao, Heng; Wen, Si-yuan; Wang, Sheng-qi; Huang, Jian; Huang, Kun-lun; Luo, Yun-bo
2005-05-18
To devise a rapid and reliable method for the detection and identification of genetically modified (GM) events, we developed a multiplex polymerase chain reaction (PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a single reaction. The system included probes for screening gene, species reference gene, specific gene, construct-specific gene, event-specific gene, and internal and negative control genes. 18S rRNA was combined with species reference genes as internal controls to assess the efficiency of all reactions and to eliminate false negatives. Two sets of the multiplex PCR system were used to amplify four and five targets, respectively. Eight different structure genes could be detected and identified simultaneously for Roundup Ready soybean in a single microarray. The microarray specificity was validated by its ability to discriminate two GM maizes Bt176 and Bt11. The advantages of this method are its high specificity and greatly reduced false-positives and -negatives. The multiplex PCR coupled with microarray technology presented here is a rapid and reliable tool for the simultaneous detection of GM organism ingredients.
[Detection of recombinant-DNA in foods from stacked genetically modified plants].
Sorokina, E Iu; Chernyshova, O N
2012-01-01
A quantitative real-time multiplex polymerase chain reaction method was applied to the detection and quantification of MON863 and MON810 in stacked genetically modified maize MON 810xMON 863. The limit of detection was approximately 0,1%. The accuracy of the quantification, measured as bias from the accepted value and the relative repeatability standard deviation, which measures the intra-laboratory variability, were within 25% at each GM-level. A method verification has demonstrated that the MON 863 and the MON810 methods can be equally applied in quantification of the respective events in stacked MON810xMON 863.
van Capelle, Christine; Schrader, Stefan; Arpaia, Salvatore
2016-04-01
By means of a literature survey, earthworm species of significant relevance for soil functions in different biogeographical regions of Europe (Atlantic, Boreal, Mediterranean) were identified. These focal earthworm species, defined here according to the EFSA Guidance Document on the environmental risk assessment (ERA) of genetically modified plants, are typical for arable soils under crop rotations with maize and/or potatoes within the three regions represented by Ireland, Sweden and Spain, respectively. Focal earthworm species were selected following a matrix of four steps: Identification of functional groups, categorization of non-target species, ranking species on ecological criteria, and final selection of focal species. They are recommended as appropriate non-target organisms to assess environmental risks of genetically modified (GM) crops; in this case maize and potatoes. In total, 44 literature sources on earthworms in arable cropping systems including maize or potato from Ireland, Sweden and Spain were collected, which present information on species diversity, individual density and specific relevance for soil functions. By means of condensed literature data, those species were identified which (i) play an important functional role in respective soil systems, (ii) are well adapted to the biogeographical regions, (iii) are expected to occur in high abundances under cultivation of maize or potato and (iv) fulfill the requirements for an ERA test system based on life-history traits. First, primary and secondary decomposers were identified as functional groups being exposed to the GM crops. In a second step, anecic and endogeic species were categorized as potential species. In step three, eight anecic and endogeic earthworm species belonging to the family Lumbricidae were ranked as relevant species: Aporrectodea caliginosa, Aporrectodea rosea, Aporrectodea longa, Allolobophora chlorotica, Lumbricus terrestris, Lumbricus friendi, Octodrilus complanatus and Octolasion cyaneum. Five out of these eight species are relevant for each biogeographical region with an overlap in the species. Finally, the earthworm species Ap. caliginosa (endogeic, secondary decomposer) and L. terrestris (anecic, primary decomposer) were selected as focal species. In the Mediterranean region L. terrestris may be substituted by the more relevant anecic species L. friendi. The selected focal species are recommended to be included in a standardized laboratory ERA test system based on life-history traits. Copyright © 2016 Elsevier B.V. All rights reserved.
Turkec, Aydin; Lucas, Stuart J; Karacanli, Burçin; Baykut, Aykut; Yuksel, Hakki
2016-03-01
Detection of GMO material in crop and food samples is the primary step in GMO monitoring and regulation, with the increasing number of GM events in the world market requiring detection solutions with high multiplexing capacity. In this study, we test the suitability of a high-density oligonucleotide microarray platform for direct, quantitative detection of GMOs found in the Turkish feed market. We tested 1830 different 60nt probes designed to cover the GM cassettes from 12 different GM cultivars (3 soya, 9 maize), as well as plant species-specific and contamination controls, and developed a data analysis method aiming to provide maximum throughput and sensitivity. The system was able specifically to identify each cultivar, and in 10/12 cases was sensitive enough to detect GMO DNA at concentrations of ⩽1%. These GMOs could also be quantified using the microarray, as their fluorescence signals increased linearly with GMO concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Expression of endogenous proteins in maize hybrids in a multi-location field trial in India.
Gutha, Linga R; Purushottam, Divakar; Veeramachaneni, Aruna; Tigulla, Sarita; Kodappully, Vikas; Enjala, Chandana; Rajput, Hitendrasinh; Anderson, Jennifer; Hong, Bonnie; Schmidt, Jean; Bagga, Shveta
2018-05-17
Genetically modified (GM) crops undergo large scale multi-location field trials to characterize agronomics, composition, and the concentration of newly expressed protein(s) [herein referred to as transgenic protein(s)]. The concentration of transgenic proteins in different plant tissues and across the developmental stages of the plant is considered in the safety assessment of GM crops. Reference or housekeeping proteins are expected to maintain a relatively stable expression pattern in healthy plants given their role in cellular functions. Understanding the effects of genotype, growth stage and location on the concentration of endogenous housekeeping proteins may provide insight into the contribution these factors could have on transgenic protein concentrations in GM crops. The concentrations of three endogenous proteins (actin, elongation factor 1-alpha, and glyceraldehyde 3-phosphate dehydrogenase) were measured in several different maize hybrids grown across multiple field locations over 2 years. Leaf samples were collected from healthy plants at three developmental stages across the growing seasons, and protein concentrations were quantified by indirect enzyme-linked immunosorbent assay (ELISA) for each protein. In general, the concentrations of these three endogenous proteins were relatively consistent across hybrid backgrounds, when compared within one growth stage and location (2-26%CV), whereas the concentrations of proteins in the same hybrid and growth stage across different locations were more variable (12-64%CV). In general, the protein concentrations in 2013 and 2014 show similar trends in variability. Some degree of variability in protein concentrations should be expected for both transgenic and endogenous plant-expressed proteins. In the case of GM crops, the potential variation in protein concentrations due to location effects is captured in the current model of multi-location field testing.
Nadal, Anna; Coll, Anna; La Paz, Jose-Luis; Esteve, Teresa; Pla, Maria
2006-10-01
We present a novel multiplex PCR assay for simultaneous detection of multiple transgenic events in maize. Initially, five PCR primers pairs specific to events Bt11, GA21, MON810, and NK603, and Zea mays L. (alcohol dehydrogenase) were included. The event specificity was based on amplification of transgene/plant genome flanking regions, i.e., the same targets as for validated real-time PCR assays. These short and similarly sized amplicons were selected to achieve high and similar amplification efficiency for all targets; however, its unambiguous identification was a technical challenge. We achieved a clear distinction by a novel CGE approach that combined the identification by size and color (CGE-SC). In one single step, all five targets were amplified and specifically labeled with three different fluorescent dyes. The assay was specific and displayed an LOD of 0.1% of each genetically modified organism (GMO). Therefore, it was adequate to fulfill legal thresholds established, e.g., in the European Union. Our CGE-SC based strategy in combination with an adequate labeling design has the potential to simultaneously detect higher numbers of targets. As an example, we present the detection of up to eight targets in a single run. Multiplex PCR-CGE-SC only requires a conventional sequencer device and enables automation and high throughput. In addition, it proved to be transferable to a different laboratory. The number of authorized GMO events is rapidly growing; and the acreage of genetically modified (GM) varieties cultivated and commercialized worldwide is rapidly increasing. In this context, our multiplex PCR-CGE-SC can be suitable for screening GM contents in food.
Dinon, Andréia Z; Prins, Theo W; van Dijk, Jeroen P; Arisi, Ana Carolina M; Scholtens, Ingrid M J; Kok, Esther J
2011-05-01
Primers and probes were developed for the element-specific detection of cry1A.105 and cry2Ab2 genes, based on their DNA sequence as present in GM maize MON89034. Cry genes are present in many genetically modified (GM) plants and they are important targets for developing GMO element-specific detection methods. Element-specific methods can be of use to screen for the presence of GMOs in food and feed supply chains. Moreover, a combination of GMO elements may indicate the potential presence of unapproved GMOs (UGMs). Primer-probe combinations were evaluated in terms of specificity, efficiency and limit of detection. Except for specificity, the complete experiment was performed in 9 PCR runs, on 9 different days and by testing 8 DNA concentrations. The results showed a high specificity and efficiency for cry1A.105 and cry2Ab2 detection. The limit of detection was between 0.05 and 0.01 ng DNA per PCR reaction for both assays. These data confirm the applicability of these new primer-probe combinations for element detection that can contribute to the screening for GM and UGM crops in food and feed samples.
Environmental risk assessment in GMO analysis.
Pirondini, Andrea; Marmiroli, Nelson
2010-01-01
Genetically modified or engineered organisms (GMOs, GEOs) are utilised in agriculture, expressing traits of interest, such as insect or herbicide resistance. Soybean, maize, cotton and oilseed rape are the GM crops with the largest acreage in the world. The distribution of GM acreage in the different countries is related with the different positions concerning labelling of GMO products: based on the principle of substantial equivalence, or rather based on the precautionary principle. The paper provides an overview on how the risks associated with release of GMO in the environments can be analysed and predicted, in view of a possible coexistence of GM and non-GM organisms in agriculture.Risk assessment procedures, both qualitative and quantitative, are compared in the context of application to GMOs considering also legislation requirements (Directive 2001/18/EC). Criteria and measurable properties to assess harm for human health and environmental safety are listed, and the possible consequences are evaluated in terms of significance.Finally, a mapping of the possible risks deriving from GMO release is reported, focusing on gene transfer to related species, horizontal gene transfer, direct and indirect effects on non target organisms, development of resistance in target organisms, and effects on biodiversity.
Environmental risk assessment in GMO analysis.
Pirondini, Andrea; Marmiroli, Nelson
2008-01-01
Genetically modified or engineered organisms (GMOs, GEOs) are utilised in agriculture, expressing traits of interest, such as insect or herbicide resistance. Soybean, maize, cotton and oilseed rape are the GM crops with the largest acreage in the world. The distribution of GM acreage in the different countries is related with the different positions concerning labelling of GMO products: based on the principle of substantial equivalence, or rather based on the precautionary principle. The paper provides an overview on how the risks associated with release of GMO in the environments can be analysed and predicted, in view of a possible coexistence of GM and non-GM organisms in agriculture.Risk assessment procedures, both qualitative and quantitative, are compared in the context of application to GMOs considering also legislation requirements (Directive 2001/18/EC). Criteria and measurable properties to assess harm for human health and environmental safety are listed, and the possible consequences are evaluated in terms of significance.Finally, a mapping of the possible risks deriving from GMO release is reported, focusing on gene transfer to related species, horizontal gene transfer, direct and indirect effects on non target organisms, development of resistance in target organisms, and effects on biodiversity.
Waithaka, Michael; Belay, Getachew; Kyotalimye, Miriam; Karembu, Margaret
2015-01-01
In 2001, the Meeting of the COMESA Ministers of Agriculture raised concerns that proliferation of genetically modified organisms (GMOs) could impact significantly on trade and food security in the region. This triggered studies on a regional approach to biotechnology and biosafety policy in Eastern and Southern Africa. The studies and stakeholder consultations revealed that farm incomes would increase if they switched from conventional varieties of cotton and maize to genetically modified (GM) counterparts. Commercial risks associated with exports to GM sensitive destinations, e.g., EU were negligible. Intra-regional trade would be affected since exports of GM sensitive commodities, such as maize, cotton, and soya bean, mainly go to other African countries. These findings justified the need to consider a regional approach to biosafety and led to the drafting of a regional policy in 2009. The draft policies were discussed in regional and national workshops between 2010 and 2012 for wider ownership. The workshops involved key stakeholders including ministries of agriculture, trade, environment, national biosafety focal points, biosafety competent authorities, academia, seed traders, millers, the media, food relief agencies, the industry, civil society, competent authorities, and political opinion leaders. The COMESA Council of Ministers in February 2014 adopted the COMESA policy on biotechnology and biosafety that takes into account the sovereign right of each member state. Key provisions of the policy include recognition of the benefits and risks associated with GMOs; establishment of a regional-level biosafety risk-assessment system; national-level final decision, and capacity building assistance to member states. The policies are the first regional effort in Africa to develop a coordinated mechanism for handling biosafety issues related to GMO use. A regional approach to biotechnology and biosafety is expected to foster inter-country cooperation through the sharing of knowledge, expertise, experiences, and resources. PMID:26284243
Waithaka, Michael; Belay, Getachew; Kyotalimye, Miriam; Karembu, Margaret
2015-01-01
In 2001, the Meeting of the COMESA Ministers of Agriculture raised concerns that proliferation of genetically modified organisms (GMOs) could impact significantly on trade and food security in the region. This triggered studies on a regional approach to biotechnology and biosafety policy in Eastern and Southern Africa. The studies and stakeholder consultations revealed that farm incomes would increase if they switched from conventional varieties of cotton and maize to genetically modified (GM) counterparts. Commercial risks associated with exports to GM sensitive destinations, e.g., EU were negligible. Intra-regional trade would be affected since exports of GM sensitive commodities, such as maize, cotton, and soya bean, mainly go to other African countries. These findings justified the need to consider a regional approach to biosafety and led to the drafting of a regional policy in 2009. The draft policies were discussed in regional and national workshops between 2010 and 2012 for wider ownership. The workshops involved key stakeholders including ministries of agriculture, trade, environment, national biosafety focal points, biosafety competent authorities, academia, seed traders, millers, the media, food relief agencies, the industry, civil society, competent authorities, and political opinion leaders. The COMESA Council of Ministers in February 2014 adopted the COMESA policy on biotechnology and biosafety that takes into account the sovereign right of each member state. Key provisions of the policy include recognition of the benefits and risks associated with GMOs; establishment of a regional-level biosafety risk-assessment system; national-level final decision, and capacity building assistance to member states. The policies are the first regional effort in Africa to develop a coordinated mechanism for handling biosafety issues related to GMO use. A regional approach to biotechnology and biosafety is expected to foster inter-country cooperation through the sharing of knowledge, expertise, experiences, and resources.
Hernández, Marta; Rodríguez-Lázaro, David; Zhang, David; Esteve, Teresa; Pla, Maria; Prat, Salomé
2005-05-04
The number of cultured hectares and commercialized genetically modified organisms (GMOs) has increased exponentially in the past 9 years. Governments in many countries have established a policy of labeling all food and feed containing or produced by GMOs. Consequently, versatile, laboratory-transferable GMO detection methods are in increasing demand. Here, we describe a qualitative PCR-based multiplex method for simultaneous detection and identification of four genetically modified maize lines: Bt11, MON810, T25, and GA21. The described system is based on the use of five primers directed to specific sequences in these insertion events. Primers were used in a single optimized multiplex PCR reaction, and sequences of the amplified fragments are reported. The assay allows amplification of the MON810 event from the 35S promoter to the hsp intron yielding a 468 bp amplicon. Amplification of the Bt11 and T25 events from the 35S promoter to the PAT gene yielded two different amplicons of 280 and 177 bp, respectively, whereas amplification of the 5' flanking region of the GA21 gave rise to an amplicon of 72 bp. These fragments are clearly distinguishable in agarose gels and have been reproduced successfully in a different laboratory. Hence, the proposed method comprises a rapid, simple, reliable, and sensitive (down to 0.05%) PCR-based assay, suitable for detection of these four GM maize lines in a single reaction.
2011-01-01
Background Safety assessment of genetically modified organisms is currently often performed by comparative evaluation. However, natural variation of plant characteristics between commercial varieties is usually not considered explicitly in the statistical computations underlying the assessment. Results Statistical methods are described for the assessment of the difference between a genetically modified (GM) plant variety and a conventional non-GM counterpart, and for the assessment of the equivalence between the GM variety and a group of reference plant varieties which have a history of safe use. It is proposed to present the results of both difference and equivalence testing for all relevant plant characteristics simultaneously in one or a few graphs, as an aid for further interpretation in safety assessment. A procedure is suggested to derive equivalence limits from the observed results for the reference plant varieties using a specific implementation of the linear mixed model. Three different equivalence tests are defined to classify any result in one of four equivalence classes. The performance of the proposed methods is investigated by a simulation study, and the methods are illustrated on compositional data from a field study on maize grain. Conclusions A clear distinction of practical relevance is shown between difference and equivalence testing. The proposed tests are shown to have appropriate performance characteristics by simulation, and the proposed simultaneous graphical representation of results was found to be helpful for the interpretation of results from a practical field trial data set. PMID:21324199
Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi
2011-01-01
To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.
Comprehensive GMO detection using real-time PCR array: single-laboratory validation.
Mano, Junichi; Harada, Mioko; Takabatake, Reona; Furui, Satoshi; Kitta, Kazumi; Nakamura, Kosuke; Akiyama, Hiroshi; Teshima, Reiko; Noritake, Hiromichi; Hatano, Shuko; Futo, Satoshi; Minegishi, Yasutaka; Iizuka, Tayoshi
2012-01-01
We have developed a real-time PCR array method to comprehensively detect genetically modified (GM) organisms. In the method, genomic DNA extracted from an agricultural product is analyzed using various qualitative real-time PCR assays on a 96-well PCR plate, targeting for individual GM events, recombinant DNA (r-DNA) segments, taxon-specific DNAs, and donor organisms of the respective r-DNAs. In this article, we report the single-laboratory validation of both DNA extraction methods and component PCR assays constituting the real-time PCR array. We selected some DNA extraction methods for specified plant matrixes, i.e., maize flour, soybean flour, and ground canola seeds, then evaluated the DNA quantity, DNA fragmentation, and PCR inhibition of the resultant DNA extracts. For the component PCR assays, we evaluated the specificity and LOD. All DNA extraction methods and component PCR assays satisfied the criteria set on the basis of previous reports.
Evolution of risk assessment strategies for food and feed uses of stacked GM events.
Kramer, Catherine; Brune, Phil; McDonald, Justin; Nesbitt, Monique; Sauve, Alaina; Storck-Weyhermueller, Sabine
2016-09-01
Data requirements are not harmonized globally for the regulation of food and feed derived from stacked genetically modified (GM) events, produced by combining individual GM events through conventional breeding. The data required by some regulatory agencies have increased despite the absence of substantiated adverse effects to animals or humans from the consumption of GM crops. Data from studies conducted over a 15-year period for several stacked GM event maize (Zea mays L.) products (Bt11 × GA21, Bt11 × MIR604, MIR604 × GA21, Bt11 × MIR604 × GA21, Bt11 × MIR162 × GA21 and Bt11 × MIR604 × MIR162 × GA21), together with their component single events, are presented. These data provide evidence that no substantial changes in composition, protein expression or insert stability have occurred after combining the single events through conventional breeding. An alternative food and feed risk assessment strategy for stacked GM events is suggested based on a problem formulation approach that utilizes (i) the outcome of the single event risk assessments, and (ii) the potential for interactions in the stack, based on an understanding of the mode of action of the transgenes and their products. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Nadal, Anna; Esteve, Teresa; Pla, Maria
2009-01-01
A multiplex polymerase chain reaction assay coupled to capillary gel electrophoresis for amplicon identification by size and color (multiplex PCR-CGE-SC) was developed for simultaneous detection of cotton species and 5 events of genetically modified (GM) cotton. Validated real-time-PCR reactions targeting Bollgard, Bollgard II, Roundup Ready, 3006-210-23, and 281-24-236 junction sequences, and the cotton reference gene acp1 were adapted to detect more than half of the European Union-approved individual or stacked GM cotton events in one reaction. The assay was fully specific (<1.7% of false classification rate), with limit of detection values of 0.1% for each event, which were also achieved with simulated mixtures at different relative percentages of targets. The assay was further combined with a second multiplex PCR-CGE-SC assay to allow simultaneous detection of 6 cotton and 5 maize targets (two endogenous genes and 9 GM events) in two multiplex PCRs and a single CGE, making the approach more economic. Besides allowing simultaneous detection of many targets with adequate specificity and sensitivity, the multiplex PCR-CGE-SC approach has high throughput and automation capabilities, while keeping a very simple protocol, e.g., amplification and labeling in one step. Thus, it is an easy and inexpensive tool for initial screening, to be complemented with quantitative assays if necessary.
Trends in global approvals of biotech crops (1992–2014)
Aldemita, Rhodora R; Reaño, Ian Mari E; Solis, Renando O; Hautea, Randy A
2015-01-01
ABSTRACT With the increasing number of genetically modified (GM) events, traits, and crops that are developed to benefit the global population, approval of these technologies for food, feed, cultivation and import in each country may vary depending on needs, demand and trade interest. ISAAA established a GMO Approval Database to document global approvals of biotech crops. GM event name, crops, traits, developer, year of approval for cultivation, food/feed, import, and relevant dossiers were sourced from credible government regulatory websites and biosafety clearinghouses. This paper investigates the trends in GM approvals for food, feed and cultivation based on the number of approving countries, GM crops, events, and traits in the last 23 y (1992–2014), rationale for approval, factors influencing approvals, and their implications in GM crop adoption. Results show that in 2014, there was an accumulative increase in the number of countries granting approvals at 29 (79% developing countries) for commercial cultivation and 31 (70% developing countries) for food and 19 (80% developing developing) for feed; 2012 had the highest number of approving countries and cultivation approvals; 2011 had the highest number of country approvals for feed, and 2014 for food approvals. Herbicide tolerance trait had the highest events approved, followed by insect tolerance traits. Approvals for food product quality increased in the second decade. Maize had the highest number of events approved (single and stacked traits), and stacked traits product gradually increased which is already 30% of the total trait approvals. These results may indicate understanding and acceptance of countries to enhance regulatory capability to be able to benefit from GM crop commercialization. Hence, the paper provided information on the trends on the growth of the GM crop industry in the last 23 y which may be vital in predicting future GM crops and traits. PMID:26039675
Trends in global approvals of biotech crops (1992-2014).
Aldemita, Rhodora R; Reaño, Ian Mari E; Solis, Renando O; Hautea, Randy A
2015-01-01
With the increasing number of genetically modified (GM) events, traits, and crops that are developed to benefit the global population, approval of these technologies for food, feed, cultivation and import in each country may vary depending on needs, demand and trade interest. ISAAA established a GMO Approval Database to document global approvals of biotech crops. GM event name, crops, traits, developer, year of approval for cultivation, food/feed, import, and relevant dossiers were sourced from credible government regulatory websites and biosafety clearinghouses. This paper investigates the trends in GM approvals for food, feed and cultivation based on the number of approving countries, GM crops, events, and traits in the last 23 y (1992-2014), rationale for approval, factors influencing approvals, and their implications in GM crop adoption. Results show that in 2014, there was an accumulative increase in the number of countries granting approvals at 29 (79% developing countries) for commercial cultivation and 31 (70% developing countries) for food and 19 (80% developing developing) for feed; 2012 had the highest number of approving countries and cultivation approvals; 2011 had the highest number of country approvals for feed, and 2014 for food approvals. Herbicide tolerance trait had the highest events approved, followed by insect tolerance traits. Approvals for food product quality increased in the second decade. Maize had the highest number of events approved (single and stacked traits), and stacked traits product gradually increased which is already 30% of the total trait approvals. These results may indicate understanding and acceptance of countries to enhance regulatory capability to be able to benefit from GM crop commercialization. Hence, the paper provided information on the trends on the growth of the GM crop industry in the last 23 y which may be vital in predicting future GM crops and traits.
Wang, Cong; Li, Rong; Quan, Sheng; Shen, Ping; Zhang, Dabing; Shi, Jianxin; Yang, Litao
2015-06-01
Isothermal DNA/RNA amplification techniques are the primary methodology for developing on-spot rapid nucleic acid amplification assays, and the loop-mediated isothermal amplification (LAMP) technique has been developed and applied in the detection of foodborne pathogens, plant/animal viruses, and genetically modified (GM) food/feed contents. In this study, one set of LAMP assays targeting on eight frequently used universal elements, marker genes, and exogenous target genes, such as CaMV35S promoter, FMV35S promoter, NOS, bar, cry1Ac, CP4 epsps, pat, and NptII, were developed for visual screening of GM contents in plant-derived food samples with high efficiency and accuracy. For these eight LAMP assays, their specificity was evaluated by testing commercial GM plant events and their limits of detection were also determined, which are 10 haploid genome equivalents (HGE) for FMV35S promoter, cry1Ac, and pat assays, as well as five HGE for CaMV35S promoter, bar, NOS terminator, CP4 epsps, and NptII assays. The screening applicability of these LAMP assays was further validated successfully using practical canola, soybean, and maize samples. The results suggested that the established visual LAMP assays are applicable and cost-effective for GM screening in plant-derived food samples.
Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions.
Yin, Yongyuan; Guo, Xuetao; Peng, Dan
2018-08-01
Maize straw modified by iron and manganese oxides was synthesized via a simple and environmentally friendly method. Three maize straw materials, the original maize straw, maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides, were detected by SEM, BET, XPS, XRD and FTIR. The results showed that maize straw was successfully modified and maize straw modified by iron and manganese oxides has a larger surface area than MS. According to the experimental data, the sorption trend could conform to the pseudo-second-order kinetic model well, and the sorption ability of tylosin on sorbents followed the order of original maize straw < maize straw modified by manganese oxides < maize straw modified by iron and manganese oxides. The study indicated that manganese oxides and iron-manganese oxides could significantly enhance the sorption capacity of original maize straw. The sorption isotherm data of tylosin on original maize straw fit a linear model well, while Freundlich models were more suitable for maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides. The pH, ionic strength and temperature can affect the sorption process. The sorption mechanisms of tylosin on iron and manganese oxides modified maize straw were attribute to the surface complexes, electrostatic interactions, H bonding and hydrophobic interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chikwamba, Rachel; Cunnick, Joan; Hathaway, Diane; McMurray, Jennifer; Mason, Hugh; Wang, Kan
2002-10-01
We have produced a functional heat labile enterotoxin (LT-) B subunit of Escherichia coli in maize. LT-B is a multimeric protein that presents an ideal model for an edible vaccine, displaying stability in the gut and inducing mucosal and systemic immune responses. Transgenic maize was engineered to synthesize the LT-B polypeptides, which assembled into oligomeric structures with affinity for G(M1) gangliosides. We orally immunized BALB/c mice by feeding transgenic maize meal expressing LT-B or non-transgenic maize meal spiked with bacterial LT-B. Both treatments stimulated elevated IgA and IgG antibodies against LT-B and the closely related cholera toxin B subunit (CT-B) in serum, and elevated IgA in fecal pellets. The transgenic maize induced a higher anti-LT-B and anti-CT-B mucosal and serum IgA response compared to the equivalent amount of bacterial LT-B spiked into maize. Following challenge by oral administration of the diarrhea inducing toxins LT and CT, transgenic maize-fed mice displayed reduced fluid accumulation in the gut compared to non-immunized mice. Moreover, the gut to carcass ratio of immunized mice was not significantly different from the PBS (non-toxin) challenged control group. We concluded that maize-synthesized LT-B had features of the native bacterial LT-B such as molecular weight, G(M1) binding ability, and induction of serum and mucosal immunity. We have demonstrated that maize, a major food and feed ingredient, can be efficiently transformed to produce, accumulate, and store a fully assembled and functional candidate vaccine antigen.
Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.
Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro
2010-01-01
The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.
Perry, Joe N; Devos, Yann; Arpaia, Salvatore; Bartsch, Detlef; Ehlert, Christina; Gathmann, Achim; Hails, Rosemary S; Hendriksen, Niels B; Kiss, Jozsef; Messéan, Antoine; Mestdagh, Sylvie; Neemann, Gerd; Nuti, Marco; Sweet, Jeremy B; Tebbe, Christoph C
2012-01-01
In farmland biodiversity, a potential risk to the larvae of non-target Lepidoptera from genetically modified (GM) Bt-maize expressing insecticidal Cry1 proteins is the ingestion of harmful amounts of pollen deposited on their host plants. A previous mathematical model of exposure quantified this risk for Cry1Ab protein. We extend this model to quantify the risk for sensitive species exposed to pollen containing Cry1F protein from maize event 1507 and to provide recommendations for management to mitigate this risk. A 14-parameter mathematical model integrating small- and large-scale exposure was used to estimate the larval mortality of hypothetical species with a range of sensitivities, and under a range of simulated mitigation measures consisting of non-Bt maize strips of different widths placed around the field edge. The greatest source of variability in estimated mortality was species sensitivity. Before allowance for effects of large-scale exposure, with moderate within-crop host-plant density and with no mitigation, estimated mortality locally was <10% for species of average sensitivity. For the worst-case extreme sensitivity considered, estimated mortality locally was 99·6% with no mitigation, although this estimate was reduced to below 40% with mitigation of 24-m-wide strips of non-Bt maize. For highly sensitive species, a 12-m-wide strip reduced estimated local mortality under 1·5%, when within-crop host-plant density was zero. Allowance for large-scale exposure effects would reduce these estimates of local mortality by a highly variable amount, but typically of the order of 50-fold. Mitigation efficacy depended critically on assumed within-crop host-plant density; if this could be assumed negligible, then the estimated effect of mitigation would reduce local mortality below 1% even for very highly sensitive species. Synthesis and applications. Mitigation measures of risks of Bt-maize to sensitive larvae of non-target lepidopteran species can be effective, but depend on host-plant densities which are in turn affected by weed-management regimes. We discuss the relevance for management of maize events where cry1F is combined (stacked) with a herbicide-tolerance trait. This exemplifies how interactions between biota may occur when different traits are stacked irrespective of interactions between the proteins themselves and highlights the importance of accounting for crop management in the assessment of the ecological impact of GM plants. PMID:22496596
Brookes, Graham; Barfoot, Peter
2014-01-01
A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s. PMID:24637520
Economic impact of GM crops: the global income and production effects 1996-2012.
Brookes, Graham; Barfoot, Peter
2014-01-01
A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s.
Hilbeck, Angelika; Bundschuh, Rebecca; Bundschuh, Mirco; Hofmann, Frieder; Oehen, Bernadette; Otto, Mathias; Schulz, Ralf; Trtikova, Miluse
2017-11-01
For a long time, the environmental risk assessment (ERA) of genetically modified (GM) crops focused mainly on terrestrial ecosystems. This changed when it was scientifically established that aquatic ecosystems are exposed to GM crop residues that may negatively affect aquatic species. To assist the risk assessment process, we present a tool to identify ecologically relevant species usable in tiered testing prior to authorization or for biological monitoring in the field. The tool is derived from a selection procedure for terrestrial ecosystems with substantial but necessary changes to adequately consider the differences in the type of ecosystems. By using available information from the Water Framework Directive (2000/60/EC), the procedure can draw upon existing biological data on aquatic systems. The proposed procedure for aquatic ecosystems was tested for the first time during an expert workshop in 2013, using the cultivation of Bacillus thuringiensis (Bt) maize as the GM crop and 1 stream type as the receiving environment in the model system. During this workshop, species executing important ecological functions in aquatic environments were identified in a stepwise procedure according to predefined ecological criteria. By doing so, we demonstrated that the procedure is practicable with regard to its goal: From the initial long list of 141 potentially exposed aquatic species, 7 species and 1 genus were identified as the most suitable candidates for nontarget testing programs. Integr Environ Assess Manag 2017;13:974-979. © 2017 SETAC. © 2017 SETAC.
Single-Event Transgene Product Levels Predict Levels in Genetically Modified Breeding Stacks.
Gampala, Satyalinga Srinivas; Fast, Brandon J; Richey, Kimberly A; Gao, Zhifang; Hill, Ryan; Wulfkuhle, Bryant; Shan, Guomin; Bradfisch, Greg A; Herman, Rod A
2017-09-13
The concentration of transgene products (proteins and double-stranded RNA) in genetically modified (GM) crop tissues is measured to support food, feed, and environmental risk assessments. Measurement of transgene product concentrations in breeding stacks of previously assessed and approved GM events is required by many regulatory authorities to evaluate unexpected transgene interactions that might affect expression. Research was conducted to determine how well concentrations of transgene products in single GM events predict levels in breeding stacks composed of these events. The concentrations of transgene products were compared between GM maize, soybean, and cotton breeding stacks (MON-87427 × MON-89034 × DAS-Ø15Ø7-1 × MON-87411 × DAS-59122-7 × DAS-40278-9 corn, DAS-81419-2 × DAS-44406-6 soybean, and DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 × MON-88913-8 × DAS-81910-7 cotton) and their component single events (MON-87427, MON-89034, DAS-Ø15Ø7-1, MON-87411, DAS-59122-7, and DAS-40278-9 corn, DAS-81419-2, and DAS-44406-6 soybean, and DAS-21023-5, DAS-24236-5, SYN-IR102-7, MON-88913-8, and DAS-81910-7 cotton). Comparisons were made within a crop and transgene product across plant tissue types and were also made across transgene products in each breeding stack for grain/seed. Scatter plots were generated comparing expression in the stacks to their component events, and the percent of variability accounted for by the line of identity (y = x) was calculated (coefficient of identity, I 2 ). Results support transgene concentrations in single events predicting similar concentrations in breeding stacks containing the single events. Therefore, food, feed, and environmental risk assessments based on concentrations of transgene products in single GM events are generally applicable to breeding stacks composed of these events.
Effect of environment and genotype on commercial maize hybrids using LC/MS-based metabolomics.
Baniasadi, Hamid; Vlahakis, Chris; Hazebroek, Jan; Zhong, Cathy; Asiago, Vincent
2014-02-12
We recently applied gas chromatography coupled to time-of-flight mass spectrometry (GC/TOF-MS) and multivariate statistical analysis to measure biological variation of many metabolites due to environment and genotype in forage and grain samples collected from 50 genetically diverse nongenetically modified (non-GM) DuPont Pioneer commercial maize hybrids grown at six North American locations. In the present study, the metabolome coverage was extended using a core subset of these grain and forage samples employing ultra high pressure liquid chromatography (uHPLC) mass spectrometry (LC/MS). A total of 286 and 857 metabolites were detected in grain and forage samples, respectively, using LC/MS. Multivariate statistical analysis was utilized to compare and correlate the metabolite profiles. Environment had a greater effect on the metabolome than genetic background. The results of this study support and extend previously published insights into the environmental and genetic associated perturbations to the metabolome that are not associated with transgenic modification.
Availability and utility of crop composition data.
Kitta, Kazumi
2013-09-04
The safety assessment of genetically modified (GM) crops is mandatory in many countries. Although the most important factor to take into account in these safety assessments is the primary effects of artificially introduced transgene-derived traits, possible unintended effects attributed to the insertion of transgenes must be carefully examined in parallel. However, foods are complex mixtures of compounds characterized by wide variations in composition and nutritional values. Food components are significantly affected by various factors such as cultivars and the cultivation environment including storage conditions after harvest, and it can thus be very difficult to detect potential adverse effects caused by the introduction of a transgene. A comparative approach focusing on the identification of differences between GM foods and their conventional counterparts has been performed to reveal potential safety issues and is considered the most appropriate strategy for the safety assessment of GM foods. This concept is widely shared by authorities in many countries. For the efficient safety assessment of GM crops, an easily accessible and wide-ranging compilation of crop composition data is required for use by researchers and regulatory agencies. Thus, we developed an Internet-accessible food composition database comprising key nutrients, antinutrients, endogenous toxicants, and physiologically active substances of staple crops such as rice and soybeans. The International Life Sciences Institute has also been addressing the same matter and has provided the public a crop composition database of soybeans, maize, and cotton.
McNaughton, J; Roberts, M; Rice, D; Smith, B; Hinds, M; Delaney, B; Iiams, C; Sauber, T
2011-08-01
The performance of broilers fed diets containing maize grain from event DP-Ø9814Ø-6 (98140; gat4621 and zm-hra genes) and processed fractions (meal, hulls, and oil) from soybeans containing event DP-356Ø43-5 (356043; gat4601 and gm-hra genes) was evaluated in a 42-d feeding study. Diets were produced with nontransgenic maize grain and soybean fractions from controls with comparable genetic backgrounds to 98140 and 356043 (control), 98140 maize and 356043 soybean (98140 + 356043), or 3 commercially available nontransgenic maize and soybean combinations. Ross 708 broilers (n = 120/group; 50% male, 50% female) were fed diets in 3 phases: starter (d 0 to 21), grower (d 22 to 35), and finisher (d 36 to 42). Starter diets contained (on average) 63% maize and 28% soybean meal, grower diets 66% maize and 26% soybean meal, and finisher diets 72% maize and 21% soybean meal; soybean hulls and oils were held constant at 1.0 and 0.5%, respectively, across all diets in all phases. Weight gain, feed intake, and mortality-adjusted feed efficiency were calculated for d 0 to 42. Standard organ and carcass yield data were collected on d 42. Data were analyzed using a mixed model ANOVA with differences between control and 98140 + 356043 group means considered significant at P < 0.05. Reference group data were used only to estimate experimental variability and to generate tolerance intervals. No significant differences were observed in weight gain, mortality, mortality-adjusted feed efficiency, organ yields, or carcass yields between broilers consuming diets produced with 98140 + 356043 and those consuming diets produced with control maize and soybean fractions. All values of response variables evaluated in the control and 98140 + 356043 groups fell within calculated tolerance intervals. Based on these results, it was concluded that the combination of genetically modified 98140 maize and 356043 soybean fractions was nutritionally equivalent to nontransgenic maize and soybean controls with comparable genetic backgrounds.
Leclerc, Melen; Walker, Emily; Messéan, Antoine; Soubeyrand, Samuel
2018-05-15
The cultivation of Genetically Modified (GM) crops may have substantial impacts on populations of non-target organisms (NTOs) in agroecosystems. These impacts should be assessed at larger spatial scales than the cultivated field, and, as landscape-scale experiments are difficult, if not impossible, modelling approaches are needed to address landscape risk management. We present an original stochastic and spatially explicit modelling framework for assessing the risk at the landscape level. We use techniques from spatial statistics for simulating simplified landscapes made up of (aggregated or non-aggregated) GM fields, neutral fields and NTO's habitat areas. The dispersal of toxic pollen grains is obtained by convolving the emission of GM plants and validated dispersal kernel functions while the locations of exposed individuals are drawn from a point process. By taking into account the adherence of the ambient pollen on plants, the loss of pollen due to climatic events, and, an experimentally-validated mortality-dose function we predict risk maps and provide a distribution giving how the risk varies within exposed individuals in the landscape. Then, we consider the impact of the Bt maize on Inachis io in worst-case scenarii where exposed individuals are located in the vicinity of GM fields and pollen shedding overlaps with larval emergence. We perform a Global Sensitivity Analysis (GSA) to explore numerically how our input parameters influence the risk. Our results confirm the important effects of pollen emission and loss. Most interestingly they highlight that the optimal spatial distribution of GM fields that mitigates the risk depends on our knowledge of the habitats of NTOs, and finally, moderate the influence of the dispersal kernel function. Copyright © 2017 Elsevier B.V. All rights reserved.
Food control and a citizen science approach for improving teaching of Genetics in universities.
Borrell, Y J; Muñoz-Colmenero, A M; Dopico, E; Miralles, L; Garcia-Vazquez, E
2016-09-10
A Citizen Science approach was implemented in the laboratory practices of Genetics at the University of Oviedo, related with the engaging topic of Food Control. Real samples of food products consumed by students at home (students as samplers) were employed as teaching material in three different courses of Genetics during the academic year 2014-2015: Experimental Methods in Food Production (MBTA) (Master level), and Applied Molecular Biology (BMA) and Conservation Genetics and Breeding (COMGE) (Bachelor/Degree level). Molecular genetics based on PCR amplification of DNA markers was employed for species identification of 22 seafood products in COMGE and MBTA, and for detection of genetically modified (GM) maize from nine products in BMA. In total six seafood products incorrectly labeled (27%), and two undeclared GM maize (22%) were found. A post-Laboratory survey was applied for assessing the efficacy of the approach for improving motivation in the Laboratory Practices of Genetics. Results confirmed that students that worked on their own samples from local markets were significantly more motivated and better evaluated their Genetic laboratory practices than control students (χ(2) = 12.11 p = 0.033). Our results suggest that citizen science approaches could not be only useful for improving teaching of Genetics in universities but also to incorporate students and citizens as active agents in food control. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):450-462, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.
Global income and production impacts of using GM crop technology 1996–2013
Brookes, Graham; Barfoot, Peter
2015-01-01
abstract This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2013. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $20.5 billion in 2013 and $133.4 billion for the 18 years period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 70% of the gains have derived from yield and production gains with the remaining 30% coming from cost savings. The technology have also made important contributions to increasing global production levels of the 4 main crops, having added 138 million tonnes and 273 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s. PMID:25738324
Young, Gregory J; Zhang, Shiping; Mirsky, Henry P; Cressman, Robert F; Cong, Bin; Ladics, Gregory S; Zhong, Cathy X
2012-10-01
Before a genetically modified (GM) crop can be commercialized it must pass through a rigorous regulatory process to verify that it is safe for human and animal consumption, and to the environment. One particular area of focus is the potential introduction of a known or cross-reactive allergen not previously present within the crop. The assessment of possible allergenicity uses the guidelines outlined by the Food and Agriculture Organization (FAO) and World Health Organization's (WHO) Codex Alimentarius Commission (Codex) to evaluate all newly expressed proteins. Some regulatory authorities have broadened the scope of the assessment to include all DNA reading frames between stop codons across the insert and spanning the insert/genomic DNA junctions. To investigate the utility of this bioinformatic assessment, all naturally occurring stop-to-stop frames in the non-transgenic genomes of maize, rice, and soybean, as well as the human genome, were compared against the AllergenOnline (www.allergenonline.org) database using the Codex criteria. We discovered thousands of frames that exceeded the Codex defined threshold for potential cross-reactivity suggesting that evaluating hypothetical ORFs (stop-to-stop frames) has questionable value for making decisions on the safety of GM crops. Copyright © 2012 Elsevier Ltd. All rights reserved.
Global income and production impacts of using GM crop technology 1996-2013.
Brookes, Graham; Barfoot, Peter
2015-01-01
This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2013. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $20.5 billion in 2013 and $133.4 billion for the 18 years period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 70% of the gains have derived from yield and production gains with the remaining 30% coming from cost savings. The technology have also made important contributions to increasing global production levels of the 4 main crops, having added 138 million tonnes and 273 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s.
Huang, Xin; Zhai, Congcong; You, Qimin; Chen, Hongjun
2014-07-01
The requirement to monitor the presence of genetically modified organisms (GMO) in a variety of marked products has generated an increasing demand for reliable, rapid, and time and cost-effective analytical methods. Here we report an on-site method for rapid detection of cauliflower mosaic virus promoter (CaMV 35S), a common element present in most GMO, using cross-priming amplification (CPA) technology. Detection was achieved using a DNA-based contamination-proof strip biosensor. The limit of detection was 30 copies for the pBI121 plasmid containing the CaMV 35S gene. The certified reference sample of GM maize line MON810 was detectable even at the low relative mass concentration of 0.05%. The developed CPA method had high specificity for the CaMV 35S gene, as compared with other GM lines not containing this gene and non-GM products. The method was further validated using nine real-world samples, and the results were confirmed by real-time PCR analysis. Because of its simplicity, rapidity, and high sensitivity, this method of detecting the CaMV 35S gene has great commercial prospects for rapid GMO screening of high-consumption food and agriculture products.
2012-01-01
Background Striga species are noxious root hemi-parasitic weeds that debilitate cereal production in sub-Saharan Africa (SSA). Control options for Striga are limited and developing Striga resistant crop germplasm is regarded as the best and most sustainable control measure. Efforts to improve germplasm for Striga resistance by a non-Genetic Modification (GM) approach, for example by exploiting natural resistance, or by a GM approach are constrained by limited information on the biological processes underpinning host-parasite associations. Additionaly, a GM approach is stymied by lack of availability of candidate resistance genes for introduction into hosts and robust transformation methods to validate gene functions. Indeed, a majority of Striga hosts, the world’s most cultivated cereals, are recalcitrant to genetic transformation. In maize, the existing protocols for transformation and regeneration are tedious, lengthy, and highly genotype-specific with low efficiency of transformation. Results We used Agrobacterium rhizogenes strain K599 carrying a reporter gene construct, Green Fluorescent Protein (GFP), to generate transgenic composite maize plants that were challenged with the parasitic plant Striga hermonthica. Eighty five percent of maize plants produced transgenic hairy roots expressing GFP. Consistent with most hairy roots produced in other species, transformed maize roots exhibited a hairy root phenotype, the hallmark of A. rhizogenes mediated transformation. Transgenic hairy roots resulting from A. rhizogenes transformation were readily infected by S. hermonthica. There were no significant differences in the number and size of S. hermonthica individuals recovered from either transgenic or wild type roots. Conclusions This rapid, high throughput, transformation technique will advance our understanding of gene function in parasitic plant-host interactions. PMID:22720750
Responsible decision-making for plant research and breeding innovations in the European Union.
Eriksson, Dennis; Chatzopoulou, Sevasti
2018-01-02
Plant research and breeding has made substantial technical progress over the past few decades, indicating a potential for tremendous societal impact. Due to this potential, the development of policies and legislation on plant breeding and the technical progress should preferably involve all relevant stakeholders. However, we argue here that there is a substantial imbalance in the European Union (EU) regarding the influence of the various stakeholder groups on policy makers. We use evidence from three examples in order to show that the role of science is overlooked: 1) important delays in the decision process concerning the authorization of genetically modified (GM) maize events, 2) the significance attributed to non-scientific reasons in new legislation concerning the prohibition of GM events in EU member states, and 3) failure of the European Commission to deliver legal guidance to new plant breeding techniques despite sufficient scientific evidence and advisory reports. We attribute this imbalance to misinformation and misinterpretation of public perceptions and a disproportionate attention to single outlier reports, and we present ideas on how to establish a better stakeholder balance within this field.
Bigler, Franz
2006-01-01
The scientific organizers of the symposium put much emphasis on the identification and definition of hazard and the potential consequences thereof and three full sessions with a total of 13 presentations encompassing a wide range of related themes were planned for this topic. Unfortunately, one talk had to be cancelled because of illness of the speaker (BM Khadi, India). Some presentations covered conceptual approaches for environmental risk assessment (ERA) of GM plants (problem formulation in the risk assessment framework, familiarity approach, tiered and methodological frameworks, non-target risk assessment) and the use of models in assessing invasiveness and weediness of GM plants. Other presentations highlighted the lessons learned for future ERA from case studies and commercialized GM crops, and from monitoring of unintended releases to the environment. When the moderators of the three sessions came together after the presentations to align their summaries, there was an obvious need to restructure the 12 presentations in a way that allowed for a consistent summarizing discussion. The following new organization of the 12 talks was chosen: (1) Concepts for problem formulation and non-target risk assessment, (2) Modeling as a tool for predicting invasiveness of GM plants, (3) Case-studies of ERA of large-scale release, (4) Lessons learned for ERA from a commercialized GM plant, (5) Monitoring of unintended release of Bt maize in Mexico. The new thematic structure facilitates a more in-depth discussion of the presentations related to a specific topic, and the conclusions to be drawn are thus more consistent. Each moderator agreed to take responsibility for summarizing one or more themes and to prepare the respective report.
New multiplex PCR methods for rapid screening of genetically modified organisms in foods
Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris
2015-01-01
We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products. PMID:26257724
New multiplex PCR methods for rapid screening of genetically modified organisms in foods.
Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris
2015-01-01
We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.
Brodmann, Peter D; Ilg, Evelyn C; Berthoud, Hélène; Herrmann, Andre
2002-01-01
Quantitative detection methods are needed for enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients. This labeling threshold, which is set to 1% in the European Union and Switzerland, must be applied to all approved GMOs. Four different varieties of maize are approved in the European Union: the insect-resistant Bt176 maize (Maximizer), Btl 1 maize, Mon810 (YieldGard) maize, and the herbicide-tolerant T25 (Liberty Link) maize. Because the labeling must be considered individually for each ingredient, a quantitation system for the endogenous maize content is needed in addition to the GMO-specific detection systems. Quantitative real-time polymerase chain reaction detection methods were developed for the 4 approved genetically modified maize varieties and for an endogenous maize (invertase) gene system.
Cankar, Katarina; Ravnikar, Maja; Zel, Jana; Gruden, Kristina; Toplak, Natasa
2005-01-01
Labeling of genetically modified organisms (GMOs) is now in place in many countries, including the European Union, in order to guarantee the consumer's choice between GM and non-GM products. Screening of samples is performed by polymerase chain reaction (PCR) amplification of regulatory sequences frequently introduced into genetically modified plants. Primers for the 35S promoter from Cauliflower mosaic virus (CaMV) are those most frequently used. In virus-infected plants or in samples contaminated with plant material carrying the virus, false-positive results can consequently occur. A system for real-time PCR using a TaqMan minor groove binder probe was designed that allows recognition of virus coat protein in the sample, thus allowing differentiation between transgenic and virus-infected samples. We measured the efficiency of PCR amplification, limits of detection and quantification, range of linearity, and repeatability of the assay in order to assess the applicability of the assay for routine analysis. The specificity of the detection system was tested on various virus isolates and plant species. All 8 CaMV isolates were successfully amplified using the designed system. No cross-reactivity was detected with DNA from 3 isolates of the closely related Carnation etched ring virus. Primers do not amplify plant DNA from available genetically modified maize and soybean lines or from different species of Brassicaceae or Solanaceae that are natural hosts for CaMV. We evaluated the assay for different food matrixes by spiking CaMV DNA into DNA from food samples and have successfully amplified CaMV from all samples. The assay was tested on rapeseed samples from routine GMO testing that were positive in the 35S screening assay, and the presence of the virus was confirmed.
Global income and production impacts of using GM crop technology 1996–2014
Brookes, Graham; Barfoot, Peter
2016-01-01
ABSTRACT This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2014. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $17.7 billion in 2014 and $150.3 billion for the 19-year period 1996–2014 (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 65% of the gains have derived from yield and production gains with the remaining 35% coming from cost savings. The technology has also made important contributions to increasing global production levels of the 4 main crops, having, for example, added 158 million tonnes and 322 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s. PMID:27116697
Farm income and production impacts of using GM crop technology 1996–2015
Brookes, Graham
2017-01-01
ABSTRACT This paper provides an assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined impacts on yields, key variable costs of production, direct farm (gross) income and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has occurred at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2015. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $15.4 billion in 2015 and $167.8 billion for the 20 year period 1996–2015 (in nominal terms). These gains have been divided 49% to farmers in developed countries and 51% to farmers in developing countries. About 72% of the gains have derived from yield and production gains with the remaining 28% coming from cost savings. The technology has also made important contributions to increasing global production levels of the 4 main crops, having, for example, added 180 million tonnes and 358 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s. PMID:28481684
Global income and production impacts of using GM crop technology 1996-2014.
Brookes, Graham; Barfoot, Peter
2016-01-02
This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2014. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $17.7 billion in 2014 and $150.3 billion for the 19-year period 1996-2014 (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 65% of the gains have derived from yield and production gains with the remaining 35% coming from cost savings. The technology has also made important contributions to increasing global production levels of the 4 main crops, having, for example, added 158 million tonnes and 322 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s.
Fruet, Ana Paula Burin; Stefanello, Flávia Santi; Rosado Júnior, Adriano Garcia; Souza, Alexandre Nunes Motta de; Tonetto, Cléber José; Nörnberg, José Laerte
2016-03-01
In order to evaluate the performance, carcass characteristics and meat quality of culled ewes finished in pasture or exclusivelywith grain, 41 culled Polwarth ewes, were assigned to six treatments: RY (ryegrass pasture), RYGO (ryegrass and whole grain oats), RYGM (ryegrass and whole grain maize), GM (whole grain maize), GO (whole grain oats), GS (whole grain sorghum). The finishing systemof the ewes influenced weight gain,wherein the GM and GS treatments increased daily weight gain. The GO treatment decreased the dressing percentage. Nonetheless, a*, h*, pH, cooking loss and tenderness were similar across dietary treatments. Using principal component analysis, the variables C18:2n6, h*, n6/n3, TBARS, total lipids, L* and b* were assigned as characteristics of meat from the feedlot animals, while the pasture finishing system produced meat with higher CLA and n-3 fatty acids but lower TBARS values indicating lipid stability.
[Application of DNA extraction kit, 'GM quicker' for detection of genetically modified soybeans].
Sato, Noriko; Sugiura, Yoshitsugu; Tanaka, Toshitsugu
2012-01-01
Several DNA extraction methods have been officially introduced to detect genetically modified soybeans, but the choice of DNA extraction kits depend on the nature of the samples, such as grains or processed foods. To overcome this disadvantage, we examined whether the GM quicker kit is available for both grains and processed foods. We compared GM quicker with four approved DNA extraction kits in respect of DNA purity, copy numbers of lectin gene, and working time. We found that the DNA quality of GM quicker was superior to that of the other kits for grains, and the procedure was faster. However, in the case of processed foods, GM quicker was not superior to the other kits. We therefore investigated an unapproved GM quicker 3 kit, which is available for DNA extraction from processed foods, such as tofu and boiled soybeans. The GM quicker 3 kit provided good DNA quality from both grains and processed foods, so we made a minor modification of the GM quicker-based protocol that was suitable for processed foods, using GM quicker and its reagents. The modified method enhanced the performance of GM quicker with processed foods. We believe that GM quicker with the modified protocol is an excellent tool to obtain high-quality DNA from grains and processed foods for detection of genetically modified soybeans.
[Contamination with genetically modified maize MON863 of processed foods on the market].
Ohgiya, Yoko; Sakai, Masaaki; Miyashita, Taeko; Yano, Koichi
2009-06-01
Genetically modified maize MON863 (MON863), which has passed a safety examination in Japan, is commercially cultivated in the United States as a food and a resource for fuel. Maize is an anemophilous flower, which easily hybridizes. However, an official method for quantifying the content of MON863 has not been provided yet in Japan. We here examined MON863 contamination in maize-processed foods that had no labeling indicating of the use of genetically modified maize.From March 2006 to July 2008, we purchased 20 frozen maize products, 8 maize powder products, 7 canned maize products and 4 other maize processed foods. Three primer pairs named MON 863 primer, MON863-1, and M3/M4 for MON863-specific integrated cassette were used for qualitative polymerase chain reaction (PCR). A primer pair "SSIIb-3" for starch synthase gene was used to confirm the quality of extracted DNA. The starch synthase gene was detected in all samples. In qualitative tests, the MON863-specific fragments were detected in 7 (18%) maize powder products out of the 39 processed foods with all the three primer pairs.We concluded that various maize processed foods on the market were contaminated with MON863. It is important to accumulate further information on MON863 contamination in maize-processed foods that have no label indication of the use of genetically modified maize.
Influence of boundary-layer dynamics on pollen dispersion and viability
NASA Astrophysics Data System (ADS)
Arritt, Raymond W.; Viner, Brian J.; Westgate, Mark E.
2013-04-01
Adoption of genetically modified (GM) crops has raised concerns that GM traits can accidentally cross into conventional crops or wild relatives through the transport of wind-borne pollen. In order to evaluate this risk it is necessary to account both for dispersion of the pollen grains and environmental influences on pollen viability. The Lagrangian approach is suited to this problem because it allows tracking the environmental temperature and moisture that pollen grains experience as they travel. Taking advantage of this capability we have combined a high-resolution version of the WRF meteorological model with a Lagrangian particle dispersion model to predict maize pollen dispersion and viability. WRF is used to obtain fields of wind, turbulence kinetic energy, temperature, and humidity which are then used as input to the Lagrangian dispersion model. The dispersion model in turn predicts transport of a statistical sample of a pollen cloud from source plants to receptors. We also use the three-dimensional temperature and moisture fields from WRF to diagnose changes in moisture content of the pollen grains and consequent loss of viability. Results show that turbulent motions in the convective boundary layer counteract the large terminal velocity of maize pollen grains and lift them to heights of several hundred meters, so that they can be transported long distances before settling to the ground. We also found that pollen lifted into the upper part of the boundary layer remains more viable than has been inferred using surface observations of temperature and humidity. This is attributed to the thermal and moisture structure that typifies the daytime atmospheric boundary layer, producing an environment of low vapor pressure deficit in the upper boundary layer which helps maintain pollen viability.
Sun, Jing; Wu, Wenbin; Tang, Huajun; Liu, Jianguo
2015-01-01
Despite heated debates over the safety of genetically modified (GM) food, GM crops have been expanding rapidly. Much research has focused on the expansion of GM crops. However, the spatiotemporal dynamics of non-genetically modified (non-GM) crops are not clear, although they may have significant environmental and agronomic impacts and important policy implications. To understand the dynamics of non-GM crops and to inform the debates among relevant stakeholders, we conducted spatiotemporal analyses of China’s major non-GM soybean production region, the Heilongjiang Province. Even though the total soybean planting area decreased from 2005 to 2010, surprisingly, there were hotspots of increase. The results also showed hotspots of loss as well as a large decline in the number and continuity of soybean plots. Since China is the largest non-GM soybean producer in the world, the decline of its major production region may signal the continual decline of global non-GM soybeans. PMID:26380899
Sun, Jing; Wu, Wenbin; Tang, Huajun; Liu, Jianguo
2015-09-18
Despite heated debates over the safety of genetically modified (GM) food, GM crops have been expanding rapidly. Much research has focused on the expansion of GM crops. However, the spatiotemporal dynamics of non-genetically modified (non-GM) crops are not clear, although they may have significant environmental and agronomic impacts and important policy implications. To understand the dynamics of non-GM crops and to inform the debates among relevant stakeholders, we conducted spatiotemporal analyses of China's major non-GM soybean production region, the Heilongjiang Province. Even though the total soybean planting area decreased from 2005 to 2010, surprisingly, there were hotspots of increase. The results also showed hotspots of loss as well as a large decline in the number and continuity of soybean plots. Since China is the largest non-GM soybean producer in the world, the decline of its major production region may signal the continual decline of global non-GM soybeans.
Kitakaze, Keisuke; Tasaki, Chikako; Tajima, Youichi; Hirokawa, Takatsugu; Tsuji, Daisuke; Sakuraba, Hitoshi; Itoh, Kohji
2016-09-01
GM2 gangliosidoses are autosomal recessive lysosomal storage diseases (LSDs) caused by mutations in the HEXA , HEXB and GM2A genes, which encode the human lysosomal β-hexosaminidase (Hex) α- and β-subunits, and GM2 activator protein (GM2A), respectively. These diseases are associated with excessive accumulation of GM2 ganglioside (GM2) in the brains of patients with neurological symptoms. Here we established a CHO cell line overexpressing human GM2A, and purified GM2A from the conditioned medium, which was taken up by fibroblasts derived from a patient with GM2A deficiency, and had the therapeutic effects of reducing the GM2 accumulated in fibroblasts when added to the culture medium. We also demonstrated for the first time that recombinant GM2A could enhance the replacement effect of human modified HexB (modB) with GM2-degrading activity, which is composed of homodimeric altered β-subunits containing a partial amino acid sequence of the α-subunit, including the GSEP loop necessary for binding to GM2A, on reduction of the GM2 accumulated in fibroblasts derived from a patient with Tay-Sachs disease, a HexA (αβ heterodimer) deficiency, caused by HEXA mutations. We predicted the same manner of binding of GM2A to the GSEP loop located in the modified HexB β-subunit to that in the native HexA α-subunit on the basis of the x-ray crystal structures. These findings suggest the effectiveness of combinational replacement therapy involving the human modified HexB and GM2A for GM2 gangliosidoses.
Identification of fitness traits potentially impacted by gene flow from genetically modified (GM) crops to compatible relatives is of interest in risk assessments for GM crops. Reciprocal crosses were made between GM canola, Brassica napus cv. RaideRR that expresses CP4 EPSPS fo...
Discrimination of genetically modified sugar beets based on terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Chen, Tao; Li, Zhi; Yin, Xianhua; Hu, Fangrong; Hu, Cong
2016-01-01
The objective of this paper was to apply terahertz (THz) spectroscopy combined with chemometrics techniques for discrimination of genetically modified (GM) and non-GM sugar beets. In this paper, the THz spectra of 84 sugar beet samples (36 GM sugar beets and 48 non-GM ones) were obtained by using terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.2 to 1.2 THz. Three chemometrics methods, principal component analysis (PCA), discriminant analysis (DA) and discriminant partial least squares (DPLS), were employed to classify sugar beet samples into two groups: genetically modified organisms (GMOs) and non-GMOs. The DPLS method yielded the best classification result, and the percentages of successful classification for GM and non-GM sugar beets were both 100%. Results of the present study demonstrate the usefulness of THz spectroscopy together with chemometrics methods as a powerful tool to distinguish GM and non-GM sugar beets.
The virtual water content of major grain crops and virtual water flows between regions in China.
Sun, Shi-Kun; Wu, Pu-Te; Wang, Yu-Bao; Zhao, Xi-Ning
2013-04-01
The disproportionate distribution of arable land and water resources has become a bottleneck for guaranteeing food security in China. Virtual water and virtual water trade theory have provided a potential solution to improve water resources management in agriculture and alleviate water crises in water-scarce regions. The present study evaluates the green and blue virtual water content of wheat, maize and rice at the regional scale in China. It then assesses the water-saving benefits of virtual water flows related to the transfer of the three crops between regions. The national average virtual water content of wheat, maize and rice were 1071 m(3) per ton (50.98% green water, 49.02% blue water ), 830 m(3) per ton (76.27% green water, 23.73% blue water) and 1294 m(3) per ton (61.90% green water, 38.10% blue water), respectively. With the regional transfer of wheat, maize and rice, virtual water flows reached 30.08 Gm(3) (59.91% green water, 40.09% blue water). Meanwhile, China saved 11.47 Gm(3) green water, while it consumed 7.84 Gm(3) more blue water than with a no-grain transfer scenario in 2009. In order to guarantee food security in China, the government should improve water productivity (reduce virtual water content of crops) during the grain production process. Meanwhile, under the preconditions of economic feasibility and land-water resources availability, China should guarantee the grain-sown area in southern regions for taking full advantage of green water resources and to alleviate the pressure on water resources. © 2012 Society of Chemical Industry.
An improved grey model for the prediction of real-time GPS satellite clock bias
NASA Astrophysics Data System (ADS)
Zheng, Z. Y.; Chen, Y. Q.; Lu, X. S.
2008-07-01
In real-time GPS precise point positioning (PPP), real-time and reliable satellite clock bias (SCB) prediction is a key to implement real-time GPS PPP. It is difficult to hold the nuisance and inenarrable performance of space-borne GPS satellite atomic clock because of its high-frequency, sensitivity and impressionable, it accords with the property of grey model (GM) theory, i. e. we can look on the variable process of SCB as grey system. Firstly, based on limits of quadratic polynomial (QP) and traditional GM to predict SCB, a modified GM (1,1) is put forward to predict GPS SCB in this paper; and then, taking GPS SCB data for example, we analyzed clock bias prediction with different sample interval, the relationship between GM exponent and prediction accuracy, precision comparison of GM to QP, and concluded the general rule of different type SCB and GM exponent; finally, to test the reliability and validation of the modified GM what we put forward, taking IGS clock bias ephemeris product as reference, we analyzed the prediction precision with the modified GM, It is showed that the modified GM is reliable and validation to predict GPS SCB and can offer high precise SCB prediction for real-time GPS PPP.
Chen, Junfeng; Hu, Yongyou; Tan, Xiaojun; Zhang, Lihua; Huang, Wantang; Sun, Jian
2017-10-01
This study proposed a three-step method to prepare dual graphene modified bioelectrode (D-GM-BE) by in situ microbial-induced reduction of GO and polarity reversion in microbial fuel cell (MFC). Both graphene modified bioanode (GM-BA) and biocathode (GM-BC) were of 3D graphene/biofilm architectures; the viability and thickness of microbial biofilm decreased compared with control bioelectrode (C-BE). The coulombic efficiency (CE) of GM-BA was 2.1 times of the control bioanode (C-BA), which demonstrated higher rate of substrates oxidation; the relationship between peak current and scan rates data meant that GM-BC was of higher efficiency of catalyzing oxygen reduction than the control biocathode (C-BC). The maximum power density obtained in D-GM-BE MFC was 122.4±6.9mWm -2 , the interfacial charge transfer resistance of GM-BA and GM-BC were decreased by 79% and 75.7%. The excellent electrochemical performance of D-GM-BE MFC was attributed to the enhanced extracellular electron transfer (EET) process and catalyzing oxygen reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Syed, Kashmala; Shinwari, Zabta Khan
2016-03-01
This study on the effect of genetically modified (GM) and non-GM canola on soybean was carried out for physiological and biochemical biosafety assessment of GM canola. Methanolic extracts of GM and non-GM canola were assessed on seed germination and growth of soybean (Glycine max L.) under sterilized conditions. The extracts applied were of 3, 5, and 10% concentrations. The results showed that methanolic extracts of both GM and non-GM canola improved the germination percentage. However, germination rate index was significantly decreased with concomitant increase in mean germination time of soybean. A significant rate of decrease was observed in root fresh weight while increase in shoot length took place; when treatment of GM canola extracts were applied, however, no effect was observed in shoot fresh weight. A significant increase in protein contents, as well as phenolic, carotenoids, proline, and chlorophyll a content, was observed when different GM canola treatments (3, 5, and 10%) were applied to soybean; however, a significant rate of reduction in chlorophyll b content was observed by the application of GM canola treatment. Similar results were observed for superoxide dismutase, peroxidase, and catalase activities. A significant increase in the sugar content levels was observed when GM canola treatments (3, 5, and 10%) were applied to soybean. © The Author(s) 2013.
Grelewska-Nowotko, Katarzyna; Żurawska-Zajfert, Magdalena; Żmijewska, Ewelina; Sowa, Sławomir
2018-05-01
In recent years, digital polymerase chain reaction (dPCR), a new molecular biology technique, has been gaining in popularity. Among many other applications, this technique can also be used for the detection and quantification of genetically modified organisms (GMOs) in food and feed. It might replace the currently widely used real-time PCR method (qPCR), by overcoming problems related to the PCR inhibition and the requirement of certified reference materials to be used as a calibrant. In theory, validated qPCR methods can be easily transferred to the dPCR platform. However, optimization of the PCR conditions might be necessary. In this study, we report the transfer of two validated qPCR methods for quantification of maize DAS1507 and NK603 events to the droplet dPCR (ddPCR) platform. After some optimization, both methods have been verified according to the guidance of the European Network of GMO Laboratories (ENGL) on analytical method verification (ENGL working group on "Method Verification." (2011) Verification of Analytical Methods for GMO Testing When Implementing Interlaboratory Validated Methods). Digital PCR methods performed equally or better than the qPCR methods. Optimized ddPCR methods confirm their suitability for GMO determination in food and feed.
Dana, G V; Kapuscinski, A R; Donaldson, J S
2012-05-15
Ecological risk analysis (ERA) is a structured evaluation of threats to species, natural communities, and ecosystem processes from pollutants and toxicants and more complicated living stressors such as invasive species, genetically modified organisms, and biological control agents. Such analyses are typically conducted by a narrowly-focused group of scientific experts using technical information. We evaluate whether the inclusion of more diverse experts and practitioners in ERA improved the ecological knowledge base about South African biodiversity and the potential impacts of genetically modified (GM) crops. We conducted two participatory ERA workshops in South Africa, analyzing potential impacts of GM maize on biodiversity. The first workshop involved only four biological scientists, who were joined by 18 diverse scientists and practitioners in the second, and we compared the ERA process and results between the two using descriptive statistics and semi-structured interview responses. The addition of diverse experts and practitioners led to a more comprehensive understanding of biological composition of the agro-ecosystem and a more ecologically relevant set of hazards, but impeded hazard prioritization and the generation of precise risk assessment values. Results suggest that diverse participation can improve the scoping or problem formulation of the ERA, by generating an ecologically robust set of information on which to base the subsequent, more technical risk assessment. The participatory ERA process also increased the transparency of the ERA by exposing the logic and rationale for decisions made at each step. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chen, Junfeng; Zhang, Lihua; Hu, Yongyou; Huang, Wantang; Niu, Zhuyu; Sun, Jian
2017-10-01
In this work, bacterial community shift and incurred performance of graphene modified bioelectrode (GM-BE) in microbial fuel cell (MFC) were illustrated by high throughput sequencing technology and electrochemical analysis. The results showed that Firmicutes occupied 48.75% in graphene modified bioanode (GM-BA), while Proteobacteria occupied 62.99% in graphene modified biocathode (GM-BC), both were dominant bacteria in phylum level respectively. Typical exoelectrogens, including Geobacter, Clostridium, Pseudomonas, Geothrix and Hydrogenophaga, were counted 26.66% and 17.53% in GM-BA and GM-BC. GM-BE was tended to decrease the bacterial diversity and enrich the dominant species. Because of the enrichment of exoelectrogens and excellent electrical conductivity of graphene, the maximum power density of MFC with GM-BA and GM-BC increased 33.1% and 21.6% respectively, and the transfer resistance decreased 83.8% and 73.6% compared with blank bioelectrode. This study aimed to enrich the microbial study in MFC and broaden the development and application for bioelectrode. Copyright © 2017 Elsevier Ltd. All rights reserved.
Insect-resistant biotech crops and their impacts on beneficial arthropods
Gatehouse, A. M. R.; Ferry, N.; Edwards, M. G.; Bell, H. A.
2011-01-01
With a projected population of 10 billion by 2050, an immediate priority for agriculture is to achieve increased crop yields in a sustainable and cost-effective way. The concept of using a transgenic approach was realized in the mid-1990s with the commercial introduction of genetically modified (GM) crops. By 2010, the global value of the seed alone was US $11.2 billion, with commercial biotech maize, soya bean grain and cotton valued at approximately US $150 billion. In recent years, it has become evident that insect-resistant crops expressing δ-endotoxin genes from Bacillus thuringiensis have made a significant beneficial impact on global agriculture, not least in terms of pest reduction and improved quality. However, because of the potential for pest populations to evolve resistance, and owing to lack of effective control of homopteran pests, alternative strategies are being developed. Some of these are based on Bacillus spp. or other insect pathogens, while others are based on the use of plant- and animal-derived genes. However, if such approaches are to play a useful role in crop protection, it is desirable that they do not have a negative impact on beneficial organisms at higher trophic levels thus affecting the functioning of the agro-ecosystem. This widely held concern over the ecological impacts of GM crops has led to the extensive examination of the potential effects of a range of transgene proteins on non-target and beneficial insects. The findings to date with respect to both commercial and experimental GM crops expressing anti-insect genes are discussed here, with particular emphasis on insect predators and parasitoids. PMID:21444317
Insect-resistant biotech crops and their impacts on beneficial arthropods.
Gatehouse, A M R; Ferry, N; Edwards, M G; Bell, H A
2011-05-12
With a projected population of 10 billion by 2050, an immediate priority for agriculture is to achieve increased crop yields in a sustainable and cost-effective way. The concept of using a transgenic approach was realized in the mid-1990s with the commercial introduction of genetically modified (GM) crops. By 2010, the global value of the seed alone was US $11.2 billion, with commercial biotech maize, soya bean grain and cotton valued at approximately US $150 billion. In recent years, it has become evident that insect-resistant crops expressing δ-endotoxin genes from Bacillus thuringiensis have made a significant beneficial impact on global agriculture, not least in terms of pest reduction and improved quality. However, because of the potential for pest populations to evolve resistance, and owing to lack of effective control of homopteran pests, alternative strategies are being developed. Some of these are based on Bacillus spp. or other insect pathogens, while others are based on the use of plant- and animal-derived genes. However, if such approaches are to play a useful role in crop protection, it is desirable that they do not have a negative impact on beneficial organisms at higher trophic levels thus affecting the functioning of the agro-ecosystem. This widely held concern over the ecological impacts of GM crops has led to the extensive examination of the potential effects of a range of transgene proteins on non-target and beneficial insects. The findings to date with respect to both commercial and experimental GM crops expressing anti-insect genes are discussed here, with particular emphasis on insect predators and parasitoids.
What consumers don't know about genetically modified food, and how that affects beliefs.
McFadden, Brandon R; Lusk, Jayson L
2016-09-01
In the debates surrounding biotechnology and genetically modified (GM) food, data from consumer polls are often presented as evidence for precaution and labeling. But how much do consumers actually know about the issue? New data collected from a nationwide U.S. survey reveal low levels of knowledge and numerous misperceptions about GM food. Nearly equal numbers of consumers prefer mandatory labeling of foods containing DNA as do those preferring mandatory labeling of GM foods. When given the option, the majority of consumers prefer that decisions about GM food be taken out of their hands and be made by experts. After answering a list of questions testing objective knowledge of GM food, subjective, self-reported knowledge declines somewhat, and beliefs about GM food safety increase slightly. Results suggest that consumers think they know more than they actually do about GM food, and queries about GM facts cause respondents to reassess how much they know. The findings question the usefulness of results from opinion polls as a motivation for creating public policy surrounding GM food.-McFadden, B. R., Lusk, J. L. What consumers don't know about genetically modified food, and how that affects beliefs. © FASEB.
Tan, Xiaoyan; Zhou, Xiaobing; Tang, Yao; Lv, Jianjun; Zhang, Lin; Sun, Li; Yang, Yanwei; Miao, Yufa; Jiang, Hua; Chen, Gaofeng; Huang, Zhiying; Wang, Xue
2016-01-01
The present study was performed to evaluate the food safety of TT51-1, a new type of genetically modified rice that expresses the Cry1Ab/Ac protein (Bt toxin) and is highly resistant to most lepidopteran pests. Sixteen male and 16 female cynomolgus monkeys were randomly divided into four groups: conventional rice (non-genetically modified rice, non-GM rice), positive control, 17.5% genetically modified rice (GM rice) and 70% GM rice. Monkeys in the non-GM rice, positive control, and GM rice groups were fed on diets containing 70% non-GM rice, 17.5% GM rice or 70% GM rice, respectively, for 182 days, whereas animals in the positive group were intravenously injected with cyclophosphamide every other day for a total of four injections before the last treatment. Six months of treatment did not yield abnormal observations. Specifically, the following parameters did not significantly differ between the non-GM rice group and GM rice groups: body weight, food consumption, electrocardiogram, hematology, immuno-phenotyping of lymphocytes in the peripheral blood, mitogen-induced peripheral blood lymphocyte proliferation, splenocyte proliferation, KLH-T cell-dependent antibody response, organ weights and ratios, and histological appearance (p>0.05). Animals from the GM rice group differed from animals in the non-GM rice group (p<0.05) in several parameters: specifically, their body temperatures and serum alanine aminotransferase (ALT) levels were higher, whereas their levels of serum K+, Cl- and cytokines (IL-2, IL-4 and IL-5) were lower. Because dose- or time-dependent changes were not observed in this study and animals appeared histologically normal, the aforementioned differences were not considered to be adverse or related to the treatment with GM rice. In conclusion, a 6-month feeding study of TT51-1 did not show adverse immunotoxicological effects on cynomolgus monkeys. PMID:27684490
Electron beam technology for modifying the functional properties of maize starch
NASA Astrophysics Data System (ADS)
Nemţanu, M. R.; Minea, R.; Kahraman, K.; Koksel, H.; Ng, P. K. W.; Popescu, M. I.; Mitru, E.
2007-09-01
Maize starch is a versatile biopolymer with a wide field of applications (e.g. foods, pharmaceutical products, adhesives, etc.). Nowadays there is a continuous and intensive search for new methods and techniques to modify its functional properties due to the fact that native form of starch may exhibit some disadvantages in certain applications. Radiation technology is frequently used to change the properties of different polymeric materials. Thus, the goal of the work is to discuss the application of accelerated electron beams on maize starch in the view of changing some of its functional properties. Maize starch has been irradiated with doses up to 52.15 kGy by using electron beam technology and the modifications of differential scanning calorimetry (DSC) and pasting characteristics, paste clarity, freezing and thawing stability as well as colorimetric characteristics have been investigated. The results of the study revealed that the measured properties can be modified by electron beam treatment and, therefore, this method can be an efficient and ecological alternative to obtain modified maize starch.
Elizalde-González, María P; Mattusch, J; Wennrich, R
2008-07-01
The surface chemistry of maize naturasorbent was altered in this work by the modifying agents: phosphoric acid and different amines (triethanolamine, diethylenetriamine and 1,4-diaminobutane). Removal of methyl orange (25 mg l(-1)) was <50% by maize corn cobs modified by phosphorylation and higher by the quaternized samples: 68% with the 1,4-diaminobutane and 73% with the diethylenetriamine modificators. Adsorption of arsenite by the samples modified with phosphoric acid/ammonia was 11 microg g(-1), which corresponds to 98% removal from a 550 microg As l(-1) solution for an adsorbent dose of 50 mg ml(-1). The samples modified by phosphoric acid/urea removed 0.4 microg g(-1) arsenate from a 300 mug As l(-1) solution. Adsorption of methyl orange, arsenite and arsenate was superior by the chemically modified maize cobs judged against the initial naturasorbent. For comparison, removal by the commercial anion exchanger was 100% for methyl orange, 45% (5 microg g(-1)) for arsenite and 99% (5 microg g(-1)) for arsenate.
Zhang, Miao; Liu, Yinan; Chen, Lili; Quan, Sheng; Jiang, Shimeng; Zhang, Dabing; Yang, Litao
2013-01-02
Quickness, simplicity, and effectiveness are the three major criteria for establishing a good molecular diagnosis method in many fields. Herein we report a novel detection system for genetically modified organisms (GMOs), which can be utilized to perform both on-field quick screening and routine laboratory diagnosis. In this system, a newly designed inexpensive DNA extraction device was used in combination with a modified visual loop-mediated isothermal amplification (vLAMP) assay. The main parts of the DNA extraction device included a silica gel membrane filtration column and a modified syringe. The DNA extraction device could be easily operated without using other laboratory instruments, making it applicable to an on-field GMO test. High-quality genomic DNA (gDNA) suitable for polymerase chain reaction (PCR) and isothermal amplification could be quickly isolated from plant tissues using this device within 15 min. In the modified vLAMP assay, a microcrystalline wax encapsulated detection bead containing SYBR green fluorescent dye was introduced to avoid dye inhibition and cross-contaminations from post-LAMP operation. The system was successfully applied and validated in screening and identification of GM rice, soybean, and maize samples collected from both field testing and the Grain Inspection, Packers, and Stockyards Administration (GIPSA) proficiency test program, which demonstrated that it was well-adapted to both on-field testing and/or routine laboratory analysis of GMOs.
Nishiura, Hiroshi; Imai, Hirohisa; Nakao, Hiroyuki; Tsukino, Hiromasa; Kuroda, Yoshiki; Katoh, Takahiko
2002-11-01
Current and future trends regarding genetically modified (GM) crops and food stuffs were reviewed, with a particular focus on public acceptance and safety assessment. While GM foods, foods derived from biotechnology, are popular with growers and producers, they are still a matter of some concern among consumers. In fact, our recent surveys showed that Japanese consumers had become uneasy about the potential health risks of genetically modified foods. Many Japanese consumers have only vague ideas about the actual health risks, and they appear to be making decisions simply by rejecting GM food because of non-informed doubts. Although the debate about GM foods has increased in the mass media and scientific journals, few articles concerning direct studies on the potential toxicity or adverse health effects of GM foods have appeared. The roles of relevant international regulatory bodies in ensuring that GM crops and food are safe are therefore have summarized. Finally, the current debate on use of GM crops in agriculture and future trends for development of GM foods with enriched nutrients, better functionality, and medicinal ingredients, which will be of direct benefit to the consumer, are covered.
Birikaki, Lémonia; Pradeau, Stéphanie; Armand, Sylvie; Priem, Bernard; Márquez-Domínguez, Luis; Reyes-Leyva, Julio; Santos-López, Gerardo; Samain, Eric; Driguez, Hugues; Fort, Sébastien
2015-07-20
A fast chemoenzymatic synthesis of sialylated oligosaccharides containing C5-modified neuraminic acids is reported. Analogues of GM3 and GM2 ganglioside saccharidic portions where the acetyl group of NeuNAc has been replaced by a phenylacetyl (PhAc) or a propanoyl (Prop) moiety have been efficiently prepared with metabolically engineered E. coli bacteria. GM3 analogues were either obtained by chemoselective modification of biosynthetic N-acetyl-sialyllactoside (GM3 NAc) or by direct bacterial synthesis using C5-modified neuraminic acid precursors. The latter strategy proved to be very versatile as it led to an efficient synthesis of GM2 analogues. These glycomimetics were assessed against hemagglutinins and sialidases. In particular, the GM3 NPhAc displayed a binding affinity for Maackia amurensis agglutinin (MAA) similar to that of GM3 NAc, while being resistant to hydrolysis by Vibrio cholerae (VC) neuraminidase. A preliminary study with influenza viruses also confirmed a selective inhibition of N1 neuraminidase by GM3 NPhAc, suggesting potential developments for the detection of flu viruses and for fighting them. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Selwet, Marek
2011-01-01
The objective of the performed investigations was to isolate pathogenic fungi from contaminated maize cobs, to assess the appearance of maize cob fusariosis and to determine grain contamination with deoxynivalenol in the cultivation of genetically modified maize containing a gene resistance against European corn borer (Ostrinia nubilalis Hbn) as well as selected non-modified cultivars. The plant material comprised the following genetically modified maize cultivar: DKC 3421 YG (MON 810) and non-modified cultivars obtained from Smolice Plant Breeding Ltd., IHAR Group: Junak (FAO 210-220), Prosna (FAO 220), SMH (FAO 230), Baca (FAO 220). Prior to harvesting, the occurrence of maize cob fusariosis was determined in the 89 (BBCH) developmental ripening stage. Microbiological assessment was carried out on grains selected from cobs characterized by various pathological symptoms. In 2008, a total of 133 isolates was obtained from the examined samples of infected maize plants, of which 51 isolates were species-identified, while in 2009, the total of 123 isolates were determined, of which 63 were species-identified. In both experimental years, the majority of isolates contained fungi from the Fusarium genus. The performed analysis of mean levels of cob contamination by fusarioses revealed that DKC 3421 YG (MON 810) and SMH (FAO 230) cultivars showed the smallest levels of contamination as well as the lowest percent of cob contamination per plant, while Junak (FAO 210-220) and Baca (FAO 220) cultivars were characterized by the highest degree of contamination. The lowest deoxynivalenol concentrations were determined in years 2008 and 2009 in the case of the DKC 3421 YG (MON 810) cultivar, whereas Prosna (FAO 220) cultivar was characterized by the highest deoxynivalenol concentration.
Lyso-GM2 ganglioside: a possible biomarker of Tay-Sachs disease and Sandhoff disease.
Kodama, Takashi; Togawa, Tadayasu; Tsukimura, Takahiro; Kawashima, Ikuo; Matsuoka, Kazuhiko; Kitakaze, Keisuke; Tsuji, Daisuke; Itoh, Kohji; Ishida, Yo-Ichi; Suzuki, Minoru; Suzuki, Toshihiro; Sakuraba, Hitoshi
2011-01-01
To find a new biomarker of Tay-Sachs disease and Sandhoff disease. The lyso-GM2 ganglioside (lyso-GM2) levels in the brain and plasma in Sandhoff mice were measured by means of high performance liquid chromatography and the effect of a modified hexosaminidase (Hex) B exhibiting Hex A-like activity was examined. Then, the lyso-GM2 concentrations in human plasma samples were determined. The lyso-GM2 levels in the brain and plasma in Sandhoff mice were apparently increased compared with those in wild-type mice, and they decreased on intracerebroventricular administration of the modified Hex B. The lyso-GM2 levels in plasma of patients with Tay-Sachs disease and Sandhoff disease were increased, and the increase in lyso-GM2 was associated with a decrease in Hex A activity. Lyso-GM2 is expected to be a potential biomarker of Tay-Sachs disease and Sandhoff disease.
Lyso-GM2 Ganglioside: A Possible Biomarker of Tay-Sachs Disease and Sandhoff Disease
Kodama, Takashi; Togawa, Tadayasu; Tsukimura, Takahiro; Kawashima, Ikuo; Matsuoka, Kazuhiko; Kitakaze, Keisuke; Tsuji, Daisuke; Itoh, Kohji; Ishida, Yo-ichi; Suzuki, Minoru; Suzuki, Toshihiro; Sakuraba, Hitoshi
2011-01-01
To find a new biomarker of Tay-Sachs disease and Sandhoff disease. The lyso-GM2 ganglioside (lyso-GM2) levels in the brain and plasma in Sandhoff mice were measured by means of high performance liquid chromatography and the effect of a modified hexosaminidase (Hex) B exhibiting Hex A-like activity was examined. Then, the lyso-GM2 concentrations in human plasma samples were determined. The lyso-GM2 levels in the brain and plasma in Sandhoff mice were apparently increased compared with those in wild-type mice, and they decreased on intracerebroventricular administration of the modified Hex B. The lyso-GM2 levels in plasma of patients with Tay-Sachs disease and Sandhoff disease were increased, and the increase in lyso-GM2 was associated with a decrease in Hex A activity. Lyso-GM2 is expected to be a potential biomarker of Tay-Sachs disease and Sandhoff disease. PMID:22205997
Biological and biomedical aspects of genetically modified food.
Celec, Peter; Kukucková, Martina; Renczésová, Veronika; Natarajan, Satheesh; Pálffy, Roland; Gardlík, Roman; Hodosy, Július; Behuliak, Michal; Vlková, Barbora; Minárik, Gabriel; Szemes, Tomás; Stuchlík, Stanislav; Turna, Ján
2005-12-01
Genetically modified (GM) foods are the product of one of the most progressive fields of science-biotechnology. There are major concerns about GM foods in the public; some of them are reasonable, some of them are not. Biomedical risks of GM foods include problems regarding the potential allergenicity, horizontal gene transfer, but environmental side effects on biodiversity must also be recognized. Numerous methods have been developed to assess the potential risk of every GM food type. Benefits of the first generation of GM foods were oriented towards the production process and companies, the second generation of GM foods offers, on contrary, various advantages and added value for the consumer. This includes improved nutritional composition or even therapeutic effects. Recombinant probiotics and the principle of alternative gene therapy represent the latest approach of using GM organisms for biomedical applications. This article tries to summarize and to explain the problematic topic of GM food.
Genetically Modified (GM) Foods and Ethical Eating.
Dizon, Francis; Costa, Sarah; Rock, Cheryl; Harris, Amanda; Husk, Cierra; Mei, Jenny
2016-02-01
The ability to manipulate and customize the genetic code of living organisms has brought forth the production of genetically modified organisms (GMOs) and consumption of genetically modified (GM) foods. The potential for GM foods to improve the efficiency of food production, increase customer satisfaction, and provide potential health benefits has contributed to the rapid incorporation of GM foods into the American diet. However, GM foods and GMOs are also a topic of ethical debate. The use of GM foods and GM technology is surrounded by ethical concerns and situational judgment, and should ideally adhere to the ethical standards placed upon food and nutrition professionals, such as: beneficence, nonmaleficence, justice and autonomy. The future of GM foods involves many aspects and trends, including enhanced nutritional value in foods, strict labeling laws, and potential beneficial economic conditions in developing nations. This paper briefly reviews the origin and background of GM foods, while delving thoroughly into 3 areas: (1) GMO labeling, (2) ethical concerns, and (3) health and industry applications. This paper also examines the relationship between the various applications of GM foods and their corresponding ethical issues. Ethical concerns were evaluated in the context of the code of ethics developed by the Academy of Nutrition and Dietetics (AND) that govern the work of food and nutrition professionals. Overall, there is a need to stay vigilant about the many ethical implications of producing and consuming GM foods and GMOs. © 2015 Institute of Food Technologists®
Current perspectives on genetically modified crops and detection methods.
Kamle, Madhu; Kumar, Pradeep; Patra, Jayanta Kumar; Bajpai, Vivek K
2017-07-01
Genetically modified (GM) crops are the fastest adopted commodities in the agribiotech industry. This market penetration should provide a sustainable basis for ensuring food supply for growing global populations. The successful completion of two decades of commercial GM crop production (1996-2015) is underscored by the increasing rate of adoption of genetic engineering technology by farmers worldwide. With the advent of introduction of multiple traits stacked together in GM crops for combined herbicide tolerance, insect resistance, drought tolerance or disease resistance, the requirement of reliable and sensitive detection methods for tracing and labeling genetically modified organisms in the food/feed chain has become increasingly important. In addition, several countries have established threshold levels for GM content which trigger legally binding labeling schemes. The labeling of GM crops is mandatory in many countries (such as China, EU, Russia, Australia, New Zealand, Brazil, Israel, Saudi Arabia, Korea, Chile, Philippines, Indonesia, Thailand), whereas in Canada, Hong Kong, USA, South Africa, and Argentina voluntary labeling schemes operate. The rapid adoption of GM crops has increased controversies, and mitigating these issues pertaining to the implementation of effective regulatory measures for the detection of GM crops is essential. DNA-based detection methods have been successfully employed, while the whole genome sequencing using next-generation sequencing (NGS) technologies provides an advanced means for detecting genetically modified organisms and foods/feeds in GM crops. This review article describes the current status of GM crop commercialization and discusses the benefits and shortcomings of common and advanced detection systems for GMs in foods and animal feeds.
Stakeholders' attitude to genetically modified foods and medicine.
Amin, Latifah; Jahi, Jamaluddin Md; Nor, Abd Rahim Md
2013-01-01
Public acceptance of genetically modified (GM) foods has to be adequately addressed in order for their potential economic and social benefits to be realized. The objective of this paper is to assess the attitude of the Malaysian public toward GM foods (GM soybean and GM palm oil) and GM medicine (GM insulin). A survey was carried out using self-constructed multidimensional instrument measuring attitudes towards GM products. The respondents (n = 1017) were stratified according to stakeholders' groups in the Klang Valley region. Results of the survey show that the overall attitude of the Malaysian stakeholders towards GM products was cautious. Although they acknowledged the presence of moderate perceived benefits associated with GM products surveyed and were moderately encouraging of them, they were also moderately concerned about the risks and moral aspects of the three GM products as well as moderately accepting the risks. Attitudes towards GM products among the stakeholders were found to vary not according to the type of all GM applications but rather depend on the intricate relationships between the attitudinal factors and the type of gene transfers involved. Analyses of variance showed significant differences in the six dimensions of attitude towards GM products across stakeholders' groups.
Stakeholders' Attitude to Genetically Modified Foods and Medicine
Md Jahi, Jamaluddin; Md Nor, Abd Rahim
2013-01-01
Public acceptance of genetically modified (GM) foods has to be adequately addressed in order for their potential economic and social benefits to be realized. The objective of this paper is to assess the attitude of the Malaysian public toward GM foods (GM soybean and GM palm oil) and GM medicine (GM insulin). A survey was carried out using self-constructed multidimensional instrument measuring attitudes towards GM products. The respondents (n = 1017) were stratified according to stakeholders' groups in the Klang Valley region. Results of the survey show that the overall attitude of the Malaysian stakeholders towards GM products was cautious. Although they acknowledged the presence of moderate perceived benefits associated with GM products surveyed and were moderately encouraging of them, they were also moderately concerned about the risks and moral aspects of the three GM products as well as moderately accepting the risks. Attitudes towards GM products among the stakeholders were found to vary not according to the type of all GM applications but rather depend on the intricate relationships between the attitudinal factors and the type of gene transfers involved. Analyses of variance showed significant differences in the six dimensions of attitude towards GM products across stakeholders' groups. PMID:24381520
A risk-based classification scheme for genetically modified foods. I: Conceptual development.
Chao, Eunice; Krewski, Daniel
2008-12-01
The predominant paradigm for the premarket assessment of genetically modified (GM) foods reflects heightened public concern by focusing on foods modified by recombinant deoxyribonucleic acid (rDNA) techniques, while foods modified by other methods of genetic modification are generally not assessed for safety. To determine whether a GM product requires less or more regulatory oversight and testing, we developed and evaluated a risk-based classification scheme (RBCS) for crop-derived GM foods. The results of this research are presented in three papers. This paper describes the conceptual development of the proposed RBCS that focuses on two categories of adverse health effects: (1) toxic and antinutritional effects, and (2) allergenic effects. The factors that may affect the level of potential health risks of GM foods are identified. For each factor identified, criteria for differentiating health risk potential are developed. The extent to which a GM food satisfies applicable criteria for each factor is rated separately. A concern level for each category of health effects is then determined by aggregating the ratings for the factors using predetermined aggregation rules. An overview of the proposed scheme is presented, as well as the application of the scheme to a hypothetical GM food.
Rhee, Gyu Seek; Cho, Dae Hyun; Won, Yong Hyuck; Seok, Ji Hyun; Kim, Soon Sun; Kwack, Seung Jun; Lee, Rhee Da; Chae, Soo Yeong; Kim, Jae Woo; Lee, Byung Mu; Park, Kui Lea; Choi, Kwang Sik
2005-12-10
Each specific protein has an individual gene encoding it, and a foreign gene introduced to a plant can be used to synthesize a new protein. The identification of potential reproductive and developmental toxicity from novel proteins produced by genetically modified (GM) crops is a difficult task. A science-based risk assessment is needed in order to use GM crops as a conventional foodstuff. In this study, the specific characteristics of GM food and low-level chronic exposure were examined using a five-generation animal study. In each generation, rats were fed a solid pellet containing 5% GM potato and non-GM potato for 10 wk prior to mating in order to assess the potential reproductive and developmental toxic effects. In the multigeneration animal study, there were no GM potato-related changes in body weight, food consumption, reproductive performance, and organ weight. Polymerase chain reaction (PCR) was carried out using extracted genomic DNA to examine the possibility of gene persistence in the organ tissues after a long-term exposure to low levels of GM feed. In each generation, the gene responsible for bar was not found in any of the reproductive organs of the GM potato-treated male and female rats, and the litter-related indexes did not show any genetically modified organism (GMO)-related changes. The results suggest that genetically modified crops have no adverse effects on the multigeneration reproductive-developmental ability.
USDA-ARS?s Scientific Manuscript database
Octenylsuccinic anhydride (OSA)-modified starches with degree of substitution of 0.018 (OS-S-L) and 0.092 (OS-S-H) were prepared from granular native waxy maize starch in an aqueous slurry system. The substitution distribution of OS groups was investigated by enzyme hydrolysis followed by chromatogr...
Prins, Theo W; van Dijk, Jeroen P; Beenen, Henriek G; Van Hoef, AM Angeline; Voorhuijzen, Marleen M; Schoen, Cor D; Aarts, Henk JM; Kok, Esther J
2008-01-01
Background To maintain EU GMO regulations, producers of new GM crop varieties need to supply an event-specific method for the new variety. As a result methods are nowadays available for EU-authorised genetically modified organisms (GMOs), but only to a limited extent for EU-non-authorised GMOs (NAGs). In the last decade the diversity of genetically modified (GM) ingredients in food and feed has increased significantly. As a result of this increase GMO laboratories currently need to apply many different methods to establish to potential presence of NAGs in raw materials and complex derived products. Results In this paper we present an innovative method for detecting (approved) GMOs as well as the potential presence of NAGs in complex DNA samples containing different crop species. An optimised protocol has been developed for padlock probe ligation in combination with microarray detection (PPLMD) that can easily be scaled up. Linear padlock probes targeted against GMO-events, -elements and -species have been developed that can hybridise to their genomic target DNA and are visualised using microarray hybridisation. In a tenplex PPLMD experiment, different genomic targets in Roundup-Ready soya, MON1445 cotton and Bt176 maize were detected down to at least 1%. In single experiments, the targets were detected down to 0.1%, i.e. comparable to standard qPCR. Conclusion Compared to currently available methods this is a significant step forward towards multiplex detection in complex raw materials and derived products. It is shown that the PPLMD approach is suitable for large-scale detection of GMOs in real-life samples and provides the possibility to detect and/or identify NAGs that would otherwise remain undetected. PMID:19055784
Prins, Theo W; van Dijk, Jeroen P; Beenen, Henriek G; Van Hoef, Am Angeline; Voorhuijzen, Marleen M; Schoen, Cor D; Aarts, Henk J M; Kok, Esther J
2008-12-04
To maintain EU GMO regulations, producers of new GM crop varieties need to supply an event-specific method for the new variety. As a result methods are nowadays available for EU-authorised genetically modified organisms (GMOs), but only to a limited extent for EU-non-authorised GMOs (NAGs). In the last decade the diversity of genetically modified (GM) ingredients in food and feed has increased significantly. As a result of this increase GMO laboratories currently need to apply many different methods to establish to potential presence of NAGs in raw materials and complex derived products. In this paper we present an innovative method for detecting (approved) GMOs as well as the potential presence of NAGs in complex DNA samples containing different crop species. An optimised protocol has been developed for padlock probe ligation in combination with microarray detection (PPLMD) that can easily be scaled up. Linear padlock probes targeted against GMO-events, -elements and -species have been developed that can hybridise to their genomic target DNA and are visualised using microarray hybridisation.In a tenplex PPLMD experiment, different genomic targets in Roundup-Ready soya, MON1445 cotton and Bt176 maize were detected down to at least 1%. In single experiments, the targets were detected down to 0.1%, i.e. comparable to standard qPCR. Compared to currently available methods this is a significant step forward towards multiplex detection in complex raw materials and derived products. It is shown that the PPLMD approach is suitable for large-scale detection of GMOs in real-life samples and provides the possibility to detect and/or identify NAGs that would otherwise remain undetected.
Data in support of the detection of genetically modified organisms (GMOs) in food and feed samples.
Alasaad, Noor; Alzubi, Hussein; Kader, Ahmad Abdul
2016-06-01
Food and feed samples were randomly collected from different sources, including local and imported materials from the Syrian local market. These included maize, barley, soybean, fresh food samples and raw material. GMO detection was conducted by PCR and nested PCR-based techniques using specific primers for the most used foreign DNA commonly used in genetic transformation procedures, i.e., 35S promoter, T-nos, epsps, cryIA(b) gene and nptII gene. The results revealed for the first time in Syria the presence of GM foods and feeds with glyphosate-resistant trait of P35S promoter and NOS terminator in the imported soybean samples with high frequency (5 out of the 6 imported soybean samples). While, tests showed negative results for the local samples. Also, tests revealed existence of GMOs in two imported maize samples detecting the presence of 35S promoter and nos terminator. Nested PCR results using two sets of primers confirmed our data. The methods applied in the brief data are based on DNA analysis by Polymerase Chain Reaction (PCR). This technique is specific, practical, reproducible and sensitive enough to detect up to 0.1% GMO in food and/or feedstuffs. Furthermore, all of the techniques mentioned are economic and can be applied in Syria and other developing countries. For all these reasons, the DNA-based analysis methods were chosen and preferred over protein-based analysis.
Debate on GMOs health risks after statistical findings in regulatory tests.
de Vendômois, Joël Spiroux; Cellier, Dominique; Vélot, Christian; Clair, Emilie; Mesnage, Robin; Séralini, Gilles-Eric
2010-10-05
We summarize the major points of international debate on health risk studies for the main commercialized edible GMOs. These GMOs are soy, maize and oilseed rape designed to contain new pesticide residues since they have been modified to be herbicide-tolerant (mostly to Roundup) or to produce mutated Bt toxins. The debated alimentary chronic risks may come from unpredictable insertional mutagenesis effects, metabolic effects, or from the new pesticide residues. The most detailed regulatory tests on the GMOs are three-month long feeding trials of laboratory rats, which are biochemically assessed. The tests are not compulsory, and are not independently conducted. The test data and the corresponding results are kept in secret by the companies. Our previous analyses of regulatory raw data at these levels, taking the representative examples of three GM maize NK 603, MON 810, and MON 863 led us to conclude that hepatorenal toxicities were possible, and that longer testing was necessary. Our study was criticized by the company developing the GMOs in question and the regulatory bodies, mainly on the divergent biological interpretations of statistically significant biochemical and physiological effects. We present the scientific reasons for the crucially different biological interpretations and also highlight the shortcomings in the experimental protocols designed by the company. The debate implies an enormous responsibility towards public health and is essential due to nonexistent traceability or epidemiological studies in the GMO-producing countries.
Debate on GMOs Health Risks after Statistical Findings in Regulatory Tests
de Vendômois, Joël Spiroux; Cellier, Dominique; Vélot, Christian; Clair, Emilie; Mesnage, Robin; Séralini, Gilles-Eric
2010-01-01
We summarize the major points of international debate on health risk studies for the main commercialized edible GMOs. These GMOs are soy, maize and oilseed rape designed to contain new pesticide residues since they have been modified to be herbicide-tolerant (mostly to Roundup) or to produce mutated Bt toxins. The debated alimentary chronic risks may come from unpredictable insertional mutagenesis effects, metabolic effects, or from the new pesticide residues. The most detailed regulatory tests on the GMOs are three-month long feeding trials of laboratory rats, which are biochemically assessed. The tests are not compulsory, and are not independently conducted. The test data and the corresponding results are kept in secret by the companies. Our previous analyses of regulatory raw data at these levels, taking the representative examples of three GM maize NK 603, MON 810, and MON 863 led us to conclude that hepatorenal toxicities were possible, and that longer testing was necessary. Our study was criticized by the company developing the GMOs in question and the regulatory bodies, mainly on the divergent biological interpretations of statistically significant biochemical and physiological effects. We present the scientific reasons for the crucially different biological interpretations and also highlight the shortcomings in the experimental protocols designed by the company. The debate implies an enormous responsibility towards public health and is essential due to nonexistent traceability or epidemiological studies in the GMO-producing countries. PMID:20941377
Perspectives on genetically modified crops and food detection.
Lin, Chih-Hui; Pan, Tzu-Ming
2016-01-01
Genetically modified (GM) crops are a major product of the global food industry. From 1996 to 2014, 357 GM crops were approved and the global value of the GM crop market reached 35% of the global commercial seed market in 2014. However, the rapid growth of the GM crop-based industry has also created controversies in many regions, including the European Union, Egypt, and Taiwan. The effective detection and regulation of GM crops/foods are necessary to reduce the impact of these controversies. In this review, the status of GM crops and the technology for their detection are discussed. As the primary gap in GM crop regulation exists in the application of detection technology to field regulation, efforts should be made to develop an integrated, standardized, and high-throughput GM crop detection system. We propose the development of an integrated GM crop detection system, to be used in combination with a standardized international database, a decision support system, high-throughput DNA analysis, and automated sample processing. By integrating these technologies, we hope that the proposed GM crop detection system will provide a method to facilitate comprehensive GM crop regulation. Copyright © 2015. Published by Elsevier B.V.
Chen, Mei-Fang
2018-04-20
This study highlighted the relevance of how social representations of genetically modified (GM) foods influence the Taiwanese public's willingness to consume GM foods. Moderated regression analysis results revealed that the social representation dimensions of adherence to technology and food as a necessity positively influenced the public's willingness to consume GM foods; however, the dimension of resistance to and suspicion of novelties had a negative influence. Food technology neophobia played a role in predicting people's willingness to consume GM foods and exerted moderating effects to enhance the negative relationship between the respondents' resistance to and suspicion of novelties and their willingness to consume GM foods. This neophobia also changed the positive relationship between food as a necessity and willingness to consume GM foods into negative. One-way ANOVA results revealed that food technology neophobia influences the public's specific social representations of GM foods, personal domain-specific innovativeness, and willingness to consume GM foods. This article is protected by copyright. All rights reserved.
The state of genetically modified crop regulation in Canada
Smyth, Stuart J
2014-01-01
Genetically modified (GM) crops were first commercialized in Canada in 1995 and the 2014 crop represents the 20th year of successful production. Prior to the first commercialization of GM crops, Canada reviewed its existing science-based regulatory framework and adapted the existing framework to allow for risk assessments on the new technology to be undertaken in a timely and efficient manner. The result has been the rapid and widespread adoption of GM varieties of canola, corn and soybeans. The first decade of GM crop production precipitated 2 landmark legal cases relating to patent infringement and economic liability, while the second decade witnessed increased political efforts to have GM crops labeled in Canada as well as significant challenges from the low level comingling of GM crops with non-GM commodities. This article reviews the 20 y of GM crop production in Canada from a social science perspective that includes intellectual property, consumer acceptance and low level presence. PMID:25437238
Li, Penggao; Yang, Chun; Yue, Rong; Zhen, Yaping; Zhuo, Qin; Piao, Jianhua; Yang, Xiaoguang; Xiao, Rong
2018-01-17
This study investigated the composition and proportions of fecal microbiota in Sprague-Dawley rats after consuming two genetically modified (GM) corn lines in comparison with the isogenic corn and the AIN93G standard feed for 10 weeks using bar-coded 16S rRNA gene sequencing. As a result, GM corn did not significantly alter the overall health and alpha-diversity of fecal microbiota. Fecal microbiota structures could be separated into noncorn and corn but not non-GM and GM corn subgroups. Both non-GM and GM corn caused the increase in bacterial populations related to carbohydrates utilization, such as Lactobacillus, Barnesiella, and Bifidobacterium, and the reduction in potentially pathogenic populations, such as Tannerella and Moraxellaceae. In conclusion, similar effects on the fecal microbiota were observed after consuming a GM- and non-GM-corn-based diet for long periods. Further studies are warranted to elucidate the functional relevance of the changes in the proportions of bacterial populations in these diets.
Lachowski, Stanisław; Jurkiewicz, Anna; Choina, Piotr; Florek-Łuszczki, Magdalena; Buczaj, Agnieszka; Goździewska, Małgorzata
2017-06-07
Agriculture based on genetically modified organisms plays an increasingly important role in feeding the world population, which is evidenced by a considerable growth in the size of land under genetically modified crops (GM). Uncertainty and controversy around GM products are mainly due to the lack of accurate and reliable information, and lack of knowledge concerning the essence of genetic modifications, and the effect of GM food on the human organism, and consequently, a negative emotional attitude towards what is unknown. The objective of the presented study was to discover to what extent knowledge and the emotional attitude of adolescents towards genetically modified organisms is related with acceptance of growing genetically modified plants or breeding GM animals on own farm or allotment garden, and the purchase and consumption of GM food, as well as the use of GMOs in medicine. The study was conducted by the method of a diagnostic survey using a questionnaire designed by the author, which covered a group of 500 adolescents completing secondary school on the level of maturity examination. The collected material was subjected to statistical analysis. Research hypotheses were verified using chi-square test (χ 2 ), t-Student test, and stepwise regression analysis. Stepwise regression analysis showed that the readiness of adolescents to use genetically modified organisms as food or for the production of pharmaceuticals, the production of GM plants or animals on own farm, depends on an emotional-evaluative attitude towards GMOs, and the level of knowledge concerning the essence of genetic modifications.
Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud
2013-01-01
Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer’s right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses. PMID:24250568
Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud
2013-01-01
Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer's right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses.
Investigating GM Risk Perceptions: A Survey of Anti-GM and Environmental Campaign Group Members
ERIC Educational Resources Information Center
Hall, Clare; Moran, Dominic
2006-01-01
This study investigates how members of anti-GM campaign groups and environment groups perceive the risks and benefits of genetically modified (GM) technology in food and agriculture. The study targeted these groups as the most risk-averse sector of society when considering GM technology. Survey respondents were asked to rank the current and future…
Flanking sequence determination and event-specific detection of genetically modified wheat B73-6-1.
Xu, Junyi; Cao, Jijuan; Cao, Dongmei; Zhao, Tongtong; Huang, Xin; Zhang, Piqiao; Luan, Fengxia
2013-05-01
In order to establish a specific identification method for genetically modified (GM) wheat, exogenous insert DNA and flanking sequence between exogenous fragment and recombinant chromosome of GM wheat B73-6-1 were successfully acquired by means of conventional polymerase chain reaction (PCR) and thermal asymmetric interlaced (TAIL)-PCR strategies. Newly acquired exogenous fragment covered the full-length sequence of transformed genes such as transformed plasmid and corresponding functional genes including marker uidA, herbicide-resistant bar, ubiquitin promoter, and high-molecular-weight gluten subunit. The flanking sequence between insert DNA revealed high similarity with Triticum turgidum A gene (GenBank: AY494981.1). A specific PCR detection method for GM wheat B73-6-1 was established on the basis of primers designed according to the flanking sequence. This specific PCR method was validated by GM wheat, GM corn, GM soybean, GM rice, and non-GM wheat. The specifically amplified target band was observed only in GM wheat B73-6-1. This method is of high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of GM wheat B73-6-1.
An overview of genetically modified crop governance, issues and challenges in Malaysia.
Andrew, Johnny; Ismail, Normaz Wana; Djama, Marcel
2018-01-01
The application of agricultural biotechnology attracts the interest of many stakeholders. Genetically modified (GM) crops, for example, have been rapidly increasing in production for the last 20 years. Despite their known benefits, GM crops also pose many concerns not only to human and animal health but also to the environment. Malaysia, in general, allows the use of GM technology applications but it has to come with precautionary and safety measures consistent with the international obligations and domestic legal frameworks. This paper provides an overview of GM crop technology from international and national context and explores the governance and issues surrounding this technology application in Malaysia. Basically, GM research activities in Malaysia are still at an early stage of research and development and most of the GM crops approved for release are limited for food, feed and processing purposes. Even though Malaysia has not planted any GM crops commercially, actions toward such a direction seem promising. Several issues concerning GM crops as discussed in this paper will become more complex as the number of GM crops and varieties commercialised globally increase and Malaysia starts to plant GM crops. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Effect on in vitro starch digestibility of Mexican blue maize anthocyanins.
Camelo-Méndez, Gustavo A; Agama-Acevedo, Edith; Sanchez-Rivera, Mirna M; Bello-Pérez, Luis A
2016-11-15
The purpose of this study was to evaluate the effect of blue maize extracts obtained by acid-methanol treatment on the nutritional in vitro starch fractions such as: rapidly digestive starch (RDS), slowly digestive starch (SDS) and resistant starch (RS) of native and gelatinized commercial maize starch. Chromatographic analysis (HPLC-DAD/ESI-MS) of blue maize extracts showed the presence of seven anthocyanins, where cyanidin-3-(6″-malonylglucoside) was the main. Blue maize extracts modified nutritional in vitro starch fractions (decrease of RDS) while RS content increased (1.17 and 2.02 times for native and gelatinized commercial maize starch, respectively) when anthocyanins extracts were added to starch up to 75% (starch weight). This preliminary observation provides the basis for further suitability evaluation of blue maize extract as natural starch-modifier by the possible anthocyanins-starch interaction. Anthocyanin extracts can be a suitable to produce functional foods with higher RS content with potential human health benefits. Copyright © 2016 Elsevier Ltd. All rights reserved.
Plants with stacked genetically modified events: to assess or not to assess?
Kok, Esther J; Pedersen, Jan; Onori, Roberta; Sowa, Slawomir; Schauzu, Marianna; De Schrijver, Adinda; Teeri, Teemu H
2014-02-01
The principles for the safety assessment of genetically modified (GM) organisms (GMOs) are harmonised worldwide to a large extent. There are, however, still differences between the European GMO regulations and the GMO regulations as they have been formulated in other parts of the world. One of these differences relates to the so-called 'stacked GM events', that is, GMOs, plants so far, where new traits are combined by conventional crossing of different GM plants. This paper advocates rethinking the current food/feed safety assessment of stacked GM events in Europe based on an analysis of different aspects that currently form the rationale for the safety assessment of stacked GM events. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ahmad, Muhammad Z.; Li, Penghui; Wang, Junjie; Rehman, Naveed Ur; Zhao, Jian
2017-01-01
Malonylated isoflavones are the major forms of isoflavonoids in soybean plants, the genes responsible for their biosyntheses are not well understood, nor their physiological functions. Here we report a new benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, deacetylvindoline 4-O-acetyltransferase (BAHD) family isoflavone glucoside malonyltransferase GmIMaT1, and GmIMaT3, which is allelic to the previously characterized GmMT7 and GmIF7MaT. Biochemical studies showed that recombinant GmIMaT1 and GmIMaT3 enzymes used malonyl-CoA and several isoflavone 7-O-glucosides as substrates. The Km values of GmIMaT1 for glycitin, genistin, and daidzin were 13.11, 23.04, and 36.28 μM, respectively, while these of GmIMaT3 were 12.94, 26.67, and 30.12 μM, respectively. Transgenic hairy roots overexpressing both GmIMaTs had increased levels of malonyldaidzin and malonylgenistin, and contents of daidzin and glycitin increased only in GmIMaT1-overexpression lines. The increased daidzein and genistein contents were detected only in GmIMaT3-overexpression lines. Knockdown of GmIMaT1 and GmIMaT3 reduced malonyldaidzin and malonylgenistin contents, and affected other isoflavonoids differently. GmIMaT1 is primarily localized to the endoplasmic reticulum while GmIMaT3 is primarily in the cytosol. By examining their transcript changes corresponding to the altered isoflavone metabolic profiles under various environmental and hormonal stresses, we probed the possible functions of GmIMaTs. Two GmIMaTs displayed distinct tissue expression patterns and respond differently to various factors in modifying isoflavone 7-O-glucosides under various stresses. PMID:28559900
Liao, Wei-Ching; Chuang, Min-Chieh; Ho, Ja-An Annie
2013-12-15
Genetically modified (GM) technique, one of the modern biomolecular engineering technologies, has been deemed as profitable strategy to fight against global starvation. Yet rapid and reliable analytical method is deficient to evaluate the quality and potential risk of such resulting GM products. We herein present a biomolecular analytical system constructed with distinct biochemical activities to expedite the computational detection of genetically modified organisms (GMOs). The computational mechanism provides an alternative to the complex procedures commonly involved in the screening of GMOs. Given that the bioanalytical system is capable of processing promoter, coding and species genes, affirmative interpretations succeed to identify specified GM event in terms of both electrochemical and optical fashions. The biomolecular computational assay exhibits detection capability of genetically modified DNA below sub-nanomolar level and is found interference-free by abundant coexistence of non-GM DNA. This bioanalytical system, furthermore, sophisticates in array fashion operating multiplex screening against variable GM events. Such a biomolecular computational assay and biosensor holds great promise for rapid, cost-effective, and high-fidelity screening of GMO. Copyright © 2013 Elsevier B.V. All rights reserved.
Do genetically modified crops affect animal reproduction? A review of the ongoing debate.
Zhang, W; Shi, F
2011-05-01
In the past few years, genetically modified (GM) crops aimed at producing food/feed that became part of the regular agriculture in many areas of the world. However, we are uncertain whether GM food and feed can exert potential adverse effects on humans or animals. Of importance, the reproductive toxicology of GM crops has been studied using a number of methods, and by feeding GM crops to a number species of animals to ensure the safety assessment of GM food and feed. It appears that there are no adverse effects of GM crops on many species of animals in acute and short-term feeding studies, but serious debates of effects of long-term and multigenerational feeding studies remain. The aims of this review are to focus on the latest (last 3 to 4 years) findings and debates on reproduction of male and female animals after feeding daily diets containing the GM crops, and to present the possible mechanism(s) to explain their influences.
Genetically Modified Crops and Food Security
Qaim, Matin; Kouser, Shahzad
2013-01-01
The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers’ income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the first ex post analysis of food security impacts of GM crops at the micro level. We use comprehensive panel data collected over several years from farm households in India, where insect-resistant GM cotton has been widely adopted. Controlling for other factors, the adoption of GM cotton has significantly improved calorie consumption and dietary quality, resulting from increased family incomes. This technology has reduced food insecurity by 15–20% among cotton-producing households. GM crops alone will not solve the hunger problem, but they can be an important component in a broader food security strategy. PMID:23755155
Genetically modified crops and food security.
Qaim, Matin; Kouser, Shahzad
2013-01-01
The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers' income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the first ex post analysis of food security impacts of GM crops at the micro level. We use comprehensive panel data collected over several years from farm households in India, where insect-resistant GM cotton has been widely adopted. Controlling for other factors, the adoption of GM cotton has significantly improved calorie consumption and dietary quality, resulting from increased family incomes. This technology has reduced food insecurity by 15-20% among cotton-producing households. GM crops alone will not solve the hunger problem, but they can be an important component in a broader food security strategy.
Willems, Sander; Fraiture, Marie-Alice; Deforce, Dieter; De Keersmaecker, Sigrid C J; De Loose, Marc; Ruttink, Tom; Herman, Philippe; Van Nieuwerburgh, Filip; Roosens, Nancy
2016-02-01
Because the number and diversity of genetically modified (GM) crops has significantly increased, their analysis based on real-time PCR (qPCR) methods is becoming increasingly complex and laborious. While several pioneers already investigated Next Generation Sequencing (NGS) as an alternative to qPCR, its practical use has not been assessed for routine analysis. In this study a statistical framework was developed to predict the number of NGS reads needed to detect transgene sequences, to prove their integration into the host genome and to identify the specific transgene event in a sample with known composition. This framework was validated by applying it to experimental data from food matrices composed of pure GM rice, processed GM rice (noodles) or a 10% GM/non-GM rice mixture, revealing some influential factors. Finally, feasibility of NGS for routine analysis of GM crops was investigated by applying the framework to samples commonly encountered in routine analysis of GM crops. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kwiatek, K; Mazur, M; Sieradzki, Z
2008-01-01
Progress, which is brought by new advances in modern molecular biology, allowed interference in the genome of live organisms and gene manipulation. Introducing new genes to the recipient organism enables to give them new features, absent before. Continuous increase in the area of the biotech crops triggers continuous discussion about safety of genetically modified (GM) crops, including food and feed derived from them. Important issue connected with cultivation of genetically modified crops is a horizontal gene transfer and a bacterial antibiotic resistance. Discussion about safety of GM crops concerns also food allergies caused by eating genetically modified food. The problem of genetic modifications of GM crops used for livestock feeding is widely discussed, taking into account Polish feed law.
Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States.
Scott, Sydney E; Inbar, Yoel; Rozin, Paul
2016-05-01
Public opposition to genetic modification (GM) technology in the food domain is widespread (Frewer et al., 2013). In a survey of U.S. residents representative of the population on gender, age, and income, 64% opposed GM, and 71% of GM opponents (45% of the entire sample) were "absolutely" opposed-that is, they agreed that GM should be prohibited no matter the risks and benefits. "Absolutist" opponents were more disgust sensitive in general and more disgusted by the consumption of genetically modified food than were non-absolutist opponents or supporters. Furthermore, disgust predicted support for legal restrictions on genetically modified foods, even after controlling for explicit risk-benefit assessments. This research suggests that many opponents are evidence insensitive and will not be influenced by arguments about risks and benefits. © The Author(s) 2016.
Review: Genetically modified plants for the promotion of human health.
Yonekura-Sakakibara, Keiko; Saito, Kazuki
2006-12-01
Plants are attractive biological resources because of their ability to produce a huge variety of chemical compounds, and the familiarity of production in even the most rural settings. Genetic engineering gives plants additional characteristics and value for cultivation and post-harvest. Genetically modified (GM) plants of the "first generation" were conferred with traits beneficial to producers, whereas GM plants in subsequent "generations" are intended to provide beneficial traits for consumers. Golden Rice is a promising example of a GM plant in the second generation, and has overcome a number of obstacles for practical use. Furthermore, consumer-acceptable plants with health-promoting properties that are genetically modified using native genes are being developed. The emerging technology of metabolomics will also support the commercial realization of GM plants by providing comprehensive analyzes of plant biochemical components.
Rayan, Ahmed M; Abbott, Louise C
2015-06-01
Compositional analysis of genetically modified (GM) crops continues to be an important part of the overall evaluation in the safety assessment for these materials. The present study was designed to detect the genetic modifications and investigate the compositional analysis of GM corn containing traits of multiple genes (NK603, MON88017×MON810 and MON89034×MON88017) compared with non-GM corn. Values for most biochemical components assessed for the GM corn samples were similar to those of the non-GM control or were within the literature range. Significant increases were observed in protein, fat, fiber and fatty acids of the GM corn samples. The observed increases may be due to the synergistic effect of new traits introduced into corn varieties. Furthermore, SDS-PAGE analysis showed high similarity among the protein fractions of the investigated corn samples. These data indicate that GM corn samples were compositionally equivalent to, and as nutritious as, non-GM corn. Copyright © 2014 Elsevier Ltd. All rights reserved.
Balsamo, Geisi M; Valentim-Neto, Pedro A; Mello, Carla S; Arisi, Ana C M
2015-12-09
The genetically modified (GM) common bean event Embrapa 5.1 was commercially approved in Brazil in 2011; it is resistant to golden mosaic virus infection. In the present work grain proteome profiles of two Embrapa 5.1 common bean varieties, Pérola and Pontal, and their non-GM counterparts were compared by two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS). Analyses detected 23 spots differentially accumulated between GM Pérola and non-GM Pérola and 21 spots between GM Pontal and non-GM Pontal, although they were not the same proteins in Pérola and Pontal varieties, indicating that the variability observed may not be due to the genetic transformation. Among them, eight proteins were identified in Pérola varieties, and four proteins were identified in Pontal. Moreover, we applied principal component analysis (PCA) on 2-DE data, and variation between varieties was explained in the first two principal components. This work provides a first 2-DE-MS/MS-based analysis of Embrapa 5.1 common bean grains.
Genetically modified crops and small-scale farmers: main opportunities and challenges.
Azadi, Hossein; Samiee, Atry; Mahmoudi, Hossein; Jouzi, Zeynab; Khachak, Parisa Rafiaani; De Maeyer, Philippe; Witlox, Frank
2016-01-01
Although some important features of genetically modified (GM) crops such as insect resistance, herbicide tolerance, and drought tolerance might seem to be beneficial for small-scale farmers, the adoption of GM technology by smallholders is still slight. Identifying pros and cons of using this technology is important to understand the impacts of GM crops on these farmers. This article reviews the main opportunities and challenges of GM crops for small-scale farmers in developing countries. The most significant advantages of GM crops include being independent to farm size, environment protection, improvement of occupational health issues, and the potential of bio-fortified crops to reduce malnutrition. Challenges faced by small-scale farmers for adoption of GM crops comprise availability and accessibility of GM crop seeds, seed dissemination and price, and the lack of adequate information. In addition, R&D and production costs in using GM crops make it difficult for these farmers to adopt the use of these crops. Moreover, intellectual property right regulations may deprive resource poor farmers from the advantages of GM technology. Finally, concerns on socio-economic and environment safety issues are also addressed in this paper.
Yang, Litao; Quan, Sheng; Zhang, Dabing
2017-01-01
Endogenous reference genes (ERG) and their derivate analytical methods are standard requirements for analysis of genetically modified organisms (GMOs). Development and validation of suitable ERGs is the primary step for establishing assays that monitoring the genetically modified (GM) contents in food/feed samples. Herein, we give a review of the ERGs currently used for GM wheat analysis, such as ACC1, PKABA1, ALMT1, and Waxy-D1, as well as their performances in GM wheat analysis. Also, we discussed one model for developing and validating one ideal RG for one plant species based on our previous research work.
Dust exposure in workers from grain storage facilities in Costa Rica.
Rodríguez-Zamora, María G; Medina-Escobar, Lourdes; Mora, Glend; Zock, Jan-Paul; van Wendel de Joode, Berna; Mora, Ana M
2017-08-01
About 12 million workers are involved in the production of basic grains in Central America. However, few studies in the region have examined the occupational factors associated with inhalable dust exposure. (i) To assess the exposure to inhalable dust in workers from rice, maize, and wheat storage facilities in Costa Rica; (ii) to examine the occupational factors associated with this exposure; and (iii) to measure concentrations of respirable and thoracic particles in different areas of the storage facilities. We measured inhalable (<100μm) dust concentrations in 176 personal samples collected from 136 workers of eight grain storage facilities in Costa Rica. We also measured respirable (<4μm) and thoracic (<10μm) dust particles in several areas of the storage facilities. Geometric mean (GM) and geometric standard deviation (GSD) inhalable dust concentrations were 2.0mg/m 3 and 7.8 (range=<0.2-275.4mg/m 3 ). Personal inhalable dust concentrations were associated with job category [GM for category/GM for administrative staff and other workers (95% CI)=4.4 (2.6, 7.2) for packing; 20.4 (12.3, 34.7) for dehulling; 109.6 (50.1, 234.4) for unloading in flat bed sheds; 24.0 (14.5, 39.8) for unloading in pits; and 31.6 (18.6, 52.5) for drying], and cleaning task [15.8 (95% CI: 10.0, 26.3) in workers who cleaned in addition to their regular tasks]. Higher area concentrations of thoracic dust particles were found in wheat (GM and GSD=4.3mg/m 3 and 4.5) and maize (3.0mg/m 3 and 3.9) storage facilities, and in grain drying (2.3mg/m 3 and 3.1) and unloading (1.5mg/m 3 and 4.8) areas. Operators of grain storage facilities showed elevated inhalable dust concentrations, mostly above international exposure limits. Better engineering and administrative controls are needed. Copyright © 2017 Elsevier GmbH. All rights reserved.
An Asian perspective on GMO and biotechnology issues.
Teng, Paul P S
2008-01-01
Of the 102 million hectares that made up the global area of biotech crops in 2006, less than 8% (7.6 million ha) were in Asia. Three biotech crops are currently planted in significant areas in four Asian countries with government regulatory approval; namely, cotton, corn (maize), and canola. However, the amount of GM crop material imported into the Asian region for processing into food and animal feed is very substantial, and almost every country imports GM food. The issues which concern Asian scientists, regulators, and the lay public resemble those of other regions - biosafety, food safety, ethics and social justice, competitiveness, and the "EU" trade question. Most Asian countries now have regulatory systems for approving the commercialization of GM crops, and for approving food safety of GM crops. In Asia, because of the varied cultures, issues concerning the use of genes derived from animals arouse much emotion for religious and diet choice reasons. Because many Asian producers and farmers are small-scale, there is also concern about technology dependency and to whom the benefits accrue. All consumers surveyed have expressed concern about potential allergenic and long-term toxic effects, neither of which is grounded on scientific facts. Because of Asia's growing demand for high volumes of quality food, it is likely that GM crops will become an increasing feature of our diet.
Genetically modified crops: detection strategies and biosafety issues.
Kamle, Suchitra; Ali, Sher
2013-06-15
Genetically modified (GM) crops are increasingly gaining acceptance but concurrently consumers' concerns are also increasing. The introduction of Bacillus thuringiensis (Bt) genes into the plants has raised issues related to its risk assessment and biosafety. The International Regulations and the Codex guidelines regulate the biosafety requirements of the GM crops. In addition, these bodies synergize and harmonize the ethical issues related to the release and use of GM products. The labeling of GM crops and their products are mandatory if the genetically modified organism (GMO) content exceeds the levels of a recommended threshold. The new and upcoming GM crops carrying multiple stacked traits likely to be commercialized soon warrant sensitive detection methods both at the DNA and protein levels. Therefore, traceability of the transgene and its protein expression in GM crops is an important issue that needs to be addressed on a priority basis. The advancement in the area of molecular biology has made available several bioanalytical options for the detection of GM crops based on DNA and protein markers. Since the insertion of a gene into the host genome may even cause copy number variation, this may be uncovered using real time PCR. Besides, assessing the exact number of mRNA transcripts of a gene, correlation between the template activity and expressed protein may be established. Here, we present an overview on the production of GM crops, their acceptabilities, detection strategies, biosafety issues and potential impact on society. Further, overall future prospects are also highlighted. Copyright © 2013 Elsevier B.V. All rights reserved.
Duan, Manli; Gu, Jie; Wang, Xiaojuan; Li, Yang; Zhang, Sheqi; Yin, Yanan; Zhang, Ranran
2018-01-01
Genetically modified (GM) cotton production generates a large yield of stalks and their disposal is difficult. In order to study the feasibility of using GM cotton stalks for composting and the changes that occur in antibiotic resistance genes (ARGs) during composting, we supplemented pig manure with GM or non-GM cotton stalks during composting and we compared their effects on the absolute abundances (AA) of intI1, intI2, and ARGs under the two treatments. The compost was mature after processing based on the germination index and C/N ratio. After composting, the AAs of ARGs, intI1, and intI2 were reduced by 41.7% and 45.0% in the non-GM and GM treatments, respectively. The ARG profiles were affected significantly by temperature and ammonia nitrogen. In addition, excluding tetC, GM cotton stalks had no significant effects on ARGs, intI1, and intI2 compared with the non-GM treatment (p < 0.05). Thus, similar to non-GM cotton stalks, GM cotton stalks can be used for aerobic composting with livestock manure, and the AAs of ARGs can be reduced. Furthermore, the results of this study provide a theoretical basis for the harmless utilization of GM cotton stalks. Copyright © 2017 Elsevier Inc. All rights reserved.
Maize Seed Chitinase is Modified by a Protein Secreted by Bipolaris zeicola
USDA-ARS?s Scientific Manuscript database
Plants contain defense mechanisms that prevent infection by most fungi. Some specialized fungi have the ability to overcome plant defenses. The Zea mays (maize) seed chitinase ChitA has been previously reported as an antifungal protein. Here we report that ChitA is converted to a modified form by...
Mano, Junichi; Shigemitsu, Natsuki; Futo, Satoshi; Akiyama, Hiroshi; Teshima, Reiko; Hino, Akihiro; Furui, Satoshi; Kitta, Kazumi
2009-01-14
We developed a novel type of real-time polymerase chain reaction (PCR) array with TaqMan chemistry as a platform for the comprehensive and semiquantitative detection of genetically modified (GM) crops. Thirty primer-probe sets for the specific detection of GM lines, recombinant DNA (r-DNA) segments, endogenous reference genes, and donor organisms were synthesized, and a 96-well PCR plate was prepared with a different primer-probe in each well as the real-time PCR array. The specificity and sensitivity of the array were evaluated. A comparative analysis with the data and publicly available information on GM crops approved in Japan allowed us to assume the possibility of unapproved GM crop contamination. Furthermore, we designed a Microsoft Excel spreadsheet application, Unapproved GMO Checker version 2.01, which helps process all the data of real-time PCR arrays for the easy assumption of unapproved GM crop contamination. The spreadsheet is available free of charge at http://cse.naro.affrc.go.jp/jmano/index.html .
Lu, Mei; Jin, Yuan; Ballmer-Weber, Barbara; Goodman, Richard E
2018-02-01
Prior to commercialization, genetically modified (GM) crops are evaluated to determine the allergenicity of the newly expressed protein. Some regulators require an evaluation of endogenous allergens in commonly allergenic crops including soybean to determine if genetic transformation increased endogenous allergen concentrations, even asking for IgE testing using sera from individual sensitized subjects. Little is known about the variability of the expression of endogenous allergens among non-GM varieties or under different environmental conditions. We tested IgE binding to endogenous allergenic proteins in an experimental non-commercial GM line, a non-GM near-isoline control, and five non-GM commercial soybean lines replicated at three geographically separated locations. One-dimensional (1D) and two-dimensional (2D) immunoblotting and ELISA were performed using serum or plasma from eleven soybean allergic patients. The results of immunoblots and ELISA showed no significant differences in IgE binding between the GM line and its non-GM near-isoline control. However, some distinct differences in IgE binding patterns were observed among the non-GM commercial soybean lines and between different locations, highlighting the inherent variability in endogenous allergenic proteins. Understanding the potential variability in the levels of endogenous allergens is necessary to establish a standard of acceptance for GM soybeans compared to non-GM soybean events and lines. Copyright © 2018. Published by Elsevier Ltd.
Ojima, Toshiyasu; Iwahashi, Makoto; Nakamura, Masaki; Matsuda, Kenji; Nakamori, Mikihito; Ueda, Kentaro; Naka, Teiji; Katsuda, Masahiro; Miyazawa, Motoki; Yamaue, Hiroki
2007-10-01
Granulocyte macrophage colony-stimulating factor (GM-CSF) is a key cytokine for the generation and stimulation of dendritic cells (DCs), and it may also play a pivotal role in promoting the survival of DCs. In this study, the feasibility of creating a cancer vaccine using DCs adenovirally transduced with the carcinoembryonic antigen (CEA) gene and the GM-CSF gene was examined. In addition, the effect of the co-transduction of GM-CSF gene on the lifespan of these genetically modified DCs was determined. A cytotoxic assay using peripheral blood mononuclear cell (PBMC)-derived cytotoxic T lymphocytes (CTLs) was performed in a 4-h 51Cr release assay. The apoptosis of DCs was examined by TdT-mediated dUTP-FITC nick end labeling (TUNEL) assay. CEA-specific CTLs were generated from PBMCs stimulated with genetically modified DCs expressing CEA. The cytotoxicity of these CTLs was augmented by co-transduction of DCs with the GM-CSF gene. Co-transduction of the GM-CSF gene into DCs inhibited apoptosis of these DCs themselves via up-regulation of Bcl-x(L) expression, leading to the extension of the lifespan of these DCs. Furthermore, the transduction of the GM-CSF gene into DCs also suppressed the incidence of apoptosis of DCs induced by transforming growth factor-beta1 (TGFbeta-1). Immunotherapy using these genetically modified DCs may therefore be useful with several advantages as follows: i) adenoviral toxicity to DCs can be reduced; ii) the lifespan of vaccinated DCs can be prolonged; and iii) GM-CSF may protect DCs from apoptosis induced by tumor-derived TGFbeta-1 in the regional lymph nodes.
Petrick, Jay S; Frierdich, Gregory E; Carleton, Stephanie M; Kessenich, Colton R; Silvanovich, Andre; Zhang, Yuanji; Koch, Michael S
2016-11-01
Genetically modified (GM) crops have been developed and commercialized that utilize double stranded RNAs (dsRNA) to suppress a target gene(s), producing virus resistance, nutritional and quality traits. MON 87411 is a GM maize variety that leverages dsRNAs to selectively control corn rootworm through production of a 240 base pair (bp) dsRNA fragment targeting for suppression the western corn rootworm (Diabrotica virgifera virgifera) Snf7 gene (DvSnf7). A bioinformatics assessment found that endogenous corn small RNAs matched ∼450 to 2300 unique RNA transcripts that likely code for proteins in rat, mouse, and human, demonstrating safe dsRNA consumption by mammals. Mice were administered DvSnf7 RNA (968 nucleotides, including the 240 bp DvSnf7 dsRNA) at 1, 10, or 100 mg/kg by oral gavage in a 28-day repeat dose toxicity study. No treatment-related effects were observed in body weights, food consumption, clinical observations, clinical chemistry, hematology, gross pathology, or histopathology endpoints. Therefore, the No Observed Adverse Effect Level (NOAEL) for DvSnf7 RNA was 100 mg/kg, the highest dose tested. These results demonstrate that dsRNA for insect control does not produce adverse health effects in mammals at oral doses millions to billions of times higher than anticipated human exposures and therefore poses negligible risk to mammals. Copyright © 2016 Monsanto Company. Published by Elsevier Inc. All rights reserved.
Determinants of public attitudes to genetically modified salmon.
Amin, Latifah; Azad, Md Abul Kalam; Gausmian, Mohd Hanafy; Zulkifli, Faizah
2014-01-01
The objective of this paper is to assess the attitude of Malaysian stakeholders to genetically modified (GM) salmon and to identify the factors that influence their acceptance of GM salmon using a structural equation model. A survey was carried out on 434 representatives from various stakeholder groups in the Klang Valley region of Malaysia. Public attitude towards GM salmon was measured using self-developed questionnaires with seven-point Likert scales. The findings of this study have confirmed that public attitudes towards GM salmon is a complex issue and should be seen as a multi-faceted process. The most important direct predictors for the encouragement of GM salmon are the specific application-linked perceptions about religious acceptability of GM salmon followed by perceived risks and benefits, familiarity, and general promise of modern biotechnology. Encouragement of GM salmon also involves the interplay among other factors such as general concerns of biotechnology, threatening the natural order of things, the need for labeling, the need for patenting, confidence in regulation, and societal values. The research findings can serve as a database that will be useful for understanding the social construct of public attitude towards GM foods in a developing country.
Determinants of Public Attitudes to Genetically Modified Salmon
Amin, Latifah; Azad, Md. Abul Kalam; Gausmian, Mohd Hanafy; Zulkifli, Faizah
2014-01-01
The objective of this paper is to assess the attitude of Malaysian stakeholders to genetically modified (GM) salmon and to identify the factors that influence their acceptance of GM salmon using a structural equation model. A survey was carried out on 434 representatives from various stakeholder groups in the Klang Valley region of Malaysia. Public attitude towards GM salmon was measured using self-developed questionnaires with seven-point Likert scales. The findings of this study have confirmed that public attitudes towards GM salmon is a complex issue and should be seen as a multi-faceted process. The most important direct predictors for the encouragement of GM salmon are the specific application-linked perceptions about religious acceptability of GM salmon followed by perceived risks and benefits, familiarity, and general promise of modern biotechnology. Encouragement of GM salmon also involves the interplay among other factors such as general concerns of biotechnology, threatening the natural order of things, the need for labeling, the need for patenting, confidence in regulation, and societal values. The research findings can serve as a database that will be useful for understanding the social construct of public attitude towards GM foods in a developing country. PMID:24489695
Wang, Yong; Lan, Qingkuo; Zhao, Xin; Xu, Wentao; Li, Feiwu; Wang, Qinying; Chen, Rui
2016-01-01
MicroRNAs (miRNAs) have been widely demonstrated to play fundamental roles in gene regulation in most eukaryotes. To date, there has been no study describing the miRNA composition in genetically modified organisms (GMOs). In this study, small RNAs from dry seeds of two GM soybean lines and their parental cultivars were investigated using deep sequencing technology and bioinformatic approaches. As a result, several differentially expressed gma-miRNAs were found between the GM and non-GM soybeans. Meanwhile, more differentially expressed gma-miRNAs were identified between distantly relatednon-GM soybeans, indicating that the miRNA components of soybean seeds varied among different soybean lines, including the GM and non-GM soybeans, and the extent of difference might be related to their genetic relationship. Additionally, fourteen novel gma-miRNA candidates were predicted in soybean seeds including a potential bidirectionally transcribed miRNA family with two genomic loci (gma-miR-N1). Our findings firstly provided useful data for miRNA composition in edible GM crops and also provided valuable information for soybean miRNA research.
Transgene flow: Facts, speculations and possible countermeasures
Ryffel, Gerhart U
2014-01-01
Convincing evidence has accumulated that unintended transgene escape occurs in oilseed rape, maize, cotton and creeping bentgrass. The escaped transgenes are found in variant cultivars, in wild type plants as well as in hybrids of sexually compatible species. The fact that in some cases stacked events are present that have not been planted commercially, implies unintended recombination of transgenic traits. As the consequences of this continuous transgene escape for the ecosystem cannot be reliably predicted, I propose to use more sophisticated approaches of gene technology in future. If possible GM plants should be constructed using either site-directed mutagenesis or cisgenic strategies to avoid the problem of transgene escape. In cases where a transgenic trait is needed, efficient containment should be the standard approach. Various strategies available or in development are discussed. Such a cautious approach in developing novel types of GM crops will enhance the sustainable potential of GM crops and thus increase the public trust in green gene technology. PMID:25523171
Examining consumer behavior toward genetically modified (GM) food in Britain.
Spence, Alexa; Townsend, Ellen
2006-06-01
This study examined behavior toward genetically modified (GM) food in a British community-based sample. We used an equivalent gain task in which participants actually received the options they chose to encourage truthful responding. In conjunction with this, theory of planned behavior (TPB) components were evaluated so as to examine the relative importance of behavioral influences in this domain. Here, the TPB was extended to include additional components to measure self-identity, moral norms, and emotional involvement. Results indicated that the monetary amounts participants accepted in preference to GM food were significantly lower than those accepted in preference to non-GM food. However, the vast majority of participants were indifferent between GM and non-GM food options. All TPB components significantly predicted behavioral intentions to try GM food, with attitudes toward GM being the strongest predictor. Self-identity and emotional involvement were also found to be significant predictors of behavioral intentions but moral norms were not. In addition, behavioral intentions significantly predicted behavior; however, PBC did not. An additional measure of participants' propensity to respond in a socially desirable manner indicated that our results were not influenced by self-presentation issues, giving confidence to our findings. Overall, it appears that the majority of participants (74.5%) would purchase GM food at some price.
Watanabe, Takahiro; Sekino, Ayako; Shiramasa, Yuko; Matsuda, Rieko; Maitani, Tamio
2008-08-01
It is very important to examine the effect of non-genetically modified (non-GM) soy varieties, which constitute the matrix of the testing sample used to quantify GM soy (RRS), on the measured value of RRS by quantitative PCR methods. Therefore, we quantified the amount of RRS in powder-mixed samples containing 1 or 5% RRS prepared by using 10 different varieties of non-GM soy as the matrix. The results revealed that the measured values were not in agreement with the powder-mixing levels and that the extent of the difference depended on the variety of non-GM soy used as the matrix. The yields of DNA extracted differed among the soy varieties. On the other hand, analysis of DNA-mixed samples, that were prepared with the DNAs extracted from RRS and non-GM soy varieties, showed that the measured values of RRS were in agreement with the DNA-mixing levels. These results strongly suggest that the proportions of DNA derived from RRS and non-GM soy were not consistent with the powder-mixing ratio in the case of some non-GM soy varieties used as a matrix, resulting in the discrepancy between the measured values and the powder-mixing levels.
Friedman, Adam D; Kim, Dongwook; Liu, Rihe
2015-01-01
When developed as targeting ligands for the in vivo delivery of biomaterials to biological systems, RNA aptamers immediately face numerous obstacles, in particular nuclease degradation and post-selection 2' modification. This study aims to develop a novel class of highly stable, 2'-fully modified RNA aptamers that are ideal for the targeted delivery of biomaterials. We demonstrated the facile transcription of a fGmH (2'-F-dG, 2'-OMe-dA/dC/dU) RNA library with unexpected hydrophobicity, the direct selection of aptamers from a fGmH RNA library that bind Staphylococcus aureus Protein A (SpA) as a model target, and the superior nuclease and serum stability of these aptamers compared to 2'-partially modified RNA variants. Characterizations of fGmH RNA aptamers binding to purified SpA and to endogenous SpA present on the surface of S. aureus cells demonstrate fGmH RNA aptamer selectivity and stability. Significantly, fGmH RNA aptamers were able to functionalize, stabilize, and specifically deliver aggregation-prone silver nanoparticles (AgNPs) to S. aureus with SpA-dependent antimicrobial effects. This study describes a novel aptamer class with considerable potential to improve the in vivo applicability of nucleic acid-based affinity molecules to biomaterials.
Chen, Xiaoyun; Wang, Xiaofu; Jin, Nuo; Zhou, Yu; Huang, Sainan; Miao, Qingmei; Zhu, Qing; Xu, Junfeng
2012-11-07
Genetically modified (GM) rice KMD1, TT51-1, and KF6 are three of the most well known transgenic Bt rice lines in China. A rapid and sensitive molecular assay for risk assessment of GM rice is needed. Polymerase chain reaction (PCR), currently the most common method for detecting genetically modified organisms, requires temperature cycling and relatively complex procedures. Here we developed a visual and rapid loop-mediated isothermal amplification (LAMP) method to amplify three GM rice event-specific junction sequences. Target DNA was amplified and visualized by two indicators (SYBR green or hydroxy naphthol blue [HNB]) within 60 min at an isothermal temperature of 63 °C. Different kinds of plants were selected to ensure the specificity of detection and the results of the non-target samples were negative, indicating that the primer sets for the three GM rice varieties had good levels of specificity. The sensitivity of LAMP, with detection limits at low concentration levels (0.01%−0.005% GM), was 10- to 100-fold greater than that of conventional PCR. Additionally, the LAMP assay coupled with an indicator (SYBR green or HNB) facilitated analysis. These findings revealed that the rapid detection method was suitable as a simple field-based test to determine the status of GM crops.
Attitudes of agricultural scientists in Indonesia towards genetically modified foods.
Februhartanty, Judhiastuty; Widyastuti, Tri Nisa; Iswarawanti, Dwi Nastiti
2007-01-01
Conflicting arguments and partial truths on genetically modified (GM) foods have left confusion. Although studies of consumer acceptance of GM foods are numerous, the study of scientists is limited. Therefore, the main objective of this study was to assess the attitudes of scientists towards GM foods. The study was a cross sectional study. A total of 400 scientists (involved in at least one of teaching, research and consultancy) in the Bogor Agricultural Institute, Indonesia were selected randomly from its faculties of agriculture, veterinary, fishery, animal husbandry, forestry, agricultural technology, mathematics and science, and the post graduate department. Data collection was done by face-to-face interview using a structured questionnaire and self-administered questionnaire. The result showed that the majority (72.8%) of the respondents were favorably disposed towards GM foods, 14.8% were neutral, and only 12.5% were against them. The majority (78.3%) stated that they would try GM food if offered. Most (71%) reported that they were aware of the term "GM foods". Only half of the respondents felt that they had a basic understanding about GM foods. However, based on a knowledge test, 69.8% had a good knowledge score. Nearly 50% indicated that they were more exposed to news which supported GM foods. Over 90% said that there should be some form of labeling to distinguish food containing GM ingredients from non-GM foods. Attitudes were significantly associated with willingness to try GM foods if offered, restrictions on GM foods, and exposure to media reports about the pros and cons of GM foods.
Effect of probiotic-fermented, genetically modified soy milk on hypercholesterolemia in hamsters.
Tsai, Tsung-Yu; Chen, Li-Ying; Pan, Tzu-Ming
2014-02-01
The rapid progress of biotechnology and molecular biology has led to genetically modified (GM) crops becoming a part of agricultural production. There are concerns that the issues of the functional ingredients in GM products have not been addressed, such as the bioactivities of soy proteins and isoflavones. This study aimed to investigate the effects of probiotic-fermented GM soy milk on hypercholesterolemia, and atherosclerotic risks in hamsters. One hundred and twelve male Golden Syrian hamsters (Mesocricetus auratus) were randomly assigned into 14 groups of 8 animals each. Normal- and high-cholesterol experimental diets were supplemented with GM or non-GM soy milk with or without probiotic-fermentation for 8 weeks. Serum and fecal lipid levels were measured. Moreover, aortic plaque in artery were stained, and thiobarbituric acid reactive substance content, super oxide dismutase activity and caralase activity were determined. GM or non-GM soy milk with or without probiotic-fermentation significantly decreased (p < 0.05) serum TC levels, compared with a high-cholesterol diet group. TC levels in hamsters fed GM soy milk were not significantly different from TC levels in the non-GM soy milk group (p > 0.05). GM soy milk groups can reduce risk of developing atherosclerosis through lowered oxidative stress and reduced atherosclerotic plaque formation in the aorta, and are thus at least equivalent to non-GM soy milk. GM soy milk with or without probiotic-fermentation can improve hypercholesterolemia and reduce the risk of atherosclerosis, and is considered substantially equivalent to non-GM soy milk in terms of these bioactive functions. Copyright © 2012. Published by Elsevier B.V.
Labeling of genetically modified food: closer to reality in the United States?
Wohlers, Anton E
2013-01-01
Within the broader context of several related biotech developments, including the proliferation of GM food in American grocery stories, the recent decision by Whole Foods Market, Inc. to require the labeling of all genetically modified (GM) organism products sold in its stores by 2018, and the development of GM animals for consumption, this essay asks whether the United States is inching towards a policy of mandatory GM food labeling. The analysis highlights aspects of the biotechnology policy debate in the United States and European Union, and traces public opinion as well as grassroots and legislative efforts aimed at GM food labeling. Findings show that activities at the federal level do not suggest any major regulatory changes regarding labeling in the near future; however, a growing number of individual states are considering GM food labeling legislation and political momentum in favor of labeling has picked up in recent years. Voluntary labeling by food companies may also become increasingly common.
Genetically Modified Foods: A Brief Overview of the Risk Assessment Process.
Finkelstein, Paige E
2016-02-18
Billions of people worldwide are unable to meet their daily micro nutritional needs. Genetically modified (GM) foods, while initially developed to tolerate herbicides and resist disease and insects, have the potential to help alleviate this issue that is currently posing a serious public health concern. However, there is a negative public perception surrounding GM foods, calling for more research regarding the risks that GM foods could pose to the public, specifically on the topics of allergenicity and gene transfer. The risk assessments of GM foods should be performed on a case-by-case basis, by a process outlined by the WHO. The goal of determining food safety is to obtain reasonable certainty that under normal levels of consumption, there will be no harm to people. Current research has shown that GM foods do not cause increased allergenicity or have a meaningful risk of gene transfer to people. GM foods should become publicly accepted products that can bring significant benefit to people at risk of under nutrition.
Gwira Baumblatt, Jane A; Carpenter, L Rand; Wiedeman, Caleb; Dunn, John R; Schaffner, William; Jones, Timothy F
2017-03-01
Sales of organic foods are increasing due to public demand, while genetically modified (GM) and irradiated foods are often viewed with suspicion. The aim of this research was to examine consumer attitudes toward organic, GM and irradiated foods to direct educational efforts regarding their consumption Methods: A telephone survey of 1838 residents in Tennessee, USA was conducted regarding organic, GM, and irradiated foods. Approximately half of respondents (50.4%) purchased organic food during the previous 6 months ('consumers'). The most common beliefs about organic foods by consumers were higher cost (92%), and fewer pesticides (89%). Consumers were more likely than non-consumers to believe organic food tasted better (prevalence ratio 3.6; 95% confidence interval 3.02-4.23). A minority of respondents were familiar with GM foods (33%) and irradiated foods (22%). Organic food consumption is common in Tennessee, but knowledge about GM and irradiated foods is less common. Consumer health education should emphasize the benefits of these food options, and the safety of GM and irradiated foods.
Kikulwe, Enoch M; Wesseler, Justus; Falck-Zepeda, Jose
2011-10-01
Genetically modified (GM) crops and food are still controversial. This paper analyzes consumers' perceptions and institutional awareness and trust toward GM banana regulation in Uganda. Results are based on a study conducted among 421 banana-consuming households between July and August 2007. Results show a high willingness to purchase GM banana among consumers. An explanatory factor analysis is conducted to identify the perceptions toward genetic modification. The identified factors are used in a cluster analysis that grouped consumers into segments of GM skepticism, government trust, health safety concern, and food and environmental safety concern. Socioeconomic characteristics differed significantly across segments. Consumer characteristics and perception factors influence consumers' willingness to purchase GM banana. The institutional awareness and trust varied significantly across segments as well. The findings would be essential to policy makers when designing risk-communication strategies targeting different consumer segments to ensure proper discussion and addressing potential concerns about GM technology. Copyright © 2011 Elsevier Ltd. All rights reserved.
Clarke, Joseph D.; Alexander, Danny C.; Ward, Dennis P.; Ryals, John A.; Mitchell, Matthew W.; Wulff, Jacob E.; Guo, Lining
2013-01-01
Genetically modified (GM) crops currently constitute a significant and growing part of agriculture. An important aspect of GM crop adoption is to demonstrate safety and equivalence with respect to conventional crops. Untargeted metabolomics has the ability to profile diverse classes of metabolites and thus could be an adjunct for GM crop substantial equivalence assessment. To account for environmental effects and introgression of GM traits into diverse genetic backgrounds, we propose that the assessment for GM crop metabolic composition should be understood within the context of the natural variation for the crop. Using a non-targeted metabolomics platform, we profiled 169 metabolites and established their dynamic ranges from the seeds of 49 conventional soybean lines representing the current commercial genetic diversity. We further demonstrated that the metabolome of a GM line had no significant deviation from natural variation within the soybean metabolome, with the exception of changes in the targeted engineered pathway. PMID:24170158
"It just goes against the grain." Public understandings of genetically modified (GM) food in the UK.
Shaw, Alison
2002-07-01
This paper reports on one aspect of qualitative research on public understandings of food risks, focusing on lay understandings of genetically modified (GM) food in the UK context. A range of theoretical, conceptual, and empirical literature on food, risk, and the public understanding of science are reviewed. The fieldwork methods are outlined and empirical data from a range of lay groups are presented. Major themes include: varying "technical" knowledge of science, the relationship between knowledge and acceptance of genetic modification, the uncertainty of scientific knowledge, genetic modification as inappropriate scientific intervention in "nature", the acceptability of animal and human applications of genetic modification, the appropriate boundaries of scientific innovation, the necessity for GM foods, the uncertainty of risks in GM food, fatalism about avoiding risks, and trust in "experts" to manage potential risks in GM food. Key discussion points relating to a sociological understanding of public attitudes to GM food are raised and some policy implications are highlighted.
Biosafety management and commercial use of genetically modified crops in China.
Li, Yunhe; Peng, Yufa; Hallerman, Eric M; Wu, Kongming
2014-04-01
As a developing country with relatively limited arable land, China is making great efforts for development and use of genetically modified (GM) crops to boost agricultural productivity. Many GM crop varieties have been developed in China in recent years; in particular, China is playing a leading role in development of insect-resistant GM rice lines. To ensure the safe use of GM crops, biosafety risk assessments are required as an important part of the regulatory oversight of such products. With over 20 years of nationwide promotion of agricultural biotechnology, a relatively well-developed regulatory system for risk assessment and management of GM plants has been developed that establishes a firm basis for safe use of GM crops. So far, a total of seven GM crops involving ten events have been approved for commercial planting, and 5 GM crops with a total of 37 events have been approved for import as processing material in China. However, currently only insect-resistant Bt cotton and disease-resistant papaya have been commercially planted on a large scale. The planting of Bt cotton and disease-resistant papaya have provided efficient protection against cotton bollworms and Papaya ringspot virus (PRSV), respectively. As a consequence, chemical application to these crops has been significantly reduced, enhancing farm income while reducing human and non-target organism exposure to toxic chemicals. This article provides useful information for the colleagues, in particular for them whose mother tongue is not Chinese, to clearly understand the biosafety regulation and commercial use of genetically modified crops in China.
Status of market, regulation and research of genetically modified crops in Chile.
Sánchez, Miguel A; León, Gabriel
2016-12-25
Agricultural biotechnology and genetically modified (GM) crops are effective tools to substantially increase productivity, quality, and environmental sustainability in agricultural farming. Furthermore, they may contribute to improving the nutritional content of crops, addressing needs related to public health. Chile has become one of the most important global players for GM seed production for counter-season markets and research purposes. It has a comprehensive regulatory framework to carry out this activity, while at the same time there are numerous regulations from different agencies addressing several aspects related to GM crops. Despite imports of GM food/feed or ingredients for the food industry being allowed without restrictions, Chilean farmers are not using GM seeds for farming purposes because of a lack of clear guidelines. Chile is in a rather contradictory situation about GM crops. The country has invested considerable resources to fund research and development on GM crops, but the lack of clarity in the current regulatory situation precludes the use of such research to develop new products for Chilean farmers. Meanwhile, a larger scientific capacity regarding GM crop research continues to build up in the country. The present study maps and analyses the current regulatory environment for research and production of GM crops in Chile, providing an updated overview of the current status of GM seeds production, research and regulatory issues. Copyright © 2016 Elsevier B.V. All rights reserved.
Colson, Gregory; Rousu, Matthew C
2013-01-01
Assessing consumer perceptions and willingness to pay for genetically modified (GM) foods has been one of the most active areas of empirical research in agricultural economics. Researchers over the past 15 years have delivered well over 100 estimates of consumers' willingness to pay for GM foods using surveys and experimental methods. In this review, we explore a number of unresolved issues related to three questions that are critical when considering the sum of the individual contributions that constitute the evidence on consumer preferences for GM foods.
Safety assessment of genetically modified plants with deliberately altered composition
Halford, Nigel G; Hudson, Elizabeth; Gimson, Amy; Weightman, Richard; Shewry, Peter R; Tompkins, Steven
2014-01-01
The development and marketing of ‘novel’ genetically modified (GM) crops in which composition has been deliberately altered poses a challenge to the European Union (EU)'s risk assessment processes, which are based on the concept of substantial equivalence with a non-GM comparator. This article gives some examples of these novel GM crops and summarizes the conclusions of a report that was commissioned by the European Food Safety Authority on how the EU's risk assessment processes could be adapted to enable their safety to be assessed. PMID:24735114
Modification of recombinant maize ChitA chitinase by fungal chitinase-modifying proteins
USDA-ARS?s Scientific Manuscript database
In commercial maize, there are at least two different alleles of the chiA gene that encode alloforms of ChitA chitinase, a protein that is abundant in developing seed. Both known alloforms are modified by Bz-cmp, a protein secreted by the fungal pathogen Bipolaris zeicola. One alloform (ChitA-B73) i...
Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops
NASA Astrophysics Data System (ADS)
Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin
2017-04-01
A large-scale cross-sectional study (N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about genetics and biotechnology, perceived risks and benefits of GM food crops, trust in information from different sources about GM, and food neophobia. Differences between WTE-related variables based on students' grade level, educational track, and gender were analyzed. The students displayed a rather indecisive position toward GM food and scored weakly on a genetics and biotechnology knowledge test. WTE correlated most strongly with perceived benefits and subjective and objective knowledge. The results have clear implications for education, as they reiterate the need to strengthen students' scientific knowledge base and to introduce a GM-related debate at a much earlier stage in their school career.
Safety assessment of foods from genetically modified crops in countries with developing economies.
Delaney, Bryan
2015-12-01
Population growth particularly in countries with developing economies will result in a need to increase food production by 70% by the year 2050. Biotechnology has been utilized to produce genetically modified (GM) crops for insect and weed control with benefits including increased crop yield and will also be used in emerging countries. A multicomponent safety assessment paradigm has been applied to individual GM crops to determine whether they as safe as foods from non-GM crops. This paper reviews methods to assess the safety of foods from GM crops for safe consumption from the first generation of GM crops. The methods can readily be applied to new products developed within country and this paper will emphasize the concept of data portability; that safety data produced in one geographic location is suitable for safety assessment regardless of where it is utilized. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Nakamura, Kosuke; Kondo, Kazunari; Akiyama, Hiroshi; Ishigaki, Takumi; Noguchi, Akio; Katsumata, Hiroshi; Takasaki, Kazuto; Futo, Satoshi; Sakata, Kozue; Fukuda, Nozomi; Mano, Junichi; Kitta, Kazumi; Tanaka, Hidenori; Akashi, Ryo; Nishimaki-Mogami, Tomoko
2016-08-15
Identification of transgenic sequences in an unknown genetically modified (GM) papaya (Carica papaya L.) by whole genome sequence analysis was demonstrated. Whole genome sequence data were generated for a GM-positive fresh papaya fruit commodity detected in monitoring using real-time polymerase chain reaction (PCR). The sequences obtained were mapped against an open database for papaya genome sequence. Transgenic construct- and event-specific sequences were identified as a GM papaya developed to resist infection from a Papaya ringspot virus. Based on the transgenic sequences, a specific real-time PCR detection method for GM papaya applicable to various food commodities was developed. Whole genome sequence analysis enabled identifying unknown transgenic construct- and event-specific sequences in GM papaya and development of a reliable method for detecting them in papaya food commodities. Copyright © 2016 Elsevier Ltd. All rights reserved.
van Rijssen, Fredrika W Jansen; Morris, E Jane; Eloff, Jacobus N
2013-09-04
The importance of food composition in safety assessments of genetically modified (GM) food is described for cassava ( Manihot esculenta Crantz) that naturally contains significantly high levels of cyanogenic glycoside (CG) toxicants in roots and leaves. The assessment of the safety of GM cassava would logically require comparison with a non-GM crop with a proven "history of safe use". This study investigates this statement for cassava. A non-GM comparator that qualifies would be a processed product with CG level below the approved maximum level in food and that also satisfies a "worst case" of total dietary consumption. Although acute and chronic toxicity benchmark CG values for humans have been determined, intake data are scarce. Therefore, the non-GM cassava comparator is defined on the "best available knowledge". We consider nutritional values for cassava and conclude that CG residues in food should be a priority topic for research.
Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops
NASA Astrophysics Data System (ADS)
Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin
2018-06-01
A large-scale cross-sectional study ( N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about genetics and biotechnology, perceived risks and benefits of GM food crops, trust in information from different sources about GM, and food neophobia. Differences between WTE-related variables based on students' grade level, educational track, and gender were analyzed. The students displayed a rather indecisive position toward GM food and scored weakly on a genetics and biotechnology knowledge test. WTE correlated most strongly with perceived benefits and subjective and objective knowledge. The results have clear implications for education, as they reiterate the need to strengthen students' scientific knowledge base and to introduce a GM-related debate at a much earlier stage in their school career.
Silk, Kami J; Weiner, Judith; Parrott, Roxanne L
2005-12-01
Genetically modified (GM) foods are currently a controversial topic about which the lay public in the United States knows little. Formative research has demonstrated that the lay public is uncertain and concerned about GM foods. This study (N = 858) extends focus group research by using the Theory of Reasoned Action (TRA) to examine attitudes and subjective norms related to GM foods as a theoretical strategy for audience segmentation. A hierarchical cluster analysis revealed four unique audiences based on their attitude and subjective norm toward GM foods (ambivalent-biotech, antibiotech, biotech-normer, and biotech individual). Results are discussed in terms of the theoretical and practical significance for audience segmentation.
Duc, Caroline; Nentwig, Wolfgang; Lindfeld, Andreas
2011-01-01
The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community.
Duc, Caroline; Nentwig, Wolfgang; Lindfeld, Andreas
2011-01-01
The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community. PMID:22043279
SCIENCE QUESTIONS:
-Does gene flow occur from genetically modified (GM) crop plants to compatible plants?
-How can it be measured?
-Are there ecological consequences of GM crop gene flow to plant communities?
RESEARCH:
The objectives ...
LONG-DISTANCE GM POLLEN MOVEMENT OF CREEPING BENTGRASS USING MODELED WIND TRAJECTORY ANALYSIS
The importance of understanding the role of atmospheric conditions in pollen dispersal has grown in recent years with increased field-testing of genetically modified (GM) crop plants. An atmospheric model was used to characterize wind trajectories at 10 m and 100 m above GM polle...
Generation of induced Pluripotent Stem Cells from Domestic Goats - Capra hircus
USDA-ARS?s Scientific Manuscript database
The creation of genetically modified (GM) goats provides a powerful method for improving animal health, enhancing production traits, animal pharming, and ensuring food safety, all of which are high priority goals for animal agriculture. However, GM goats and the GM livestock field in general have l...
DNA extraction methods for detecting genetically modified foods: A comparative study.
Elsanhoty, Rafaat M; Ramadan, Mohamed Fawzy; Jany, Klaus Dieter
2011-06-15
The work presented in this manuscript was achieved to compare six different methods for extracting DNA from raw maize and its derived products. The methods that gave higher yield and quality of DNA were chosen to detect the genetic modification in the samples collected from the Egyptian market. The different methods used were evaluated for extracting DNA from maize kernels (without treatment), maize flour (mechanical treatment), canned maize (sweet corn), frozen maize (sweet corn), maize starch, extruded maize, popcorn, corn flacks, maize snacks, and bread made from corn flour (mechanical and thermal treatments). The quality and quantity of the DNA extracted from the standards, containing known percentages of GMO material and from the different food products were evaluated. For qualitative detection of the GMO varieties in foods, the GMOScreen 35S/NOS test kit was used, to screen the genetic modification in the samples. The positive samples for the 35S promoter and/or the NOS terminator were identified by the standard methods adopted by EU. All of the used methods extracted yielded good DNA quality. However, we noted that the purest DNA extract were obtained using the DNA extraction kit (Roche) and this generally was the best method for extracting DNA from most of the maize-derived foods. We have noted that the yield of DNA extracted from maize-derived foods was generally lower in the processed products. The results indicated that 17 samples were positive for the presence of 35S promoter, while 34% from the samples were positive for the genetically modified maize line Bt-176. Copyright © 2010 Elsevier Ltd. All rights reserved.
Venturelli, Gustavo L; Brod, Fábio C A; Rossi, Gabriela B; Zimmermann, Naíra F; Oliveira, Jaison P; Faria, Josias C; Arisi, Ana C M
2014-11-01
The Embrapa 5.1 genetically modified (GM) common bean was approved for commercialization in Brazil. Methods for the quantification of this new genetically modified organism (GMO) are necessary. The development of a suitable endogenous reference is essential for GMO quantification by real-time PCR. Based on this, a new taxon-specific endogenous reference quantification assay was developed for Phaseolus vulgaris L. Three genes encoding common bean proteins (phaseolin, arcelin, and lectin) were selected as candidates for endogenous reference. Primers targeting these candidate genes were designed and the detection was evaluated using the SYBR Green chemistry. The assay targeting lectin gene showed higher specificity than the remaining assays, and a hydrolysis probe was then designed. This assay showed high specificity for 50 common bean samples from two gene pools, Andean and Mesoamerican. For GM common bean varieties, the results were similar to those obtained for non-GM isogenic varieties with PCR efficiency values ranging from 92 to 101 %. Moreover, this assay presented a limit of detection of ten haploid genome copies. The primers and probe developed in this work are suitable to detect and quantify either GM or non-GM common bean.
Quality protein maize germplasm characterized for amino acid profiles and endosperm opacity
USDA-ARS?s Scientific Manuscript database
Quality protein maize (QPM) is improved over normal maize in grain concentrations of the essential amino acids lysine and tryptophan. QPM has a long history as tropical adapted germplasm but little effort has been made in temperate and sub-tropical adaptation and it is unknown if different modifier ...
Matsuoka, Kazuhiko; Tamura, Tomomi; Tsuji, Daisuke; Dohzono, Yukie; Kitakaze, Keisuke; Ohno, Kazuki; Saito, Seiji; Sakuraba, Hitoshi; Itoh, Kohji
2011-06-01
To develop a novel enzyme replacement therapy for neurodegenerative Tay-Sachs disease (TSD) and Sandhoff disease (SD), which are caused by deficiency of β-hexosaminidase (Hex) A, we designed a genetically engineered HEXB encoding the chimeric human β-subunit containing partial amino acid sequence of the α-subunit by structure-based homology modeling. We succeeded in producing the modified HexB by a Chinese hamster ovary (CHO) cell line stably expressing the chimeric HEXB, which can degrade artificial anionic substrates and GM2 ganglioside in vitro, and also retain the wild-type (WT) HexB-like thermostability in the presence of plasma. The modified HexB was efficiently incorporated via cation-independent mannose 6-phosphate receptor into fibroblasts derived from Tay-Sachs patients, and reduced the GM2 ganglioside accumulated in the cultured cells. Furthermore, intracerebroventricular administration of the modified HexB to Sandhoff mode mice restored the Hex activity in the brains, and reduced the GM2 ganglioside storage in the parenchyma. These results suggest that the intracerebroventricular enzyme replacement therapy involving the modified HexB should be more effective for Tay-Sachs and Sandhoff than that utilizing the HexA, especially as a low-antigenic enzyme replacement therapy for Tay-Sachs patients who have endogenous WT HexB.
Matsuoka, Kazuhiko; Tamura, Tomomi; Tsuji, Daisuke; Dohzono, Yukie; Kitakaze, Keisuke; Ohno, Kazuki; Saito, Seiji; Sakuraba, Hitoshi; Itoh, Kohji
2011-01-01
To develop a novel enzyme replacement therapy for neurodegenerative Tay-Sachs disease (TSD) and Sandhoff disease (SD), which are caused by deficiency of β-hexosaminidase (Hex) A, we designed a genetically engineered HEXB encoding the chimeric human β-subunit containing partial amino acid sequence of the α-subunit by structure-based homology modeling. We succeeded in producing the modified HexB by a Chinese hamster ovary (CHO) cell line stably expressing the chimeric HEXB, which can degrade artificial anionic substrates and GM2 ganglioside in vitro, and also retain the wild-type (WT) HexB-like thermostability in the presence of plasma. The modified HexB was efficiently incorporated via cation-independent mannose 6-phosphate receptor into fibroblasts derived from Tay-Sachs patients, and reduced the GM2 ganglioside accumulated in the cultured cells. Furthermore, intracerebroventricular administration of the modified HexB to Sandhoff mode mice restored the Hex activity in the brains, and reduced the GM2 ganglioside storage in the parenchyma. These results suggest that the intracerebroventricular enzyme replacement therapy involving the modified HexB should be more effective for Tay-Sachs and Sandhoff than that utilizing the HexA, especially as a low-antigenic enzyme replacement therapy for Tay-Sachs patients who have endogenous WT HexB. PMID:21487393
Koch, Michael S; DeSesso, John M; Williams, Amy Lavin; Michalek, Suzanne; Hammond, Bruce
2016-01-01
To determine the reliability of food safety studies carried out in rodents with genetically modified (GM) crops, a Food Safety Study Reliability Tool (FSSRTool) was adapted from the European Centre for the Validation of Alternative Methods' (ECVAM) ToxRTool. Reliability was defined as the inherent quality of the study with regard to use of standardized testing methodology, full documentation of experimental procedures and results, and the plausibility of the findings. Codex guidelines for GM crop safety evaluations indicate toxicology studies are not needed when comparability of the GM crop to its conventional counterpart has been demonstrated. This guidance notwithstanding, animal feeding studies have routinely been conducted with GM crops, but their conclusions on safety are not always consistent. To accurately evaluate potential risks from GM crops, risk assessors need clearly interpretable results from reliable studies. The development of the FSSRTool, which provides the user with a means of assessing the reliability of a toxicology study to inform risk assessment, is discussed. Its application to the body of literature on GM crop food safety studies demonstrates that reliable studies report no toxicologically relevant differences between rodents fed GM crops or their non-GM comparators.
Assessment of the safety of foods derived from genetically modified (GM) crops.
König, A; Cockburn, A; Crevel, R W R; Debruyne, E; Grafstroem, R; Hammerling, U; Kimber, I; Knudsen, I; Kuiper, H A; Peijnenburg, A A C M; Penninks, A H; Poulsen, M; Schauzu, M; Wal, J M
2004-07-01
This paper provides guidance on how to assess the safety of foods derived from genetically modified crops (GM crops); it summarises conclusions and recommendations of Working Group 1 of the ENTRANSFOOD project. The paper provides an approach for adapting the test strategy to the characteristics of the modified crop and the introduced trait, and assessing potential unintended effects from the genetic modification. The proposed approach to safety assessment starts with the comparison of the new GM crop with a traditional counterpart that is generally accepted as safe based on a history of human food use (the concept of substantial equivalence). This case-focused approach ensures that foods derived from GM crops that have passed this extensive test-regime are as safe and nutritious as currently consumed plant-derived foods. The approach is suitable for current and future GM crops with more complex modifications. First, the paper reviews test methods developed for the risk assessment of chemicals, including food additives and pesticides, discussing which of these methods are suitable for the assessment of recombinant proteins and whole foods. Second, the paper presents a systematic approach to combine test methods for the safety assessment of foods derived from a specific GM crop. Third, the paper provides an overview on developments in this area that may prove of use in the safety assessment of GM crops, and recommendations for research priorities. It is concluded that the combination of existing test methods provides a sound test-regime to assess the safety of GM crops. Advances in our understanding of molecular biology, biochemistry, and nutrition may in future allow further improvement of test methods that will over time render the safety assessment of foods even more effective and informative. Copryright 2004 Elsevier Ltd.
Efficient Metabolic Engineering of GM3 on Tumor Cells by N-Phenylacetyl-D-mannosamine†
Chefalo, Peter; Pan, Yanbin; Nagy, Nancy; Guo, Zhongwu; Harding, Clifford V.
2008-01-01
Abnormal carbohydrates expressed on tumor cells, which are referred to as tumor-associated carbohydrate antigens (TACAs), are potential targets for development of cancer vaccines. However, immune tolerance to TACAs has severely hindered progress in this area. To overcome this problem, we have developed a novel immunotherapeutic strategy based on synthetic cancer vaccines and metabolic engineering of TACAs on tumor cells. One critical step of this new strategy is metabolic engineering of cancer, namely to induce expression of an artificial form of a TACA by supplying tumors with an artificial monosaccharide precursor. To identify the proper precursor for this application, N-propionyl, N-butanoyl, N-iso-butanoyl and N-phenylacetyl derivatives of D-mannosamine were synthesized, and their efficiency as biosynthetic precursors to modify sialic acid and induce expression of modified forms of GM3 antigen on tumor cells was investigated. For this purpose, tumor cells were incubated with different N-acyl-D-mannosamines, and modified forms of GM3 expressed on tumor cells were analyzed by flow cytometry using antigen-specific antisera. N-phenylacetyl-D-mannosamine was efficiently incorporated in a time and dose dependent manner to bioengineer GM3 expression by several tumor cell lines including K562, SKMEL-28 and B16-F0. Moreover, these tumor cell lines also showed ManPAc-dependent sensitivity to cytotoxicity medicated by anti-PAcGM3 immune serum and complement. These results provide an important validation for this novel therapeutic strategy. Because N-phenylacetyl GM3-protein conjugates are particularly immunogenic, the combination of an N-phenylacetyl GM3 conjugate vaccine with systemic N-phenylacetyl-D-mannosamine treatment is a promising immunotherapy for future development and application to melanoma and other GM3-bearing tumors. PMID:16533056
Attitudes towards genetically modified and organic foods.
Saher, Marieke; Lindeman, Marjaana; Hursti, Ulla-Kaisa Koivisto
2006-05-01
Finnish students (N=3261) filled out a questionnaire on attitudes towards genetically modified and organic food, plus the rational-experiential inventory, the magical thinking about food and health scale, Schwartz's value survey and the behavioural inhibition scale. In addition, they reported their eating of meat. Structural equation modelling of these measures had greater explanatory power for attitudes towards genetically modified (GM) foods than for attitudes towards organic foods (OF). GM attitudes were best predicted by natural science education and magical food and health beliefs, which mediated the influence of thinking styles. Positive attitudes towards organic food, on the other hand, were more directly related to such individual differences as thinking styles and set of values. The results of the study indicate that OF attitudes are rooted in more fundamental personal attributes than GM attitudes, which are embedded in a more complex but also in a more modifiable network of characteristics.
Zou, Shiying; Tang, Min; He, Xiaoyun; Cao, Yuan; Zhao, Jie; Xu, Wentao; Liang, Zhihong; Huang, Kunlun
2015-11-01
Because cardiovascular disease incidence has rapidly increased in recent years, people are choosing relatively healthier diets with low animal fat. A transgenic pig with low fat and a high percentage of lean meat was created in 2011; this pig overexpresses the follistatin (FST) gene. To evaluate the safety of lean pork derived from genetically modified (GM) pigs, a subchronic oral toxicity study was conducted using Sprague-Dawley rats. GM pork and non-GM pork were incorporated into the diet at levels of 3.75%, 7.5%, and 15% (w/w), and the main nutrients of the various diets were subsequently balanced. The safety of GM pork was assessed by comparison of the toxicology response variables in Sprague-Dawley rats consuming diets containing GM pork with those consuming non-GM pork. No treatment-related adverse or toxic effects were observed based on an examination of the daily clinical signs, body weight, food consumption, hematology, serum biochemistry, and organ weight or based on gross and histopathological examination. The results demonstrate that GM pork is as safe for consumption as conventional pork. Copyright © 2015 Elsevier Inc. All rights reserved.
Qi, Xiaozhe; Chen, Siyuan; Sheng, Yao; Guo, Mingzhang; Liu, Yifei; He, Xiaoyun; Huang, Kunlun; Xu, Wentao
2015-02-01
The genetically modified (GM) rice expressing human serum albumin (HSA) is used for non-food purposes; however, its food safety assessment should be conducted due to the probability of accidental mixture with conventional food. In this research, Sprague Dawley rats were fed diets containing 50% (wt/wt) GM rice expressing HSA or non-GM rice for 90 days. Urine metabolites were detected by (1)H NMR to examine the changes of the metabolites in the dynamic process of metabolism. Fecal bacterial profiles were detected by denaturing gradient gel electrophoresis to reflect intestinal health. Additionally, short chain fatty acids and fecal enzymes were investigated. The results showed that compared with rats fed the non-GM rice, some significant differences were observed in rats fed with the GM rice; however, these changes were not significantly different from the control diet group. Additionally, the gut microbiota was associated with blood indexes and urine metabolites. In conclusion, the GM rice diet is as safe as the traditional daily diet. Furthermore, urine metabonomics and fecal bacterial profiles provide a non-invasive food safety assessment rat model for genetically modified crops that are used for non-food/feed purposes. Fecal bacterial profiles have the potential for predicting the change of blood indexes in future. Copyright © 2014 Elsevier Ltd. All rights reserved.
Highly Stable Aptamers Selected from a 2′-Fully Modified fGmH RNA Library for Targeting Biomaterials
Friedman, Adam D.; Kim, Dongwook; Liu, Rihe
2014-01-01
When developed as targeting ligands for the in vivo delivery of biomaterials to biological systems, RNA aptamers immediately face numerous obstacles, in particular nuclease degradation and post-selection 2′ modification. This study aims to develop a novel class of highly stable, 2′-fully modified RNA aptamers that are ideal for the targeted delivery of biomaterials. We demonstrated the facile transcription of a fGmH (2′-F-dG, 2′-OMe-dA/dC/dU) RNA library with unexpected hydrophobicity, the direct selection of aptamers from a fGmH RNA library that bind Staphylococcus aureus Protein A (SpA) as a model target, and the superior nuclease and serum stability of these aptamers compared to 2′-partially modified RNA variants. Characterizations of fGmH RNA aptamers binding to purified SpA and to endogenous SpA present on the surface of S. aureus cells demonstrate fGmH RNA aptamer selectivity and stability. Significantly, fGmH RNA aptamers were able to functionalize, stabilize, and further deliver aggregation-prone silver nanoparticles (AgNPs) to S. aureus with SpA-dependent antimicrobial effects. This study describes a novel aptamer class with considerable potential to improve the in vivo applicability of nucleic acid-based affinity molecules to biomaterials. PMID:25443790
Competitive Performance of Transgenic Wheat Resistant to Powdery Mildew
Kalinina, Olena; Zeller, Simon L.; Schmid, Bernhard
2011-01-01
Genetically modified (GM) plants offer an ideal model system to study the influence of single genes that confer constitutive resistance to pathogens on the ecological behaviour of plants. We used phytometers to study competitive interactions between GM lines of spring wheat Triticum aestivum carrying such genes and control lines. We hypothesized that competitive performance of GM lines would be reduced due to enhanced transgene expression under pathogen levels typically encountered in the field. The transgenes pm3b from wheat (resistance against powdery mildew Blumeria graminis) or chitinase and glucanase genes from barley (resistance against fungi in general) were introduced with the ubiquitin promoter from maize (pm3b and chitinase genes) or the actin promoter from rice (glucanase gene). Phytometers of 15 transgenic and non-transgenic wheat lines were transplanted as seedlings into plots sown with the same 15 lines as competitive environments and subject to two soil nutrient levels. Pm3b lines had reduced mildew incidence compared with control lines. Chitinase and chitinase/glucanase lines showed the same high resistance to mildew as their control in low-nutrient treatment and slightly lower mildew rates than the control in high-nutrient environment. Pm3b lines were weaker competitors than control lines. This resulted in reduced yield and seed number. The Pm3b line with the highest transgene expression had 53.2% lower yield than the control whereas the Pm3b line which segregated in resistance and had higher mildew rates showed only minor costs under competition. The line expressing both chitinase and glucanase genes also showed reduced yield and seed number under competition compared with its control. Our results suggest that single transgenes conferring constitutive resistance to pathogens can have ecological costs and can weaken plant competitiveness even in the presence of the pathogen. The magnitude of these costs appears related to the degree of expression of the transgenes. PMID:22132219
The green, blue and grey water footprint of crops and derived crop products
NASA Astrophysics Data System (ADS)
Mekonnen, M. M.; Hoekstra, A. Y.
2011-01-01
This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment is global and improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc min grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the water footprint network. Considering the water footprints of primary crops, we see that global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals} (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1, while this is 121 m3 GJ-1 for maize. The global water footprint related to crop production in the period 1996-2005 was 7404 billion cubic meters per year (78% green, 12% blue, 10% grey). A large total water footprint was calculated for wheat (1087 Gm3 yr-1), rice (992 Gm3 yr-1) and maize (770 Gm3 yr-1). Wheat and rice have the largest blue water footprints, together accounting for 45% of the global blue water footprint. At country level, the total water footprint was largest for India (1047 Gm3 yr-1), China (967 Gm3 yr-1) and the USA (826 Gm3 yr-1). A relatively large total blue water footprint as a result of crop production is observed in the Indus River Basin (117 Gm3 yr-1) and the Ganges River Basin (108 Gm3 yr-1). The two basins together account for 25% of the blue water footprint related to global crop production. Globally, rain-fed agriculture has a water footprint of 5173 Gm3 yr-1 (91% green, 9% grey); irrigated agriculture has a water footprint of 2230 Gm3 yr-1 (48% green, 40% blue, 12% grey).
The green, blue and grey water footprint of crops and derived crop products
NASA Astrophysics Data System (ADS)
Mekonnen, M. M.; Hoekstra, A. Y.
2011-05-01
This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1, while this is 121 m3 GJ-1 for maize. The global water footprint related to crop production in the period 1996-2005 was 7404 billion cubic meters per year (78 % green, 12 % blue, 10 % grey). A large total water footprint was calculated for wheat (1087 Gm3 yr-1), rice (992 Gm3 yr-1) and maize (770 Gm3 yr-1). Wheat and rice have the largest blue water footprints, together accounting for 45 % of the global blue water footprint. At country level, the total water footprint was largest for India (1047 Gm3 yr-1), China (967 Gm3 yr-1) and the USA (826 Gm3 yr-1). A relatively large total blue water footprint as a result of crop production is observed in the Indus river basin (117 Gm3 yr-1) and the Ganges river basin (108 Gm3 yr-1). The two basins together account for 25 % of the blue water footprint related to global crop production. Globally, rain-fed agriculture has a water footprint of 5173 Gm3 yr-1 (91 % green, 9 % grey); irrigated agriculture has a water footprint of 2230 Gm3 yr-1 (48 % green, 40 % blue, 12 % grey).
Swedish farmers attitudes, expectations and fears in relation to growing genetically modified crops.
Lehrman, Anna; Johnson, Katy
2008-01-01
This study evaluates a survey about Swedish farmers' attitude towards genetically modified (GM) crops, and their perception concerning potential benefits and drawbacks that cropping of an insect resistant (IR) GM variety would involve. The questions were "tick a box" choices, included in a yearly omnibus survey sent to 1000 Swedish farmers (68% response rate). The results showed that a majority of the farmers were negative, although almost one third claimed to be neutral to GM crops. The farmers recognized several benefits both in terms of agricultural production and for the environment, but they were also highly concerned about the consumers' unwillingness to buy GM products. Farmers perceived an increase in yield, but nearly as many farmers thought that there would be no benefits with growing an IR GM crop. Several differences in hopes and concerns of the farmers surveyed were revealed when they were divided in positive, neutral and negative groups. Farmers negative to GM were more concerned than positive farmers about IR GM crops being dangerous for humans, livestock or other organisms to consume. GM-positive farmers seemed to be most concerned about potential problems with growing a marketable crop and expensive seeds, but saw a reduced health risk to the grower, due to less use of pesticides, as a possible benefit. The results among the GM-neutral farmers were in most cases closely related to the positive farmers' choices, implying that they believe that there are advantages with growing an IR GM crop, but also fear potential drawbacks. This general uncertainty about GM IR crops may prevent them from accepting the new technology.
Song, Zhaoping; Xiao, Huining; Zhao, Yi
2014-10-13
New biodegradable nanocomposites have been successfully prepared by incorporating modified nano-cellulose fibers (NCF) in a biodegradable polylactic acid (PLA) matrix in this work. The hydrophobic-modified NCF was obtained by grafting hydrophobic monomers on NCF to improve the compatibility between NCF and PLA during blending. The resulting NCF/PLA composites were then applied on paper surface via a cast-coating process in an attempt to reduce the water vapor transmission rate (WVTR) of paper. The WVTR tests, conducted under various testing conditions and with different coating weights, demonstrated that the modified NCF/PLA composites coating played a critical role in lowering WVTR of paper. The lowest WVTR value was 34 g/m(2)/d, which was obtained with an addition of 1% of modified NCF to PLA and the composites coating weight at 40 g/m(2) and substantially lower than the control value at 1315 g/m(2)/d. The paper coated with the modified biodegradable composite is promising as green-based packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ainembabazi, John Herbert; Tripathi, Leena; Rusike, Joseph; Abdoulaye, Tahirou; Manyong, Victor
2015-01-01
Credible empirical evidence is scanty on the social implications of genetically modified (GM) crops in Africa, especially on vegetatively propagated crops. Little is known about the future success of introducing GM technologies into staple crops such as bananas, which are widely produced and consumed in the Great Lakes Region of Africa (GLA). GM banana has a potential to control the destructive banana Xanthomonas wilt disease. To gain a better understanding of future adoption and consumption of GM banana in the GLA countries which are yet to permit the production of GM crops; specifically, to evaluate the potential economic impacts of GM cultivars resistant to banana Xanthomonas wilt disease. The paper uses data collected from farmers, traders, agricultural extension agents and key informants in the GLA. We analyze the perceptions of the respondents about the adoption and consumption of GM crop. Economic surplus model is used to determine future economic benefits and costs of producing GM banana. On the release of GM banana for commercialization, the expected initial adoption rate ranges from 21 to 70%, while the ceiling adoption rate is up to 100%. Investment in the development of GM banana is economically viable. However, aggregate benefits vary substantially across the target countries ranging from US$ 20 million to 953 million, highest in countries where disease incidence and production losses are high, ranging from 51 to 83% of production. The findings support investment in the development of GM banana resistant to Xanthomonas wilt disease. The main beneficiaries of this technology development are farmers and consumers, although the latter benefit more than the former from reduced prices. Designing a participatory breeding program involving farmers and consumers signifies the successful adoption and consumption of GM banana in the target countries.
USDA-ARS?s Scientific Manuscript database
The partially-dominant, autoactive maize disease resistance gene Rp1-D21 causes hypersensitive response (HR) lesions to form spontaneously on the leaves and stem in the absence of pathogen recognition. The maize nested association mapping (NAM) population consists of 25 200-line subpopulations each...
Frankenfoods: Values about Genetics Embedded in a Metaphor.
ERIC Educational Resources Information Center
Flores, Vanessa S.; Tobin, Allan J.
2002-01-01
Presents an assay on genetically modified (GM) foods, also called Frankenfoods, that demonstrates ways to evaluate a scientific metaphor and facilitate discussion on students' values regarding GM foods. (YDS)
NASA Astrophysics Data System (ADS)
Mueller, Eva-Maria; Percival, Will; Linder, Eric; Alam, Shadab; Zhao, Gong-Bo; Sánchez, Ariel G.; Beutler, Florian; Brinkmann, Jon
2018-04-01
We use baryon acoustic oscillation and redshift space distortion from the completed Baryon Oscillation Spectroscopic Survey, corresponding to Data Release 12 of the Sloan Digital Sky Survey, combined sample analysis in combination with cosmic microwave background, supernova, and redshift space distortion measurements from additional spectroscopic surveys to test deviations from general relativity. We present constraints on several phenomenological models of modified gravity: First, we parametrize the growth of structure using the growth index γ, finding γ = 0.566 ± 0.058 (68 per cent C.L.). Secondly, we modify the relation of the two Newtonian potentials by introducing two additional parameters, GM and GL. In this approach, GM refers to modifications of the growth of structure whereas GL to modification of the lensing potential. We consider a power law to model the redshift dependence of GM and GL as well as binning in redshift space, introducing four additional degrees of freedom, GM(z < 0.5), GM(z > 0.5), GL(z < 0.5), and GL(z > 0.5). At 68 per cent C.L., we measure GM = 0.980 ± 0.096 and GL = 1.082 ± 0.060 for a linear model, GM = 1.01 ± 0.36 and GL = 1.31 ± 0.19 for a cubic model as well as GM(z < 0.5) = 1.26 ± 0.32, GM(z > 0.5) = 0.986 ± 0.022, GL(z < 0.5) = 1.067 ± 0.058, and GL(z > 0.5) = 1.037 ± 0.029. Thirdly, we investigate general scalar tensor theories of gravity, finding the model to be mostly unconstrained by current data. Assuming a one-parameter f(R) model, we can constrain B0 < 7.7 × 10-5 (95 per cent C.L). For all models we considered, we find good agreement with general relativity.
Acceptability of GM foods among Pakistani consumers.
Ali, Akhter; Rahut, Dil Bahadur; Imtiaz, Muhammad
2016-04-02
In Pakistan majority of the consumers do not have information about genetically modified (GM) foods. In developing countries particularly in Pakistan few studies have focused on consumers' acceptability about GM foods. Using comprehensive primary dataset collected from 320 consumers in 2013 from Pakistan, this study analyzes the determinants of consumers' acceptability of GM foods. The data was analyzed by employing the bivariate probit model and censored least absolute deviation (CLAD) models. The empirical results indicated that urban consumers are more aware of GM foods compared to rural consumers. The acceptance of GM foods was more among females' consumers as compared to male consumers. In addition, the older consumers were more willing to accept GM food compared to young consumers. The acceptability of GM foods was also higher among wealthier households. Low price is the key factor leading to the acceptability of GM foods. The acceptability of the GM foods also reduces the risks among Pakistani consumers.
Acceptability of GM foods among Pakistani consumers
Ali, Akhter; Rahut, Dil Bahadur; Imtiaz, Muhammad
2016-01-01
ABSTRACT In Pakistan majority of the consumers do not have information about genetically modified (GM) foods. In developing countries particularly in Pakistan few studies have focused on consumers' acceptability about GM foods. Using comprehensive primary dataset collected from 320 consumers in 2013 from Pakistan, this study analyzes the determinants of consumers' acceptability of GM foods. The data was analyzed by employing the bivariate probit model and censored least absolute deviation (CLAD) models. The empirical results indicated that urban consumers are more aware of GM foods compared to rural consumers. The acceptance of GM foods was more among females' consumers as compared to male consumers. In addition, the older consumers were more willing to accept GM food compared to young consumers. The acceptability of GM foods was also higher among wealthier households. Low price is the key factor leading to the acceptability of GM foods. The acceptability of the GM foods also reduces the risks among Pakistani consumers. PMID:27494790
Will GM animals follow the GM plant fate?
Vàzquez-Salat, Núria; Houdebine, Louis-Marie
2013-02-01
Despite being both Genetically Modified Organisms (GMOs), GM plants and GM animals share few similarities outside the laboratory premises. Whilst GM plants were soon embraced by industry and became a commercial success, only recently have GM animals reached the market. However, an area where GM animals are likely to follow the GM plant path is on their potential to cause social unrest. One of the major flaws of the 90s GMO crisis was the underestimation of the influence that different players can have in the adoption of new biotechnological applications. In this article we describe the unique evolution of GM animals in two of the most important fields: the pharmaceutical and the breeding sectors. For our analysis, we have subdivided the production chain into three governance domains: Science, Market and Public. We describe the influence and interaction of each of these domains as a vehicle for predicting the future adoptability of GM animals and to highlight conflicting areas.
Health risks of genetically modified foods.
Dona, Artemis; Arvanitoyannis, Ioannis S
2009-02-01
As genetically modified (GM) foods are starting to intrude in our diet concerns have been expressed regarding GM food safety. These concerns as well as the limitations of the procedures followed in the evaluation of their safety are presented. Animal toxicity studies with certain GM foods have shown that they may toxically affect several organs and systems. The review of these studies should not be conducted separately for each GM food, but according to the effects exerted on certain organs it may help us create a better picture of the possible health effects on human beings. The results of most studies with GM foods indicate that they may cause some common toxic effects such as hepatic, pancreatic, renal, or reproductive effects and may alter the hematological, biochemical, and immunologic parameters. However, many years of research with animals and clinical trials are required for this assessment. The use of recombinant GH or its expression in animals should be re-examined since it has been shown that it increases IGF-1 which may promote cancer.
Proteomic evaluation of genetically modified crops: current status and challenges
Gong, Chun Yan; Wang, Tai
2013-01-01
Hectares of genetically modified (GM) crops have increased exponentially since 1996, when such crops began to be commercialized. GM biotechnology, together with conventional breeding, has become the main approach to improving agronomic traits of crops. However, people are concerned about the safety of GM crops, especially GM-derived food and feed. Many efforts have been made to evaluate the unintended effects caused by the introduction of exogenous genes. “Omics” techniques have advantages over targeted analysis in evaluating such crops because of their use of high-throughput screening. Proteins are key players in gene function and are directly involved in metabolism and cellular development or have roles as toxins, antinutrients, or allergens, which are essential for human health. Thus, proteomics can be expected to become one of the most useful tools in safety assessment. This review assesses the potential of proteomics in evaluating various GM crops. We further describe the challenges in ensuring homogeneity and sensitivity in detection techniques. PMID:23471542
Electrochemiluminescence-PCR detection of genetically modified organisms
NASA Astrophysics Data System (ADS)
Liu, Jinfeng; Xing, Da; Shen, Xingyan; Zhu, Debin
2005-01-01
The detection methods for genetically modified (GM) components in foods have been developed recently. But many of them are complicated and time-consuming; some of them need to use the carcinogenic substance, and can"t avoid false-positive results. In this study, an electrochemiluminescence polymerase chain reaction (ECL-PCR) method for detection GM tobaccos is proposed. The Cauliflower mosaic virus 35S (CaMV35S) promoter was amplified by PCR, Then hybridized with a Ru(bpy)32+ (TBR)-labeled and a biotinylated probe. The hybridization products were captured onto streptavidin-coated paramagnetic beads, and detected by measuring the electrochemiluminescence (ECL) signal of the TBR label. Whether the tobaccos contain GM components was discriminated by detecting the ECL signal of CaMV35S promoter. The experiment results show that the detection limit for CaMV35S promoter is 100 fmol, and the GM components can be clearly identified in GM tobaccos. The ECL-PCR method provide a new means in GMOs detection due to its safety, simplicity and high efficiency.
Oeschger, Max P; Silva, Catherine E
2007-01-01
We examine the state of biotechnology with respect to genetically modified (GM) organisms in agriculture. Our focus is on the USA, where there has been significant progress and implementation but where, to date, the matter has drawn little attention. GM organisms are the result of lateral gene transfers, the transfer of genes from one species to another, or sometimes, from one kingdom to another. The introduction of foreign genes makes some people very uncomfortable, and a small group of activists have grave concerns about the technology. Attempts by activists to build concern in the general public have garnered little attention; however, the producers of GM organisms have responded to their concerns and established extensive testing programs to be applied to each candidate organism that is produced. In the meantime, GM varieties of corn, cotton, soybean and rapeseed have been put into agricultural production and are now extensively planted. These crops, and the other, newer GM crops, have produced no problems and have pioneered a silent agricultural revolution in the USA.
The impact of genetically modified crops on soil microbial communities.
Giovannetti, Manuela; Sbrana, Cristiana; Turrini, Alessandra
2005-01-01
Genetically modified (GM) plants represent a potential benefit for environmentally friendly agriculture and human health. Though, poor knowledge is available on potential hazards posed by unintended modifications occurring during genetic manipulation. The increasing amount of reports on ecological risks and benefits of GM plants stresses the need for experimental works aimed at evaluating the impact of GM crops on natural and agro-ecosystems. Major environmental risks associated with GM crops include their potential impact on non-target soil microorganisms playing a fundamental role in crop residues degradation and in biogeochemical cycles. Recent works assessed the effects of GM crops on soil microbial communities on the basis of case-by-case studies, using multimodal experimental approaches involving different target and non-target organisms. Experimental evidences discussed in this review confirm that a precautionary approach should be adopted, by taking into account the risks associated with the unpredictability of transformation events, of their pleiotropic effects and of the fate of transgenes in natural and agro-ecosystems, weighing benefits against costs.
Proteomic evaluation of genetically modified crops: current status and challenges.
Gong, Chun Yan; Wang, Tai
2013-01-01
Hectares of genetically modified (GM) crops have increased exponentially since 1996, when such crops began to be commercialized. GM biotechnology, together with conventional breeding, has become the main approach to improving agronomic traits of crops. However, people are concerned about the safety of GM crops, especially GM-derived food and feed. Many efforts have been made to evaluate the unintended effects caused by the introduction of exogenous genes. "Omics" techniques have advantages over targeted analysis in evaluating such crops because of their use of high-throughput screening. Proteins are key players in gene function and are directly involved in metabolism and cellular development or have roles as toxins, antinutrients, or allergens, which are essential for human health. Thus, proteomics can be expected to become one of the most useful tools in safety assessment. This review assesses the potential of proteomics in evaluating various GM crops. We further describe the challenges in ensuring homogeneity and sensitivity in detection techniques.
Coexistence or Conflict? A European Perspective on GMOs and the Problem of Liability
ERIC Educational Resources Information Center
Rodgers, Christopher P.
2007-01-01
In March 2004, the U.K. government announced its intention to grant limited authorization for the growing of commercial genetically modified (GM) crops. This article reviews the potential liabilities that may arise from GM cropping, for environmental damage and for economic losses claimed by non-GM producers. It considers the application of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallis, C.; Rezazadeh, S.M.; Forster, M.J.
1992-02-26
Ethanol produces its intoxicating effects by modifying neuronal membranes. Gangliosides stabilize neuronal membranes and promote their recovery from a variety of insults. In this experiment, the efficacy of GM1(i.p.) to reverse ethanol intoxication was evaluated in male mice trained to run on a constantly accelerating rotorod. When mice were tested 15-min following saline or ethanol GM1 pre-treatment reduced rotorod performance by 15% but was ineffective in modifying the ethanol-impaired performance. However, when mice were tested at 15, 35, 55, 75, and 95 min intervals following ethanol, GM1 pre-treatments dose-dependently reduced the efficacy and duration of ethanol in producing motor incoordination.more » Further, GM1 given prior to ethanol significantly prolonged the time to onset of the loss of righting reflex from 1.4 to 1.9 min, and reduced the duration of the righting-reflex loss from 94 to 77 min. This GM1 effect was seen at 24 h, but not at 48 or 72 h after its administration. The blood ethanol concentration at awakening was significantly higher in 24h GM1-treated animals than in controls suggesting that the GM1 effect was not due to an alteration in ethanol clearance. These findings support the hypothesis that GM1 promotes recovery from ethanol intoxication via a neuroprotective mechanism.« less
Attitudes of Agricultural Experts Toward Genetically Modified Crops: A Case Study in Southwest Iran.
Ghanian, Mansour; Ghoochani, Omid M; Kitterlin, Miranda; Jahangiry, Sheida; Zarafshani, Kiumars; Van Passel, Steven; Azadi, Hossein
2016-04-01
The production of genetically modified (GM) crops is growing around the world, and with it possible opportunities to combat food insecurity and hunger, as well as solutions to current problems facing conventional agriculture. In this regard the use of GMOs in food and agricultural applications has increased greatly over the past decade. However, the development of GM crops has been a matter of considerable interest and worldwide public controversy. This, in addition to skepticism, has stifled the use of this practice on a large scale in many areas, including Iran. It stands to reason that a greater understanding of this practice could be formed after a review of the existing expert opinions surrounding GM crops. Therefore, the purpose of this study was to analyze the predictors that influence agricultural experts' attitudes toward the development of and policies related to GM crops. Using a descriptive correlational research method, questionnaire data was collected from 65 experts from the Agricultural Organization in the Gotvand district in Southwest Iran. Results indicated that agricultural experts were aware of the environmental benefits and possible risks associated with GM crops. The majority of participants agreed that GM crops could improve food security and accelerate rural development, and were proponents of labeling practices for GM crops. Finally, there was a positive correlation between the perception of benefits and attitudes towards GM crops.
Genetically Modified Flax Expressing NAP-SsGT1 Transgene: Examination of Anti-Inflammatory Action
Matusiewicz, Magdalena; Kosieradzka, Iwona; Zuk, Magdalena; Szopa, Jan
2014-01-01
The aim of the work was to define the influence of dietary supplementation with GM (genetically modified) GT#4 flaxseed cake enriched in polyphenols on inflammation development in mice liver. Mice were given ad libitum isoprotein diets: (1) standard diet; (2) high-fat diet rich in lard, high-fat diet enriched with 30% of (3) isogenic flax Linola seed cake; and (4) GM GT#4 flaxseed cake; for 96 days. Administration of transgenic and isogenic seed cake lowered body weight gain, of transgenic to the standard diet level. Serum total antioxidant status was statistically significantly improved in GT#4 flaxseed cake group and did not differ from Linola. Serum thiobarbituric acid reactive substances, lipid profile and the liver concentration of pro-inflammatory cytokine tumor necrosis factor-α were ameliorated by GM and isogenic flaxseed cake consumption. The level of pro-inflammatory cytokine interferon-γ did not differ between mice obtaining GM GT#4 and non-GM flaxseed cakes. The C-reactive protein concentration was reduced in animals fed GT#4 flaxseed cake and did not differ from those fed non-GM flaxseed cake-based diet. Similarly, the liver structure of mice consuming diets enriched in flaxseed cake was improved. Dietetic enrichment with GM GT#4 and non-GM flaxseed cakes may be a promising solution for health problems resulting from improper diet. PMID:25247574
Guan, Zheng-Jun; Zhang, Peng-Fei; Wei, Wei; Mi, Xiang-Cheng; Kang, Ding-Ming; Liu, Biao
2015-01-01
Gene flow from genetically modified (GM) crops to wild relatives might affect the evolutionary dynamics of weedy populations and result in the persistence of escaped genes. To examine the effects of this gene flow, the growth of F1 hybrids that were formed by pollinating wild soybean (Glycine soja) with glyphosate-tolerant GM soybean (G. max) or its non-GM counterpart was examined in a greenhouse. The wild soybean was collected from two geographical populations in China. The performance of the wild soybean and the F2 hybrids was further explored in a field trial. Performance was measured by several vegetative and reproductive growth parameters, including the vegetative growth period, pod number, seed number, above-ground biomass and 100-seed weight. The pod setting percentage was very low in the hybrid plants. Genetically modified hybrid F1 plants had a significantly longer period of vegetative growth, higher biomass and lower 100-seed weight than the non-GM ones. The 100-seed weight of both F1 and F2 hybrids was significantly higher than that of wild soybean in both the greenhouse and the field trial. No difference in plant growth was found between GM and non-GM F2 hybrids in the field trial. The herbicide-resistant gene appeared not to adversely affect the growth of introgressed wild soybeans, suggesting that the escaped transgene could persist in nature in the absence of herbicide use. PMID:26507568
A natural compromise: a moderate solution to the GMO & "natural" labeling disputes.
Amaru, Stephanie
2014-01-01
In the United States, genetically modified (GM) foods are labeled no differently from their natural counterparts, leaving consumers with no mechanism for deciphering genetically modified food content. The Food and Drug Administration (FDA) has not formally defined the term "natural," which is frequently used on food labels despite consumer confusion as to what it means. The FDA should initiate a notice and comment rulemaking addressing the narrow issue of whether use of the word "natural" should be permitted oil GM food labels. Prohibition of the use of"natural" on genetically modified foods would mitigate consumer deception regarding genetically modified food content without significantly disadvantaging genetically modified food producers.
Gene flow in genetically modified wheat.
Rieben, Silvan; Kalinina, Olena; Schmid, Bernhard; Zeller, Simon L
2011-01-01
Understanding gene flow in genetically modified (GM) crops is critical to answering questions regarding risk-assessment and the coexistence of GM and non-GM crops. In two field experiments, we tested whether rates of cross-pollination differed between GM and non-GM lines of the predominantly self-pollinating wheat Triticum aestivum. In the first experiment, outcrossing was studied within the field by planting "phytometers" of one line into stands of another line. In the second experiment, outcrossing was studied over distances of 0.5-2.5 m from a central patch of pollen donors to adjacent patches of pollen recipients. Cross-pollination and outcrossing was detected when offspring of a pollen recipient without a particular transgene contained this transgene in heterozygous condition. The GM lines had been produced from the varieties Bobwhite or Frisal and contained Pm3b or chitinase/glucanase transgenes, respectively, in homozygous condition. These transgenes increase plant resistance against pathogenic fungi. Although the overall outcrossing rate in the first experiment was only 3.4%, Bobwhite GM lines containing the Pm3b transgene were six times more likely than non-GM control lines to produce outcrossed offspring. There was additional variation in outcrossing rate among the four GM-lines, presumably due to the different transgene insertion events. Among the pollen donors, the Frisal GM line expressing a chitinase transgene caused more outcrossing than the GM line expressing both a chitinase and a glucanase transgene. In the second experiment, outcrossing after cross-pollination declined from 0.7-0.03% over the test distances of 0.5-2.5 m. Our results suggest that pollen-mediated gene flow between GM and non-GM wheat might only be a concern if it occurs within fields, e.g. due to seed contamination. Methodologically our study demonstrates that outcrossing rates between transgenic and other lines within crops can be assessed using a phytometer approach and that gene-flow distances can be efficiently estimated with population-level PCR analyses. © 2011 Rieben et al.
Gene Flow in Genetically Modified Wheat
Rieben, Silvan; Kalinina, Olena; Schmid, Bernhard; Zeller, Simon L.
2011-01-01
Understanding gene flow in genetically modified (GM) crops is critical to answering questions regarding risk-assessment and the coexistence of GM and non-GM crops. In two field experiments, we tested whether rates of cross-pollination differed between GM and non-GM lines of the predominantly self-pollinating wheat Triticum aestivum. In the first experiment, outcrossing was studied within the field by planting “phytometers” of one line into stands of another line. In the second experiment, outcrossing was studied over distances of 0.5–2.5 m from a central patch of pollen donors to adjacent patches of pollen recipients. Cross-pollination and outcrossing was detected when offspring of a pollen recipient without a particular transgene contained this transgene in heterozygous condition. The GM lines had been produced from the varieties Bobwhite or Frisal and contained Pm3b or chitinase/glucanase transgenes, respectively, in homozygous condition. These transgenes increase plant resistance against pathogenic fungi. Although the overall outcrossing rate in the first experiment was only 3.4%, Bobwhite GM lines containing the Pm3b transgene were six times more likely than non-GM control lines to produce outcrossed offspring. There was additional variation in outcrossing rate among the four GM-lines, presumably due to the different transgene insertion events. Among the pollen donors, the Frisal GM line expressing a chitinase transgene caused more outcrossing than the GM line expressing both a chitinase and a glucanase transgene. In the second experiment, outcrossing after cross-pollination declined from 0.7–0.03% over the test distances of 0.5–2.5 m. Our results suggest that pollen-mediated gene flow between GM and non-GM wheat might only be a concern if it occurs within fields, e.g. due to seed contamination. Methodologically our study demonstrates that outcrossing rates between transgenic and other lines within crops can be assessed using a phytometer approach and that gene-flow distances can be efficiently estimated with population-level PCR analyses. PMID:22216349
Heritage, John
2005-01-01
So far, no compelling scientific evidence has been found to suggest that the consumption of transgenic or genetically modified (GM) plants by animals or humans is more likely to cause harm than is the consumption of their conventional counterparts. Despite this lack of scientific evidence, the economic prospects for GM plants are probably limited in the short term and there is public opposition to the technology. Now is a good time to address several issues concerning GM plants, including the potential for transgenes to migrate from GM plants to gut microbes or to animal or human tissues, the consequences of consuming GM crops, either as fresh plants or as silage, and the problems caused by current legislation on GM labelling and beyond.
Rauschen, Stefan; Schaarschmidt, Frank; Gathmann, Achim
2010-10-01
Beetles (Coleoptera) are a diverse and ecologically important group of insects in agricultural systems. The Environmental Risk Assessment (ERA) of genetically modified Bt-crop varieties with insect resistances thus needs to consider and assess the potential negative impacts on non-target organisms belonging to this group. We analysed data gathered during 6 years of field-release experiments on the impact of two genetically modified Bt-maize varieties (Ostrinia-resistant MON810 and Diabrotica-resistant MON88017) on the occurrence and field densities of Coleoptera, especially the two families Coccinellidae and Chrysomelidae. Based on a statistical analysis aimed at establishing whether Bt-maize varieties are equivalent to their near-isogenic counterparts, we discuss the limitations of using field experiments to assess the effects of Bt-maize on these two beetle families. The densities of most of the beetle families recorded in the herb layer were very low in all growing seasons. Coccinellidae and Chrysomelidae were comparatively abundant and diverse, but still low in numbers. Based on their role as biological control agents, Coccinellidae should be a focus in the ERA of Bt-plants, but given the large natural variability in ladybird densities in the field, most questions need to be addressed in low-tier laboratory tests. Chrysomelidae should play a negligible role in the ERA of Bt-plants, since they occur on-crop as secondary pests only. Species occurring off-crop, however, can be addressed in a similar fashion as non-target Lepidoptera in Cry1Ab expressing Bt-maize.
Ota, Hiroyuki; Lim, Tae-Kyu; Tanaka, Tsuyoshi; Yoshino, Tomoko; Harada, Manabu; Matsunaga, Tadashi
2006-09-18
A novel, automated system, PNE-1080, equipped with eight automated pestle units and a spectrophotometer was developed for genomic DNA extraction from maize using aminosilane-modified bacterial magnetic particles (BMPs). The use of aminosilane-modified BMPs allowed highly accurate DNA recovery. The (A(260)-A(320)):(A(280)-A(320)) ratio of the extracted DNA was 1.9+/-0.1. The DNA quality was sufficiently pure for PCR analysis. The PNE-1080 offered rapid assay completion (30 min) with high accuracy. Furthermore, the results of real-time PCR confirmed that our proposed method permitted the accurate determination of genetically modified DNA composition and correlated well with results obtained by conventional cetyltrimethylammonium bromide (CTAB)-based methods.
Ben Ali, Sina-Elisabeth; Madi, Zita Erika; Hochegger, Rupert; Quist, David; Prewein, Bernhard; Haslberger, Alexander G; Brandes, Christian
2014-10-31
Genetic mutations must be avoided during the production and use of seeds. In the European Union (EU), Directive 2001/18/EC requires any DNA construct introduced via transformation to be stable. Establishing genetic stability is critical for the approval of genetically modified organisms (GMOs). In this study, genetic stability of two GMOs was examined using high resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) employing Scorpion primers for amplification. The genetic variability of the transgenic insert and that of the flanking regions in a single oilseed rape variety (GT73) and a stacked maize (MON88017×MON810) was studied. The GT73 and the 5' region of MON810 showed no instabilities in the examined regions. However; two out of 100 analyzed samples carried a heterozygous point mutation in the 3' region of MON810 in the stacked variety. These results were verified by direct sequencing of the amplified PCR products as well as by sequencing of cloned PCR fragments. The occurrence of the mutation suggests that the 5' region is more suitable than the 3' region for the quantification of MON810. The identification of the single nucleotide polymorphism (SNP) in a stacked event is in contrast to the results of earlier studies of the same MON810 region in a single event where no DNA polymorphism was found.
Prescott, Vanessa E; Hogan, Simon P
2006-08-01
The recent advances in biotechnology in the plant industry have led to increasing crop production and yield that in turn has increased the usage of genetically modified (GM) food in the human food chain. The usage of GM foods for human consumption has raised a number of fundamental questions including the ability of GM foods to elicit potentially harmful immunological responses, including allergic hypersensitivity. To assess the safety of foods derived from GM plants including allergenic potential, the US FDA, Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO), and the EU have developed approaches for evaluation assessment. One assessment approach that has been a very active area of research and debate is the development and usage of animal models to assess the potential allergenicity of GM foods. A number of specific animal models employing rodents, pigs, and dogs have been developed for allergenicity assessment. However, validation of these models is needed and consideration of the criteria for an appropriate animal model for the assessment of allergenicity in GM plants is required. We have recently employed a BALB/c mouse model to assess the potential allergenicity of GM plants. We have been able to demonstrate that this model is able to detect differences in antigenicity and identify aspects of protein post-translational modifications that can alter antigenicity. Furthermore, this model has also enabled us to examine the usage of GM plants as a therapeutic approach for the treatment of allergic diseases. This review discusses the current approaches to assess the allergenic potential of GM food and particularly focusing on the usage of animal models to determine the potential allergenicity of GM foods and gives an overview of our recent findings and implications of these studies.
Effects of field-grown genetically modified Zoysia grass on bacterial community structure.
Lee, Yong-Eok; Yang, Sang-Hwan; Bae, Tae-Woong; Kang, Hong-Gyu; Lim, Pyung-Ok; Lee, Hyo-Yeon
2011-04-01
Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P〈0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.
The use of genetically modified mice in cancer risk assessment: challenges and limitations.
Eastmond, David A; Vulimiri, Suryanarayana V; French, John E; Sonawane, Babasaheb
2013-09-01
The use of genetically modified (GM) mice to assess carcinogenicity is playing an increasingly important role in the safety evaluation of chemicals. While progress has been made in developing and evaluating mouse models such as the Trp53⁺/⁻, Tg.AC and the rasH2, the suitability of these models as replacements for the conventional rodent cancer bioassay and for assessing human health risks remains uncertain. The objective of this research was to evaluate the use of accelerated cancer bioassays with GM mice for assessing the potential health risks associated with exposure to carcinogenic agents. We compared the published results from the GM bioassays to those obtained in the National Toxicology Program's conventional chronic mouse bioassay for their potential use in risk assessment. Our analysis indicates that the GM models are less efficient in detecting carcinogenic agents but more consistent in identifying non-carcinogenic agents. We identified several issues of concern related to the design of the accelerated bioassays (e.g., sample size, study duration, genetic stability and reproducibility) as well as pathway-dependency of effects, and different carcinogenic mechanisms operable in GM and non-GM mice. The use of the GM models for dose-response assessment is particularly problematic as these models are, at times, much more or less sensitive than the conventional rodent cancer bioassays. Thus, the existing GM mouse models may be useful for hazard identification, but will be of limited use for dose-response assessment. Hence, caution should be exercised when using GM mouse models to assess the carcinogenic risks of chemicals.
The use of genetically modified mice in cancer risk assessment: Challenges and limitations*
Eastmond, David A.; Vulimiri, Suryanarayana V.; French, John E.; Sonawane, Babasaheb
2015-01-01
The use of genetically modified (GM) mice to assess carcinogenicity is playing an increasingly important role in the safety evaluation of chemicals. While progress has been made in developing and evaluating mouse models such as the Trp53+/−, Tg.AC and the rasH2, the suitability of these models as replacements for the conventional rodent cancer bioassay and for assessing human health risks remains uncertain. The objective of this research was to evaluate the use of accelerated cancer bioassays with GM mice for assessing the potential health risks associated with exposure to carcinogenic agents. We compared the published results from the GM bioassays to those obtained in the National Toxicology Program’s conventional chronic mouse bioassay for their potential use in risk assessment. Our analysis indicates that the GM models are less efficient in detecting carcinogenic agents but more consistent in identifying non-carcinogenic agents. We identified several issues of concern related to the design of the accelerated bioassays (e.g., sample size, study duration, genetic stability and reproducibility) as well as pathway-dependency of effects, and different carcinogenic mechanisms operable in GM and non-GM mice. The use of the GM models for dose-response assessment is particularly problematic as these models are, at times, much more or less sensitive than the conventional rodent cancer bioassays. Thus, the existing GM mouse models may be useful for hazard identification, but will be of limited use for dose-response assessment. Hence, caution should be exercised when using GM mouse models to assess the carcinogenic risks of chemicals. PMID:23985072
Nakajima, Osamu; Akiyama, Hiroshi; Teshima, Reiko
2012-01-01
Genetically modified (GM) animals can be classified into two groups, those developed for food purposes and those developed not for food purposes. We investigated the recent status of development of GM animals developed not for food purposes. Among the GM animals developed not for food purposes, GM fish, chickens, and pigs were selected because many articles have been published on these organisms. Relevant articles published between 2008 and 2011 were surveyed using PubMed and transgenic fish, chicken, or pig as keywords. Then, studies on organisms that could potentially contaminate the food chain with products from these GM animals were selected and analyzed. Fifteen articles on GM fish were found. These articles were classified into four categories: bioreactor (n = 4), resistance to microorganisms (n = 6), resistance to environmental stresses (n = 1), and detection of chemicals (n = 4). Zebrafish were used in 8 of the articles. Six, three, and three articles were reported from Taiwan, Canada and China. Seven articles on GM chickens were found. These articles were classified into two categories: bioreactor (n = 5), and resistance to pathogens (n = 2). Two articles were reported from Japan and Korea, each. As for GM pigs, 43 articles were found. These articles were classified into three categories: xenotransplantation (n = 36), bioreactor (n = 6), and environmental cleanup (n = 1). Nineteen, seven, six, and five articles were reported from USA, Germany, Korea and Taiwan, respectively. Understanding the recent development of GM animals produced not for food purpose is important for assuring the safety of food.
Kajale, Dilip B; Becker, T C
2014-01-01
This study examines the effects of information on consumers' willingness to pay (WTP) for genetically modified food (GMF). We used Vickrey second price experimental auction method for elicitation of consumer WTP for GM potato chips and GM soya-chocolate bar. The sample used in this study was university students from Delhi, India. Four information formats (positive, negative, no information, and combined information about GM technology) were used for the examination. The results show that, when students received the combine information they were willing to pay around 17%-20% premium for GMF and when received the negative information they demanded around 22% discount for GMF. While the positive- and the no-information formats alone have no considerable effect on consumers' WTP for GMF. Overall, our findings suggest that while doing marketing of GMF in India, the best strategy is to provide combined information about GM technology.
Ainembabazi, John Herbert; Tripathi, Leena; Rusike, Joseph; Abdoulaye, Tahirou; Manyong, Victor
2015-01-01
Background Credible empirical evidence is scanty on the social implications of genetically modified (GM) crops in Africa, especially on vegetatively propagated crops. Little is known about the future success of introducing GM technologies into staple crops such as bananas, which are widely produced and consumed in the Great Lakes Region of Africa (GLA). GM banana has a potential to control the destructive banana Xanthomonas wilt disease. Objective To gain a better understanding of future adoption and consumption of GM banana in the GLA countries which are yet to permit the production of GM crops; specifically, to evaluate the potential economic impacts of GM cultivars resistant to banana Xanthomonas wilt disease. Data Sources The paper uses data collected from farmers, traders, agricultural extension agents and key informants in the GLA. Analysis We analyze the perceptions of the respondents about the adoption and consumption of GM crop. Economic surplus model is used to determine future economic benefits and costs of producing GM banana. Results On the release of GM banana for commercialization, the expected initial adoption rate ranges from 21 to 70%, while the ceiling adoption rate is up to 100%. Investment in the development of GM banana is economically viable. However, aggregate benefits vary substantially across the target countries ranging from US$ 20 million to 953 million, highest in countries where disease incidence and production losses are high, ranging from 51 to 83% of production. Conclusion The findings support investment in the development of GM banana resistant to Xanthomonas wilt disease. The main beneficiaries of this technology development are farmers and consumers, although the latter benefit more than the former from reduced prices. Designing a participatory breeding program involving farmers and consumers signifies the successful adoption and consumption of GM banana in the target countries. PMID:26414379
Safety assessments and public concern for genetically modified food products: the American view.
Harlander, Susan K
2002-01-01
In the relatively short time since their commercial introduction in 1996, genetically modified (GM) crops have been rapidly adopted in the United States GM crops are regulated through a coordinated framework developed in 1992 and administered by three agencies-the US Department of Agriculture (USDA) that ensures the products are safe to grow, the Environmental Protection Agency (EPA) that ensures the products are safe for the environment, and the Food and Drug Administration (FDA) that ensures the products are safe to eat. Rigorous food and environmental safety assessments must be completed before GM crops can be commercialized. Fifty-one products have been reviewed by the FDA, including several varieties of corn, soybeans, canola, cotton, rice, sugar beets, potatoes, tomatoes, squash, papaya, and flax. Because FDA considers these crops "substantially equivalent" to their conventional counterparts, no special labeling is required for GM crops in the United States and they are managed as commodities with no segregation or identity preservation. GM crops have thus made their way through commodity distribution channels into thousands of ingredients used in processed foods. It has been estimated that 70% to 85% of processed foods on supermarket shelves in the United States today contain one or more ingredients potentially derived from GM crops. The food industry and retail industry have been monitoring the opinions of their consumers on the GM issue for the past several years. Numerous independent groups have also surveyed consumer concerns about GM foods. The results of these surveys are shared and discussed here.
Li, Zeyang; Gao, Yang; Zhang, Minhong; Feng, Jinghai; Xiong, Yandan
2015-01-01
The aim of this study was to evaluate the effect of feeding Bacillus thuringiensis (Bt) rice expressing the Cry1Ab/1Ac protein on broiler chicken. The genetically modified (GM) Bt rice was compared with the corresponding non-GM rice regarding performance of feeding groups, their health status, relative organ weights, biochemical serum parameters and occurrence of Cry1Ab/1Ac gene fragments. One hundred and eighty day-old Arbor Acres female broilers with the same health condition were randomly allocated to the two treatments (6 replicate cages with 15 broilers in each cage per treatment). They received diets containing GM rice (GM group) or its parental non-GM rice (non-GM group) at 52-57% of the air-dried diet for 42 days. The results show that the transgenic rice had a similar nutrient composition as the non-GM rice and had no adverse effects on chicken growth, biochemical serum parameters and necropsy during the 42-day feeding period. In birds fed the GM rice, no transgenic gene fragments were detected in the samples of blood, liver, kidneys, spleen, jejunum, ileum, duodenum and muscle tissue. In conclusion, the results suggest that Bt rice expressing Cry1Ab/1Ac protein has no adverse effects on broiler chicken. Therefore, it can be considered as safe and used as feed source for broiler chicken.
The GMO case in France: Politics, lawlessness and postmodernism
Kuntz, Marcel
2014-01-01
The GMO debacle in France is analyzed in the light of the balance of forces around this controversy, the changes in position of governments and the opponents’ strategic use of intimidation. These factors have caused insurmountable difficulties for scientific experimentations and assessment of the technology, as well as for farmers attempting to grow GM maize in this country. The change from a “modern” to a “postmodern” framing of official public debates and scientific institutions has not appeased confrontations concerning GMOs. PMID:25437234
The GMO case in France: politics, lawlessness and postmodernism.
Kuntz, Marcel
2014-07-03
The GMO debacle in France is analyzed in the light of the balance of forces around this controversy, the changes in position of governments and the opponents' strategic use of intimidation. These factors have caused insurmountable difficulties for scientific experimentations and assessment of the technology, as well as for farmers attempting to grow GM maize in this country. The change from a "modern" to a "postmodern" framing of official public debates and scientific institutions has not appeased confrontations concerning GMOs.
Zhang, Deshan; Zhang, Chaochun; Tang, Xiaoyan; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R; Davies, William J; Shen, Jianbo
2016-01-01
Root growth is influenced by soil nutrients and neighbouring plants, but how these two drivers affect root interactions and regulate plant growth dynamics is poorly understood. Here, interactions between the roots of maize (Zea mays) and faba bean (Vicia faba) are characterized. Maize was grown alone (maize) or with maize (maize/maize) or faba bean (maize/faba bean) as competitors under five levels of phosphorus (P) supply, and with homogeneous or heterogeneous P distribution. Maize had longer root length and greater shoot biomass and P content when grown with faba bean than with maize. At each P supply rate, faba bean had a smaller root system than maize but greater exudation of citrate and acid phosphatase, suggesting a greater capacity to mobilize P in the rhizosphere. Heterogeneous P availability enhanced the root-length density of maize but not faba bean. Maize root proliferation in the P-rich patches was associated with increased shoot P uptake. Increased P availability by localized P application or by the presence of faba bean exudation stimulated root morphological plasticity and increased shoot growth in maize in the maize/faba bean mixture, suggesting that root interactions of neighbouring plants can be modified by increased P availability. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Onishchenko, G G
2010-01-01
Commercial production of genetically modified (GM) crops as food or feed is regarded as a promising social area in the development of modern biotechnology. The Russian Federation has set up a governmental system to regulate the use of biotechnology products, which is based on Russian and foreign experience and the most up-to-date scientific approaches. The system for evaluating the quality and safety of GM foodstuffs envisages the postregistration monitoring of their circulation as an obligatory stage. For these purposes, the world community applies two methods: enzyme immunoassay and polymerase chain reaction. It should be noted that there are various approaches to GM food labeling in the world; this raises the question of whether the labeling of foods that are prepared from genetically modified organisms, but contain no protein or DNA is to be introduced in Russia, as in the European Union.
NASA Astrophysics Data System (ADS)
Sparrow, Penny A. C.
GM risk assessments play an important role in the decision-making process surrounding the regulation, notification and permission to handle Genetically Modified Organisms (GMOs). Ultimately the role of a GM risk assessment will be to ensure the safe handling and containment of the GMO; and to assess any potential impacts on the environment and human health. A risk assessment should answer all ‘what if’ scenarios, based on scientific evidence.
Rocca, Elena; Andersen, Fredrik
2017-08-14
Scientific risk evaluations are constructed by specific evidence, value judgements and biological background assumptions. The latter are the framework-setting suppositions we apply in order to understand some new phenomenon. That background assumptions co-determine choice of methodology, data interpretation, and choice of relevant evidence is an uncontroversial claim in modern basic science. Furthermore, it is commonly accepted that, unless explicated, disagreements in background assumptions can lead to misunderstanding as well as miscommunication. Here, we extend the discussion on background assumptions from basic science to the debate over genetically modified (GM) plants risk assessment. In this realm, while the different political, social and economic values are often mentioned, the identity and role of background assumptions at play are rarely examined. We use an example from the debate over risk assessment of stacked genetically modified plants (GM stacks), obtained by applying conventional breeding techniques to GM plants. There are two main regulatory practices of GM stacks: (i) regulate as conventional hybrids and (ii) regulate as new GM plants. We analyzed eight papers representative of these positions and found that, in all cases, additional premises are needed to reach the stated conclusions. We suggest that these premises play the role of biological background assumptions and argue that the most effective way toward a unified framework for risk analysis and regulation of GM stacks is by explicating and examining the biological background assumptions of each position. Once explicated, it is possible to either evaluate which background assumptions best reflect contemporary biological knowledge, or to apply Douglas' 'inductive risk' argument.
Yang, Yange; Shi, Zhaopeng; Gao, Ming-Qing; Zhang, Yong
2016-01-01
This study was performed to investigate the effects of genetically modified (GM) milk containing human beta-defensin-3 (HBD3) on mice by a 90-day feeding study. The examined parameters included the digestibility of GM milk, general physical examination, gastric emptying function, intestinal permeability, intestinal microflora composition of mice, and the possibility of horizontal gene transfer (HGT). The emphasis was placed on the effects on gastrointestinal (GI) tract due to the fact that GI tract was the first site contacting with food and played crucial roles in metabolic reactions, nutrition absorption and immunity regulation in the host. However, the traditional methods for analyzing the potential toxicological risk of GM product pay little attention on GI health. In this study, the results showed GM milk was easy to be digested in simulated gastric fluid, and it did not have adverse effects on general and GI health compared to conventional milk. And there is little possibility of HGT. This study may enrich the safety assessment of GM product on GI health. PMID:27438026
Mizutani, Yasumichi; Sugiyama, Eiji; Tasaki, Chikako; Tsuji, Daisuke; Maita, Nobuo; Hirokawa, Takatsugu; Asanuma, Daisuke; Kamiya, Mako; Sato, Kohei; Setou, Mitsutoshi; Urano, Yasuteru; Togawa, Tadayasu; Otaka, Akira; Sakuraba, Hitoshi
2016-01-01
GM2 gangliosidoses, including Tay-Sachs and Sandhoff diseases, are neurodegenerative lysosomal storage diseases that are caused by deficiency of β-hexosaminidase A, which comprises an αβ heterodimer. There are no effective treatments for these diseases; however, various strategies aimed at restoring β-hexosaminidase A have been explored. Here, we produced a modified human hexosaminidase subunit β (HexB), which we have termed mod2B, composed of homodimeric β subunits that contain amino acid sequences from the α subunit that confer GM2 ganglioside–degrading activity and protease resistance. We also developed fluorescent probes that allow visualization of endocytosis of mod2B via mannose 6-phosphate receptors and delivery of mod2B to lysosomes in GM2 gangliosidosis models. In addition, we applied imaging mass spectrometry to monitor efficacy of this approach in Sandhoff disease model mice. Following i.c.v. administration, mod2B was widely distributed and reduced accumulation of GM2, asialo-GM2, and bis(monoacylglycero)phosphate in brain regions including the hypothalamus, hippocampus, and cerebellum. Moreover, mod2B administration markedly improved motor dysfunction and a prolonged lifespan in Sandhoff disease mice. Together, the results of our study indicate that mod2B has potential for intracerebrospinal fluid enzyme replacement therapy and should be further explored as a gene therapy for GM2 gangliosidoses. PMID:27018595
Kitakaze, Keisuke; Mizutani, Yasumichi; Sugiyama, Eiji; Tasaki, Chikako; Tsuji, Daisuke; Maita, Nobuo; Hirokawa, Takatsugu; Asanuma, Daisuke; Kamiya, Mako; Sato, Kohei; Setou, Mitsutoshi; Urano, Yasuteru; Togawa, Tadayasu; Otaka, Akira; Sakuraba, Hitoshi; Itoh, Kohji
2016-05-02
GM2 gangliosidoses, including Tay-Sachs and Sandhoff diseases, are neurodegenerative lysosomal storage diseases that are caused by deficiency of β-hexosaminidase A, which comprises an αβ heterodimer. There are no effective treatments for these diseases; however, various strategies aimed at restoring β-hexosaminidase A have been explored. Here, we produced a modified human hexosaminidase subunit β (HexB), which we have termed mod2B, composed of homodimeric β subunits that contain amino acid sequences from the α subunit that confer GM2 ganglioside-degrading activity and protease resistance. We also developed fluorescent probes that allow visualization of endocytosis of mod2B via mannose 6-phosphate receptors and delivery of mod2B to lysosomes in GM2 gangliosidosis models. In addition, we applied imaging mass spectrometry to monitor efficacy of this approach in Sandhoff disease model mice. Following i.c.v. administration, mod2B was widely distributed and reduced accumulation of GM2, asialo-GM2, and bis(monoacylglycero)phosphate in brain regions including the hypothalamus, hippocampus, and cerebellum. Moreover, mod2B administration markedly improved motor dysfunction and a prolonged lifespan in Sandhoff disease mice. Together, the results of our study indicate that mod2B has potential for intracerebrospinal fluid enzyme replacement therapy and should be further explored as a gene therapy for GM2 gangliosidoses.
Are good ideas enough? The impact of socio-economic and regulatory factors on GMO commercialisation.
Vàzquez-Salat, Núria
2013-01-01
In recent years scientific literature has seen an increase in publications describing new transgenic applications. Although technically-sound, these promising developments might not necessarily translate into products available to the consumer. This article highlights the impact of external factors on the commercial viability of Genetically Modified (GM) animals in the pharmaceutical and food sectors. Through the division of the production chain into three Policy Domains -Science, Market and Public- I present an overview of the broad range of regulatory and socio-economic components that impacts on the path towards commercialisation of GM animals. To further illustrate the unique combination of forces that influence each application, I provide an in-depth analysis of two real cases: GM rabbits producing human polyclonal antibodies (pharmaceutical case study) and GM cows producing recombinant human lactoferrin (food case study). The inability to generalise over the commercial success of a given transgenic application should encourage researchers to perform these type of exercises early in the R & D process. Furthermore, through the analysis of these case studies we can observe a change in the biopolitics of Genetically Modified Organisms (GMOs). Contrary to the GM plant biopolitical landscape, developing states such as China and Argentina are placing themselves as global leaders in GM animals. The pro-GM attitude of these states is likely to cause a shift in the political evolution of global GMO governance.
Nap, Jan-Peter; Metz, Peter L J; Escaler, Marga; Conner, Anthony J
2003-01-01
In the past 6 years, the global area of commercially grown, genetically modified (GM) crops has increased more than 30-fold to over 52 million hectares. The number of countries involved has more than doubled. Especially in developing countries, the GM crop area is anticipated to increase rapidly in the coming years. Despite this high adoption rate and future promises, there is a multitude of concerns about the impact of GM crops on the environment. Regulatory approaches in Europe and North America are essentially different. In the EU, it is based on the process of making GM crops; in the US, on the characteristics of the GM product. Many other countries are in the process of establishing regulation based on either system or a mixture. Despite these differences, the information required for risk assessment tends to be similar. Each risk assessment considers the possibility, probability and consequence of harm on a case-by-case basis. For GM crops, the impact of non-use should be added to this evaluation. It is important that the regulation of risk should not turn into the risk of regulation. The best and most appropriate baseline for comparison when performing risk assessment on GM crops is the impact of plants developed by traditional breeding. The latter is an integral and accepted part of agriculture.
Tulinská, Jana; Adel-Patient, Karine; Bernard, Hervé; Líšková, Aurélia; Kuricová, Miroslava; Ilavská, Silvia; Horváthová, Mira; Kebis, Anton; Rollerová, Eva; Babincová, Júlia; Aláčová, Radka; Wal, Jean-Michel; Schmidt, Kerstin; Schmidtke, Jörg; Schmidt, Paul; Kohl, Christian; Wilhelm, Ralf; Schiemann, Joachim; Steinberg, Pablo
2018-07-01
The genetically modified maize event MON810 expresses a Bacillus thuringiensis-derived gene, which encodes the insecticidal protein Cry1Ab to control some lepidopteran insect pests such as the European corn borer. It has been claimed that the immune system may be affected following the oral/intragastric administration of the MON810 maize in various different animal species. In the frame of the EU-funded project GRACE, two 90-day feeding trials, the so-called studies D and E, were performed to analyze the humoral and cellular immune responses of male and female Wistar Han RCC rats fed the MON810 maize. A MON810 maize variety of Monsanto was used in the study D and a MON810 maize variety of Pioneer Hi-Bred was used in the study E. The total as well as the maize protein- and Cry1Ab-serum-specific IgG, IgM, IgA and IgE levels, the proliferative activity of the lymphocytes, the phagocytic activity of the granulocytes and monocytes, the respiratory burst of the phagocytes, a phenotypic analysis of spleen, thymus and lymph node cells as well as the in vitro production of cytokines by spleen cells were analyzed. No specific Cry1Ab immune response was observed in MON810 rats, and anti-maize protein antibody responses were similar in MON810 and control rats. Single parameters were sporadically altered in rats fed the MON810 maize when compared to control rats, but these alterations are considered to be of no immunotoxicological significance.
Nogueira, D M; Cavalieri, J; Fitzpatrick, L A; Gummow, B; Blache, D; Parker, A J
2016-08-01
This study aimed to evaluate the reproductive response of anoestrous goats that were either hormonally treated and/or supplemented with maize for 9days to determine which treatment combination was the most effective in enhancing follicular development and ovulation rate, and whether these responses were associated with increases in metabolic hormones. The experiment was carried out using 28 does, using a 2×2 factorial design with seven does in each group to test the effect of synchronisation of oestrus, supplementation with maize and their interactions. Synchronisation of oestrous cycles (P<0.001) but not supplementation with maize or the interaction between the two (P>0.05) increased the number of codominant follicles, the diameter of the largest follicle on Day 9 and growth rate of follicles during the period of supplementation. Compared with non-supplemented animals, supplementation with maize increased the total number of follicles observed between Days 7 and 9 (P=0.039). In addition, nutritional supplementation with maize in combination with synchronisation of oestrus increased the ovulation rate by 43% (P=0.074). Interactions between time and supplementation with maize showed that plasma concentrations of insulin, leptin and IGF-1 were greater in does supplemented with maize compared with non-supplemented does (P<0.001). The findings show that hormonal synchronisation had the most influence on modifying follicular development and ovulation in anoestrous goats. Supplementation with maize increased the concentrations of insulin, leptin and IGF-1, which could potentially modify the sensitivity of follicles to gonadotrophins and reduce rates of atresia. Copyright © 2016 Elsevier B.V. All rights reserved.
2008-03-01
In this report the various elements of the safety and nutritional assessment procedure for genetically modified (GM) plant derived food and feed are discussed, in particular the potential and limitations of animal feeding trials for the safety and nutritional testing of whole GM food and feed. The general principles for the risk assessment of GM plants and derived food and feed are followed, as described in the EFSA guidance document of the EFSA Scientific Panel on Genetically Modified Organisms. In Section 1 the mandate, scope and general principles for risk assessment of GM plant derived food and feed are discussed. Products under consideration are food and feed derived from GM plants, such as maize, soybeans, oilseed rape and cotton, modified through the introduction of one or more genes coding for agronomic input traits like herbicide tolerance and/or insect resistance. Furthermore GM plant derived food and feed, which have been obtained through extensive genetic modifications targeted at specific alterations of metabolic pathways leading to improved nutritional and/or health characteristics, such as rice containing beta-carotene, soybeans with enhanced oleic acid content, or tomato with increased concentration of flavonoids, are considered. The safety assessment of GM plants and derived food and feed follows a comparative approach, i.e. the food and feed are compared with their non-GM counterparts in order to identify intended and unintended (unexpected) differences which subsequently are assessed with respect to their potential impact on the environment, safety for humans and animals, and nutritional quality. Key elements of the assessment procedure are the molecular, compositional, phenotypic and agronomic analysis in order to identify similarities and differences between the GM plant and its near isogenic counterpart. The safety assessment is focussed on (i) the presence and characteristics of newly expressed proteins and other new constituents and possible changes in the level of natural constituents beyond normal variation, and on the characteristics of the GM food and feed, and (ii) the possible occurrence of unintended (unexpected) effects in GM plants due to genetic modification. In order to identify these effects a comparative phenotypic and molecular analysis of the GM plant and its near isogenic counterpart is carried out, in parallel with a targeted analysis of single specific compounds, which represent important metabolic pathways in the plant like macro and micro nutrients, known anti-nutrients and toxins. Significant differences may be indicative of the occurrence of unintended effects, which require further investigation. Section 2 provides an overview of studies performed for the safety and nutritional assessment of whole food and feed. Extensive experience has been built up in recent decades from the safety and nutritional testing in animals of irradiated foods, novel foods and fruit and vegetables. These approaches are also relevant for the safety and nutritional testing of whole GM food and feed. Many feeding trials have been reported in which GM foods like maize, potatoes, rice, soybeans and tomatoes have been fed to rats or mice for prolonged periods, and parameters such as body weight, feed consumption, blood chemistry, organ weights, histopathology etc have been measured. The food and feed under investigation were derived from GM plants with improved agronomic characteristics like herbicide tolerance and/or insect resistance. The majority of these experiments did not indicate clinical effects or histopathological abnormalities in organs or tissues of exposed animals. In some cases adverse effects were noted, which were difficult to interpret due to shortcomings in the studies. Many studies have also been carried out with feed derived from GM plants with agronomic input traits in target animal species to assess the nutritive value of the feed and their performance potential. Studies in sheep, pigs, broilers, lactating dairy cows, and fish, comparing the in vivo bioavailability of nutrients from a range of GM plants with their near isogenic counterpart and commercial varieties, showed that they were comparable with those for near isogenic non-GM lines and commercial varieties. In Section 3 toxicological in vivo, in silico, and in vitro test methods are discussed which may be applied for the safety and nutritional assessment of specific compounds present in food and feed or of whole food and feed derived from GM plants. Moreover the purpose, potential and limitations of the 90-day rodent feeding trial for the safety and nutritional testing of whole food and feed have been examined. Methods for single and repeated dose toxicity testing, reproductive and developmental toxicity testing and immunotoxicity testing, as described in OECD guideline tests for single well-defined chemicals are discussed and considered to be adequate for the safety testing of single substances including new products in GM food and feed. Various in silico and in vitro methods may contribute to the safety assessment of GM plant derived food and feed and components thereof, like (i) in silico searches for sequence homology and/or structural similarity of novel proteins or their degradation products to known toxic or allergenic proteins, (ii) simulated gastric and intestinal fluids in order to study the digestive stability of newly expressed proteins and in vitro systems for analysis of the stability of the novel protein under heat or other processing conditions, and (iii) in vitro genotoxicity test methods that screen for point mutations, chromosomal aberrations and DNA damage/repair. The current performance of the safety assessment of whole foods is mainly based on the protocols for low-molecular-weight chemicals such as pharmaceuticals, industrial chemicals, pesticides, food additives and contaminants. However without adaptation, these protocols have limitations for testing of whole food and feed. This primarily results from the fact that defined single substances can be dosed to laboratory animals at very large multiples of the expected human exposure, thus giving a large margin of safety. In contrast foodstuffs are bulky, lead to satiation and can only be included in the diet at much lower multiples of expected human intakes. When testing whole foods, the possible highest concentration of the GM food and feed in the laboratory animal diet may be limited because of nutritional imbalance of the diet, or by the presence of compounds with a known toxicological profile. The aim of the 90-days rodent feeding study with the whole GM food and feed is to assess potential unintended effects of toxicological and/or nutritional relevance and to establish whether the GM food and feed is as safe and nutritious as its traditional comparator rather than determining qualitative and quantitative intrinsic toxicity of defined food constituents. The design of the study should be adapted from the OECD 90-day rodent toxicity study. The precise study design has to take into account the nature of the food and feed and the characteristics of the new trait(s) and their intended role in the GM food and feed. A 90-day animal feeding trial has a large capacity (sensitivity and specificity) to detect potential toxicological effects of single well defined compounds. This can be concluded from data reported on the toxicology of a wide range of industrial chemicals, pharmaceuticals, food substances, environmental, and agricultural chemicals. It is possible to model the sensitivity of the rat subchronic feeding study for the detection of hypothetically increased amount of compounds such as anti-nutrients, toxicants or secondary metabolites. With respect to the detection of potential unintended effects in whole GM food and feed, it is unlikely that substances present in small amounts and with a low toxic potential will result in any observable (unintended) effects in a 90-day rodent feeding study, as they would be below the no-observed-effect-level and thus of unlikely impact to human health at normal intake levels. Laboratory animal feeding studies of 90-days duration appear to be sufficient to pick up adverse effects of diverse compounds that would also give adverse effects after chronic exposure. This conclusion is based on literature data from studies investigating whether toxicological effects are adequately identified in 3-month subchronic studies in rodents, by comparing findings at 3 and 24 months for a range of different chemicals. The 90-day rodent feeding study is not designed to detect effects on reproduction or development other than effects on adult reproductive organ weights and histopathology. Analyses of available data indicate that, for a wide range of substances, reproductive and developmental effects are not potentially more sensitive endpoints than those examined in subchronic toxicity tests. Should there be structural alerts for reproductive/developmental effects or other indications from data available on a GM food and feed, then these tests should be considered. By relating the estimated daily intake, or theoretical maximum daily intake per capita for a given whole food (or the sum of its individual commercial constituents) to that consumed on average per rat per day in the subchronic 90-day feeding study, it is possible to establish the margin of exposure (safety margin) for consumers. Results obtained from testing GM food and feed in rodents indicate that large (at least 100-fold) 'safety' margins exist between animal exposure levels without observed adverse effects and estimated human daily intake. Results of feeding studies with feed derived from GM plants with improved agronomic properties, carried out in a wide range of livestock species, are discussed. The studies did not show any biologically relevant differences in the parameters tested between control and test animals. (ABSTRACT TRUNCATED)
Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing
2005-11-30
Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.
Ha, Nan; Feike, Til; Back, Hans; Xiao, Haifeng; Bahrs, Enno
2015-11-01
Overuse of nitrogen (N) fertilizer constitutes the major issue of current crop production in China, exerting a substantial effect on global warming through massive emission of greenhouse gas (GHG). Despite the ongoing effort, which includes the promotion of technologically sophisticated N management schemes, farmers' N rates maintain at excessive rates. Therefore the current study tests three simple and easily to apply N fertilizer recommendation strategies, which could be implemented on large scale through the existing agricultural advisory system of China, at comparatively low cost. Building on a detailed crop production dataset of 65 winter wheat (WW) and summer maize (SM) producing farm households of the North China Plain, scenario analysis is applied. The effects of the three N strategies under constant and changing yield levels on product carbon footprint (PCF) and gross margin (GM) are determined for the production condition of every individual farm household. The N fixed rate strategy realized the highest improvement potential in PCF and GM in WW; while the N coefficient strategy performed best in SM. The analysis furthermore revealed that improved N management has a significant positive effect on PCF, but only a marginal and insignificant effect on GM. On the other side, a potential 10% yield loss would have only a marginal effect on PCF, but a detrimental effect on farmers' income. With farmers currently applying excessive N rates as "cheap insurance" against potential N limitation, it will be of vital importance to avoid any yield reductions (caused by N limitation) and respective severe financial losses, when promoting and implementing advanced fertilization strategies. To achieve this, it is furthermore recommended to increase the price of fertilizer, improve the agricultural extensions system, and recognize farmers' fertilizer related decision-making processes as key research areas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Harrigan, George G; Harrison, Jay M
2012-01-01
New transgenic (GM) crops are subjected to extensive safety assessments that include compositional comparisons with conventional counterparts as a cornerstone of the process. The influence of germplasm, location, environment, and agronomic treatments on compositional variability is, however, often obscured in these pair-wise comparisons. Furthermore, classical statistical significance testing can often provide an incomplete and over-simplified summary of highly responsive variables such as crop composition. In order to more clearly describe the influence of the numerous sources of compositional variation we present an introduction to two alternative but complementary approaches to data analysis and interpretation. These include i) exploratory data analysis (EDA) with its emphasis on visualization and graphics-based approaches and ii) Bayesian statistical methodology that provides easily interpretable and meaningful evaluations of data in terms of probability distributions. The EDA case-studies include analyses of herbicide-tolerant GM soybean and insect-protected GM maize and soybean. Bayesian approaches are presented in an analysis of herbicide-tolerant GM soybean. Advantages of these approaches over classical frequentist significance testing include the more direct interpretation of results in terms of probabilities pertaining to quantities of interest and no confusion over the application of corrections for multiple comparisons. It is concluded that a standardized framework for these methodologies could provide specific advantages through enhanced clarity of presentation and interpretation in comparative assessments of crop composition.
Goldstein, Daniel A
2014-06-01
The debate over genetically modified (GM) crops has raged in Europe since 1996, but had barely risen above a whisper in the USA until recent labeling debates raised public attention. This article will explain GM crops and traits discuss safety assessment provide a view on safety from authoritative organizations discuss selected issues of current debate, and provide the author's perspective as to why the public debate has drifted so far from scientific reality. The economic and environmental benefits of GM crops are beyond scope, but references are provided. GM food and feed undergo comprehensive assessments using recognized approaches to assure they are as safe as the conventional congener. Issues of food safety and nutrition, unrelated to the GM process, may arise when GM foods display novel components or composition. Unanticipated genetic effects in GM crops appear to be limited in contrast to existing variations among conventional varieties resulting from breeding, mutation, and natural mobile genetic elements. Allergenic potential is assessed when selecting genes for introduction into GM crops and remains a theoretical risk to date. Emerging weed and insect resistance is not unique to GM technology and will require the use of integrated pest management/best practices for pest control. Gene flow from GM crops to wild relatives is limited by existing biological barriers but can at time be a relevant consideration in gene selection and planting practices. Insect-resistant GM crops have significantly reduced use of chemical insecticides and appear to have reduced the incidence of pesticide poisoning in areas where small scale farming and hand application are common. Changes in herbicide patterns are more complex and are evolving over time in response to weed resistance management needs. Recent public debate is driven by a combination of unfounded allegations about the technology and purveyors, pseudoscience, and attempts to apply a strict precautionary principle.
Genetically Modified Food Labeling in China: In Pursuit of a Rational Path.
Zhu, Xiao; Roberts, Michael T; Wu, Kaijie
2016-08-01
Facing a tension between the increasing use of genetically engineered or modified food and consumer concerns over the risks associated with GMOs, China has established a GM food labeling regime through regulations-known as Agro-GMO regulations-to protect consumers' right to know. However, the design and enforcement of this GM food labeling regime is problematic. As a result, the labeling regime is ineffective and inconsistent, leaving consumers' rights unprotected. As the recently amended Food Safety Law in China requires GM food labeling for the first time, this article argues that China should replace the current Agro-GMO food labeling scheme with a special regulatory scheme. A comparative analysis of the GM food labeling systems in the European Union and United States, coupled with a rigorous examination of the problems and barriers of GM food labeling in China, sets a solid foundation by which to propose changes to incorporate into a special regulatory scheme. To this end, this article engages in such an analysis and recommends practical steps to guide the enactment of a special regulatory scheme. The recommendations comport with China's unique legal and political culture, but also could be used by other national regulatory regimes who permit use of GM food while also being committed to improving consumers' right to know.
Aphid-parasitoid community structure on genetically modified wheat.
von Burg, Simone; van Veen, Frank J F; Álvarez-Alfageme, Fernando; Romeis, Jörg
2011-06-23
Since the introduction of genetically modified (GM) plants, one of the main concerns has been their potential effect on non-target insects. Many studies have looked at GM plant effects on single non-target herbivore species or on simple herbivore-natural enemy food chains. Agro-ecosystems, however, are characterized by numerous insect species which are involved in complex interactions, forming food webs. In this study, we looked at transgenic disease-resistant wheat (Triticum aestivum) and its effect on aphid-parasitoid food webs. We hypothesized that the GM of the wheat lines directly or indirectly affect aphids and that these effects cascade up to change the structure of the associated food webs. Over 2 years, we studied different experimental wheat lines under semi-field conditions. We constructed quantitative food webs to compare their properties on GM lines with the properties on corresponding non-transgenic controls. We found significant effects of the different wheat lines on insect community structure up to the fourth trophic level. However, the observed effects were inconsistent between study years and the variation between wheat varieties was as big as between GM plants and their controls. This suggests that the impact of our powdery mildew-resistant GM wheat plants on food web structure may be negligible and potential ecological effects on non-target insects limited.
Coupe, Richard H.; Capel, Paul D.
2016-01-01
BACKGROUNDGenetically modified (GM) varieties of soybean, corn and cotton have largely replaced conventional varieties in the United States. The most widely used applications of GM technology have been the development of crops that are resistant to a specific broad-spectrum herbicide (primarily glyphosate) or that produce insecticidal compounds within the plant itself. With the widespread adoption of GM crops, a decline in the use of conventional pesticides was expected.RESULTSThere has been a reduction in the annual herbicide application rate to corn since the advent of GM crops, but the herbicide application rate is mostly unchanged for cotton. Herbicide use on soybean has increased. There has been a substantial reduction in the amount of insecticides used on both corn and cotton since the introduction of GM crops.CONCLUSIONSThe observed changes in pesticide use are likely to be the result of many factors, including the introduction of GM crops, regulatory restrictions on some conventional pesticides, introduction of new pesticide technologies and changes in farming practices. In order to help protect human and environmental health and to help agriculture plan for the future, more detailed and complete documentation on pesticide use is needed on a frequent and ongoing basis.
Li, Liang; Dong, Mei; An, Na; Liang, Lixia; Wan, Yusong; Jin, Wujun
2015-01-01
Rice is one of the most important food crops in the world. Genetically modified (GM) technology has been used in rice to confer herbicide tolerance and pathogen or insect resistance. China invests heavily in research on GM rice. By the end of 2014, at least 250 transgenic rice lines had been developed in China. To monitor the presence of GM rice in food and feed, we collected information on foreign elements from 250 transgenic rice lines and found 5 elements, including the Agrobacterium tumefaciens nopaline synthase terminator (T-NOS), the cauliflower mosaic virus 35S promoter (CaMV35S), the ubiquitin gene (Ubi), the bar gene, and the hygromycin phosphotransferase gene (Hpt), that are commonly present in GM rice. Therefore, we constructed a novel plasmid (pBJGMM001) that contains fragments of these elements and two endogenous reference genes (the sucrose phosphate synthase gene, SPS, and the phosphoenolpyruvate carboxylase gene, PEPC). pBJGMM001 can serve as a standard for detecting 96% of GM rice lines in China. The primers, amplicons, reaction mixture, and PCR program were developed based on Chinese National Standards. The protocol was validated and determined to be suitable for practical use in monitoring and identifying GM rice.
Sheng, Yao; Qi, Xiaozhe; Liu, Yifei; Guo, Mingzhang; Chen, Siyuan; He, Xiaoyun; Huang, Kunlun; Xu, Wentao
2014-10-01
Genetically modified (GM) crops that express pharmaceutical proteins have become an important focus of recent genetic engineering research. Food safety assessment is necessary for the commercial development of these crops. Subchronic toxicity study in vivo and allergenicity study in vitro were designed to evaluate the food safety of the rice variety expressing human serum albumin (HSA). Animals were fed rodent diets containing 12.5%, 25.0% and 50.0% GM or non-GM rice for 90 days. The composition analysis of the GM rice demonstrated several significant differences. However, most of the differences remained within the ranges reported in the literature. In the animal study, a range of indexes including clinical observation, feed efficiency, hematology, serum chemistry, organ weights and histopathology were examined. Random changes unrelated to the GM rice exposure, within the range of historical control values and not associated with any signs of illness were observed. The results of heat stability and in vitro digestion of HSA indicated no evidence of potential allergenicity of the protein. Overall, the results of these studies suggest that the GM rice appears to be safe as a dietary ingredient when it is used at up to 50% in the diet on a subchronic basis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dong, Mei; An, Na; Liang, Lixia; Wan, Yusong
2015-01-01
Rice is one of the most important food crops in the world. Genetically modified (GM) technology has been used in rice to confer herbicide tolerance and pathogen or insect resistance. China invests heavily in research on GM rice. By the end of 2014, at least 250 transgenic rice lines had been developed in China. To monitor the presence of GM rice in food and feed, we collected information on foreign elements from 250 transgenic rice lines and found 5 elements, including the Agrobacterium tumefaciens nopaline synthase terminator (T-NOS), the cauliflower mosaic virus 35S promoter (CaMV35S), the ubiquitin gene (Ubi), the bar gene, and the hygromycin phosphotransferase gene (Hpt), that are commonly present in GM rice. Therefore, we constructed a novel plasmid (pBJGMM001) that contains fragments of these elements and two endogenous reference genes (the sucrose phosphate synthase gene, SPS, and the phosphoenolpyruvate carboxylase gene, PEPC). pBJGMM001 can serve as a standard for detecting 96% of GM rice lines in China. The primers, amplicons, reaction mixture, and PCR program were developed based on Chinese National Standards. The protocol was validated and determined to be suitable for practical use in monitoring and identifying GM rice. PMID:26495318
Li, Jing; Liu, Lu; Yang, Dong; Liu, Wei-Li; Shen, Zhi-Qiang; Qu, Hong-Mei; Qiu, Zhi-Gang; Hou, Ai-Ming; Wang, Da-Ning; Ding, Chen-Shi; Li, Jun-Wen; Guo, Jian-Hua; Jin, Min
2017-05-24
Underestimation of Escherichia coli in drinking water, an indicator microorganism of sanitary risk, may result in potential risks of waterborne diseases. However, the detection of disinfectant-injured or genetically modified (GM) E. coli has been largely overlooked so far. To evaluate the accuracy of culture-dependent enumeration with regard to disinfectant-injured and GM E. coli, chlorine- or ozone-injured wild-type (WT) and GM E. coli were prepared and characterized. Then, water samples contaminated with these E. coli strains were assayed by four widely used methods, including lactose tryptose broth-based multiple-tube fermentation (MTF), m-endo-based membrane filtration method (MFM), an enzyme substrate test (EST) known as Colilert, and Petrifilm-based testing slip method (TSM). It was found that MTF was the most effective method to detect disinfectant-injured WT E. coli (with 76.9% trials detecting all these bacteria), while this method could not effectively detect GM E. coli (with uninjured bacteria undetectable and a maximal detection rate of 21.5% for the injured). The EST was the only method which enabled considerable enumeration of uninjured GM E. coli, with a detection rate of over 93%. However, the detection rate declined to lower than 45.4% once the GM E. coli was injured by disinfectants. The MFM was invalid for both disinfectant-injured and GM E. coli. This is the first study to report the failure of these commonly used enumeration methods to simultaneously detect disinfectant-injured and GM E. coli. Thus, it highlights the urgent requirement for the development of a more accurate and versatile enumeration method which allows the detection of disinfectant-injured and GM E. coli on the assessment of microbial quality of drinking water.
Finucane, Melissa L; Holup, Joan L
2005-04-01
The rapid globalization of the world economy has increased the need for an astute understanding of cultural differences in perceptions, values, and ways of thinking about new food technologies. In this paper, we describe how socio-psychological and cultural factors may affect public perceptions of the risk of genetically modified (GM) food. We present psychological, sociological, and anthropological research on risk perception as a framework for understanding cross-national differences in reactions to GM food. Differences in the cultural values and circumstances of people in the US, European countries, and the developing world are examined. The implications of cultural theory for risk communication and decision making about GM food are discussed and directions for future research highlighted.
GM1 ganglioside in Parkinson's disease: Pilot study of effects on dopamine transporter binding.
Schneider, Jay S; Cambi, Franca; Gollomp, Stephen M; Kuwabara, Hiroto; Brašić, James R; Leiby, Benjamin; Sendek, Stephanie; Wong, Dean F
2015-09-15
GM1 ganglioside has been suggested as a treatment for Parkinson's disease (PD), potentially having symptomatic and disease modifying effects. The current pilot imaging study was performed to examine effects of GM1 on dopamine transporter binding, as a surrogate measure of disease progression, studied longitudinally. Positron emission tomography (PET) imaging data were obtained from a subset of subjects enrolled in a delayed start clinical trial of GM1 in PD [1]: 15 Early-start (ES) subjects, 14 Delayed-start (DS) subjects, and 11 Comparison (standard-of-care) subjects. Treatment subjects were studied over a 2.5 year period while Comparison subjects were studied over 2 years. Dynamic PET scans were performed over 90 min following injection of [(11)C]methylphenidate. Regional values of binding potential (BPND) were analyzed for several striatal volumes of interest. Clinical results for this subset of subjects were similar to those previously reported for the larger study group. ES subjects showed early symptomatic improvement and slow symptom progression over the study period. DS and Comparison subjects were initially on the same symptom progression trajectory but diverged once DS subjects received GM1 treatment. Imaging results showed significant slowing of BPND loss in several striatal regions in GM1-treated subjects and in some cases, an increased BPND in some striatal regions was detected after GM1 use. Results of this pilot imaging study provide additional data to suggest a potential disease modifying effect of GM1 on PD. These results need to be confirmed in a larger number of subjects. Copyright © 2015 Elsevier B.V. All rights reserved.
Cotta, Simone Raposo; Dias, Armando Cavalcante Franco; Marriel, Ivanildo Evódio; Andreote, Fernando Dini; Seldin, Lucy; van Elsas, Jan Dirk
2014-10-01
The composition of the rhizosphere microbiome is a result of interactions between plant roots, soil, and environmental conditions. The impact of genetic variation in plant species on the composition of the root-associated microbiota remains poorly understood. This study assessed the abundances and structures of nitrogen-transforming (ammonia-oxidizing) archaea and bacteria as well as nitrogen-fixing bacteria driven by genetic modification of their maize host plants. The data show that significant changes in the abundances (revealed by quantitative PCR) of ammonia-oxidizing bacterial and archaeal communities occurred as a result of the maize host being genetically modified. In contrast, the structures of the total communities (determined by PCR-denaturing gradient gel electrophoresis) were mainly driven by factors such as soil type and season and not by plant genotype. Thus, the abundances of ammonia-oxidizing bacterial and archaeal communities but not structures of those communities were revealed to be responsive to changes in maize genotype, allowing the suggestion that community abundances should be explored as candidate bioindicators for monitoring the possible impacts of cultivation of genetically modified plants. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Exploitation of molecular profiling techniques for GM food safety assessment.
Kuiper, Harry A; Kok, Esther J; Engel, Karl-Heinz
2003-04-01
Several strategies have been developed to identify unintended alterations in the composition of genetically modified (GM) food crops that may occur as a result of the genetic modification process. These include comparative chemical analysis of single compounds in GM food crops and their conventional non-GM counterparts, and profiling methods such as DNA/RNA microarray technologies, proteomics and metabolite profiling. The potential of profiling methods is obvious, but further exploration of specificity, sensitivity and validation is needed. Moreover, the successful application of profiling techniques to the safety evaluation of GM foods will require linked databases to be built that contain information on variations in profiles associated with differences in developmental stages and environmental conditions.
Debode, Frederic; Janssen, Eric; Bragard, Claude; Berben, Gilbert
2017-08-01
The presence of genetically modified organisms (GMOs) in food and feed is mainly detected by the use of targets focusing on promoters and terminators. As some genes are frequently used in genetically modified (GM) construction, they also constitute excellent screening elements and their use is increasing. In this paper we propose a new target for the detection of cry1Ab and cry1Ac genes by real-time polymerase chain reaction (PCR) and pyrosequencing. The specificity, sensitivity and robustness of the real-time PCR method were tested following the recommendations of international guidelines and the method met the expected performance criteria. This paper also shows how the robustness testing was assessed. This new cry1Ab/Ac method can provide a positive signal with a larger number of GM events than do the other existing methods using double dye-probes. The method permits the analysis of results with less ambiguity than the SYBRGreen method recommended by the European Reference Laboratory (EURL) GM Food and Feed (GMFF). A pyrosequencing method was also developed to gain additional information thanks to the sequence of the amplicon. This method of sequencing-by-synthesis can determine the sequence between the primers used for PCR. Pyrosequencing showed that the sequences internal to the primers present differences following the GM events considered and three different sequences were observed. The sensitivity of the pyrosequencing was tested on reference flours with a low percentage GM content and different copy numbers. Improvements in the pyrosequencing protocol provided correct sequences with 50 copies of the target. Below this copy number, the quality of the sequence was more random.
Safety assessment of lepidopteran insect-protected transgenic rice with cry2A* gene.
Zou, Shiying; Huang, Kunlun; Xu, Wentao; Luo, Yunbo; He, Xiaoyun
2016-04-01
Numerous genetically modified (GM) crops expressing proteins for insect resistance have been commercialized following extensive testing demonstrating that the foods obtained from them are as safe as that obtained from their corresponding non-GM varieties. In this paper, we report the outcome of safety studies conducted on a newly developed insect-resistant GM rice expressing the cry2A* gene by a subchronic oral toxicity study on rats. GM rice and non-GM rice were incorporated into the diet at levels of 30, 50, and 70% (w/w), No treatment-related adverse or toxic effects were observed based on an examination of the daily clinical signs, body weight, food consumption, hematology, serum biochemistry, and organ weight or based on gross and histopathological examination. These results demonstrate that the GM rice with cry2A* gene is as safe for food as conventional non-GM rice.
Jain, Sanyog; Harde, Harshad; Indulkar, Anura; Agrawal, Ashish Kumar
2014-02-01
The present study was designed with the objective to investigate the stability and potential of glucomannan-modified bilosomes (GM-bilosomes) in eliciting immune response following oral administration. GM-bilosomes exhibited desired quality attributes simultaneously maintaining the chemical and conformation stability of the tetanus toxoid (TT) entrapped in to freeze dried formulations. The GM-bilosomes exhibited excellent stability in different simulated biological fluids and sustained release profile up to 24 h. GM-bilosomes elicited significantly higher (P<0.05) systemic immune response (serum IgG level) as compared to bilosomes, niosomes and alum adsorbed TT administered through oral route. More importantly, GM-bilosomes were found capable of inducing mucosal immune response, i.e. sIgA titre in salivary and intestinal secretions as well as cell mediated immune response (IL-2 and IFN-γ levels in spleen homogenate) which was not induced by i.m. TT, the conventional route of immunization. Conclusively, GM-bilosomes could be considered as a promising carrier and adjuvant system for oral mucosal immunization. This team reports on the development and effects of a glucomannan-modified bilosome as an oral vaccine vector, using tetanus toxoid in the experiments. These GM-bilosomes not only elicited significantly higher systemic immune response as compared to bilosomes, niosomes and alum adsorbed orally administered TT, but also demonstrated mucosal immune response induction as well as cell mediated immune responses, which were not induced by the conventional route of immunization. © 2014.
Nakamura, Kosuke; Akiyama, Hiroshi; Kawano, Noriaki; Kobayashi, Tomoko; Yoshimatsu, Kayo; Mano, Junichi; Kitta, Kazumi; Ohmori, Kiyomi; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko
2013-12-01
Genetically modified (GM) rice (Oryza sativa) lines, such as insecticidal Kefeng and Kemingdao, have been developed and found unauthorised in processed rice products in many countries. Therefore, qualitative detection methods for the GM rice are required for the GM food regulation. A transgenic construct for expressing cowpea (Vigna unguiculata) trypsin inhibitor (CpTI) was detected in some imported processed rice products contaminated with Kemingdao. The 3' terminal sequence of the identified transgenic construct for expression of CpTI included an endoplasmic reticulum retention signal coding sequence (KDEL) and nopaline synthase terminator (T-nos). The sequence was identical to that in a report on Kefeng. A novel construct-specific real-time polymerase chain reaction (PCR) detection method for detecting the junction region sequence between the CpTI-KDEL and T-nos was developed. The imported processed rice products were evaluated for the contamination of the GM rice using the developed construct-specific real-time PCR methods, and detection frequency was compared with five event-specific detection methods. The construct-specific detection methods detected the GM rice at higher frequency than the event-specific detection methods. Therefore, we propose that the construct-specific detection method is a beneficial tool for screening the contamination of GM rice lines, such as Kefeng, in processed rice products for the GM food regulation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Paracchini, Valentina; Petrillo, Mauro; Reiting, Ralf; Angers-Loustau, Alexandre; Wahler, Daniela; Stolz, Andrea; Schönig, Birgit; Matthies, Anastasia; Bendiek, Joachim; Meinel, Dominik M; Pecoraro, Sven; Busch, Ulrich; Patak, Alex; Kreysa, Joachim; Grohmann, Lutz
2017-09-01
Many food and feed additives result from fermentation of genetically modified (GM) microorganisms. For vitamin B2 (riboflavin), GM Bacillus subtilis production strains have been developed and are often used. The presence of neither the GM strain nor its recombinant DNA is allowed for fermentation products placed on the EU market as food or feed additive. A vitamin B 2 product (80% feed grade) imported from China was analysed. Viable B. subtilis cells were identified and DNAs of two bacterial isolates (LHL and LGL) were subjected to three whole genome sequencing (WGS) runs with different devices (MiSeq, 454 or HiSeq system). WGS data revealed the integration of a chloramphenicol resistance gene, the deletion of the endogenous riboflavin (rib) operon and presence of four putative plasmids harbouring rib operons. Event- and construct-specific real-time PCR methods for detection of the GM strain and its putative plasmids in food and feed products have been developed. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The discovery of the opaque2 (o2) mutation and o2 modifier genes in maize (Zea mays L.) has resulted in the development of Quality Protein Maize (QPM) lines with higher lysine and tryptophan content. QPM lines BQPM9, BQPM10, BQPM11, BQPM12, BQPM13, BQPM14, BQPM15, BQPM16, and BQPM17 were developed a...
de Paula, Nayhanne T; de Faria, Josias C; Aragão, Francisco J L
2015-12-02
The RNAi concept was explored to silence the rep gene from the bean golden mosaic virus (BGMV) and a genetically modified (GM) bean immune to the virus was previously generated. We investigated if BGMV-viruliferous whiteflies would reduce viral amount after feeding on GM plants. BGMV DNA amount was significantly reduced in whiteflies feeding in GM-plants (compared with insects feeding on non-GM plants) for a period of 4 and 8 days in 52% and 84% respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
De Steur, Hans; Wesana, Joshua; Blancquaert, Dieter; Van Der Straeten, Dominique; Gellynck, Xavier
2017-02-01
Building upon the growing interest and research on genetically modified (GM) biofortification, its socioeconomic potential has been increasingly examined. We conducted two systematic reviews and meta-analyses to provide comprehensive evidence of consumers' willingness to pay (11 economic valuation studies, 64 estimates) and cost-effectiveness/benefits (five economic evaluation studies, 30 estimates). Worldwide, consumers were willing to pay 23.9% more for GM biofortified food crops. Aside from crop and design-related differences, information provision was deemed crucial. Positive information (nutrition and GM benefits) is associated with the highest consumer willingness to pay, compared with negative, objective, and conflicting GM information, especially when negative information was mentioned last. This health intervention would reduce the aggregated micronutrient deficiency burden in Asia (15.6 million disability-adjusted life years (DALYs)) by 12.5-51.4%, at a low cost of USD 7.9-27.8 per DALY in a pessimistic and optimistic scenario, respectively. Given that GM biofortified crops could tackle hidden hunger in a cost-effective and well-accepted way, its implementation is worth pursuing. A case study on folate biofortification further elaborates on the importance of socioeconomic research and the determinants of their market potential. © 2016 New York Academy of Sciences.
Schulze, Juerg; Frauenknecht, Tina; Brodmann, Peter; Bagutti, Claudia
2014-01-01
Despite cultivation and seed import bans of genetically modified (GM) oilseed rape (Brassica napus L.), feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto). The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer) at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds. PMID:25464509
Schulze, Juerg; Frauenknecht, Tina; Brodmann, Peter; Bagutti, Claudia
2014-01-01
Despite cultivation and seed import bans of genetically modified (GM) oilseed rape (Brassica napus L.), feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto). The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer) at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds.
Gao, Hongfei; Wen, Luke; Wu, Yuhua; Yan, Xiaohong; Li, Jun; Li, Xiaofei; Fu, Zhifeng; Wu, Gang
2018-05-23
A highly sensitive electrochemiluminescent (ECL) immunoassay targeting PAT/ bar protein was facilely developed for genetically modified (GM) rapeseed detection using carbon nanoparticles (CNPs) originally prepared from printer toner. In this work, CNPs linked with antibody for PAT/ bar protein were used to modify a working electrode. After an immunoreaction between the PAT/ bar protein and its antibody, the immunocomplex formed on the electrode receptor region resulted in an inhibition of electron transfer between the electrode surface and the ECL substance, thus led to a decrease of ECL response. Under the optimal conditions, the ECL responses linearly decreased as the increase of the PAT/ bar protein concentration and the GM rapeseed RF3 content in the ranges of 0.10-10 ng/mL and 0.050-1.0%, with the limits of detection of 0.050 ng/mL and 0.020% (S/N = 3). These results open a facile, sensitive, and rapid approach for the safety control of agricultural GM rape.
Maize production in the United States is dominated by plants genetically modified with transgenes from Bacillus thuringiensis (Bt). Varieties of Bt maize expressing Cry3Bb endotoxins that specifically target corn rootworms (genus Diabrotica) have proven highly efficacious. Howeve...
A risk-based classification scheme for genetically modified foods. II: Graded testing.
Chao, Eunice; Krewski, Daniel
2008-12-01
This paper presents a graded approach to the testing of crop-derived genetically modified (GM) foods based on concern levels in a proposed risk-based classification scheme (RBCS) and currently available testing methods. A graded approach offers the potential for more efficient use of testing resources by focusing less on lower concern GM foods, and more on higher concern foods. In this proposed approach to graded testing, products that are classified as Level I would have met baseline testing requirements that are comparable to what is widely applied to premarket assessment of GM foods at present. In most cases, Level I products would require no further testing, or very limited confirmatory analyses. For products classified as Level II or higher, additional testing would be required, depending on the type of the substance, prior dietary history, estimated exposure level, prior knowledge of toxicity of the substance, and the nature of the concern related to unintended changes in the modified food. Level III testing applies only to the assessment of toxic and antinutritional effects from intended changes and is tailored to the nature of the substance in question. Since appropriate test methods are not currently available for all effects of concern, future research to strengthen the testing of GM foods is discussed.
Li, Xiang; Wang, Xiuxiu; Yang, Jielin; Liu, Yueming; He, Yuping; Pan, Liangwen
2014-05-16
To date, over 150 genetically modified (GM) crops are widely cultivated. To comply with regulations developed for genetically modified organisms (GMOs), including labeling policies, many detection methods for GMO identification and quantification have been developed. To detect the entrance and exit of unauthorized GM crop events in China, we developed a novel quadruplex real-time PCR method for simultaneous detection and quantification of GM cotton events GHB119 and T304-40 in cotton-derived products (based on the 5'-flanking sequence) and the insect-resistance gene Cry2Ae. The limit of detection was 10 copies for GHB119 and Cry2Ae and 25 copies for T304-40. The limit of quantification was 25 copies for GHB119 and Cry2Ae and 50 copies for T304-40. Moreover, low bias and acceptable standard deviation and relative standard deviation values were obtained in quantification analysis of six blind samples containing different GHB119 and T304-40 ingredients. The developed quadruplex quantitative method could be used for quantitative detection of two GM cotton events (GHB119 and T304-40) and Cry2Ae gene ingredient in cotton derived products.
2014-01-01
Background To date, over 150 genetically modified (GM) crops are widely cultivated. To comply with regulations developed for genetically modified organisms (GMOs), including labeling policies, many detection methods for GMO identification and quantification have been developed. Results To detect the entrance and exit of unauthorized GM crop events in China, we developed a novel quadruplex real-time PCR method for simultaneous detection and quantification of GM cotton events GHB119 and T304-40 in cotton-derived products (based on the 5′-flanking sequence) and the insect-resistance gene Cry2Ae. The limit of detection was 10 copies for GHB119 and Cry2Ae and 25 copies for T304-40. The limit of quantification was 25 copies for GHB119 and Cry2Ae and 50 copies for T304-40. Moreover, low bias and acceptable standard deviation and relative standard deviation values were obtained in quantification analysis of six blind samples containing different GHB119 and T304-40 ingredients. Conclusions The developed quadruplex quantitative method could be used for quantitative detection of two GM cotton events (GHB119 and T304-40) and Cry2Ae gene ingredient in cotton derived products. PMID:24884946
Harrison, Jay M; Howard, Delia; Malven, Marianne; Halls, Steven C; Culler, Angela H; Harrigan, George G; Wolfinger, Russell D
2013-07-03
Compositional studies on genetically modified (GM) and non-GM crops have consistently demonstrated that their respective levels of key nutrients and antinutrients are remarkably similar and that other factors such as germplasm and environment contribute more to compositional variability than transgenic breeding. We propose that graphical and statistical approaches that can provide meaningful evaluations of the relative impact of different factors to compositional variability may offer advantages over traditional frequentist testing. A case study on the novel application of principal variance component analysis (PVCA) in a compositional assessment of herbicide-tolerant GM cotton is presented. Results of the traditional analysis of variance approach confirmed the compositional equivalence of the GM and non-GM cotton. The multivariate approach of PVCA provided further information on the impact of location and germplasm on compositional variability relative to GM.
Morris, S H; Adley, C C
2001-02-01
This article summarizes the current situation pertaining to modern biotechnology in Ireland, with a particular focus on genetically modified (GM) crops. It briefly examines some important results of the major national surveys carried out in Ireland since 1989, highlights the recent upsurge in media (newspaper) coverage of GM related stories in three Irish opinion leader publications and it allows for an insight into the Irish public's relationship with modern biotechnology.
Roda, A; Mirasoli, M; Guardigli, M; Michelini, E; Simoni, P; Magliulo, M
2006-03-01
Proteins from the Cry 1 family, in particular Cry 1Ab, are commonly expressed in genetically modified Bt maize in order to control chewing insect pests. A sensitive chemiluminescent sandwich enzyme immunoassay for the detection of Cry1Ab protein from genetically modified Bt maize has been developed and validated. A Cry1Ab protein-specific antibody was immobilized on 96- or 384-well microtiter plates in order to capture the Cry1Ab toxin in the sample; the bound toxin was then detected by employing a second anti-Cry1Ab antibody and a horseradish peroxidase-labeled anti-antibody, followed by measurement of the enzyme activity with an enhanced chemiluminescent system. The chemiluminescent assay fulfilled all the requirements of accuracy and precision and exhibited limits of detection of a few pg mL(-1) Cry1Ab (3 or 5 pg mL(-1), depending on the assay format), which are significantly lower than that achievable using conventional colorimetric detection of peroxidase activity and also represent an improvement compared to previously developed Cry1Ab immunoassays. High-throughput analysis can be performed using the 384-well microtiter plate format immunoassay, which also allows one to reduce the consumption of samples and reagents. Validation of the assay, performed by analyzing certified reference materials, proved that the immunoassay is able to detect the presence of the Cry1Ab protein in certified reference samples containing as low as 0.1% of MON 810 genetically modified Bt maize. This value is below the threshold requiring mandatory labeling of foods containing genetically modified material according to the actual EU regulation.
Baudoin, Ezékiel; Lerner, Anat; Mirza, M Sajjad; El Zemrany, Hamdy; Prigent-Combaret, Claire; Jurkevich, Edouard; Spaepen, Stijn; Vanderleyden, Jos; Nazaret, Sylvie; Okon, Yaacov; Moënne-Loccoz, Yvan
2010-04-01
The phytostimulatory properties of Azospirillum inoculants, which entail production of the phytohormone indole-3-acetic acid (IAA), can be enhanced by genetic means. However, it is not known whether this could affect their interactions with indigenous soil microbes. Here, wheat seeds were inoculated with the wild-type strain Azospirillum brasilense Sp245 or one of three genetically modified (GM) derivatives and grown for one month. The GM derivatives contained a plasmid vector harboring the indole-3-pyruvate/phenylpyruvate decarboxylase gene ipdC (IAA production) controlled either by the constitutive promoter PnptII or the root exudate-responsive promoter PsbpA, or by an empty vector (GM control). All inoculants displayed equal rhizosphere population densities. Only inoculation with either ipdC construct increased shoot biomass compared with the non-inoculated control. At one month after inoculation, automated ribosomal intergenic spacer analysis (ARISA) revealed that the effect of the PsbpA construct on bacterial community structure differed from that of the GM control, which was confirmed by 16S rDNA-based denaturing gradient gel electrophoresis (DGGE). The fungal community was sensitive to inoculation with the PsbpA construct and especially the GM control, based on ARISA data. Overall, fungal and bacterial communities displayed distinct responses to inoculation of GM A. brasilense phytostimulators, whose effects could differ from those of the wild-type.
Environmental impacts of genetically modified plants: A review.
Tsatsakis, Aristidis M; Nawaz, Muhammad Amjad; Kouretas, Demetrios; Balias, Georgios; Savolainen, Kai; Tutelyan, Victor A; Golokhvast, Kirill S; Lee, Jeong Dong; Yang, Seung Hwan; Chung, Gyuhwa
2017-07-01
Powerful scientific techniques have caused dramatic expansion of genetically modified crops leading to altered agricultural practices posing direct and indirect environmental implications. Despite the enhanced yield potential, risks and biosafety concerns associated with such GM crops are the fundamental issues to be addressed. An increasing interest can be noted among the researchers and policy makers in exploring unintended effects of transgenes associated with gene flow, flow of naked DNA, weediness and chemical toxicity. The current state of knowledge reveals that GM crops impart damaging impacts on the environment such as modification in crop pervasiveness or invasiveness, the emergence of herbicide and insecticide tolerance, transgene stacking and disturbed biodiversity, but these impacts require a more in-depth view and critical research so as to unveil further facts. Most of the reviewed scientific resources provide similar conclusions and currently there is an insufficient amount of data available and up until today, the consumption of GM plant products are safe for consumption to a greater extent with few exceptions. This paper updates the undesirable impacts of GM crops and their products on target and non-target species and attempts to shed light on the emerging challenges and threats associated with it. Underpinning research also realizes the influence of GM crops on a disturbance in biodiversity, development of resistance and evolution slightly resembles with the effects of non-GM cultivation. Future prospects are also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Goto, Hidetoshi; McPherson, Marc A.; Comstock, Bradley A.; Stojšin, Duška; Ohsawa, Ryo
2017-01-01
Environmental risk assessment is required for genetically modified (GM) crops before their import into Japan. Annual roadside monitoring along transportation routes from ports to processing facilities for GM soybean (Glycine max (L.) Merr.) have been requested as a condition of import only approval because of lack of information on the likelihood of persistence of imported GM soybean for food, feed and processing and the potential for transfer of transgenes into wild soybean (Glycine soja Seib. et Zucc.) through gene flow under the Japanese environment. The survey of soybean seeds, plants and wild soybean populations were conducted along transportation routes from unloading ports to processing facilities that provided data to help quantify actual exposure. The survey indicated that the opportunities for co-existence and subsequent crossing between wild soybean populations and imported soybean are highly unlikely. Together the survey results and the comprehensive literature review demonstrated low exposure of imported GM soybean used for food, feed and processing in Japan. This evaluation of exposure level is not specific to particular GM soybean event but can apply to any GM soybean traits used for food, feed and processing if their weediness or invasiveness are the same as those of the conventional soybean. PMID:29085244
Transgenic, transplastomic and other genetically modified plants: a Canadian perspective.
Belzile, François J
2002-11-01
Since the mid 1990s, genetically modified (GM) crops have been grown commercially in Canada on a scale that has increased steadily over the years. An intense debate ensued, as elsewhere, and many fears were expressed regarding not only the technology itself but some of the main GM crops being grown. It would seem appropriate at this time to examine how these novel crops compare to crops bred by more traditional means and what impacts these GM crops have had based on experience and not merely on conjecture. To begin, we will put things in a historical perspective and recall how domestication and conventional plant breeding have shaped the crops of today. Then, we will describe briefly the distinctive features of GM plants (obtained so far mainly by nuclear transgenesis) and how these novel crops are regulated in Canada. We will then give two examples of widely grown GM crops in Canada (insect-resistant corn and herbicide-tolerant canola) and examine the main questions that were raised as well as the actual impacts these crops have had on the farm. These examples will help us outline some of the limitations of the current generation of GM plants and, finally, we will try to get a glimpse of the future by examining some recent technical developments in the field of recombinant DNA technologies applied to plant breeding.
Transgene × Environment Interactions in Genetically Modified Wheat
Zeller, Simon L.; Kalinina, Olena; Brunner, Susanne; Keller, Beat; Schmid, Bernhard
2010-01-01
Background The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM) plants. Methods and Findings We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. Conclusions Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology. PMID:20635001
Transgene x environment interactions in genetically modified wheat.
Zeller, Simon L; Kalinina, Olena; Brunner, Susanne; Keller, Beat; Schmid, Bernhard
2010-07-12
The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM) plants. We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology.
What determines the acceptability of genetically modified food that can improve human nutrition?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purchase, Iain F.H.
It has been predicted that by 2025 there will be an annual shortfall of cereals for feeding the human population of 68.5 million tonnes. One possible solution is the use of genetically modified (GM) crops, which are already grown extensively (59 million ha of GM crops were planted in 2002) in the USA, South America, Africa and China. Nevertheless, there is considerable disagreement about the advisability of using such crops, particularly in Europe. Obviously, the safety of the food derived from the GM crops is a primary consideration. Safety assessment relies on establishing that the food is substantially equivalent tomore » its non-GM counterpart and specific testing for allergenicity of proteins and toxicity of metabolites and the whole food. There appears to be international agreement on the principles of safety assessment. Safety to the environment is equally important, but will not be covered in this presentation. The public's perception of the risk of new technology is critical to its acceptance. Perception of risk, in turn, depends on the credibility of the source of the information and trust in the regulatory process. In many countries, the public appears to have lost its trust in the scientists and government dealing with GM food, making the acceptability of GM crops uncertain. Of equal importance are the socio-economic factors that impinge on the viability of GM produce. These include intellectual property protection, trade liberalisation (through subsidy and tariff barriers in developed countries) and the intensity of bio safety regulations. The socio-economic interests of developed and developing countries may diverge and may even be contradictory in any one country. Acceptance of GM crops will thus depend on detailed issues surrounding particular crops and economies.« less
What determines the acceptability of genetically modified food that can improve human nutrition?
Purchase, Iain F H
2005-09-01
It has been predicted that by 2025 there will be an annual shortfall of cereals for feeding the human population of 68.5 million tones. One possible solution is the use of genetically modified (GM) crops, which are already grown extensively (59 million ha of GM crops were planted in 2002) in the USA, South America, Africa and China. Nevertheless, there is considerable disagreement about the advisability of using such crops, particularly in Europe. Obviously, the safety of the food derived from the GM crops is a primary consideration. Safety assessment relies on establishing that the food is substantially equivalent to its non-GM counterpart and specific testing for allergenicity of proteins and toxicity of metabolites and the whole food. There appears to be international agreement on the principles of safety assessment. Safety to the environment is equally important, but will not be covered in this presentation. The public's perception of the risk of new technology is critical to its acceptance. Perception of risk, in turn, depends on the credibility of the source of the information and trust in the regulatory process. In many countries, the public appears to have lost its trust in the scientists and government dealing with GM food, making the acceptability of GM crops uncertain. Of equal importance are the socio-economic factors that impinge on the viability of GM produce. These include intellectual property protection, trade liberalization (through subsidy and tariff barriers in developed countries) and the intensity of bio safety regulations. The socio-economic interests of developed and developing countries may diverge and may even be contradictory in any one country. Acceptance of GM crops will thus depend on detailed issues surrounding particular crops and economies.
Song, Qinxin; Wei, Guijiang; Zhou, Guohua
2014-07-01
A portable bioluminescence analyser for detecting the DNA sequence of genetically modified organisms (GMOs) was developed by using a photodiode (PD) array. Pyrosequencing on eight genes (zSSIIb, Bt11 and Bt176 gene of genetically modified maize; Lectin, 35S-CTP4, CP4EPSPS, CaMV35S promoter and NOS terminator of the genetically modified Roundup ready soya) was successfully detected with this instrument. The corresponding limit of detection (LOD) was 0.01% with 35 PCR cycles. The maize and soya available from three different provenances in China were detected. The results indicate that pyrosequencing using the small size of the detector is a simple, inexpensive, and reliable way in a farm/field test of GMO analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tang, Weijuan; Hazebroek, Jan; Zhong, Cathy; Harp, Teresa; Vlahakis, Chris; Baumhover, Brian; Asiago, Vincent
2017-06-28
We evaluated the variability of metabolites in various maize hybrids due to the effect of environment, genotype, phenotype as well as the interaction of the first two factors. We analyzed 480 forage and the same number of grain samples from 21 genetically diverse non-GM Pioneer brand maize hybrids, including some with drought tolerance and viral resistance phenotypes, grown at eight North American locations. As complementary platforms, both GC/MS and LC/MS were utilized to detect a wide diversity of metabolites. GC/MS revealed 166 and 137 metabolites in forage and grain samples, respectively, while LC/MS captured 1341 and 635 metabolites in forage and grain samples, respectively. Univariate and multivariate analyses were utilized to investigate the response of the maize metabolome to the environment, genotype, phenotype, and their interaction. Based on combined percentages from GC/MS and LC/MS datasets, the environment affected 36% to 84% of forage metabolites, while less than 7% were affected by genotype. The environment affected 12% to 90% of grain metabolites, whereas less than 27% were affected by genotype. Less than 10% and 11% of the metabolites were affected by phenotype in forage and grain, respectively. Unsupervised PCA and HCA analyses revealed similar trends, i.e., environmental effect was much stronger than genotype or phenotype effects. On the basis of comparisons of disease tolerant and disease susceptible hybrids, neither forage nor grain samples originating from different locations showed obvious phenotype effects. Our findings demonstrate that the combination of GC/MS and LC/MS based metabolite profiling followed by broad statistical analysis is an effective approach to identify the relative impact of environmental, genetic and phenotypic effects on the forage and grain composition of maize hybrids.
We compared soil chemistry and plant community data at non-agronomic mesic locations that either did or did not contain genetically modified (GM) Agrostis stolonifera. The best two-variable logistic regression model included soil Mn content and A. stolonifera cover and explained...
Toxicological evaluation of proteins introduced into food crops
Kough, John; Herouet-Guicheney, Corinne; Jez, Joseph M.
2013-01-01
This manuscript focuses on the toxicological evaluation of proteins introduced into GM crops to impart desired traits. In many cases, introduced proteins can be shown to have a history of safe use. Where modifications have been made to proteins, experience has shown that it is highly unlikely that modification of amino acid sequences can make a non-toxic protein toxic. Moreover, if the modified protein still retains its biological function, and this function is found in related proteins that have a history of safe use (HOSU) in food, and the exposure level is similar to functionally related proteins, then the modified protein could also be considered to be “as-safe-as” those that have a HOSU. Within nature, there can be considerable evolutionary changes in the amino acid sequence of proteins within the same family, yet these proteins share the same biological function. In general, food crops such as maize, soy, rice, canola etc. are subjected to a variety of processing conditions to generate different food products. Processing conditions such as cooking, modification of pH conditions, and mechanical shearing can often denature proteins in these crops resulting in a loss of functional activity. These same processing conditions can also markedly lower human dietary exposure to (functionally active) proteins. Safety testing of an introduced protein could be indicated if its biological function was not adequately characterized and/or it was shown to be structurally/functionally related to proteins that are known to be toxic to mammals. PMID:24164515
Ben Ali, Sina-Elisabeth; Madi, Zita Erika; Hochegger, Rupert; Quist, David; Prewein, Bernhard; Haslberger, Alexander G.; Brandes, Christian
2014-01-01
Genetic mutations must be avoided during the production and use of seeds. In the European Union (EU), Directive 2001/18/EC requires any DNA construct introduced via transformation to be stable. Establishing genetic stability is critical for the approval of genetically modified organisms (GMOs). In this study, genetic stability of two GMOs was examined using high resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) employing Scorpion primers for amplification. The genetic variability of the transgenic insert and that of the flanking regions in a single oilseed rape variety (GT73) and a stacked maize (MON88017 × MON810) was studied. The GT73 and the 5' region of MON810 showed no instabilities in the examined regions. However; two out of 100 analyzed samples carried a heterozygous point mutation in the 3' region of MON810 in the stacked variety. These results were verified by direct sequencing of the amplified PCR products as well as by sequencing of cloned PCR fragments. The occurrence of the mutation suggests that the 5' region is more suitable than the 3' region for the quantification of MON810. The identification of the single nucleotide polymorphism (SNP) in a stacked event is in contrast to the results of earlier studies of the same MON810 region in a single event where no DNA polymorphism was found. PMID:25365178
Cuthbert, Wokadala O; Ray, Suprakas S; Emmambux, Naushad M
2017-07-15
Nanoparticles were isolated from tef and maize starch modified with added stearic acid after pasting at 90°C for 130min. This was followed by thermo-stable alpha-amylase hydrolysis of the paste. The resultant residues were then characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), dynamic laser scattering particle size distribution (DLPSD), atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM). XRD and DSC showed that the isolated residues consisted of amylose-lipid complexes. These complexes were type II with melting temperature above 104°C. DLPSD, AFM and HRTEM showed that the isolated tef and maize starch residues consisted of nanoparticles which became more distinct with increased hydrolysis time. The isolated tef and maize nanoparticles had distinct particles of about 3-10nm and 2.4-6.7nm, respectively and the yield was about 24-30%. The results demonstrated that distinct (physically separate) nanoparticles of less than 10nm can be isolated after formation during pasting of tef and maize starch with stearic acid. The production and isolation of the nanoparticles uses green chemistry principles and these nanoparticles can be used in food and non-food systems as nanofillers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Imura, Osamu; Shi, Kun; Iimura, Keiji; Takamizo, Tadashi
2010-01-01
We assessed the effects of cultivating two genetically modified (GM) glyphosate-tolerant soybean varieties (Glycine max (L.) Merr.) derived from Event 40-3-2 and a Japanese conventional variety on arthropods under field conditions, with weed control using glyphosate and conventional weed control for two years. Plant height and dry weight of the conventional variety were significantly larger than those of the GM varieties, but the GM varieties bore more pods than the conventional variety. We found arthropods of nine taxonomic orders (Araneae, Acari, Thysanoptera, Homoptera, Heteroptera, Coleoptera, Diptera, Lepidoptera, and Hymenoptera) on the plants. The arthropod incidence (number per plant unit weight pooled for each taxonomic order) on the soybean stems and leaves generally did not differ significantly between the GM and conventional varieties. However, the incidence of Thysanoptera and total incidence (all orders combined) were greater on the GM variety in the second year. The weed control regimes had no significant influence on the arthropod incidence on the soybean stems and leaves. The number of flower-inhabiting Thysanoptera (the dominant arthropod in the flowers) was not significantly different between the GM and conventional varieties. Asphondylia yushimai (Diptera, Cecidomyiidae) was more numerous on the pods of the GM variety in both years. Neither the soybean variety nor the weed control regime significantly affected the density of soil macro-organisms. However, the glyphosate weed control affected arthropods between the rows of plants by decreasing the abundances of Homoptera, Heteroptera, Coleoptera and Lepidoptera, and diversity of arthropods. © ISBR, EDP Sciences, 2011.
Investigating factors influencing consumer willingness to buy GM food and nano-food
NASA Astrophysics Data System (ADS)
Yue, Chengyan; Zhao, Shuoli; Cummings, Christopher; Kuzma, Jennifer
2015-07-01
Emerging technologies applied to food products often evoke controversy about their safety and whether to label foods resulting from their use. As such, it is important to understand the factors that influence consumer desires for labeling and their willingness-to-buy (WTB) these food products. Using data from a national survey with US consumers, this study employs structural equation modeling to explore relationships between potential influences such as trust in government to manage technologies, views on restrictive government policies, perceptions about risks and benefits, and preferences for labeling on consumer's WTB genetically modified (GM) and nano-food products. Some interesting similarities and differences between GM- and nano-food emerged. For both technologies, trust in governing agencies to manage technologies did not influence labeling preferences, but it did influence attitudes about the food technologies themselves. Attitudes toward the two technologies, as measured by risk-benefit comparisons and comfort with consumption, also greatly influenced views of government restrictive policies, labeling preferences, and WTB GM or nano-food products. For differences, labeling preferences were found to influence WTB nano-foods, but not WTB GM foods. Gender and religiosity also had varying effects on WTB and labeling preferences: while gender and religiosity influenced labeling preferences and WTB for GM foods, they did not have a significant influence for nano-foods. We propose some reasons for these differences, such as greater media attention and other heuristics such as value-based concerns about "modifying life" with GM foods. The results of this study can help to inform policies and communication about the application of these new technologies in food products.
Komoto, Keiko; Okamoto, Sawako; Hamada, Miki; Obana, Naoya; Samori, Mami; Imamura, Tomoaki
2016-08-29
Reports of food-related incidents, such as cows infected with bovine spongiform encephalopathy (2001) and the Fukushima nuclear accident (2011), engendered significant fear among Japanese consumers and led to multiple farmer suicides, even when no actual health damage occurred. The growing availability of genetically modified (GM) food is occurring against this backdrop of concern about food safety. Consumers need information to assess risk and make informed purchasing decisions. However, we lack a clear picture of Japanese consumer perceptions of GM food. This study aims to understand Japanese consumer perceptions of GM food for risk communication. Consumer perceptions of GM food were compared among 4 nations. A Web-based survey was conducted in Japan, the United States, the United Kingdom, and France. Participants were asked about demographics, fear of health hazards, resistance to GM and breeding-improved products, perception of GM technology and products, and willingness to pay. Multiple linear regression analyses were conducted, as were t tests on dichotomous variables, and 1-way analysis of variance and post hoc tests. Of 1812 individuals who agreed to participate, 1705 (94%) responded: 457 from Japan and 416 each from France, the United States, and the United Kingdom. The male/female and age group ratios were all about even. Some resistance to GM food was seen in all countries in this study. France showed the strongest resistance (P<.001), followed by Japan, which had stronger resistance than the United States and the United Kingdom (P<.001). Overall, females, people in their 60s and older, and those without higher education showed the greatest resistance to GM food. Japan showed stronger fear of food hazards than other nations (P<.001, odds ratio=2.408, CI: 1.614-3.594); Japanese and French respondents showed the strongest fear of hazards from GM food (P<.001). Regarding perceptions of GM technology and products, consumers in nations other than Japan would accept GM food if it were appropriately explained, they were provided with scientific data supporting its safety, and they understood that all food carries some risk. However, Japanese consumers tended to accept GM technology but rejected its application to food (P<.001). Of those willing to purchase GM food, consumers in Japan required a discount of 30% compared with about 20% in other nations. All consumers in our study showed resistance to GM food. Although no health hazards are known, respondents in Japan and France strongly recognized GM food as a health risk. Price discounts of 30% and GM technology may be communication cues to start discussions about GM food among Japanese consumers. Although education-only risk communication generally is not effective, such an approach may work in Japan to help consumers better understand GM technology and, eventually, GM food. The gap between accepting GM technology and rejecting its application to food should be explored further.
2016-01-01
Background Reports of food-related incidents, such as cows infected with bovine spongiform encephalopathy (2001) and the Fukushima nuclear accident (2011), engendered significant fear among Japanese consumers and led to multiple farmer suicides, even when no actual health damage occurred. The growing availability of genetically modified (GM) food is occurring against this backdrop of concern about food safety. Consumers need information to assess risk and make informed purchasing decisions. However, we lack a clear picture of Japanese consumer perceptions of GM food. Objective This study aims to understand Japanese consumer perceptions of GM food for risk communication. Consumer perceptions of GM food were compared among 4 nations. Methods A Web-based survey was conducted in Japan, the United States, the United Kingdom, and France. Participants were asked about demographics, fear of health hazards, resistance to GM and breeding-improved products, perception of GM technology and products, and willingness to pay. Multiple linear regression analyses were conducted, as were t tests on dichotomous variables, and 1-way analysis of variance and post hoc tests. Results Of 1812 individuals who agreed to participate, 1705 (94%) responded: 457 from Japan and 416 each from France, the United States, and the United Kingdom. The male/female and age group ratios were all about even. Some resistance to GM food was seen in all countries in this study. France showed the strongest resistance (P<.001), followed by Japan, which had stronger resistance than the United States and the United Kingdom (P<.001). Overall, females, people in their 60s and older, and those without higher education showed the greatest resistance to GM food. Japan showed stronger fear of food hazards than other nations (P<.001, odds ratio=2.408, CI: 1.614-3.594); Japanese and French respondents showed the strongest fear of hazards from GM food (P<.001). Regarding perceptions of GM technology and products, consumers in nations other than Japan would accept GM food if it were appropriately explained, they were provided with scientific data supporting its safety, and they understood that all food carries some risk. However, Japanese consumers tended to accept GM technology but rejected its application to food (P<.001). Of those willing to purchase GM food, consumers in Japan required a discount of 30% compared with about 20% in other nations. Conclusion All consumers in our study showed resistance to GM food. Although no health hazards are known, respondents in Japan and France strongly recognized GM food as a health risk. Price discounts of 30% and GM technology may be communication cues to start discussions about GM food among Japanese consumers. Although education-only risk communication generally is not effective, such an approach may work in Japan to help consumers better understand GM technology and, eventually, GM food. The gap between accepting GM technology and rejecting its application to food should be explored further. PMID:27573588
USDA-ARS?s Scientific Manuscript database
Maize production in the United States is dominated by plants genetically modified with transgenes from Bacillus thuringiensis (Bt). Varieties of Bt maize expressing Cry3Bb d endotoxins that specifically target corn rootworms (genus Diabrotica) have proven highly efficacious. However, development of ...
USDA-ARS?s Scientific Manuscript database
Quality Protein Maize (QPM) is a hard kernel variant of the high-lysine mutant, opaque-2. Using gamma irradiation, we created opaque QPM variants to identify opaque-2 modifier genes and to investigate deletion mutagenesis combined with Illumina sequencing as a maize functional genomics tool. A K0326...
Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson's Ratio and Superelasticity.
Zhang, Qiangqiang; Xu, Xiang; Lin, Dong; Chen, Wenli; Xiong, Guoping; Yu, Yikang; Fisher, Timothy S; Li, Hui
2016-03-16
A hyperbolically patterned 3D graphene metamaterial (GM) with negative Poisson's ratio and superelasticity is highlighted. It is synthesized by a modified hydrothermal approach and subsequent oriented freeze-casting strategy. GM presents a tunable Poisson's ratio by adjusting the structural porosity, macroscopic aspect ratio (L/D), and freeze-casting conditions. Such a GM suggests promising applications as soft actuators, sensors, robust shock absorbers, and environmental remediation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
RNAi-based GM plants: food for thought for risk assessors.
Ramon, Matthew; Devos, Yann; Lanzoni, Anna; Liu, Yi; Gomes, Ana; Gennaro, Andrea; Waigmann, Elisabeth
2014-12-01
RNA interference (RNAi) is an emerging technology that offers new opportunities for the generation of new traits in genetically modified (GM) plants. Potential risks associated with RNAi-based GM plants and issues specific to their risk assessment were discussed during an international scientific workshop (June 2014) organized by the European Food Safety Authority (EFSA). Selected key outcomes of the workshop are reported here. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Nonadverse effects on allergenicity of isopentenyltransferase-transformed broccoli.
Liao, E C; Chen, J T; Chao, M L; Yu, S C; Chang, C Y; Chu, W S; Tsai, J J
2013-01-01
Genetically modified organisms (GMOs) provide modern agriculture with improvements in efficiency and the benefits of enhanced food production; however, the potential impact of GMOs on human health has not yet been clarified. To investigate the allergenicity of isopentenyltransferase (ipt)-transformed broccoli compared with non-GM broccoli. Sera from allergic individuals were used to identify the allergenicity of GM and non-GM broccoli. Immunoglobulin (Ig) binding of different lines of GM and non-GM broccoli was identified using immunoblotting, enzyme-linked immunosorbent assay, and the histamin release assay. Positive reactions to broccoli (Brassica Oleracea) were observed in 7.02% of individuals. Specific IgE to broccoli and total IgE fro allergic individuals were well correlated. The different tests performed showed no significant differences in the allergenicity of conventionally raised and GM broccoli, indicating the absence of unexpected effects on allergenicity in ipt-transformed plants. Using Western blot analysis we detected heterogeneous IgE-reactive allergenic components in broccoli-allergic sera, but no significant differences between GM an non-GM broccoli were observed in serum from the same patients. Our study demonstrates that there are no differences between GM (ipt-transformed) broccoli and non-GM broccoli, as determined by specific IgE in sera from broccoli-allergic patients. This indicates that there were no unexpected effects on allergenicity in this GM broccoli.
NASA Astrophysics Data System (ADS)
Zampieri, M.; Ceglar, A., , Dr; Dentener, F., , Dr; van den Berg, M., , Dr; Toreti, A., , Dr
2017-12-01
Heat waves and drought are often considered the most damaging climatic stressors for wheat and maize. In this study, based on data derived from observations, we characterize and attribute the effects of these climate extremes on wheat and maize yield anomalies (at global and national scales) with respect to the mean trend from 1980 to 2010. Using a combination of up-to-date heat wave and drought indexes (i.e. the Heat Magnitude Day, HMD, and the Standardized Precipitation Evapotranspiration Index, SPEI), we have developed a composite indicator (i.e. the Combined Stress Index, CSI) that is able to capture the spatio-temporal characteristics of the underlying physical processes in the different agro-climatic regions of the world. At the global level, our diagnostic explains the 42% and the 50% of the inter-annual wheat and maize production variabilities, respectively. The relative importance of heat stress and drought in determining the yield anomalies depends on the region. Compared to maize, and in contrast to common perception, water excess affects wheat production more than drought in several countries. The index definition can be modified in order to quantify the role of combined heat and water stress events occurrence in determining the recorded yield trends as well. Climate change is increasingly limiting maize yields in several countries, especially in Europe and China. A comparable opposite signal, albeit less statistically significant, is found for the USA, which is the main world producer. As for rice, we provide a statistical evidence pointing out to the importance of considering the interactions with the horizontal surface waters fluxes carried out by the rivers. In fact, compared to wheat and maize, the CSI statistical skills in explaining rice production variability are quite reduced. This issue is particularly relevant in paddy fields and flooded lowlands where rice is mainly grown. Therefore, we have modified the procedure including a proxy for the surface freshwater availability i.e. the Standardized River Discharge Index (SRDI), defined in this study. The modified CSI explains the 35% of the global rice production inter-annual anomalies.
Sinebo, Woldeyesus; Maredia, Karim
2016-01-01
ABSTRACT The regulation of genetically modified (GM) crops is a topical issue in agriculture and environment over the past 2 decades. The objective of this paper is to recount regulatory and adoption practices in some developing countries that have successfully adopted GM crops so that aspiring countries may draw useful lessons and best practices for their biosafatey regulatory regimes. The first 11 mega-GM crops growing countries each with an area of more than one million hectares in 2014 were examined. Only five out of the 11 countries had smooth and orderly adoption of these crops as per the regulatory requirement of each country. In the remaining 6 countries (all developing countries), GM crops were either introduced across borders without official authorization, released prior to regulatory approval or unapproved seeds were sold along with the approved ones in violation to the existing regulations. Rapid expansion of transgenic crops over the past 2 decades in the developing world was a result of an intense desire by farmers to adopt these crops irrespective of regulatory roadblocks. Lack of workable biosafety regulatory system and political will to support GM crops encouraged unauthorized access to GM crop varieties. In certain cases, unregulated access in turn appeared to result in the adoption of substandard or spurious technology which undermined performance and productivity. An optimal interaction among the national agricultural innovation systems, biosafety regulatory bodies, biotech companies and high level policy makers is vital in making a workable regulated progress in the adoption of GM crops. Factoring forgone opportunities to farmers to benefit from GM crops arising from overregulation into biosafety risk analysis and decision making is suggested. Building functional biosafety regulatory systems that balances the needs of farmers to access and utilize the GM technology with the regulatory imperatives to ensure adequate safety to the environment and human health is recommended. PMID:26954893
Sánchez, Laura; González, Ramón; Crego, Antonio L; Cifuentes, Alejandro
2007-03-01
It is generally assumed that in order to achieve suitable separations of DNA fragments, capillary gel electrophoresis (CGE)-coated capillaries should be used. In this work, a new method is presented that allows to obtain reproducible CGE separations of DNA fragments using bare fused-silica capillaries without any previous coating step. The proposed method only requires: (i) a capillary washing with 0.1 M hydrochloric acid between injections and (ii) a running buffer composed of Tris-phosphate-ethylenediamine tetraacetic acid (EDTA) and 4.5% of 2-hydroxyethyl cellulose (HEC) as sieving polymer. The use of this new CGE procedure gives highly resolved and reproducible separations of DNA fragments ranging from 50 to 750 bp. The separation of these DNA fragments is accomplished in less than 30 min with efficiencies up to 1.7 x 10(6) plates/m. Reproducibility values of migration times (given as %RSD) for the analyzed DNA fragments are better than 1.0% (n = 4) for the same day, 2.2% (n = 16) for four different days, and 2.3% (n = 16) for four different capillaries. The usefulness of this separation method is demonstrated by detecting genetically modified maize and genetically modified soy after DNA amplification by PCR. This new CGE procedure together with LIF as detector provides sensitive analysis of 0.9% of Bt11 maize, Mon810 maize, and Roundup Ready soy in flours with S/ N up to 542. These results demonstrate the usefulness of this procedure to fulfill the European regulation on detection of genetically modified organisms in foods.
Media attention to GM food cases: An innovation perspective.
Flipse, Steven M; Osseweijer, Patricia
2013-02-01
Media attention to genetically modified (GM) foods has been described as negative, especially in Europe. At the turn of the century appreciation of GM foods was at an all-time low in Europe. Food manufacturers are still careful in the use, development and communication of GM based food products, and their caution influences innovation processes. In this study we explore the link between media attention and innovation practice. Media attention to three specific high-profile GM food cases is described and linked to innovation practice. We elucidate the order of events in these cases and show that publics could only to a limited extent have formed an opinion on GM based food products based on scientifically valid data through written English media. Innovators in food biotechnology may benefit from this knowledge for future product development and marketing, and we suggest that innovation may benefit from early stakeholder involvement and communication activities.
Transgenesis affects endogenous soybean allergen levels less than traditional breeding.
Hill, Ryan C; Fast, Brandon J; Herman, Rod A
2017-10-01
The regulatory body that oversees the safety assessment of genetically modified (GM) crops in the European Union, the European Food Safety Authority (EFSA), uniquely requires that endogenous allergen levels be quantified as part of the compositional characterization of GM versions of crops, such as soybean, that are considered to be major allergenic foods. The value of this requirement for assessing food safety has been challenged for multiple reasons including negligible risk of altering allergen levels compared with traditional non-GM breeding. Scatter plots comparing the mean endogenous allergen levels in non-GM soybean isoline grain with the respective levels in GM grain or concurrently grown non-GM commercial reference varieties clearly show that transgenesis causes less change compared with traditional breeding. This visual assessment is confirmed by the quantitative fit of the line of identity (y = x) to the datasets. The current science on allergy does not support the requirement for quantifying allergen levels in GM crops to support safety assessment. Copyright © 2017 Elsevier Inc. All rights reserved.
Conner, Anthony J; Glare, Travis R; Nap, Jan-Peter
2003-01-01
Despite numerous future promises, there is a multitude of concerns about the impact of GM crops on the environment. Key issues in the environmental assessment of GM crops are putative invasiveness, vertical or horizontal gene flow, other ecological impacts, effects on biodiversity and the impact of presence of GM material in other products. These are all highly interdisciplinary and complex issues. A crucial component for a proper assessment is defining the appropriate baseline for comparison and decision. For GM crops, the best and most appropriately defined reference point is the impact of plants developed by traditional breeding. The latter is an integral and accepted part of agriculture. In many instances, the putative impacts identified for GM crops are very similar to the impacts of new cultivars derived from traditional breeding. When assessing GM crops relative to existing cultivars, the increased knowledge base underpinning the development of GM crops will provide greater confidence in the assurances plant science can give on the risks of releasing such crops.
Use of genetically modified crops and pesticides in Brazil: growing hazards.
Almeida, Vicente Eduardo Soares de; Friedrich, Karen; Tygel, Alan Freihof; Melgarejo, Leonardo; Carneiro, Fernando Ferreira
2017-10-01
Genetically modified (GM) crops were officially authorized in Brazil in 2003. In this documentary study, we aimed to identify possible changes in the patterns of pesticide use after the adoption of this technology over a span of 13 years (2000 to 2012). The following variables were analyzed: Pesticide use (kg), Pesticide use per capita (kg/inhab), Pesticide and herbicide use per area (kg/ha) and productivity (kg/ha). Contrary to the initial expectations of decreasing pesticide use following the adoption of GM crops, overall pesticide use in Brazil increased 1.6-fold between the years 2000 and 2012. During the same period, pesticide use for soybean increased 3-fold. This study shows that the adoption of GM crops in Brazil has led to an increase in pesticide use with possible increases in environmental and human exposure and associated negative impacts.
The Detection of Genetically Modified Organisms: An Overview
NASA Astrophysics Data System (ADS)
Ovesná, Jaroslava; Demnerová, Kateřina; Pouchová, Vladimíra
Genetically modified organisms (GMOs) are those whose genetic material has been altered by the insertion of a new gene or by the deletion of an existing one(s). Modern biotechnology, in particular, the rise of genetic engineering, has supported the development of GMOs suitable for research purposes and practical applications (Gepts, 2002; Novoselova,Meuwissen, & Huirne, 2007; Sakakibara & Saito, 2006). For over 20 years GM bacteria and other GM organisms have been used in laboratories for the study of gene functions (Maliga & Small, 2007; Ratledge & Kristiansen, 2006). Agricultural plants were the first GMOs to be released into the environment and placed on the market. Farmers around the world use GMsoybeans, GMcorn and GM cotton that are herbicide tolerant, or insect resistant, or combine several traits that reduce the costs associated with crop production (Corinne, Fernandez-Cornejo, & Goodhue, 2004).
Vidal, Arnau; Marín, Sonia; Sanchis, Vicente; De Saeger, Sarah; De Boevre, Marthe
2018-05-15
Aflatoxins are the most potent genotoxic and carcinogenic mycotoxins. To date, research has only focused on the presence of free aflatoxins in agricultural commodities. Therefore, the main objective of this study was to investigate the occurrence of possible modified aflatoxins in maize. Different hydrolysis methods were applied to convert modified mycotoxins into their free aflatoxins. Eighteen aflatoxin-contaminated maize samples were incubated with potassium hydroxide, trifluoromethanesulfonic acid and several enzymes to induce hydrolysis. Potassium hydroxide caused a total reduction of aflatoxins, while trifluoromethanesulfonic acid did not lead to an increase in free aflatoxins, neither did treatment with a protease. However, α-amylase and cellulase incubation caused significant increases in the total free aflatoxin content, 15 ± 8% and 13 ± 5%, respectively. These results show that a small proportion of aflatoxins could be associated to matrix substances in plants. Consequently, hydrolysis could occur during food processing and during mammalian digestion, leading to an underestimation of the total aflatoxin content. Copyright © 2017 Elsevier Ltd. All rights reserved.
Are GM Crops for Yield and Resilience Possible?
Paul, Matthew J; Nuccio, Michael L; Basu, Shib Sankar
2018-01-01
Crop yield improvements need to accelerate to avoid future food insecurity. Outside Europe, genetically modified (GM) crops for herbicide- and insect-resistance have been transformative in agriculture; other traits have also come to market. However, GM of yield potential and stress resilience has yet to impact on food security. Genes have been identified for yield such as grain number, size, leaf growth, resource allocation, and signaling for drought tolerance, but there is only one commercialized drought-tolerant GM variety. For GM and genome editing to impact on yield and resilience there is a need to understand yield-determining processes in a cell and developmental context combined with evaluation in the grower environment. We highlight a sugar signaling mechanism as a paradigm for this approach. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cisterna, B; Flach, F; Vecchio, L; Barabino, S M L; Battistelli, S; Martin, T E; Malatesta, M; Biggiogera, M
2008-01-01
In eukaryotic cells, pre-mRNAs undergo several transformation steps to generate mature mRNAs. Recent studies have demonstrated that a diet containing a genetically modified (GM) soybean can induce modifications of nuclear constituents involved in RNA processing in some tissues of young, adult and old mice. On this basis, we have investigated the ultrastructural and immunocytochemical features of pre-implantation embryos from mice fed either GM or non- GM soybean in order to verify whether the parental diet can affect the morpho-functional development of the embryonic ribonucleoprotein structural constituents involved in pre-mRNA pathways. Morphological observations revealed that the general aspect of embryo nuclear components is similar in the two experimental groups. However, immunocytochemical and in situ hybridization results suggest a temporary decrease of pre-mRNA transcription and splicing in 2-cell embryos and a resumption in 4-8-cell embryos from mice fed GM soybean; moreover, pre-mRNA maturation seems to be less efficient in both 2-cell and 4-8-cell embryos from GM-fed mice than in controls. Although our results are still preliminary and limited to the pre-implantation phases, the results of this study encourage deepening on the effects of food components and/or contaminants on embryo development.
Turkec, Aydin; Kazan, Hande; Baykut, Aykut; Lucas, Stuart J
2015-01-01
Soybean is one of the most important biotech crops, widely used as an ingredient in both foodstuffs and feed. DNA extraction methods have been evaluated to detect the presence of genetically modified (GM) materials in soya-containing food and feed products commercialised in Turkey. All extraction methods performed well for the majority of soya foods and feed products analysed. However, the most successful method varied between different products; the Foodproof, Genespin and the cetyltrimethylammonium bromide (CTAB) methods each produced the highest DNA yield and purity for different soya foodstuffs and feeds. Of the samples tested, 20% were positive for the presence of at least two GM elements (35S/NOS) while 11% contained an additional GM element (35S/NOS/FMV). Of the tested products, animal feeds showed a larger prevalence of GM material (50%) than the soya-containing foodstuffs (13%). The best performing extraction methods proved to be the Foodproof, Genespin and CTAB methods for soya-containing food and feed products. The results obtained herein clearly demonstrate the presence of GM soybean in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of soy-containing food and feed products. © 2014 Society of Chemical Industry.
Dobnik, David; Demšar, Tina; Huber, Ingrid; Gerdes, Lars; Broeders, Sylvia; Roosens, Nancy; Debode, Frederic; Berben, Gilbert; Žel, Jana
2018-01-01
Digital PCR (dPCR), as a new technology in the field of genetically modified (GM) organism (GMO) testing, enables determination of absolute target copy numbers. The purpose of our study was to test the transferability of methods designed for quantitative PCR (qPCR) to dPCR and to carry out an inter-laboratory comparison of the performance of two different dPCR platforms when determining the absolute GM copy numbers and GM copy number ratio in reference materials certified for GM content in mass fraction. Overall results in terms of measured GM% were within acceptable variation limits for both tested dPCR systems. However, the determined absolute copy numbers for individual genes or events showed higher variability between laboratories in one third of the cases, most possibly due to variability in the technical work, droplet size variability, and analysis of the raw data. GMO quantification with dPCR and qPCR was comparable. As methods originally designed for qPCR performed well in dPCR systems, already validated qPCR assays can most generally be used for dPCR technology with the purpose of GMO detection. Graphical abstract The output of three different PCR-based platforms was assessed in an inter-laboratory comparison.
Sissener, Nini H; Martin, Samuel A M; Cash, Phillip; Hevrøy, Ernst M; Sanden, Monica; Hemre, Gro-Ingunn
2010-06-01
The aim of this study was to investigate potential differences in liver protein expression of Atlantic salmon fed genetically modified (GM) Roundup Ready soy at a high inclusion level (25% inclusion, constituting 21% of crude protein in the diet) for 7 months or a compositionally similar non-GM diet. The liver was selected as the target organ due to its importance in the general metabolism, and 2D gel electrophoresis used as a screening tool. Samples from 12 individual fish from each diet group were evaluated. Of a total of 781 analysed protein spots, only 36 were significantly different by ANOVA (p < 0.05) in abundance between the diet groups. All these spots had low fold differences (1.2-1.6) and high false discovery rate (q = 0.44), indicating minor differences in liver protein synthesis between fish fed GM and non-GM soy. Additionally, low fold differences were observed. Four protein spots were analyzed by liquid chromatography tandem mass spectrometry and identified using a combination of online searches in NCBI and searches in an inhouse database containing salmonid expressed sequence tags and contigs. Follow-up on these proteins by real-time polymerase chain reaction did not identify differences at the transcriptional level.
Genetically modified plants and human health.
Key, Suzie; Ma, Julian K-C; Drake, Pascal Mw
2008-06-01
Genetically modified (or GM) plants have attracted a large amount of media attention in recent years and continue to do so. Despite this, the general public remains largely unaware of what a GM plant actually is or what advantages and disadvantages the technology has to offer, particularly with regard to the range of applications for which they can be used. From the first generation of GM crops, two main areas of concern have emerged, namely risk to the environment and risk to human health. As GM plants are gradually being introduced into the European Union there is likely to be increasing public concern regarding potential health issues. Although it is now commonplace for the press to adopt 'health campaigns', the information they publish is often unreliable and unrepresentative of the available scientific evidence. We consider it important that the medical profession should be aware of the state of the art, and, as they are often the first port of call for a concerned patient, be in a position to provide an informed opinion. This review will examine how GM plants may impact on human health both directly - through applications targeted at nutrition and enhancement of recombinant medicine production - but also indirectly, through potential effects on the environment. Finally, it will examine the most important opposition currently facing the worldwide adoption of this technology: public opinion.
NMR-Metabolic Methodology in the Study of GM Foods
USDA-ARS?s Scientific Manuscript database
The 1H NMR methodology used in the study of genetically modified (GM) foodstuff is discussed. The study of transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the KNAT1 gene from Arabidopsis is presented as a novel study-case. The 1H NMR metabolic profiling was carried out. Twenty-two wat...
Preservice Science Teachers' Efficacy Regarding a Socioscientific Issue: A Belief System Approach
ERIC Educational Resources Information Center
Kilinç, Ahmet; Kartal, Tezcan; Eroglu, Baris; Demiral, Ümit; Afacan, Özlem; Polat, Dilber; Demirci Guler, Mutlu P.; Görgülü, Özkan
2013-01-01
The aim of the present study was to understand the nature of teaching efficacy beliefs related to a socioscientific issue (SSI). We investigated Turkish preservice science teachers' teaching efficacy beliefs about genetically modified (GM) foods using a belief system approach. We assumed that preservice teachers' beliefs about GM foods (content…
Effects of plants genetically modified for insect resistance on nontarget organisms.
O'Callaghan, Maureen; Glare, Travis R; Burgess, Elisabeth P J; Malone, Louise A
2005-01-01
Insect resistance, based on Bacillus thuringiensis (Bt) endotoxins, is the second most widely used trait (after herbicide resistance) in commercial genetically modified (GM) crops. Other modifications for insect resistance, such as proteinase inhibitors and lectins, are also being used in many experimental crops. The extensive testing on nontarget plant-feeding insects and beneficial species that has accompanied the long-term and wide-scale use of Bt plants has not detected significant adverse effects. GM plants expressing other insect-resistant proteins that have a broader spectrum of activity have been tested on only a limited number of nontarget species. Little is known about the persistence of transgene-derived proteins in soil, with the exception of Bt endotoxins, which can persist in soil for several months. Bt plants appear to have little impact on soil biota such as earthworms, collembolans, and general soil microflora. Further research is required on the effects of GM plants on soil processes such as decomposition. Assessment of nontarget impacts is an essential part of the risk assessment process for insect-resistant GM plants.
Space Pomology: Dwarf Plums for Fresh Food Production
NASA Technical Reports Server (NTRS)
Spencer, LaShelle; Graham, Thomas; Stutte, Gary; Massa, Gioia; Mickens, Matthew; Wheeler, Raymond
2017-01-01
Recently, USDA ARS researchers genetically modified plums for rapid breeding work and noticed the plants could flower and develop fruit rapidly on relatively small plants. We have tested several of these genetically modified (GM) plums in plant chambers to assess their potential as a space crop. We have been able to clone these genetic lines using cuttings that are rooted using growth regulating compounds. Results showed that the GM plums indeed flower and fruit on small plants in controlled environments similar to what might be used in space, but they require cross-pollination with pollen from a standard plum. Analysis of stomatal conductance and leaf transpiration showed that water use went up in the light period, as expected, and but that GM types typically showed higher conductance than a standard plum. Analysis of tissue showed that fruit could be a good source of potassium and phenolic compounds, which could be beneficial as a bone loss countermeasure (Smith et al., 2014). These findings are all promising for using dwarf GM plums as a supplemental food for space, but further horticultural testing is needed before they are ready.
Hazebrouck, S; Ah-Leung, S; Bidat, E; Paty, E; Drumare, M-F; Tilleul, S; Adel-Patient, K; Wal, J-M; Bernard, H
2014-04-01
Goat's milk (GM) allergy associated with tolerance to cow's milk (CM) has been reported in patients without history of CM allergy and in CM-allergic children successfully treated with oral immunotherapy. The IgE antibodies from GM-allergic/CM-tolerant patients recognize caprine β-casein (βcap) without cross-reacting with bovine β-casein (βbov) despite a sequence identity of 91%. In this study, we investigated the non-cross-reactive IgE-binding epitopes of βcap. Recombinant βcap was genetically modified by substituting caprine domains with the bovine counterparts and by performing site-directed mutagenesis. We then evaluated the recognition of modified βcap by IgE antibodies from 11 GM-allergic/CM-tolerant patients and 11 CM-allergic patients or by monoclonal antibodies (mAb) raised against caprine caseins. The allergenic potency of modified βcap was finally assessed by degranulation tests of humanized rat basophil leukaemia (RBL)-SX38 cells. Non-cross-reactive epitopes of βcap were found in domains 44-88 and 130-178. The substitutions A55T/T63P/L75P and P148H/S152P induced the greatest decrease in IgE reactivity of GM-allergic/CM-tolerant patients towards βcap. The pivotal role of threonine 63 was particularly revealed as its substitution also impaired the recognition of βcap by specific mAb, which could discriminate between βcap and βbov. The modified βcap containing the five substitutions was then unable to trigger the degranulation of RBL-SX38 cells passively sensitized with IgE antibodies from GM-allergic/CM-tolerant patients. Although IgE-binding epitopes are spread all over βcap, a non-cross-linking version of βcap was generated with only five amino acid substitutions and could thus provide new insight for the design of hypoallergenic variants. © 2013 John Wiley & Sons Ltd.
Coupe, Richard H; Capel, Paul D
2016-05-01
Genetically modified (GM) varieties of soybean, corn and cotton have largely replaced conventional varieties in the United States. The most widely used applications of GM technology have been the development of crops that are resistant to a specific broad-spectrum herbicide (primarily glyphosate) or that produce insecticidal compounds within the plant itself. With the widespread adoption of GM crops, a decline in the use of conventional pesticides was expected. There has been a reduction in the annual herbicide application rate to corn since the advent of GM crops, but the herbicide application rate is mostly unchanged for cotton. Herbicide use on soybean has increased. There has been a substantial reduction in the amount of insecticides used on both corn and cotton since the introduction of GM crops. The observed changes in pesticide use are likely to be the result of many factors, including the introduction of GM crops, regulatory restrictions on some conventional pesticides, introduction of new pesticide technologies and changes in farming practices. In order to help protect human and environmental health and to help agriculture plan for the future, more detailed and complete documentation on pesticide use is needed on a frequent and ongoing basis. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Devos, Yann; Aguilera, Jaime; Diveki, Zoltán; Gomes, Ana; Liu, Yi; Paoletti, Claudia; du Jardin, Patrick; Herman, Lieve; Perry, Joe N; Waigmann, Elisabeth
2014-02-01
Genetically modified organisms (GMOs) and derived food and feed products are subject to a risk analysis and regulatory approval before they can enter the market in the European Union (EU). In this risk analysis process, the role of the European Food Safety Authority (EFSA), which was created in 2002 in response to multiple food crises, is to independently assess and provide scientific advice to risk managers on any possible risks that the use of GMOs may pose to human and animal health and the environment. EFSA's scientific advice is elaborated by its GMO Panel with the scientific support of several working groups and EFSA's GMO Unit. This review presents EFSA's scientific activities and highlights its achievements on the risk assessment of GMOs for the first 10 years of its existence. Since 2002, EFSA has issued 69 scientific opinions on genetically modified (GM) plant market registration applications, of which 62 for import and processing for food and feed uses, six for cultivation and one for the use of pollen (as or in food), and 19 scientific opinions on applications for marketing products made with GM microorganisms. Several guidelines for the risk assessment of GM plants, GM microorganisms and GM animals, as well as on specific issues such as post-market environmental monitoring (PMEM) were elaborated. EFSA also provided scientific advice upon request of the European Commission on safeguard clause and emergency measures invoked by EU Member States, annual PMEM reports, the potential risks of new biotechnology-based plant breeding techniques, evaluations of previously assessed GMOs in the light of new scientific publications, and the use of antibiotic resistance marker genes in GM plants. Future challenges relevant to the risk assessment of GMOs are discussed. EFSA's risk assessments of GMO applications ensure that data are analysed and presented in a way that facilitates scientifically sound decisions that protect human and animal health and the environment.
Kim, Jae-Hwan; Park, Saet-Byul; Roh, Hyo-Jeong; Shin, Min-Ki; Moon, Gui-Im; Hong, Jin-Hwan; Kim, Hae-Yeong
2017-07-01
One novel standard reference plasmid, namely pUC-RICE5, was constructed as a positive control and calibrator for event-specific qualitative and quantitative detection of genetically modified (GM) rice (Bt63, Kemingdao1, Kefeng6, Kefeng8, and LLRice62). pUC-RICE5 contained fragments of a rice-specific endogenous reference gene (sucrose phosphate synthase) as well as the five GM rice events. An existing qualitative PCR assay approach was modified using pUC-RICE5 to create a quantitative method with limits of detection correlating to approximately 1-10 copies of rice haploid genomes. In this quantitative PCR assay, the square regression coefficients ranged from 0.993 to 1.000. The standard deviation and relative standard deviation values for repeatability ranged from 0.02 to 0.22 and 0.10% to 0.67%, respectively. The Ministry of Food and Drug Safety (Korea) validated the method and the results suggest it could be used routinely to identify five GM rice events. Copyright © 2017 Elsevier Ltd. All rights reserved.
NMR-Metabolic Methodology in the Study of GM Foods
Sobolev, Anatoly P.; Capitani, Donatella; Giannino, Donato; Nicolodi, Chiara; Testone, Giulio; Santoro, Flavio; Frugis, Giovanna; Iannelli, Maria A.; Mattoo, Autar K.; Brosio, Elvino; Gianferri, Raffaella; D’Amico, Irene; Mannina, Luisa
2010-01-01
The 1H-NMR methodology used in the study of genetically modified (GM) foods is discussed. Transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the ArabidopsisKNAT1 gene is presented as a case study. Twenty-two water-soluble metabolites (amino acids, organic acids, sugars) present in leaves of conventional and GM lettuce were monitored by NMR and quantified at two developmental stages. The NMR spectra did not reveal any difference in metabolite composition between the GM lettuce and the wild type counterpart. Statistical analyses of metabolite variables highlighted metabolism variation as a function of leaf development as well as the transgene. A main effect of the transgene was in altering sugar metabolism. PMID:22253988
Foetzki, Andrea; Luginbühl, Carolin; Winzeler, Michael; Kneubühler, Yvan; Matasci, Caterina; Mascher-Frutschi, Fabio; Kalinina, Olena; Boller, Thomas; Keel, Christoph; Maurhofer, Monika
2013-01-01
This study aimed to evaluate the impact of genetically modified (GM) wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF). Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE) method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology. PMID:23372672
Brufau, M Teresa; Campo-Sabariz, Joan; Carné, Sergi; Ferrer, Ruth; Martín-Venegas, Raquel
2017-03-01
Mannan-oligosaccharides (MOSs) are mannose-rich substrates with several intestinal health-promoting properties. The aim of this study was to investigate the potential capacity of Salmosan (S-βGM), a β-galactomannan-rich MOS product, to restore epithelial barrier function independently from its capacity to reduce bacterial invasion. In addition, the combination of S-βGM with the proven probiotic Lactobacillus plantarum (LP) was also tested. Paracellular permeability was assessed by transepithelial electrical resistance (TER) in co-cultures of Caco-2 cells and macrophages (differentiated from THP-1 cells) stimulated with LPS of Salmonella Enteritidis and in Caco-2 cell cultures stimulated with TNF-α in the absence or presence of 500 μg/ml S-βGM, LP (MOI 10) or a combination of both. In both culture models, TER was significantly reduced up to 25% by LPS or TNF-α stimulation, and the addition of S-βGM or LP alone did not modify TER, whereas the combination of both restored TER to values of nonstimulated cells. Under LPS stimulation, TNF-α production was significantly increased by 10-fold, whereas IL-10 and IL-6 levels were not modified. The combination of S-βGM and LP reduced TNF-α production to nonstimulated cell values and significantly increased IL-10 and IL-6 levels (5- and 7.5-fold, respectively). Moreover, S-βGM has the capacity to induce an increase of fivefold in LP growth. In conclusion, we have demonstrated that S-βGM in combination with LP protects epithelial barrier function by modulation of cytokine secretion, thus giving an additional value to this MOS as a potential symbiotic. Copyright © 2016 Elsevier Inc. All rights reserved.
Meyer, Joana Beatrice; Song-Wilson, Yi; Foetzki, Andrea; Luginbühl, Carolin; Winzeler, Michael; Kneubühler, Yvan; Matasci, Caterina; Mascher-Frutschi, Fabio; Kalinina, Olena; Boller, Thomas; Keel, Christoph; Maurhofer, Monika
2013-01-01
This study aimed to evaluate the impact of genetically modified (GM) wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF). Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE) method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology.
Fast-Flowering Mini-Maize: Seed to Seed in 60 Days
McCaw, Morgan E.; Wallace, Jason G.; Albert, Patrice S.; Buckler, Edward S.; Birchler, James A.
2016-01-01
Two lines of Zea mays were developed as a short-generation model for maize. The Fast-Flowering Mini-Maize (FFMM) lines A and B are robust inbred lines with a significantly shorter generation time, much smaller stature, and better greenhouse adaptation than traditional maize varieties. Five generations a year are typical. FFMM is the result of a modified double-cross hybrid between four fast-flowering lines: Neuffer’s Early ACR (full color), Alexander’s Early Early Synthetic, Tom Thumb Popcorn, and Gaspe Flint, followed by selection for early flowering and desirable morphology throughout an 11-generation selfing regime. Lines A and B were derived from different progeny of the initial hybrid, and crosses between Mini-Maize A and B exhibit heterosis. The ancestry of each genomic region of Mini-Maize A and B was inferred from the four founder populations using genotyping by sequencing. Other genetic and genomic tools for these lines include karyotypes for both lines A and B, kernel genetic markers y1 (white endosperm) and R1-scm2 (purple endosperm and embryo) introgressed into Mini-Maize A, and ∼24× whole-genome resequencing data for Mini-Maize A. PMID:27440866
Song, Yan; Liang, Chunlai; Wang, Wei; Fang, Jin; Sun, Nana; Jia, Xudong; Li, Ning
2014-01-01
This study was to investigate the immunotoxicological potential of corn genetically modified (GM) with Bacillus thuringiensis (Bt) Cry1Ah gene in BALB/c mice. Female BALB/c mice were randomly assigned to one of the four groups: the negative control group, the parental corn group, the GM corn group and the positive control group with 10 mice per group. Mice in the GM corn group and the parental corn group were fed with diets containing 70% corresponding corn for 30 days. Mice in the negative control group and the positive control group were fed with AIN93G diet, administered with saline or 200 mg/kg of cyclophosphamide (CY) via intraperitoneal injection 24 h before the termination of the study, respectively. At the end of the study, the immunotoxicological effects of the GM corn were evaluated through immunopathology parameters including body and organ weights, hematology and clinical chemistry parameters, histological examination, peripheral blood lymphocytes phenotype; humoral immunity including antibody plaque-forming cell, serum immunoglobulin, cytokine and half hemolysis value; cellular immunity such as mitogen-induced splenocyte proliferation, cytotoxic T-lymphocyte reaction, delayed-type hypersensitivity reaction; non-specific immunity including phagocytic activities of phagocytes, natural killer cell activity. A single dose of cyclophosphamide (200 mg/kg bw) was found to have significant adverse effects on immunopathology, cellular immunity, and humoral immunity in mice. The corn genetically modified with Bt Cry1Ah gene is considered consistent with the parental corn in terms of immunopathology, humoral immunity, cellular immunity and non-specific immunity. No adverse immunotoxicological effects of GM corn with Bt Cry1Ah gene were found when feeding mice for 30 days. PMID:24520311
JRC GMO-Matrix: a web application to support Genetically Modified Organisms detection strategies.
Angers-Loustau, Alexandre; Petrillo, Mauro; Bonfini, Laura; Gatto, Francesco; Rosa, Sabrina; Patak, Alexandre; Kreysa, Joachim
2014-12-30
The polymerase chain reaction (PCR) is the current state of the art technique for DNA-based detection of Genetically Modified Organisms (GMOs). A typical control strategy starts by analyzing a sample for the presence of target sequences (GM-elements) known to be present in many GMOs. Positive findings from this "screening" are then confirmed with GM (event) specific test methods. A reliable knowledge of which GMOs are detected by combinations of GM-detection methods is thus crucial to minimize the verification efforts. In this article, we describe a novel platform that links the information of two unique databases built and maintained by the European Union Reference Laboratory for Genetically Modified Food and Feed (EU-RL GMFF) at the Joint Research Centre (JRC) of the European Commission, one containing the sequence information of known GM-events and the other validated PCR-based detection and identification methods. The new platform compiles in silico determinations of the detection of a wide range of GMOs by the available detection methods using existing scripts that simulate PCR amplification and, when present, probe binding. The correctness of the information has been verified by comparing the in silico conclusions to experimental results for a subset of forty-nine GM events and six methods. The JRC GMO-Matrix is unique for its reliance on DNA sequence data and its flexibility in integrating novel GMOs and new detection methods. Users can mine the database using a set of web interfaces that thus provide a valuable support to GMO control laboratories in planning and evaluating their GMO screening strategies. The platform is accessible at http://gmo-crl.jrc.ec.europa.eu/jrcgmomatrix/ .
PCR technology for screening and quantification of genetically modified organisms (GMOs).
Holst-Jensen, Arne; Rønning, Sissel B; Løvseth, Astrid; Berdal, Knut G
2003-04-01
Although PCR technology has obvious limitations, the potentially high degree of sensitivity and specificity explains why it has been the first choice of most analytical laboratories interested in detection of genetically modified (GM) organisms (GMOs) and derived materials. Because the products that laboratories receive for analysis are often processed and refined, the quality and quantity of target analyte (e.g. protein or DNA) frequently challenges the sensitivity of any detection method. Among the currently available methods, PCR methods are generally accepted as the most sensitive and reliable methods for detection of GM-derived material in routine applications. The choice of target sequence motif is the single most important factor controlling the specificity of the PCR method. The target sequence is normally a part of the modified gene construct, for example a promoter, a terminator, a gene, or a junction between two of these elements. However, the elements may originate from wildtype organisms, they may be present in more than one GMO, and their copy number may also vary from one GMO to another. They may even be combined in a similar way in more than one GMO. Thus, the choice of method should fit the purpose. Recent developments include event-specific methods, particularly useful for identification and quantification of GM content. Thresholds for labelling are now in place in many countries including those in the European Union. The success of the labelling schemes is dependent upon the efficiency with which GM-derived material can be detected. We will present an overview of currently available PCR methods for screening and quantification of GM-derived DNA, and discuss their applicability and limitations. In addition, we will discuss some of the major challenges related to determination of the limits of detection (LOD) and quantification (LOQ), and to validation of methods.
Tank, Jennifer L.; Rosi-Marshall, Emma J.; Royer, Todd V.; Whiles, Matt R.; Griffiths, Natalie A.; Frauendorf, Therese C.; Treering, David J.
2010-01-01
Widespread planting of maize throughout the agricultural Midwest may result in detritus entering adjacent stream ecosystems, and 63% of the 2009 US maize crop was genetically modified to express insecticidal Cry proteins derived from Bacillus thuringiensis. Six months after harvest, we conducted a synoptic survey of 217 stream sites in Indiana to determine the extent of maize detritus and presence of Cry1Ab protein in the stream network. We found that 86% of stream sites contained maize leaves, cobs, husks, and/or stalks in the active stream channel. We also detected Cry1Ab protein in stream-channel maize at 13% of sites and in the water column at 23% of sites. We found that 82% of stream sites were adjacent to maize fields, and Geographical Information Systems analyses indicated that 100% of sites containing Cry1Ab-positive detritus in the active stream channel had maize planted within 500 m during the previous crop year. Maize detritus likely enters streams throughout the Corn Belt; using US Department of Agriculture land cover data, we estimate that 91% of the 256,446 km of streams/rivers in Iowa, Illinois, and Indiana are located within 500 m of a maize field. Maize detritus is common in low-gradient stream channels in northwestern Indiana, and Cry1Ab proteins persist in maize leaves and can be measured in the water column even 6 mo after harvest. Hence, maize detritus, and associated Cry1Ab proteins, are widely distributed and persistent in the headwater streams of a Corn Belt landscape. PMID:20876106
Tank, Jennifer L; Rosi-Marshall, Emma J; Royer, Todd V; Whiles, Matt R; Griffiths, Natalie A; Frauendorf, Therese C; Treering, David J
2010-10-12
Widespread planting of maize throughout the agricultural Midwest may result in detritus entering adjacent stream ecosystems, and 63% of the 2009 US maize crop was genetically modified to express insecticidal Cry proteins derived from Bacillus thuringiensis. Six months after harvest, we conducted a synoptic survey of 217 stream sites in Indiana to determine the extent of maize detritus and presence of Cry1Ab protein in the stream network. We found that 86% of stream sites contained maize leaves, cobs, husks, and/or stalks in the active stream channel. We also detected Cry1Ab protein in stream-channel maize at 13% of sites and in the water column at 23% of sites. We found that 82% of stream sites were adjacent to maize fields, and Geographical Information Systems analyses indicated that 100% of sites containing Cry1Ab-positive detritus in the active stream channel had maize planted within 500 m during the previous crop year. Maize detritus likely enters streams throughout the Corn Belt; using US Department of Agriculture land cover data, we estimate that 91% of the 256,446 km of streams/rivers in Iowa, Illinois, and Indiana are located within 500 m of a maize field. Maize detritus is common in low-gradient stream channels in northwestern Indiana, and Cry1Ab proteins persist in maize leaves and can be measured in the water column even 6 mo after harvest. Hence, maize detritus, and associated Cry1Ab proteins, are widely distributed and persistent in the headwater streams of a Corn Belt landscape.
Goodman, Richard E; Tetteh, Afua O
2011-08-01
Genetically modified (GM) plants are increasingly used for food production and industrial applications. As the global population has surpassed 7 billion and per capita consumption rises, food production is challenged by loss of arable land, changing weather patterns, and evolving plant pests and disease. Previous gains in quantity and quality relied on natural or artificial breeding, random mutagenesis, increased pesticide and fertilizer use, and improved farming techniques, all without a formal safety evaluation. However, the direct introduction of novel genes raised questions regarding safety that are being addressed by an evaluation process that considers potential increases in the allergenicity, toxicity, and nutrient availability of foods derived from the GM plants. Opinions vary regarding the adequacy of the assessment, but there is no documented proof of an adverse effect resulting from foods produced from GM plants. This review and opinion discusses current practices and new regulatory demands related to food safety.
McFadden, Brandon R
2016-01-01
There is great uncertainty due to challenges of escalating population growth and climate change. Public perception that diverges from the scientific community may decrease the effectiveness of scientific inquiry and innovation as tools to solve these challenges. The objective of this study was to identify the factors associated with the divergence of public opinion from scientific consensus regarding the safety of genetically modified (GM) foods and human involvement in global warming (GW). Results indicate that the effects of knowledge on public opinion are complex and non-uniform across types of knowledge (i.e., perceived and actual) or issues. Political affiliation affects agreement with science; Democrats were more likely to agree that GM food is safe and human actions cause GW. Respondents who had relatively higher cognitive function or held illusionary correlations about GM food or GW were more likely to have an opinion that differed from the scientific community.
McFadden, Brandon R.
2016-01-01
There is great uncertainty due to challenges of escalating population growth and climate change. Public perception that diverges from the scientific community may decrease the effectiveness of scientific inquiry and innovation as tools to solve these challenges. The objective of this study was to identify the factors associated with the divergence of public opinion from scientific consensus regarding the safety of genetically modified (GM) foods and human involvement in global warming (GW). Results indicate that the effects of knowledge on public opinion are complex and non-uniform across types of knowledge (i.e., perceived and actual) or issues. Political affiliation affects agreement with science; Democrats were more likely to agree that GM food is safe and human actions cause GW. Respondents who had relatively higher cognitive function or held illusionary correlations about GM food or GW were more likely to have an opinion that differed from the scientific community. PMID:27829008
Environmental release of living modified organisms: current approaches and case studies.
Thomas, E; Nickson, Ph D
2005-01-01
Agricultural biotechnology is being rapidly adopted as evidenced by the acreage of genetically modified (GM) crops planted and tonnes of product (grain and fiber) harvested. Concurrent with this technological progress, is a growing concern that the worlds biological diversity is coming under increasing threat from human activities. As such, ecological risk assessment approaches are being developed for GM crop plants as international agreements regulating the transboundary movements of these products are being implemented. This paper reviews the ecological risk assessment approach that has been used to date to approve GM crops to date. The process has been case-by-case, using a comparative, science-based approach balancing the potential risks and benefits of the new technology versus those present with the currently accepted practices. The approach used to evaluate and approve these products is consistent with the conditions and requirements outlined in the Cartagena Protocol.
A future scenario of the global regulatory landscape regarding genome-edited crops
Araki, Motoko
2017-01-01
ABSTRACT The global agricultural landscape regarding the commercial cultivation of genetically modified (GM) crops is mosaic. Meanwhile, a new plant breeding technique, genome editing is expected to make genetic engineering-mediated crop breeding more socially acceptable because it can be used to develop crop varieties without introducing transgenes, which have hampered the regulatory review and public acceptance of GM crops. The present study revealed that product- and process-based concepts have been implemented to regulate GM crops in 30 countries. Moreover, this study analyzed the regulatory responses to genome-edited crops in the USA, Argentina, Sweden and New Zealand. The findings suggested that countries will likely be divided in their policies on genome-edited crops: Some will deregulate transgene-free crops, while others will regulate all types of crops that have been modified by genome editing. These implications are discussed from the viewpoint of public acceptance. PMID:27960622
Risk, regulation and biotechnology: the case of GM crops.
Smyth, Stuart J; Phillips, Peter W B
2014-07-03
The global regulation of products of biotechnology is increasingly divided. Regulatory decisions for genetically modified (GM) crops in North America are predictable and efficient, with numerous countries in Latin and South America, Australia and Asia following this lead. While it might have been possible to argue that Europe's regulations were at one time based on real concerns about minimizing risks and ensuring health and safety, it is increasingly apparent that the entire European Union (EU) regulatory system for GM crops and foods is now driven by political agendas. Countries within the EU are at odds with each other as some have commercial production of GM crops, while others refuse to even develop regulations that could provide for the commercial release of GM crops. This divide in regulatory decision-making is affecting international grain trade, creating challenges for feeding an increasing global population.
The Unknowns and Possible Implications of Mandatory Labeling.
McFadden, Brandon R
2017-01-01
The National Bioengineered Food Disclosure Standard requires a mandatory label for genetically modified (GM) food. Currently, some aspects of the bill are unknown, including what constitutes a food to be considered GM. The costs associated with this legislation will depend on how actors in the food value chain respond. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of CaMSRB2-Expressing Transgenic Rice Cultivation on Soil Microbial Communities.
Sohn, Soo-In; Oh, Young-Ju; Kim, Byung-Yong; Cho, Hyun-Suk
2016-07-28
Although many studies on the effects of genetically modified (GM) crops on soil microorganisms have been carried out over the past decades, they have provided contradictory information, even for the same GM crop, owing to the diversity of the soil environments in which they were conducted. This inconsistency in results suggests that the effects of GM crops on soil microorganisms should be considered from many aspects. In this study, we investigated the effects of the GM drought-tolerant rice MSRB2-Bar-8, which expresses the CaMSRB2 gene, on soil microorganisms based on the culture-dependent and culture-independent methods. To this end, rhizosphere soils of GM and non-GM (IM) rice were analyzed for soil chemistry, population densities of soil microorganisms, and microbial community structure (using pyrosequencing technology) at three growth stages (seedling, tillering, and maturity). There was no significant difference in the soil chemistry between GM and non-GM rice. The microbial densities of the GM soils were found to be within the range of those of the non-GM rice. In the pyrosequencing analyses, Proteobacteria and Chloroflexi were dominant at the seedling stage, while Chloroflexi showed dominance over Proteobacteria at the maturity stage in both the GM and non-GM soils. An UPGMA dendrogram showed that the soil microbial communities were clustered by growth stage. Taken together, the results from this study suggest that the effects of MSRB2-Bar-8 cultivation on soil microorganisms are not significant.
Factors influencing stakeholders attitudes toward genetically modified aedes mosquito.
Amin, Latifah; Hashim, Hasrizul
2015-06-01
Dengue fever is a debilitating and infectious disease that could be life-threatening. It is caused by the dengue virus which affects millions of people in the tropical area. Currently, there is no cure for the disease as there is no vaccine available. Thus, prevention of the vector population using conventional methods is by far the main strategy but has been found ineffective. A genetically modified (GM) mosquito is among the favoured alternatives to curb dengue fever in Malaysia. Past studies have shown that development and diffusion of gene technology products depends heavily upon public acceptance. The purpose of this study is to identify the relevant factors influencing stakeholders' attitudes toward the GM Aedes mosquito and to analyse the relationships between all the factors using the structural equation model. A survey was carried out on 509 respondents from various stakeholder groups in the Klang Valley region of Malaysia. Results of the survey have confirmed that public perception towards complex issues such as gene technology should be seen as a multi-faceted process. The perceived benefit-perceived risk balance is very important in determining the most predominant predictor of attitudes toward a GM mosquito. In this study the stakeholders perceived the benefit of the GM mosquito as outweighing its risk, translating perceived benefit as the most important direct predictor of attitudes toward the GM mosquito. Trust in key players has a direct influence on attitudes toward the GM mosquito while moral concern exhibited an indirect influence through perceived benefits. Other factors such as attitudes toward technology and nature were also indirect predictors of attitudes toward the GM mosquito while religiosity and engagement did not exhibited any significant roles. The research findings serve as a useful database to understand public acceptance and the social construct of public attitudes towards the GM mosquito to combat dengue.
NASA Astrophysics Data System (ADS)
Nader, Richard Harrison
According to Millar (1996), the gulf between science and society is growing. Technologies are tools cultures develop to solve society's problems. The rapid dispersion of science and technology across cultural borders through trade, technology transfer and exchange, increasingly requires people in different cultures to make choices about accepting or rejecting artifacts of science and technology such as genetically modified (GM) foods, which originate primarily from the United States. These issues challenge policy makers and scientists to account for the affects of different cultural perspectives on controversial scientific issues. Given the controversy across cultures over acceptance or rejection of genetically modified (GM) foods, GM foods are an excellent example with which to begin to reveal how culture impacts public perceptions of the risk and benefits of science and technology in different societies. This research will: (1) Define public awareness and understanding of science, specifically GM foods; (2) Examine culture's impact on knowledge, including different cultural approaches to research; and (3) Compare recent findings of a bi-national public opinion survey on GM comparing in South Korea and the United States. The proposed research outlines two research questions: (1) How and in what ways do South Koreans and Americans differ in their opinions about GMOs? This question is important for gathering current points of contrast about how the two cultures may differ; and (2) What role does culture play on opinion formation about GM foods? Through grounded theory, the researcher will investigate how cultural differences help explain opinion on public perceptions of GM foods. Is it possible to identify common cultural factors that impact public perceptions of GM foods between South Koreans and Americans? The study will utilize both qualitative and quantitative methodologies. Higher education is a major producer of new science and technology. The study is significant for higher education administrators who must understand cultural factors impacting science internationally and globalization of the academic enterprise.
USDA-ARS?s Scientific Manuscript database
Quality Protein Maize (QPM) has improved nutritional quality due to the opaque2 mutation as well as hard endosperm conferred by uncharacterized modifier genes. We have developed a series of QPM inbred lines based on crosses between public U.S. Corn Belt-adapted lines with QPM lines developed at the...
Rózalska, B; Ljungh, A; Paziak-Domańska, B; Rudnicka, W
1996-01-01
Staphylococcal infections are a major complication in the usage of biomaterials. Different modifications of polymers have been made to reduce the incidence of such infections. We studied the effects of modifying heparinized polyethylene (H-PE) with mouse recombinant granulocyte-macrophage stimulating factor (rGM-CSF). The elimination of staphylococci (Staphylococcus aureus, S. epidermidis) from the peritoneum of mice implanted with rGM-CSF-coated H-PE was slightly more effective than the elimination of the bacteria from the peritoneum of animals implanted with uncoated H-PE. Most interestingly, the number of staphylococci present in the biofilms covering rGM-CSF-coated implants were significantly lower than the number of bacteria detected on the surface of H-PE not coated with rGM-CSF. In vitro, rGM-CSF restored the anti-bacterial potency of the phagocytes, which had been reduced by surface contact with H-PE. The results suggest that modification of biomaterials with rGM-CSF could be one way of preventing staphylococcal infections; especially in neutropenic disorders, which constitute the highest risk factor for foreign body-associated infections.
Genetically modified food in the news: media representations of the GM debate in the UK.
Augoustinos, Martha; Crabb, Shona; Shepherd, Richard
2010-01-01
This paper analyses a corpus of articles on GM crops and food which appeared in six UK newspapers in the first three months of 2004, the year following the GM Nation? debate (2003). Using the methods of critical discourse analysis we focus on how specific and pervasive representations of the major stakeholders in the national debate on GM--the British public, the British government, the science of GM, and biotechnology companies--served significant rhetorical functions in the controversy. Of particular significance was the pervasive representation of the British public as uniformly opposed to GM crops and food which served rhetorically to position the British government as undemocratic and as being beholden to powerful political and economic interests. Of significance also in our analysis, is how the science of GM farming itself became a highly contested arena. In short, our analysis demonstrates how the GM debate was represented in the newsprint media as a "battleground" of competing interests. We conclude by considering the possible implications of this representation given the increasing emphasis placed on the importance of deliberative and inclusive forms of science policy decision-making.
Characterization of GM events by insert knowledge adapted re-sequencing approaches
Yang, Litao; Wang, Congmao; Holst-Jensen, Arne; Morisset, Dany; Lin, Yongjun; Zhang, Dabing
2013-01-01
Detection methods and data from molecular characterization of genetically modified (GM) events are needed by stakeholders of public risk assessors and regulators. Generally, the molecular characteristics of GM events are incomprehensively revealed by current approaches and biased towards detecting transformation vector derived sequences. GM events are classified based on available knowledge of the sequences of vectors and inserts (insert knowledge). Herein we present three insert knowledge-adapted approaches for characterization GM events (TT51-1 and T1c-19 rice as examples) based on paired-end re-sequencing with the advantages of comprehensiveness, accuracy, and automation. The comprehensive molecular characteristics of two rice events were revealed with additional unintended insertions comparing with the results from PCR and Southern blotting. Comprehensive transgene characterization of TT51-1 and T1c-19 is shown to be independent of a priori knowledge of the insert and vector sequences employing the developed approaches. This provides an opportunity to identify and characterize also unknown GM events. PMID:24088728
Characterization of GM events by insert knowledge adapted re-sequencing approaches.
Yang, Litao; Wang, Congmao; Holst-Jensen, Arne; Morisset, Dany; Lin, Yongjun; Zhang, Dabing
2013-10-03
Detection methods and data from molecular characterization of genetically modified (GM) events are needed by stakeholders of public risk assessors and regulators. Generally, the molecular characteristics of GM events are incomprehensively revealed by current approaches and biased towards detecting transformation vector derived sequences. GM events are classified based on available knowledge of the sequences of vectors and inserts (insert knowledge). Herein we present three insert knowledge-adapted approaches for characterization GM events (TT51-1 and T1c-19 rice as examples) based on paired-end re-sequencing with the advantages of comprehensiveness, accuracy, and automation. The comprehensive molecular characteristics of two rice events were revealed with additional unintended insertions comparing with the results from PCR and Southern blotting. Comprehensive transgene characterization of TT51-1 and T1c-19 is shown to be independent of a priori knowledge of the insert and vector sequences employing the developed approaches. This provides an opportunity to identify and characterize also unknown GM events.
Ghasemi, Sedigheh; Karami, Ezatollah; Azadi, Hossein
2013-09-01
While there has been a number of consumers' studies looking at factors that influence individuals' attitudes and behavior toward GM foods, few studies have considered agricultural professionals' intentions in this regard. This study illuminates agricultural professionals' insights toward GM foods in Southwest Iran. A random sample of 262 respondents was studied. The results indicated that the majority of the respondents had little knowledge about GM foods. They perceived few benefits or risks of GM foods. Their perceived benefits and trust in individuals and institutions had positive impacts on the behavioral intentions of the agricultural professionals. The results also revealed that the low knowledge level of the respondents had a negative impact on the behavioral intentions toward GM foods. This state of affairs is problematic, either GM foods have serious problems or the knowledge conveyed to the Iranian agricultural experts is inappropriate. We recommend a well defined communication strategy to provide information in such a way that allows individuals to feel adequately informed about GM foods. Furthermore, the development of trust and knowledge regarding GM foods can be greater when risk analysis frameworks are transparent, risk assessment methodologies are objective, all stakeholders are engaged in the risk management process, and risk communication focuses on consumers.
Gene exchange between cultivated crops and wild species has gained significance in recent years because of concerns regarding the potential for gene flow between genetically modified (GM) crops and their domesticated and wild relatives. As part of our ecological effects of gene ...
Rodríguez-Entrena, Macario; Salazar-Ordóñez, Melania; Becerra-Alonso, David
2016-03-30
This paper studies which of the attitudinal, cognitive and socio-economic factors determine the willingness to purchase genetically modified (GM) food, enabling the forecasting of consumers' behaviour in Andalusia, southern Spain. This classification has been made by a standard multilayer perceptron neural network trained with extreme learning machine. Later, an ordered logistic regression was applied to determine whether the neural network can outperform this traditional econometric approach. The results show that the highest relative contributions lie in the variables related to perceived risks of GM food, while the perceived benefits have a lower influence. In addition, an innovative attitude towards food presents a strong link, as does the perception of food safety. The variables with the least relative contribution are subjective knowledge about GM food and the consumers' age. The neural network approach outperforms the correct classification percentage from the ordered logistic regression. The perceived risks must be considered as a critical factor. A strategy to improve the GM food acceptance is to develop a transparent and balanced information framework that makes the potential risk understandable by society, and make them aware of the risk assessments for GM food in the EU. For its success, it is essential to improve the trust in EU institutions and scientific regulatory authorities. © 2015 Society of Chemical Industry.
Genetically modified plants and human health
Key, Suzie; Ma, Julian K-C; Drake, Pascal MW
2008-01-01
Summary Genetically modified (or GM) plants have attracted a large amount of media attention in recent years and continue to do so. Despite this, the general public remains largely unaware of what a GM plant actually is or what advantages and disadvantages the technology has to offer, particularly with regard to the range of applications for which they can be used. From the first generation of GM crops, two main areas of concern have emerged, namely risk to the environment and risk to human health. As GM plants are gradually being introduced into the European Union there is likely to be increasing public concern regarding potential health issues. Although it is now commonplace for the press to adopt ‘health campaigns’, the information they publish is often unreliable and unrepresentative of the available scientific evidence. We consider it important that the medical profession should be aware of the state of the art, and, as they are often the first port of call for a concerned patient, be in a position to provide an informed opinion. This review will examine how GM plants may impact on human health both directly – through applications targeted at nutrition and enhancement of recombinant medicine production – but also indirectly, through potential effects on the environment. Finally, it will examine the most important opposition currently facing the worldwide adoption of this technology: public opinion. PMID:18515776
Early competition shapes maize whole-plant development in mixed stands
Evers, Jochem B.
2014-01-01
Mixed cropping is practised widely in developing countries and is gaining increasing interest for sustainable agriculture in developed countries. Plants in intercrops grow differently from plants in single crops, due to interspecific plant interactions, but adaptive plant morphological responses to competition in mixed stands have not been studied in detail. Here the maize (Zea mays) response to mixed cultivation with wheat (Triticum aestivum) is described. Evidence is provided that early responses of maize to the modified light environment in mixed stands propagate throughout maize development, resulting in different phenotypes compared with pure stands. Photosynthetically active radiation (PAR), red:far-red ratio (R:FR), leaf development, and final organ sizes of maize grown in three cultivation systems were compared: pure maize, an intercrop with a small distance (25cm) between maize and wheat plants, and an intercop with a large distance (44cm) between the maize and the wheat. Compared with maize in pure stands, maize in the mixed stands had lower leaf and collar appearance rates, increased blade and sheath lengths at low ranks and smaller sizes at high ranks, increased blade elongation duration, and decreased R:FR and PAR at the plant base during early development. Effects were strongest in the treatment with a short distance between wheat and maize strips. The data suggest a feedback between leaf initiation and leaf emergence at the plant level and coordination between blade and sheath growth at the phytomer level. A conceptual model, based on coordination rules, is proposed to explain the development of the maize plant in pure and mixed stands. PMID:24307719
Antoniou, Michael N.; Robinson, Claire J.
2017-01-01
Cornell Alliance for Science has launched an initiative in which “citizen scientists” are called upon to evaluate studies on health risks of genetically modified (GM) crops and foods. The purpose is to establish whether the consensus on GM food safety claimed by the American Association for the Advancement of Science (AAAS) is supported by a review of the scientific literature. The Alliance’s citizen scientists are examining more than 12,000 publication abstracts to quantify how far the scientific literature supports the AAAS’s statement. We identify a number of fundamental weaknesses in the Alliance’s study design, including evaluation is based only on information provided in the publication abstract; there is a lack of clarity as to what material is included in the 12,000 study abstracts to be reviewed, since the number of appropriately designed investigations addressing GM food safety are few; there is uncertainty as to whether studies of toxic effects arising from GM crop-associated pesticides will be included; there is a lack of clarity regarding whether divergent yet equally valid interpretations of the same study will be taken into account; and there is no definition of the cutoff point for consensus or non-consensus on GM food safety. In addition, vital industry proprietary biosafety data on GM crops and associated pesticides are not publicly available and is thus cannot inform this project. Based on these weaknesses in the study design, we believe it is questionable as to whether any objective or meaningful conclusion can be drawn from the Alliance’s initiative. PMID:28447029
Asanuma, Yoko; Gondo, Takahiro; Ishigaki, Genki; Inoue, Koichi; Zaita, Norihiro; Muguerza, Melody; Akashi, Ryo
2017-04-03
Japan imports cottonseed mainly from Australia and the USA where more than 96% of all cotton varieties grown are genetically modified (GM). GM crops undergo an environmental risk assessment (ERA) under the Law Concerning the Conservation and Sustainable Use of Biological Diversity before import into Japan. Potential adverse effects on biodiversity are comprehensively assessed based on competitiveness, production of harmful substances and outcrossing ability. Even though imported cottonseed is intended for food and feed uses and not for cultivation, the potential risks from seed spillage during transport must be evaluated. In most cases, the ERA requires data collected from in-country field trials to demonstrate how the GM crop behaves in Japan's environment. Confined field trials in Japan were conducted for the ERA of Lepidoptera-resistant and glufosinate-tolerant GM cotton (Gossypium hirsutum L.) lines GHB119 and T304-40. These lines were compared with conventional varieties for growth habit, morphological characteristics, seed dormancy, and allelopathic activity associated with competitiveness and production of harmful substances. Outcrossing ability was not a concern due to the absence of sexually compatible wild relatives in Japan. Although slight statistical differences were observed between the GM line and its conventional comparator for some morphological characteristics, transgenes or transformation were not considered to be responsible for these differences. The trial demonstrated that competitiveness and production of harmful substances by these GM cotton lines were equivalent to conventional cotton varieties that have a long history of safe use, and no potential adverse effects to biosafety in Japan were observed.
Antoniou, Michael N; Robinson, Claire J
2017-01-01
Cornell Alliance for Science has launched an initiative in which "citizen scientists" are called upon to evaluate studies on health risks of genetically modified (GM) crops and foods. The purpose is to establish whether the consensus on GM food safety claimed by the American Association for the Advancement of Science (AAAS) is supported by a review of the scientific literature. The Alliance's citizen scientists are examining more than 12,000 publication abstracts to quantify how far the scientific literature supports the AAAS's statement. We identify a number of fundamental weaknesses in the Alliance's study design, including evaluation is based only on information provided in the publication abstract; there is a lack of clarity as to what material is included in the 12,000 study abstracts to be reviewed, since the number of appropriately designed investigations addressing GM food safety are few; there is uncertainty as to whether studies of toxic effects arising from GM crop-associated pesticides will be included; there is a lack of clarity regarding whether divergent yet equally valid interpretations of the same study will be taken into account; and there is no definition of the cutoff point for consensus or non-consensus on GM food safety. In addition, vital industry proprietary biosafety data on GM crops and associated pesticides are not publicly available and is thus cannot inform this project. Based on these weaknesses in the study design, we believe it is questionable as to whether any objective or meaningful conclusion can be drawn from the Alliance's initiative.
Asanuma, Yoko; Gondo, Takahiro; Ishigaki, Genki; Inoue, Koichi; Zaita, Norihiro; Muguerza, Melody; Akashi, Ryo
2017-01-01
ABSTRACT Japan imports cottonseed mainly from Australia and the USA where more than 96% of all cotton varieties grown are genetically modified (GM). GM crops undergo an environmental risk assessment (ERA) under the Law Concerning the Conservation and Sustainable Use of Biological Diversity before import into Japan. Potential adverse effects on biodiversity are comprehensively assessed based on competitiveness, production of harmful substances and outcrossing ability. Even though imported cottonseed is intended for food and feed uses and not for cultivation, the potential risks from seed spillage during transport must be evaluated. In most cases, the ERA requires data collected from in-country field trials to demonstrate how the GM crop behaves in Japan's environment. Confined field trials in Japan were conducted for the ERA of Lepidoptera-resistant and glufosinate-tolerant GM cotton (Gossypium hirsutum L.) lines GHB119 and T304-40. These lines were compared with conventional varieties for growth habit, morphological characteristics, seed dormancy, and allelopathic activity associated with competitiveness and production of harmful substances. Outcrossing ability was not a concern due to the absence of sexually compatible wild relatives in Japan. Although slight statistical differences were observed between the GM line and its conventional comparator for some morphological characteristics, transgenes or transformation were not considered to be responsible for these differences. The trial demonstrated that competitiveness and production of harmful substances by these GM cotton lines were equivalent to conventional cotton varieties that have a long history of safe use, and no potential adverse effects to biosafety in Japan were observed. PMID:28510512
Genes in food--why the furore?
Dixon, Bernard
2003-04-01
Although unprecedented and perhaps unique in its irrationality, the recent furore over genetically modified (GM) food holds extremely important lessons for scientists. Some sections of the media undoubtedly bear a heavy responsibility for giving the expression 'GM' threatening connotations that are quite unwarranted. However, influential contributions to the hysteria have come from a surprising range of other sources, including some scientists. The research community has failed in its responsibility to society in three ways. Firstly, plant scientists did not appreciate that certain techniques (such as the use of antibiotic resistance genes as markers during plant transformation) would inevitably provoke public consternation. As a result, they took no steps to address such concerns. Secondly, researchers overlooked, minimized or in some cases simply dismissed the significance of public fears that they were 'interfering with Nature' or 'playing God'. Thirdly, plant breeders apparently saw no need to take pro-active measures with regard to the media and public in placing potential environmental and nutritional benefits of GM crops on the agenda in a positive fashion. Partly because of this failure, GM food is now firmly established in the public mind as wholly objectionable. One measure of how far we have travelled down that road is that it hardly matters any more whether objections are based on alleged environmental risks of cultivating GM crops or alleged toxicological hazards of eating them. 'Genetically modified organism', like 'radioactivity', has become an odious, generic shibboleth. Given that millions of people throughout the world are already benefiting from pharmaceuticals made by GM organisms, this is bizarre.
Hu, Rui; Kan, Tongtong; Li, Yan; Zhang, Xiaosheng; Zhang, Jinlong; Lian, Ling; Han, Hongbing; Lian, Zhengxing
2015-01-01
Genetic modification offers alternative strategies to traditional animal breeding. However, the food safety of genetically modified (GM) animals has attracted increasing levels of concern. In this study, we produced GM sheep overexpressing TLR4, and the transgene-positive offsprings (F1) were confirmed using the polymerase chain reaction (PCR) and Southern blot. The expression of TLR4 was 2.5-fold compared with that of the wild-type (WT) sheep samples. During the 90-day safety study, Sprague-Dawley rats were fed with three different dietary concentrations (3.75%, 7.5%, and 15% wt/wt) of GM sheep meat, WT sheep meat or a commercial diet (CD). Blood samples from the rats were collected and analyzed for hematological and biochemical parameters, and then compared with hematological and biochemical reference ranges. Despite a few significant differences among the three groups in some parameters, all other values remained within the normal reference intervals and thus were not considered to be affected by the treatment. No adverse diet-related differences in body weights or relative organ weights were observed. Furthermore, no differences were observed in the gross necropsy findings or microscopic pathology of the rats whose diets contained the GM sheep meat compared with rats whose diets contained the WT sheep meat. Therefore, the present 90-day rat feeding study suggested that the meat of GM sheep overexpressing TLR4 had no adverse effect on Sprague-Dawley rats in comparison with WT sheep meat. These results provide valuable information regarding the safety assessment of meat derived from GM animals. PMID:25874566
An image-based automatic recognition method for the flowering stage of maize
NASA Astrophysics Data System (ADS)
Yu, Zhenghong; Zhou, Huabing; Li, Cuina
2018-03-01
In this paper, we proposed an image-based approach for automatic recognizing the flowering stage of maize. A modified HOG/SVM detection framework is first adopted to detect the ears of maize. Then, we use low-rank matrix recovery technology to precisely extract the ears at pixel level. At last, a new feature called color gradient histogram, as an indicator, is proposed to determine the flowering stage. Comparing experiment has been carried out to testify the validity of our method and the results indicate that our method can meet the demand for practical observation.
Beringer, J E
2000-04-01
Despite strict regulation and a clean safety record, research and development of genetically modified (GM) crops and other organisms has been confronted with tremendous public hostility. Why has this happened, and how can scientists try to guide the debate into more rational channels? The answers may determine the future of GM technology and our ability to provide for a growing world population.
Uninformed and disinformed society and the GMO market.
Twardowski, Tomasz; Małyska, Aleksandra
2015-01-01
The EU has a complicated regulatory framework, and this is slowing down the approval process of new genetically modified (GM) crops. Currently, labeling of GM organisms (GMOs) is mandatory in all Member States. However, the USA, in which GMO labeling is not mandatory, continues to lead the production of biotech crops, biopharmaceuticals, biomaterials, and bioenergy. Copyright © 2014 Elsevier Ltd. All rights reserved.
De Steur, H; Gellynck, X; Storozhenko, S; Liqun, G; Lambert, W; Van Der Straeten, D; Viaene, J
2010-02-01
Neural-tube defects (NTDs) are considered to be the most common congenital malformations. As Shanxi Province, a poor region in the North of China, has one of the highest reported prevalence rates of NTDs in the world, folate fortification of rice is an excellent alternative to low intake of folate acid pills in this region. This paper investigates the relations between socio-demographic indicators, consumer characteristics (knowledge, consumer perceptions on benefits, risks, safety and price), willingness-to-accept and willingness-to-pay genetically modified (GM) rice. The consumer survey compromises 944 face-to-face interviews with rice consumers in Shanxi Province, China. Multivariate analyses consist of multinomial logistic regression and multiple regression. The results indicate that consumers generally are willing-to-accept GM rice, with an acceptance rate of 62.2%. Acceptance is influenced by objective knowledge and consumers' perceptions on benefits and risks. Willingness-to-pay GM rice is influenced by objective knowledge, risk perception and acceptance. Communication towards the use of GM rice should target mainly improving knowledge and consumers' perceptions on high-risk groups within Shanxi Province, in particular low educated women. 2009 Elsevier Ltd. All rights reserved.
Eco-certification and greening the Brazilian soy and corn supply chains.
VanWey, Leah K; Richards, Peter D
2014-01-01
Garrett et al 's recent letter (2013 Environ. Res. Lett. 8 044055) shows the trade value of Brazil's production of non-genetically modified (GM) crops, and argues that production for this niche market laid the foundation for the expansion of a variety of non-GM and eco-certification systems. We argue that the conditions underlying the development and perpetuation of the non-GM certification systems are transient. The expansion of soy production has dampened the conditions that promoted the dominance of non-GM soy in the region. The state at the heart of the production of conventional soy, Mato Grosso, already has transitioned to almost 90% GM soy in the most recent agricultural season. The continued viability of eco-certification systems depends on strengthening institutions on the demand side, and ensuring farm-level costs on the supply side match price premiums reaching the farm level.
Applying a weed risk assessment approach to GM crops.
Keese, Paul K; Robold, Andrea V; Myers, Ruth C; Weisman, Sarah; Smith, Joe
2014-12-01
Current approaches to environmental risk assessment of genetically modified (GM) plants are modelled on chemical risk assessment methods, which have a strong focus on toxicity. There are additional types of harms posed by plants that have been extensively studied by weed scientists and incorporated into weed risk assessment methods. Weed risk assessment uses robust, validated methods that are widely applied to regulatory decision-making about potentially problematic plants. They are designed to encompass a broad variety of plant forms and traits in different environments, and can provide reliable conclusions even with limited data. The knowledge and experience that underpin weed risk assessment can be harnessed for environmental risk assessment of GM plants. A case study illustrates the application of the Australian post-border weed risk assessment approach to a representative GM plant. This approach is a valuable tool to identify potential risks from GM plants.
Eco-certification and greening the Brazilian soy and corn supply chains
NASA Astrophysics Data System (ADS)
VanWey, Leah K.; Richards, Peter D.
2014-03-01
Garrett et al’s recent letter (2013 Environ. Res. Lett. 8 044055) shows the trade value of Brazil’s production of non-genetically modified (GM) crops, and argues that production for this niche market laid the foundation for the expansion of a variety of non-GM and eco-certification systems. We argue that the conditions underlying the development and perpetuation of the non-GM certification systems are transient. The expansion of soy production has dampened the conditions that promoted the dominance of non-GM soy in the region. The state at the heart of the production of conventional soy, Mato Grosso, already has transitioned to almost 90% GM soy in the most recent agricultural season. The continued viability of eco-certification systems depends on strengthening institutions on the demand side, and ensuring farm-level costs on the supply side match price premiums reaching the farm level.
Risk, regulation and biotechnology: The case of GM crops
Smyth, Stuart J; Phillips, Peter WB
2014-01-01
The global regulation of products of biotechnology is increasingly divided. Regulatory decisions for genetically modified (GM) crops in North America are predictable and efficient, with numerous countries in Latin and South America, Australia and Asia following this lead. While it might have been possible to argue that Europe's regulations were at one time based on real concerns about minimizing risks and ensuring health and safety, it is increasingly apparent that the entire European Union (EU) regulatory system for GM crops and foods is now driven by political agendas. Countries within the EU are at odds with each other as some have commercial production of GM crops, while others refuse to even develop regulations that could provide for the commercial release of GM crops. This divide in regulatory decision-making is affecting international grain trade, creating challenges for feeding an increasing global population. PMID:25437235
Costa, Thadeu Estevam Moreira Maramaldo; Marin, Victor Augustus
2011-08-01
The increase in surface area planted with genetically modified crops, with the subsequent transfer of such crops into the general environment for commercial trade, has raised questions about the safety of these products. The introduction of the Cartagena Protocol on Biosafety has led to the need to produce information and ensure training in this area for the implementation of policies on biosafety and for decision-making on the part of governments at the national, regional and international level. This article presents two main standpoints regarding the labeling of GM products (one adopted by the United States and the other by the European Union), as well as the position adopted by Brazil and its current legislation on labeling and commercial release of genetically modified (GM) products.
Impact of logging on a mangrove swamp in south Mexico: cost/benefit analysis.
Tovilla-Hernández, C; Espino de la Lanza, G; Orihuela-Belmonte, D E
2001-06-01
Environmental changes caused by logging in a mangrove swamp were studied in Barra de Tecoanapa, Guerrero, Mexico. Original forest included Rhizophora mangle, Laguncularia racemosa, Avicennia germinans and halophytic vegetation, and produced wood (164.03 m3/ha) and organic matter (3.9 g/m2/day). A total of 3.5 tons of wood per year were harvested from this area. Later, an average of 2,555 kg of maize per planting cycle were obtained (market value of 88 USD). Succession when the area was abandoned included strictly facultative and glycophyte halophytes (16 families, Cyperaceae and Poaceae were the best represented). After logging, temperatures increased 13 degrees C in the soil and 11 degrees C in the air, whereas salinity reached 52 psu in the dry season. These modified soil color and sand content increased from 42.6 to 63.4%. Logging was deleterious to species, habitat, biogeochemical and biological cycles, organic matter production, seeds, young plants, genetic exchange conservation of soil and its fertility, coastal protection, and aesthetic value; 3,000 m2 had eroded as the river advanced towards the deforested area (the cost/benefit analysis showed a ratio of 246:1). There was long-term economic loss for the community and only 30% of the site has recovered after five years.
Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G
2006-09-01
An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.
Alfenito, M R; Souer, E; Goodman, C D; Buell, R; Mol, J; Koes, R; Walbot, V
1998-01-01
Glutathione S-transferases (GSTs) traditionally have been studied in plants and other organisms for their ability to detoxify chemically diverse herbicides and other toxic organic compounds. Anthocyanins are among the few endogenous substrates of plant GSTs that have been identified. The Bronze2 (Bz2) gene encodes a type III GST and performs the last genetically defined step of the maize anthocyanin pigment pathway. This step is the conjugation of glutathione to cyanidin 3-glucoside (C3G). Glutathionated C3G is transported to the vacuole via a tonoplast Mg-ATP-requiring glutathione pump (GS-X pump). Genetically, the comparable step in the petunia anthocyanin pathway is controlled by the Anthocyanin9 (An9) gene. An9 was cloned by transposon tagging and found to encode a type I plant GST. Bz2 and An9 have evolved independently from distinct types of GSTs, but each is regulated by the conserved transcriptional activators of the anthocyanin pathway. Here, a phylogenetic analysis is presented, with special consideration given to the origin of these genes and their relaxed substrate requirements. In particle bombardment tests, An9 and Bz2 functionally complement both mutants. Among several other GSTs tested, only soybean GmGST26A (previously called GmHsp26A and GH2/4) and maize GSTIII were found to confer vacuolar sequestration of anthocyanin. Previously, these genes had not been associated with the anthocyanin pathway. Requirements for An9 and Bz2 gene function were investigated by sequencing functional and nonfunctional germinal revertants of an9-T3529, bz2::Ds, and bz2::Mu1. PMID:9668133
van Wyk, Deidré A B; Adeleke, Rasheed; Rhode, Owen H J; Bezuidenhout, Carlos C; Mienie, Charlotte
2017-09-01
Insecticidal proteins expressed by genetically modified Bt maize may alter the enzymatic and microbial communities associated with rhizosphere soil. This study investigated the structure and enzymatic activity of rhizosphere soil microbial communities associated with field grown Bt and non-Bt maize. Rhizosphere soil samples were collected from Bt and non-Bt fields under dryland and irrigated conditions. Samples were subjected to chemical tests, enzyme analyses, and next generation sequencing. Results showed that nitrate and phosphorus concentrations were significantly higher in non-Bt maize dryland soils, while organic carbon was significantly higher in non-Bt maize irrigated field soil. Acid phosphatase and β-glucosidase activities were significantly reduced in soils under Bt maize cultivation. The species diversity differed between fields and Bt and non-Bt maize soils. Results revealed that Actinobacteria, Proteobacteria, and Acidobacteria were the dominant phyla present in these soils. Redundancy analyses indicated that some chemical properties and enzyme activities could explain differences in bacterial community structures. Variances existed in microbial community structures between Bt and non-Bt maize fields. There were also differences between the chemical and biochemical properties of rhizosphere soils under Bt and non-Bt maize cultivation. These differences could be related to agricultural practices and cultivar type. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Sahraoui
2016-01-01
High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed.
Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Sahraoui
2016-01-01
High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed. PMID:27219066
Furnival, Ariadne Chloë; Pinheiro, Sônia Maria
2008-01-01
At a time when genetically modified (GM) crops are entering the Brazilian food chain, we present the findings of a study that makes use of a qualitative technique involving focal groups to look into the public's interpretation of the information available about this biotechnological innovation. This methodology produced results that revealed the interconnections drawn by the research subjects between this form of biotechnology, changes to the environment, and food production in general. The mistrust expressed about GM crops was particularly attributed by the participants to the non-availability of comprehensible information in the mass media or on product labels.
Genetically Modified Food: Knowledge and Attitude of Teachers and Students
NASA Astrophysics Data System (ADS)
Mohapatra, Animesh K.; Priyadarshini, Deepika; Biswas, Antara
2010-10-01
The concepts behind the technology of genetic modification of organisms and its applications are complex. A diverse range of opinions, public concern and considerable media interest accompanies the subject. This study explores the knowledge and attitudes of science teachers and senior secondary biology students about the application of a rapidly expanding technology, genetic engineering, to food production. The results indicated significant difference in understanding of concepts related with genetically engineered food stuffs between teachers and students. The most common ideas about genetically modified food were that cross bred plants and genetically modified plants are not same, GM organisms are produced by inserting a foreign gene into a plant or animal and are high yielding. More teachers thought that genetically engineered food stuffs were unsafe for the environment. Both teachers and students showed number of misconceptions, for example, the pesticidal proteins produced by GM organisms have indirect effects through bioaccumulation, induces production of allergic proteins, genetic engineering is production of new genes, GM plants are leaky sieves and that transgenes are more likely to introgress into wild species than mutated species. In general, more students saw benefits while teachers were cautious about the advantages of genetically engineered food stuffs.
Genetic modification technology for nutrition and improving diets: an ethical perspective.
Glass, Sara; Fanzo, Jessica
2017-04-01
Genetically modified (GM) techniques to improve the nutrition and health content of foods is a highly debated area riddled with ethical dilemmas. Assessing GM technology with a public health ethical framework, this paper identifies public health goals, the potential burdens of the technology, and areas to consider for minimizing burdens and ensuring beneficence, autonomy, and little infringements on justice. Both policymakers and food producers should acknowledge local food environments and the agricultural context of each community in order to effectively prepare communication strategies and equitably distribute any proposed GM food intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Methods for detection of GMOs in food and feed.
Marmiroli, Nelson; Maestri, Elena; Gullì, Mariolina; Malcevschi, Alessio; Peano, Clelia; Bordoni, Roberta; De Bellis, Gianluca
2008-10-01
This paper reviews aspects relevant to detection and quantification of genetically modified (GM) material within the feed/food chain. The GM crop regulatory framework at the international level is evaluated with reference to traceability and labelling. Current analytical methods for the detection, identification, and quantification of transgenic DNA in food and feed are reviewed. These methods include quantitative real-time PCR, multiplex PCR, and multiplex real-time PCR. Particular attention is paid to methods able to identify multiple GM events in a single reaction and to the development of microdevices and microsensors, though they have not been fully validated for application.
Fernandes, Telmo J R; Oliveira, M Beatriz P P; Mafra, Isabel
2013-05-01
Broa is a maize bread highly consumed and appreciated, especially in the north and central zones of Portugal. In the manufacturing of broa, maize flour and maize semolina might be used, besides other cereals such as wheat and rye. Considering the needs for genetically modified organism (GMO) traceability in highly processed foods, the aim of this work was to assess DNA degradation, DNA amplification and GMO quantification along breadmaking process of broa. DNA degradation was noticed by its decrease of integrity after dough baking and in all parts of bread sampling. The PCR amplification results of extracted DNA from the three distinct maize breads (broa 1, 2 and 3) showed that sequences for maize invertase gene and for events MON810 and TC1507 were easily detected with strong products. Real-time PCR revealed that quantification of GMO was feasible in the three different breads and that sampling location of baked bread might have a limited influence since the average quantitative results of both events after baking were very close to the actual values in the case of broa 1 (prepared with maize semolina). In the other two maize breads subjected to the same baking treatment, the contents of MON810 maize were considerably underestimated, leading to the conclusion that heat-processing was not the responsible parameter for that distortion, but the size of particle and mechanical processing of raw maize play also a major role in GMO quantification. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhou, Xiaojin; Zhang, Wei; Xu, Xiaolu; Chen, Rumei; Meng, Qingchang; Yuan, Jianhua; Yang, Peilong; Yao, Bin
2015-01-01
Raffinose-family oligosaccharide (RFO) in soybeans is one of the major anti-nutritional factors for poultry and livestocks. α-Galactosidase is commonly supplemented into the animal feed to hydrolyze α-1,6-galactosidic bonds on the RFOs. To simplify the feed processing, a protease-resistant α-galactosidase encoding gene from Gibberella sp. strain F75, aga-F75, was modified by codon optimization and heterologously expressed in the embryos of transgentic maize driven by the embryo-specific promoter ZM-leg1A. The progenies were produced by backcrossing with the commercial inbred variety Zheng58. PCR, southern blot and western blot analysis confirmed the stable integration and tissue specific expression of the modified gene, aga-F75m, in seeds over four generations. The expression level of Aga-F75M reached up to 10,000 units per kilogram of maize seeds. In comparison with its counterpart produced in Pichia pastoris strain GS115, maize seed-derived Aga-F75M showed a lower temperature optimum (50°C) and lower stability over alkaline pH range, but better thermal stability at 60°C to 70°C and resistance to feed pelleting inactivation (80°C). This is the first report of producing α-galactosidase in transgenic plant. The study offers an effective and economic approach for direct utilization of α-galactosidase-producing maize without any purification or supplementation procedures in the feed processing. PMID:26053048
Yang, Wenxia; Zhang, Yuhong; Zhou, Xiaojin; Zhang, Wei; Xu, Xiaolu; Chen, Rumei; Meng, Qingchang; Yuan, Jianhua; Yang, Peilong; Yao, Bin
2015-01-01
Raffinose-family oligosaccharide (RFO) in soybeans is one of the major anti-nutritional factors for poultry and livestocks. α-Galactosidase is commonly supplemented into the animal feed to hydrolyze α-1,6-galactosidic bonds on the RFOs. To simplify the feed processing, a protease-resistant α-galactosidase encoding gene from Gibberella sp. strain F75, aga-F75, was modified by codon optimization and heterologously expressed in the embryos of transgentic maize driven by the embryo-specific promoter ZM-leg1A. The progenies were produced by backcrossing with the commercial inbred variety Zheng58. PCR, southern blot and western blot analysis confirmed the stable integration and tissue specific expression of the modified gene, aga-F75m, in seeds over four generations. The expression level of Aga-F75M reached up to 10,000 units per kilogram of maize seeds. In comparison with its counterpart produced in Pichia pastoris strain GS115, maize seed-derived Aga-F75M showed a lower temperature optimum (50 °C) and lower stability over alkaline pH range, but better thermal stability at 60 °C to 70 °C and resistance to feed pelleting inactivation (80 °C). This is the first report of producing α-galactosidase in transgenic plant. The study offers an effective and economic approach for direct utilization of α-galactosidase-producing maize without any purification or supplementation procedures in the feed processing.
Shi, Jinrui; Habben, Jeffrey E.; Archibald, Rayeann L.; Drummond, Bruce J.; Chamberlin, Mark A.; Williams, Robert W.; Lafitte, H. Renee; Weers, Ben P.
2015-01-01
Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950
Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P
2015-09-01
Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.
McNaughton, J; Roberts, M; Rice, D; Smith, B; Hinds, M; Delaney, B; Iiams, C; Sauber, T
2011-02-01
The objective of this study was to compare the nutritional performance of laying hens fed maize grain from event DP-Ø9814Ø-6 (98140; gat4621 and zm-hra genes) and processed soybean meal from soybeans containing event DP-356Ø43-5 (356043; gat4601 and gm-hra genes), individually or in combination, with the performance of hens fed diets containing nontransgenic maize and soybean meal. Healthy pullets (n = 216) placed in cages (3 hens/cage) were randomly assigned to 9 dietary treatments (8 cages/treatment): nontransgenic controls 1, 2, and 3 (comparable genetic background controls for 98140, 356043, and 98140 + 356043, respectively); reference 1, reference 2, and reference 3 (commercially available nontransgenic maize-soybean meal sources); and 98140 (test 1), 356043 (test 2), and 98140 + 356043 (test 3). The experiment was divided into three 4-wk phases (24 to 28 wk, 28 to 32 wk, and 32 to 36 wk of age), during which time hens were fed mash diets. Performance (BW, feed intake, and egg production) and egg quality data were collected. Data were analyzed using a mixed model ANOVA; differences between the control and respective test group means were considered significant at P < 0.05. Data generated from the reference groups were used only in the estimation of experimental variability and in generating the tolerance interval. Body weight and BW gain, egg production, and production efficiency for hens fed the test diets were similar to the respective values for hens fed the corresponding control diets. Haugh unit measures and egg component weights were similar between the respective test and control groups, and no differences were observed in quality grades or crack measures. All observed values of the control and test groups were within the calculated tolerance intervals. This research indicates that the performance and egg quality of hens fed diets containing 98140 maize grain, 356043 soybean meal, or a combination of the 2 was comparable with that of hens fed diets formulated with nontransgenic maize grain or soybean meal control diets with comparable genetic backgrounds.
ERIC Educational Resources Information Center
Altieri, Miguel
2005-01-01
The coexistence of genetically modified (GM) crops and non-GM crops is a myth because the movement of transgenes beyond their intended destinations is a certainty, and this leads to genetic contamination of organic farms and other systems. It is unlikely that transgenes can be retracted once they have escaped, thus the damage to the purity of…
Are all GMOs the same? Consumer acceptance of cisgenic rice in India.
Shew, Aaron M; Nalley, Lawton L; Danforth, Diana M; Dixon, Bruce L; Nayga, Rodolfo M; Delwaide, Anne-Cecile; Valent, Barbara
2016-01-01
India has more than 215 million food-insecure people, many of whom are farmers. Genetically modified (GM) crops have the potential to alleviate this problem by increasing food supplies and strengthening farmer livelihoods. For this to occur, two factors are critical: (i) a change in the regulatory status of GM crops, and (ii) consumer acceptance of GM foods. There are generally two classifications of GM crops based on how they are bred: cisgenically bred, containing only DNA sequences from sexually compatible organisms; and transgenically bred, including DNA sequences from sexually incompatible organisms. Consumers may view cisgenic foods as more natural than those produced via transgenesis, thus influencing consumer acceptance. This premise was the catalyst for our study--would Indian consumers accept cisgenically bred rice and if so, how would they value cisgenics compared to conventionally bred rice, GM-labelled rice and 'no fungicide' rice? In this willingness-to-pay study, respondents did not view cisgenic and GM rice differently. However, participants were willing-to-pay a premium for any aforementioned rice with a 'no fungicide' attribute, which cisgenics and GM could provide. Although not significantly different (P = 0.16), 76% and 73% of respondents stated a willingness-to-consume GM and cisgenic foods, respectively. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Synthesis and Immunological Properties of N-Modified GM3 Antigens as Therapeutic Cancer Vaccines
Pan, Yanbin; Chefalo, Peter; Nagy, Nancy; Harding, Clifford; Guo, Zhongwu
2011-01-01
The problem of immunotolerance to GM3, an important tumor-associated trisaccharide antigen, seriously hinders its usage in cancer vaccine development. To solve this problem, the keyhole limpet hemocyanin (KLH) conjugates of a series of GM3 derivatives were synthesized and screened as therapeutic cancer vaccines. First, the β-linked anomeric azides of differently N-acylated GM3 analogs were prepared by a highly convergent procedure. Next, a pentenoyl group was linked to the reducing end of the carbohydrate antigens following selective reduction of the azido group. The linker was thereafter ozonolyzed to give an aldehyde functionality permitting the conjugation of the antigens to KLH via reductive amination. Finally, the immunological properties of the resultant glycoconjugates were studied in C57BL/6 mice by assessing the titers of specific antibodies induced by the GM3 analogs. While KLH-GM3 elicited low levels of immune response, the KLH conjugates of N-propionyl, N-butanoyl, N-iso-butanoyl and N-phenylacetyl GM3’s induced robust immune reactions with antibodies of multiple isotypes, indicating significantly improved and T-cell dependent immune responses that lead to isotype switching, affinity maturation and the induction of immunological ‘memory’. It was suggested that GM3PhAc-KLH is a promising vaccine candidate for glycoengineered immunotherapy of cancer with GM3 as the primary target. PMID:15689172
GM foods and the misperception of risk perception.
Gaskell, George; Allum, Nick; Wagner, Wolfgang; Kronberger, Nicole; Torgersen, Helge; Hampel, Juergen; Bardes, Julie
2004-02-01
Public opposition to genetically modified (GM) food and crops is widely interpreted as the result of the public's misperception of the risks. With scientific assessment pointing to no unique risks from GM crops and foods, a strategy of accurate risk communication from trusted sources has been advocated. This is based on the assumption that the benefits of GM crops and foods are self-evident. Informed by the interpretation of some qualitative interviews with lay people, we use data from the Eurobarometer survey on biotechnology to explore the hypothesis that it is not so much the perception of risks as the absence of benefits that is the basis of the widespread rejection of GM foods and crops by the European public. Some respondents perceive both risks and benefits, and may be trading off these attributes along the lines of a rational choice model. However, for others, one attribute-benefit-appears to dominate their judgments: the lexicographic heuristic. For these respondents, their perception of risk is of limited importance in the formation of attitudes toward GM food and crops. The implication is that the absence of perceived benefits from GM foods and crops calls into question the relevance of risk communication strategies for bringing about change in public opinion.
Yan, Shuo; Zhu, Jialin; Zhu, Weilong; Li, Zhen; Shelton, Anthony M.; Luo, Junyu; Cui, Jinjie; Zhang, Qingwen; Liu, Xiaoxia
2015-01-01
With the large-scale release of genetically modified (GM) crops, there are ecological concerns on transgene movement from GM crops to non-GM counterparts and wild relatives. In this research, we conducted greenhouse experiments to measure pollen-mediated gene flow (PGF) in the absence and presence of pollinators (Bombus ignitus, Apis mellifera and Pieris rapae) in one GM cotton (resistant to the insect Helicoverpa armigera and the herbicide glyphosate) and two non-GM lines (Shiyuan321 and Hai7124) during 2012 and 2013. Our results revealed that: (1) PGF varied depending on the pollinator species, and was highest with B. ignitus (10.83%) and lowest with P. rapae (2.71%); (2) PGF with B. ignitus depended on the distance between GM and non-GM cottons; (3) total PGF to Shiyuan321 (8.61%) was higher than to Hai7124 (4.10%). To confirm gene flow, we tested hybrids carrying transgenes for their resistance to glyphosate and H. armigera, and most hybrids showed strong resistance to the herbicide and insect. Our research confirmed that PGF depended on pollinator species, distance between plants and the receptor plant. PMID:26525573
Crowder, David W; Carrière, Yves
2009-12-07
Genetically modified (GM) crops are used extensively worldwide to control diploid agricultural insect pests that reproduce sexually. However, future GM crops will likely soon target haplodiploid and parthenogenetic insects. As rapid pest adaptation could compromise these novel crops, strategies to manage resistance in haplodiploid and parthenogenetic pests are urgently needed. Here, we developed models to characterize factors that could delay or prevent the evolution of resistance to GM crops in diploid, haplodiploid, and parthenogenetic insect pests. The standard strategy for managing resistance in diploid pests relies on refuges of non-GM host plants and GM crops that produce high toxin concentrations. Although the tenets of the standard refuge strategy apply to all pests, this strategy does not greatly delay the evolution of resistance in haplodiploid or parthenogenetic pests. Two additional factors are needed to effectively delay or prevent the evolution of resistance in such pests, large recessive or smaller non-recessive fitness costs must reduce the fitness of resistance individuals in refuges (and ideally also on GM crops), and resistant individuals must have lower fitness on GM compared to non-GM crops (incomplete resistance). Recent research indicates that the magnitude and dominance of fitness costs could be increased by using specific host-plants, natural enemies, or pathogens. Furthermore, incomplete resistance could be enhanced by engineering desirable traits into novel GM crops. Thus, the sustainability of GM crops that target haplodiploid or parthenogenetic pests will require careful consideration of the effects of reproductive mode, fitness costs, and incomplete resistance.
NASA Technical Reports Server (NTRS)
Song, W.; Welti, R.; Hafner-Strauss, S.; Rintoul, D. A.; Spooner, B. S. (Principal Investigator)
1993-01-01
A specific plasma membrane glycosphingolipid, known as ganglioside GM3, can regulate the intrinsic tyrosyl kinase activity of the epidermal growth factor (EGF) receptor; this modulation is not associated with alterations in hormone binding to the receptor. GM3 inhibits EGF receptor tyrosyl kinase activity in detergent micelles, in plasma membrane vesicles, and in whole cells. In addition, immunoaffinity-purified EGF receptor preparations contain ganglioside GM3 (Hanai et al. (1988) J. Biol. Chem. 263, 10915-10921), implying that the glycosphingolipid is intimately associated with the receptor kinase in cell membranes. Both the nature of this association and the molecular mechanism of kinase inhibition remain to be elucidated. In this report, we describe the synthesis of a fluorescent analog of ganglioside GM3, in which the native fatty acid was replaced with trans-parinaric acid. This glycosphingolipid inhibited the receptor kinase activity in a manner similar to that of the native ganglioside. A modified fluorescent glycosphingolipid, N-trans-parinaroyl de-N-acetyl ganglioside GM3, was also prepared. This analog, like the nonfluorescent de-N-acetyl ganglioside GM3, had no effect on receptor kinase activity. Results from tryptophan fluorescence quenching and steady-state anisotropy measurements in membranes containing these fluorescent probes and the human EGF receptor were consistent with the notion that GM3, but not de-N-acetyl GM3, interacts specifically with the receptor in intact membranes.
Genetically modified (GM) crops: milestones and new advances in crop improvement.
Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis
2016-09-01
New advances in crop genetic engineering can significantly pace up the development of genetically improved varieties with enhanced yield, nutrition and tolerance to biotic and abiotic stresses. Genetically modified (GM) crops can act as powerful complement to the crops produced by laborious and time consuming conventional breeding methods to meet the worldwide demand for quality foods. GM crops can help fight malnutrition due to enhanced yield, nutritional quality and increased resistance to various biotic and abiotic stresses. However, several biosafety issues and public concerns are associated with cultivation of GM crops developed by transgenesis, i.e., introduction of genes from distantly related organism. To meet these concerns, researchers have developed alternative concepts of cisgenesis and intragenesis which involve transformation of plants with genetic material derived from the species itself or from closely related species capable of sexual hybridization, respectively. Recombinase technology aimed at site-specific integration of transgene can help to overcome limitations of traditional genetic engineering methods based on random integration of multiple copy of transgene into plant genome leading to gene silencing and unpredictable expression pattern. Besides, recently developed technology of genome editing using engineered nucleases, permit the modification or mutation of genes of interest without involving foreign DNA, and as a result, plants developed with this technology might be considered as non-transgenic genetically altered plants. This would open the doors for the development and commercialization of transgenic plants with superior phenotypes even in countries where GM crops are poorly accepted. This review is an attempt to summarize various past achievements of GM technology in crop improvement, recent progress and new advances in the field to develop improved varieties aimed for better consumer acceptance.
Singh, Monika; Bhoge, Rajesh K; Randhawa, Gurinderjit
2018-04-20
Background : Confirming the integrity of seed samples in powdered form is important priorto conducting a genetically modified organism (GMO) test. Rapid onsite methods may provide a technological solution to check for genetically modified (GM) events at ports of entry. In India, Bt cotton is the commercialized GM crop with four approved GM events; however, 59 GM events have been approved globally. GMO screening is required to test for authorized GM events. The identity and amplifiability of test samples could be ensured first by employing endogenous genes as an internal control. Objective : A rapid onsite detection method was developed for an endogenous reference gene, stearoyl acyl carrier protein desaturase ( Sad1 ) of cotton, employing visual and real-time loop-mediated isothermal amplification (LAMP). Methods : The assays were performed at a constant temperature of 63°C for 30 min for visual LAMP and 62ºC for 40 min for real-time LAMP. Positive amplification was visualized as a change in color from orange to green on addition of SYBR ® Green or detected as real-time amplification curves. Results : Specificity of LAMP assays was confirmed using a set of 10 samples. LOD for visual LAMP was up to 0.1%, detecting 40 target copies, and for real-time LAMP up to 0.05%, detecting 20 target copies. Conclusions : The developed methods could be utilized to confirm the integrity of seed powder prior to conducting a GMO test for specific GM events of cotton. Highlights : LAMP assays for the endogenous Sad1 gene of cotton have been developed to be used as an internal control for onsite GMO testing in cotton.
Moser, Dietmar; Eckerstorfer, Michael; Pascher, Kathrin; Essl, Franz; Zulka, Klaus Peter
2013-01-01
Like other EU Member States, Austria will meet the substitution target of the EU European Renewable Energy Directive for transportation almost exclusively by first generation biofuels, primarily biodiesel from oilseed rape (OSR). Genetically modified (GM) plants have been promoted as a new option for biofuel production as they promise higher yield or higher quality feedstock. We tested implications of GM OSR application for biodiesel production in Austria by means of high resolution spatially explicit simulation of 140 different coexistence scenarios within six main OSR cropping regions in Austria (2400 km2). We identified structural land use characteristics such as field size, land use diversity, land holding patterns and the proportion of the target crop as the predominant factors which influence overall production of OSR in a coexistence scenario. Assuming isolation distances of 800 m and non-GM-OSR proportions of at least 10% resulted in a loss of area for cultivation of OSR in all study areas ranging from −4.5% to more than −25%, depending on the percentage of GM farmers and on the region. We could show that particularly the current primary OSR cropping regions are largely unsuitable for coexistence and would suffer from a net loss of OSR area even at isolation distances of 400 or 800 m. Coexistence constraints associated with application of GM OSR are likely to offset possible GM gains by substantially reducing farmland for OSR cultivation, thus contradicting the political aim to increase domestic OSR area to meet the combined demands of food, feed and biofuel production. PMID:26109750
Global Adoption of Genetically Modified (GM) Crops: Challenges for the Public Sector.
Huesing, Joseph E; Andres, David; Braverman, Michael P; Burns, Andrea; Felsot, Allan S; Harrigan, George G; Hellmich, Richard L; Reynolds, Alan; Shelton, Anthony M; Jansen van Rijssen, Wilna; Morris, E Jane; Eloff, Jacobus N
2016-01-20
Advances in biotechnology continue to drive the development of a wide range of insect-protected, herbicide-tolerant, stress-tolerant, and nutritionally enhanced genetically modified (GM) crops, yet societal and public policy considerations may slow their commercialization. Such restrictions may disproportionately affect developing countries, as well as smaller entrepreneurial and public sector initiatives. The 2014 IUPAC International Congress of Pesticide Chemistry (San Francisco, CA, USA; August 2014) included a symposium on "Challenges Associated with Global Adoption of Agricultural Biotechnology" to review current obstacles in promoting GM crops. Challenges identified by symposium presenters included (i) poor public understanding of GM technology and the need for enhanced communication strategies, (ii) nonharmonized and prescriptive regulatory requirements, and (iii) limited experience with regulations and product development within some public sector programs. The need for holistic resistance management programs to enable the most effective use of insect-protected crops was also a point of emphasis. This paper provides details on the symposium discussion and provides background information that can be used in support of further adoption of beneficial GM crops. Overall, it emphasizes that global adoption of modern agricultural biotechnology has not only provided benefits to growers and consumers but has great potential to provide solutions to an increasing global population and diminishing agricultural land. This potential will be realized by continued scientific innovation, harmonized regulatory systems, and broader communication of the benefits of the high-yielding, disease-resistant, and nutritionally enhanced crops attainable through modern biotechnology.
Vince, L; Kleter, G A; Kostov, K; Pfeiffer, D U; Guitian, J
2018-04-20
A facultative post market monitoring of potential health impacts of genetically modified (GM) feedstuffs on livestock consuming these feeds after pre-market risk assessment is under ongoing consideration. Within the IPAFEED database, scientific studies on health effects beyond performance in livestock and the results of a systematic search for evidence of outcome effects due to GM feed are consolidated. These outcomes were reviewed and checked for consistency in order to identify plausible syndromes suitable for conducting surveillance. The 24 selected studies showed no consistent changes in any health parameter. There were no repeated studies in any species by GM crop type and animal species. As such, there is insufficient evidence to inform the design of surveillance systems for detecting known adverse effects. Animal health surveillance systems have been proposed for the post market monitoring of potential adverse effects in animals. Such systems were evaluated for their applicability to the detection of hypothetical adverse effects and their strengths and weaknesses to detect syndromes of concern are presented. For known adverse effects, applied controlled post-market studies may yield conclusive and high-quality evidence. For detecting unknown adverse effects, the use of existing surveillance systems may still be of interest. A simulation tool developed within the project can be adapted and applied to existing surveillance systems to explore their applicability to the detection of potential adverse effects of GM feed. Copyright © 2018. Published by Elsevier Ltd.
Simplex and duplex event-specific analytical methods for functional biotech maize.
Lee, Seong-Hun; Kim, Su-Jeong; Yi, Bu-Young
2009-08-26
Analytical methods are very important in the control of genetically modified organism (GMO) labeling systems or living modified organism (LMO) management for biotech crops. Event-specific primers and probes were developed for qualitative and quantitative analysis for biotech maize event 3272 and LY 038 on the basis of the 3' flanking regions, respectively. The qualitative primers confirmed the specificity by a single PCR product and sensitivity to 0.05% as a limit of detection (LOD). Simplex and duplex quantitative methods were also developed using TaqMan real-time PCR. One synthetic plasmid was constructed from two taxon-specific DNA sequences of maize and two event-specific 3' flanking DNA sequences of event 3272 and LY 038 as reference molecules. In-house validation of the quantitative methods was performed using six levels of mixing samples, from 0.1 to 10.0%. As a result, the biases from the true value and the relative deviations were all within the range of +/-30%. Limits of quantitation (LOQs) of the quantitative methods were all 0.1% for simplex real-time PCRs of event 3272 and LY 038 and 0.5% for duplex real-time PCR of LY 038. This study reports that event-specific analytical methods were applicable for qualitative and quantitative analysis for biotech maize event 3272 and LY 038.
Harrison, Jay M; Breeze, Matthew L; Harrigan, George G
2011-08-01
Statistical comparisons of compositional data generated on genetically modified (GM) crops and their near-isogenic conventional (non-GM) counterparts typically rely on classical significance testing. This manuscript presents an introduction to Bayesian methods for compositional analysis along with recommendations for model validation. The approach is illustrated using protein and fat data from two herbicide tolerant GM soybeans (MON87708 and MON87708×MON89788) and a conventional comparator grown in the US in 2008 and 2009. Guidelines recommended by the US Food and Drug Administration (FDA) in conducting Bayesian analyses of clinical studies on medical devices were followed. This study is the first Bayesian approach to GM and non-GM compositional comparisons. The evaluation presented here supports a conclusion that a Bayesian approach to analyzing compositional data can provide meaningful and interpretable results. We further describe the importance of method validation and approaches to model checking if Bayesian approaches to compositional data analysis are to be considered viable by scientists involved in GM research and regulation. Copyright © 2011 Elsevier Inc. All rights reserved.
Bøhn, T; Cuhra, M; Traavik, T; Sanden, M; Fagan, J; Primicerio, R
2014-06-15
This article describes the nutrient and elemental composition, including residues of herbicides and pesticides, of 31 soybean batches from Iowa, USA. The soy samples were grouped into three different categories: (i) genetically modified, glyphosate-tolerant soy (GM-soy); (ii) unmodified soy cultivated using a conventional "chemical" cultivation regime; and (iii) unmodified soy cultivated using an organic cultivation regime. Organic soybeans showed the healthiest nutritional profile with more sugars, such as glucose, fructose, sucrose and maltose, significantly more total protein, zinc and less fibre than both conventional and GM-soy. Organic soybeans also contained less total saturated fat and total omega-6 fatty acids than both conventional and GM-soy. GM-soy contained high residues of glyphosate and AMPA (mean 3.3 and 5.7 mg/kg, respectively). Conventional and organic soybean batches contained none of these agrochemicals. Using 35 different nutritional and elemental variables to characterise each soy sample, we were able to discriminate GM, conventional and organic soybeans without exception, demonstrating "substantial non-equivalence" in compositional characteristics for 'ready-to-market' soybeans. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Guo, Jinchao; Yang, Litao; Liu, Xin; Zhang, Haibo; Qian, Bingjun; Zhang, Dabing
2009-08-12
The virus-resistant papaya (Carica papaya L.), Huanong no. 1, was the genetically modified (GM) fruit approved for growing in China in 2006. To implement the labeling regulation of GM papaya and its derivates, the development of papaya endogenous reference gene is very necessary for GM papaya detection. Herein, we reported one papaya specific gene, Chymopapain (CHY), as one suitable endogenous reference gene, used for GM papaya identification. Thereafter, we established the conventional and real-time quantitative PCR assays of the CHY gene. In the CHY conventional PCR assay, the limit of detection (LOD) was 25 copies of haploid papaya genome. In the CHY real-time quantitative PCR assay, both the LOD and the limit of quantification (LOQ) were as low as 12.5 copies of haploid papaya genome. Furthermore, we revealed the construct-specific sequence of Chinese GM papaya Huanong no. 1 and developed its conventional and quantitative PCR systems employing the CHY gene as endogenous reference gene. This work is useful for papaya specific identification and GM papaya detection.
Schauzu, M
2004-09-01
Placing genetically modified (GM) plants and derived products on the European Union's (EU) market has been regulated by a Community Directive since 1990. This directive was complemented by a regulation specific for genetically modified and other novel foods in 1997. Specific labelling requirements have been applicable for GM foods since 1998. The law requires a pre-market safety assessment for which criteria have been elaborated and continuously adapted in accordance with the state of the art by national and international bodies and organisations. Consequently, only genetically modified products that have been demonstrated to be as safe as their conventional counterparts can be commercialized. However, the poor acceptance of genetically modified foods has led to a de facto moratorium since 1998. It is based on the lack of a qualified majority of EU member states necessary for authorization to place genetically modified plants and derived foods on the market. New Community Regulations are intended to end this moratorium by providing a harmonized and transparent safety assessment, a centralised authorization procedure, extended labelling provisions and a traceability system for genetically modified organisms (GMO) and derived food and feed.
The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins.
Chao, Qing; Gao, Zhi-Fang; Wang, Yue-Feng; Li, Zhe; Huang, Xia-He; Wang, Ying-Chun; Mei, Ying-Chang; Zhao, Biligen-Gaowa; Li, Liang; Jiang, Yu-Bo; Wang, Bai-Chen
2016-06-01
Maize is unique since it is both monoecious and diclinous (separate male and female flowers on the same plant). We investigated the proteome and phosphoproteome of maize pollen containing modified proteins and here we provide a comprehensive pollen proteome and phosphoproteome which contain 100,990 peptides from 6750 proteins and 5292 phosphorylated sites corresponding to 2257 maize phosphoproteins, respectively. Interestingly, among the total 27 overrepresented phosphosite motifs we identified here, 11 were novel motifs, which suggested different modification mechanisms in plants compared to those of animals. Enrichment analysis of pollen phosphoproteins showed that pathways including DNA synthesis/chromatin structure, regulation of RNA transcription, protein modification, cell organization, signal transduction, cell cycle, vesicle transport, transport of ions and metabolisms, which were involved in pollen development, the following germination and pollen tube growth, were regulated by phosphorylation. In this study, we also found 430 kinases and 105 phosphatases in the maize pollen phosphoproteome, among which calcium dependent protein kinases (CDPKs), leucine rich repeat kinase, SNF1 related protein kinases and MAPK family proteins were heavily enriched and further analyzed. From our research, we also uncovered hundreds of male sterility-associated proteins and phosphoproteins that might influence maize productivity and serve as targets for hybrid maize seed production. At last, a putative complex signaling pathway involving CDPKs, MAPKs, ubiquitin ligases and multiple fertility proteins was constructed. Overall, our data provides new insight for further investigation of protein phosphorylation status in mature maize pollen and construction of maize male sterile mutants in the future.
Cockburn, Andrew
2002-09-11
Genes change continuously by natural mutation and recombination enabling man to select and breed crops having the most desirable traits such as yield or flavour. Genetic modification (GM) is a recent development which allows specific genes to be identified, isolated, copied and inserted into other plants with a high level of specificity. The food safety considerations for GM crops are basically the same as those arising from conventionally bred crops, very few of which have been subject to any testing yet are generally regarded as being safe to eat. In contrast a rigorous safety testing paradigm has been developed for GM crops, which utilises a systematic, stepwise and holistic approach. The resultant science based process, focuses on a classical evaluation of the toxic potential of the introduced novel trait and the wholesomeness of the transformed crop. In addition, detailed consideration is given to the history and safe use of the parent crop as well as that of the gene donor. The overall safety evaluation is conducted under the concept known as substantial equivalence which is enshrined in all international crop biotechnology guidelines. This provides the framework for a comparative approach to identify the similarities and differences between the GM product and its comparator which has a known history of safe use. By building a detailed profile on each step in the transformation process, from parent to new crop, and by thoroughly evaluating the significance from a safety perspective, of any differences that may be detected, a very comprehensive matrix of information is constructed which enables the conclusion as to whether the GM crop, derived food or feed is as safe as its traditional counterpart. Using this approach in the evaluation of more than 50 GM crops which have been approved worldwide, the conclusion has been that foods and feeds derived from genetically modified crops are as safe and nutritious as those derived from traditional crops. The lack of any adverse effects resulting from the production and consumption of GM crops grown on more than 300 million cumulative acres over the last 5 years supports these safety conclusions.
A Built-In Strategy to Mitigate Transgene Spreading from Genetically Modified Corn
Li, Jing; Yu, Hui; Zhang, Fengzhen; Lin, Chaoyang; Gao, Jianhua; Fang, Jun; Ding, Xiahui; Shen, Zhicheng; Xu, Xiaoli
2013-01-01
Transgene spreading is a major concern in cultivating genetically modified (GM) corn. Cross-pollination may cause the spread of transgenes from GM cornfields to conventional fields. Occasionally, seed lot contamination, volunteers, mixing during sowing, harvest, and trade can also lead to transgene escape. Obviously, new biological confinement technologies are highly desired to mitigate transgene spreading in addition to physical separation and isolation methods. In this study, we report the development of a built-in containment method to mitigate transgene spreading in corn. In this method, an RNAi cassette for suppressing the expression of the nicosulfuron detoxifying enzyme CYP81A9 and an expression cassette for the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene G10 were constructed and transformed into corn via Agrobacterium-mediated transformation. The GM corn plants that were generated were found to be sensitive to nicosulfuron but resistant to glyphosate, which is exactly the opposite of conventional corn. Field tests demonstrated that GM corn plants with silenced CYP81A9 could be killed by applying nicosulfuron at 40 g/ha, which is the recommended dose for weed control in cornfields. This study suggests that this built-in containment method for controlling the spread of corn transgenes is effective and easy to implement. PMID:24324711
Raybould, Alan; Macdonald, Phil
2018-01-01
We describe two contrasting methods of comparative environmental risk assessment for genetically modified (GM) crops. Both are science-based, in the sense that they use science to help make decisions, but they differ in the relationship between science and policy. Policy-led comparative risk assessment begins by defining what would be regarded as unacceptable changes when the use a particular GM crop replaces an accepted use of another crop. Hypotheses that these changes will not occur are tested using existing or new data, and corroboration or falsification of the hypotheses is used to inform decision-making. Science-led comparative risk assessment, on the other hand, tends to test null hypotheses of no difference between a GM crop and a comparator. The variables that are compared may have little or no relevance to any previously stated policy objective and hence decision-making tends to be ad hoc in response to possibly spurious statistical significance. We argue that policy-led comparative risk assessment is the far more effective method. With this in mind, we caution that phenotypic profiling of GM crops, particularly with omics methods, is potentially detrimental to risk assessment. PMID:29755975
Effects of Knowledge on Attitude Formation and Change Toward Genetically Modified Foods.
Zhu, Xiaoqin; Xie, Xiaofei
2015-05-01
In three waves, this study investigates the impact of risk and benefit knowledge on attitude formation toward genetically modified (GM) foods as well as the moderating effect of knowledge level on attitude change caused by receiving information. The data in Wave 1 (N = 561) demonstrate that both benefit and risk knowledge either directly contribute to attitude formation or indirectly affect attitudes through the mediating roles of benefit and risk perceptions. Overall, benefit and risk knowledge affect consumer attitudes positively and negatively, respectively. In Wave 2, 486 participants from Wave 1 were provided with information about GM foods, and their attitudes were assessed. Three weeks later, 433 of these participants again reported their attitudes. The results indicate that compared with the benefit and mixed information, risk information has a greater and longer lasting impact on attitude change, which results in lower acceptance of GM foods. Furthermore, risk information more strongly influences participants with a higher knowledge level. The moderating effect of knowledge on attitude change may result from these participants' better understanding of and greater trust in the information. These findings highlight the important role of knowledge in attitude formation and attitude change toward GM foods as well as the necessity of considering the determinants of attitude formation in attitude change studies. © 2014 Society for Risk Analysis.
Genetically modified soybeans and food allergies.
Herman, Eliot M
2003-05-01
Allergenic reactions to proteins expressed in GM crops has been one of the prominent concerns among biotechnology critics and a concern of regulatory agencies. Soybeans like many plants have intrinsic allergens that present problems for sensitive people. Current GM crops, including soybean, have not been shown to add any additional allergenic risk beyond the intrinsic risks already present. Biotechnology can be used to characterize and eliminate allergens naturally present in crops. Biotechnology has been used to remove a major allergen in soybean demonstrating that genetic modification can be used to reduce allergenicity of food and feed. This provides a model for further use of GM approaches to eliminate allergens.
Devos, Yann; Meihls, Lisa N; Kiss, József; Hibbard, Bruce E
2013-04-01
Western corn rootworm (Diabrotica virgifera virgifera; WCR) is a major coleopteran maize pest in North America and the EU, and has traditionally been managed through crop rotation and broad-spectrum soil insecticides. Genetically modified Bt-maize offers an additional management tool for WCR and has been valuable in reducing insecticide use and increasing farm income. A concern is that the widespread, repeated, and exclusive deployment of the same Bt-maize transformation event will result in the rapid evolution of resistance in WCR. This publication explores the potential of WCR to evolve resistance to plant-produced Bt-toxins from the first generation of Diabrotica-active Bt-maize events (MON 863 and MON 88017, DAS-59122-7 and MIR604), and whether currently implemented risk management strategies to delay and monitor resistance evolution are appropriate. In twelve of the twelve artificial selection experiments reported, resistant WCR populations were yielded rapidly. Field-selected resistance of WCR to Cry3Bb1 is documented in some US maize growing areas, where an increasing number of cases of unexpected damage of WCR larvae to Bt-maize MON 88017 has been reported. Currently implemented insect resistance management measures for Bt-crops usually rely on the high dose/refuge (HDR) strategy. Evidence (including laboratory, greenhouse and field data) indicates that several conditions contributing to the success of the HDR strategy may not be met for the first generation of Bt-maize events and WCR: (1) the Bt-toxins are expressed heterogeneously at a low-to-moderate dose in roots; (2) resistance alleles may be present at a higher frequency than initially assumed; (3) WCR may mate in a non-random manner; (4) resistance traits could have non-recessive inheritance; and (5) fitness costs may not necessarily be associated with resistance evolution. However, caution must be exercised when extrapolating laboratory and greenhouse results to field conditions. Model predictions suggest that a 20 % refuge of non-Diabrotica-active Bt-maize can delay resistance evolution in WCR under certain conditions. This publication concludes that further research is needed to resolve the remaining scientific uncertainty related to the appropriateness of the HDR in delaying resistance evolution in WCR, resistance monitoring is essential to detect early warning signs indicating resistance evolution in the field, and that integrated pest management reliant on multiple tactics should be deployed to ensure effective long-term corn rootworm management and sustainable use of Bt-maize.
ENVIRONMENTAL IMPLICATIONS OF PLANTS MODIFIED TO CONTAIN INSECTICIDAL GENES
Genetically modified (GM) crops are being grown on large acreages in the United States. Before being approved for sale, sufficient scientific evidence allowed the EPA to determine that they are safe. The results of this research project will strengthen the scientific basis EPA u...
Castro, M C; Bedmar, F; Monterubbianesi, M G; Peretti, A; Barassi, C A
2002-10-01
The presence of chlorimuron ethyl and metsulfuron methyl in two soils was determined by a modified petri dish bioassay. Pregerminated seeds of maize and sunflower were placed in petri dishes containing 85 to 100 g of treated soil. Radicle root lengths were measured after 24 h. Chlorimuron had no effect on maize on the Balcarce soil, however 0.007 microg g(-1) decreased sunflower root length. Chlorimuron decreased maize and sunflower root length regardless application dose on the San Cayetano soil. Metsulfuron decreased maize root length at 0.04 microg g(-1) and sunflower at 0.021 microg g(-1) on the Balcarce soil. On the San Cayetano soil metsulfuron at 0.001 microg g(-1) decreased maize and sunflower root length. The phytotoxicity of chlorimuron and metsulfuron changed according to soil type and dose. Maize and sunflower were 1.3-1.5 and 1.3-1.8 times respectively more sensitive to chlorimuron on the San Cayetano soil than on the Balcarce soil. In the case of metsulfuron, maize was similarly sensitive on both soils but sunflower was 1.7-2.0 times more sensitive on the San Cayetano soil than on the Balcarce soil. Phytotoxicity increased as organic matter (OM) content decreased and/or when the soil pH and concentration increased.
Chen, Hong-Jun; Zhang, Zhao-Hui; Cai, Rong; Chen, Xing; Liu, Yu-Nan; Rao, Wei; Yao, Shou-Zhuo
2013-10-15
In this work, an imprinted electrochemical sensor based on electrochemical reduced graphene covalently modified carbon electrode was developed for the determination of 4-nonylphenol (NP). An amine-terminated functional graphene oxide was covalently modified onto the electrode surface with diazonium salt reactions to improve the stability and reproducibility of the imprinted sensor. The electrochemical properties of each modified electrodes were investigated with differential pulse voltammetry (DPV). The electrochemical characteristic of the imprinted sensor was also investigated using electrochemical impedance spectroscopy (EIS) in detail. The response currents of the imprinted electrode exhibited a linear relationship toward 4-nonylphenol concentration ranging from 1.0 × 10(-11) to 1.0 × 10(-8) gm L(-1) with the detection limit of 3.5 × 10(-12) gm L(-1) (S/N=3). The fabricated electrochemical imprinted sensor was successfully applied to the detection of 4-nonylphenol in rain and lake water samples. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.
Begg, Graham S; Cullen, Danny W; Iannetta, Pietro P M; Squire, Geoff R
2007-02-01
Testing of seed and grain lots is essential in the enforcement of GM labelling legislation and needs reliable procedures for which associated errors have been identified and minimised. In this paper we consider the testing of oilseed rape seed lots obtained from the harvest of a non-GM crop known to be contaminated by volunteer plants from a GM herbicide tolerant variety. The objective was to identify and quantify the error associated with the testing of these lots from the initial sampling to completion of the real-time PCR assay with which the level of GM contamination was quantified. The results showed that, under the controlled conditions of a single laboratory, the error associated with the real-time PCR assay to be negligible in comparison with sampling error, which was exacerbated by heterogeneity in the distribution of GM seeds, most notably at a small scale, i.e. 25 cm3. Sampling error was reduced by one to two thirds on the application of appropriate homogenisation procedures.
Reciprocal interactions between bile acids and gut microbiota in human liver diseases.
Ikegami, Tadashi; Honda, Akira
2018-01-01
The gut microbiota (GM) play a central role in their host's metabolism of bile acids (BAs) by regulating deconjugation, dehydroxylation, dehydrogenation, and epimerization reactions to generate unconjugated free BAs and secondary BAs. These BAs generated by the GM are potent signaling molecules that interact with BA receptors, such as the farnesoid X receptor and Takeda G-protein-coupled receptor 5. Each BA has a differential affinity to these receptors; therefore, alterations in BA composition by GM could modify the intensity of receptor signaling. Bile acids also act as antimicrobial agents by damaging bacterial membranes and as detergents by altering intracellular macromolecular structures. Therefore, BAs and the GM reciprocally control each other's compositions. In this review, we discuss the latest findings on the mutual effects of BAs and GM on each other; we also describe their roles in the pathophysiology of liver disease progression and potential therapeutic applications of targeting this cross-talk. © 2017 The Japan Society of Hepatology.
Kuiper, Harry A; Kok, Esther J; Davies, Howard V
2013-09-01
This commentary focuses on the potential added value of and need for (sub)-chronic testing of whole genetically modified (GM) foods in rodents to assess their safety. Such routine testing should not be required since, due to apparent weaknesses in the approach, it does not add to current risk assessment of GM foods. Moreover, the demand for routine testing using animals is in conflict with the European Union (EU) Commission's efforts to reduce animal experimentation. Regulating agencies in the EU are invited to respect the sound scientific principles applied to the risk assessment of foods derived from GM plants and not to interfere in the risk assessment by introducing extra requirements based on pseudo-scientific or political considerations. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Nasiruddin, Khondoker M; Nasim, Anwar
2007-01-01
Bangladesh is on the verge of adopting genetically modified (GM) crops for commercial cultivation and consumption as feed and food. Most of the laboratories are engaged in tissue culture and molecular characterization on plants, whereas some have started living modified organism research with shortages of trained manpower, infrastructure, and funding. Nutritionally improved Golden Rice, biotech brinjal, and late blight-resistant potato are in contained trials in a greenhouse, and potato ring spot virus-resistant papaya is in the process of approval for a field trial. The government has taken some initiative in support of GM organism research, which include the formation of a Biotechnology Department in all institutes and the formation of the apex body, the National Task Force Committee on Biotechnology of Bangladesh under the chairpersonship of the Prime Minister. Biosafety policy guidelines and related aspects of biotechnology issues have been approved, and the laws are in the process of being promulgated. Being a party to the Cartagena Protocol, proper biosafety measures are regulated by the appropriate authority as stated. Although there are no laws made yet directly for biosafety of GM crops/foods, the relevant laws on agriculture, medicine, food, import, trade, environment, etc. may suffice and explain the situation.
Cheng, Nan; Shang, Ying; Xu, Yuancong; Zhang, Li; Luo, Yunbo; Huang, Kunlun; Xu, Wentao
2017-05-15
Stacked genetically modified organisms (GMO) are becoming popular for their enhanced production efficiency and improved functional properties, and on-site detection of stacked GMO is an urgent challenge to be solved. In this study, we developed a cascade system combining event-specific tag-labeled multiplex LAMP with a DNAzyme-lateral flow biosensor for reliable detection of stacked events (DP305423× GTS 40-3-2). Three primer sets, both event-specific and soybean species-specific, were newly designed for the tag-labeled multiplex LAMP system. A trident-like lateral flow biosensor displayed amplified products simultaneously without cross contamination, and DNAzyme enhancement improved the sensitivity effectively. After optimization, the limit of detection was approximately 0.1% (w/w) for stacked GM soybean, which is sensitive enough to detect genetically modified content up to a threshold value established by several countries for regulatory compliance. The entire detection process could be shortened to 120min without any large-scale instrumentation. This method may be useful for the in-field detection of DP305423× GTS 40-3-2 soybean on a single kernel basis and on-site screening tests of stacked GM soybean lines and individual parent GM soybean lines in highly processed foods. Copyright © 2017 Elsevier B.V. All rights reserved.
Hur, Moonsuk; Kim, Yongho; Song, Hae-Ryong; Kim, Jong Min; Choi, Young Im; Yi, Hana
2011-01-01
The application of transgenic plants to clean up environmental pollution caused by the wastes of heavy metal mining is a promising method for removing metal pollutants from soils. However, the effect of using genetically modified organisms for phytoremediation is a poorly researched topic in terms of microbial community structures, despite the important role of microorganisms in the health of soil. In this study, a comparative analysis of the bacterial and archaeal communities found in the rhizosphere of genetically modified (GM) versus wild-type (WT) poplar was conducted on trees at different growth stages (i.e., the rhizospheres of 1.5-, 2.5-, and 3-year-old poplars) that were cultivated on contaminated soils together with nonplanted control soil. Based on the results of DNA pyrosequencing, poplar type and growth stages were associated with directional changes in the structure of the microbial community. The rate of change was faster in GM poplars than in WT poplars, but the microbial communities were identical in the 3-year-old poplars. This phenomenon may arise because of a higher rate and greater extent of metal accumulation in GM poplars than in naturally occurring plants, which resulted in greater changes in soil environments and hence the microbial habitat. PMID:21890678
Chen, Hancai; Bodulovic, Greg; Hall, Prudence J; Moore, Andy; Higgins, Thomas J V; Djordjevic, Michael A; Rolfe, Barry G
2009-09-01
Seeds of genetically modified (GM) peas (Pisum sativum L.) expressing the gene for alpha-amylase inhibitor-1 (alphaAI1) from the common bean (Phaseolus vulgaris L. cv. Tendergreen) exhibit resistance to the pea weevil (Bruchus pisorum). A proteomic analysis was carried out to compare seeds from GM pea lines expressing the bean alphaAI1 protein and the corresponding alphaAI1-free segregating lines and non-GM parental line to identify unintended alterations to the proteome of GM peas due to the introduction of the gene for alphaAI1. Proteomic analysis showed that in addition to the presence of alphaAI1, 33 other proteins were differentially accumulated in the alphaAI1-expressing GM lines compared with their non-GM parental line and these were grouped into five expression classes. Among these 33 proteins, only three were found to be associated with the expression of alphaAI1 in the GM pea lines. The accumulation of the remaining 30 proteins appears to be associated with Agrobacterium-mediated transformation events. Sixteen proteins were identified after MALDI-TOF-TOF analysis. About 56% of the identified proteins with altered accumulation in the GM pea were storage proteins including legumin, vicilin or convicilin, phaseolin, cupin and valosin-containing protein. Two proteins were uniquely expressed in the alphaAI1-expressing GM lines and one new protein was present in both the alphaAI1-expressing GM lines and their alphaAI1-free segregating lines, suggesting that both transgenesis and transformation events led to demonstrable changes in the proteomes of the GM lines tested.
Fini, Alessio; Loreto, Francesco; Tattini, Massimiliano; Giordano, Cristiana; Ferrini, Francesco; Brunetti, Cecilia; Centritto, Mauro
2016-05-01
The ability to modify mesophyll conductance (gm ) in response to changes in irradiance may be a component of the acclimation of plants to shade-sun transitions, thus influencing species-specific distributions along light-gradients, and the ecological niches for the different species. To test this hypothesis we grew three woody species of the Oleaceae family, the evergreen Phillyrea latifolia (sun-requiring), the deciduous Fraxinus ornus (facultative sun-requiring) and the hemi-deciduous Ligustrum vulgare (shade tolerant) at 30 or 100% sunlight irradiance. We show that neither mesophyll conductance calculated with combined gas exchange and chlorophyll fluorescence techniques (gm) nor CO2 assimilation significantly varied in F. ornus because of sunlight irradiance. This corroborates previous suggestions that species with high plasticity for light requirements, do not need to undertake extensive reorganization of leaf conductances to CO2 diffusion to adapt to different light environments. On the other hand, gm steeply declined in L. vulgare and increased in P. latifolia exposed to full-sun conditions. In these two species, leaf anatomical traits are in part responsible for light-driven changes in gm , as revealed by the correlation between gm and mesophyll conductance estimated by anatomical parameters (gmA). Nonetheless, gm was greatly overestimated by gmA when leaf metabolism was impaired because of severe light stress. We show that gm is maximum at the light intensity at which plant species have evolved and we conclude that gm actually plays a key role in the sun and shade adaptation of Mediterranean species. The limits of gmA in predicting mesophyll conductance are also highlighted. © 2015 Scandinavian Plant Physiology Society.
Creeping bentgrass (CBG) expressing an engineered gene for resistance to glyphosate herbicide is one of the first genetically modified (GM) perennial crops to undergo regulatory review for commercial release by the US Department of Agriculture Animal Plant Health and Inspection S...
Chitinase modifying proteins from phylogenetically distinct lineages of Brassica pathogens
USDA-ARS?s Scientific Manuscript database
Chitinase modifying proteins (CMPs) are secreted fungal proteases that truncate specific plant class IV chitinases by cleaving peptide bonds in their amino termini. We recently identified a CMP from the Zea mays (maize) pathogen Fusarium verticillioides and found that it is a member of the fungalysi...
2006-05-01
breed of ‘refugee’ within international frameworks,” while Dr. Bogardi, Director of UNU’s Institute for Environment and Human Security in Bonn...Modified Organisms (GMOs) Continues FAO calls for an international framework for GM trees GM Crops Created Superweed Europe to Redouble Efforts to...avoid eventual damages to their crops , to protection of endangered species that need special habitat conditions. Enviromatics could impact
Christophe Bonneuil; Foyer, Jean; Wynne, Brian
2014-12-01
This article explores the trajectory of the global controversy over the introgression (or not) of transgenes from genetically modified maize into Mexican indigenous maize landraces. While a plurality of knowledge-making processes were deployed to render transgenes visible or invisible, we analyze how a particular in vitro based DNA-centered knowledge came to marginalize other forms of knowledge, thus obscuring other bio-cultural dimensions key to the understanding of gene flow and maize diversity. We show that dominant molecular norms of proof and standards of detection, which co-developed with the world of industrial monocropping and gene patenting, discarded and externalized non-compliant actors (i.e. complex maize genomes, human dimensions of gene flow). Operating in the name of high science, they hence obscured the complex biological and cultural processes that maintain crop diversity and enacted a cultural-political domination over the world of Mexican landraces and indigenous communities.