Science.gov

Sample records for modified gravity scenarios

  1. CMB lensing constraints on dark energy and modified gravity scenarios

    SciTech Connect

    Calabrese, Erminia; Cooray, Asantha; Martinelli, Matteo; Melchiorri, Alessandro; Pagano, Luca; Slosar, Anze; Smoot, George F.

    2009-11-15

    Weak gravitational lensing leaves a characteristic imprint on the cosmic microwave background temperature and polarization angular power spectra. Here, we investigate the possible constraints on the integrated lensing potential from future cosmic microwave background angular spectra measurements expected from Planck and EPIC. We find that Planck and EPIC will constrain the amplitude of the integrated projected potential responsible for lensing at 6% and 1% level, respectively, with very little sensitivity to the shape of the lensing potential. We discuss the implications of such a measurement in constraining dark energy and modified gravity scalar-tensor theories. We then discuss the impact of a wrong assumption on the weak lensing potential amplitude on cosmological parameter inference.

  2. Model selection for modified gravity.

    PubMed

    Kitching, T D; Simpson, F; Heavens, A F; Taylor, A N

    2011-12-28

    In this article, we review model selection predictions for modified gravity scenarios as an explanation for the observed acceleration of the expansion history of the Universe. We present analytical procedures for calculating expected Bayesian evidence values in two cases: (i) that modified gravity is a simple parametrized extension of general relativity (GR; two nested models), such that a Bayes' factor can be calculated, and (ii) that we have a class of non-nested models where a rank-ordering of evidence values is required. We show that, in the case of a minimal modified gravity parametrization, we can expect large area photometric and spectroscopic surveys, using three-dimensional cosmic shear and baryonic acoustic oscillations, to 'decisively' distinguish modified gravity models over GR (or vice versa), with odds of ≫1:100. It is apparent that the potential discovery space for modified gravity models is large, even in a simple extension to gravity models, where Newton's constant G is allowed to vary as a function of time and length scale. On the time and length scales where dark energy dominates, it is only through large-scale cosmological experiments that we can hope to understand the nature of gravity.

  3. Cosmological hints of modified gravity?

    NASA Astrophysics Data System (ADS)

    Di Valentino, Eleonora; Melchiorri, Alessandro; Silk, Joseph

    2016-01-01

    The recent measurements of cosmic microwave background (CMB) temperature and polarization anisotropies made by the Planck satellite have provided impressive confirmation of the Λ CDM cosmological model. However interesting hints of slight deviations from Λ CDM have been found, including a 95% C.L. preference for a "modified gravity" (MG) structure formation scenario. In this paper we confirm the preference for a modified gravity scenario from Planck 2015 data, find that modified gravity solves the so-called Alens anomaly in the CMB angular spectrum, and constrains the amplitude of matter density fluctuations to σ8=0.81 5-0.048+0.032 , in better agreement with weak lensing constraints. Moreover, we find a lower value for the reionization optical depth of τ =0.059 ±0.020 (to be compared with the value of τ =0.079 ±0.017 obtained in the standard scenario), more consistent with recent optical and UV data. We check the stability of this result by considering possible degeneracies with other parameters, including the neutrino effective number, the running of the spectral index and the amount of primordial helium. The indication for modified gravity is still present at about 95% C.L., and could become more significant if lower values of τ were to be further confirmed by future cosmological and astrophysical data. When the CMB lensing likelihood is included in the analysis the statistical significance for MG simply vanishes, indicating also the possibility of a systematic effect for this MG signal.

  4. Distinguishing modified gravity models

    SciTech Connect

    Brax, Philippe

    2015-10-01

    Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations.

  5. Emergence in holographic scenarios for gravity

    NASA Astrophysics Data System (ADS)

    Dieks, Dennis; van Dongen, Jeroen; de Haro, Sebastian

    2015-11-01

    'Holographic' relations between theories have become an important theme in quantum gravity research. These relations entail that a theory without gravity is equivalent to a gravitational theory with an extra spatial dimension. The idea of holography was first proposed in 1993 by Gerard 't Hooft on the basis of his studies of evaporating black holes. Soon afterwards the holographic 'AdS/CFT' duality was introduced, which since has been intensively studied in the string theory community and beyond. Recently, Erik Verlinde has proposed that even Newton's law of gravitation can be related holographically to the 'thermodynamics of information' on screens. We discuss these scenarios, with special attention to the status of the holographic relation in them and to the question of whether they make gravity and spacetime emergent. We conclude that only Verlinde's scheme straightforwardly instantiates emergence. However, assuming a non-standard interpretation of AdS/CFT may create room for the emergence of spacetime and gravity there as well.

  6. Cosmological tests of modified gravity

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  7. Cosmological tests of modified gravity.

    PubMed

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  8. Dark matter in modified gravity?

    NASA Astrophysics Data System (ADS)

    Katsuragawa, Taishi; Matsuzaki, Shinya

    2017-02-01

    We explore a new horizon of modified gravity from the viewpoint of particle physics. As a concrete example, we take the F (R ) gravity to raise a question: can a scalar particle ("scalaron") derived from the F (R ) gravity be a dark matter candidate? We place the limit on the parameter in a class of F (R ) gravity model from the constraint on the scalaron as a dark matter. The role of the screening mechanism and compatibility with the dark energy problem are addressed.

  9. Modified gravity inside astrophysical bodies

    SciTech Connect

    Saito, Ryo; Langlois, David; Yamauchi, Daisuke; Mizuno, Shuntaro; Gleyzes, Jérôme E-mail: yamauchi@resceu.s.u-tokyo.ac.jp E-mail: jerome.gleyzes@cea.fr

    2015-06-01

    Many theories of modified gravity, including the well studied Horndeski models, are characterized by a screening mechanism that ensures that standard gravity is recovered near astrophysical bodies. In a recently introduced class of gravitational theories that goes beyond Horndeski, it has been found that new derivative interactions lead to a partial breaking of the Vainshtein screening mechanism inside any gravitational source, although not outside. We study the impact of this new type of deviation from standard gravity on the density profile of a spherically symmetric matter distribution, in the nonrelativistic limit. For simplicity, we consider a polytropic equation of state and derive the modifications to the standard Lane-Emden equations. We also show the existence of a universal upper bound on the amplitude of this type of modified gravity, independently of the details of the equation of state.

  10. Stellar oscillations in modified gravity

    NASA Astrophysics Data System (ADS)

    Sakstein, Jeremy

    2013-12-01

    Starting from the equations of modified gravity hydrodynamics, we derive the equations of motion governing linear, adiabatic, radial perturbations of stars in scalar-tensor theories. There are two new features: first, the eigenvalue equation for the period of stellar oscillations is modified such that the eigenfrequencies are always larger than predicted by general relativity. Second, the general relativity condition for stellar instability is altered so that the adiabatic index can fall below 4/3 before unstable modes appear. Stars are more stable in modified gravity theories. Specializing to the case of chameleonlike theories, we investigate these effects numerically using both polytropic Lane-Emden stars and models coming from modified gravity stellar structure simulations. We find that the change in the oscillation period of Cepheid star models can be as large as 30% for order-one matter couplings and the change in the inferred distance using the period-luminosity relation can be up to three times larger than if one had only considered the modified equilibrium structure. We discuss the implications of these results for recent and upcoming astrophysical tests and estimate that previous methods can produce new constraints such that the modifications are screened in regions of Newtonian potential of O(10-8).

  11. Testing modified gravity with cosmic shear

    NASA Astrophysics Data System (ADS)

    Harnois-Déraps, J.; Munshi, D.; Valageas, P.; van Waerbeke, L.; Brax, P.; Coles, P.; Rizzo, L.

    2015-12-01

    We use the cosmic shear data from the Canada-France-Hawaii Telescope Lensing Survey to place constraints on f(R) and Generalized Dilaton models of modified gravity. This is highly complementary to other probes since the constraints mainly come from the non-linear scales: maximal deviations with respects to the General Relativity (GR) + Λ cold dark matter (ΛCDM) scenario occurs at k ˜ 1 h Mpc-1. At these scales, it becomes necessary to account for known degeneracies with baryon feedback and massive neutrinos, hence we place constraints jointly on these three physical effects. To achieve this, we formulate these modified gravity theories within a common tomographic parametrization, we compute their impact on the clustering properties relative to a GR universe, and propagate the observed modifications into the weak lensing ξ± quantity. Confronted against the cosmic shear data, we reject the f(R) \\lbrace |f_{R_0}| = 10^{-4}, n = 1\\rbrace model with more than 99.9 per cent confidence interval (CI) when assuming a ΛCDM dark matter only model. In the presence of baryonic feedback processes and massive neutrinos with total mass up to 0.2 eV, the model is disfavoured with at least 94 per cent CI in all different combinations studied. Constraints on the \\lbrace |f_{R_0}| = 10^{-4}, n = 2\\rbrace model are weaker, but nevertheless disfavoured with at least 89 per cent CI. We identify several specific combinations of neutrino mass, baryon feedback and f(R) or Dilaton gravity models that are excluded by the current cosmic shear data. Notably, universes with three massless neutrinos and no baryon feedback are strongly disfavoured in all modified gravity scenarios studied. These results indicate that competitive constraints may be achieved with future cosmic shear data.

  12. The Asymptotic Safety Scenario in Quantum Gravity.

    PubMed

    Niedermaier, Max; Reuter, Martin

    2006-01-01

    The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.

  13. Minimal Length Scale Scenarios for Quantum Gravity.

    PubMed

    Hossenfelder, Sabine

    2013-01-01

    We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  14. Modified GBIG scenario as an alternative for dark energy

    SciTech Connect

    Nozari, Kourosh; Rashidi, Narges E-mail: n.rashidi@umz.ac.ir

    2009-09-01

    We construct a DGP-inspired braneworld model where induced gravity on the brane is modified in the spirit of f(R) gravity and stringy effects are taken into account by incorporation of the Gauss–Bonnet term in the bulk action. We explore cosmological dynamics of this model and we show that this scenario is a successful alternative for dark energy proposal. Interestingly, it realizes the phantom-like behavior without introduction of any phantom field on the brane and the effective equation of state parameter crosses the cosmological constant line naturally in the same way as observational data suggest.

  15. Chern-Simons Modified Gravity

    NASA Astrophysics Data System (ADS)

    Efstratiou, P.

    2013-09-01

    This presentation will be based on my, undergraduate, thesis at Aristotle University of Thessoliniki with the same subject, supervised by Professor Demetrios Papadopoulos. I will first present the general mathematical formulation of the Chern-Simons (CS) modified gravity, which is split in a dynamical and a non-dynamical context, and the different physical theories which suggest this modification. Then proceed by examing the possibility that the CS theory shares solutions with General Relativity in both contexts. In the non-dynamical context I will present a new, undocumented solution as well as all the other possible solutions found to date. I will conclude by arguing that General Relativity and CS Theory share any solutions in the dynamical context.

  16. Nonderivative modified gravity: a classification

    SciTech Connect

    Comelli, D.; Nesti, F.; Pilo, L. E-mail: fabrizio.nesti@irb.hr

    2014-11-01

    We analyze the theories of gravity modified by a generic nonderivative potential built from the metric, under the minimal requirement of unbroken spatial rotations. Using the canonical analysis, we classify the potentials V according to the number of degrees of freedom (DoF) that propagate at the nonperturbative level. We then compare the nonperturbative results with the perturbative DoF propagating around Minkowski and FRW backgrounds. A generic V implies 6 propagating DoF at the non-perturbative level, with a ghost on Minkowski background. There exist potentials which propagate 5 DoF, as already studied in previous works. Here, no V with unbroken rotational invariance admitting 4 DoF is found. Theories with 3 DoF turn out to be strongly coupled on Minkowski background. Finally, potentials with only the 2 DoF of a massive graviton exist. Their effect on cosmology is simply equivalent to a cosmological constant. Potentials with 2 or 5 DoF and explicit time dependence appear to be a further viable possibility.

  17. Goldstone models of modified gravity

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Valageas, Patrick

    2017-02-01

    We investigate scalar-tensor theories where matter couples to the scalar field via a kinetically dependent conformal coupling. These models can be seen as the low-energy description of invariant field theories under a global Abelian symmetry. The scalar field is then identified with the Goldstone mode of the broken symmetry. It turns out that the properties of these models are very similar to the ones of ultralocal theories where the scalar-field value is directly determined by the local matter density. This leads to a complete screening of the fifth force in the Solar System and between compact objects, through the ultralocal screening mechanism. On the other hand, the fifth force can have large effects in extended structures with large-scale density gradients, such as galactic halos. Interestingly, it can either amplify or damp Newtonian gravity, depending on the model parameters. We also study the background cosmology and the linear cosmological perturbations. The background cosmology is hardly different from its Λ -CDM counterpart while cosmological perturbations crucially depend on whether the coupling function is convex or concave. For concave functions, growth is hindered by the repulsiveness of the fifth force while it is enhanced in the convex case. In both cases, the departures from the Λ -CDM cosmology increase on smaller scales and peak for galactic structures. For concave functions, the formation of structure is largely altered below some characteristic mass, as smaller structures are delayed and would form later through fragmentation, as in some warm dark matter scenarios. For convex models, small structures form more easily than in the Λ -CDM scenario. This could lead to an over-abundance of small clumps. We use a thermodynamic analysis and show that although convex models have a phase transition between homogeneous and inhomogeneous phases, on cosmological scales the system does not enter the inhomogeneous phase. On the other hand, for galactic

  18. Cosmological models of modified gravity

    NASA Astrophysics Data System (ADS)

    Bloomfield, Jolyon Keith

    The recent discovery of dark energy has prompted an investigation of ways in which the accelerated expansion of the universe can be realized. In this dissertation, we present two separate projects related to dark energy. The first project analyzes a class of braneworld models in which multiple branes float in a five-dimensional anti-de Sitter bulk, while the second investigates a class of dark energy models from an effective field theory perspective. Investigations of models including extra dimensions have led to modifications of gravity involving a number of interesting features. In particular, the Randall-Sundrum model is well-known for achieving an amelioration of the hierarchy problem. However, the basic model relies on Minkowski branes and is subject to solar system constraints in the absence of a radion stabilization mechanism. We present a method by which a four-dimensional low-energy description can be obtained for braneworld scenarios, allowing for a number of generalizations to the original models. This method is applied to orbifolded and uncompactified N-brane models, deriving an effective four-dimensional action. The parameter space of this theory is constrained using observational evidence, and it is found that the generalizations do not weaken solar system constraints on the original model. Furthermore, we find that general N-brane systems are qualitatively similar to the two-brane case, and do not naturally lead to a viable dark energy model. We next investigate dark energy models using effective field theory techniques. We describe dark energy through a quintessence field, employing a derivative expansion. To the accuracy of the model, we find transformations to write the description in a form involving no higher-order derivatives in the equations of motion. We use a pseudo-Nambu-Goldstone boson construction to motivate the theory, and find the regime of validity and scaling of the operators using this. The regime of validity is restricted to a

  19. Quantum gravity extension of the inflationary scenario.

    PubMed

    Agullo, Ivan; Ashtekar, Abhay; Nelson, William

    2012-12-21

    Since the standard inflationary paradigm is based on quantum field theory on classical space-times, it excludes the Planck era. Using techniques from loop quantum gravity, the paradigm is extended to a self-consistent theory from the Planck scale to the onset of slow roll inflation, covering some 11 orders of magnitude in energy density and curvature. This preinflationary dynamics also opens a small window for novel effects, e.g., a source for non-Gaussianities, which could extend the reach of cosmological observations to the deep Planck regime of the early Universe.

  20. Quantum Gravity Extension of the Inflationary Scenario

    NASA Astrophysics Data System (ADS)

    Agullo, Ivan; Ashtekar, Abhay; Nelson, William

    2012-12-01

    Since the standard inflationary paradigm is based on quantum field theory on classical space-times, it excludes the Planck era. Using techniques from loop quantum gravity, the paradigm is extended to a self-consistent theory from the Planck scale to the onset of slow roll inflation, covering some 11 orders of magnitude in energy density and curvature. This preinflationary dynamics also opens a small window for novel effects, e.g., a source for non-Gaussianities, which could extend the reach of cosmological observations to the deep Planck regime of the early Universe.

  1. Thermodynamical interpretation of gravity in braneworld scenarios

    SciTech Connect

    Sheykhi, Ahmad

    2009-05-15

    We study the thermodynamical properties of the apparent horizon in the various braneworld scenarios. First, we show that the Friedmann equations can be written directly in the form of the first law of thermodynamics, dE = T{sub h}dS{sub h}+WdV, at apparent horizon on the brane, regardless of whether there is the intrinsic curvature term on the brane or a Gauss-Bonnet term in the bulk. This procedure leads to extract an entropy expression in terms of horizon geometry associated with the apparent horizon. Then, we examine the time evolution of the total entropy, including the derived entropy of the apparent horizon and the entropy of the matter fields inside the apparent horizon. We find that the derived entropy of the apparent horizon on the brane satisfies the generalized second law of thermodynamics in braneworld scenarios. These results further support the idea that gravitation on a macroscopic scale is a manifestation of thermodynamics.

  2. Modeling void abundance in modified gravity

    NASA Astrophysics Data System (ADS)

    Voivodic, Rodrigo; Lima, Marcos; Llinares, Claudio; Mota, David F.

    2017-01-01

    We use a spherical model and an extended excursion set formalism with drifting diffusive barriers to predict the abundance of cosmic voids in the context of general relativity as well as f (R ) and symmetron models of modified gravity. We detect spherical voids from a suite of N-body simulations of these gravity theories and compare the measured void abundance to theory predictions. We find that our model correctly describes the abundance of both dark matter and galaxy voids, providing a better fit than previous proposals in the literature based on static barriers. We use the simulation abundance results to fit for the abundance model free parameters as a function of modified gravity parameters, and show that counts of dark matter voids can provide interesting constraints on modified gravity. For galaxy voids, more closely related to optical observations, we find that constraining modified gravity from void abundance alone may be significantly more challenging. In the context of current and upcoming galaxy surveys, the combination of void and halo statistics including their abundances, profiles and correlations should be effective in distinguishing modified gravity models that display different screening mechanisms.

  3. Gravity from a modified commutator

    SciTech Connect

    Jackson, Mark G.; /Fermilab

    2005-05-01

    We show that a suitably chosen position-momentum commutator can elegantly describe many features of gravity, including the IR/UV correspondence and dimensional reduction (''holography''). Using the most simplistic example based on dimensional analysis of black holes, we construct a commutator which qualitatively exhibits these novel properties of gravity. Dimensional reduction occurs because the quanta size grow quickly with momenta, and thus cannot be ''packed together'' as densely as naively expected. We conjecture that a more precise form of this commutator should be able to quantitatively reproduce all of these features.

  4. THE OUTSKIRTS OF GLOBULAR CLUSTERS AS MODIFIED GRAVITY PROBES

    SciTech Connect

    Hernandez, X.; Jimenez, M. A.

    2012-05-01

    In the context of theories of gravity modified to account for the observed dynamics of galactic systems without the need to invoke the existence of dark matter, a prediction often appears regarding low-acceleration systems: wherever a falls below a{sub 0}, one should expect a transition from the classical to the modified gravity regime. This modified gravity regime will be characterized by equilibrium velocities that become independent of distance and that scale with the fourth root of the total baryonic mass, V{sup 4}{proportional_to}M. The two conditions above are the well-known flat rotation curves and Tully-Fisher relations of the galactic regime. Recently, however, a similar phenomenology has been hinted at, at the outskirts of Galactic globular clusters, precisely in the region where a < a{sub 0}. Radial profiles of the projected velocity dispersion have been observed to stop decreasing along Keplerian expectations and to level off at constant values beyond the radii where a < a{sub 0}. We have constructed gravitational equilibrium dynamical models for a number of globular clusters for which the above gravitational anomaly has been reported, using a modified Newtonian force law that yields equilibrium velocities equivalent to modified Newtonian dynamics. We find models having an inner Newtonian region and an outer modified gravity regime, which reproduce all observational constraints, surface brightness profiles, total masses, and line-of-sight velocity dispersion profiles, can be easily constructed. Through the use of detailed single stellar population models tuned individually to each of the globular clusters in question, we derive estimates of the total masses for these systems. Interestingly, we find that the asymptotic values of the velocity dispersion profiles are consistent with scaling with the fourth root of the total masses, as expected under modified gravity scenarios.

  5. Modified Bekenstein-Hawking System in f( R) Gravity

    NASA Astrophysics Data System (ADS)

    Dutta, Jibitesh; Mitra, Saugata; Chetry, Binod

    2016-10-01

    The present work deals with four alternative formulation of Bekenstein system on event horizon in f( R) gravity. While thermodynamical laws holds in universe bounded by apparent horizon, these laws break down on event horizon. With alternative formulation of thermodynamical parameters (temperature and entropy), thermodynamical laws hold on event horizon in Einstein Gravity. With this motivation, we extend the idea of generalised Hawking temperature and modified Bekenstein entropy in homogeneous and isotropic model of universe on event horizon and examine whether thermodynamical laws hold in f(R) gravity. Specifically, we examine and compare validity of generalised second law of thermodynamics (GSLT) and thermodynamical equilibrium (TE) in four alternative modified Bekenstein scenarios. As Dark energy is a possible dominant candidate for matter in the univerese and Holographic Dark Energy (HDE) can give effective description of f(R) gravity, so matter in the universe is taken as in the form interacting HDE. In order to understand the complicated expressions, finally the above laws are examined from graphical representation using three Planck data sets and it is found that generalised/modified Hawking temperature has a crucial role in making perfect thermodynamical system.

  6. Black hole thermodynamics in MOdified Gravity (MOG)

    NASA Astrophysics Data System (ADS)

    Mureika, Jonas R.; Moffat, John W.; Faizal, Mir

    2016-06-01

    We analyze the thermodynamical properties of black holes in a modified theory of gravity, which was initially proposed to obtain correct dynamics of galaxies and galaxy clusters without dark matter. The thermodynamics of non-rotating and rotating black hole solutions resembles similar solutions in Einstein-Maxwell theory with the electric charge being replaced by a new mass dependent gravitational charge Q =√{ αGN } M. This new mass dependent charge modifies the effective Newtonian constant from GN to G =GN (1 + α), and this in turn critically affects the thermodynamics of the black holes. We also investigate the thermodynamics of regular solutions, and explore the limiting case when no horizons forms. So, it is possible that the modified gravity can lead to the absence of black hole horizons in our universe. Finally, we analyze corrections to the thermodynamics of a non-rotating black hole and obtain the usual logarithmic correction term.

  7. Astrophysical black holes in screened modified gravity

    SciTech Connect

    Davis, Anne-Christine; Jha, Rahul; Muir, Jessica; Gregory, Ruth E-mail: r.a.w.gregory@durham.ac.uk E-mail: jlmuir@umich.edu

    2014-08-01

    Chameleon, environmentally dependent dilaton, and symmetron gravity are three models of modified gravity in which the effects of the additional scalar degree of freedom are screened in dense environments. They have been extensively studied in laboratory, cosmological, and astrophysical contexts. In this paper, we present a preliminary investigation into whether additional constraints can be provided by studying these scalar fields around black holes. By looking at the properties of a static, spherically symmetric black hole, we find that the presence of a non-uniform matter distribution induces a non-constant scalar profile in chameleon and dilaton, but not necessarily symmetron gravity. An order of magnitude estimate shows that the effects of these profiles on in-falling test particles will be sub-leading compared to gravitational waves and hence observationally challenging to detect.

  8. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    SciTech Connect

    Lee, Jounghun; Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  9. Degeneracies in parametrized modified gravity models

    SciTech Connect

    Hojjati, Alireza

    2013-01-01

    We study degeneracies between parameters in some of the widely used parametrized modified gravity models. We investigate how different observables from a future photometric weak lensing survey such as LSST, correlate the effects of these parameters and to what extent the degeneracies are broken. We also study the impact of other degenerate effects, namely massive neutrinos and some of the weak lensing systematics, on the correlations.

  10. Anisotropic singularities in chiral modified gravity

    NASA Astrophysics Data System (ADS)

    Herfray, Yannick; Krasnov, Kirill; Shtanov, Yuri

    2016-12-01

    In four spacetime dimensions, there exists a special infinite-parameter family of chiral modified gravity theories. All these theories describe just two propagating polarisations of the graviton. General relativity (GR) with an arbitrary cosmological constant is the only parity-invariant member of this family. We review how these modified gravity theories arise within the framework of pure-connection formulation. We introduce a new convenient parametrisation of this family of theories by using a certain set of auxiliary fields. Modifications of GR can be arranged so as to become important in regions with large Weyl curvature, while the behaviour is indistinguishable from GR where Weyl curvature is small. We show how the Kasner singularity of GR is resolved in a particular class of modified gravity theories of this type, leading to solutions in which the fundamental connection field is regular all through the spacetime. There arises a new asymptotically De Sitter region ‘behind’ the would-be singularity, the complete solution thus being of a bounce type.

  11. Systematic simulations of modified gravity: chameleon models

    SciTech Connect

    Brax, Philippe; Li, Baojiu; Winther, Hans A.; Zhao, Gong-Bo E-mail: a.c.davis@damtp.cam.ac.uk E-mail: h.a.winther@astro.uio.no

    2013-04-01

    In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc{sup −1}, since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future.

  12. Halo scale predictions of symmetron modified gravity

    SciTech Connect

    Clampitt, Joseph; Jain, Bhuvnesh; Khoury, Justin E-mail: bjain@physics.upenn.edu

    2012-01-01

    We offer predictions of symmetron modified gravity in the neighborhood of realistic dark matter halos. The predictions for the fifth force are obtained by solving the nonlinear symmetron equation of motion in the spherical NFW approximation. In addition, we compare the three major known screening mechanisms: Vainshtein, Chameleon, and Symmetron around such dark matter halos, emphasizing the significant differences between them and highlighting observational tests which exploit these differences. Finally, we demonstrate the host halo environmental screening effect (''blanket screening'') on smaller satellite halos by solving for the modified forces around a density profile which is the sum of satellite and approximate host components.

  13. Black holes in modified gravity (MOG)

    NASA Astrophysics Data System (ADS)

    Moffat, J. W.

    2015-04-01

    The field equations for scalar-tensor-vector gravity (STVG) or modified gravity (MOG) have a static, spherically symmetric black hole solution determined by the mass with two horizons. The strength of the gravitational constant is where is a parameter. A regular singularity-free MOG solution is derived using a nonlinear field dynamics for the repulsive gravitational field component and a reasonable physical energy-momentum tensor. The Kruskal-Szekeres completion of the MOG black hole solution is obtained. The Kerr-MOG black hole solution is determined by the mass , the parameter and the spin angular momentum . The equations of motion and the stability condition of a test particle orbiting the MOG black hole are derived, and the radius of the black hole photosphere and the shadows cast by the Schwarzschild-MOG and Kerr-MOG black holes are calculated. A traversable wormhole solution is constructed with a throat stabilized by the repulsive component of the gravitational field.

  14. On the expanding phase of a singular bounce and intermediate inflation: The modified gravity description

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2017-03-01

    We demonstrate that the intermediate inflation scenario is a singular inflation cosmology, with the singularity at the origin t = 0 being a pressure and energy density singularity and particularly a Type III singularity. Also, we show that the expanding phase of a singular bounce can be identical to the intermediate inflation scenario, if the singular bounce has a Type III singularity at the origin. For the intermediate inflation scenario we examine the cosmological implications on the power spectrum in the context of various forms of modified gravity. Particularly, we calculate the power spectrum in the context of F(R), F(G) Gauss-Bonnet gravity and also for F(T) gravity and we discuss the viability of each scenario by comparing the resulting spectral index with the latest observational data.

  15. The integrated bispectrum in modified gravity theories

    NASA Astrophysics Data System (ADS)

    Munshi, Dipak

    2017-01-01

    Gravity-induced non-Gaussianity can provide important clues to Modified Gravity (MG) Theories. Several recent studies have suggested using the Integrated Bispectrum (IB) as a probe for squeezed configuration of bispectrum. Extending previous studies on the IB, we include redshift-space distortions to study a class of (parametrised) MG theories that include the string-inspired Dvali, Gabadadze & Porrati (DGP) model. Various contributions from redshift-space distortions are derived in a transparent manner, and squeezed contributions from these terms are derived separately. Results are obtained using the Zel'dovich Approximation (ZA). Results are also presented for projected surveys (2D). We use the Press-Schechter (PS) and Sheth-Tormen (ST) mass functions to compute the IB for collapsed objects that can readily be extended to peak-theory based approaches. The cumulant correlators (CCs) generalise the ordinary cumulants and are known to probe collapsed configurations of higher order correlation functions. We generalise the concept of CCs to halos of different masses. We also introduce a generating function based approach to analyse more general non-local biasing models. The Fourier representations of the CCs, the skew-spectrum, or the kurt-spctra are discussed in this context. The results are relevant for the study of the Minkowski Functionals (MF) of collapsed tracers in redshift-space.

  16. Anisotropic singularities in modified gravity models

    NASA Astrophysics Data System (ADS)

    Figueiró, Michele Ferraz; Saa, Alberto

    2009-09-01

    We show that the common singularities present in generic modified gravity models governed by actions of the type S=∫d4x-gf(R,ϕ,X), with X=-(1)/(2)gab∂aϕ∂bϕ, are essentially the same anisotropic instabilities associated to the hypersurface F(ϕ)=0 in the case of a nonminimal coupling of the type F(ϕ)R, enlightening the physical origin of such singularities that typically arise in rather complex and cumbersome inhomogeneous perturbation analyses. We show, moreover, that such anisotropic instabilities typically give rise to dynamically unavoidable singularities, precluding completely the possibility of having physically viable models for which the hypersurface (∂f)/(∂R)=0 is attained. Some examples are explicitly discussed.

  17. Ultra faint dwarf galaxies: an arena for testing dark matter versus modified gravity

    NASA Astrophysics Data System (ADS)

    Lin, Weikang; Ishak, Mustapha

    2016-10-01

    The scenario consistent with a wealth of observations for the missing mass problem is that of weakly interacting dark matter particles. However, arguments or proposals for a Newtonian or relativistic modified gravity scenario continue to be made. A distinguishing characteristic between the two scenarios is that dark matter particles can produce a gravitational effect, in principle, without the need of baryons while this is not the case for the modified gravity scenario where such an effect must be correlated with the amount of baryonic matter. We consider here ultra-faint dwarf (UFD) galaxies as a promising arena to test the two scenarios based on the above assertion. We compare the correlation of the luminosity with the velocity dispersion between samples of UFD and non-UFD galaxies, finding a significant loss of correlation for UFD galaxies. For example, we find for 28 non-UFD galaxies a strong correlation coefficient of -0.688 which drops to -0.077 for the 23 UFD galaxies. Incoming and future data will determine whether the observed stochasticity for UFD galaxies is physical or due to systematics in the data. Such a loss of correlation (if it is to persist) is possible and consistent with the dark matter scenario for UFD galaxies but would constitute a new challenge for the modified gravity scenario.

  18. Modified-Gravity-GADGET: a new code for cosmological hydrodynamical simulations of modified gravity models

    NASA Astrophysics Data System (ADS)

    Puchwein, Ewald; Baldi, Marco; Springel, Volker

    2013-11-01

    We present a new massively parallel code for N-body and cosmological hydrodynamical simulations of modified gravity models. The code employs a multigrid-accelerated Newton-Gauss-Seidel relaxation solver on an adaptive mesh to efficiently solve for perturbations in the scalar degree of freedom of the modified gravity model. As this new algorithm is implemented as a module for the P-GADGET3 code, it can at the same time follow the baryonic physics included in P-GADGET3, such as hydrodynamics, radiative cooling and star formation. We demonstrate that the code works reliably by applying it to simple test problems that can be solved analytically, as well as by comparing cosmological simulations to results from the literature. Using the new code, we perform the first non-radiative and radiative cosmological hydrodynamical simulations of an f (R)-gravity model. We also discuss the impact of active galactic nucleus feedback on the matter power spectrum, as well as degeneracies between the influence of baryonic processes and modifications of gravity.

  19. Modified gravity black holes and their observable shadows

    NASA Astrophysics Data System (ADS)

    Moffat, J. W.

    2015-03-01

    The shadows cast by non-rotating and rotating modified gravity black holes are determined by the two parameters mass and angular momentum . The sizes of the shadows cast by the spherically symmetric static modified gravity-Schwarzschild and modified gravity-Kerr rotating black holes increase significantly as the free parameter is increased from zero. The Event Horizon Telescope shadow image measurements can determine whether Einstein's general relativity is correct or whether it should be modified in the presence of strong gravitational fields.

  20. Testing modified gravity with dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Haghi, Hosein; Amiri, Vahid

    2016-12-01

    The observed velocity dispersion of the classical dwarf spheroidal (dSph) galaxies of the Milky Way (MW) requires the Newtonian stellar mass-to-light (M*/L) ratios in the range of about 10 to more than 100 solar units that are well outside the acceptable limit predicted by stellar population synthesis models. Using Jeans analysis, we calculate the line-of-sight velocity dispersion (σlos) of stars in eight MW dSphs in the context of the modified gravity (MOG) theory of Moffat, assuming a constant M*/L ratio without invoking the exotic cold dark matter. First, we use the weak field approximation of MOG and assume the two parameters α and μ of the theory to be constant as has already been inferred from fitting to the observed rotational data of The H I Nearby Galaxy Survey catalogue of galaxies. We find that the derived M*/L ratios for almost all dSphs are too large to be explained by the stellar population values. In order to fit the line-of-sight velocity dispersions of the dSph with reasonable M*/L values, we must vary α and μ on a case by case basis. A common pair of values cannot be found for all dSphs. Comparing with the values found from rotation curve fitting, it appears that μ correlates strongly with galaxy luminosity, shedding doubt on it as a universal constant.

  1. STELLAR STRUCTURE AND TESTS OF MODIFIED GRAVITY

    SciTech Connect

    Chang, Philip; Hui, Lam E-mail: lhui@astro.columbia.edu

    2011-05-01

    Theories that attempt to explain cosmic acceleration by modifying gravity typically introduces a long-range scalar force that needs to be screened on small scales. One common screening mechanism is the chameleon, where the scalar force is screened in environments with a sufficiently deep gravitational potential, but acts unimpeded in regions with a shallow gravitational potential. This leads to a variation in the overall gravitational G with environment. We show that such a variation can occur within a star itself, significantly affecting its evolution and structure, provided that the host galaxy is unscreened. The effect is most pronounced for red giants, which would be smaller by a factor of tens of percent and thus hotter by hundreds of Kelvin, depending on the parameters of the underlying scalar-tensor theory. Careful measurements of these stars in suitable environments (nearby dwarf galaxies not associated with groups or clusters) would provide constraints on the chameleon mechanism that are four orders of magnitude better than current large-scale structure limits and two orders of magnitude better than present solar system tests.

  2. Massive gravitational waves in Chern-Simons modified gravity

    SciTech Connect

    Myung, Yun Soo; Moon, Taeyoon E-mail: tymoon@inje.ac.kr

    2014-10-01

    We consider the nondynamical Chern-Simons (nCS) modified gravity, which is regarded as a parity-odd theory of massive gravity in four dimensions. We first find polarization modes of gravitational waves for θ=x/μ in nCS modified gravity by using the Newman-Penrose formalism where the null complex tetrad is necessary to specify gravitational waves. We show that in the Newman–Penrose formalism, the number of polarization modes is one in addition to an unspecified Ψ{sub 4}, implying three degrees of freedom for θ=x/μ. This compares with two for a canonical embedding of θ=t/μ. Also, if one introduces the Ricci tensor formalism to describe a massive graviton arising from the nCS modified gravity, one finds one massive mode after making second-order wave equations, which is compared to five found from the parity-even Einstein–Weyl gravity.

  3. Hiding neutrino mass in modified gravity cosmologies

    NASA Astrophysics Data System (ADS)

    Bellomo, Nicola; Bellini, Emilio; Hu, Bin; Jimenez, Raul; Pena-Garay, Carlos; Verde, Licia

    2017-02-01

    Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on the cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.

  4. Effective fermion kinematics from modified quantum gravity

    NASA Astrophysics Data System (ADS)

    Alexandre, J.; Leite, J.

    2016-10-01

    We consider a classical fermion and a classical scalar, propagating on two different kinds of four-dimensional diffeomorphism breaking gravity backgrounds, and we derive the one-loop effective dispersion relation for matter, after integrating out gravitons. One gravity model involves quadratic divergences at one-loop, as in Einstein gravity, and the other model is the z = 3 non-projectable Horava-Lifshitz gravity, which involves logarithmic divergences only. Although these two models behave differently in the ultraviolet, the IR phenomenology for matter fields is comparable: (i) for generic values for the parameters, both models identify 1010 GeV as the characteristic scale above which they are not consistent with current upper bounds on Lorentz symmetry violation; (ii) for both models, there is always a fine-tuning of parameters which allows the cancellation of the indicator for Lorentz symmetry violation.

  5. Quantum phase shift in Chern-Simons modified gravity

    SciTech Connect

    Nandi, K. K.; Kizirgulov, I. R.; Mikolaychuk, O. V.; Mikolaychuk, N. P.; Potapov, A. A.

    2009-04-15

    Using a unified approach of optical-mechanical analogy in a semiclassical formula, we evaluate the effect of Chern-Simons modified gravity on the quantum phase shift of de Broglie waves in neutron interferometry. The phase shift calculated here reveals, in a single equation, a combination of effects coming from Newtonian gravity, inertial forces, Schwarzschild and Chern-Simons modified gravity. However the last two effects, though new, turn out to be too tiny to be observed, and hence only of academic interest at present. The approximations, wherever used, as well as the drawbacks of the nondynamical approach are clearly indicated.

  6. Extended disformal approach in the scenario of rainbow gravity

    NASA Astrophysics Data System (ADS)

    Carvalho, Gabriel G.; Lobo, Iarley P.; Bittencourt, Eduardo

    2016-02-01

    We investigate all feasible mathematical representations of disformal transformations on a space-time metric according to the action of a linear operator upon the manifold's tangent and cotangent bundles. The geometric, algebraic, and group structures of this operator and their interfaces are analyzed in detail. Then, we scrutinize a possible physical application, providing a new covariant formalism for a phenomenological approach to quantum gravity known as rainbow gravity.

  7. White Dwarf Critical Tests for Modified Gravity.

    PubMed

    Jain, Rajeev Kumar; Kouvaris, Chris; Nielsen, Niklas Grønlund

    2016-04-15

    Scalar-tensor theories of gravity can lead to modifications of the gravitational force inside astrophysical objects. We exhibit that compact stars such as white dwarfs provide a unique setup to test beyond Horndeski theories of G^{3} type. We obtain stringent and independent constraints on the parameter ϒ characterizing the deviations from Newtonian gravity using the mass-radius relation, the Chandrasekhar mass limit, and the maximal rotational frequency of white dwarfs. We find that white dwarfs impose stronger constraints on ϒ than red and brown dwarfs.

  8. Differentiating dark energy and modified gravity with galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Wang, Yun

    2008-05-01

    The observed cosmic acceleration today could be due to an unknown energy component (dark energy), or a modification to general relativity (modified gravity). If dark energy models and modified gravity models are required to predict the same cosmic expansion history H(z), they will predict different growth rates for cosmic large scale structure, fg(z). If gravity is not modified, the measured H(z) leads to a unique prediction for fg(z), fgH(z), if dark energy and dark matter are separate. Comparing fgH(z) with the measured fg(z) provides a transparent and straightforward test of gravity. We show that a simple χ2 test provides a general figure of merit for our ability to distinguish between dark energy and modified gravity given the measured H(z) and fg(z). We find that a magnitude-limited NIR galaxy redshift survey covering >10 000 (deg)2 and a redshift range of 0.5gravity model and an equivalent dark energy model that predict the same H(z), a survey area of 11 931 (deg)2 is required to rule out the DGP gravity model at the 99.99% confidence level. It is feasible for such a galaxy redshift survey to be carried out by the next generation space missions from NASA and ESA, and it will revolutionize our understanding of the universe by differentiating between dark energy and modified gravity.

  9. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.

    PubMed

    Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H

    2014-04-18

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14  eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20  μm (95% C.L.).

  10. Minimum length, extra dimensions, modified gravity and black hole remnants

    NASA Astrophysics Data System (ADS)

    Maziashvili, Michael

    2013-03-01

    We construct a Hilbert space representation of minimum-length deformed uncertainty relation in presence of extra dimensions. Following this construction, we study corrections to the gravitational potential (back reaction on gravity) with the use of correspondingly modified propagator in presence of two (spatial) extra dimensions. Interestingly enough, for r→0 the gravitational force approaches zero and the horizon for modified Schwarzschild-Tangherlini space-time disappears when the mass approaches quantum-gravity energy scale. This result points out to the existence of zero-temperature black hole remnants in ADD brane-world model.

  11. Cosmological constant Λ in f(R,T) modified gravity

    NASA Astrophysics Data System (ADS)

    Singh, Gyan Prakash; Bishi, Binaya Kumar; Sahoo, Pradyumn Kumar

    2016-04-01

    In this paper, we have studied the Bianchi type-III cosmological model in the presence of cosmological constant in the context of f(R,T) modified theory of gravity. Here, we have discussed two classes of f(R,T) gravity, i.e. f(R,T) = R + f(T) and f(R,T) = f1(R) + f2(T). In both classes, the modified field equations are solved by the relation expansion scalar θ that is proportional to shear scalar σ which gives A = Cn, where A and C are metric potentials. Also we have discussed some physical and kinematical properties of the models.

  12. Massive and modified gravity as self-gravitating media

    NASA Astrophysics Data System (ADS)

    Ballesteros, Guillermo; Comelli, Denis; Pilo, Luigi

    2016-12-01

    We study the effective field theory that describes the low-energy physics of self-gravitating media. The field content consists of four derivatively coupled scalar fields that can be identified with the internal comoving coordinates of the medium. Imposing SO(3) internal spatial invariance, the theory describes supersolids. Stronger symmetry requirements lead to superfluids, solids and perfect fluids, at lowest order in derivatives. In the unitary gauge, massive gravity emerges, being thus the result of a continuous medium propagating in spacetime. Our results can be used to explore systematically the effects and signatures of modifying gravity consistently at large distances. The dark sector is then described as a self-gravitating medium with dynamical and thermodynamic properties dictated by internal symmetries. These results indicate that the divide between dark energy and modified gravity, at large distance scales, is simply a gauge choice.

  13. Modified gravity from the nonperturbative quantization of a metric.

    PubMed

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta

    Based on certain assumptions for the expectation value of a product of the quantum fluctuating metric at two points, the gravitational and scalar field Lagrangians are evaluated. Assuming a vanishing expectation value of the first-order terms of the metric, the calculations are performed with an accuracy of second order. It is shown that such quantum corrections give rise to modified gravity.

  14. Infrared modified gravity with dynamical torsion

    SciTech Connect

    Nikiforova, V.; Randjbar-Daemi, S.; Rubakov, V.

    2009-12-15

    We continue the recent study of the possibility of constructing a consistent infrared modification of gravity by treating the vierbein and connection as independent dynamical fields. We present the generalized Fierz-Pauli equation that governs the propagation of a massive spin-2 mode in a model of this sort in the backgrounds of arbitrary torsionless Einstein manifolds. We show explicitly that the number of propagating degrees of freedom in these backgrounds remains the same as in flat space-time. This generalizes the recent result that the Boulware-Deser phenomenon does not occur in de Sitter and anti-de Sitter backgrounds. We find that, at least for weakly curved backgrounds, there are no ghosts in the model. We also discuss the interaction of sources in flat background. It is generally believed that the spinning matter is the only source of torsion. Our flat space study shows that this is not the case. We demonstrate that an ordinary conserved symmetric energy-momentum tensor can also generate torsion fields and thus excite massive spin-2 degrees of freedom.

  15. Unscreening Modified Gravity in the Matter Power Spectrum

    NASA Astrophysics Data System (ADS)

    Lombriser, Lucas; Simpson, Fergus; Mead, Alexander

    2015-06-01

    Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the screened high-density regions in the matter power spectrum, allowing a greater contribution of unscreened low densities, modified gravity models can be more readily discriminated from the concordance cosmology. Moreover, by variation of density thresholds, degeneracies with other effects may be dealt with more adequately. Specializing to chameleon gravity as a worked example for screening in modified gravity, employing N -body simulations of f (R ) models and the halo model of chameleon theories, we demonstrate the effectiveness of this method. We find that a percent-level measurement of the clipped power at k <0.3 h /Mpc can yield constraints on chameleon models that are more stringent than what is inferred from Solar System tests or distance indicators in unscreened dwarf galaxies. Finally, we verify that our method is also applicable to the Vainshtein mechanism.

  16. Planck 2015 results. XIV. Dark energy and modified gravity

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marchini, A.; Maris, M.; Martin, P. G.; Martinelli, M.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Salvatelli, V.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Viel, M.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below ~2% (at 95% confidence) of the critical density, even when forced to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ΛCDM. When testing models that also change perturbations (even when the background is fixed to ΛCDM), some tensions appear in a few scenarios: the maximum one found is ~2σ for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most, 3σ when external

  17. Equivalence principle implications of modified gravity models

    SciTech Connect

    Hui, Lam; Nicolis, Alberto; Stubbs, Christopher W.

    2009-11-15

    Theories that attempt to explain the observed cosmic acceleration by modifying general relativity all introduce a new scalar degree of freedom that is active on large scales, but is screened on small scales to match experiments. We demonstrate that if such screening occurs via the chameleon mechanism, such as in f(R) theory, it is possible to have order unity violation of the equivalence principle, despite the absence of explicit violation in the microscopic action. Namely, extended objects such as galaxies or constituents thereof do not all fall at the same rate. The chameleon mechanism can screen the scalar charge for large objects but not for small ones (large/small is defined by the depth of the gravitational potential and is controlled by the scalar coupling). This leads to order one fluctuations in the ratio of the inertial mass to gravitational mass. We provide derivations in both Einstein and Jordan frames. In Jordan frame, it is no longer true that all objects move on geodesics; only unscreened ones, such as test particles, do. In contrast, if the scalar screening occurs via strong coupling, such as in the Dvali-Gabadadze-Porrati braneworld model, equivalence principle violation occurs at a much reduced level. We propose several observational tests of the chameleon mechanism: 1. small galaxies should accelerate faster than large galaxies, even in environments where dynamical friction is negligible; 2. voids defined by small galaxies would appear larger compared to standard expectations; 3. stars and diffuse gas in small galaxies should have different velocities, even if they are on the same orbits; 4. lensing and dynamical mass estimates should agree for large galaxies but disagree for small ones. We discuss possible pitfalls in some of these tests. The cleanest is the third one where the mass estimate from HI rotational velocity could exceed that from stars by 30% or more. To avoid blanket screening of all objects, the most promising place to look is in

  18. Modifying gravity: you cannot always get what you want.

    PubMed

    Starkman, Glenn D

    2011-12-28

    The combination of general relativity (GR) and the Standard Model of particle physics disagrees with numerous observations on scales from our Solar System up. In the canonical concordance model of Lambda cold dark matter (ΛCDM) cosmology, many of these contradictions between theory and data are removed or alleviated by the introduction of three completely independent new components of stress energy--the inflaton, dark matter and dark energy. Each of these in its turn is meant to have dominated (or to currently dominate) the dynamics of the Universe. There is, until now, no non-gravitational evidence for any of these dark sectors, nor is there evidence (though there may be motivation) for the required extension of the Standard Model. An alternative is to imagine that it is GR that must be modified to account for some or all of these disagreements. Certain coincidences of scale even suggest that one might expect not to make independent modifications of the theory to replace each of the three dark sectors. Because they must address the most different types of data, attempts to replace dark matter with modified gravity are the most controversial. A phenomenological model (or family of models), modified Newtonian dynamics, has, over the last few years, seen several covariant realizations. We discuss a number of challenges that any model that seeks to replace dark matter with modified gravity must face: the loss of Birkhoff's theorem, and the calculational simplifications it implies; the failure to explain clusters, whether static or interacting, and the consequent need to introduce dark matter of some form, whether hot dark matter neutrinos or dark fields that arise in new sectors of the modified gravity theory; the intrusion of cosmological expansion into the modified force law, which arises precisely because of the coincidence in scale between the centripetal acceleration at which Newtonian gravity fails in galaxies and the cosmic acceleration. We conclude with the

  19. Constraining gravity with hadron physics: neutron stars, modified gravity and gravitational waves

    NASA Astrophysics Data System (ADS)

    Llanes-Estrada, Felipe J.

    2017-03-01

    The finding of Gravitational Waves (GW) by the aLIGO scientific and VIRGO collaborations opens opportunities to better test and understand strong interactions, both nuclear-hadronic and gravitational. Assuming General Relativity holds, one can constrain hadron physics at a neutron star. But precise knowledge of the Equation of State and transport properties in hadron matter can also be used to constrain the theory of gravity itself. I review a couple of these opportunities in the context of modified f (R) gravity, the maximum mass of neutron stars, and progress in the Equation of State of neutron matter from the chiral effective field theory of QCD.

  20. A parametrisation of modified gravity on nonlinear cosmological scales

    NASA Astrophysics Data System (ADS)

    Lombriser, Lucas

    2016-11-01

    Viable modifications of gravity on cosmological scales predominantly rely on screening mechanisms to recover Einstein's Theory of General Relativity in the Solar System, where it has been well tested. A parametrisation of the effects of such modifications in the spherical collapse model is presented here for the use of modelling the modified nonlinear cosmological structure. The formalism allows an embedding of the different screening mechanisms operating in scalar-tensor theories through large values of the gravitational potential or its first or second derivatives as well as of linear suppression effects or more general transitions between modified and Einstein gravity limits. Each screening or suppression mechanism is parametrised by a time, mass, and environment dependent screening scale, an effective modified gravitational coupling in the fully unscreened limit that can be matched to linear theory, the exponent of a power-law radial profile of the screened coupling, determined by derivatives, symmetries, and potentials in the scalar field equation, and an interpolation rate between the screened and unscreened limits. Along with generalised perturbative methods, the parametrisation may be used to formulate a nonlinear extension to the linear parametrised post-Friedmannian framework to enable generalised tests of gravity with the wealth of observations from the nonlinear cosmological regime.

  1. Spherical Symmetric Gravitational Collapse in Chern-Simon Modified Gravity

    NASA Astrophysics Data System (ADS)

    Amir, M. Jamil; Ali, Sarfraz

    2016-04-01

    This paper is devoted to investigate the gravitational collapse in the framework of Chern-Simon (CS) modified gravity. For this purpose, we assume the spherically symmetric metric as an interior region and the Schwarzchild spacetime is considered as an exterior region of the star. Junction conditions are used to match the interior and exterior spacetimes. In dynamical formulation of CS modified gravity, we take the scalar field Θ as a function of radial parameter r and obtain the solution of the field equations. There arise two cases where in one case the apparent horizon forms first and then singularity while in second case the order of the formation is reversed. It means the first case results a black hole which supports the cosmic censorship hypothesis (CCH). Obviously, the second case yields a naked singularity. Further, we use Junction conditions have to calculate the gravitational mass. In non-dynamical formulation, the canonical choice of scalar field Θ is taken and it is shown that the obtained results of CS modified gravity simply reduce to those of the general relativity (GR). It is worth mentioning here that the results of dynamical case will reduce to those of GR, available in literature, if the scalar field is taken to be constant.

  2. Spherically symmetric solutions in modified Horava-Lifshitz gravity

    SciTech Connect

    Kiritsis, Elias

    2010-02-15

    We find spherically symmetric solutions in the modified Horava-Lifshitz gravity proposed recently by Blas, Pujolas and Sibiryakov. The nonlinear equations of the two-derivative action turn out to be similar to those stemming from the four-derivative action explored recently. We analyze the solutions and derive constraints on the relevant new coupling constant. We also analyze the case where the cosmological constant is nonzero. We derive the large-distance expansion of solutions and show that the power of the standard Newton's law is modified in the presence of a cosmological constant.

  3. Modified Chaplygin gas inspired inflationary model in braneworld scenario

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Rani, Shamaila; Mohsaneen, Sidra

    2016-05-01

    We investigate the modified Chaplygin gas inspired inflationary regime in the brane-world framework in the presence of standard and tachyon scalar fields. We consider the intermediate inflationary scenario and construct the slow-roll parameters, e-folding numbers, spectral index, scalar and tensor power spectra, tensor to scalar ratio for both scalar field models. We develop the ns - N and r - N planes and concluded that ns˜eq96^{+0.5}_{-0.5} and r≤0.0016 for N˜eq60^{+5}_{-5} in both cases of scalar field models as well as for all values of m. These constraints are consistent with observational data such as WMAP7, WMAP9 and Planck data.

  4. Cosmological implications of modified gravity induced by quantum metric fluctuations

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Harko, Tiberiu; Liang, Shi-Dong

    2016-08-01

    We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a non-minimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For each considered model we obtain the gravitational field equations, and the generalized Friedmann equations for the case of a flat homogeneous and isotropic geometry. In some of these models the divergence of the matter energy-momentum tensor is non-zero, indicating a process of matter creation, which corresponds to an irreversible energy flow from the gravitational field to the matter fluid, and which is direct consequence of the non-minimal curvature-matter coupling. The cosmological evolution equations of these modified gravity models induced by the quantum fluctuations of the metric are investigated in detail by using both analytical and numerical methods, and it is shown that a large variety of cosmological models can be constructed, which, depending on the numerical values of the model parameters, can exhibit both accelerating and decelerating behaviors.

  5. TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction

    NASA Astrophysics Data System (ADS)

    Niedermaier, M.

    2007-09-01

    The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. All presently known evidence is surveyed: (a) from the 2 + γ expansion, (b) from the perturbation theory of higher derivative gravity theories and a 'large N' expansion in the number of matter fields, (c) from the 2-Killing vector reduction and (d) from truncated flow equations for the effective average action. Special emphasis is given to the role of perturbation theory as a guide to 'asymptotic safety'. Furthermore it is argued that as a consequence of the scenario the self-interactions appear two dimensional in the extreme ultraviolet. Two appendices discuss the distinct roles of the ultraviolet renormalization in perturbation theory and in the flow equation formalism.

  6. Energy conditions in modified Gauss-Bonnet gravity

    SciTech Connect

    Garcia, Nadiezhda Montelongo; Harko, Tiberiu; Lobo, Francisco S. N.; Mimoso, Jose P.

    2011-05-15

    In considering alternative higher-order gravity theories, one is liable to be motivated in pursuing models consistent and inspired by several candidates of a fundamental theory of quantum gravity. Indeed, motivations from string/M theory predict that scalar field couplings with the Gauss-Bonnet invariant, G, are important in the appearance of nonsingular early time cosmologies. In this work, we discuss the viability of an interesting alternative gravitational theory, namely, modified Gauss-Bonnet gravity or f(G) gravity. We consider specific realistic forms of f(G) analyzed in the literature that account for the late-time cosmic acceleration and that have been found to cure the finite-time future singularities present in the dark energy models. We present the general inequalities imposed by the energy conditions and use the recent estimated values of the Hubble, deceleration, jerk and snap parameters to examine the viability of the above-mentioned forms of f(G) imposed by the weak energy condition.

  7. Fast route to nonlinear clustering statistics in modified gravity theories

    NASA Astrophysics Data System (ADS)

    Winther, Hans A.; Ferreira, Pedro G.

    2015-06-01

    We propose a simple and computationally fast method for performing N -body simulations for a large class of modified gravity theories with a screening mechanism such as chameleons, symmetrons, and Galileons. By combining the linear Klein-Gordon equation with a screening factor, calculated from analytical solutions of spherical symmetric configurations, we obtain a modified field equation of which the solution is exact in the linear regime while at the same time taking screening into account on nonlinear scales. The resulting modified field equation remains linear and can be solved just as quickly as the Poisson equation without any of the convergence problems that can arise when solving the full equation. We test our method with N -body simulations and find that it compares remarkably well with full simulations well into the nonlinear regime.

  8. Crystal clear lessons on the microstructure of spacetime and modified gravity

    NASA Astrophysics Data System (ADS)

    Lobo, Francisco S. N.; Olmo, Gonzalo J.; Rubiera-Garcia, D.

    2015-06-01

    We argue that a microscopic structure for spacetime such as that expected in a quantum foam scenario, in which microscopic wormholes and other topological structures should play a relevant role, might lead to an effective metric-affine geometry at larger scales. This idea is supported by the role that microscopic defects play in crystalline structures. With an explicit model, we show that wormhole formation is possible in a metric-affine scenario, where the wormhole and the matter fields play a role analogous to that of defects in crystals. Such wormholes also arise in Born-Infeld gravity, which is favored by an analogy with the estimated mass of a point defect in condensed matter systems. We also point out that in metric-affine geometries, Einstein's equations with an effective cosmological constant appear as an attractor in the vacuum limit for a vast family of theories of gravity. This illustrates how lessons from solid state physics can be useful in unveiling the properties of the microcosmos and defining new avenues for modified theories of gravity.

  9. Electromagnetic field and cylindrical compact objects in modified gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bhatti, M. Zaeem ul Haq

    2016-05-01

    In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.

  10. Voids in modified gravity reloaded: Eulerian void assignment

    NASA Astrophysics Data System (ADS)

    Lam, Tsz Yan; Clampitt, Joseph; Cai, Yan-Chuan; Li, Baojiu

    2015-07-01

    We revisit the excursion set approach to calculate void abundances in chameleon-type modified gravity theories, which was previously studied by Clampitt, Cai & Li. We focus on properly accounting for the void-in-cloud effect, i.e. the growth of those voids sitting in overdense regions may be restricted by the evolution of their surroundings. This effect may change the distribution function of voids hence affect predictions on the differences between modified gravity (MG) and general relativity (GR). We show that the thin-shell approximation usually used to calculate the fifth force is qualitatively good but quantitatively inaccurate. Therefore, it is necessary to numerically solve the fifth force in both overdense and underdense regions. We then generalize the Eulerian-void-assignment method of Paranjape, Lam & Sheth to our modified gravity model. We implement this method in our Monte Carlo simulations and compare its results with the original Lagrangian methods. We find that the abundances of small voids are significantly reduced in both MG and GR due to the restriction of environments. However, the change in void abundances for the range of void radii of interest for both models is similar. Therefore, the difference between models remains similar to the results from the Lagrangian method, especially if correlated steps of the random walks are used. As Clampitt et al., we find that the void abundance is much more sensitive to MG than halo abundances. Our method can then be a faster alternative to N-body simulations for studying the qualitative behaviour of a broad class of theories. We also discuss the limitations and other practical issues associated with its applications.

  11. Wormhole geometries in f(R) modified theories of gravity

    SciTech Connect

    Lobo, Francisco S. N.; Oliveira, Miguel A.

    2009-11-15

    In this work, we construct traversable wormhole geometries in the context of f(R) modified theories of gravity. We impose that the matter threading the wormhole satisfies the energy conditions, so that it is the effective stress-energy tensor containing higher order curvature derivatives that is responsible for the null energy condition violation. Thus, the higher order curvature terms, interpreted as a gravitational fluid, sustain these nonstandard wormhole geometries, fundamentally different from their counterparts in general relativity. In particular, by considering specific shape functions and several equations of state, exact solutions for f(R) are found.

  12. Weak lensing by galaxy troughs with modified gravity

    NASA Astrophysics Data System (ADS)

    Barreira, Alexandre; Bose, Sownak; Li, Baojiu; Llinares, Claudio

    2017-02-01

    We study the imprints that theories of gravity beyond GR can leave on the lensing signal around line of sight directions that are predominantly halo-underdense (called troughs) and halo-overdense. To carry out our investigations, we consider the normal branch of DGP gravity, as well as a phenomenological variant thereof that directly modifies the lensing potential. The predictions of these models are obtained with N-body simulation and ray-tracing methods using the ECOSMOG and Ray-Ramses codes. We analyse the stacked lensing convergence profiles around the underdense and overdense lines of sight, which exhibit, respectively, a suppression and a boost w.r.t. the mean in the field of view. The modifications to gravity in these models strengthen the signal w.r.t. ΛCDM in a scale-independent way. We find that the size of this effect is the same for both underdense and overdense lines of sight, which implies that the density field along the overdense directions on the sky is not sufficiently evolved to trigger the suppression effects of the screening mechanism. These results are robust to variations in the minimum halo mass and redshift ranges used to identify the lines of sight, as well as to different line of sight aperture sizes and criteria for their underdensity and overdensity thresholds.

  13. Gravitational Microlensing in Modified Gravity Theories - Inverse-Square Theorem

    NASA Astrophysics Data System (ADS)

    Asada, H.

    2011-02-01

    Microlensing studies are usually based on the lens equation that is valid only to the first order in the gravitational constant G and lens mass M. We consider corrections to the conventional lens equation in terms of differentiable functions, so that they can express not only the second-order effects of GM in general relativity but also modified gravity theories. As a generalization of Ebina et al. (Prog. Theor. Phys. 104 (2000), 1317), we show that, provided that the spacetime is static, spherically symmetric and asymptotically flat, the total amplification by microlensing remains unchanged at the linear order of the correction to the deflection angle, if and only if the correction takes a particular form as the inverse square of the impact parameter, whereas the magnification factor for each image is corrected. It is concluded that the light curve shape by microlensing is inevitably changed and will thus allow us to probe modified gravity, unless a modificati on to the deflection angle takes the particular form. No systematic deviation in microlensing observations has been reported. For instance, therefore, the Yukawa-type correction is constrained as the characteristic length > 10^{14} m.

  14. Modified gravity N-body code comparison project

    NASA Astrophysics Data System (ADS)

    Winther, Hans A.; Schmidt, Fabian; Barreira, Alexandre; Arnold, Christian; Bose, Sownak; Llinares, Claudio; Baldi, Marco; Falck, Bridget; Hellwing, Wojciech A.; Koyama, Kazuya; Li, Baojiu; Mota, David F.; Puchwein, Ewald; Smith, Robert E.; Zhao, Gong-Bo

    2015-12-01

    Self-consistent N-body simulations of modified gravity models are a key ingredient to obtain rigorous constraints on deviations from general relativity using large-scale structure observations. This paper provides the first detailed comparison of the results of different N-body codes for the f (R), Dvali-Gabadadze-Porrati and Symmetron models, starting from the same initial conditions. We find that the fractional deviation of the matter power spectrum from Λ cold dark matter agrees to better than 1 per cent up to k ˜ 5-10 h Mpc-1 between the different codes. These codes are thus able to meet the stringent accuracy requirements of upcoming observational surveys. All codes are also in good agreement in their results for the velocity divergence power spectrum, halo abundances and halo profiles. We also test the quasi-static limit, which is employed in most modified gravity N-body codes, for the Symmetron model for which the most significant non-static effects among the models considered are expected. We conclude that this limit is a very good approximation for all of the observables considered here.

  15. Dark energy or modified gravity? An effective field theory approach

    SciTech Connect

    Bloomfield, Jolyon; Flanagan, Éanna É.; Park, Minjoon; Watson, Scott E-mail: eef3@cornell.edu E-mail: gswatson@syr.edu

    2013-08-01

    We take an Effective Field Theory (EFT) approach to unifying existing proposals for the origin of cosmic acceleration and its connection to cosmological observations. Building on earlier work where EFT methods were used with observations to constrain the background evolution, we extend this program to the level of the EFT of the cosmological perturbations — following the example from the EFT of Inflation. Within this framework, we construct the general theory around an assumed background which will typically be chosen to mimic ΛCDM, and identify the parameters of interest for constraining dark energy and modified gravity models with observations. We discuss the similarities to the EFT of Inflation, but we also identify a number of subtleties including the relationship between the scalar perturbations and the Goldstone boson of the spontaneously broken time translations. We present formulae that relate the parameters of the fundamental Lagrangian to the speed of sound, anisotropic shear stress, effective Newtonian constant, and Caldwell's varpi parameter, emphasizing the connection to observations. It is anticipated that this framework will be of use in constraining individual models, as well as for placing model-independent constraints on dark energy and modified gravity model building.

  16. Non-linear structure in modified action theories of gravity

    NASA Astrophysics Data System (ADS)

    Lima, Marcos V.

    We study the effects and carry out a suite of cosmological simulations of modified action f(R) models where cosmic acceleration arises from an alteration of gravity instead of dark energy. These models introduce an extra scalar degree of freedom which enhances the force of gravity below the Compton scale of the scalar. The simulations exhibit the so-called chameleon mechanism, necessary for satisfying local constraints on gravity, where this scale depends on environment, in particular the depth of the local gravitational potential. We find that the chameleon mechanism can substantially suppress the enhancement of power spectrum in the non-linear regime if the background field value is comparable to or smaller than the depth of the gravitational potentials of typical structures. Nonetheless power spectrum enhancements at intermediate scales remain at a measurable level even when the expansion history is indistinguishable from a cosmological constant, cold dark matter model. We also investigate the effects of the modified dynamics on halo properties such as their abundance and clustering. We find that the f(R) effects on the halo mass- function and bias depend mostly on the linear power spectrum modifications, but that the chameleon mechanism suppresses the modifications at high-mass halos with deep potential wells. The f(R) modifications also affect the threshold density for collapse, or similarly the overdensity for virialization and therefore can change halo definitions from those of ACDM. As a result, simple scaling relations that take the linear matter power spectrum into a non-linear spectrum fail to capture the modifications of f(R) due to the change in collapsed structures, the chameleon mechanism, and the time evolution of the modifications. A quantification of these effects, including modifications on halo profiles, is necessary to accurately describe halo properties and potentially construct a halo model of the non-linear power spectrum.

  17. Cluster density profiles as a test of modified gravity

    NASA Astrophysics Data System (ADS)

    Lombriser, Lucas; Schmidt, Fabian; Baldauf, Tobias; Mandelbaum, Rachel; Seljak, Uroš; Smith, Robert E.

    2012-05-01

    We present a new test of gravitational interactions at the r≃(0.2-20)Mpc scale, around the virial radius of dark matter halos measured through cluster-galaxy lensing of maxBCG clusters from the Sloan Digital Sky Survey (SDSS). We employ predictions from self-consistent simulations of f(R) gravity to find an upper bound on the background field amplitude of |fR0|<3.5×10-3 at the 1D-marginalized 95% confidence level. As a model-independent assessment of the constraining power of cluster profiles measured through weak gravitational lensing, we also constrain the amplitude F0 of a phenomenological modification based on the profile enhancement induced by f(R) gravity when not including effects from the increased cluster abundance in f(R). In both scenarios, dark-matter-only simulations of the concordance model corresponding to |fR0|=0 and F0=0 are consistent with the lensing measurements, i.e., at the 68% and 95% confidence level, respectively.

  18. Gravitational wave memory: A new approach to study modified gravity

    NASA Astrophysics Data System (ADS)

    Du, Song Ming; Nishizawa, Atsushi

    2016-11-01

    It is well known that two types of gravitational wave memory exist in general relativity (GR): the linear memory and the nonlinear, or Christodoulou, memory. These effects, especially the latter, depend on the specific form of the Einstein equation. It can then be speculated that, in modified theories of gravity, the memory can differ from the GR prediction and provides novel phenomena to study these theories. We support this speculation by considering scalar-tensor theories, for which we find two new types of memory: the T memory and the S memory, which contribute to the tensor and scalar components of a gravitational wave, respectively. Specifically, the former is caused by the burst of energy carried away by scalar radiation, while the latter is intimately related to the no scalar hair property of black holes in scalar-tensor gravity. We estimate the size of these two types of memory in gravitational collapses and formulate a detection strategy for the S memory, which can be singled out from tensor gravitational waves. We show that (i) the S memory exists even in spherical symmetry and is observable under current model constraints, and (ii) while the T memory is usually much weaker than the S memory, it can become comparable in the case of spontaneous scalarization.

  19. Vector field models of modified gravity and the dark sector

    SciTech Connect

    Zuntz, J.; Ferreira, P. G.; Zlosnik, T. G; Bourliot, F.; Starkman, G. D.

    2010-05-15

    We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory's kinetic index parameter n{sub ae} can differ significantly from its {Lambda}CDM value.

  20. Ultralocal models of modified gravity without kinetic term

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Rizzo, Luca Alberto; Valageas, Patrick

    2016-08-01

    We present a class of modified-gravity theories which we call ultralocal models. We add a scalar field, with negligible kinetic terms, to the Einstein-Hilbert action. We also introduce a conformal coupling to matter. This gives rise to a new screening mechanism which is not entirely due to the nonlinearity of the scalar-field potential or the coupling function but to the absence of the kinetic term. As a result this removes any fifth force between isolated objects in vacuum. It turns out that these models are similar to chameleon-type theories with a large mass when considered outside the Compton wavelength but differ on shorter scales. The predictions of these models only depend on a single free function, as the potential and the coupling function are degenerate, with an amplitude given by a parameter α ≲10-6 , whose magnitude springs from requiring a small modification of Newton's potential astrophysically and cosmologically. This singles out a redshift zα˜α-1 /3≳100 where the fifth force is the greatest. The cosmological background follows the Λ cold dark matter (Λ CDM ) history within a 10-6 accuracy, while cosmological perturbations are significantly enhanced (or damped) on small scales, k ≳2 h Mpc-1 at z =0 . The spherical collapse and the halo mass function are modified in the same manner. We find that the modifications of gravity are greater for galactic or subgalactic structures. We also present a thermodynamic analysis of the nonlinear and inhomogeneous fifth-force regime where we find that the Universe is not made more inhomogeneous before zα when the fifth force dominates, and does not lead to the existence of clumped matter on extra small scales inside halos for large masses while this possibility exists for masses M ≲1 011M⊙ where the phenomenology of ultralocal models would be most different from Λ CDM .

  1. Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun

    2014-06-01

    The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.

  2. 3D weak lensing: Modified theories of gravity

    NASA Astrophysics Data System (ADS)

    Pratten, Geraint; Munshi, Dipak; Valageas, Patrick; Brax, Philippe

    2016-05-01

    Weak lensing (WL) promises to be a particularly sensitive probe of both the growth of large-scale structure as well as the fundamental relation between matter density perturbations and metric perturbations, thus providing a powerful tool with which we may constrain modified theories of gravity (MG) on cosmological scales. Future deep, wide-field WL surveys will provide an unprecedented opportunity to constrain deviations from General Relativity. Employing a 3D analysis based on the spherical Fourier-Bessel expansion, we investigate the extent to which MG theories will be constrained by a typical 3D WL survey configuration including noise from the intrinsic ellipticity distribution σɛ of source galaxies. Here, we focus on two classes of screened theories of gravity: (i) f (R ) chameleon models and (ii) environmentally dependent dilaton models. We use one-loop perturbation theory combined with halo models in order to accurately model the evolution of the matter power spectrum with redshift in these theories. Using a χ2 analysis, we show that for an all-sky spectroscopic survey, the parameter fR0 can be constrained in the range fR0<5 ×10-6(9 ×10-6) for n =1 (2 ) with a 3 σ confidence level. This can be achieved by using relatively low-order angular harmonics ℓ<100 . Higher-order harmonics ℓ>100 could provide tighter constraints but are subject to nonlinear effects, such as baryonic feedback, that must be accounted for. We also employ a Principal Component Analysis in order to study the parameter degeneracies in the MG parameters. The confusion from intrinsic ellipticity correlation and modification of the matter power spectrum at a small scale due to feedback mechanisms is briefly discussed.

  3. Numerical Simulation of cardiovascular deconditioning in different reduced gravity exposure scenarios. Parabolic flight validation.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni; Gonzalez, Daniel

    Numerical models and simulations are an emerging area of research in human physiology. As complex numerical models are available, along with high-speed computing technologies, it is possible to produce more accurate predictions of the long-term effects of reduced gravity on the human body. NELME (Numerical Emulation of Long-Term Microgravity Effects) has been developed as an electrical-like control system model of the pysiological changes that may arise when gravity changes are applied to the cardiovascular system. Validation of the model has been carried out in parabolic flights at UPC BarcelonaTech Platform. A number of parabolas of up to 8 seconds were performed at Sabadell Airport with an aerobatic single-engine CAP10B plane capable of performing such maneuvres. Heart rate, arterial pressure, and gravity data was collected and compared to the output obtained from the model in order to optimize its parameters. The model is then able to perform simulations for long-term periods of exposure to microgravity, and then the risk for a major malfunction is evaluated. Vascular resistance is known to be impaired during a long-term mission. This effects are not fully understood, and the model is capable of providing a continuous thread of simulated scenarios, while varying gravity in a nearly-continuous way. Aerobic exercise as countermeasure has been simulated as a periodic perturbation into the simulated physiological system. Results are discussed in terms of the validaty and reliability of the outcomes from the model, that have been found compatible with the available data in the literature. Different gender sensitivities to microgravity exposure are discussed. Also thermal stress along with exercise, as it happens in the case of Extravehicular activity is smulated. Results show that vascular resistance is significantly impared (p<0,05) at gravity levels less than 0,4g, when exposed for a period of time longer than 16 days. This degree of impairement is comparable with

  4. Variable modified Chaplygin gas in the holographic dark energy scenario

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Surajit; Debnath, Ujjal

    2012-07-01

    The holographic principle emerged in the context of black-holes, where it was noted that a local quantum field theory can not fully describe the black holes [1]. Some long standing debates regarding the time evolution of a system, where a black hole forms and then evaporates, played the key role in the development of the holographic principle [2,3,4]. The Chaplygin gas is characterized by an exotic equation of state p=-B/ρ. where B is a positive constant. Role of Chaplygin gas in the accelerated universe has been studied by several authors. The above mentioned equation of state has been modified to p=-B/ρ^{α}, where α lies between 0 and 1. This equation has been further modified to p=-A+B/ρ^{α}. This is called the modified Chaplygin gas. Debnath [5] introduced a variable modified Chaplygin gas by considering B as a function of scale factor a. In this work, we have considered that the universe is filled with normal matter and variable modified Chaplygin gas. Also we have considered the interaction between normal matter and variable modified Chaplygin gas in FRW universe. Then we have considered a correspondence between the holographic dark energy density and interacting variable modified Chaplygin gas energy density. Then we have reconstructed the potential of the scalar field which describes the variable modified Chaplygin cosmology References: [1] K. Enqvist, S. Hannested and M. S. Sloth, JCAP 2, 004 (2005). [2] L. Thorlocius, hep-th/0404098. [3] G. T. Hooft, gr-qc/9310026. [4] L. Susskind, J. Math. Phys. 36, 6377 (1995). [5] U. Debnath, Astrophys. Space Sci. 312, 295 (2007).

  5. Probing modified gravity via the mass-temperature relation of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Hammami, A.; Mota, D. F.

    2017-02-01

    We propose that the mass-temperature relation of galaxy clusters is a prime candidate for testing gravity theories beyond Einstein's general relativity, for modified gravity models with universal coupling between matter and the scalar field. For non-universally coupled models, we discover that the impact of modified gravity can remain hidden from the mass-temperature relation. Using non-radiative hydrodynamic cosmological simulations, we find that in modified gravity the hydrostatic mass-temperature relation varies significantly from the standard gravity relation of M ∝ T1.73. To be specific, for symmetron models with a coupling factor of β = 1 we find a lower limit to the power law as M ∝ T1.6; and for f(R) gravity we compute predictions based on the model parameters. We show that the mass-temperature relation, for screened modified gravities, is significantly different from that of standard gravity for the less massive and colder galaxy clusters, while being indistinguishable from Einstein's gravity for massive, hot galaxy clusters. We further investigate the mass-temperature relation for other mass estimates than the hydrostatic mass estimate and discover that the gas mass-temperature results show even more significant deviations from Einstein's gravity than the hydrostatic mass-temperature.

  6. Black string and Goedel-type solutions of Chern-Simons modified gravity

    SciTech Connect

    Ahmedov, Haji; Aliev, Alikram N.

    2010-07-15

    We show that Chern-Simons (CS) modified gravity with a prescribed CS scalar field admits rotating black hole/string/> solutions with cylindrical topology of the horizon, and we present two intriguing physical examples of such configurations. First, we show that the Banados-Teitelboim-Zanelli stationary black string, which is obtained by adding a spacelike flat dimension to the Banados-Teitelboim-Zanelli black hole metric of three-dimensional gravity, solves the field equations of CS modified gravity with a specific source term irrespective of the choice of CS scalar field. Next, we consider the Lemos solution for a rotating, straight black string in general relativity and show that, for the CS scalar field being a function of the radial coordinate alone, this solution persists in CS modified gravity. We also present a new nontrivial (non-general relativity) Goedel-type solution to the vacuum field equations of CS modified gravity.

  7. Bi-scalar modified gravity and cosmology with conformal invariance

    SciTech Connect

    Saridakis, Emmanuel N.; Tsoukalas, Minas E-mail: minasts@central.ntua.gr

    2016-04-01

    We investigate the cosmological applications of a bi-scalar modified gravity that exhibits partial conformal invariance, which could become full conformal invariance in the absence of the usual Einstein-Hilbert term and introducing additionally either the Weyl derivative or properly rescaled fields. Such a theory is constructed by considering the action of a non-minimally conformally-coupled scalar field, and adding a second scalar allowing for a nonminimal derivative coupling with the Einstein tensor and the energy-momentum tensor of the first field. At a cosmological framework we obtain an effective dark-energy sector constituted from both scalars. In the absence of an explicit matter sector we extract analytical solutions, which for some parameter regions correspond to an effective matter era and/or to an effective radiation era, thus the two scalars give rise to 'mimetic dark matter' or to 'dark radiation' respectively. In the case where an explicit matter sector is included we obtain a cosmological evolution in agreement with observations, that is a transition from matter to dark energy era, with the onset of cosmic acceleration. Furthermore, for particular parameter regions, the effective dark-energy equation of state can transit to the phantom regime at late times. These behaviors reveal the capabilities of the theory, since they arise purely from the novel, bi-scalar construction and the involved couplings between the two fields.

  8. A marked correlation function for constraining modified gravity models

    NASA Astrophysics Data System (ADS)

    White, Martin

    2016-11-01

    Future large scale structure surveys will provide increasingly tight constraints on our cosmological model. These surveys will report results on the distance scale and growth rate of perturbations through measurements of Baryon Acoustic Oscillations and Redshift-Space Distortions. It is interesting to ask: what further analyses should become routine, so as to test as-yet-unknown models of cosmic acceleration? Models which aim to explain the accelerated expansion rate of the Universe by modifications to General Relativity often invoke screening mechanisms which can imprint a non-standard density dependence on their predictions. This suggests density-dependent clustering as a `generic' constraint. This paper argues that a density-marked correlation function provides a density-dependent statistic which is easy to compute and report and requires minimal additional infrastructure beyond what is routinely available to such survey analyses. We give one realization of this idea and study it using low order perturbation theory. We encourage groups developing modified gravity theories to see whether such statistics provide discriminatory power for their models.

  9. Gauss-Bonnet modified gravity models with bouncing behavior

    NASA Astrophysics Data System (ADS)

    Escofet, Anna; Elizalde, Emilio

    2016-06-01

    The following issue is addressed: How the addition of a Gauss-Bonnet term (generically coming from most fundamental theories, as string and M theories), to a viable model, can change the specific properties, and even the physical nature, of the corresponding cosmological solutions? Specifically, brand new original dark energy models are obtained in this way with quite interesting properties, which exhibit, in a unified fashion, the three distinguished possible cosmological phases corresponding to phantom matter, quintessence and ordinary matter, respectively. A model, in which the equation of state (EoS) parameter, w, is a function of time, is seen to lead either to a singularity of the Big Rip kind or to a bouncing solution which evolves into a de Sitter universe with w = -1. Moreover, new Gauss-Bonnet modified gravity models with bouncing behavior in the early stages of the universe evolution are obtained and tested for the validity and stability of the corresponding solutions. They allow for a remarkably natural, unified description of a bouncing behavior at early times and accelerated expansion at present.

  10. Entropy corrected holographic dark energy models in modified gravity

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Azhar, Nadeem; Rani, Shamaila

    We consider the power law and the entropy corrected holographic dark energy (HDE) models with Hubble horizon in the dynamical Chern-Simons modified gravity. We explore various cosmological parameters and planes in this framework. The Hubble parameter lies within the consistent range at the present and later epoch for both entropy corrected models. The deceleration parameter explains the accelerated expansion of the universe. The equation of state (EoS) parameter corresponds to quintessence and cold dark matter (ΛCDM) limit. The ωΛ‑ωΛ‧ approaches to ΛCDM limit and freezing region in both entropy corrected models. The statefinder parameters are consistent with ΛCDM limit and dark energy (DE) models. The generalized second law of thermodynamics remain valid in all cases of interacting parameter. It is interesting to mention here that our results of Hubble, EoS parameter and ωΛ‑ωΛ‧ plane show consistency with the present observations like Planck, WP, BAO, H0, SNLS and nine-year WMAP.

  11. Modified f( R, T) gravity theory and scalar field cosmology

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Singh, C. P.

    2015-03-01

    In this paper, we explore the behaviors of scalar field in modified f( R, T) gravity theory within the framework of a flat Friedmann-Robertson-Walker cosmological model. The universe is assumed to be filled with two non-interacting matter sources, scalar field (normal or phantom) with scalar potential and matter contribution due to f( R, T) action. We first explore a model where the potential is a constant, and the universe evolves as a de Sitter type. This model is compatible with phantom scalar field only which gives fine tuning with the recent observations. The model exhibits a wide variety of early time physical phenomena that eventually behaves like a cosmological constant at late times. The model shows transition from decelerated to accelerated expansion of the universe. We also explore a model where the scalar field potential and the scale factor evolve exponentially as a scalar field. This model is compatible with normal scalar field only and describes transition from inflationary to the decelerated phase at early times and quintessence to phantom phase at late times. We constraint our results with the recent observational data and find that some values of parameters are consistent with SNe Ia and H( z)+SNe Ia data to describe accelerated expansion only whereas some one give decelerated and accelerated expansions with H( z), WMAP7 and WMAP7+BAO+ H( z) observational data.

  12. Viability of the matter bounce scenario in F(T) gravity and Loop Quantum Cosmology for general potentials

    SciTech Connect

    Haro, Jaume; Amorós, Jaume E-mail: jaume.amoros@upc.edu

    2014-12-01

    We consider the matter bounce scenario in F(T) gravity and Loop Quantum Cosmology (LQC) for phenomenological potentials that at early times provide a nearly matter dominated Universe in the contracting phase, having a reheating mechanism in the expanding or contracting phase, i.e., being able to release the energy of the scalar field creating particles that thermalize in order to match with the hot Friedmann Universe, and finally at late times leading to the current cosmic acceleration. For these potentials, numerically solving the dynamical perturbation equations we have seen that, for the particular F(T) model that we will name teleparallel version of LQC, and whose modified Friedmann equation coincides with the corresponding one in holonomy corrected LQC when one deals with the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry, the corresponding equations obtained from the well-know perturbed equations in F(T) gravity lead to theoretical results that fit well with current observational data. More precisely, in this teleparallel version of LQC there is a set of solutions which leads to theoretical results that match correctly with last BICEP2 data, and there is another set whose theoretical results fit well with Planck's experimental data. On the other hand, in the standard holonomy corrected LQC, using the perturbed equations obtained replacing the Ashtekar connection by a suitable sinus function and inserting some counter-terms in order to preserve the algebra of constrains, the theoretical value of the tensor/scalar ratio is smaller than in the teleparallel version, which means that there is always a set of solutions that matches with Planck's data, but for some potentials BICEP2 experimental results disfavours holonomy corrected LQC.

  13. Modified coupling procedure for the Poincare gauge theory of gravity

    SciTech Connect

    Kazmierczak, Marcin

    2009-06-15

    The minimal coupling procedure, which is employed in standard Yang-Mills theories, appears to be ambiguous in the case of gravity. We propose a slight modification of this procedure, which removes the ambiguity. Our modification justifies some earlier results concerning the consequences of the Poincare gauge theory of gravity. In particular, the predictions of the Einstein-Cartan theory with fermionic matter are rendered unique.

  14. Simultaneous effect of modified gravity and primordial non-Gaussianity in large scale structure observations

    SciTech Connect

    Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein E-mail: khosravi@mail.ipm.ir E-mail: hosseinmoshafi@iasbs.ac.ir

    2014-01-01

    In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f{sub NL} in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology.

  15. Anisotropic stress and stability in modified gravity models

    SciTech Connect

    Saltas, Ippocratis D.; Kunz, Martin

    2011-03-15

    The existence of anisotropic stress of a purely geometrical origin seems to be a characteristic of higher order gravity models, and has been suggested as a probe to test these models observationally, for example, in weak lensing experiments. In this paper, we seek to find a class of higher order gravity models of f(R,G) type that would give us a zero anisotropic stress and study the consequences for the viability of the actual model. For the special case of a de Sitter background, we identify a subclass of models with the desired property. We also find a direct link between anisotropic stress and the stability of the model as well as the presence of extra degrees of freedom, which seems to be a general feature of higher order gravity models. Particularly, setting the anisotropic stress equal to zero for a de Sitter background leads to a singularity that makes it impossible to reach the de Sitter evolution.

  16. Regularized cosmological power spectrum and correlation function in modified gravity models

    NASA Astrophysics Data System (ADS)

    Taruya, Atsushi; Nishimichi, Takahiro; Bernardeau, Francis; Hiramatsu, Takashi; Koyama, Kazuya

    2014-12-01

    Based on the multipoint propagator expansion, we present resummed perturbative calculations for cosmological power spectra and correlation functions in the context of modified gravity. In a wide class of modified gravity models that have a screening mechanism to recover general relativity (GR) on small scales, we apply the eikonal approximation to derive the governing equation for resummed propagator that partly includes the nonperturbative effect in the high-k limit. The resultant propagator in the high-k limit contains the new corrections arising from the screening mechanism as well as the standard exponential damping. We explicitly derive the expression for new high-k contributions in specific modified gravity models, and find that in the case of f (R ) gravity for a currently constrained model parameter, the corrections are basically of the subleading order and can be neglected. Thus, in f (R ) gravity, similarly to the GR case, we can analytically construct the regularized propagator that reproduces both the resummed high-k behavior and the low-k results computed with standard perturbation theory, consistently taking account of the nonlinear modification of gravity valid at large scales. With the regularized multipoint propagators, we give predictions for power spectrum and correlation function at one-loop order, and compare those with N -body simulations in f (R ) gravity model. As an important application, we also discuss the redshift-space distortions and compute the anisotropic power spectra and correlation functions.

  17. The dynamics of the local group as a probe of Dark Energy and Modified Gravity

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Mota, David F.; Winther, Hans A.

    2017-01-01

    In this work we study the dynamics of the Local Group (LG) within the context of cosmological models beyond General Relativity (GR). Using observable kinematic quantities to identify candidate pairs we build up samples of simulated LG-like objects drawing from f(R), symmetron, DGP and quintessence N-body simulations together with their ΛCDM counterparts featuring the same initial random phase realisations. The variables and intervals used to define LG-like objects are referred to as Local Group model; different models are used throughout this work and adapted to study their dynamical and kinematic properties. The aim is to determine how well the observed LG-dynamics can be reproduced within cosmological theories beyond GR, We compute kinematic properties of samples drawn from alternative theories and ΛCDM and compare them to actual observations of the LG mass, velocity and position. As a consequence of the additional pull, pairwise tangential and radial velocities are enhanced in modified gravity and coupled dark energy with respect to ΛCDM inducing significant changes to the total angular momentum and energy of the LG. For example, in models such as f(R) and the symmetron this increase can be as large as 60%, peaking well outside of the 95% confidence region allowed by the data. This shows how simple considerations about the LG dynamics can lead to clear small-scale observational signatures for alternative scenarios, without the need of expensive high-resolution simulations.

  18. Cylindrically symmetric cosmological model of the universe in modified gravity

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Vadrevu, Samhita

    2017-02-01

    In this paper, we have constructed the cosmological models of the universe in a cylindrically symmetric space time in two classes of f(R,T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011). We have discussed two cases: one in the linear form and the other in the quadratic form of R. The matter is considered to be in the form of perfect fluid. It is observed that in the first case, the pressure and energy density remain the same, which reduces to a Zeldovich fluid. In the second case we have studied the quadratic function of f(R,T) gravity in the form f(R)=λ(R+R2) and f(T)=λ T. In the second case the pressure is in the negative domain and the energy density is in the positive domain, which confirms that the equation of state parameter is negative. The physical properties of the constructed models are studied.

  19. Particlelike solutions in modified gravity: The Higgs monopole

    NASA Astrophysics Data System (ADS)

    Schlögel, Sandrine; Rinaldi, Massimiliano; Staelens, François; Füzfa, André

    2014-08-01

    Higgs inflation has received remarkable attention in the last few years due to its simplicity and predictive power. The key point of this model is the nonminimal coupling to gravity in unitary gauge. As such, this theory is in fact a scalar-tensor modification of gravity that needs to be studied also below the energy scales of inflation. Motivated by this goal, we study in great analytical and numerical detail the static and spherically symmetric solutions of the equations of motion in the presence of standard baryonic matter, called "Higgs monopoles" and presented in Füzfa et al. [Phys. Rev. Lett. 111, 12 (2013)]. These particlelike solutions may arise naturally in tensor-scalar gravity with Mexican hat potential and are the only globally regular asymptotically flat solutions with finite classical energy. In the case when the parameters of the potential are taken to be the ones of the standard model, we find that the deviations from general relativity are extremely small, especially for bodies of astrophysical size and density. This allows us to derive a simplified description of the monopole, for which the metric inside the spherical matter distribution can be approximated by the standard metric of general relativity. We study how the properties of these monopoles depend on the strength of the nonminimal coupling to gravity and on the baryonic mass and compactness. An important and original result is the existence of a mechanism of resonant amplification of the Higgs field inside the monopole that comes into play for large nonminimal coupling. We show that this mechanism might degenerate into divergences of the Higgs field that reveal the existence of forbidden combinations of radius and baryonic energy density.

  20. Self-accelerating universe in modified gravity with dynamical torsion

    NASA Astrophysics Data System (ADS)

    Nikiforova, V.; Randjbar-Daemi, S.; Rubakov, V.

    2017-01-01

    We consider a model belonging to the class of gravities with dynamical torsion. The model is free of ghosts and gradient instabilities about Minkowski and torsionless Einstein backgrounds. We find that at zero cosmological constant, the model admits a self-accelerating solution with a non-Riemannian connection. Small value of the effective cosmological constant is obtained at the expense of the hierarchy between the dimensionless couplings.

  1. Constraints on decaying early modified gravity from cosmological observations

    NASA Astrophysics Data System (ADS)

    Lima, Nelson A.; Smer-Barreto, Vanessa; Lombriser, Lucas

    2016-10-01

    Most of the information on our cosmos stems from either late-time observations or the imprint of early-time inhomogeneities on the cosmic microwave background. We explore to what extent early modifications of gravity, which become significant after recombination but then decay toward the present, can be constrained by current cosmological observations. For the evolution of the gravitational modification, we adopt the decaying mode of a hybrid metric-Palatini f (R ) gravity model which is designed to reproduce the standard cosmological background expansion history and due to the decay of the modification is naturally compatible with Solar System tests. We embed the model in the effective field theory description of Horndeski scalar-tensor gravity with an early-time decoupling of the gravitational modification. Since the quasistatic approximation for the perturbations in the model breaks down at high redshifts, where modifications remain relevant, we introduce a computationally efficient correction to describe the evolution of the scalar field fluctuation in this regime. We compare the decaying early-time modification against geometric probes and recent Planck measurements and find no evidence for such effects in the observations. Current data constrains the scalar field value at |fR(z =zon)|≲10-2 for modifications introduced at redshifts zon˜(500 - 1000 ) with the present-day value |fR 0|≲10-8. Finally, we comment on constraints that will be achievable with future 21-cm surveys and gravitational wave experiments.

  2. Skeletogenesis in sea urchin larvae under modified gravity conditions.

    PubMed

    Marthy, H J; Gasset, G; Tixador, R; Eche, B; Schatt, P; Dessommes, A; Marthy, U; Bacchieri, R

    1998-01-01

    From many points of view, skeletogenesis in sea urchins has been well described. Based on this scientific background and considering practical aspects of sea urchin development (i.e. availability of material, size of larvae, etc.), we wanted to know whether orderly skeletogenesis requires the presence of gravity. The objective has been approached by three experiments successfully performed under genuine microgravity conditions (in the STS-65 IML-2 mission of 1994; in the Photon-10 IBIS mission of 1995 and in the STS-76 S/MM-03 mission of 1996). Larvae of the sea urchin Sphaerechinus granularis were allowed to develop in microgravity conditions for several days from blastula stage onwards (onset of skeletogenesis). At the end of the missions, the recovered skeletal structures were studied with respect to their mineral composition, architecture and size. Live larvae were also recovered for post-flight culture. The results obtained clearly show that the process of mineralisation is independent of gravity: that is, the skeletogenic cells differentiate correctly in microgravity. However, abnormal skeleton architectures were encountered, particularly in the IML-2 mission, indicating that the process of positioning of the skeletogenic cells may be affected, directly or indirectly, by environmental factors, including gravity. Larvae exposed to microgravity from blastula to prism/early pluteus stage for about 2 weeks (IBIS mission), developed on the ground over the next 2 months into normal metamorphosing individuals.

  3. Modified teleparallel theories of gravity: Gauss-Bonnet and trace extensions.

    PubMed

    Bahamonde, Sebastian; Böhmer, Christian G

    2016-01-01

    We investigate modified theories of gravity in the context of teleparallel geometries with possible Gauss-Bonnet contributions. The possible coupling of gravity with the trace of the energy-momentum tensor is also taken into account. This is motivated by the various different theories formulated in the teleparallel approach and the metric approach without discussing the exact relationship between them. Our formulation clarifies the connections between different well-known theories. For instance, we are able to formulate the correct teleparallel equivalent of Gauss-Bonnet modified general relativity, amongst other results. Finally, we are able to identify modified gravity models which have not been studied in the past. These appear naturally within our setup and would make a interesting starting point for further studies.

  4. Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion

    SciTech Connect

    Cognola, G.; Sebastiani, L.; Zerbini, S.; Elizalde, E.; Odintsov, S. D.

    2008-02-15

    A general approach to viable modified f(R) gravity is developed in both the Jordan and the Einstein frames. A class of exponential, realistic modified gravities is introduced and investigated with care. Special focus is made on step-class models, most promising from the phenomenological viewpoint and which provide a natural way to classify all viable modified gravities. One- and two-step models are explicitly considered, but the analysis is extensible to N-step models. Both inflation in the early universe and the onset of recent accelerated expansion arise in these models in a natural, unified way. Moreover, it is demonstrated that models in this category easily pass all local tests, including stability of spherical body solution, nonviolation of Newton's law, and generation of a very heavy positive mass for the additional scalar degree of freedom.

  5. Cosmic Tsunamis in Modified Gravity: Disruption of Screening Mechanisms from Scalar Waves

    NASA Astrophysics Data System (ADS)

    Hagala, R.; Llinares, C.; Mota, D. F.

    2017-03-01

    Extending general relativity by adding extra degrees of freedom is a popular approach for explaining the accelerated expansion of the Universe and to build high energy completions of the theory of gravity. The presence of such new degrees of freedom is, however, tightly constrained from several observations and experiments that aim to test general relativity in a wide range of scales. The viability of a given modified theory of gravity, therefore, strongly depends on the existence of a screening mechanism that suppresses the extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of freedom can significantly impact the efficiency of some screening mechanisms, thereby threatening the viability of these modified gravity theories. Specifically, we show that the waves produced in the symmetron model can increase the amplitude of the fifth force and the parametrized post Newtonian parameters by several orders of magnitude.

  6. Phenomenological Model of Multiphase Cosmological Scenario in Theory of Induced Gravity

    NASA Astrophysics Data System (ADS)

    Zaripov, F. Sh.

    2017-03-01

    Equations that describe the theory have solutions that can both match with the solutions of the standard theory of gravity as well as can differ from it. This is due to the fact that the fundamental constants of the theory, such as gravitational and cosmological, can evolve over time and also depend on the coordinates. Thus, in a rather general case the theory describes the two systems (stages): Einstein and evolving. This process is similar to the phenomenon of phase transition, where different phases (Einstein gravity system, but with different constants) transit into each other. This article is a continuation of the author research with application to the cosmological model.

  7. Bending of Light in Modified Gravity at Large Distances

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Kazanas, Demosthenes

    2012-01-01

    We discuss the bending of light in a recent model for gravity at large distances containing a Rindler type acceleration proposed by Grumiller. We consider the static, spherically symmetric metric with cosmological constant and Rindler-like term 2ar presented in this model, and we use the procedure by Rindler and Ishak. to obtain the bending angle of light in this metric. Earlier work on light bending in this model by Carloni, Grumiller, and Preis, using the method normally employed for asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric) of a bending angle that increases with the distance of closest approach r(sub 0) of the light ray from the centrally concentrated spherically symmetric matter distribution. However, when using the alternative approach for light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a small correction to the general relativistic result that is inversely proportional to r(sub 0). This will in turn affect the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of the linear term 2ar in the metric

  8. Star formation triggered by galaxy interactions in modified gravity

    NASA Astrophysics Data System (ADS)

    Renaud, Florent; Famaey, Benoit; Kroupa, Pavel

    2016-12-01

    Together with interstellar turbulence, gravitation is one key player in star formation. It acts both at galactic scales in the assembly of gas into dense clouds and inside those structures for their collapse and the formation of pre-stellar cores. To understand to what extent the large-scale dynamics govern the star formation activity of galaxies, we present hydrodynamical simulations in which we generalize the behaviour of gravity to make it differ from Newtonian dynamics in the low-acceleration regime. We focus on the extreme cases of interacting galaxies, and compare the evolution of galaxy pairs in the dark matter paradigm to that in the Milgromian dynamics (MOND) framework. Following up on the seminal work by Tiret & Combes, this paper documents the first simulations of galaxy encounters in MOND with a detailed Eulerian hydrodynamical treatment of baryonic physics, including star formation and stellar feedback. We show that similar morphologies of the interacting systems can be produced by both the dark matter and MOND formalisms, but require a much slower orbital velocity in the MOND case. Furthermore, we find that the star formation activity and history are significantly more extended in space and time in MOND interactions, in particular in the tidal debris. Such differences could be used as observational diagnostics and make interacting galaxies prime objects in the study of the nature of gravitation at galactic scales.

  9. Bending of light in modified gravity at large distances

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Kazanas, Demosthenes

    2012-04-01

    We discuss the bending of light in a recent model for gravity at large distances containing a Rindler-type acceleration proposed by Grumiller [Phys. Rev. Lett. 105, 211303 (2010)10.1103/PhysRevLett.105.211303PRLTAO0031-9007]. We consider the static, spherically symmetric metric with cosmological constant Λ and Rindler-like term 2ar presented in this model, and we use the procedure by Rindler and Ishak [W. Rindler and M. Ishak, Phys. Rev. DPRVDAQ1550-7998 76, 043006 (2007).10.1103/PhysRevD.76.043006] to obtain the bending angle of light in this metric. Earlier work on light bending in this model by Carloni, Grumiller, and Preis [Phys. Rev. DPRVDAQ1550-7998 83, 124024 (2011)10.1103/PhysRevD.83.124024], using the method normally employed for asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric) of a bending angle that increases with the distance of closest approach r0 of the light ray from the centrally concentrated spherically symmetric matter distribution. However, when using the alternative approach for light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a small correction to the general relativistic result that is inversely proportional to r0. This will in turn affect the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of the linear term 2ar in the metric.

  10. On the stability conditions for theories of modified gravity in the presence of matter fields

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Frusciante, Noemi; Papadomanolakis, Georgios

    2017-03-01

    We present a thorough stability analysis of modified gravity theories in the presence of matter fields. We use the Effective Field Theory framework for Dark Energy and Modified Gravity to retain a general approach for the gravity sector and a Sorkin-Schutz action for the matter one. Then, we work out the proper viability conditions to guarantee in the scalar sector the absence of ghosts, gradient and tachyonic instabilities. The absence of ghosts can be achieved by demanding a positive kinetic matrix, while the lack of a gradient instability is ensured by imposing a positive speed of propagation for all the scalar modes. In case of tachyonic instability, the mass eigenvalues have been studied and we work out the appropriate expressions. For the latter, an instability occurs only when the negative mass eigenvalue is much larger, in absolute value, than the Hubble parameter. We discuss the results for the minimally coupled quintessence model showing for a particular set of parameters two typical behaviours which in turn lead to a stable and an unstable configuration. Moreover, we find that the speeds of propagation of the scalar modes strongly depend on matter densities, for the beyond Horndeski theories. Our findings can be directly employed when testing modified gravity theories as they allow to identify the correct viability space.

  11. TOPOLOGY OF A LARGE-SCALE STRUCTURE AS A TEST OF MODIFIED GRAVITY

    SciTech Connect

    Wang Xin; Chen Xuelei; Park, Changbom

    2012-03-01

    The genus of the isodensity contours is a robust measure of the topology of a large-scale structure, and it is relatively insensitive to nonlinear gravitational evolution, galaxy bias, and redshift-space distortion. We show that the growth of density fluctuations is scale dependent even in the linear regime in some modified gravity theories, which opens a new possibility of testing the theories observationally. We propose to use the genus of the isodensity contours, an intrinsic measure of the topology of the large-scale structure, as a statistic to be used in such tests. In Einstein's general theory of relativity, density fluctuations grow at the same rate on all scales in the linear regime, and the genus per comoving volume is almost conserved as structures grow homologously, so we expect that the genus-smoothing-scale relation is basically time independent. However, in some modified gravity models where structures grow with different rates on different scales, the genus-smoothing-scale relation should change over time. This can be used to test the gravity models with large-scale structure observations. We study the cases of the f(R) theory, DGP braneworld theory as well as the parameterized post-Friedmann models. We also forecast how the modified gravity models can be constrained with optical/IR or redshifted 21 cm radio surveys in the near future.

  12. Tensor-vector-scalar-modified gravity: from small scale to cosmology.

    PubMed

    Bekenstein, Jacob D

    2011-12-28

    The impressive success of the standard cosmological model has suggested to many that its ingredients are all that one needs to explain galaxies and their systems. I summarize a number of known problems with this programme. They might signal the failure of standard gravity theory on galaxy scales. The requisite hints as to the alternative gravity theory may lie with the modified Newtonian dynamics (MOND) paradigm, which has proved to be an effective summary of galaxy phenomenology. A simple nonlinear modified gravity theory does justice to MOND at the non-relativistic level, but cannot be consistently promoted to relativistic status. The obstacles were first side-stepped with the formulation of tensor-vector-scalar theory (TeVeS), a covariant-modified gravity theory. I review its structure, its MOND and Newtonian limits, and its performance in the face of galaxy phenomenology. I also summarize features of TeVeS cosmology and describe the confrontation with data from strong and weak gravitational lensing.

  13. Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy

    SciTech Connect

    Huterer, Dragan; Linder, Eric V.

    2007-01-31

    The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parameterize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend the reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25percent relative to when general relativity is assumed, and determining the growth index to 8percent. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.

  14. Signatures of modified gravity on the 21 cm power spectrum at reionisation

    SciTech Connect

    Brax, Philippe

    2013-01-01

    Scalar modifications of gravity have an impact on the growth of structure. Baryon and Cold Dark Matter (CDM) perturbations grow anomalously for scales within the Compton wavelength of the scalar field. In the late time Universe when reionisation occurs, the spectrum of the 21 cm brightness temperature is thus affected. We study this effect for chameleon-f(R) models, dilatons and symmetrons. Although the f(R) models are more tightly constrained by solar system bounds, and effects on dilaton models are negligible, we find that symmetrons where the phase transition occurs before z{sub *} ∼ 12 could be detectable for a scalar field range as low as 5kpc. For all these models, the detection prospects of modified gravity effects are higher when considering modes parallel to the line of sight where very small scales can be probed. The study of the 21 cm spectrum thus offers a complementary approach to testing modified gravity with large scale structure surveys. Short scales, which would be highly non-linear in the very late time Universe when structure forms and where modified gravity effects are screened, appear in the linear spectrum of 21 cm physics, hence deviating from General Relativity in a maximal way.

  15. Modified teleparallel gravity with higher-derivative torsion terms

    NASA Astrophysics Data System (ADS)

    Otalora, Giovanni; Saridakis, Emmanuel N.

    2016-10-01

    We construct F (T ,(∇T) 2,□T ) gravitational modifications, which are novel classes of modified theories arising from higher-derivative torsional terms in the action and are different than their curvature analogue. Applying them in a cosmological framework, we obtain an effective dark energy sector comprised of the novel torsional contributions. We perform a detailed dynamical analysis for two specific examples, extracting the stable late-time solutions and calculating the corresponding observables. We show that the thermal history of the Universe can be reproduced, and it can result in a dark-energy-dominated, accelerating universe, where the dark-energy equation-of-state parameter lies in the quintessence regime, or may exhibit the phantom-divide crossing during the cosmological evolution. Finally, the scale factor behaves asymptotically, either as a power law or as an exponential, in agreement with observations.

  16. Looking for empty topological wormhole spacetimes in F(R)-modified gravity

    NASA Astrophysics Data System (ADS)

    Di Criscienzo, R.; Myrzakulov, R.; Sebastiani, L.

    2013-12-01

    Much attention has been recently devoted to modified theories of gravity, the simplest models of which overcome General Relativity simply by replacing R with F(R) in the Einstein-Hilbert action. Unfortunately, such models typically lack most of the beautiful solutions discovered in Einstein’s gravity. Nonetheless, in F(R) gravity, it has been possible to get at least few black holes, but still we do not know any empty wormhole-like spacetime solution. This paper aims to explain why it is so hard to get such solutions (given that they exist!). Few solutions are derived in the simplest cases, while only an implicit form has been obtained in the non-trivial case.

  17. Modified gravity: the CMB, weak lensing and general parameterisations

    SciTech Connect

    Thomas, Shaun A.; Appleby, Stephen A.; Weller, Jochen E-mail: stephen.appleby@ph.tum.de

    2011-03-01

    We examine general physical parameterisations for viable gravitational models in the f(R) framework. This is related to the mass of an additional scalar field, called the scalaron, that is introduced by the theories. Using a simple parameterisation for the scalaron mass M(a) we show there is an exact correspondence between the model and popular parameterisations of the modified Poisson equation μ(a,k) and the ratio of the Newtonian potentials η(a,k). We argue that although f(R) models are well described by the general [μ(a,k),η(a,k)] parameterization, specific functional forms of μ,η in the literature do not accurately represent f(R) behaviour, specifically at low redshift. We subsequently construct an improved description for the scalaron mass (and therefore μ(a,k) and η(a,k)) which captures their essential features and has benefits derived from a more physical origin. We study the scalaron's observational signatures and show the modification to the background Friedmann equation and CMB power spectrum to be small. We also investigate its effects in the linear and non linear matter power spectrum-where the signatures are evident-thus giving particular importance to weak lensing as a probe of these models. Using this new form, we demonstrate how the next generation Euclid survey will constrain these theories and its complementarity to current solar system tests. In the most optimistic case Euclid, together with a Planck prior, can constrain a fiducial scalaron mass M{sub 0} = 9.4 × 10{sup −30}eV at the ∼ 20% level. However, the decay rate of the scalaron mass, with fiducial value ν = 1.5, can be constrained to ∼ 3% uncertainty.

  18. Speeding up N-body simulations of modified gravity: chameleon screening models

    NASA Astrophysics Data System (ADS)

    Bose, Sownak; Li, Baojiu; Barreira, Alexandre; He, Jian-hua; Hellwing, Wojciech A.; Koyama, Kazuya; Llinares, Claudio; Zhao, Gong-Bo

    2017-02-01

    We describe and demonstrate the potential of a new and very efficient method for simulating certain classes of modified gravity theories, such as the widely studied f(R) gravity models. High resolution simulations for such models are currently very slow due to the highly nonlinear partial differential equation that needs to be solved exactly to predict the modified gravitational force. This nonlinearity is partly inherent, but is also exacerbated by the specific numerical algorithm used, which employs a variable redefinition to prevent numerical instabilities. The standard Newton-Gauss-Seidel iterative method used to tackle this problem has a poor convergence rate. Our new method not only avoids this, but also allows the discretised equation to be written in a form that is analytically solvable. We show that this new method greatly improves the performance and efficiency of f(R) simulations. For example, a test simulation with 5123 particles in a box of size 512 Mpc/h is now 5 times faster than before, while a Millennium-resolution simulation for f(R) gravity is estimated to be more than 20 times faster than with the old method. Our new implementation will be particularly useful for running very high resolution, large-sized simulations which, to date, are only possible for the standard model, and also makes it feasible to run large numbers of lower resolution simulations for covariance analyses. We hope that the method will bring us to a new era for precision cosmological tests of gravity.

  19. Astrophysical tests of modified gravity: the morphology and kinematics of dwarf galaxies

    SciTech Connect

    Vikram, Vinu; Cabré, Anna; Jain, Bhuvnesh; VanderPlas, J.T. E-mail: annanusca@gmail.com E-mail: jakevdp@cs.washington.edu

    2013-08-01

    This paper is the third in a series on tests of gravity using observations of stars and nearby dwarf galaxies. We carry out four distinct tests using published data on the kinematics and morphology of dwarf galaxies, motivated by the theoretical work of Hui et al. (2009) and Jain and Vanderplas (2011). In a wide class of gravity theories a scalar field couples to matter and provides an attractive fifth force. Due to their different self-gravity, stars and gas may respond differently to the scalar force leading to several observable deviations from standard gravity. HI gas, red giant stars and main sequence stars can be displaced relative to each other, and the stellar disk can display warps or asymmetric rotation curves aligned with external potential gradients. To distinguish the effects of modified gravity from standard astrophysical phenomena, we use a control sample of galaxies that are expected to be screened from the fifth force. In all cases we find no significant deviation from the null hypothesis of general relativity. The limits obtained from dwarf galaxies are not yet competitive with the limits from cepheids obtained in our first paper, but can be improved to probe regions of parameter space that are inaccessible using other tests. We discuss how our methodology can be applied to new radio and optical observations of nearby galaxies.

  20. What is modified gravity and how to differentiate it from particle dark matter?

    NASA Astrophysics Data System (ADS)

    Calmet, Xavier; Kuntz, Iberê

    2017-02-01

    An obvious criterion to classify theories of modified gravity is to identify their gravitational degrees of freedom and their coupling to the metric and the matter sector. Using this simple idea, we show that any theory which depends on the curvature invariants is equivalent to general relativity in the presence of new fields that are gravitationally coupled to the energy-momentum tensor. We show that they can be shifted into a new energy-momentum tensor. There is no a priori reason to identify these new fields as gravitational degrees of freedom or matter fields. This leads to an equivalence between dark matter particles gravitationally coupled to the standard model fields and modified gravity theories designed to account for the dark matter phenomenon. Due to this ambiguity, it is impossible to differentiate experimentally between these theories and any attempt of doing so should be classified as a mere interpretation of the same phenomenon.

  1. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    PubMed Central

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-01-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank. PMID:26350761

  2. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank.

  3. Speeding up N-body simulations of modified gravity: Vainshtein screening models

    SciTech Connect

    Barreira, Alexandre; Bose, Sownak; Li, Baojiu E-mail: sownak.bose@durham.ac.uk

    2015-12-01

    We introduce and demonstrate the power of a method to speed up current iterative techniques for N-body modified gravity simulations. Our method is based on the observation that the accuracy of the final result is not compromised if the calculation of the fifth force becomes less accurate, but substantially faster, in high-density regions where it is relatively weak due to screening. We focus on the nDGP model which employs Vainshtein screening, and test our method by running AMR simulations in which the fifth force on the finer levels of the mesh (high density) is not obtained iteratively, but instead interpolated from coarser levels. The calculation of the standard gravity component of the force still employs the full AMR structure. We show that the impact this has on the matter power spectrum is below 1% for k < 5h/Mpc at 0z = , and even smaller at higher redshift. The impact on halo properties is also small (∼< 3% for abundance, profiles, mass; and ∼< 0.05% for positions and velocities). The method can boost the performance of modified gravity simulations by more than a factor of 10. This allows them to run on timescales similar to GR simulations and to push them to resolution levels that were previously hard to achieve.

  4. Modeling gravity-driven fingering in rough-walled fractures using modified percolation theory

    SciTech Connect

    Glass, R.J.

    1992-12-31

    Pore scale invasion percolation theory is modified for imbibition of.wetting fluids into fractures. The effects of gravity, local aperture field geometry, and local in-plane air/water interfacial curvatureare included in the calculation of aperture filling potential which controls wetted structure growth within the fracture. The inclusion of gravity yields fingers oriented in the direction of the gravitational gradient. These fingers widen and tend to meander and branch more as the gravitational gradient decreases. In-plane interfacial curvature also greatly affects the wetted structure in both horizontal and nonhorizontal fractures causing the formation of macroscopic wetting fronts. The modified percolation model is used to simulate imbibition into an analogue rough-walled fracture where both fingering and horizontal imbibition experiments were previously conducted. Comparison of numerical and experimental results showed reasonably good agreement. This process oriented physical and numerical modeling is-a necessary step toward including gravity-driven fingering in models of flow and transport through unsaturated, fractured rock.

  5. Imprint of modified Einstein’s gravity on white dwarfs: Unifying Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Das, Upasana; Mukhopadhyay, Banibrata

    2015-11-01

    We establish the importance of modified Einstein’s gravity (MG) in white dwarfs (WDs) for the first time in the literature. We show that MG leads to significantly sub- and super-Chandrasekhar limiting mass WDs, depending on a single model parameter. However, conventional WDs on approaching Chandrasekhar’s limit are expected to trigger Type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe. Nevertheless, observations of several peculiar, under- and over-luminous SNeIa argue for the limiting mass widely different from Chandrasekhar’s limit. Explosions of MG induced sub- and super-Chandrasekhar limiting mass WDs explain under- and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes. Our discovery questions both the global validity of Einstein’s gravity and the uniqueness of Chandrasekhar’s limit.

  6. Consistent modified gravity analysis of anisotropic galaxy clustering using BOSS DR11

    NASA Astrophysics Data System (ADS)

    Song, Yong-Seon; Taruya, Atsushi; Linder, Eric; Koyama, Kazuya; Sabiu, Cristiano G.; Zhao, Gong-Bo; Bernardeau, Francis; Nishimichi, Takahiro; Okumura, Teppei

    2015-08-01

    We analyze the clustering of a cosmic large scale structure using a consistent modified gravity perturbation theory, accounting for anisotropic effects along and transverse to the line of sight. The growth factor has a particular scale dependence in f (R ) gravity and we fit for the shape parameter fR 0 simultaneously with the distance and the large scale (general relativity) limit of the growth function. Using more than 690,000 galaxies in the baryon oscillation spectroscopy survey data release 11, we find no evidence for extra scale dependence, with the 95% confidence upper limit |fR 0|<8 ×1 0-4 . Future clustering data, such as from the dark energy spectroscopic instrument, can use this consistent methodology to impose tighter constraints.

  7. Astrophysical Tests of Modified Gravity: Constraints from Distance Indicators in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Jain, Bhuvnesh; Vikram, Vinu; Sakstein, Jeremy

    2013-12-01

    We use distance measurements in the nearby universe to carry out new tests of gravity, surpassing other astrophysical tests by over two orders of magnitude for chameleon theories. The three nearby distance indicators—cepheids, tip of the red giant branch (TRGB) stars, and water masers—operate in gravitational fields of widely different strengths. This enables tests of scalar-tensor gravity theories because they are screened from enhanced forces to different extents. Inferred distances from cepheids and TRGB stars are altered (in opposite directions) over a range of chameleon gravity theory parameters well below the sensitivity of cosmological probes. Using published data, we have compared cepheid and TRGB distances in a sample of unscreened dwarf galaxies within 10 Mpc. We use a comparable set of screened galaxies as a control sample. We find no evidence for the order unity force enhancements expected in these theories. Using a two-parameter description of the models (the coupling strength and background field value), we obtain constraints on both the chameleon and symmetron screening scenarios. In particular we show that f(R) models with background field values f R0 above 5 × 10-7 are ruled out at the 95% confidence level. We also compare TRGB and maser distances to the galaxy NGC 4258 as a second test for larger field values. While there are several approximations and caveats in our study, our analysis demonstrates the power of gravity tests in the local universe. We discuss the prospects for additional improved tests with future observations.

  8. Astrophysical tests of modified gravity: Constraints from distance indicators in the nearby universe

    SciTech Connect

    Jain, Bhuvnesh; Vikram, Vinu; Sakstein, Jeremy

    2013-12-10

    We use distance measurements in the nearby universe to carry out new tests of gravity, surpassing other astrophysical tests by over two orders of magnitude for chameleon theories. The three nearby distance indicators—cepheids, tip of the red giant branch (TRGB) stars, and water masers—operate in gravitational fields of widely different strengths. This enables tests of scalar-tensor gravity theories because they are screened from enhanced forces to different extents. Inferred distances from cepheids and TRGB stars are altered (in opposite directions) over a range of chameleon gravity theory parameters well below the sensitivity of cosmological probes. Using published data, we have compared cepheid and TRGB distances in a sample of unscreened dwarf galaxies within 10 Mpc. We use a comparable set of screened galaxies as a control sample. We find no evidence for the order unity force enhancements expected in these theories. Using a two-parameter description of the models (the coupling strength and background field value), we obtain constraints on both the chameleon and symmetron screening scenarios. In particular we show that f(R) models with background field values f {sub R0} above 5 × 10{sup –7} are ruled out at the 95% confidence level. We also compare TRGB and maser distances to the galaxy NGC 4258 as a second test for larger field values. While there are several approximations and caveats in our study, our analysis demonstrates the power of gravity tests in the local universe. We discuss the prospects for additional improved tests with future observations.

  9. Optimizing Spectroscopic and Photometric Galaxy Surveys: Same-Sky Benefits for Dark Energy and Modified Gravity

    SciTech Connect

    Kirk, Donnacha; Lahav, Ofer; Bridle, Sarah; Jouvel, Stephanie; Abdalla, Filipe B.; Frieman, Joshua A.

    2015-08-21

    The combination of multiple cosmological probes can produce measurements of cosmological parameters much more stringent than those possible with any individual probe. We examine the combination of two highly correlated probes of late-time structure growth: (i) weak gravitational lensing from a survey with photometric redshifts and (ii) galaxy clustering and redshift space distortions from a survey with spectroscopic redshifts. We choose generic survey designs so that our results are applicable to a range of current and future photometric redshift (e.g. KiDS, DES, HSC, Euclid) and spectroscopic redshift (e.g. DESI, 4MOST, Sumire) surveys. Combining the surveys greatly improves their power to measure both dark energy and modified gravity. An independent, non-overlapping combination sees a dark energy figure of merit more than 4 times larger than that produced by either survey alone. The powerful synergies between the surveys are strongest for modified gravity, where their constraints are orthogonal, producing a non-overlapping joint figure of merit nearly 2 orders of magnitude larger than either alone. Our projected angular power spectrum formalism makes it easy to model the cross-correlation observable when the surveys overlap on the sky, producing a joint data vector and full covariance matrix. We calculate a same-sky improvement factor, from the inclusion of these cross-correlations, relative to non-overlapping surveys. We find nearly a factor of 4 for dark energy and more than a factor of 2 for modified gravity. The exact forecast figures of merit and same-sky benefits can be radically affected by a range of forecasts assumption, which we explore methodically in a sensitivity analysis. We show that that our fiducial assumptions produce robust results which give a good average picture of the science return from combining photometric and spectroscopic surveys.

  10. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure

    NASA Astrophysics Data System (ADS)

    Lombriser, Lucas; Lima, Nelson A.

    2017-02-01

    With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar-tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar-tensor modification of gravity.

  11. Thermodynamic stability of modified Schwarzschild-AdS black hole in rainbow gravity

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Wan; Kim, Seung Kook; Park, Young-Jai

    2016-10-01

    In this paper, we have extended the previous study of the thermodynamics and phase transition of the Schwarzschild black hole in the rainbow gravity to the Schwarzschild-AdS black hole where metric depends on the energy of a probe. Making use of the Heisenberg uncertainty principle and the modified dispersion relation, we have obtained the modified local Hawking temperature and thermodynamic quantities in an isothermal cavity. Moreover, we carry out the analysis of constant temperature slices of a black hole. As a result, we have shown that there also exists another Hawking-Page-like phase transition in which case a locally stable small black hole tunnels into a globally stable large black hole as well as the standard Hawking-Page phase transition from a hot flat space to a black hole.

  12. Constraining Modified Theories of Gravity with Gravitational-Wave Stochastic Backgrounds.

    PubMed

    Maselli, Andrea; Marassi, Stefania; Ferrari, Valeria; Kokkotas, Kostas; Schneider, Raffaella

    2016-08-26

    The direct discovery of gravitational waves has finally opened a new observational window on our Universe, suggesting that the population of coalescing binary black holes is larger than previously expected. These sources produce an unresolved background of gravitational waves, potentially observable by ground-based interferometers. In this Letter we investigate how modified theories of gravity, modeled using the parametrized post-Einsteinian formalism, affect the expected signal, and analyze the detectability of the resulting stochastic background by current and future ground-based interferometers. We find the constraints that Advanced LIGO would be able to set on modified theories, showing that they may significantly improve the current bounds obtained from astrophysical observations of binary pulsars.

  13. Effective action approach to cosmological perturbations in dark energy and modified gravity

    SciTech Connect

    Battye, Richard A.; Pearson, Jonathan A. E-mail: jp@jb.man.ac.uk

    2012-07-01

    In light of upcoming observations modelling perturbations in dark energy and modified gravity models has become an important topic of research. We develop an effective action to construct the components of the perturbed dark energy momentum tensor which appears in the perturbed generalized gravitational field equations, δG{sup μν} = 8πGδT{sup μν}+δU{sup μν} for linearized perturbations. Our method does not require knowledge of the Lagrangian density of the dark sector to be provided, only its field content. The method is based on the fact that it is only necessary to specify the perturbed Lagrangian to quadratic order and couples this with the assumption of global statistical isotropy of spatial sections to show that the model can be specified completely in terms of a finite number of background dependent functions. We present our formalism in a coordinate independent fashion and provide explicit formulae for the perturbed conservation equation and the components of δU{sup μ}{sub ν} for two explicit generic examples: (i) the dark sector does not contain extra fields, L = L(g{sub μν}) and (ii) the dark sector contains a scalar field and its first derivative L = L(g{sub μν},φ,∇{sub μ}φ). We discuss how the formalism can be applied to modified gravity models containing derivatives of the metric, curvature tensors, higher derivatives of the scalar fields and vector fields.

  14. Late-time cosmic acceleration: ABCD of dark energy and modified theories of gravity

    NASA Astrophysics Data System (ADS)

    Sami, M.; Myrzakulov, R.

    2016-10-01

    We briefly review the problems and prospects of the standard lore of dark energy. We have shown that scalar fields, in principle, cannot address the cosmological constant problem. Indeed, a fundamental scalar field is faced with a similar problem dubbed naturalness. In order to keep the discussion pedagogical, aimed at a wider audience, we have avoided technical complications in several places and resorted to heuristic arguments based on physical perceptions. We presented underlying ideas of modified theories based upon chameleon mechanism and Vainshtein screening. We have given a lucid illustration of recently investigated ghost-free nonlinear massive gravity. Again, we have sacrificed rigor and confined to the basic ideas that led to the formulation of the theory. The review ends with a brief discussion on the difficulties of the theory applied to cosmology.

  15. Principal component analysis of modified gravity using weak lensing and peculiar velocity measurements

    SciTech Connect

    Asaba, Shinsuke; Hikage, Chiaki; Koyama, Kazuya; Zhao, Gong-Bo; Hojjati, Alireza; Pogosian, Levon E-mail: hikage@kmi.nagoya-u.ac.jp E-mail: gong-bo.zhao@port.ac.uk E-mail: levon@sfu.ca

    2013-08-01

    We perform a principal component analysis to assess ability of future observations to measure departures from General Relativity in predictions of the Poisson and anisotropy equations on linear scales. In particular, we focus on how the measurements of redshift-space distortions (RSD) observed from spectroscopic galaxy redshift surveys will improve the constraints when combined with lensing tomographic surveys. Assuming a Euclid-like galaxy imaging and redshift survey, we find that adding the 3D information decreases the statistical uncertainty by a factor between 3 and 7 compared to the case when only observables from lensing tomographic surveys are used. We also find that the number of well-constrained modes increases by a factor between 3 and 6. Our study indicates the importance of joint galaxy imaging and redshift surveys such as SuMIRe and Euclid to give more stringent tests of the ΛCDM model and to distinguish between various modified gravity and dark energy models.

  16. Post-Newtonian parameters and cosmological constant of screened modified gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Zhao, Wen; Huang, He; Cai, Yifu

    2016-06-01

    Screened modified gravity (SMG) is a kind of scalar-tensor theory with screening mechanisms, which can generate a screening effect to suppress the fifth force in high density environments and pass the solar system tests. Meanwhile, the potential of the scalar field in the theories can drive the acceleration of the late Universe. In this paper, we calculate the parametrized post-Newtonian (PPN) parameters γ and β , the effective gravitational constant Geff, and the effective cosmological constant Λ for SMG with a general potential V and coupling function A . The dependence of these parameters on the model parameters of SMG and/or the physical properties of the source object are clearly presented. As an application of these results, we focus on three specific theories of SMG (chameleon, symmetron, and dilaton models). Using the formulas to calculate their PPN parameters and cosmological constant, we derive the constraints on the model parameters by combining the observations on solar system and cosmological scales.

  17. A Study of Holographic Dark Energy Models in Chern-Simon Modified Gravity

    NASA Astrophysics Data System (ADS)

    Ali, Sarfraz; Amir, M. Jamil

    2016-12-01

    This paper is devoted to study some holographic dark energy models in the context of Chern-Simon modified gravity by considering FRW universe. We analyze the equation of state parameter using Granda and Oliveros infrared cut-off proposal which describes the accelerated expansion of the universe under the restrictions on the parameter α. It is shown that for the accelerated expansion phase -1<ω _{Λ }<-1/3, the parameter α varies according as 1<α <2/3. Furthermore, for 0< α<1, the holographic energy and pressure density illustrates phantom-like theory of the evolution when ω Λ<-1. Also, we discuss the correspondence between the quintessence, K-essence, tachyon and dilaton field models and holographic dark energy models on similar fashion. To discuss the accelerated expansion of the universe, we explore the potential and the dynamics of quintessence, K-essence, tachyon and dilaton field models.

  18. Cosmological Friedmann equation in infrared modified Hořava-Lifshitz gravity via generalized Misner-Sharp mass

    NASA Astrophysics Data System (ADS)

    Liu, Molin; Yang, Yuling; Han, Yu; Zhao, Zonghua; Lu, Jianbo

    2016-07-01

    In various gravity theories, Friedmann equations can be cast to a form of the first law of thermodynamics in a Friedmann-Robertson-Walker (FRW) cosmological setup. However, this result failed in recent infrared (IR) modified Hořava-Lifshitz (HL) gravity. The difficulty stems from the fact that HL gravity is Lorentz-violating. Motivated by this problem, we use the Misner-Sharp mass to investigate the thermodynamics near the apparent horizon in HL cosmology. We find that the Friedmann equations can be derived from the first law of thermodynamics. The Misner-Sharp mass used here inherits the specific properties of HL gravity since it is directly from the gravitational action of HL theory. We also prove that the first law of thermodynamics with logarithmic entropy still holds at the apparent horizon in FRW. The results suggest that the general prescription of deriving the field equation from thermodynamics still works in the HL cosmology.

  19. Initial conditions for cosmological N-body simulations of the scalar sector of theories of Newtonian, Relativistic and Modified Gravity

    SciTech Connect

    Valkenburg, Wessel; Hu, Bin E-mail: hu@lorentz.leidenuniv.nl

    2015-09-01

    We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zel'dovich Approximation to nontrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond Λ-Cold Dark Matter initial conditions for modifications of gravity outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology.

  20. Histone modifying proteins Gcn5 and Hda1 affect flocculation in Saccharomyces cerevisiae during high-gravity fermentation.

    PubMed

    Dietvorst, Judith; Brandt, Anders

    2010-02-01

    The performance of yeast is often limited by the constantly changing environmental conditions present during high-gravity fermentation. Poor yeast performance contributes to incomplete and slow utilization of the main fermentable sugars which can lead to flavour problems in beer production. The expression of the FLO and MAL genes, which are important for the performance of yeast during industrial fermentations, is affected by complex proteins associated with Set1 (COMPASS) resulting in the induction of flocculation and improved maltose fermentation capacity during the early stages of high-gravity fermentation. In this study, we investigated a possible role for other histone modifying proteins. To this end, we tested a number of histone deacetylases (HDACs) and histone acetyltransferases and we report that flocculation is induced in absence of the histone deacetylase Hda1 or the histone acetyltransferase Gcn5 during high-gravity fermentation. The absence of Gcn5 protein also improved utilization of high concentrations of maltose. Deletion of SIR2 encoding the HDA of the silent informator regulator complex, did not affect flocculation under high-gravity fermentation conditions. Despite the obvious roles for Hda1 and Gcn5 in flocculation, this work indicates that COMPASS mediated silencing is the most important amongst the histone modifying components to control the expression of the FLO genes during high-gravity fermentation.

  1. Testing modified gravity with Planck: The case of coupled dark energy

    NASA Astrophysics Data System (ADS)

    Pettorino, Valeria

    2013-09-01

    The Planck collaboration has recently published maps of the cosmic microwave background (CMB) radiation, in good agreement with a ΛCDM model, a fit especially valid for multipoles ℓ>40. We explore here the possibility that dark energy is dynamical and gravitational attraction between dark matter particles is effectively different from the standard one in general relativity: this is the case of coupled dark energy models, where dark matter particles feel the presence of a fifth force, larger than gravity by a factor 2β2, defining an effective gravitational constant Geff=G(1+2β2). We investigate constraints on the strength of the coupling β in view of Planck data. Interestingly, we show that a nonzero coupling is compatible with data and find a likelihood peak at β=0.036±0.016 [Planck+WMAPpolarization(WP)+baryonicacousticoscillations(BAO)] (compatible with zero at 2.2σ). The significance of the peak increases to β=0.066±0.018 [Planck+WP+HubbleSpaceTelescope(HST)] (around 3.6σ from zero coupling) when Planck is combined to HST data by . This peak comes mostly from the small difference between the Hubble parameter determined with CMB measurements and the one coming from astrophysics measurements and is already present in the combination with BAO. Future observations and further tests of current observations are needed to determine whether the discrepancy is due to systematics in any of the data sets. Our aim here is not to claim new physics but rather to show that a clear understanding of such tension has a considerable impact on dark energy models: it can be used to provide information on dynamical dark energy and modified gravity, allowing us to test the strength of an effective fifth force.

  2. MODELING THE NONLINEAR CLUSTERING IN MODIFIED GRAVITY MODELS. I. A FITTING FORMULA FOR THE MATTER POWER SPECTRUM OF f(R) GRAVITY

    SciTech Connect

    Zhao, Gong-Bo

    2014-04-01

    Based on a suite of N-body simulations of the Hu-Sawicki model of f(R) gravity with different sets of model and cosmological parameters, we develop a new fitting formula with a numeric code, MGHalofit, to calculate the nonlinear matter power spectrum P(k) for the Hu-Sawicki model. We compare the MGHalofit predictions at various redshifts (z ≤ 1) to the f(R) simulations and find that the relative error of the MGHalofit fitting formula of P(k) is no larger than 6% at k ≤ 1 h Mpc{sup –1} and 12% at k in (1, 10] h Mpc{sup –1}, respectively. Based on a sensitivity study of an ongoing and a future spectroscopic survey, we estimate the detectability of a signal of modified gravity described by the Hu-Sawicki model using the power spectrum up to quasi-nonlinear scales.

  3. Model-independent constraints on modified gravity from current data and from the Euclid and SKA future surveys

    NASA Astrophysics Data System (ADS)

    Taddei, Laura; Martinelli, Matteo; Amendola, Luca

    2016-12-01

    The aim of this paper is to constrain modified gravity with redshift space distortion observations and supernovae measurements. Compared with a standard ΛCDM analysis, we include three additional free parameters, namely the initial conditions of the matter perturbations, the overall perturbation normalization, and a scale-dependent modified gravity parameter modifying the Poisson equation, in an attempt to perform a more model-independent analysis. First, we constrain the Poisson parameter Y (also called Geff) by using currently available fσ8 data and the recent SN catalog JLA. We find that the inclusion of the additional free parameters makes the constraints significantly weaker than when fixing them to the standard cosmological value. Second, we forecast future constraints on Y by using the predicted growth-rate data for Euclid and SKA missions. Here again we point out the weakening of the constraints when the additional parameters are included. Finally, we adopt as modified gravity Poisson parameter the specific Horndeski form, and use scale-dependent forecasts to build an exclusion plot for the Yukawa potential akin to the ones realized in laboratory experiments, both for the Euclid and the SKA surveys.

  4. Observational tests of a two parameter power-law class modified gravity in Palatini formalism

    NASA Astrophysics Data System (ADS)

    Baghram, Shant; Movahed, M. Sadegh; Rahvar, Sohrab

    2009-09-01

    CONTEXT: In this work we propose a modified gravity action f(R)=(Rn-R0n)1/n with two free parameters of n and R0 and derive the dynamics of a universe for this action in the Palatini formalism. AIM: We do a cosmological comparison of this model with observed data to find the best parameters of a model in a flat universe. METHOD: To constrain the free parameters of model we use SNIa type Ia data in two sets of gold and union samples, CMB-shift parameter, baryon acoustic oscillation, gas mass fraction in cluster of galaxies, and large-scale structure data. RESULT: The best fit from the observational data results in the parameters of model in the range of n=0.98-0.08+0.08 and ΩM=0.25+0.1-0.1 with one sigma level of confidence where a standard ΛCDM universe resides in this range of solution.

  5. Modified Eddington-inspired-Born-Infeld Gravity with a Trace Term

    NASA Astrophysics Data System (ADS)

    Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin

    2016-01-01

    In this paper, a modified Eddington-inspired-Born-Infeld (EiBI) theory with a pure trace term g_{μ ν }R being added to the determinantal action is analysed from a cosmological point of view. It corresponds to the most general action constructed from a rank two tensor that contains up to first order terms in curvature. This term can equally be seen as a conformal factor multiplying the metric g_{μ ν }. This very interesting type of amendment has not been considered within the Palatini formalism despite the large amount of works on the Born-Infeld-inspired theory of gravity. This model can provide smooth bouncing solutions which were not allowed in the EiBI model for the same EiBI coupling. Most interestingly, for a radiation filled universe there are some regions of the parameter space that can naturally lead to a de Sitter inflationary stage without the need of any exotic matter field. Finally, in this model we discover a new type of cosmic "quasi-sudden" singularity, where the cosmic time derivative of the Hubble rate becomes very large but finite at a finite cosmic time.

  6. Modified Eddington-inspired-Born-Infeld gravity with a trace term

    DOE PAGES

    Chen, Che -Yu; Bouhmadi-Lopez, Mariam; Chen, Pisin

    2016-01-22

    In this study, a modified Eddington-inspired-Born-Infeld (EiBI) theory with a pure trace term gμνR being added to the determinantal action is analysed from a cosmological point of view. It corresponds to the most general action constructed from a rank two tensor that contains up to first order terms in curvature. This term can equally be seen as a conformal factor multiplying the metric gμν . This very interesting type of amendment has not been considered within the Palatini formalism despite the large amount of works on the Born-Infeld-inspired theory of gravity. This model can provide smooth bouncing solutions which weremore » not allowed in the EiBI model for the same EiBI coupling. Most interestingly, for a radiation filled universe there are some regions of the parameter space that can naturally lead to a de Sitter inflationary stage without the need of any exotic matter field. Finally, in this model we discover a new type of cosmic “quasi-sudden” singularity, where the cosmic time derivative of the Hubble rate becomes very large but finite at a finite cosmic time.« less

  7. Modified Eddington-inspired-Born-Infeld gravity with a trace term

    SciTech Connect

    Chen, Che -Yu; Bouhmadi-Lopez, Mariam; Chen, Pisin

    2016-01-22

    In this study, a modified Eddington-inspired-Born-Infeld (EiBI) theory with a pure trace term gμνR being added to the determinantal action is analysed from a cosmological point of view. It corresponds to the most general action constructed from a rank two tensor that contains up to first order terms in curvature. This term can equally be seen as a conformal factor multiplying the metric gμν . This very interesting type of amendment has not been considered within the Palatini formalism despite the large amount of works on the Born-Infeld-inspired theory of gravity. This model can provide smooth bouncing solutions which were not allowed in the EiBI model for the same EiBI coupling. Most interestingly, for a radiation filled universe there are some regions of the parameter space that can naturally lead to a de Sitter inflationary stage without the need of any exotic matter field. Finally, in this model we discover a new type of cosmic “quasi-sudden” singularity, where the cosmic time derivative of the Hubble rate becomes very large but finite at a finite cosmic time.

  8. Interacting modified Chaplygin gas in f(T) gravity framework and analysis of its stability against gravitational perturbation

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Surajit

    In this work, we investigate the cosmological application of modified Chaplygin gas (MCG) interacting with pressureless dark matter (DM) in the f(T) modified gravity framework, where T is the torsion scalar in teleparallelism. The interaction term has been chosen proportional to the MCG density with positive coupling constant. In the Einstein general relativity (GR) framework, the interacting MCG has been found to have equation of state (EoS) parameter behaving like quintessence. However, the f(T) gravity reconstructed via the interacting MCG has been found to have EoS crossing the phantom boundary of ‑ 1. Thus, one can generate a quintom-like EoS from an interacting MCG model in flat universe in the modified gravity cosmology framework. The reconstructed f(T) model has been found to interpolate between dust and ΛCDM. Stability of the reconstructed f(T) has been investigated and it has been observed that the model is stable against gravitational perturbation. Cosmological evolution of primordial perturbations has also been investigated and the self-interacting potential has been found to increase with cosmic time and the squared speed of sound has been found to be non-negative.

  9. Entropy-corrected new agegraphic dark energy model in the context of Chern-Simons modified gravity

    NASA Astrophysics Data System (ADS)

    Aly, Ayman A.; Fekry, M.; Mansour, H.

    2015-04-01

    Within the framework of Chern-Simons (CS) modified gravity, we studied dark energy models. The new agegraphic dark energy (NADE) model, entropy-corrected new agegraphic dark energy (ECNADE) model and NADE model with generalized uncertainty principle (GUP) are investigated. For these models, we studied the evolution of scale factor a, Hubble parameter H and deceleration parameter q. On meantime, we studied the state finder parameters s and r. These models show some similar behavior with modified Chaplygin gas model in some regions, while in other regions some similarity with phantom and quintessence dark energy is noticed.

  10. Modelling galaxy clustering on small scales to tighten constraints on dark energy and modified gravity

    NASA Astrophysics Data System (ADS)

    Wang, Yun

    2017-01-01

    We present a new approach to measuring cosmic expansion history and growth rate of large-scale structure using the anisotropic two-dimensional galaxy correlation function (2DCF) measured from data; it makes use of the empirical modelling of small-scale galaxy clustering derived from numerical simulations by Zheng et al. We validate this method using mock catalogues, before applying it to the analysis of the CMASS sample from the Sloan Digital Sky Survey Data Release 10 of the Baryon Oscillation Spectroscopic Survey. We find that this method enables accurate and precise measurements of cosmic expansion history and growth rate of large-scale structure. Modelling the 2DCF fully including non-linear effects and redshift space distortions in the scale range of 16-144 h-1 Mpc, we find H(0.57)rs(zd)/c = 0.0459 ± 0.0006, DA(0.57)/rs(zd) = 9.011 ± 0.073, and fg(0.57)σ8(0.57) = 0.476 ± 0.050, which correspond to precisions of 1.3 per cent, 0.8 per cent, and 10.5 per cent, respectively. We have defined rs(zd) to be the sound horizon at the drag epoch computed using a simple integral, fg(z) as the growth rate at redshift z, and σ8(z) as the matter power spectrum normalization on 8 h-1 Mpc scale at z. We find that neglecting the small-scale information significantly weakens the constraints on H(z) and DA(z), and leads to a biased estimate of fg(z). Our results indicate that we can significantly tighten constraints on dark energy and modified gravity by reliably modelling small-scale galaxy clustering.

  11. Quantum Corrections to Entropic Gravity

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Wang, Chiao-Hsuan

    2013-01-01

    The entropic gravity scenario recently proposed by Erik Verlinde reproduced Newton's law of purely classical gravity yet the key assumptions of this approach all have quantum mechanical origins. As is typical for emergent phenomena in physics, the underlying, more fundamental physics often reveals itself as corrections to the leading classical behavior. So one naturally wonders: where is ℏ hiding in entropic gravity? To address this question, we first revisit the idea of holographic screen as well as entropy and its variation law in order to obtain a self-consistent approach to the problem. Next we argue that since the concept of minimal length has been invoked in the Bekenstein entropic derivation, the generalized uncertainty principle (GUP), which is a direct consequence of the minimal length, should be taken into consideration in the entropic interpretation of gravity. Indeed based on GUP it has been demonstrated that the black hole Bekenstein entropy area law must be modified not only in the strong but also in the weak gravity regime where in the weak gravity limit the GUP modified entropy exhibits a logarithmic correction. When applying it to the entropic interpretation, we demonstrate that the resulting gravity force law does include sub-leading order correction terms that depend on ℏ. Such deviation from the classical Newton's law may serve as a probe to the validity of entropic gravity.

  12. Quantum Corrections to Entropic Gravity

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Wang, Chiao-Hsuan

    2013-12-01

    The entropic gravity scenario recently proposed by Erik Verlinde reproduced Newton's law of purely classical gravity yet the key assumptions of this approach all have quantum mechanical origins. As is typical for emergent phenomena in physics, the underlying, more fundamental physics often reveals itself as corrections to the leading classical behavior. So one naturally wonders: where is ħ hiding in entropic gravity? To address this question, we first revisit the idea of holographic screen as well as entropy and its variation law in order to obtain a self-consistent approach to the problem. Next we argue that as the concept of minimal length has been invoked in the Bekenstein entropic derivation, the generalized uncertainty principle (GUP), which is a direct consequence of the minimal length, should be taken into consideration in the entropic interpretation of gravity. Indeed based on GUP it has been demonstrated that the black hole Bekenstein entropy area law must be modified not only in the strong but also in the weak gravity regime where in the weak gravity limit the GUP modified entropy exhibits a logarithmic correction. When applying it to the entropic interpretation, we demonstrate that the resulting gravity force law does include sub-leading order correction terms that depend on ħ. Such deviation from the classical Newton's law may serve as a probe to the validity of entropic gravity.

  13. Complete classification of four-dimensional black hole and membrane solutions in IR-modified Hořava gravity

    NASA Astrophysics Data System (ADS)

    Argüelles, Carlos; Grandi, Nicolás; Park, Mu-In

    2015-10-01

    Hořava gravity has been proposed as a renormalizable, higher-derivative gravity without ghost problems, by considering different scaling dimensions for space and time. In the non-relativistic higher-derivative generalization of Einstein gravity, the meaning and physical properties of black hole and membrane space-times are quite different from the conventional ones. Here, we study the singularity and horizon structures of such geometries in IR-modified Hořava gravity, where the so-called "detailed balance" condition is softly broken in IR. We classify all the viable static solutions without naked singularities and study its close connection to non-singular cosmology solutions. We find that, in addition to the usual point-like singularity at r = 0, there exists a "surface-like" curvature singularity at finite r = r S whichisthecuttingedgeofthereal-valuedspace-time. Thedegreeofdivergenceof such singularities is milder than those of general relativity, and the Hawking temperature of the horizons diverges when they coincide with the singularities. As a byproduct we find that, in addition to the usual "asymptotic limit", a consistent flow of coupling constants, that we called "GR flow limit", is needed in order to recover general relativity in the IR.

  14. A Modified Wilson Cycle Scenario Based on Thermo-Mechanical Model

    NASA Astrophysics Data System (ADS)

    Baes, M.; Sobolev, S. V.

    2014-12-01

    The major problem of classical Wilson Cycle concept is the suggested conversion of the passive continental margin to the active subduction zone. Previous modeling studies assumed either unusually thick felsic continental crust at the margin (over 40 km) or unusually low lithospheric thickness (less than 70 km) to simulate this process. Here we propose a new triggering factor in subduction initiation process that is mantle suction force. Based on this proposal we suggest a modification of Wilson Cycle concept. Sometime after opening and extension of oceanic basin, continental passive margin moves over the slab remnants of the former active subduction zones in deep mantle. Such slab remnants or deep slabs of neighboring active subduction zones produce a suction mantle flow introducing additional compression at the passive margin. It results in the initiation of a new subduction zone, hence starting the closing phase of Wilson Cycle. In this scenario the weakness of continental crust near the passive margin which is inherited from the rifting phase and horizontal push force induced from far-field topographic gradient within the continent facilitate and speed up subduction initiation process. Our thermo-mechanical modeling shows that after a few tens of million years a shear zone may indeed develop along the passive margin that has typical two-layered 35 km thick continental crust and thermal lithosphere thicker than 100 km if there is a broad mantle down-welling flow below the margin. Soon after formation of this shear zone oceanic plate descends into mantle and subduction initiates. Subduction initiation occurs following over-thrusting of continental crust and retreating of future trench. In models without far-field topographic gradient within the continent subduction initiation requires weaker passive margin. Our results also indicate that subduction initiation depends on several parameters such as magnitude, domain size and location of suction mantle flow

  15. Modified Einstein's gravity as a possible missing link between sub- and super-Chandrasekhar type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Das, Upasana; Mukhopadhyay, Banibrata

    2015-05-01

    We explore the effect of modification to Einstein's gravity in white dwarfs for the first time in the literature, to the best of our knowledge. This leads to significantly sub- and super-Chandrasekhar limiting masses of white dwarfs, determined by a single model parameter. On the other hand, type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe, are believed to be triggered in white dwarfs having mass close to the Chandrasekhar limit. However, observations of several peculiar, under- and over-luminous SNeIa argue for exploding masses widely different from this limit. We argue that explosions of the modified gravity induced sub- and super-Chandrasekhar limiting mass white dwarfs result in under- and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes and, hence, serving as a missing link. Our discovery raises two fundamental questions. Is the Chandrasekhar limit unique? Is Einstein's gravity the ultimate theory for understanding astronomical phenomena? Both the answers appear to be no!

  16. Modified Einstein's gravity as a possible missing link between sub- and super-Chandrasekhar type Ia supernovae

    SciTech Connect

    Das, Upasana; Mukhopadhyay, Banibrata E-mail: bm@physics.iisc.ernet.in

    2015-05-01

    We explore the effect of modification to Einstein's gravity in white dwarfs for the first time in the literature, to the best of our knowledge. This leads to significantly sub- and super-Chandrasekhar limiting masses of white dwarfs, determined by a single model parameter. On the other hand, type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe, are believed to be triggered in white dwarfs having mass close to the Chandrasekhar limit. However, observations of several peculiar, under- and over-luminous SNeIa argue for exploding masses widely different from this limit. We argue that explosions of the modified gravity induced sub- and super-Chandrasekhar limiting mass white dwarfs result in under- and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes and, hence, serving as a missing link. Our discovery raises two fundamental questions. Is the Chandrasekhar limit unique? Is Einstein's gravity the ultimate theory for understanding astronomical phenomena? Both the answers appear to be no!.

  17. Modified TOV in gravity's rainbow: properties of neutron stars and dynamical stability conditions

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Bordbar, G. H.; Eslam Panah, B.; Panahiyan, S.

    2016-09-01

    In this paper, we consider a spherical symmetric metric to extract the hydrostatic equilibrium equation of stars in (3+1)-dimensional gravity's rainbow in the presence of cosmological constant. Then, we generalize the hydrostatic equilibrium equation to d-dimensions and obtain the hydrostatic equilibrium equation for this gravity. Also, we obtain the maximum mass of neutron star using the modern equations of state of neutron star matter derived from the microscopic calculations. It is notable that, in this paper, we consider the effects of rainbow functions on the diagrams related to the mass-central mass density (M-ρc) relation and also the mass-radius (M-R) relation of neutron star. We also study the effects of rainbow functions on the other properties of neutron star such as the Schwarzschild radius, average density, strength of gravity and gravitational redshift. Then, we apply the cosmological constant to this theory to obtain the diagrams of M-ρc (or M-R) and other properties of these stars. Next, we investigate the dynamical stability condition for these stars in gravity's rainbow and show that these stars have dynamical stability. We also obtain a relation between mass of neutron stars and Planck mass. In addition, we compare obtained results of this theory with the observational data.

  18. Viable mimetic completion of unified inflation-dark energy evolution in modified gravity

    NASA Astrophysics Data System (ADS)

    Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.

    2016-11-01

    In this paper, we demonstrate that a unified description of early and late-time acceleration is possible in the context of mimetic F (R ) gravity. We study the inflationary era in detail and demonstrate that it can be realized even in mimetic F (R ) gravity where traditional F (R ) gravity fails to describe the inflation. By using standard methods we calculated the spectral index of primordial curvature perturbations and the scalar-to-tensor ratio. We use two F (R ) gravity models and as it turns out, for both the models under study the observational indices are compatible with both the latest Planck and the BICEP2/Keck array data. However, this is only true under some model-dependent fine-tuning, which constrains the models we study. Finally, the graceful exit from inflation issue is addressed, and as we show, the curvature perturbations may trigger the graceful exit from inflation when the slow-roll era ends. However, fine-tuning is needed in order to produce enough inflation by the end of the slow-roll era.

  19. Electromagnetic effects on the evolution of LTB geometry in modified gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bhatti, M. Zaeem-ul-Haq; Rafaqat, Aamna

    2017-04-01

    We study the influence of Palatini f(R) gravity and tilted observer on the dynamics of Lemaître-Tolman-Bondi space-time in the presence of electromagnetic field. The imperfect charged fluid seen by tilted observer is considered in comparison with charged dust fluid seen by nontilted observer. We develop the relations between tilted and nontilted variables by including electric charge in Palatini f(R) gravity. In this framework, we explore the evolution of energy density inhomogeneities for tilted and nontilted observers by calculating the energy conservation laws for charged fluid. Finally, we evaluate a constraint on the electric charge in the collapse of stellar objects, which leads to the instability of nontilted congruence.

  20. Vector-tensor nature of Bekenstein's relativistic theory of modified gravity

    SciTech Connect

    Zlosnik, T. G.; Ferreira, P. G.; Starkman, Glenn D.

    2006-08-15

    Bekenstein's theory of relativistic gravity is conventionally written as a bimetric theory. The two metrics are related by a disformal transformation defined by a dynamical vector field and a scalar field. In this paper we show that the theory can be rewritten as vector-tensor theory akin to Einstein-Aether theories with noncanonical kinetic terms. We discuss some of the implications of this equivalence.

  1. Solar system constraints on a Rindler-type extra-acceleration from modified gravity at large distances

    NASA Astrophysics Data System (ADS)

    Iorio, L.

    2011-05-01

    We analytically work out the orbital effects caused by a Rindler-type extra-acceleration ARin which naturally arises in some recent models of modified gravity at large distances. In particular, we focus on the perturbations induced by it on the two-body range ρ and range-rate dot rho which are commonly used in satellite and planetary investigations as primary observable quantities. The constraints obtained for ARin by comparing our calculations with the currently available range and range-rate residuals for some of the major bodies of the solar system, obtained without explicitly modeling ARin, are 1-2 × 10-13 m s-2 (Mercury and Venus), 1 × 10-14 m s-2 (Saturn), 1 × 10-15 m s-2 (Mars), while for a terrestrial Rindler acceleration we have an upper bound of 5 × 10-16 m s-2 (Moon). The constraints inferred from the planets' range and range-rate residuals are confirmed also by the latest empirical determinations of the corrections Δdot varpi to the usual Newtonian/Einsteinian secular precessions of the planetary longitudes of perihelia varpi: moreover, the Earth yields ARin <= 7 × 10-16 m s-2. Another approach which could be followed consists of taking into account ARin in re-processing all the available data sets with accordingly modified dynamical models, and estimating a dedicated solve-for parameter explicitly accounting for it. Anyway, such a method is time-consuming. A preliminary analysis likely performed in such a way by a different author yields A <= 8 × 10-14 m s-2 at Mars' distance and A <= 1 × 10-14 m s-2 at Saturn's distance. The method adopted here can be easily and straightforwardly extended to other long-range modified models of gravity as well.

  2. One model of modified gravity with dynamical torsion and its cosmological consequences

    NASA Astrophysics Data System (ADS)

    Nikiforova, Vasilisa

    2016-10-01

    We consider a model belonging to the class of Poincarè gauge gravities. The model is free of ghosts, tachyons and gradient instabilities about Minkowski and torsionless Einstein backgrounds of sufficiently small curvature. At zero cosmological constant, the model admits a self-accelerating solution with non-Riemannian connection. We study scalar perturbations about the self-accelerating solution and find that the number of scalar modes is the same as in Minkow ski background; moreover, in the limit of small effective cosmological constant and below the UV cutoff of the low energy effective theory, the scalar sector does not have pathologies like ghosts or rapid gradient instabilities.

  3. Remarks on the Taub-NUT solution in Chern-Simons modified gravity

    NASA Astrophysics Data System (ADS)

    Brihaye, Yves; Radu, Eugen

    2017-01-01

    We discuss the generalization of the NUT spacetime in General Relativity (GR) within the framework of the (dynamical) Einstein-Chern-Simons (ECS) theory with a massless scalar field. These configurations approach asymptotically the NUT spacetime and are characterized by the 'electric' and 'magnetic' mass parameters and a scalar 'charge'. The solutions are found both analytically and numerically. The analytical approach is perturbative around the Einstein gravity background. Our results indicate that the ECS configurations share all basic properties of the NUT spacetime in GR. However, when considering the solutions inside the event horizon, we find that in contrast to the GR case, the spacetime curvature grows (apparently) without bound.

  4. A cosmological study in massive gravity theory

    SciTech Connect

    Pan, Supriya Chakraborty, Subenoy

    2015-09-15

    A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory.

  5. A modified acceleration-based monthly gravity field solution from GRACE data

    NASA Astrophysics Data System (ADS)

    Chen, Qiujie; Shen, Yunzhong; Chen, Wu; Zhang, Xingfu; Hsu, Houze; Ju, Xiaolei

    2015-08-01

    This paper describes an alternative acceleration approach for determining GRACE monthly gravity field models. The main differences compared to the traditional acceleration approach can be summarized as: (1) The position errors of GRACE orbits in the functional model are taken into account; (2) The range ambiguity is eliminated via the difference of the range measurements and (3) The mean acceleration equation is formed based on Cowell integration. Using this developed approach, a new time-series of GRACE monthly solution spanning the period January 2003 to December 2010, called Tongji_Acc RL01, has been derived. The annual signals from the Tongji_Acc RL01 time-series agree well with those from the GLDAS model. The performance of Tongji_Acc RL01 shows that this new model is comparable with the RL05 models released by CSR and JPL as well as with the RL05a model released by GFZ.

  6. Gravity can significantly modify classical and quantum Poincaré recurrence theorems

    NASA Astrophysics Data System (ADS)

    Dong, Ruifeng; Stojkovic, Dejan

    2016-11-01

    Poincaré recurrence theorem states that any finite system will come arbitrarily close to its initial state after some very long but finite time. At the statistical level, this by itself does not represent a paradox, but apparently violates the second law of thermodynamics, which may lead to some confusing conclusions for macroscopic systems. However, this statement does not take gravity into account. If two particles with a given center-of-mass energy come closer than the distance of the Schwarzschild diameter, according to classical gravity they will form a black hole. In the classical case, a black hole, once formed, will always grow and effectively quench the Poincaré recurrence. We derive the condition under which the classical black hole production rate is higher than the classical Poincaré recurrence rate. In the quantum case, if the temperature of the black hole is lower than the temperature of the surrounding gas, such a black hole cannot disappear via Hawking evaporation. We derive the condition which gives us a critical temperature above which the black hole production is faster than quantum Poincaré recurrence time. However, in the quantum case, the quantum Poincaré recurrence theorem can be applied to the black hole states too. The presence of the black hole can make the recurrence time longer or shorter, depending on whether the presence of the black hole increases or decreases the total entropy. We derive the temperature below which the produced black hole increases the entropy of the whole system (gas particles plus a black hole). Finally, if the evolution of the system is fast enough, then newly formed black holes will merge and accrete particles until one large black hole dominates the system. We give the temperature above which the presence of black holes increases the entropy of the whole system and prolongs the Poincaré recurrence time.

  7. Heat transfer during quenching of modified and unmodified gravity die-cast A357 cylindrical bars

    NASA Astrophysics Data System (ADS)

    Prabhu, K. N.; Hemanna, P.

    2006-06-01

    Heat transfer during quenching of chill-cast modified and unmodified A357 Al-Si alloy was examined using a computer-aided cooling curve analysis. Water at 60 °C and a vegetable oil (palm oil) were used as quench media. The measured temperatures inside cylindrical probes of the A357 alloy were used as inputs in an inverse heat-conduction model to estimate heat flux transients at the probe/quenchant interface and the surface temperature of the probe in contact with the quench medium. It was observed that modified alloy probes yielded higher cooling rates and heat flux transients. The investigation clearly showed that the heat transfer during quenching depends on the casting history. The increase in the cooling rate and peak heat flux was attributed to the increase in the thermal conductivity of the material on modification melt treatment owing to the change in silicon morphology. Fine and fibrous silicon particles in modified A357 probes increase the conductance of the probe resulting in higher heat transfer rates. This was confirmed by measuring the electrical conductivity of modified samples, which were found to be higher than those of unmodified samples. The ultrasound velocity in the probes decreased on modification.

  8. The relaxed Einstein equations in the context of a mixed UV-IR modified theory of gravity

    NASA Astrophysics Data System (ADS)

    Dirkes, Alain

    2017-03-01

    In this article we will modify the Einstein field equations by promoting Newton’s constant G to a covariant differential operator {{G} Λ }≤ft({{\\square}g}\\right) composed of two terms which operate in different energy regimes (IR and UV). The IR term inside the covariant differential operator acts like a high-pass filter with a macroscopic distance filter scale \\sqrt{ Λ } and effectively degravitates energy sources characterized by wavelengths larger than the filter scale. While this term is predominant for cosmological energy processes it is almost inessential on astrophysical scales where the UV contribution inside {{G} Λ }≤ft({{\\square}g}\\right) leads to much stronger deviations compared to GR. In the context of this particular theory of gravity we work out the effective relaxed Einstein equations, the effective 1.5 post-Newtonian near zone mass for n-body systems as well as the IR and UV modified Schwarzschild metrics. We use these results in the context of the Double Pulsar binary system and observe that we recover, in the limit of vanishing UV-IR modification parameters, the corresponding general relativistic results.

  9. First law of thermodynamics in IR modified Horava-Lifshitz gravity

    SciTech Connect

    Wang Mengjie; Jing Jiliang; Ding Chikun; Chen Songbai

    2010-04-15

    We study the first law of thermodynamics in IR modified Horava-Lifshitz spacetime. Based on the Bekenstein-Hawking entropy, we obtain the integral formula and the differential formula of the first law of thermodynamics for the Kehagias-Sfetsos black hole by treating {omega} as a new state parameter and redefining a mass that is just equal to M{sub ADM} obtained by Myung [32] if we take {alpha}=3{pi}/8.

  10. Solar system constraints on a Rindler-type extra-acceleration from modified gravity at large distances

    SciTech Connect

    Iorio, L.

    2011-05-01

    We analytically work out the orbital effects caused by a Rindler-type extra-acceleration A{sub Rin} which naturally arises in some recent models of modified gravity at large distances. In particular, we focus on the perturbations induced by it on the two-body range ρ and range-rate ρ-dot which are commonly used in satellite and planetary investigations as primary observable quantities. The constraints obtained for A{sub Rin} by comparing our calculations with the currently available range and range-rate residuals for some of the major bodies of the solar system, obtained without explicitly modeling A{sub Rin}, are 1–2 × 10{sup −13} m s{sup −2} (Mercury and Venus), 1 × 10{sup −14} m s{sup −2} (Saturn), 1 × 10{sup −15} m s{sup −2} (Mars), while for a terrestrial Rindler acceleration we have an upper bound of 5 × 10{sup −16} m s{sup −2} (Moon). The constraints inferred from the planets' range and range-rate residuals are confirmed also by the latest empirical determinations of the corrections Δdot varpi to the usual Newtonian/Einsteinian secular precessions of the planetary longitudes of perihelia varpi: moreover, the Earth yields A{sub Rin} ≤ 7 × 10{sup −16} m s{sup −2}. Another approach which could be followed consists of taking into account A{sub Rin} in re-processing all the available data sets with accordingly modified dynamical models, and estimating a dedicated solve-for parameter explicitly accounting for it. Anyway, such a method is time-consuming. A preliminary analysis likely performed in such a way by a different author yields A ≤ 8 × 10{sup −14} m s{sup −2} at Mars' distance and A ≤ 1 × 10{sup −14} m s{sup −2} at Saturn's distance. The method adopted here can be easily and straightforwardly extended to other long-range modified models of gravity as well.

  11. Cosmological models in modified gravity theories with extended nonminimal derivative couplings

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu; Lobo, Francisco S. N.; Saridakis, Emmanuel N.; Tsoukalas, Minas

    2017-02-01

    We construct gravitational modifications that go beyond Horndeski, namely theories with extended nonminimal derivative couplings, in which the coefficient functions depend not only on the scalar field but also on its kinetic energy. Such theories prove to be ghost-free in a cosmological background. We investigate the early-time cosmology and show that a de Sitter inflationary phase can be realized as a pure result of the novel gravitational couplings. Additionally, we study the late-time evolution, where we obtain an effective dark energy sector which arises from the scalar field and its extended couplings to gravity. We extract various cosmological observables and analyze their behavior at small redshifts for three choices of potentials, namely for the exponential, the power-law, and the Higgs potentials. We show that the Universe passes from deceleration to acceleration in the recent cosmological past, while the effective dark energy equation-of-state parameter tends to the cosmological-constant value at present. Finally, the effective dark energy can be phantomlike, although the scalar field is canonical, which is an advantage of the model.

  12. Evolution of linear cosmological perturbations and its observational implications in Galileon-type modified gravity

    SciTech Connect

    Kobayashi, Tsutomu; Suzuki, Daichi; Tashiro, Hiroyuki

    2010-03-15

    A scalar-tensor theory of gravity can be made not only to account for the current cosmic acceleration, but also to satisfy solar-system and laboratory constraints, by introducing a nonlinear derivative interaction for the scalar field. Such an additional scalar degree of freedom is called 'Galileon'. The basic idea is inspired by the Dvali-Gabadadze-Porrati braneworld, but one can construct a ghost-free model that admits a self-accelerating solution. We perform a fully relativistic analysis of linear perturbations in Galileon cosmology. Although the Galileon model can mimic the background evolution of standard {Lambda}CDM cosmology, the behavior of perturbation is quite different. It is shown that there exists a superhorizon growing mode in the metric and Galileon perturbations at early times, suggesting that the background is unstable. A fine-tuning of the initial condition for the Galileon fluctuation is thus required in order to promote a desirable evolution of perturbations at early times. Assuming the safe initial condition, we then compute the late-time evolution of perturbations and discuss observational implications in Galileon cosmology. In particular, we find anticorrelations in the cross correlation of the integrated Sachs-Wolfe effect and large scale structure, similar to the normal branch of the Dvali-Gabadadze-Porrati model.

  13. Modified first-order Horava-Lifshitz gravity: Hamiltonian analysis of the general theory and accelerating FRW cosmology in a power-law F(R) model

    SciTech Connect

    Carloni, Sante; Chaichian, Masud; Tureanu, Anca; Nojiri, Shin'ichi; Odintsov, Sergei D.; Oksanen, Markku

    2010-09-15

    We propose the most general modified first-order Horava-Lifshitz gravity, whose action does not contain time derivatives higher than the second order. The Hamiltonian structure of this theory is studied in all the details in the case of the spatially-flat Friedmann-Robertson-Walker (FRW) space-time, demonstrating many of the features of the general theory. It is shown that, with some plausible assumptions, including the projectability of the lapse function, this model is consistent. As a large class of such theories, the modified Horava-Lifshitz F(R) gravity is introduced. The study of its ultraviolet properties shows that its z=3 version seems to be renormalizable in the same way as the original Horava-Lifshitz proposal. The Hamiltonian analysis of the modified Horava-Lifshitz F(R) gravity shows that it is in general a consistent theory. The F(R) gravity action is also studied in the fixed-gauge form, where the appearance of a scalar field is particularly illustrative. Then the spatially-flat FRW cosmology for this F(R) gravity is investigated. It is shown that a special choice of parameters for this theory leads to the same equations of motion as in the case of traditional F(R) gravity. Nevertheless, the cosmological structure of the modified Horava-Lifshitz F(R) gravity turns out to be much richer than for its traditional counterpart. The emergence of multiple de Sitter solutions indicates the possibility of unification of early-time inflation with late-time acceleration within the same model. Power-law F(R) theories are also investigated in detail. It is analytically shown that they have a quite rich cosmological structure: early-/late-time cosmic acceleration of quintessence, as well as of phantom types. Also it is demonstrated that all the four known types of finite-time future singularities may occur in the power-law Horava-Lifshitz F(R) gravity. Finally, a covariant proposal for (renormalizable) F(R) gravity within the Horava-Lifshitz spirit is presented.

  14. Scenario Analysis and Path Selection of Low-Carbon Transformation in China Based on a Modified IPAT Model

    PubMed Central

    Chen, Liang; Yang, Zhifeng; Chen, Bin

    2013-01-01

    This paper presents a forecast and analysis of population, economic development, energy consumption and CO2 emissions variation in China in the short- and long-term steps before 2020 with 2007 as the base year. The widely applied IPAT model, which is the basis for calculations, projections, and scenarios of greenhouse gases (GHGs) reformulated as the Kaya equation, is extended to analyze and predict the relations between human activities and the environment. Four scenarios of CO2 emissions are used including business as usual (BAU), energy efficiency improvement scenario (EEI), low carbon scenario (LC) and enhanced low carbon scenario (ELC). The results show that carbon intensity will be reduced by 40–45% as scheduled and economic growth rate will be 6% in China under LC scenario by 2020. The LC scenario, as the most appropriate and the most feasible scheme for China’s low-carbon development in the future, can maximize the harmonious development of economy, society, energy and environmental systems. Assuming China's development follows the LC scenario, the paper further gives four paths of low-carbon transformation in China: technological innovation, industrial structure optimization, energy structure optimization and policy guidance. PMID:24204922

  15. Scenario-Based Multi-Objective Optimum Allocation Model for Earthquake Emergency Shelters Using a Modified Particle Swarm Optimization Algorithm: A Case Study in Chaoyang District, Beijing, China

    PubMed Central

    Zhao, Xiujuan; Xu, Wei; Ma, Yunjia; Hu, Fuyu

    2015-01-01

    The correct location of earthquake emergency shelters and their allocation to residents can effectively reduce the number of casualties by providing safe havens and efficient evacuation routes during the chaotic period of the unfolding disaster. However, diverse and strict constraints and the discrete feasible domain of the required models make the problem of shelter location and allocation more difficult. A number of models have been developed to solve this problem, but there are still large differences between the models and the actual situation because the characteristics of the evacuees and the construction costs of the shelters have been excessively simplified. We report here the development of a multi-objective model for the allocation of residents to earthquake shelters by considering these factors using the Chaoyang district, Beijing, China as a case study. The two objectives of this model were to minimize the total weighted evacuation time from residential areas to a specified shelter and to minimize the total area of all the shelters. The two constraints were the shelter capacity and the service radius. Three scenarios were considered to estimate the number of people who would need to be evacuated. The particle swarm optimization algorithm was first modified by applying the von Neumann structure in former loops and global structure in later loops, and then used to solve this problem. The results show that increasing the shelter area can result in a large decrease in the total weighted evacuation time from scheme 1 to scheme 9 in scenario A, from scheme 1 to scheme 9 in scenario B, from scheme 1 to scheme 19 in scenario C. If the funding were not a limitation, then the final schemes of each scenario are the best solutions, otherwise the earlier schemes are more reasonable. The modified model proved to be useful for the optimization of shelter allocation, and the result can be used as a scientific reference for planning shelters in the Chaoyang district

  16. Scenario-Based Multi-Objective Optimum Allocation Model for Earthquake Emergency Shelters Using a Modified Particle Swarm Optimization Algorithm: A Case Study in Chaoyang District, Beijing, China.

    PubMed

    Zhao, Xiujuan; Xu, Wei; Ma, Yunjia; Hu, Fuyu

    2015-01-01

    The correct location of earthquake emergency shelters and their allocation to residents can effectively reduce the number of casualties by providing safe havens and efficient evacuation routes during the chaotic period of the unfolding disaster. However, diverse and strict constraints and the discrete feasible domain of the required models make the problem of shelter location and allocation more difficult. A number of models have been developed to solve this problem, but there are still large differences between the models and the actual situation because the characteristics of the evacuees and the construction costs of the shelters have been excessively simplified. We report here the development of a multi-objective model for the allocation of residents to earthquake shelters by considering these factors using the Chaoyang district, Beijing, China as a case study. The two objectives of this model were to minimize the total weighted evacuation time from residential areas to a specified shelter and to minimize the total area of all the shelters. The two constraints were the shelter capacity and the service radius. Three scenarios were considered to estimate the number of people who would need to be evacuated. The particle swarm optimization algorithm was first modified by applying the von Neumann structure in former loops and global structure in later loops, and then used to solve this problem. The results show that increasing the shelter area can result in a large decrease in the total weighted evacuation time from scheme 1 to scheme 9 in scenario A, from scheme 1 to scheme 9 in scenario B, from scheme 1 to scheme 19 in scenario C. If the funding were not a limitation, then the final schemes of each scenario are the best solutions, otherwise the earlier schemes are more reasonable. The modified model proved to be useful for the optimization of shelter allocation, and the result can be used as a scientific reference for planning shelters in the Chaoyang district

  17. Cosmological evolution of thermal relic particles in f (R ) gravity

    NASA Astrophysics Data System (ADS)

    Capozziello, S.; Galluzzi, V.; Lambiase, G.; Pizza, L.

    2015-10-01

    By considering f (R ) gravity models, the cosmic evolution is modified with respect to the standard Λ CDM scenario. In particular, the thermal history of particles results is modified. In this paper, we derive the evolution of relics particles (weakly interacting massive particles) assuming a reliable f (R ) cosmological solution and taking into account observational constraints. The connection to the PAMELA experiment is also discussed. Results are consistent with constraints coming from BICEP2 and PLANCK experiments.

  18. Signature of biased range in the non-dynamical Chern-Simons modified gravity and its measurements with satellite-satellite tracking missions: theoretical studies

    NASA Astrophysics Data System (ADS)

    Qiang, Li-E.; Xu, Peng

    2015-08-01

    Having great accuracy in the range and range rate measurements, the GRACE mission and the planed GRACE follow on mission can in principle be employed to place strong constraints on certain relativistic gravitational theories. In this paper, we work out the range observable of the non-dynamical Chern-Simons modified gravity for the satellite-to-satellite tracking (SST) measurements. We find out that a characteristic time accumulating range signal appears in non-dynamical Chern-Simons gravity, which has no analogue found in the standard parity-preserving metric theories of gravity. The magnitude of this Chern-Simons range signal will reach a few times of cm for each free flight of these SST missions, here is the dimensionless post-Newtonian parameter of the non-dynamical Chern-Simons theory. Therefore, with the 12 years data of the GRACE mission, one expects that the mass scale of the non-dynamical Chern-Simons gravity could be constrained to be larger than eV. For the GRACE FO mission that scheduled to be launched in 2017, the much stronger bound that eV is expected.

  19. Bouncing loop quantum cosmology in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Haro, J.; Makarenko, A. N.; Myagky, A. N.; Odintsov, S. D.; Oikonomou, V. K.

    2015-12-01

    We develop an effective Gauss-Bonnet extension of loop quantum cosmology, by introducing holonomy corrections in modified F (G ) theories of gravity. Within the context of our formalism, we provide a perturbative expansion in the critical density, a parameter characteristic of loop quantum gravity theories, and we result in having leading order corrections to the classical F (G ) theories of gravity. After extensively discussing the formalism, we present a reconstruction method that makes it possible to find the loop quantum cosmology corrected F (G ) theory that can realize various cosmological scenarios. We exemplify our theoretical constructions by using bouncing cosmologies, and we investigate which loop quantum cosmology corrected Gauss-Bonnet modified gravities can successfully realize such cosmologies.

  20. Constraining modified gravitational theories by weak lensing with Euclid

    SciTech Connect

    Martinelli, Matteo; Calabrese, Erminia; De Bernardis, Francesco; Melchiorri, Alessandro; Pagano, Luca; Scaramella, Roberto

    2011-01-15

    Future proposed satellite missions such as Euclid can offer the opportunity to test general relativity on cosmic scales through mapping of the galaxy weak-lensing signal. In this paper we forecast the ability of these experiments to constrain modified gravity scenarios such as those predicted by scalar-tensor and f(R) theories. We find that Euclid will improve constraints expected from the Planck satellite on these modified theories of gravity by 2 orders of magnitude. We discuss parameter degeneracies and the possible biases introduced by modifications to gravity.

  1. A cosmological exclusion plot: towards model-independent constraints on modified gravity from current and future growth rate data

    SciTech Connect

    Taddei, Laura

    2015-02-01

    Most cosmological constraints on modified gravity are obtained assuming that the cosmic evolution was standard ΛCDM in the past and that the present matter density and power spectrum normalization are the same as in a ΛCDM model. Here we examine how the constraints change when these assumptions are lifted. We focus in particular on the parameter Y (also called G{sub eff}) that quantifies the deviation from the Poisson equation. This parameter can be estimated by comparing with the model-independent growth rate quantity fσ{sub 8}(z) obtained through redshift distortions. We reduce the model dependency in evaluating Y by marginalizing over σ{sub 8} and over the initial conditions, and by absorbing the degenerate parameter Ω{sub m,0} into Y. We use all currently available values of fσ{sub 8}(z). We find that the combination Y-circumflex =YΩ{sub m,0}, assumed constant in the observed redshift range, can be constrained only very weakly by current data, Y-circumflex =0.28{sub −0.23}{sup +0.35} at 68% c.l. We also forecast the precision of a future estimation of Y-circumflex in a Euclid-like redshift survey. We find that the future constraints will reduce substantially the uncertainty, Y-circumflex =0.30{sub −0.09}{sup +0.08} , at 68% c.l., but the relative error on Y-circumflex around the fiducial remains quite high, of the order of 30%. The main reason for these weak constraints is that Y-circumflex is strongly degenerate with the initial conditions, so that large or small values of Y-circumflex are compensated by choosing non-standard initial values of the derivative of the matter density contrast. Finally, we produce a forecast of a cosmological exclusion plot on the Yukawa strength and range parameters, which complements similar plots on laboratory scales but explores scales and epochs reachable only with large-scale galaxy surveys. We find that future data can constrain the Yukawa strength to within 3% of the Newtonian one if the range is around a few

  2. Gravity's rainbow: A bridge between LQC and DSR

    NASA Astrophysics Data System (ADS)

    Gorji, M. A.; Nozari, K.; Vakili, B.

    2017-02-01

    The doubly special relativity (DSR) theories are constructed in order to take into account an observer-independent length scale in special relativity framework. Gravity's rainbow is a simple generalization of DSR theories to incorporate gravity. In this paper, we show that the effective Friedmann equations that are suggested by loop quantum cosmology (LQC) can be exactly reobtained in rainbow cosmology setup. The deformed geometry of LQC then fixes the modified dispersion relation and results in a unique DSR model. In comparison with standard LQC scenario where only the geometry is modified, both geometry and matter parts get modified in our setup. In this respect, we show that the total number of microstates for the universe is finite which suggests the statistical origin of the energy and entropy density bounds. These results explicitly show that the DSR theories are appropriate candidates for the flat limit of loop quantum gravity.

  3. Main methods of trajectory synthesis for scenarios of space missions with gravity assist maneuvers in the system of Jupiter and with landing on one of its satellites

    NASA Astrophysics Data System (ADS)

    Golubev, Yu. F.; Tuchin, A. G.; Grushevskii, A. V.; Koryanov, V. V.; Tuchin, D. A.; Morskoy, I. M.; Simonov, A. V.; Dobrovolskii, V. S.

    2016-12-01

    The development of a methodology for designing trajectories of spacecraft intended for the contact and remote studies of Jupiter and its natural satellites is considered. This methodology should take into account a number of specific features. Firstly, in order to maintain the propellant consumption at an acceptable level, the flight profile, ensuring the injection of the spacecraft into orbit around the Jovian moon, should include a large number of gravity assist maneuvers both in the interplanetary phase of the Earth-to-Jupiter flight and during the flight in the system of the giant planet. Secondly, the presence of Jupiter's powerful radiation belts also imposes fairly strict limitations on the trajectory parameters.

  4. Modified cumulative distribution function in application to waiting time analysis in the continuous time random walk scenario

    NASA Astrophysics Data System (ADS)

    Połoczański, Rafał; Wyłomańska, Agnieszka; Maciejewska, Monika; Szczurek, Andrzej; Gajda, Janusz

    2017-01-01

    The continuous time random walk model plays an important role in modelling of the so-called anomalous diffusion behaviour. One of the specific properties of such model is the appearance of constant time periods in the trajectory. In the continuous time random walk approach they are realizations of the sequence called waiting times. In this work we focus on the analysis of waiting time distribution by introducing novel methods of parameter estimation and statistical investigation of such a distribution. These methods are based on the modified cumulative distribution function. In this paper we consider three special cases of waiting time distributions, namely α-stable, tempered stable and gamma. However, the proposed methodology can be applied to broad set of distributions—in general it may serve as a method of fitting any distribution function if the observations are rounded. The new statistical techniques are applied to the simulated data as well as to the real data of \\text{C}{{\\text{O}}2} concentration in indoor air.

  5. Kinetic models for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: Logistic and modified Gompertz models.

    PubMed

    Phukoetphim, Niphaphat; Salakkam, Apilak; Laopaiboon, Pattana; Laopaiboon, Lakkana

    2017-02-10

    The aim of this study was to model batch ethanol production from sweet sorghum juice (SSJ), under normal gravity (NG, 160g/L of total sugar) and high gravity (HG, 240g/L of total sugar) conditions with and without nutrient supplementation (9g/L of yeast extract), by Saccharomyces cerevisiae NP 01. Growth and ethanol production increased with increasing initial sugar concentration, and the addition of yeast extract enhanced both cell growth and ethanol production. From the results, either logistic or a modified Gompertz equation could be used to describe yeast growth, depending on information required. Furthermore, the modified Gompertz model was suitable for modeling ethanol production. Both the models fitted the data very well with coefficients of determination exceeding 0.98. The results clearly showed that these models can be employed in the development of ethanol production processes using SSJ under both NG and HG conditions. The models were also shown to be applicable to other ethanol fermentation systems employing pure and mixed sugars as carbon sources.

  6. The bouncing cosmology with F(R) gravity and its reconstructing

    NASA Astrophysics Data System (ADS)

    Amani, Ali R.

    2016-04-01

    In this paper, we study F(R) gravity by Hu-Sawicki model in Friedmann-Lemaître-Robertson-Walker (FLRW) background. The Friedmann equations are calculated by modified gravity action, and then the obtained Friedmann equations are written in terms of standard Friedmann equations. Next, the behavior of bouncing cosmology is investigated in the modified gravity model, i.e. this behavior can solve the problem of nonsingularity in standard big bang cosmology. We plot the cosmological parameters in terms of cosmic time and then the bouncing condition is investigated. In what follows, we reconstruct the modified gravity by redshift parameter, and also graphs of cosmological parameters are plotted in terms of redshift, in which the figures show us an accelerated expansion of universe. Finally, the stability of the scenario is investigated by a function as sound speed, and the graph of sound speed versus redshift shows us that there is the stability in late-time.

  7. Comparison of the AVI, modified SINTACS and GALDIT vulnerability methods under future climate-change scenarios for a shallow low-lying coastal aquifer in southern Finland

    NASA Astrophysics Data System (ADS)

    Luoma, Samrit; Okkonen, Jarkko; Korkka-Niemi, Kirsti

    2016-09-01

    A shallow unconfined low-lying coastal aquifer in southern Finland surrounded by the Baltic Sea is vulnerable to changes in groundwater recharge, sea-level rise and human activities. Assessment of the intrinsic vulnerability of groundwater under climate scenarios was performed for the aquifer area by utilising the results of a published study on the impacts of climate change on groundwater recharge and sea-level rise on groundwater-seawater interaction. Three intrinsic vulnerability mapping methods, the aquifer vulnerability index (AVI), a modified SINTACS and GALDIT, were applied and compared. According to the results, the degree of groundwater vulnerability is greatly impacted by seasonal variations in groundwater recharge during the year, and also varies depending on the climate-change variability in the long term. The groundwater is potentially highly vulnerable to contamination from sources on the ground surface during high groundwater recharge rates after snowmelt, while a high vulnerability to seawater intrusion could exist when there is a low groundwater recharge rate in dry season. The AVI results suggest that a change in the sea level will have an insignificant impact on groundwater vulnerability compared with the results from the modified SINTACS and GALDIT. The modified SINTACS method could be used as a guideline for the groundwater vulnerability assessment of glacial and deglacial deposits in inland aquifers, and in combination with GALDIT, it could provide a useful tool for assessing groundwater vulnerability to both contamination from sources on the ground surface and to seawater intrusion for shallow unconfined low-lying coastal aquifers under future climate-change conditions.

  8. Testing modified gravity and no-hair relations for the Kerr-Newman metric through quasiperiodic oscillations of galactic microquasars

    NASA Astrophysics Data System (ADS)

    Suvorov, Arthur George; Melatos, Andrew

    2016-01-01

    We construct multipole moments for stationary, asymptotically flat, spacetime solutions to higher-order curvature theories of gravity. The moments are defined using 3 +1 techniques involving timelike Killing vector constructions as in the classic papers by Geroch and Hansen. Using the fact that the Kerr-Newman metric is a vacuum solution to a particular class of f (R ) theories of gravity, we compute all its moments, and find that they admit recurrence relations similar to those for the Kerr solution in general relativity. It has been proposed previously that modeling the measured frequencies of quasiperiodic oscillations from galactic microquasars enables experimental tests of the no-hair theorem. We explore the possibility that, even if the no-hair relation is found to break down in the context of general relativity, there may be an f (R ) counterpart that is preserved. We apply the results to the microquasars GRS 1915 +105 and GRO J1655-40 using the diskoseismology and kinematic resonance models, and constrain the spins and "charges" of their black holes.

  9. A geometric method of constructing exact solutions in modified f(R, T)-gravity with Yang-Mills and Higgs interactions

    NASA Astrophysics Data System (ADS)

    Vacaru, Sergiu I.; Veliev, Elşen Veli; Yazici, Enis

    2014-09-01

    We show that geometric techniques can be elaborated and applied for constructing generic off-diagonal exact solutions in f(R, T)-modified gravity for systems of gravitational-Yang-Mills-Higgs equations. The corresponding classes of metrics and generalized connections are determined by generating and integration functions which depend, in general, on all space and time coordinates and may possess, or not, Killing symmetries. For nonholonomic constraints resulting in Levi-Civita configurations, we can extract solutions of the Einstein-Yang-Mills-Higgs equations. We show that the constructions simplify substantially for metrics with at least one Killing vector. Some examples of exact solutions describing generic off-diagonal modifications to black hole/ellipsoid and solitonic configurations are provided and analyzed.

  10. Gravity destabilized non-wetting phase invasion in macro-heterogeneous porous media: Near pore scale macro modified invasion percolation simulation of experiments

    SciTech Connect

    GLASS JR.,ROBERT J.; CONRAD,STEPHEN H.; YARRINGTON,LANE

    2000-03-08

    The authors reconceptualize macro modified invasion percolation (MMIP) at the near pore (NP) scale and apply it to simulate the non-wetting phase invasion experiments of Glass et al [in review] conducted in macro-heterogeneous porous media. For experiments where viscous forces were non-negligible, they redefine the total pore filling pressure to include viscous losses within the invading phase as well as the viscous influence to decrease randomness imposed by capillary forces at the front. NP-MMIP exhibits the complex invasion order seen experimentally with characteristic alternations between periods of gravity stabilized and destabilized invasion growth controlled by capillary barriers. The breaching of these barriers and subsequent pore scale fingering of the non-wetting phase is represented extremely well as is the saturation field evolution, and total volume invaded.

  11. Modified brane cosmologies with induced gravity, arbitrary matter content, and a Gauss-Bonnet term in the bulk

    SciTech Connect

    Apostolopoulos, Pantelis S.; Brouzakis, Nikolaos; Tetradis, Nikolaos; Tzavara, Eleftheria

    2007-10-15

    We extend the covariant analysis of the brane cosmological evolution in order to take into account, apart from a general matter content and an induced-gravity term on the brane, a Gauss-Bonnet term in the bulk. The gravitational effect of the bulk matter on the brane evolution can be described in terms of the total bulk mass as measured by a bulk observer at the location of the brane. This mass appears in the effective Friedmann equation through a term characterized as generalized dark radiation that induces mirage effects in the evolution. We discuss the normal and self-accelerating branches of the combined system. We also derive the Raychaudhuri equation that can be used in order to determine if the cosmological evolution is accelerating.

  12. Bianchi type-I universe in f(R, T) modified gravity with quark matter and Λ

    NASA Astrophysics Data System (ADS)

    Ćaǧlar, Halife; Aygün, Sezgin

    2017-02-01

    In this study, we investigate homogeneous and anisotropic Bianchi type I universe in the presence of quark matter source in f(R, T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011) with cosmological constant Λ (where R is the Ricci scalar and T is the trace of the energy momentum tensor). For this aim we have used the anisotropy feature of Bianchi type I universe and equation of states (EoS) of quark matter. We explore the exact solution f(R,T)=R+2f(T) model for Bianchi type I universe model. When t→∞, we get very small cosmological constant value, this result agrees with recent observations.

  13. Non-anticommutative quantum gravity

    NASA Astrophysics Data System (ADS)

    Moffat, J. W.

    2015-06-01

    A calculation of the one loop gravitational self-energy graph in non-anticommutative quantum gravity reveals that graviton loops are damped by internal momentum dependent factors in the modified propagator and the vertex functions. The non-anticommutative quantum gravity perturbation theory is finite for matter-free gravity and for matter interactions.

  14. On the stability of Einstein static universe in doubly general relativity scenario

    NASA Astrophysics Data System (ADS)

    Khodadi, M.; Heydarzade, Y.; Nozari, K.; Darabi, F.

    2015-12-01

    By presenting a relation between the average energy of the ensemble of probe photons and the energy density of the universe, in the context of gravity's rainbow or the doubly general relativity scenario, we introduce a rainbow FRW universe model. By analyzing the fixed points in the flat FRW model modified by two well-known rainbow functions, we find that the finite time singularity avoidance (i.e. Big Bang) may still remain as a problem. Then we follow the "emergent universe" scenario in which there is no beginning of time and consequently there is no Big-Bang singularity. Moreover, we study the impact of high energy quantum gravity modifications related to the gravity's rainbow on the stability conditions of an "Einstein static universe" (ESU). We find that independent of the particular rainbow function, the positive energy condition dictates a positive spatial curvature for the universe. In fact, without raising a nonphysical energy condition in the quantum gravity regimes, we can observe agreement between gravity's rainbow scenario and the basic assumption of the modern version of the "emergent universe". We show that in the absence and presence of an energy-dependent cosmological constant Λ (ɛ ), a stable Einstein static solution is available versus the homogeneous and linear scalar perturbations under the variety of the obtained conditions. Also, we explore the stability of ESU against the vector and tensor perturbations.

  15. Higher-derivative f(R,□R,T) theories of gravity

    NASA Astrophysics Data System (ADS)

    Houndjo, M. J. S.; Rodrigues, M. E.; Mazhari, N. S.; Momeni, D.; Myrzakulov, R.

    In literature, there is a model of modified gravity in which the matter Lagrangian is coupled to the geometry via trace of the stress-energy-momentum tensor T = Tμμ. This type of modified gravity is denoted f(R,T) in which R is Ricci scalar R = Rμμ. We extend manifestly this model to include the higher derivative term □R. We derived equations of motion (EOM) for the model by starting from the basic variational principle. Later we investigate FLRW cosmology for our model. We show that de Sitter (dS) solution is unstable for a generic type of f(R,□R,T) model. Furthermore we investigate an inflationary scenario based on this model. A graceful exit from inflation is guaranteed in this type of modified gravity.

  16. Alternative scenarios utilizing nonterrestrial resources

    NASA Technical Reports Server (NTRS)

    Eldred, Charles H.; Roberts, Barney B.

    1992-01-01

    A collection of alternative scenarios that are enabled or substantially enhanced by the utilization of nonterrestrial resources is provided. We take a generalized approach to scenario building so that our report will have value in the context of whatever goals are eventually chosen. Some of the topics covered include the following: lunar materials processing; asteroid mining; lunar resources; construction of a large solar power station; solar dynamic power for the space station; reduced gravity; mission characteristics and options; and tourism.

  17. Cosmological constraints on the modified entropic force model

    NASA Astrophysics Data System (ADS)

    Wei, Hao

    2010-08-01

    Very recently, Verlinde considered a theory in which space is emergent through a holographic scenario, and proposed that gravity can be explained as an entropic force caused by changes in the information associated with the positions of material bodies. Then, motivated by the Debye model in thermodynamics which is very successful in very low temperatures, Gao modified the entropic force scenario. The modified entropic force (MEF) model is in fact a modified gravity model, and the universe can be accelerated without dark energy. In the present work, we consider the cosmological constraints on the MEF model, and successfully constrain the model parameters to a narrow range. We also discuss many other issues of the MEF model. In particular, we clearly reveal the implicit root to accelerate the universe in the MEF model.

  18. Large-scale structure in f(T) gravity

    SciTech Connect

    Li Baojiu; Sotiriou, Thomas P.; Barrow, John D.

    2011-05-15

    In this work we study the cosmology of the general f(T) gravity theory. We express the modified Einstein equations using covariant quantities, and derive the gauge-invariant perturbation equations in covariant form. We consider a specific choice of f(T), designed to explain the observed late-time accelerating cosmic expansion without including an exotic dark energy component. Our numerical solution shows that the extra degree of freedom of such f(T) gravity models generally decays as one goes to smaller scales, and consequently its effects on scales such as galaxies and galaxies clusters are small. But on large scales, this degree of freedom can produce large deviations from the standard {Lambda}CDM scenario, leading to severe constraints on the f(T) gravity models as an explanation to the cosmic acceleration.

  19. Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.

    2000-01-01

    atmosphere of the Earth. Supercomputers can calculate the effect of gravity for specific locations in space following a mathematical process known as spherical harmonics, which quantifies the gravity field of a planetary body. The process is based on Laplace's fundamental differential equation of gravity. The accuracy of a spherical harmonic solution is rated by its degree and order. Minute variations in gravity are measured against the geoid, a surface of constant gravity acceleration at mean sea level. The geoid reference gravity model strength includes the central body gravitational attraction (9.8 m/sq s) and a geopotential variation in latitude partially caused by the rotation of the Earth. The rotational effect modifies the shape of the geoid to be more like an ellipsoid, rather than a perfect, circle. Variations of gravity strength from the ellipsoidal reference model are measured in units called milli-Galileos (mGals). One mGal equals 10(exp -5) m/sq s. Research projects have also measured the gravity fields of other planetary bodies, as noted in the user profile that follows. From this information, we may make inferences about our own planet's internal structure and evolution. Moreover, mapping the gravity fields of other planets can help scientists plot the most fuel-efficient course for spacecraft expeditions to those planets.

  20. Tongji-GRACE01: A GRACE-only static gravity field model recovered from GRACE Level-1B data using modified short arc approach

    NASA Astrophysics Data System (ADS)

    Chen, Qiujie; Shen, Yunzhong; Zhang, Xingfu; Chen, Wu; Hsu, Houze

    2015-09-01

    The modified short arc approach, where the position vector in force model are regarded as pseudo observation, is implemented in the SAtellite Gravimetry Analysis Software (SAGAS) developed by Tongji university. Based on the SAGAS platform, a static gravity field model (namely Tongji-GRACE01) complete to degree and order 160 is computed from 49 months of real GRACE Level-1B data spanning the period 2003-2007 (including the observations of K-band range-rate, reduced dynamic orbits, non-conservative accelerations and altitudes). The Tongji-GRACE01 model is compared with the recent GRACE-only models (such as GGM05S, AIUB-GRACE03S, ITG-GRACE03, ITG-GRACE2010S, and ITSG-GRACE2014S) and validated with GPS-leveling data sets in different countries. The results show that the Tongji-GRACE01 model has a considered quality as GGM05S, AIUB-GRACE03S and ITG-GRACE03. The Tongji-GRACE01 model is available at the International Centre for Global Earth Models (ICGEM) web page (http://icgem.gfz-potsdam.de/ICGEM/).

  1. Scenarios for gluino coannihilation

    DOE PAGES

    Ellis, John; Evans, Jason L.; Luo, Feng; ...

    2016-02-11

    In this article, we study supersymmetric scenarios in which the gluino is the next-to-lightest supersymmetric particle (NLSP), with a mass sufficiently close to that of the lightest supersymmetric particle (LSP) that gluino coannihilation becomes important. One of these scenarios is the MSSM with soft supersymmetry-breaking squark and slepton masses that are universal at an input GUT renormalization scale, but with non-universal gaugino masses. The other scenario is an extension of the MSSM to include vector-like supermultiplets. In both scenarios, we identify the regions of parameter space where gluino coannihilation is important, and discuss their relations to other regions of parametermore » space where other mechanisms bring the dark matter density into the range allowed by cosmology. In the case of the non-universal MSSM scenario, we find that the allowed range of parameter space is constrained by the requirement of electroweak symmetry breaking, the avoidance of a charged LSP and the measured mass of the Higgs boson, in particular, as well as the appearance of other dark matter (co)annihilation processes. Nevertheless, LSP masses mX ≲ 8TeV with the correct dark matter density are quite possible. In the case of pure gravity mediation with additional vector-like supermultiplets, changes to the anomaly-mediated gluino mass and the threshold effects associated with these states can make the gluino almost degenerate with the LSP, and we find a similar upper bound.« less

  2. Scenarios for gluino coannihilation

    SciTech Connect

    Ellis, John; Evans, Jason L.; Luo, Feng; Olive, Keith A.

    2016-02-11

    In this article, we study supersymmetric scenarios in which the gluino is the next-to-lightest supersymmetric particle (NLSP), with a mass sufficiently close to that of the lightest supersymmetric particle (LSP) that gluino coannihilation becomes important. One of these scenarios is the MSSM with soft supersymmetry-breaking squark and slepton masses that are universal at an input GUT renormalization scale, but with non-universal gaugino masses. The other scenario is an extension of the MSSM to include vector-like supermultiplets. In both scenarios, we identify the regions of parameter space where gluino coannihilation is important, and discuss their relations to other regions of parameter space where other mechanisms bring the dark matter density into the range allowed by cosmology. In the case of the non-universal MSSM scenario, we find that the allowed range of parameter space is constrained by the requirement of electroweak symmetry breaking, the avoidance of a charged LSP and the measured mass of the Higgs boson, in particular, as well as the appearance of other dark matter (co)annihilation processes. Nevertheless, LSP masses mX ≲ 8TeV with the correct dark matter density are quite possible. In the case of pure gravity mediation with additional vector-like supermultiplets, changes to the anomaly-mediated gluino mass and the threshold effects associated with these states can make the gluino almost degenerate with the LSP, and we find a similar upper bound.

  3. Gravity Waves

    Atmospheric Science Data Center

    2013-04-19

    article title:  Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...

  4. Free-fall frame black hole in gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Tao, Jun; Wang, Peng; Yang, Haitang

    2016-09-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. To incorporate DSR into general relativity, one could use "gravity's rainbow," where the spacetime background felt by a test particle would depend on its energy. In this scenario, one could rewrite the rainbow metric gμ ν(E ) in terms of some orthonormal frame fields and use the modified equivalence principle to determine the energy dependence of gμ ν(E ) . Obviously, the form of gμ ν(E ) depends on the choice of the orthonormal frame. For a static black hole, there are two natural orthonormal frames: the static one hovering above it and the freely falling one along geodesics. The cases with the static orthonormal frame have been extensively studied by many authors. The aim of this paper is to investigate properties of rainbow black holes in the scenario with the free-fall orthonormal frame. We first derive the metric of rainbow black holes and their Hawking temperatures in this free-fall scenario. Then, the thermodynamics of a rainbow Schwarzschild black hole is studied. Finally, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a Schwarzschild rainbow black hole in this free-fall scenario.

  5. Fast Density Inversion Solution for Full Tensor Gravity Gradiometry Data

    NASA Astrophysics Data System (ADS)

    Hou, Zhenlong; Wei, Xiaohui; Huang, Danian

    2016-02-01

    We modify the classical preconditioned conjugate gradient method for full tensor gravity gradiometry data. The resulting parallelized algorithm is implemented on a cluster to achieve rapid density inversions for various scenarios, overcoming the problems of computation time and memory requirements caused by too many iterations. The proposed approach is mainly based on parallel programming using the Message Passing Interface, supplemented by Open Multi-Processing. Our implementation is efficient and scalable, enabling its use with large-scale data. We consider two synthetic models and real survey data from Vinton Dome, US, and demonstrate that our solutions are reliable and feasible.

  6. Venus gravity

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter (PVO) by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter was evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  7. Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators

    NASA Astrophysics Data System (ADS)

    Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello

    2016-04-01

    Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.

  8. Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.

    PubMed

    Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello

    2016-04-22

    Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.

  9. Evaluating Material Flammability in Microgravity and Martian Gravity Compared to the NASA Standard Normal Gravity Test

    NASA Technical Reports Server (NTRS)

    Oslon, Sandra. L.; Ferkul, Paul

    2012-01-01

    Drop tower tests are conducted at Martian gravity to determine the flammability of three materials compared to previous tests in other normal gravity and reduced gravity environments. The comparison is made with consideration of a modified NASA standard test protocol. Material flammability limits in the different gravity and flow environments are tabulated to determine the factor of safety associated with normal gravity flammability screening. Previous testing at microgravity and Lunar gravity indicated that some materials burned to lower oxygen concentrations in low gravity than in normal gravity, although the low g extinction limit criteria are not the same as 1g due to time constraints in drop testing. Similarly, the data presented in this paper for Martian gravity suggest that there is a gravity level below Earth s at which materials burn more readily than on Earth. If proven for more materials, this may indicate the need to include a factor of safety on 1g flammability limits.

  10. Variable Gravity Research Facility - A concept

    NASA Technical Reports Server (NTRS)

    Wercinski, Paul F.; Smith, Marcie A.; Synnestvedt, Robert G.; Keller, Robert G.

    1990-01-01

    Is human exposure to artificial gravity necessary for Mars mission success, and if so, what is the optimum means of achieving artificial gravity? Answering these questions prior to the design of a Mars vehicle would require construction and operation of a dedicated spacecraft in low earth orbit. This paper summarizes the study results of a conceptual design and operations scenario for such a spacecraft, called the Variable Gravity Research Facility (VGRF).

  11. Quantum gravity.

    NASA Astrophysics Data System (ADS)

    Maślanka, K.

    A model of reality based on quantum fields, but with a classical treatment of gravity, is inconsistent. Finding a solution has proved extremely difficult, possibly due to the beauty and conceptual simplicity of general relativity. There is a variety of approaches to a consistent theory of quntum gravity. At present, it seems that superstring theory is the most promising candidate.

  12. Gravity investigations

    SciTech Connect

    Healey, D.L.

    1983-12-31

    A large density contrast exists between the Paleozoic rocks (including the rocks of Climax stock) and less dense, Tertiary volcanic rocks and alluvium. This density contrast ranges widely, and herein for interpretive purposes, is assumed to average 0.85 Mg/m{sup 3} (megagrams per cubic meter). The large density contrast makes the gravity method a useful tool with which to study the interface between these rock types. However, little or no density contrast is discernible between the sedimentary Paleozoic rocks that surround the Climax stock and the intrusive rocks of the stock itself. Therefore the gravity method can not be used to define the configuration of the stock. Gravity highs coincide with outcrops of the dense Paleozoic rocks, and gravity lows overlie less-dense Tertiary volcanic rocks and Quaternary alluvium. The positions of three major faults (Boundary, Yucca, and Butte faults) are defined by steep gravity gradients. West of the Climax stock, the Tippinip fault has juxtaposed Paleozoic rocks of similar density, and consequently, has no expression in the gravity data in that area. The gravity station spacing, across Oak Spring Butte, is not sufficient to adequately define any gravity expression of the Tippinip fault. 18 refs., 5 figs.

  13. Partial gravity habitat study: With application to lunar base design

    NASA Technical Reports Server (NTRS)

    Capps, Stephen; Lorandos, Jason; Akhidime, Eval; Bunch, Michael; Lund, Denise; Moore, Nathan; Murakawa, Kio; Bell, Larry; Trotti, Guillermo; Neubek, Deb

    1989-01-01

    Comprehensive design requirements associated with designing habitats for humans in a partial gravity environment were investigated and then applied to a lunar base design. Other potential sites for application include planetary surfaces such as Mars, variable gravity research facilities, or a rotating spacecraft. Design requirements for partial gravity environments include: (1) locomotion changes in less than normal Earth gravity; (2) facility design issues, such as interior configuration, module diameter and geometry; and (3) volumetric requirements based on the previous as well as psychological issues involved in prolonged isolation. For application to a Lunar Base, it was necessary to study the exterior architecture and configuration to insure optimum circulation patterns while providing dual egress. Radiation protection issues were addressed to provide a safe and healthy environment for the crew, and finally, the overall site was studied to locate all associated facilities in context with the habitat. Mission planning was not the purpose of this study; therefore, a Lockheed scenario was used as an outline for the Lunar Base application, which was then modified to meet the project needs.

  14. Cosmological tests of gravity

    SciTech Connect

    Jain, Bhuvnesh; Khoury, Justin

    2010-07-15

    Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the universe. We review recent developments in modified gravity theories, focusing on higher-dimensional approaches and chameleon/f(R) theories. We classify these models in terms of the screening mechanisms that enable such theories to approach general relativity on small scales (and thus satisfy solar system constraints). We describe general features of the modified Friedman equation in such theories. The second half of this review describes experimental tests of gravity in light of the new theoretical approaches. We summarize the high precision tests of gravity on laboratory and solar system scales. We describe in some detail tests on astrophysical scales ranging from {approx} kpc (galaxy scales) to {approx} Gpc (large-scale structure). These tests rely on the growth and inter-relationship of perturbations in the metric potentials, density and velocity fields which can be measured using gravitational lensing, galaxy cluster abundances, galaxy clustering and the integrated Sachs-Wolfe effect. A robust way to interpret observations is by constraining effective parameters, such as the ratio of the two metric potentials. Currently tests of gravity on astrophysical scales are in the early stages - we summarize these tests and discuss the interesting prospects for new tests in the coming decade.

  15. A gravity assist primer

    NASA Technical Reports Server (NTRS)

    Cesarone, R. J.

    1989-01-01

    An account is given of the method by which the 'energy gain' accruing to a spacecraft as a result of its 'gravity-assist', parabolic-trajectory flyby of a massive body, such as a planet. The procedure begins with the solution of the two-body portion of the problem, and the results thus obtained are used to calculate changes with respect to the other massive body in the overall scenario, namely the sun. Attention is given to the 'vector diagram' often used to display the gravity-assist effect. The present procedure is noted to be reasonably accurate for flybys in which the plane of the spacecraft's trajectory is approximately the same as that of the planet's orbit around the sun, or the ecliptic plane; this reduces the problem to one in two dimensions.

  16. Gravity brake

    DOEpatents

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  17. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  18. Non-local F(R)-mimetic gravity

    NASA Astrophysics Data System (ADS)

    Myrzakulov, Ratbay; Sebastiani, Lorenzo

    2016-06-01

    In this paper, we study non-local F(R)-mimetic gravity. We implement mimetic gravity in the framework of non-local F(R)-theories of gravity. Given some specific class of models and using a potential on the mimetic field, we investigate some scenarios related to the early-time universe, namely the inflation and the cosmological bounce, which bring to Einstein's gravity with cold dark matter at the late-time.

  19. Analogue Gravity.

    PubMed

    Barceló, Carlos; Liberati, Stefano; Visser, Matt

    2011-01-01

    Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).

  20. Testing chameleon gravity with the Coma cluster

    NASA Astrophysics Data System (ADS)

    Terukina, Ayumu; Lombriser, Lucas; Yamamoto, Kazuhiro; Bacon, David; Koyama, Kazuya; Nichol, Robert C.

    2014-04-01

    We propose a novel method to test the gravitational interactions in the outskirts of galaxy clusters. When gravity is modified, this is typically accompanied by the introduction of an additional scalar degree of freedom, which mediates an attractive fifth force. The presence of an extra gravitational coupling, however, is tightly constrained by local measurements. In chameleon modifications of gravity, local tests can be evaded by employing a screening mechanism that suppresses the fifth force in dense environments. While the chameleon field may be screened in the interior of the cluster, its outer region can still be affected by the extra force, introducing a deviation between the hydrostatic and lensing mass of the cluster. Thus, the chameleon modification can be tested by combining the gas and lensing measurements of the cluster. We demonstrate the operability of our method with the Coma cluster, for which both a lensing measurement and gas observations from the X-ray surface brightness, the X-ray temperature, and the Sunyaev-Zel'dovich effect are available. Using the joint observational data set, we perform a Markov chain Monte Carlo analysis of the parameter space describing the different profiles in both the Newtonian and chameleon scenarios. We report competitive constraints on the chameleon field amplitude and its coupling strength to matter. In the case of f(R) gravity, corresponding to a specific choice of the coupling, we find an upper bound on the background field amplitude of |fR0| < 6 × 10-5, which is currently the tightest constraint on cosmological scales.

  1. Regional gravity field modelling from GOCE observables

    NASA Astrophysics Data System (ADS)

    Pitoňák, Martin; Šprlák, Michal; Novák, Pavel; Tenzer, Robert

    2017-01-01

    In this article we discuss a regional recovery of gravity disturbances at the mean geocentric sphere approximating the Earth over the area of Central Europe from satellite gravitational gradients. For this purpose, we derive integral formulas which allow converting the gravity disturbances onto the disturbing gravitational gradients in the local north-oriented frame (LNOF). The derived formulas are free of singularities in case of r ≠ R . We then investigate three numerical approaches for solving their inverses. In the initial approach, the integral formulas are firstly modified for solving individually the near- and distant-zone contributions. While the effect of the near-zone gravitational gradients is solved as an inverse problem, the effect of the distant-zone gravitational gradients is computed by numerical integration from the global gravitational model (GGM) TIM-r4. In the second approach, we further elaborate the first scenario by reducing measured gravitational gradients for gravitational effects of topographic masses. In the third approach, we apply additional modification by reducing gravitational gradients for the reference GGM. In all approaches we determine the gravity disturbances from each of the four accurately measured gravitational gradients separately as well as from their combination. Our regional gravitational field solutions are based on the GOCE EGG_TRF_2 gravitational gradients collected within the period from November 1 2009 until January 11 2010. Obtained results are compared with EGM2008, DIR-r1, TIM-r1 and SPW-r1. The best fit, in terms of RMS (2.9 mGal), is achieved for EGM2008 while using the third approach which combine all four well-measured gravitational gradients. This is explained by the fact that a-priori information about the Earth's gravitational field up to the degree and order 180 was used.

  2. Testing chameleon gravity with the Coma cluster

    SciTech Connect

    Terukina, Ayumu; Yamamoto, Kazuhiro; Lombriser, Lucas; Bacon, David; Koyama, Kazuya; Nichol, Robert C. E-mail: lucas.lombriser@port.ac.uk E-mail: david.bacon@port.ac.uk E-mail: bob.nichol@port.ac.uk

    2014-04-01

    We propose a novel method to test the gravitational interactions in the outskirts of galaxy clusters. When gravity is modified, this is typically accompanied by the introduction of an additional scalar degree of freedom, which mediates an attractive fifth force. The presence of an extra gravitational coupling, however, is tightly constrained by local measurements. In chameleon modifications of gravity, local tests can be evaded by employing a screening mechanism that suppresses the fifth force in dense environments. While the chameleon field may be screened in the interior of the cluster, its outer region can still be affected by the extra force, introducing a deviation between the hydrostatic and lensing mass of the cluster. Thus, the chameleon modification can be tested by combining the gas and lensing measurements of the cluster. We demonstrate the operability of our method with the Coma cluster, for which both a lensing measurement and gas observations from the X-ray surface brightness, the X-ray temperature, and the Sunyaev-Zel'dovich effect are available. Using the joint observational data set, we perform a Markov chain Monte Carlo analysis of the parameter space describing the different profiles in both the Newtonian and chameleon scenarios. We report competitive constraints on the chameleon field amplitude and its coupling strength to matter. In the case of f(R) gravity, corresponding to a specific choice of the coupling, we find an upper bound on the background field amplitude of |f{sub R0}| < 6 × 10{sup −5}, which is currently the tightest constraint on cosmological scales.

  3. Cosmological footprints of loop quantum gravity.

    PubMed

    Grain, J; Barrau, A

    2009-02-27

    The primordial spectrum of cosmological tensor perturbations is considered as a possible probe of quantum gravity effects. Together with string theory, loop quantum gravity is one of the most promising frameworks to study quantum effects in the early universe. We show that the associated corrections should modify the potential seen by gravitational waves during the inflationary amplification. The resulting power spectrum should exhibit a characteristic tilt. This opens a new window for cosmological tests of quantum gravity.

  4. New exact solutions of time fractional modified Kawahara equations in modelling surface tension in shallow-water and capillary gravity water waves

    NASA Astrophysics Data System (ADS)

    Saha Ray, S.; Sahoo, S.

    2017-01-01

    In the present paper, we construct the analytical exact solutions of some nonlinear evolution equations in mathematical physics; namely time fractional modified Kawahara equations by using the ( G^'/G)-expansion method via fractional complex transform. As a result, new types of exact analytical solutions are obtained.

  5. Cosmological perturbations in unimodular gravity

    SciTech Connect

    Gao, Caixia; Brandenberger, Robert H.; Cai, Yifu; Chen, Pisin E-mail: rhb@hep.physics.mcgill.ca E-mail: chen@slac.stanford.edu

    2014-09-01

    We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metric perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.

  6. Testing gravity theories using tensor perturbations

    NASA Astrophysics Data System (ADS)

    Lin, Weikang; Ishak-Boushaki, Mustapha B.

    2017-01-01

    Primordial gravitational waves constitute a promising probe of the very early universe physics and the laws of gravity. We study the changes to tensor-mode perturbations that can arise in various modified gravity theories. These include a modified friction and a nonstandard dispersion relation. We introduce a physically motivated parametrization of these effects and use current data to obtain excluded parameter spaces. Taking into account the foreground subtraction, we then perform a forecast analysis focusing on the tensor-mode modified-gravity parameters as constrained by future experiments COrE, Stage-IV and PIXIE. For the tensor-to-scalar ratio r=0.01, we find the minimum detectible modified-gravity effects. In particular, the minimum detectable graviton mass is about 7.8˜9.7×10-33 eV, which is of the same order of magnitude as the graviton mass that allows massive gravity to produce late-time cosmic acceleration. Finally, we study the tensor-mode perturbations in modified gravity during inflation. We find that, the tensor spectral index would be additionally related to the friction parameter ν0 by nT=-3ν0-r/8. In some cases, the future experiments will be able to distinguish this relation from the standard one. In sum, primordial gravitational waves provide a complementary avenue to test gravity theories.

  7. Simulating Gravity

    ERIC Educational Resources Information Center

    Pipinos, Savas

    2010-01-01

    This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…

  8. Gravity settling

    DOEpatents

    Davis, Hyman R.; Long, R. H.; Simone, A. A.

    1979-01-01

    Solids are separated from a liquid in a gravity settler provided with inclined solid intercepting surfaces to intercept the solid settling path to coalesce the solids and increase the settling rate. The intercepting surfaces are inverted V-shaped plates, each formed from first and second downwardly inclined upwardly curved intersecting conical sections having their apices at the vessel wall.

  9. Entropy and temperature of black holes in a gravity's rainbow

    SciTech Connect

    Galan, Pablo; Mena Marugan, Guillermo A.

    2006-08-15

    The linear relation between the entropy and area of a black hole can be derived from the Heisenberg principle, the energy-momentum dispersion relation of special relativity, and general considerations about black holes. There exist results in quantum gravity and related contexts suggesting the modification of the usual dispersion relation and uncertainty principle. One of these contexts is the gravity's rainbow formalism. We analyze the consequences of such a modification for black hole thermodynamics from the perspective of two distinct rainbow realizations built from doubly special relativity. One is the proposal of Magueijo and Smolin and the other is based on a canonical implementation of doubly special relativity put forward recently by the authors. In these scenarios, we obtain modified expressions for the entropy and temperature of black holes. We show that, for a family of doubly special relativity theories satisfying certain properties, the temperature can vanish in the limit of zero black hole mass. For the Magueijo and Smolin proposal, this is only possible for some restricted class of models with bounded energy and unbounded momentum. With the proposal of a canonical implementation, on the other hand, the temperature may vanish for more general theories; in particular, the momentum may also be bounded, with bounded or unbounded energy. This opens new possibilities for the outcome of black hole evaporation in the framework of a gravity's rainbow.

  10. The orthogonally aligned dark halo of an edge-on lensing galaxy in the Hubble Frontier Fields: a challenge for modified gravity

    NASA Astrophysics Data System (ADS)

    Diego, Jose M.; Broadhurst, Tom; Benitez, Narciso; Lim, Jeremy; Lam, Daniel

    2015-05-01

    We examine a well-resolved lensed image that is bent by an edge-on lenticular galaxy, in the Hubble Frontier Fields (HFF) data of MACSJ0416.1-20403. The fortuitous combination of a long arc (zs ≈ 1 ± 0.2) intersecting an edge-on galaxy from the cluster (z = 0.4) provides an opportunity to constrain its dark matter (DM) halo and its orientation. We model the stellar lensing contribution and we add to this a standard parametrized dark halo component. Irrespective of the detailed choice of parameters, we obtain a combined total mass of ≈3 × 1011 M⊙. Depending on the dark halo parameters, the stellar contribution to this is limited to the range 5-15 × 1010 M⊙, or 20-50 per cent of the total mass, in good agreement with the independent (photmetric) stellar mass of 5 × 1010 M⊙ (Chabrier IMF), or 8 × 1010 M⊙ (Salpeter IMF). The major axis of the DM halo is constrained to be nearly orthogonal to the plane of the galaxy, and with an ellipticity e ≈ 0.15 corresponding to an axis ratio a/c = 0.54. We show that these conclusions are very weakly dependent on the model of the cluster, or the additional influence of neighbouring galaxies or the properties of the lensed source. Alternative theories of gravity that do not require DM are challenged by this finding since generically these must be tied to the baryonic component which is highly disfavoured by our results. Other such fortuitously useful lenses can be examined this way as they become uncovered with more HFF data to help provide a more statistical distribution of galaxy halo properties.

  11. Chiral fermions in asymptotically safe quantum gravity.

    PubMed

    Meibohm, J; Pawlowski, J M

    2016-01-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  12. Gravity waves from cosmic bubble collisions

    SciTech Connect

    Salem, Michael P.; Saraswat, Prashant; Shaghoulian, Edgar E-mail: ps88@stanford.edu

    2013-02-01

    Our local Hubble volume might be contained within a bubble that nucleated in a false vacuum with only two large spatial dimensions. We study bubble collisions in this scenario and find that they generate gravity waves, which are made possible in this context by the reduced symmetry of the global geometry. These gravity waves would produce B-mode polarization in the cosmic microwave background, which could in principle dominate over the inflationary background.

  13. How can rainbow gravity affect gravitational force?

    NASA Astrophysics Data System (ADS)

    Sefiedgar, Akram Sadat

    According to Verlinde’s recent proposal, the gravity is originally an entropic force. In this paper, we obtain the corrections to the entropy-area law of black holes within rainbow gravity. The corrected entropy-area law leads to the modifications of the number of bits N. Inspired by Verlinde’s argument on the entropic force, and using the modified number of bits, we can investigate the effects of rainbow gravity on the modified Newtonian dynamics, Newton’s law of gravitation, and Einstein’s general relativity in entropic force approach.

  14. Stochastic gravity

    NASA Astrophysics Data System (ADS)

    Ross, D. K.; Moreau, William

    1995-08-01

    We investigate stochastic gravity as a potentially fruitful avenue for studying quantum effects in gravity. Following the approach of stochastic electrodynamics ( sed), as a representation of the quantum gravity vacuum we construct a classical state of isotropic random gravitational radiation, expressed as a spin-2 field,h µυ (x), composed of plane waves of random phase on a flat spacetime manifold. Requiring Lorentz invariance leads to the result that the spectral composition function of the gravitational radiation,h(ω), must be proportional to 1/ω 2. The proportionality constant is determined by the Planck condition that the energy density consist ofħω/2 per normal mode, and this condition sets the amplitude scale of the random gravitational radiation at the order of the Planck length, giving a spectral composition functionh(ω) =√16πc 2Lp/ω2. As an application of stochastic gravity, we investigate the Davies-Unruh effect. We calculate the two-point correlation function (R iojo(Oτ-δτ/2)R kolo(O,τ+δτ/2)) of the measureable geodesic deviation tensor field,R iojo, for two situations: (i) at a point detector uniformly accelerating through the random gravitational radiation, and (ii) at an inertial detector in a heat bath of the random radiation at a finite temperature. We find that the two correlation functions agree to first order inaδτ/c provided that the temperature and acceleration satisfy the relationkT=ħa/2πc.

  15. Satellite borne gravity gradiometer study

    NASA Technical Reports Server (NTRS)

    Metzger, E.; Jircitano, A.; Affleck, C.

    1976-01-01

    Gravity gradiometry is recognized to be a very difficult instrumentation problem because extremely small differential acceleration levels have to be measured, 0.1 EU corresponds to an acceleration of 10 to the minus 11th power g at two points 1 meter apart. A feasibility model of a gravity gradiometer is being developed for airborne applications using four modified versions of the proven Model VII accelerometers mounted on a slowly rotating fixture. Gravity gradients are being measured to 1.07 EU in a vertical rotation axis orientation. Equally significant are the outstanding operational characteristics such as fast reaction time, low temperature coefficients and high degree of bias stability over long periods of time. The rotating accelerometer gravity gradiometer approach and its present status is discussed and it is the foundation for the orbital gravity gradiometer analyzed. The performance levels achieved in a 1 g environment of the earth and under relatively high seismic disturbances, lend the orbital gravity gradiometer a high confidence level of success.

  16. Probing Gravity with Spacetime Sirens

    NASA Astrophysics Data System (ADS)

    Deffayet, Cédric; Menou, Kristen

    2007-10-01

    A gravitational observatory such as LISA will detect coalescing pairs of massive black holes, accurately measure their luminosity distance, and help identify a host galaxy or an electromagnetic counterpart. If dark energy is a manifestation of modified gravity on large scales, gravitational waves from cosmologically distant spacetime sirens are direct probes of this new physics. For example, a gravitational Hubble diagram based on black hole pair luminosity distances and host galaxy redshifts could reveal a large distance extradimensional leakage of gravity. Various additional signatures may be expected in a gravitational signal propagated over cosmological scales.

  17. Covariant Hořava-like and mimetic Horndeski gravity: cosmological solutions and perturbations

    NASA Astrophysics Data System (ADS)

    Cognola, Guido; Myrzakulov, Ratbay; Sebastiani, Lorenzo; Vagnozzi, Sunny; Zerbini, Sergio

    2016-11-01

    We consider a variant of the Nojiri-Odintsov covariant Hořava-like gravitational model, where diffeomorphism invariance is broken dynamically via a non-standard coupling to a perfect fluid. The theory allows one to address some of the potential instability problems present in Hořava-Lifshitz gravity due to explicit diffeomorphism invariance breaking. The fluid is instead constructed from a scalar field constrained by a Lagrange multiplier. In fact, the Lagrange multiplier construction allows for an extension of the Hořava-like model to include the scalar field of mimetic gravity, an extension which we thoroughly explore. By adding a potential for the scalar field, we show how one can reproduce a number of interesting cosmological scenarios. We then turn to the study of perturbations around a flat FLRW background, showing that the fluid in question behaves as an irrotational fluid, with zero sound speed. To address this problem, we consider a modified version of the theory, adding higher derivative terms in a way which brings us beyond the Horndeski framework. We compute the sound speed in this modified higher order mimetic Hořava-like model and show that it is non-zero, which means that perturbations therein can be sensibly defined. Caveats to our analysis, as well as comparisons to projectable Hořava-Lifshitz gravity, are also discussed. In conclusion, we present a theory of gravity which preserves diffeomorphism invariance at the level of the action but breaks it dynamically in the UV, reduces to General Relativity (GR) in the IR, allows the realization of a number of interesting cosmological scenarios, is well defined when considering perturbations around a flat FLRW background, and features cosmological dark matter emerging as an integration constant.

  18. Bringing Gravity to Space

    NASA Technical Reports Server (NTRS)

    Norsk, P.; Shelhamer, M.

    2016-01-01

    This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.

  19. Unimodular f(T) gravity

    NASA Astrophysics Data System (ADS)

    Nassur, S. B.; Ainamon, C.; Houndjo, M. J. S.; Tossa, J.

    2016-12-01

    We have set the goal to reconstruct the geometric actions f( T) in unimodular f ( T) gravity. The unimodular f ( T) gravity gave us stunning properties related to the way we write the modified Friedmann equations. Indeed, it has been found that depending on how the Friedmann equations are given, the Lagrange multipliers may or not depend on the time parameter τ, and at the same time the reconstruction functions f( T) can easily be made generallly (not depending on the given scale factor) or determine a particular way (depending on the given scale factor), in the vacuum. It is noted that the reconstruction of a general action joins a philosophy of unimodular gravity for the constant λ.

  20. Mars gravity and climate

    NASA Astrophysics Data System (ADS)

    Bills, B. G.; Mischna, M. A.

    2011-12-01

    model, that would comprise M = (N+1)2 -4 separate time series (M = 437 for N = 20), and would dramatically decrease the aliasing of thermal parameters in the climate models. To partially address this question, we have used the MarsWRF GCM to compute an annual cycle of surface and atmospheric mass values, on a 5x5 degree surface grid, at 10 day time steps, and then converted the resulting mass distributions into equivalent gravitational potential spherical harmonic coefficients. We can then compare the corresponding signal amplitude spectrum to the estimated gravitational model error amplitude spectrum, for various future mission measurement scenarios. From these simulations, it appears that resolving the seasonal cycle in a full N = 20 gravity model with 30 day time steps, will require substantial improvements beyond the current generation of Mars gravity models. The job of finding solutions to the associated technical problems is still in an early phase. However, it appears that adaptations to Mars of Earth-orbiting gravity missions, such as GRACE or GOCE, should suffice.

  1. Network gravity

    NASA Astrophysics Data System (ADS)

    Lombard, John

    2017-01-01

    We introduce the construction of a new framework for probing discrete emergent geometry and boundary-boundary observables based on a fundamentally a-dimensional underlying network structure. Using a gravitationally motivated action with Forman weighted combinatorial curvatures and simplicial volumes relying on a decomposition of an abstract simplicial complex into realized embeddings of proper skeletons, we demonstrate properties such as a minimal volume-scale cutoff, the necessity of a term playing the role of a positive definite cosmological constant as a regulator for nondegenerate geometries, and naturally emergent simplicial structures from Metropolis network evolution simulations with no restrictions on attachment rules or regular building blocks. We see emergent properties which echo results from both the spinfoam formalism and causal dynamical triangulations in quantum gravity, and provide analytical and numerical results to support the analogy. We conclude with a summary of open questions and intent for future work in developing the program.

  2. International Multidisciplinary Artificial Gravity (IMAG) Project

    NASA Technical Reports Server (NTRS)

    Laurini, Kathy

    2007-01-01

    This viewgraph presentation reviews the efforts of the International Multidisciplinary Artificial Gravity Project. Specifically it reviews the NASA Exploration Planning Status, NASA Exploration Roadmap, Status of Planning for the Moon, Mars Planning, Reference health maintenance scenario, and The Human Research Program.

  3. Braneworld gravity: influence of the moduli fields

    NASA Astrophysics Data System (ADS)

    Barceló, Carlos; Visser, Matt

    2000-10-01

    We consider the case of a generic braneworld geometry in the presence of one or more moduli fields (e.g. the dilaton) that vary throughout the bulk spacetime. Working in an arbitrary conformal frame, using the generalized junction conditions of gr-qc/0008008 and the Gauss-Codazzi equations, we derive the effective ``induced'' on-brane gravitational equations. As usual in braneworld scenarios, these equations do not form a closed system in that the bulk can exchange both information and stress-energy with the braneworld. We work with an arbitrary number of moduli fields described by an arbitrary sigma model, with arbitrary curvature couplings, arbitrary self interactions, and arbitrary dimension for the bulk. (The braneworld is always codimension one.) Among the novelties we encounter are modifications of the on-brane stress-energy conservation law, anomalous couplings between on-brane gravity and the trace of the on-brane stress-energy tensor, and additional possibilities for modifying the on-brane effective cosmological constant. After obtaining the general stress-energy ``conservation'' law and the ``induced Einstein equations'' we particularize the discussion to two particularly attractive cases: for a (n-2)-brane in ([n-1] + 1) dimensions we discuss both the effect of (1) generic variable moduli fields in the Einstein frame, and (2) the effect of a varying dilaton in the string frame.

  4. Stellar structures in Extended Gravity

    NASA Astrophysics Data System (ADS)

    Capozziello, S.; De Laurentis, M.

    2016-09-01

    Stellar structures are investigated by considering the modified Lané-Emden equation coming out from Extended Gravity. In particular, this equation is obtained in the Newtonian limit of f ( R) -gravity by introducing a polytropic relation between the pressure and the density into the modified Poisson equation. The result is an integro-differential equation, which, in the limit f ( R) → R , becomes the standard Lané-Emden equation usually adopted in the stellar theory. We find the radial profiles of gravitational potential by solving for some values of the polytropic index. The solutions are compatible with those coming from General Relativity and could be physically relevant in order to address peculiar and extremely massive objects.

  5. Noether symmetry approach in f(G,T) gravity

    NASA Astrophysics Data System (ADS)

    Shamir, M. Farasat; Ahmad, Mushtaq

    2017-01-01

    We explore the recently introduced modified Gauss-Bonnet gravity (Sharif and Ikram in Eur Phys J C 76:640, 2016), f(G,T) pragmatic with G, the Gauss-Bonnet term, and T, the trace of the energy-momentum tensor. Noether symmetry approach has been used to develop some cosmologically viable f(G,T) gravity models. The Noether equations of modified gravity are reported for flat FRW universe. Two specific models have been studied to determine the conserved quantities and exact solutions. In particular, the well known deSitter solution is reconstructed for some specific choice of f(G,T) gravity model.

  6. Arctic Planning Scenarios: Scenario #2 - Safety and Security Scenario

    DTIC Science & Technology

    2011-07-01

    Narcotics are traded in bulk with cocaine & ecstasy going west and heroin going east; The US land border is now sealed behind a physical fence...nationale, 2011 Abstract …….. With the change in Northern climate over the past decade, current policy and media discussions have focused on...characterize legislation and policy on the Arctic, with a view to developing scenarios for future planning. This report presents one of two

  7. Axions in gravity with torsion

    NASA Astrophysics Data System (ADS)

    Castillo-Felisola, Oscar; Corral, Cristóbal; Kovalenko, Sergey; Schmidt, Iván; Lyubovitskij, Valery E.

    2015-04-01

    We study a scenario allowing a solution of the strong charge parity problem via the Peccei-Quinn mechanism, implemented in gravity with torsion. In this framework there appears a torsion-related pseudoscalar field known as the Kalb-Ramond axion. We compare it with the so-called Barbero-Immirzi axion recently proposed in the literature also in the context of the gravity with torsion. We show that they are equivalent from the viewpoint of the effective theory. The phenomenology of these torsion-descended axions is completely determined by the Planck scale without any additional model parameters. These axions are very light and very weakly interacting with ordinary matter. We briefly comment on their astrophysical and cosmological implications in view of the recent BICEP2 and Planck data.

  8. Approaches to Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele

    2009-03-01

    Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and

  9. Gravity data of Nevada

    USGS Publications Warehouse

    Ponce, David A.

    1997-01-01

    Gravity data for the entire state of Nevada and adjacent parts of California, Utah, and Arizona are available on this CD-ROM. About 80,000 gravity stations were compiled primarily from the National Geophysical Data Center and the U.S. Geological Survey. Gravity data was reduced to the Geodetic Reference System of 1967 and adjusted to the Gravity Standardization Net 1971 gravity datum. Data were processed to complete Bouguer and isostatic gravity anomalies by applying standard gravity corrections including terrain and isostatic corrections. Selected principal fact references and a list of sources for data from the National Geophysical Data Center are included.

  10. Gravity-Wave astronomy

    NASA Astrophysics Data System (ADS)

    Grishchuk, Leonid Petrovich

    The article concerns astronomical phenomena , related with discovery of gravitational waves of various nature: 1) primordial (relic) gravitational waves, analogous to MWBR 2) gravitational waves due to giant collisions in the Universe between 2a) Macroscopic black Holes in the centers of Galaxies 2b) Tidal disruption of neutron stars by Black holes 2c) deformations of the space-time by stellar mass Black Holes moving near giant Black Holes in the centers of Galaxies 2d) Supernovae phenomena 2e) accretion phenomena on Black Holes and Neutron stars. The Earth based interferometric technics (LIGO Project) to detect gravitational waves is described as well as the perspectiva for a space Laser Interferometric Antena (LISA)is discussed. The article represents a modified text of the Plenary talk "Gravity-Wave astronomy" given at the XI International gravitational Conference (July 1986, Stockholm, Sweden).

  11. Quantum mechanics, gravity and modified quantization relations.

    PubMed

    Calmet, Xavier

    2015-08-06

    In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective [Formula: see text] (reduced Planck's constant). We set a bound on the deviation of the value of [Formula: see text] at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10(16) GeV.

  12. Gravity Waves

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1985-01-01

    Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.

  13. Three-dimensional dilatonic gravity's rainbow: Exact solutions

    NASA Astrophysics Data System (ADS)

    Hossein Hendi, Seyed; Eslam Panah, Behzad; Panahiyan, Shahram

    2016-10-01

    Deep relations of dark energy scenario and string theory results into dilaton gravity, on the one hand, and the connection between quantum gravity and gravity's rainbow, on the other hand, motivate us to consider three-dimensional dilatonic black hole solutions in gravity's rainbow. We obtain two classes of the solutions, which are polynomial and logarithmic forms. We also calculate conserved and thermodynamic quantities, and examine the first law of thermodynamics for both classes. In addition, we study thermal stability and show that one of the classes is thermally stable while the other one is unstable.

  14. Unified solutions of extended Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Keskin, A. I.; Açıkgöz, I.

    2016-12-01

    We study some scale factor power-law solutions of the field equations of the extended Gauss Bonnet gravity in the spatial FRW (Friedmann-Robertson-Walker) universe. We consider the lagrangian density given by F ( R, G ) =f ( G ) + R + α R2 which exhibits a modification comparing with the modified Gauss Bonnet gravity. After constructing the Friedmann equations and finding the power-law solution we obtain the real valued of our model describing a mechanism that shows transitions among three stages of the universe (inflation, deceleration, acceleration) in an unified way. In particular, in this unified solution we obtained an inflation model without using any scalar field description when α>0, and also we verified our early time inflationary scenario using observational parameters, i.e. ns, r. Further, we research for the power-law solution of our model when the universe is in the phantom phase. Here, it is observed that the acceleration of the universe in phantom region is composed of two phases which congruent with the recent observations.

  15. Modeling human perception of orientation in altered gravity

    PubMed Central

    Clark, Torin K.; Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.

    2015-01-01

    Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments. PMID:25999822

  16. Study of some cosmological parameters for interacting new holographic dark energy model in f(T) gravity

    NASA Astrophysics Data System (ADS)

    Ranjit, Chayan; Rudra, Prabir

    2016-10-01

    The present work is based on the idea of an interacting framework of new holographic dark energy (HDE) with cold dark matter in the background of f(T) gravity. Here, we have considered the flat modified Friedmann universe for f(T) gravity which is filled with new HDE and dark matter. We have derived some cosmological parameters like deceleration parameter, equation of state (EoS) parameter, state-finder parameters, cosmographic parameters, Om parameter and graphically investigated the nature of these parameters for the above mentioned interacting scenario. The results are found to be consistent with the accelerating universe. Also, we have graphically investigated the trajectories in ω-ω‧ plane for different values of the interacting parameter and explored the freezing region and thawing region in ω-ω‧ plane. Finally, we have analyzed the stability of this model.

  17. Nuclear Security Futures Scenarios.

    SciTech Connect

    Keller, Elizabeth James Kistin; Warren, Drake Edward; Hayden, Nancy Kay; Passell, Howard D.; Malczynski, Leonard A.; Backus, George A.

    2017-01-01

    This report provides an overview of the scenarios used in strategic futures workshops conducted at Sandia on September 21 and 29, 2016. The workshops, designed and facilitated by analysts in Center 100, used scenarios to enable thought leaders to think collectively about the changing aspects of global nuclear security and the potential implications for the US Government and Sandia National Laboratories.

  18. Focus on quantum Einstein gravity Focus on quantum Einstein gravity

    NASA Astrophysics Data System (ADS)

    Ambjorn, Jan; Reuter, Martin; Saueressig, Frank

    2012-09-01

    The gravitational asymptotic safety program summarizes the attempts to construct a consistent and predictive quantum theory of gravity within Wilson's generalized framework of renormalization. Its key ingredient is a non-Gaussian fixed point of the renormalization group flow which controls the behavior of the theory at trans-Planckian energies and renders gravity safe from unphysical divergences. Provided that the fixed point comes with a finite number of ultraviolet-attractive (relevant) directions, this construction gives rise to a consistent quantum field theory which is as predictive as an ordinary, perturbatively renormalizable one. This opens up the exciting possibility of establishing quantum Einstein gravity as a fundamental theory of gravity, without introducing supersymmetry or extra dimensions, and solely based on quantization techniques that are known to work well for the other fundamental forces of nature. While the idea of gravity being asymptotically safe was proposed by Steven Weinberg more than 30 years ago [1], the technical tools for investigating this scenario only emerged during the last decade. Here a key role is played by the exact functional renormalization group equation for gravity, which allows the construction of non-perturbative approximate solutions for the RG-flow of the gravitational couplings. Most remarkably, all solutions constructed to date exhibit a suitable non-Gaussian fixed point, lending strong support to the asymptotic safety conjecture. Moreover, the functional renormalization group also provides indications that the central idea of a non-Gaussian fixed point providing a safe ultraviolet completion also carries over to more realistic scenarios where gravity is coupled to a suitable matter sector like the standard model. These theoretical successes also triggered a wealth of studies focusing on the consequences of asymptotic safety in a wide range of phenomenological applications covering the physics of black holes, early

  19. Fluid/gravity correspondence for massive gravity

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Jian; Huang, Yong-Chang

    2016-11-01

    In this paper, we investigate the fluid/gravity correspondence in the framework of massive Einstein gravity. Treating the gravitational mass terms as an effective energy-momentum tensor and utilizing the Petrov-like boundary condition on a timelike hypersurface, we find that the perturbation effects of massive gravity in bulk can be completely governed by the incompressible Navier-Stokes equation living on the cutoff surface under the near horizon and nonrelativistic limits. Furthermore, we have concisely computed the ratio of dynamical viscosity to entropy density for two massive Einstein gravity theories, and found that they still saturate the Kovtun-Son-Starinets (KSS) bound.

  20. Logamediate Inflation in f(T) Teleparallel Gravity

    NASA Astrophysics Data System (ADS)

    Rezazadeh, Kazem; Abdolmaleki, Asrin; Karami, Kayoomars

    2017-02-01

    We study logamediate inflation in the context of f(T) teleparallel gravity. f(T)-gravity is a generalization of the teleparallel gravity which is formulated on the Weitzenbock spacetime, characterized by the vanishing curvature tensor (absolute parallelism) and the non-vanishing torsion tensor. We consider an f(T)-gravity model which is sourced by a canonical scalar field. Assuming a power-law f(T) function in the action, we investigate an inflationary universe with a logamediate scale factor. Our results show that, although logamediate inflation is completely ruled out by observational data in the standard inflationary scenario based on Einstein gravity, it can be compatible with the 68% confidence limit joint region of Planck 2015 TT,TE,EE+lowP data in the framework of f(T)-gravity.

  1. Exposure scenarios for workers.

    PubMed

    Marquart, Hans; Northage, Christine; Money, Chris

    2007-12-01

    The new European chemicals legislation REACH (Registration, Evaluation, Authorisation and restriction of Chemicals) requires the development of Exposure Scenarios describing the conditions and risk management measures needed for the safe use of chemicals. Such Exposure Scenarios should integrate considerations of both human health and the environment. Specific aspects are relevant for worker exposure. Gathering information on the uses of the chemical is an important step in developing an Exposure Scenario. In-house information at manufacturers is an important source. Downstream users can contribute information through direct contact or through their associations. Relatively simple approaches (Tier 1 tools, such as the ECETOC Targeted Risk Assessment and the model EASE) can be used to develop broad Exposure Scenarios that cover many use situations. These approaches rely on the categorisation of just a few determinants, including only a small number of risk management measures. Such approaches have a limited discriminatory power and are rather conservative. When the hazard of the substance or the complexity of the exposure situation require a more in-depth approach, further development of the Exposure Scenarios with Tier 2 approaches is needed. Measured data sets of worker exposure are very valuable in a Tier 2 approach. Some downstream user associations have attempted to build Exposure Scenarios based on measured data sets. Generic Tier 2 tools for developing Exposure Scenarios do not exist yet. To enable efficient development of the worker exposure part of Exposure Scenarios a further development of Tier 1 and Tier 2 tools is needed. Special attention should be given to user friendliness and to the validity (boundaries) of the approaches. The development of standard worker exposure descriptions or full Exposure Scenarios by downstream user branches in cooperation with manufacturers and importers is recommended.

  2. Mars base buildup scenarios

    SciTech Connect

    Blacic, J.D.

    1985-01-01

    Two surface base build-up scenarios are presented in order to help visualize the mission and to serve as a basis for trade studies. In the first scenario, direct manned landings on the Martian surface occur early in the missions and scientific investigation is the main driver and rationale. In the second scenario, early development of an infrastructure to exploite the volatile resources of the Martian moons for economic purposes is emphasized. Scientific exploration of the surface is delayed at first, but once begun develops rapidly aided by the presence of a permanently manned orbital station.

  3. Braneworld Scenarios from Deformed Defect Chains

    NASA Astrophysics Data System (ADS)

    Chinaglia, M.; Bernardini, A. E.; da Rocha, Roldão

    2016-10-01

    Novel braneworld scenarios supported by warp factors driven by a single extra dimension are obtained from deformed one-dimensional lump-like solutions known a priori. Through a novel ansatz, the internal energy structure, the braneworld warp factor, and the quantum mechanical analogue problem, as well as the associated zero mode solutions, are straightforwardly derived by means of an analytical procedure. The results allow one to identify thick brane solutions that support internal structures and that can hold the (3+1)-dimensional gravity.

  4. Testing local Lorentz invariance with short-range gravity

    NASA Astrophysics Data System (ADS)

    Kostelecký, V. Alan; Mewes, Matthew

    2017-03-01

    The Newton limit of gravity is studied in the presence of Lorentz-violating gravitational operators of arbitrary mass dimension. The linearized modified Einstein equations are obtained and the perturbative solutions are constructed and characterized. We develop a formalism for data analysis in laboratory experiments testing gravity at short range and demonstrate that these tests provide unique sensitivity to deviations from local Lorentz invariance.

  5. Scripting Scenarios for the Human Patient Simulator

    NASA Technical Reports Server (NTRS)

    Bacal, Kira; Miller, Robert; Doerr, Harold

    2004-01-01

    The Human Patient Simulator (HPS) is particularly useful in providing scenario-based learning which can be tailored to fit specific scenarios and which can be modified in realtime to enhance the teaching environment. Scripting these scenarios so as to maximize learning requires certain skills, in order to ensure that a change in student performance, understanding, critical thinking, and/or communication skills results. Methods: A "good" scenario can be defined in terms of applicability, learning opportunities, student interest, and clearly associated metrics. Obstacles to such a scenario include a lack of understanding of the applicable environment by the scenario author(s), a desire (common among novices) to cover too many topics, failure to define learning objectives, mutually exclusive or confusing learning objectives, unskilled instructors, poor preparation , disorganized approach, or an inappropriate teaching philosophy (such as "trial by fire" or education through humiliation). Results: Descriptions of several successful teaching programs, used in the military, civilian, and NASA medical environments , will be provided, along with sample scenarios. Discussion: Simulator-based lessons have proven to be a time- and cost-efficient manner by which to educate medical personnel. Particularly when training for medical care in austere environments (pre-hospital, aeromedical transport, International Space Station, military operations), the HPS can enhance the learning experience.

  6. Urine specific gravity test

    MedlinePlus

    ... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  7. GLOBAL ALTERNATIVE FUTURE SCENARIOS

    EPA Science Inventory

    One way to examine possible future outcomes for environmental protection is through the development and analysis of alternative future scenarios. This type of assessment postulates two or more different paths that social and environmental development might take, using correspond...

  8. Emission scenarios: Explaining differences

    NASA Astrophysics Data System (ADS)

    Iyer, Gokul; Edmonds, James

    2017-01-01

    Carbon dioxide emission scenarios rely on a number of assumptions about how societies will develop in the future, creating uncertainty in projections. Now, research reveals the sensitivity of emission estimates to some of these assumptions.

  9. Mechanotransduction as an Adaptation to Gravity

    PubMed Central

    Najrana, Tanbir; Sanchez-Esteban, Juan

    2016-01-01

    Gravity has played a critical role in the development of terrestrial life. A key event in evolution has been the development of mechanisms to sense and transduce gravitational force into biological signals. The objective of this manuscript is to review how living organisms on Earth use mechanotransduction as an adaptation to gravity. Certain cells have evolved specialized structures, such as otoliths in hair cells of the inner ear and statoliths in plants, to respond directly to the force of gravity. By conducting studies in the reduced gravity of spaceflight (microgravity) or simulating microgravity in the laboratory, we have gained insights into how gravity might have changed life on Earth. We review how microgravity affects prokaryotic and eukaryotic cells at the cellular and molecular levels. Genomic studies in yeast have identified changes in genes involved in budding, cell polarity, and cell separation regulated by Ras, PI3K, and TOR signaling pathways. Moreover, transcriptomic analysis of late pregnant rats have revealed that microgravity affects genes that regulate circadian clocks, activate mechanotransduction pathways, and induce changes in immune response, metabolism, and cells proliferation. Importantly, these studies identified genes that modify chromatin structure and methylation, suggesting that long-term adaptation to gravity may be mediated by epigenetic modifications. Given that gravity represents a modification in mechanical stresses encounter by the cells, the tensegrity model of cytoskeletal architecture provides an excellent paradigm to explain how changes in the balance of forces, which are transmitted across transmembrane receptors and cytoskeleton, can influence intracellular signaling pathways and gene expression. PMID:28083527

  10. Mechanotransduction as an Adaptation to Gravity.

    PubMed

    Najrana, Tanbir; Sanchez-Esteban, Juan

    2016-01-01

    Gravity has played a critical role in the development of terrestrial life. A key event in evolution has been the development of mechanisms to sense and transduce gravitational force into biological signals. The objective of this manuscript is to review how living organisms on Earth use mechanotransduction as an adaptation to gravity. Certain cells have evolved specialized structures, such as otoliths in hair cells of the inner ear and statoliths in plants, to respond directly to the force of gravity. By conducting studies in the reduced gravity of spaceflight (microgravity) or simulating microgravity in the laboratory, we have gained insights into how gravity might have changed life on Earth. We review how microgravity affects prokaryotic and eukaryotic cells at the cellular and molecular levels. Genomic studies in yeast have identified changes in genes involved in budding, cell polarity, and cell separation regulated by Ras, PI3K, and TOR signaling pathways. Moreover, transcriptomic analysis of late pregnant rats have revealed that microgravity affects genes that regulate circadian clocks, activate mechanotransduction pathways, and induce changes in immune response, metabolism, and cells proliferation. Importantly, these studies identified genes that modify chromatin structure and methylation, suggesting that long-term adaptation to gravity may be mediated by epigenetic modifications. Given that gravity represents a modification in mechanical stresses encounter by the cells, the tensegrity model of cytoskeletal architecture provides an excellent paradigm to explain how changes in the balance of forces, which are transmitted across transmembrane receptors and cytoskeleton, can influence intracellular signaling pathways and gene expression.

  11. Low Gravity Improves Welds

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.; Plaster, Teresa C.

    1993-01-01

    Hardnesses and tensile strengths greater. Welds made under right conditions in low gravity appear superior to those made under high gravity. Conclusion drawn from results of welding experiments conducted during low- and high-gravity-simulating maneuvers of KC-135 airplane. Results have implications not only for welding in outer space but also for repeated rapid welding on Earth or in airplanes under simulated low gravity to obtain unusually strong joints.

  12. Terrestrial Gravity Fluctuations.

    PubMed

    Harms, Jan

    2015-01-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10(-23) Hz(-1/2) above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  13. Physics of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Bukley, Angie; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.

  14. Effective scenario of loop quantum cosmology.

    PubMed

    Ding, You; Ma, Yongge; Yang, Jinsong

    2009-02-06

    Semiclassical states in isotropic loop quantum cosmology are employed to show that the improved dynamics has the correct classical limit. The effective Hamiltonian for the quantum cosmological model with a massless scalar field is thus obtained, which incorporates also the next to leading order quantum corrections. The possibility that the higher order correction terms may lead to significant departure from the leading order effective scenario is revealed. If the semiclassicality of the model is maintained in the large scale limit, there are great possibilities for a k=0 Friedmann expanding universe to undergo a collapse in the future due to the quantum gravity effect. Thus the quantum bounce and collapse may contribute a cyclic universe in the new scenario.

  15. Gravity is Geometry.

    ERIC Educational Resources Information Center

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  16. Testing gravity theories using tensor perturbations

    NASA Astrophysics Data System (ADS)

    Lin, Weikang; Ishak, Mustapha

    2016-12-01

    Primordial gravitational waves constitute a promising probe of the very early Universe and the laws of gravity. We study in this work changes to tensor-mode perturbations that can arise in various proposed modified gravity theories. These include additional friction effects, nonstandard dispersion relations involving a massive graviton, a modified speed, and a small-scale modification. We introduce a physically motivated parametrization of these effects and use current available data to obtain exclusion regions in the parameter spaces. Taking into account the foreground subtraction, we then perform a forecast analysis focusing on the tensor-mode modified-gravity parameters as constrained by the future experiments COrE, Stage-IV and PIXIE. For a fiducial value of the tensor-to-scalar ratio r =0.01 , we find that an additional friction of 3.5-4.5% compared to GR will be detected at 3 -σ by these experiments, while a decrease in friction will be more difficult to detect. The speed of gravitational waves needs to be by 5-15% different from the speed of light for detection. We find that the minimum detectable graviton mass is about 7.8 - 9.7 ×10-33 eV , which is of the same order of magnitude as the graviton mass that allows massive gravity theories to produce late-time cosmic acceleration. Finally, we study the tensor-mode perturbations in modified gravity during inflation using our parametrization. We find that, in addition to being related to r , the tensor spectral index would be related to the friction parameter ν0 by nT=-3 ν0-r /8 . Assuming that the friction parameter is unchanged throughout the history of the Universe, and that ν0 is much larger than r , the future experiments considered here will be able to distinguish this modified-gravity consistency relation from the standard inflation consistency relation, and thus can be used as a further test of modified gravity. In summary, tensor-mode perturbations and cosmic-microwave-background B

  17. (abstract) Venus Gravity Field

    NASA Technical Reports Server (NTRS)

    Konopliv, A. S.; Sjogren, W. L.

    1995-01-01

    A global gravity field model of Venus to degree and order 75 (5772 spherical harmonic coefficients) has been estimated from Doppler radio tracking of the orbiting spacecraft Pioneer Venus Orbiter (1979-1992) and Magellan (1990-1994). After the successful aerobraking of Magellan, a near circular polar orbit was attained and relatively uniform gravity field resolution (approximately 200 km) was obtained with formal uncertainties of a few milligals. Detailed gravity for several highland features are displayed as gravity contours overlaying colored topography. The positive correlation of typography with gravity is very high being unlike that of the Earth, Moon, and Mars. The amplitudes are Earth-like, but have significantly different gravity-topography ratios for different features. Global gravity, geoid, and isostatic anomaly maps as well as the admittance function are displayed.

  18. Quantization of emergent gravity

    NASA Astrophysics Data System (ADS)

    Yang, Hyun Seok

    2015-02-01

    Emergent gravity is based on a novel form of the equivalence principle known as the Darboux theorem or the Moser lemma in symplectic geometry stating that the electromagnetic force can always be eliminated by a local coordinate transformation as far as space-time admits a symplectic structure, in other words, a microscopic space-time becomes noncommutative (NC). If gravity emerges from U(1) gauge theory on NC space-time, this picture of emergent gravity suggests a completely new quantization scheme where quantum gravity is defined by quantizing space-time itself, leading to a dynamical NC space-time. Therefore the quantization of emergent gravity is radically different from the conventional approach trying to quantize a phase space of metric fields. This approach for quantum gravity allows a background-independent formulation where space-time and matter fields are equally emergent from a universal vacuum of quantum gravity.

  19. Beyond Inflation: A Cyclic Universe Scenario

    NASA Astrophysics Data System (ADS)

    Turok, Neil; Steinhardt, Paul J.

    2005-01-01

    Inflation has been the leading early universe scenario for two decades, and has become an accepted element of the successful `cosmic concordance' model. However, there are many puzzling features of the resulting theory. It requires both high energy and low energy inflation, with energy densities differing by a hundred orders of magnitude. The questions of why the universe started out undergoing high energy inflation, and why it will end up in low energy inflation, are unanswered. Rather than resort to anthropic arguments, we have developed an alternative cosmology, the cyclic universe, in which the universe exists in a very long-lived attractor state determined by the laws of physics. The model shares inflation's phenomenological successes without requiring an epoch of high energy inflation. Instead, the universe is made homogeneous and flat, and scale-invariant adiabatic perturbations are generated during an epoch of low energy acceleration like that seen today, but preceding the last big bang. Unlike inflation, the model requires low energy acceleration in order for a periodic attractor state to exist. The key challenge facing the scenario is that of passing through the cosmic singularity at t = 0. Substantial progress has been made at the level of linearised gravity, which is reviewed here. The challenge of extending this to nonlinear gravity and string theory remains.

  20. Beyond Inflation:. A Cyclic Universe Scenario

    NASA Astrophysics Data System (ADS)

    Turok, Neil; Steinhardt, Paul J.

    2005-08-01

    Inflation has been the leading early universe scenario for two decades, and has become an accepted element of the successful 'cosmic concordance' model. However, there are many puzzling features of the resulting theory. It requires both high energy and low energy inflation, with energy densities differing by a hundred orders of magnitude. The questions of why the universe started out undergoing high energy inflation, and why it will end up in low energy inflation, are unanswered. Rather than resort to anthropic arguments, we have developed an alternative cosmology, the cyclic universe [1], in which the universe exists in a very long-lived attractor state determined by the laws of physics. The model shares inflation's phenomenological successes without requiring an epoch of high energy inflation. Instead, the universe is made homogeneous and flat, and scale-invariant adiabatic perturbations are generated during an epoch of low energy acceleration like that seen today, but preceding the last big bang. Unlike inflation, the model requires low energy acceleration in order for a periodic attractor state to exist. The key challenge facing the scenario is that of passing through the cosmic singularity at t = 0. Substantial progress has been made at the level of linearised gravity, which is reviewed here. The challenge of extending this to nonlinear gravity and string theory remains.

  1. Attractive scenario writing.

    PubMed

    Takahashi, Yuzo; Oku, Sachiko Alexandra

    2009-05-01

    This article describes the key steps of scenario writing to facilitate problem-based learning discussion to aid student learning of basic medical science in combination with clinical medicine. The scenario has to amplify and deepen the students' thinking so that they can correlate findings from the case and knowledge from textbooks. This can be achieved in three ways: (1) a comparison of cases; (2) demonstrating a scientific link between symptoms and basic medicine; and (3) introducing a personal and emotional aspect to the scenario. A comparison of two cases enables us to shed light on the pathological differences and think about the underlying biological mechanisms. These include: (a) a comparison of two cases with similar symptoms, but different diseases; (b) a comparison of two cases with different symptoms, but the same cause; and (c) a comparison of two cases, with an easy case, followed by a complicated case. The scenarios may be disclosed in a sequence to show a scientific link between symptoms of the patient and basic medicine, which may help to cultivate a physician with a scientific mind. Examples are given by the relationship between: (a) symptoms, pathology and morphology; and (b) symptoms, pathology and physiology. When the scenario is written in such a way that students are personally and/or emotionally involved in the case, they will be more motivated in learning as if involved in the case themselves. To facilitate this, the scenario can be written in the first-person perspective. Examples include "I had a very bad headache, and vomited several times...", and "I noticed that my father was screaming at night...". The description of the events may be in chronological order with actual time, which makes students feel as if they are really the primary responding person.

  2. Einstein gravity, massive gravity, multi-gravity and nonlinear realizations

    NASA Astrophysics Data System (ADS)

    Goon, Garrett; Hinterbichler, Kurt; Joyce, Austin; Trodden, Mark

    2015-07-01

    The existence of a ghost free theory of massive gravity begs for an interpre-tation as a Higgs phase of General Relativity. We revisit the study of massive gravity as a Higgs phase. Absent a compelling microphysical model of spontaneous symmetry breaking in gravity, we approach this problem from the viewpoint of nonlinear realizations. We employ the coset construction to search for the most restrictive symmetry breaking pattern whose low energy theory will both admit the de Rham-Gabadadze-Tolley (dRGT) potentials and nonlinearly realize every symmetry of General Relativity, thereby providing a new perspective from which to build theories of massive gravity. In addition to the known ghost-free terms, we find a novel parity violating interaction which preserves the constraint structure of the theory, but which vanishes on the normal branch of the theory. Finally, the procedure is extended to the cases of bi-gravity and multi-vielbein theories. Analogous parity violating interactions exist here, too, and may be non-trivial for certain classes of multi-metric theories.

  3. Mission concepts and operations for asteroid mitigation involving multiple gravity tractors

    NASA Astrophysics Data System (ADS)

    Foster, Cyrus; Bellerose, Julie; Mauro, David; Jaroux, Belgacem

    2013-09-01

    The gravity tractor concept is a proposed method to deflect an imminent asteroid impact through gravitational tugging over a time scale of years. In this study, we present mission scenarios and operational considerations for asteroid mitigation efforts involving multiple gravity tractors. We quantify the deflection performance improvement provided by a multiple gravity tractor campaign and assess its sensitivity to staggered launches. We next explore several proximity operation strategies to accommodate multiple gravity tractors at a single asteroid including formation-flying and mechanically-docked configurations. Finally, we utilize 99942 Apophis as an illustrative example to assess the performance of a multiple gravity tractor campaign.

  4. Mission Concepts and Operations for Asteroid Mitigation Involving Multiple Gravity Tractors

    NASA Technical Reports Server (NTRS)

    Foster, Cyrus; Bellerose, Julie; Jaroux, Belgacem; Mauro, David

    2012-01-01

    The gravity tractor concept is a proposed method to deflect an imminent asteroid impact through gravitational tugging over a time scale of years. In this study, we present mission scenarios and operational considerations for asteroid mitigation efforts involving multiple gravity tractors. We quantify the deflection performance improvement provided by a multiple gravity tractor campaign and assess its sensitivity to staggered launches. We next explore several proximity operation strategies to accommodate multiple gravity tractors at a single asteroid including formation-flying and mechanically-docked configurations. Finally, we utilize 99942 Apophis as an illustrative example to assess the performance of a multiple gravity tractor campaign.

  5. The SAFRR Tsunami Scenario

    USGS Publications Warehouse

    Porter, K.; Jones, Lucile M.; Ross, Stephanie L.; Borrero, J.; Bwarie, J.; Dykstra, D.; Geist, Eric L.; Johnson, L.; Kirby, Stephen H.; Long, K.; Lynett, P.; Miller, K.; Mortensen, Carl E.; Perry, S.; Plumlee, G.; Real, C.; Ritchie, L.; Scawthorn, C.; Thio, H.K.; Wein, Anne; Whitmore, P.; Wilson, R.; Wood, Nathan J.; Ostbo, Bruce I.; Oates, Don

    2013-01-01

    The U.S. Geological Survey and several partners operate a program called Science Application for Risk Reduction (SAFRR) that produces (among other things) emergency planning scenarios for natural disasters. The scenarios show how science can be used to enhance community resiliency. The SAFRR Tsunami Scenario describes potential impacts of a hypothetical, but realistic, tsunami affecting California (as well as the west coast of the United States, Alaska, and Hawaii) for the purpose of informing planning and mitigation decisions by a variety of stakeholders. The scenario begins with an Mw 9.1 earthquake off the Alaska Peninsula. With Pacific basin-wide modeling, we estimate up to 5m waves and 10 m/sec currents would strike California 5 hours later. In marinas and harbors, 13,000 small boats are damaged or sunk (1 in 3) at a cost of $350 million, causing navigation and environmental problems. Damage in the Ports of Los Angeles and Long Beach amount to $110 million, half of it water damage to vehicles and containerized cargo. Flooding of coastal communities affects 1800 city blocks, resulting in $640 million in damage. The tsunami damages 12 bridge abutments and 16 lane-miles of coastal roadway, costing $85 million to repair. Fire and business interruption losses will substantially add to direct losses. Flooding affects 170,000 residents and workers. A wide range of environmental impacts could occur. An extensive public education and outreach program is underway, as well as an evaluation of the overall effort.

  6. Biomass Scenario Model

    SciTech Connect

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  7. Stability of the Einstein static universe in f( R, T) gravity

    NASA Astrophysics Data System (ADS)

    Shabani, Hamid; Ziaie, Amir Hadi

    2017-01-01

    The Einstein static (ES) universe has played a major role in various emergent scenarios recently proposed in order to cure the problem of the initial singularity of the standard model of cosmology. In the model we address, we study the existence and stability of an ES universe in the context of f( R, T) modified theories of gravity. Considering specific forms of the f( R, T) function, we seek for the existence of solutions representing ES state. Using dynamical system techniques along with numerical analysis, we find two classes of solutions: the first one is always unstable of the saddle type, while the second is always stable so that its dynamical behavior corresponds to a center equilibrium point. The importance of the second class of solutions is due to the significant role they play in constructing non-singular emergent models in which the universe could have experienced past-eternally a series of infinite oscillations about such an initial static state after which it enters, through a suitable physical mechanism, to an inflationary era. Considering specific forms for the functionality of f( R, T), we show that this theory is capable of providing cosmological solutions which admit emergent universe (EU) scenarios. We also investigate homogeneous scalar perturbations for the mentioned models. The stability regions of the solutions are parametrized by a linear equation of state (EoS) parameter and other free parameters that will be introduced for the models. Our results suggest that modifications in f( R, T) gravity would lead to stable solutions which are unstable in f( R) gravity model.

  8. Computer Programs to Display and Modify Data in Geographic Coordinates and Methods to Transfer Positions to and from Maps, with Applications to Gravity Data Processing, Global Positioning Systems, and 30-Meter Digital Elevation Models

    USGS Publications Warehouse

    Plouff, Donald

    1998-01-01

    Computer programs were written in the Fortran language to process and display gravity data with locations expressed in geographic coordinates. The programs and associated processes have been tested for gravity data in an area of about 125,000 square kilometers in northwest Nevada, southeast Oregon, and northeast California. This report discusses the geographic aspects of data processing. Utilization of the programs begins with application of a template (printed in PostScript format) to transfer locations obtained with Global Positioning Systems to and from field maps and includes a 5-digit geographic-based map naming convention for field maps. Computer programs, with source codes that can be copied, are used to display data values (printed in PostScript format) and data coverage, insert data into files, extract data from files, shift locations, test for redundancy, and organize data by map quadrangles. It is suggested that 30-meter Digital Elevation Models needed for gravity terrain corrections and other applications should be accessed in a file search by using the USGS 7.5-minute map name as a file name, for example, file '40117_B8.DEM' contains elevation data for the map with a southeast corner at lat 40? 07' 30' N. and lon 117? 52' 30' W.

  9. Eddington's theory of gravity and its progeny.

    PubMed

    Bañados, Máximo; Ferreira, Pedro G

    2010-07-02

    We resurrect Eddington's proposal for the gravitational action in the presence of a cosmological constant and extend it to include matter fields. We show that the Newton-Poisson equation is modified in the presence of sources and that charged black holes show great similarities with those arising in Born-Infeld electrodynamics coupled to gravity. When we consider homogeneous and isotropic space-times, we find that there is a minimum length (and maximum density) at early times, clearly pointing to an alternative theory of the big bang. We thus argue that the modern formulation of Eddington's theory, Born-Infeld gravity, presents us with a novel, nonsingular description of the Universe.

  10. Canonical gravity with fermions

    SciTech Connect

    Bojowald, Martin; Das, Rupam

    2008-09-15

    Canonical gravity in real Ashtekar-Barbero variables is generalized to allow for fermionic matter. The resulting torsion changes several expressions in Holst's original vacuum analysis, which are summarized here. This in turn requires adaptations to the known loop quantization of gravity coupled to fermions, which is discussed on the basis of the classical analysis. As a result, parity invariance is not manifestly realized in loop quantum gravity.

  11. Lunar gravity - Apollo 17

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Wimberly, R. N.; Wollenhaupt, W. R.

    1974-01-01

    Gravity results are displayed as a band of contours about 60 km wide spanning 140 deg of frontside longitude. The contours traverse Grimaldi, Mare Procellarum, Copernicus, Apennines, Mare Serenitatis, Littrow, and Mare Crisium. Redundant gravity areas previously mapped by Apollos 14, 15, 16, and the Apollo subsatellites are tabulated and show excellent consistency. Modeling of Grimaldi reveals a loading greater than the known mascons and thus makes Grimaldi the smallest known mascon feature. Copernicus' gravity profile is best modeled with a mass defect for the basin and a mass excess for the rim. Mare Serenitatis has an irregular mass distribution with central gravity highs shifted approximately 3 deg in latitude.

  12. Tuned borehole gravity gradiometer

    SciTech Connect

    Lautzenhiser, T.V.; Nekut, A.G. Jr.

    1986-04-15

    A tuned borehole gravity gradiometer is described for detecting variations in gravity gradient which consists of: a suspended dipole mass system having symmetrically distributed dipole masses and suspension means for suspending the dipole masses such that the gravity gradient to be measured produces an angular displacement about a rotation axis of the dipole mass system from a reference position; and tuning means with the dipole mass system for selectively varying the sensitivity to angular displacements with respect to the rotation axis of the dipole mass system to variations in gravity gradient, wherein the tuning means includes means for selectively varying the metacentric height of the dipole mass system.

  13. Constraining some Horndeski gravity theories

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourav; Chakraborty, Sumanta

    2017-02-01

    We discuss two spherically symmetric solutions admitted by the Horndeski (or scalar-tensor) theory in the context of Solar System and astrophysical scenarios. One of these solutions is derived for Einstein-Gauss-Bonnet gravity, while the other originates from the coupling of the Gauss-Bonnet invariant with a scalar field. Specifically, we discuss the perihelion precession and the bending angle of light for these two different spherically symmetric spacetimes derived in Maeda and Dadhich [Phys. Rev. D 75, 044007 (2007), 10.1103/PhysRevD.75.044007] and Sotiriou and Zhou [Phys. Rev. D 90, 124063 (2014), 10.1103/PhysRevD.90.124063], respectively. The latter, in particular, applies only to black-hole spacetimes. We further delineate on the numerical bounds of relevant parameters of these theories from such computations.

  14. Modified entropic force

    SciTech Connect

    Gao Changjun

    2010-04-15

    The theory of statistical thermodynamics tells us the equipartition law of energy does not hold in the limit of very low temperatures. It is found the Debye model is very successful in explaining the experimental results for most of the solid objects. Motivated by this fact, we modify the entropic force formula which is proposed very recently. Since the Unruh temperature is proportional to the strength of the gravitational field, so the modified entropic force formula is an extension of the Newtonian gravity to the weak field. On the contrary, general relativity extends Newtonian gravity to the strong field case. Corresponding to Debye temperature, there exists a Debye acceleration g{sub D}. It is found the Debye acceleration is g{sub D}=10{sup -15} N kg{sup -1}. This acceleration is very much smaller than the gravitational acceleration 10{sup -4} N kg{sup -1} which is felt by Neptune and the gravitational acceleration 10{sup -10} N kg{sup -1} felt by the Sun. Therefore, the modified entropic force can be very well approximated by the Newtonian gravity in the Solar System and in the Galaxy. With this Debye acceleration, we find the current cosmic speeding up can be explained without invoking any kind of dark energy.

  15. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    The use is studied of tether systems to improve the lowest possible steady gravity level on the Space Station. Particular emphasis is placed by the microgravity community on the achievement of high quality microgravity conditions. The tether capability is explored for active control of the center of gravity and the analysis of possible tethered configurations.

  16. ATHLETE: Low Gravity Testbed

    NASA Technical Reports Server (NTRS)

    Qi, Jay Y.

    2011-01-01

    The All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) is a vehicle concept developed at Jet Propulsion Laboratory as a multipurpose robot for exploration. Currently, the ATHLETE team is working on creating a low gravity testbed to physically simulate ATHLETE landing on an asteroid. Several projects were worked on this summer to support the low gravity testbed.

  17. Demonstrating Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Stocker, Dennis; Gotti, Daniel; Urban, David; Ross, Howard; Sours, Thomas

    1996-01-01

    A miniature drop tower, Reduced-Gravity Demonstrator is developed to illustrate the effects of gravity on a variety of phenomena including the way fluids flow, flames burn, and mechanical systems (such as pendulum) behave. A schematic and description of the demonstrator and payloads are given, followed by suggestions for how one can build his (her) own.

  18. Anti-gravity device

    NASA Technical Reports Server (NTRS)

    Palsingh, S. (Inventor)

    1975-01-01

    An educational toy useful in demonstrating fundamental concepts regarding the laws of gravity is described. The device comprises a sphere 10 of radius r resting on top of sphere 12 of radius R. The center of gravity of sphere 10 is displaced from its geometrical center by distance D. The dimensions are so related that D((R+r)/r) is greater than r. With the center of gravity of sphere 10 lying on a vertical line, the device is in equilibrium. When sphere 10 is rolled on the surface of sphere 12 it will return to its equilibrium position upon release. This creates an illusion that sphere 10 is defying the laws of gravity. In reality, due to the above noted relationship of D, R, and r, the center of gravity of sphere 10 rises from its equilibrium position as it rolls a short distance up or down the surface of sphere 12.

  19. Random coupling of acoustic-gravity waves in the atmosphere

    NASA Astrophysics Data System (ADS)

    Millet, Christophe; Lott, Francois; Haynes, Christophe

    2016-11-01

    In numerical modeling of long-range acoustic propagation in the atmosphere, the effect of gravity waves on low-frequency acoustic waves is often ignored. As the sound speed far exceeds the gravity wave phase speed, these two types of waves present different spatial scales and their linear coupling is weak. It is possible, however, to obtain relatively strong couplings via sound speed profile changes with altitude. In the present study, this scenario is analyzed for realistic gravity wave fields and the incident acoustic wave is modeled as a narrow-banded acoustic pulse. The gravity waves are represented as a random field using a stochastic multiwave parameterization of non-orographic gravity waves. The parameterization provides independent monochromatic gravity waves, and the gravity wave field is obtained as the linear superposition of the waves produced. When the random terms are retained, a more generalized wave equation is obtained that both qualitatively and quantitatively agrees with the observations of several highly dispersed stratospheric wavetrains. Here, we show that the cumulative effect of gravity wave breakings makes the sensitivity of ground-based acoustic signals large, in that small changes in the parameterization can create or destroy an acoustic wavetrain.

  20. Plant sensing: gravity and touch

    NASA Astrophysics Data System (ADS)

    Gilroy, S.; Swanson, S.; Massa, G.

    Roots must integrate many stimuli in order to direct their growth as they explore the soil. Gravitropism leads to downward growth but other stimuli such as gradients in nutrients, water, biotic and abiotic stresses and physical obstacles such as rocks all act on the roots sensory systems to modify this gravitropic response. We have therefore investigated the interaction of gravity signaling and response to other stimuli such as a mechanical obstruction to downward growth. A gravitropically directed primary root of Arabidopsis thaliana (growing vertically) senses an obstacle such as a glass plate placed in its direction of growth and initiates an avoidance growth response upon contacting the barrier. This response appears to be caused by an interaction of gravitropic and thigmotropic sensory systems. The touch stimulation of the root cap leads to alteration in growth, initially in the central and later in the distal elongation zone of the root. These growth responses maintain the root tip at an angle of 136 degrees to the barrier as the root grows across the obstacle's surface. Removal of cells in the root cap by laser ablation indicate that all root cap cells are required for this growth response to the barrier. Once the end of the barrier is reached and the root can grow off the obstruciton, gravitropism appears to occur faster than in roots that did not interact with an obstacle, suggesting that the touch stimulation of the barrier may alter gravitropic signaling or response. Touch stimulation of the root cap inhibited the pH-dependent gravity signaling events that are known to be required for gravitropic response. These results imply a transient suppression of gravisensing or graviresponse by touch. Touch stimulation of root cap cells elicited an increase in cytosolic Ca2+ that appears to propagate from cell to cell throughout the cap, suggesting Ca2+ signaling may underlie the communication between gravity and touch sensing cells. Although the pgm1 -1 starch

  1. Evolving practices in environmental scenarios: a new scenario typology

    NASA Astrophysics Data System (ADS)

    Wilkinson, Angela; Eidinow, Esther

    2008-10-01

    A new approach to scenarios focused on environmental concerns, changes and challenges, i.e. so-called 'environmental scenarios', is necessary if global environmental changes are to be more effectively appreciated and addressed through sustained and collaborative action. On the basis of a comparison of previous approaches to global environmental scenarios and a review of existing scenario typologies, we propose a new scenario typology to help guide scenario-based interventions. This typology makes explicit the types of and/or the approaches to knowledge ('the epistemologies') which underpin a scenario approach. Drawing on previous environmental scenario projects, we distinguish and describe two main types in this new typology: 'problem-focused' and 'actor-centric'. This leads in turn to our suggestion for a third type, which we call 'RIMA'—'reflexive interventionist or multi-agent based'. This approach to scenarios emphasizes the importance of the involvement of different epistemologies in a scenario-based process of action learning in the public interest. We suggest that, by combining the epistemologies apparent in the previous two types, this approach can create a more effective bridge between longer-term thinking and more immediate actions. Our description is aimed at scenario practitioners in general, as well as those who work with (environmental) scenarios that address global challenges.

  2. Nonlocal Gravity and Structure in the Universe

    SciTech Connect

    Dodelson, Scott; Park, Sohyun

    2014-08-26

    The observed acceleration of the Universe can be explained by modifying general relativity. One such attempt is the nonlocal model of Deser and Woodard. Here we fix the background cosmology using results from the Planck satellite and examine the predictions of nonlocal gravity for the evolution of structure in the universe, confronting the model with three tests: gravitational lensing, redshift space distortions, and the estimator of gravity $E_G$. Current data favor general relativity (GR) over nonlocal gravity: fixing primordial cosmology with the best fit parameters from Planck leads to weak lensing results favoring GR by 5.9 sigma; redshift space distortions measurements of the growth rate preferring GR by 7.8 sigma; and the single measurement of $E_G$ favoring GR, but by less than 1-sigma. The significance holds up even after the parameters are allowed to vary within Planck limits. The larger lesson is that a successful modified gravity model will likely have to suppress the growth of structure compared to general relativity.

  3. Gravity and tectonic patterns of Mercury

    NASA Astrophysics Data System (ADS)

    Matsuyama, I.; Nimmo, F.

    2008-12-01

    We consider the effect of tidal deformation, spin-orbit resonance, non-zero eccentricity, despinning, and reorientation on the global-scale gravity, shape, and tectonic patterns of planetary bodies. Large variations of the gravity and shape coefficients from the synchronous rotation and zero eccentricity values, J2/C22=10/3 and (b-c)/(a-c)=1/4, arise due to non-synchronous rotation and non-zero eccentricity even in the absence of reorientation or despinning. Reorientation or despinning induce additional variations. As an illustration of this theory, we consider the specific example of Mercury. The large gravity coefficients estimated from the Mariner 10 flybys cannot be attributed to the Caloris basin alone since the required mass excess in this case would have caused Caloris to migrate to one of Mercury's hot poles. Similarly, a large remnant bulge due to a smaller semimajor axis and spin-orbit resonance can be dismissed since the required semimajor axis is unphysically small (< 0.1 AU). Reorientation of a large remnant bulge recording an epoch of faster rotation (without significant semimajor axis variations) can explain the large gravity coefficients. This requires initial rotation rates > 20 times the present value and a positive gravity anomaly associated with Caloris capable of driving 10-45° equatorward reorientation. The required gravity anomaly can be explained by infilling of the basin with material of thicknesses > 7 km, or an annulus of volcanic plains emplaced around the basin with annulus width ~ 1200 km and fill thicknesses > 2 km. The predicted tectonic pattern due to these despinning and reorientation scenarios and radial contraction is in good agreement with the observed lobate scarp pattern.

  4. f(T) teleparallel gravity and cosmology

    NASA Astrophysics Data System (ADS)

    Cai, Yi-Fu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Saridakis, Emmanuel N.

    2016-10-01

    Over recent decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f (T) gravity, where f (T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f (T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f (T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, alternative to a cosmological constant, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to very early times, for a certain class of f (T) models, a sufficiently long period of inflation can be achieved and hence can be investigated by cosmic microwave background observations—or, alternatively, the Big Bang singularity can be avoided at even earlier moments due to the appearance of non-singular bounces. Various observational constraints, especially the bounds coming from the large-scale structure data in the case of f (T) cosmology, as well as the behavior of gravitational waves, are described in detail. Moreover, the spherically symmetric and black hole solutions of the theory are reviewed. Additionally, we discuss various extensions of the f (T) paradigm. Finally, we consider the relation with other modified gravitational theories, such as those based on curvature, like f (R) gravity, trying to illuminate the subject of which formulation, or combination of formulations, might be more

  5. f(T) teleparallel gravity and cosmology.

    PubMed

    Cai, Yi-Fu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Saridakis, Emmanuel N

    2016-10-01

    Over recent decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f (T) gravity, where f (T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f (T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f (T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, alternative to a cosmological constant, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to very early times, for a certain class of f (T) models, a sufficiently long period of inflation can be achieved and hence can be investigated by cosmic microwave background observations-or, alternatively, the Big Bang singularity can be avoided at even earlier moments due to the appearance of non-singular bounces. Various observational constraints, especially the bounds coming from the large-scale structure data in the case of f (T) cosmology, as well as the behavior of gravitational waves, are described in detail. Moreover, the spherically symmetric and black hole solutions of the theory are reviewed. Additionally, we discuss various extensions of the f (T) paradigm. Finally, we consider the relation with other modified gravitational theories, such as those based on curvature, like f (R) gravity, trying to illuminate the subject of which formulation, or combination of formulations, might be more suitable

  6. Gravity gradiometry developments at Lockheed Martin

    NASA Astrophysics Data System (ADS)

    Difrancesco, D.

    2003-04-01

    Lockheed Martin has developed and fielded multiple configurations of the rotating accelerometer gravity gradiometer instrument. Applications for both static and moving-base measurements have been demonstrated for a variety of scenarios, including vehicle navigation, hydrocarbon exploration, mineral exploration, reservoir monitoring, underground void detection and treaty monitoring and compliance. The most recent systems built by Lockheed Martin extend the performance range of the early 4-accelerometer gradiometers by adding a second complement of four accelerometers. This achieves the benefit of lower instrument noise and improved frequency response (wider bandwidth) for stringent application scenarios. A summary of the gradiometer development history, functional concepts, instrument and system operation, and demonstrated performance will be presented. Development Background The U. S. Air Force Geophysics Laboratory (AFGL; now AFRL) instituted a program in 1982 to develop and field a moving base gradiometer system that could be used both on land and in the air. The result was the Gravity Gradiometer Survey System (GGSS) which first demonstrated the ability to make airborne gravity gradient measurements in 1987 (Jekeli, 1988). At the same time, the U.S. Navy began development of the Gravity Sensors System (GSS) for use on the Fleet Ballistic Submarine Trident II navigation subsystem. This military background paved the way for commercial uses of gravity gradiometry. Both the GSS and GGSS employed a first generation gravity gradiometer instrument (GGI), which was comprised of four accelerometers mounted on a rotating disk. The details of the GGI operation are further described in the work by Gerber and Hofmeyer (Gerber, 1978 and Hofmeyer, 1994). Recent Advancements in Gradiometer Instrumentation With the instrumentation experience gained through such programs as GSS and GGSS, Lockheed Martin embarked upon an ambitious effort in the early 1990's to further improve the

  7. Entropy and temperature of black holes in a gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Galán, Pablo; Mena Marugán, Guillermo A.

    2006-08-01

    The linear relation between the entropy and area of a black hole can be derived from the Heisenberg principle, the energy-momentum dispersion relation of special relativity, and general considerations about black holes. There exist results in quantum gravity and related contexts suggesting the modification of the usual dispersion relation and uncertainty principle. One of these contexts is the gravity’s rainbow formalism. We analyze the consequences of such a modification for black hole thermodynamics from the perspective of two distinct rainbow realizations built from doubly special relativity. One is the proposal of Magueijo and Smolin and the other is based on a canonical implementation of doubly special relativity put forward recently by the authors. In these scenarios, we obtain modified expressions for the entropy and temperature of black holes. We show that, for a family of doubly special relativity theories satisfying certain properties, the temperature can vanish in the limit of zero black hole mass. For the Magueijo and Smolin proposal, this is only possible for some restricted class of models with bounded energy and unbounded momentum. With the proposal of a canonical implementation, on the other hand, the temperature may vanish for more general theories; in particular, the momentum may also be bounded, with bounded or unbounded energy. This opens new possibilities for the outcome of black hole evaporation in the framework of a gravity’s rainbow.

  8. The narcissistic scenarios of parenthood.

    PubMed

    Manzano, J; Palacio Espasa, F; Zilkha, N

    1999-06-01

    The authors begin by pointing out that Freud always considered parent-child relations in terms of the child's psychic development and took little account of the parents' experience of the relationship and its psychic effects on them. They recall Freud's distinction between the anaclitic and narcissistic modes of relationship and show how these are unconsciously embodied and enacted in varying proportions in the cases observed in their own clinical practice of therapeutic consultations with parents and young children. After a review of the relevant psychoanalytic literature, the authors present their concept of the narcissistic scenarios of parenthood, which include parental projection on to the child, parental counter-identification, a specific aim and a relational dynamic that is acted out. Depending on the individual situation, the effects may help to structure the developing psyche or, if the narcissistic element is excessive, they may be pathological. The authors consider the literature on the application of psychoanalysis to therapeutic interventions with parents and children, stressing the technical importance of establishing a therapeutic focus. These ideas are illustrated by a detailed case history showing the interaction between a mother and a 4-year-old girl and how it was modified by a short therapy. The differences between interpretation in this situation and in the classical psychoanalytic setting are explained, and the paper ends with some comments on the transmission of psychic elements from generation to generation.

  9. Agricultural Baseline (BL0) scenario

    SciTech Connect

    Davis, Maggie R.; Hellwinckel, Chad M; Eaton, Laurence; Turhollow, Anthony; Brandt, Craig; Langholtz, Matthew H.

    2016-07-13

    Scientific reason for data generation: to serve as the reference case for the BT16 volume 1 agricultural scenarios. The agricultural baseline runs from 2015 through 2040; a starting year of 2014 is used. Date the data set was last modified: 02/12/2016 How each parameter was produced (methods), format, and relationship to other data in the data set: simulation was developed without offering a farmgate price to energy crops or residues (i.e., building on both the USDA 2015 baseline and the agricultural census data (USDA NASS 2014). Data generated are .txt output files by year, simulation identifier, county code (1-3109). Instruments used: POLYSYS (version POLYS2015_V10_alt_JAN22B) supplied by the University of Tennessee APAC The quality assurance and quality control that have been applied: • Check for negative planted area, harvested area, production, yield and cost values. • Check if harvested area exceeds planted area for annuals. • Check FIPS codes.

  10. A gauge-theoretic approach to gravity

    PubMed Central

    Krasnov, Kirill

    2012-01-01

    Einstein's general relativity (GR) is a dynamical theory of the space–time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang–Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040

  11. A gauge-theoretic approach to gravity.

    PubMed

    Krasnov, Kirill

    2012-08-08

    Einstein's general relativity (GR) is a dynamical theory of the space-time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang-Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach.

  12. Particle-Laden Viscous Gravity Currents

    NASA Astrophysics Data System (ADS)

    Saha, Sandeep; Talon, Laurent; Salin, Dominique; Porous Media Team

    2011-11-01

    The extension of a gravity current in lock-exchange problems, proceeds as square root of time in the viscous regime. In the presence of particles, however, this scenario is drastically altered due to sedimentation in a manner similar to the well- known Boycott effect. The spreading of particle-laden gravity currents is investigated with numerical simulations based on a Lattice-Boltzmann method. The settling of particles is modelled using a flux function for capturing sudden discontinuities in particle concentration travelling as kinematic shock waves. Contrary to conventional gravity currents, sedimentation leads to the formation of two additional fronts: a horizontal front descending vertically and a sediment layer that ascends as the particles accumulate. Two regimes emerge in the spreading process: the latter corresponding to the lateral advance of the sediment deposit and the former characterised by the vertical motion of the two fronts. An increase in the initial concentration hastens the time at which the regime change occurs and impedes the overall spreading process. The sedimentation velocity of the particles either slows down or speeds up the edges of the gravity current. A model based on lubrication theory is derived to explain the results and identify scaling laws.

  13. Biomass Scenario Model Scenario Library: Definitions, Construction, and Description

    SciTech Connect

    Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.

    2014-04-01

    Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses. The purpose of this report is to describe the scenarios that comprise the BSM scenario library. At present, we have the following policy-focused scenarios in our library: minimal policies, ethanol-focused policies, equal access to policies, output-focused policies, technological diversity focused, and the point-of-production- focused. This report describes each scenario, its policy settings, and general insights gained through use of the scenarios in analytic studies.

  14. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  15. Discrete symmetries in covariant loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Rovelli, Carlo; Wilson-Ewing, Edward

    2012-09-01

    We study time-reversal and parity—on the physical manifold and in internal space—in covariant loop gravity. We consider a minor modification of the Holst action which makes it transform coherently under such transformations. The classical theory is not affected but the quantum theory is slightly different. In particular, the simplicity constraints are slightly modified and this restricts orientation flips in a spin foam to occur only across degenerate regions, thus reducing the sources of potential divergences.

  16. Repository preclosure accident scenarios

    SciTech Connect

    Yook, H.R.; Arbital, J.G.; Keeton, J.M.; Mosier, J.E.; Weaver, B.S.

    1984-09-01

    Waste-handling operations at a spent-fuel repository were investigated to identify operational accidents that could occur. The facility was subdivided, through systems engineering procedures, into individual operations that involve the waste and one specific component of the waste package, in one specific area of the handling facility. From this subdivision approximately 600 potential accidents involving waste package components were identified and then discussed. Supporting descriptive data included for each accident scenario are distance of drop, speed of collision, weight of package component, and weight of equipment involved. The energy of impact associated with each potential accident is calculated to provide a basis for comparison of the relative severities of all the accidents. The results and conclusions suggest approaches to accident consequence mitigation through waste package and facility design. 35 figures, 9 tables.

  17. Effects of background gravity stimuli on gravity-controlled behavior

    NASA Technical Reports Server (NTRS)

    Mccoy, D. F.

    1976-01-01

    Physiological and developmental effects of altered gravity were researched. The stimulus properties of gravity have been found to possess reinforcing and aversive properties. Experimental approaches taken, used animals placed into fields of artificial gravity, in the form of parabolic or spiral centrifuges. Gravity preferences were noted and it was concluded that the psychophysics of gravity and background factors which support these behaviors should be further explored.

  18. From GOCE to the Next Generation Gravity Mission

    NASA Astrophysics Data System (ADS)

    Cesare, Stefano; Allasio, Andrea; Anselmi, Alberto; Dionisio, Sabrina; Mottini, Sergio; Parisch, Manilo; Massotti, Luca; Silvestrin, Pierluigi

    2015-03-01

    ESA’s gravity mission GOCE, carried out with extraordinary success between 2009 and 2013, was the result of more than twenty years of system studies and technology developments in which Thales Alenia Space Italia (TAS-I) always played a major role. Already while GOCE was being developed, ESA began promoting preparatory studies for a Next Generation Gravity Mission (NGGM). While GOCE aimed to provide a high resolution static map of Earth’s gravity, the objective of NGGM is long-term monitoring of the time-variable gravity field with high temporal and spatial resolution. The new mission implies new measurement techniques and instrumentation, a new mission scenario and different spacecraft design drivers. Despite the differences, however, the achievements of GOCE (demonstration of long-duration wide-band drag free control, ultra-sensitive accelerometers, stable noncryogenic temperature control in low earth orbit, etc.) stand as the basis on which the new mission is being created.

  19. Needs of physiological and psychological research using artificial gravity

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Toyobe, M.; Hamami, H.; Tayama, M.; Fujii, T.; Sato, T.; Nitta, K.; Kibe, S.

    In the next century, mankind will expand its activity to the moon and Mars. At that time, humans will be exposed to a low and micro-gravity environment in long term which causes physiological and psychological problems. The authors propose an artificial gravity space station for a research laboratory on human physiology and psychology at various gravity levels. The baseline specifications and the configuration of the space station are shown. Reviewing the history of manned space flight, the necessity of the research on an artificial gravity space station is discussed, including themes of research to be conducted on the station and the application of its results. Technical issues for realization of the space station such as environmental factors, system function and assembly scenario are also discussed.

  20. Needs of physiological and psychological research using artificial gravity.

    PubMed

    Suzuki, M; Toyobe, M; Hamami, H; Tayama, M; Fujii, T; Sato, T; Nitta, K; Kibe, S

    1994-07-01

    In the next century, mankind will expand its activity to the moon and Mars. At that time, humans will be exposed to a low and micro-gravity environment in long term which causes physiological and psychological problems. The authors propose an artificial gravity space station for a research laboratory on human physiology and psychology at various gravity levels. The baseline specifications and the configuration of the space station are shown. Reviewing the history of manned space flight, the necessity of the research on an artificial gravity space station is discussed, including themes of research to be conducted on the station and the application of its results. Technical issues for realization of the space station such as environmental factors, system function and assembly scenario are also discussed.

  1. Dynamics of stellar filaments in f(G) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Fatima, H. Ismat

    2017-03-01

    We discuss the dynamics of stellar filaments with cylindrical symmetry in the context of f( G) gravity. For this purpose, we consider the modified gravity coupled with a dissipative anisotropic fluid and construct scalar functions through orthogonal splitting of the Riemann tensor. We formulate the set of equations governing the evolution and structure of stellar filaments in terms of these scalars. Finally, we discuss all static solutions for cylindrical filaments with anisotropy as well as isotropy and conclude that stellar filaments are necessarily inhomogeneous in this gravity.

  2. Einstein Gravity and Beyond: Aspects of Higher-Curvature Gravity and Black Holes

    NASA Astrophysics Data System (ADS)

    Chatterjee, Saugata

    This thesis explores the different aspects of higher curvature gravity. The "membrane paradigm" of black holes in Einstein gravity is extended to black holes in f(R) gravity and it is shown that the higher curvature effects of f( R) gravity causes the membrane fluid to become non-Newtonian. Next a modification of the null energy condition in gravity is provided. The purpose of the null energy condition is to filter out ill-behaved theories containing ghosts. Conformal transformations, which are simple redefinitions of the spacetime, introduces serious violations of the null energy condition. This violation is shown to be spurious and a prescription for obtaining a modified null energy condition, based on the universality of the second law of thermodynamics, is provided. The thermodynamic properties of the black holes are further explored using merger of extremal black holes whose horizon entropy has topological contributions coming from the higher curvature Gauss-Bonnet term. The analysis refutes the prevalent belief in the literature that the second law of black hole thermodynamics is violated in the presence of the Gauss-Bonnet term in four dimensions. Subsequently a specific class of higher derivative scalar field theories called the galileons are obtained from a Kaluza-Klein reduction of Gauss-Bonnet gravity. Galileons are null energy condition violating theories which lead to violations of the second law of thermodynamics of black holes. These higher derivative scalar field theories which are non-minimally coupled to gravity required the development of a generalized method for obtaining the equations of motion. Utilizing this generalized method, it is shown that the inclusion of the Gauss-Bonnet term made the theory of gravity to become higher derivative, which makes it difficult to make any statements about the connection between the violation of the second law of thermodynamics and the galileon fields.

  3. Phenomenological Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Kimberly, Dagny; Magueijo, Joa~O.

    2005-08-01

    These notes summarize a set of lectures on phenomenological quantum gravity which one of us delivered and the other attended with great diligence. They cover an assortment of topics on the border between theoretical quantum gravity and observational anomalies. Specifically, we review non-linear relativity in its relation to loop quantum gravity and high energy cosmic rays. Although we follow a pedagogic approach we include an open section on unsolved problems, presented as exercises for the student. We also review varying constant models: the Brans-Dicke theory, the Bekenstein varying α model, and several more radical ideas. We show how they make contact with strange high-redshift data, and perhaps other cosmological puzzles. We conclude with a few remaining observational puzzles which have failed to make contact with quantum gravity, but who knows... We would like to thank Mario Novello for organizing an excellent school in Mangaratiba, in direct competition with a very fine beach indeed.

  4. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    The following subject areas are covered: (1) thermal control issues; (2) attitude control sybsystem; (3) configuration constraints; (4) payload; (5) acceleration requirements on Variable Gravity Laboratory (VGL); and (6) VGL configuration highlights.

  5. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    Variable Gravity Laboratory studies are discussed. The following subject areas are covered: (1) conceptual design and engineering analysis; (2) control strategies (fast crawling maneuvers, main perturbations and their effect upon the acceleration level); and (3) technology requirements.

  6. Rotating Gravity Gradiometer Study

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1976-01-01

    The application of a Rotating Gravity Gradiometer (RGG) system on board a Lunar Polar Orbiter (LPO) for the measurement of the Lunar gravity field was investigated. A data collection simulation study shows that a gradiometer will give significantly better gravity data than a doppler tracking system for the altitudes under consideration for the LOP, that the present demonstrated sensitivity of the RGG is adequate for measurement of the Lunar gravity gradient field, and that a single RGG instrument will provide almost as much data for geophysical interpretation as an orthogonal three axis RGG system. An engineering study of the RGG sensor/LPO spacecraft interface characteristics shows that the RGG systems under consideration are compatible with the present models of the LPO spacecraft.

  7. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  8. What Is Gravity?

    ERIC Educational Resources Information Center

    Nelson, George

    2004-01-01

    Gravity is the name given to the phenomenon that any two masses, like you and the Earth, attract each other. One pulls on the Earth and the Earth pulls on one the same amount. And one does not have to be touching. Gravity acts over vast distances, like the 150 million kilometers (93 million miles) between the Earth and the Sun or the billions of…

  9. Gravity Before Einstein and Schwinger Before Gravity

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.

    2012-05-01

    Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.

  10. Gravity field improvement using GPS data from Topex/Poseidon - A covariance analysis

    NASA Technical Reports Server (NTRS)

    Bertiger, Willy I.; Wu, J. T.; Wu, Sien C.

    1990-01-01

    A covariance analysis is performed using a realistic scenario for processing 10 days of GPS data, to obtain the expected improvement to the GEM-T2 gravity field. The gravity bin technique has been refined to compute the covariance matrix associated with the spherical harmonic gravity field. It is shown that the GPS data from one ten-day arc of Topex/Poseidon with no a priori can improve medium degree and order (3-26) sigmas for the parameters in the GEM-T2 gravity field by more than an order of magnitude.

  11. Research recommendations of the ESA Topical Team on Artificial Gravity

    NASA Astrophysics Data System (ADS)

    Clément, Gilles; Bukley, Angie

    Many experts believe that artificial gravity will be required for an interplanetary mission. However, despite its attractiveness as an efficient, multi-system countermeasure and its potential for simplifying operational activities, much still needs to be learned regarding the human response to rotating environments before artificial gravity can be successfully implemented. The European Space Agency (ESA) Topical Team on Artificial Gravity recommended a comprehensive program to determine the gravity threshold required to reverse or prevent the detrimental effects of microgravity and to evaluate the effects of centrifugation on various physiological functions. Part of the required research can be accomplished using animal models on a dedicated centrifuge in low Earth orbit. Studies of human responses to centrifugation could be performed during ambulatory, short- and long-duration bed rest, and in-flight studies. Artificial-gravity scenarios should not be a priori discarded in Moon and Mars mission designs. One major step is to determine the relationship between the artificial gravity dose level, duration, and frequency and the physiological responses of the major body functions affected by spaceflight. Once its regime characteristics are defined and a dose-response curve is established, artificial gravity should serve as the standard against which all other countermeasure candidates are evaluated, first on Earth and then in space.

  12. Mission Scenario Development Workbench

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Baker, John; Gilbert, John; Hanks, David; Mandutianu, Dan; Hooper, David

    2006-01-01

    The Mission Scenario Development Workbench (MSDW) is a multidisciplinary performance analysis software tool for planning and optimizing space missions. It provides a number of new capabilities that are particularly useful for planning the surface activities on other planets. MSDW enables rapid planning of a space mission and supports flight system and scientific-instrumentation trades. It also provides an estimate of the ability of flight, ground, and science systems to meet high-level mission goals and provides means of evaluating expected mission performance at an early stage of planning in the project life cycle. In MSDW, activity plans and equipment-list spreadsheets are integrated with validated parameterized simulation models of spacecraft systems. In contrast to traditional approaches involving worst-case estimates with large margins, the approach embodied in MSDW affords more flexibility and more credible results early in the lifecycle through the use of validated, variable- fidelity models of spacecraft systems. MSDW is expected to help maximize the scientific return on investment for space missions by understanding early the performance required to have a successful mission while reducing the risk of costly design changes made at late stages in the project life cycle.

  13. Modified Mercalli Intensity for scenario earthquakes in Evansville, Indiana

    USGS Publications Warehouse

    Cramer, Chris; Haase, Jennifer; Boyd, Oliver

    2012-01-01

    Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the fact that Evansville is close to the Wabash Valley and New Madrid seismic zones, there is concern about the hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake. Earthquake-hazard maps provide one way of conveying such estimates of strong ground shaking and will help the region prepare for future earthquakes and reduce earthquake-caused losses.

  14. Learning from global emissions scenarios

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian C.; Nakicenovic, Nebojsa

    2008-10-01

    Scenarios of global greenhouse gas emissions have played a key role in climate change analysis for over twenty years. Currently, several research communities are organizing to undertake a new round of scenario development in the lead-up to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). To help inform this process, we assess a number of past efforts to develop and learn from sets of global greenhouse gas emissions scenarios. We conclude that while emissions scenario exercises have likely had substantial benefits for participating modeling teams and produced insights from individual models, learning from the exercises taken as a whole has been more limited. Model comparison exercises have typically focused on the production of large numbers of scenarios while investing little in assessing the results or the production process, perhaps on the assumption that later assessment efforts could play this role. However, much of this assessment potential remains untapped. Efforts such as scenario-related chapters of IPCC reports have been most informative when they have gone to extra lengths to carry out more specific comparison exercises, but in general these assessments do not have the remit or resources to carry out the kind of detailed analysis of scenario results necessary for drawing the most useful conclusions. We recommend that scenario comparison exercises build-in time and resources for assessing scenario results in more detail at the time when they are produced, that these exercises focus on more specific questions to improve the prospects for learning, and that additional scenario assessments are carried out separately from production exercises. We also discuss the obstacles to better assessment that might exist, and how they might be overcome. Finally, we recommend that future work include much greater emphasis on understanding how scenarios are actually used, as a guide to improving scenario production.

  15. Loop gravity: An application and an extension

    NASA Astrophysics Data System (ADS)

    Taveras, Victor Manuel

    In this thesis we address two issues in the area of loop quantum gravity. The first concerns the semiclassical limit in loop quantum cosmology via the use of so-called effective equations. In loop quantum cosmology the quantum dynamics is well understood. We can approximate the full quantum dynamics in the infinite dimensional Hilbert space by projecting it on a finite dimensional submanifold thereof, spanned by suitably chosen semiclassical states. This submanifold is isomorphic with the classical phase space and the projected dynamical flow provides effective equations incorporating the leading quantum corrections to the classical equations of motion. Numerical work has been done in the full theory using quantum states which are semiclassical at late times. These states follow the classical trajectory until the density is on the order of 1% of the Planck density then deviate strongly from the classical trajectory. The effective equations we obtain reproduce this behavior to surprising accuracy. The second issue concerns generalizations of the classical action which is the starting point for loop quantum gravity. In loop quantum gravity one begins with the Einstein-Hilbert action, modified by the addition of the so-called Holst term. Classically, this term does not affect the equations of motion, but it leads to a well-known quantization ambiguity in the quantum theory parametrized by the Barbero-Immirzi parameter, which rescales the eigenvalues of the area and volume operators. We consider the theory obtained by promoting the Barbero-Immirzi parameter to a field. The resulting theory, called Modified Holst Gravity, is equivalent to General Relativity coupled to a pseudo-scalar field. However, this theory turns out to have an unconventional kinetic term for the Barbero-Immirzi field and a rather unnatural coupling with fermions. We then propose a further generalization of the Holst action, which we call Modified Nieh-Yan Gravity, which yields a theory of gravity

  16. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1990-01-01

    The scope of the study is to investigate ways of controlling the microgravity environment of the International Space Station by means of a tethered system. Four main study tasks were performed. First, researchers analyzed the utilization of the tether systems to improve the lowest possible steady gravity level on the Space Station and the tether capability to actively control the center of gravity position in order to compensate for activities that would upset the mass distribution of the Station. The purpose of the second task was to evaluate the whole of the experiments performable in a variable gravity environment and the related beneficial residual accelerations, both for pure and applied research in the fields of fluid, materials, and life science, so as to assess the relevance of a variable g-level laboratory. The third task involves the Tethered Variable Gravity Laboratory. The use of the facility that would crawl along a deployed tether and expose experiments to varying intensities of reduced gravity is discussed. Last, a study performed on the Attitude Tether Stabilizer concept is discussed. The stabilization effect of ballast masses tethered to the Space Station was investigated as a means of assisting the attitude control system of the Station.

  17. Venus Gravity Handbook

    NASA Technical Reports Server (NTRS)

    Konopliv, Alexander S.; Sjogren, William L.

    1996-01-01

    This report documents the Venus gravity methods and results to date (model MGNP90LSAAP). It is called a handbook in that it contains many useful plots (such as geometry and orbit behavior) that are useful in evaluating the tracking data. We discuss the models that are used in processing the Doppler data and the estimation method for determining the gravity field. With Pioneer Venus Orbiter and Magellan tracking data, the Venus gravity field was determined complete to degree and order 90 with the use of the JPL Cray T3D Supercomputer. The gravity field shows unprecedented high correlation with topography and resolution of features to the 2OOkm resolution. In the procedure for solving the gravity field, other information is gained as well, and, for example, we discuss results for the Venus ephemeris, Love number, pole orientation of Venus, and atmospheric densities. Of significance is the Love number solution which indicates a liquid core for Venus. The ephemeris of Venus is determined to an accuracy of 0.02 mm/s (tens of meters in position), and the rotation period to 243.0194 +/- 0.0002 days.

  18. Gravity and Biology

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.

    1996-01-01

    Gravity has been the most constant environmental factor throughout the evolution of biological species on Earth. Organisms are rarely exposed to other gravity levels, either increased or decreased, for prolonged periods. Thus, evolution in a constant 1G field has historically prevented us from appreciating the potential biological consequences of a multi-G universe. To answer the question 'Can terrestrial life be sustained and thrive beyond our planet?' we need to understand the importance of gravity on living systems, and we need to develop a multi-G, rather than a 1G, mentality. The science of gravitational biology took a giant step with the advent of the space program, which provided the first opportunity to examine living organisms in gravity environments lower than could be sustained on Earth. Previously, virtually nothing was known about the effects of extremely low gravity on living organisms, and most of the initial expectations were proven wrong. All species that have flown in space survive in microgravity, although no higher organism has ever completed a life cycle in space. It has been found, however, that many systems change, transiently or permanently, as a result of prolonged exposure to microgravity.

  19. Quantum gravity corrections in Chandrasekhar limits

    NASA Astrophysics Data System (ADS)

    Moussa, Mohamed

    2017-01-01

    It is agreed that Chandrasekhar mass and central density of white dwarfs are independent, which means that there is a whole series of stars having radius and central density as parameters that all have the same Chandrasekhar mass. In this article the influence of a quantum gravity is shown so the Chandrasekhar limits (mass and radius) depend explicitly on the central density and gravity parameters. A new polytropic relation between degenerate pressure of the star and its density is investigated. This leads to a modification in Lane-Emden equation and mass and radius formulas of the star. A modified Lane-Emden equation is solved numerically with consideration to the mass density of the star depends on its radius. The solution was used in calculating the mass and radius limit of the white dwarf. It was found that mass and radius limits decrease due to increase in central density and gravity parameters in a comparison with the original values. We can say that central density and quantum gravity constitute a new tool that can help to make the theoretical values corresponding to experimental observations apply in a better manner.

  20. Effect of asymmetric gravity jitter excited slosh waves at liquid-vapor interface under microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.; Lee, C. C.; Leslie, F. W.

    1992-01-01

    The dynamical behavior of fluids affected by the asymmetric gravity jitter oscillations, in particular the effect of surface tension on partially-filled rotating fluids (cryogenic liquid helium and helium vapor) in a sub-scale Gravity Probe-B Spacecraft propellant dewar tank imposed by time-dependent various directions of background gravity environment have been investigated. Results show that lower frequency gravity jitter imposed on the time-dependent variations of the direction of background gravity induced a greater amplitude of oscillations and a stronger degree of asymmetry in liquid-vapor interface geometry than that made by the higher frequency gravity jitter. Furthermore, the greater the components of background gravity in radial and circumferential directions will provide a greater contribution in driving more to the increasing amplitude and degrees of symmetry of liquid-vapor interface profiles which, in turn, modify the disturbance of moment of inertia and angular momentum of spacecraft.

  1. Novel Probes of Gravity and Dark Energy

    SciTech Connect

    Jain, Bhuvnesh; et al.

    2013-09-20

    The discovery of cosmic acceleration has stimulated theorists to consider dark energy or modifications to Einstein's General Relativity as possible explanations. The last decade has seen advances in theories that go beyond smooth dark energy -- modified gravity and interactions of dark energy. While the theoretical terrain is being actively explored, the generic presence of fifth forces and dark sector couplings suggests a set of distinct observational signatures. This report focuses on observations that differ from the conventional probes that map the expansion history or large-scale structure. Examples of such novel probes are: detection of scalar fields via lab experiments, tests of modified gravity using stars and galaxies in the nearby universe, comparison of lensing and dynamical masses of galaxies and clusters, and the measurements of fundamental constants at high redshift. The observational expertise involved is very broad as it spans laboratory experiments, high resolution astronomical imaging and spectroscopy and radio observations. In the coming decade, searches for these effects have the potential for discovering fundamental new physics. We discuss how the searches can be carried out using experiments that are already under way or with modest adaptations of existing telescopes or planned experiments. The accompanying paper on the Growth of Cosmic Structure describes complementary tests of gravity with observations of large-scale structure.

  2. Finding Horndeski theories with Einstein gravity limits

    NASA Astrophysics Data System (ADS)

    McManus, Ryan; Lombriser, Lucas; Peñarrubia, Jorge

    2016-11-01

    The Horndeski action is the most general scalar-tensor theory with at most second-order derivatives in the equations of motion, thus evading Ostrogradsky instabilities and making it of interest when modifying gravity at large scales. To pass local tests of gravity, these modifications predominantly rely on nonlinear screening mechanisms that recover Einstein's Theory of General Relativity in regions of high density. We derive a set of conditions on the four free functions of the Horndeski action that examine whether a specific model embedded in the action possesses an Einstein gravity limit or not. For this purpose, we develop a new and surprisingly simple scaling method that identifies dominant terms in the equations of motion by considering formal limits of the couplings that enter through the new terms in the modified action. This enables us to find regimes where nonlinear terms dominate and Einstein's field equations are recovered to leading order. Together with an efficient approximation of the scalar field profile, one can then further evaluate whether these limits can be attributed to a genuine screening effect. For illustration, we apply the analysis to both a cubic galileon and a chameleon model as well as to Brans-Dicke theory. Finally, we emphasise that the scaling method also provides a natural approach for performing post-Newtonian expansions in screened regimes.

  3. Neutron stars as laboratories for gravity physics

    SciTech Connect

    Deliduman, Cemsinan

    2014-01-01

    We study the structure of neutron stars in R+αR² gravity model with perturbative method. We obtain mass-radius relations for four representative equations of state (EoS). We find that, for |α|~10⁹ cm², the results differ substantially from the results of general relativity. The effects of modified gravity are seen as mimicking a stiff or soft EoS for neutron stars depending upon whether α is negative or positive, respectively. Some of the soft EoS that are excluded within the framework of general relativity can be reconciled for certain values of α of this order with the 2 solar mass neutron star recently observed. Indeed, if the EoS is ever established to be soft, modified gravity of the sort studied here may be required to explain neutron star masses as large as 2 M{sub ⊙}. The associated length scale √(α)~10⁵ cm is of the order of the the typical radius of neutron stars implying that this is the smallest value we could find by using neutron stars as a probe. We thus conclude that the true value of α is most likely much smaller than 10⁹ cm².

  4. Gravity and embryonic development

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1976-01-01

    The relationship between the developing embryo (both plant and animal) and a gravitational field has long been contemplated. The difficulty in designing critical experiments on the surface of the earth because of its background of 1 g, has been an obstacle to a resolution of the problem. Biological responses to gravity (particularly in plants) are obvious in many cases; however, the influence of gravity as an environmental input to the developing embryo is not as obvious and has proven to be extremely difficult to define. In spite of this, over the years numerous attempts have been made using a variety of embryonic materials to come to grips with the role of gravity in development. Three research tools are available: the centrifuge, the clinostat, and the orbiting spacecraft. Experimental results are now available from all three sources. Some tenuous conclusions are drawn, and an attempt at a unifying theory of gravitational influence on embryonic development is made.

  5. Newberry Combined Gravity 2016

    SciTech Connect

    Kelly Rose

    2016-01-22

    Newberry combined gravity from Zonge Int'l, processed for the EGS stimulation project at well 55-29. Includes data from both Davenport 2006 collection and for OSU/4D EGS monitoring 2012 collection. Locations are NAD83, UTM Zone 10 North, meters. Elevation is NAVD88. Gravity in milligals. Free air and observed gravity are included, along with simple Bouguer anomaly and terrain corrected Bouguer anomaly. SBA230 means simple Bouguer anomaly computed at 2.30 g/cc. CBA230 means terrain corrected Bouguer anomaly at 2.30 g/cc. This suite of densities are included (g/cc): 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.67.

  6. Terrestrial gravity data analysis for interim gravity model improvement

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.

  7. Seeking the Light: Gravity Without the Influence of Gravity

    NASA Technical Reports Server (NTRS)

    Sack, Fred; Kern, Volker; Reed, Dave; Etheridge, Guy (Technical Monitor)

    2002-01-01

    All living things sense gravity like humans might sense light or sound. The Biological Research In Canisters (BRIC-14) experiment, explores how moss cells sense and respond to gravity and light. This experiment studies how gravity influences the internal structure of moss cells and seeks to understand the influences of the spaceflight environment on cell growth. This knowledge will help researchers understand the role of gravity in the evolution of cells and life on earth.

  8. Gauge/Gravity Duality

    ScienceCinema

    Polchinski, Joseph [Kavli Institute for Theoretical Physics

    2016-07-12

    Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.

  9. Resummation of Massive Gravity

    SciTech Connect

    Rham, Claudia de; Gabadadze, Gregory; Tolley, Andrew J.

    2011-06-10

    We construct four-dimensional covariant nonlinear theories of massive gravity which are ghost-free in the decoupling limit to all orders. These theories resume explicitly all the nonlinear terms of an effective field theory of massive gravity. We show that away from the decoupling limit the Hamiltonian constraint is maintained at least up to and including quartic order in nonlinearities, hence excluding the possibility of the Boulware-Deser ghost up to this order. We also show that the same remains true to all orders in a similar toy model.

  10. Student Rights and Responsibilities Scenarios.

    ERIC Educational Resources Information Center

    Peterson, Ludwig A.; And Others

    To stimulate interest in student's rights and responsibilities, this resource contains incomplete scenarios dealing with the consequences of knowing and not knowing the law, as it is applied to modern practical situations. The scenarios can be used in high school courses such as government, social problems, history, psychology, and business law.…

  11. Futures Scenario in Science Learning

    ERIC Educational Resources Information Center

    Lloyd, David; Vanderhout, Annastasia; Lloyd, Lisa; Atkins, David

    2010-01-01

    In this article we describe our experiences in developing futures scenarios in two science contexts, space science and atmospheric science/climate change. Futures scenario writing can develop scientific literacy by connecting science learning to students' lifeworlds--past, present and future. They also provide a synthesising mechanism for…

  12. Crossing of the phantom divide using tachyon-Gauss-Bonnet gravity

    SciTech Connect

    Sadeghi, J.; Banijamali, A.; Milani, F.; Setare, M. R.

    2009-06-15

    In this paper we consider two models. First, we study tachyon-Gauss-Bonnet gravity and obtain the condition of the equation of state crossing -1. Second, we discuss the modified Gauss-Bonnet gravity with the tachyon field and show the condition of {omega} crossing -1. Also, we plot figures for {omega} numerically in special potential and coupling function.

  13. Polyhedron tracking and gravity tractor asteroid deflection

    NASA Astrophysics Data System (ADS)

    Ummen, N.; Lappas, V.

    2014-11-01

    In the wake of the Chelyabinsk airburst, the defense against hazardous asteroids is becoming a topic of high interest. This work improves the gravity tractor asteroid deflection approach by tracking realistic small body shapes with tilted ion engines. An algorithm for polyhedron tracking was evaluated in a fictitious impact scenario. The simulations suggest a capability increase up to 38.2% with such improved tilting strategies. The long- and short-term effects within polyhedron tracking are illustrated. In particular, the orbital reorientation effect is influential when realistic asteroid shapes and rotations are accounted for. Also analyzed is the subject of altitude profiles, a way to tailor the gravity tractor performance, and to achieve a steering ability within the B-plane. A novel analytical solution for the classic gravity tractor is derived. It removes the simulation need for classic tractor designs to obtain comparable two body model Δv figures. This paper corroborates that the asteroid shape can be exploited for maximum performance. Even a single engine tilt adjustment at the beginning of deflection operations yields more deflection than a fixed preset tilt.

  14. Our World: Gravity in Space

    NASA Video Gallery

    What is gravity? Find out about the balance between gravity and inertia that keeps the International Space Station in orbit. Learn why astronauts "float" in space and how the space shuttle has to s...

  15. Inflation in a two 3-form fields scenario

    SciTech Connect

    Kumar, K. Sravan; Marto, J.; Moniz, P. Vargas; Nunes, Nelson J. E-mail: jmarto@ubi.pt E-mail: pmoniz@ubi.pt

    2014-06-01

    A setting constituted by N 3-form fields, without any direct interaction between them, minimally coupled to gravity, is introduced in this paper as a framework to study the early evolution of the universe. We focus particularly on the two 3-forms case. An inflationary scenario is found, emerging from the coupling to gravity. More concretely, the fields coupled in this manner exhibit a complex interaction, mediated by the time derivative of the Hubble parameter. Our investigation is supported by means of a suitable choice of potentials, employing numerical methods and analytical approximations. In more detail, the oscillations on the small field limit become correlated, and one field is intertwined with the other. In this type of solution, a varying sound speed is present, together with the generation of isocurvature perturbations. The mentioned features allow to consider an interesting model, to test against observation. It is subsequently shown how our results are consistent with current CMB data (viz.Planck and BICEP2)

  16. Eddington's Theory of Gravity and Its Progeny

    NASA Astrophysics Data System (ADS)

    Bañados, Máximo; Ferreira, Pedro G.

    2010-07-01

    We resurrect Eddington’s proposal for the gravitational action in the presence of a cosmological constant and extend it to include matter fields. We show that the Newton-Poisson equation is modified in the presence of sources and that charged black holes show great similarities with those arising in Born-Infeld electrodynamics coupled to gravity. When we consider homogeneous and isotropic space-times, we find that there is a minimum length (and maximum density) at early times, clearly pointing to an alternative theory of the big bang. We thus argue that the modern formulation of Eddington’s theory, Born-Infeld gravity, presents us with a novel, nonsingular description of the Universe.

  17. Constraining inverse-curvature gravity with supernovae.

    PubMed

    Mena, Olga; Santiago, José; Weller, Jochen

    2006-02-03

    We show that models of generalized modified gravity, with inverse powers of the curvature, can explain the current accelerated expansion of the Universe without resorting to dark energy and without conflicting with solar system experiments. We have solved the Friedmann equations for the full dynamical range of the evolution of the Universe and performed a detailed analysis of supernovae data in the context of such models that results in an excellent fit. If we further include constraints on the current expansion of the Universe and on its age, we obtain that the matter content of the Universe is 0.07gravity models considered cannot explain the dynamics of the Universe just with a baryonic matter component.

  18. Resonant triad interactions of acoustc-gravity waves

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Akylas, T. R.

    2015-11-01

    Surface-acoustic wave disturbances in water of constant depth over a rigid bottom, due to the combined action of gravity and compressibility, are studied. In the linear theory, apart from free-surface (gravity) waves, there is also a countable infinity of acoustic (compression) modes. As the sound speed in water, typically, far exceeds the maximum gravity wave phase speed, these two types of modes feature vastly different spatial and/or temporal scales, and their linear coupling is weak. It is possible, however, to realize significant energy exchange between gravity and acoustic waves via nonlinear interactions. This scenario is analyzed for resonant wave triads that comprise two counter-propagating gravity waves and a long-crested acoustic mode. Owing to this disparity in length scales, the interaction time scale as well as the form of the amplitude evolution equations differ from those of a standard resonant triad. In the case of a perfectly tuned triad of uniform monochromatic wave trains, nearly all the energy initially in the gravity waves can be transferred to the acoustic wave. This mechanism, however, is less efficient when the interacting waves are modulated wavepackets.

  19. Improved artificial bee colony algorithm based gravity matching navigation method.

    PubMed

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-07-18

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.

  20. Cosmological data analysis of f(R) gravity models

    SciTech Connect

    Gironés, Z.; Marchetti, A.; Mena, O.; Peña-Garay, C.; Rius, N. E-mail: alida.marchetti@unimi.it E-mail: carlos.penya@ific.uv.es

    2010-11-01

    A class of well-behaved modified gravity models with long enough matter domination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS, BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of structure. We show that the combination of geometrical probes and growth data exploited here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature model. We also apply solar system tests to the models in agreement with the cosmological data. We find that the exponential of the inverse of the curvature model satisfies all the observational tests considered and we derive the allowed range of parameters. Current data still allows for small deviations of Einstein gravity. Future, high precision growth data, in combination with expansion history data, will be able to distinguish tiny modifications of standard gravity from the ΛCDM model.

  1. Statistical origin of gravity

    SciTech Connect

    Banerjee, Rabin; Majhi, Bibhas Ranjan

    2010-06-15

    Starting from the definition of entropy used in statistical mechanics we show that it is proportional to the gravity action. For a stationary black hole this entropy is expressed as S=E/2T, where T is the Hawking temperature and E is shown to be the Komar energy. This relation is also compatible with the generalized Smarr formula for mass.

  2. Artificial Gravity Research Plan

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita

    2014-01-01

    This document describes the forward working plan to identify what countermeasure resources are needed for a vehicle with an artificial gravity module (intermittent centrifugation) and what Countermeasure Resources are needed for a rotating transit vehicle (continuous centrifugation) to minimize the effects of microgravity to Mars Exploration crewmembers.

  3. A Trick of Gravity

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2010-01-01

    It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.

  4. Variable gravity research facility

    NASA Technical Reports Server (NTRS)

    Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd

    1988-01-01

    Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.

  5. Hawaii Gravity Model

    SciTech Connect

    Nicole Lautze

    2015-12-15

    Gravity model for the state of Hawaii. Data is from the following source: Flinders, A.F., Ito, G., Garcia, M.O., Sinton, J.M., Kauahikaua, J.P., and Taylor, B., 2013, Intrusive dike complexes, cumulate cores, and the extrusive growth of Hawaiian volcanoes: Geophysical Research Letters, v. 40, p. 3367–3373, doi:10.1002/grl.50633.

  6. Gravity and crustal structure

    NASA Technical Reports Server (NTRS)

    Bowin, C. O.

    1976-01-01

    Lunar gravitational properties were analyzed along with the development of flat moon and curved moon computer models. Gravity anomalies and mascons were given particular attention. Geophysical and geological considerations were included, and comparisons were made between the gravitional fields of the Earth, Mars, and the Moon.

  7. Spaceborne Gravity Gradiometers

    NASA Technical Reports Server (NTRS)

    Wells, W. C. (Editor)

    1984-01-01

    The current status of gravity gradiometers and technology that could be available in the 1990's for the GRAVSAT-B mission are assessed. Problems associated with sensors, testing, spacecraft, and data processing are explored as well as critical steps, schedule, and cost factors in the development plan.

  8. Topological induced gravity

    NASA Astrophysics Data System (ADS)

    Oda, Ichiro

    We propose a topological model of induced gravity (pregeometry) where both Newton’s coupling constant and the cosmological constant appear as integration constants in solving field equations. The matter sector of a scalar field is also considered, and by solving field equations it is shown that various types of cosmological solutions in the Friedmann-Robertson-Walker (FRW) universe can be obtained. A detailed analysis is given of the meaning of the BRST transformations, which make the induced gravity be a topological field theory, by means of the canonical quantization analysis, and the physical reason why such BRST transformations are needed in the present formalism is clarified. Finally, we propose a dynamical mechanism for fixing the Lagrange multiplier fields by following the Higgs mechanism. The present study clearly indicates that the induced gravity can be constructed at the classical level without recourse to quantum fluctuations of matter and suggests an interesting relationship between the induced gravity and the topological quantum-field theory (TQFT).

  9. Revamped braneworld gravity

    SciTech Connect

    Bao Ruoyu; Park, Minjoon; Carena, Marcela; Santiago, Jose; Lykken, Joseph

    2006-03-15

    Gravity in five-dimensional braneworld backgrounds often exhibits problematic features, including kinetic ghosts, strong coupling, and the van Dam-Veltman-Zakharov (vDVZ) discontinuity. These problems are an obstacle to producing and analyzing braneworld models with interesting and potentially observable modifications of 4d gravity. We examine these problems in a general AdS{sub 5}/AdS{sub 4} setup with two branes and localized curvature from arbitrary brane kinetic terms. We use the interval approach and an explicit straight gauge-fixing. We compute the complete quadratic gauge-fixed effective 4d action, as well as the leading cubic order corrections. We compute the exact Green's function for gravity as seen on the brane. In the full parameter space, we exhibit the regions which avoid kinetic ghosts and tachyons. We give a general formula for the strong coupling scale, i.e., the energy scale at which the linearized treatment of gravity breaks down, for relevant regions of the parameter space. We show how the vDVZ discontinuity can be naturally but nontrivially avoided by ultralight graviton modes. We present a direct comparison of warping versus localized curvature in terms of their effects on graviton mode couplings. We exhibit the first example of Dvali-Gabadadze-Porrati (DGP)-like crossover behavior in a general warped setup.

  10. Revamped braneworld gravity

    SciTech Connect

    Bao, Ruoyu; Carena, Marcela; Lykken, Joseph; Park, Minjoon; Santiago, Jose; /Fermilab

    2005-11-01

    Gravity in five-dimensional braneworld backgrounds often exhibits problematic features, including kinetic ghosts, strong coupling, and the vDVZ discontinuity. These problems are an obstacle to producing and analyzing braneworld models with interesting and potentially observable modifications of 4d gravity. We examine these problems in a general AdS{sub 5}/AdS{sub 4} setup with two branes and localized curvature from arbitrary brane kinetic terms. We use the interval approach and an explicit ''straight'' gauge-fixing. We compute the complete quadratic gauge-fixed effective 4d action, as well as the leading cubic order corrections. We compute the exact Green's function for gravity as seen on the brane. In the full parameter space, we exhibit the regions which avoid kinetic ghosts and tachyons. We give a general formula for the strong coupling scale, i.e. the energy scale at which the linearized treatment of gravity breaks down, for relevant regions of the parameter space. We show how the vDVZ discontinuity can be naturally but nontrivially avoided by ultralight graviton modes. We present a direct comparison of warping versus localized curvature in terms of their effects on graviton mode couplings. We exhibit the first example of DGP-like crossover behavior in a general warped setup.

  11. Adhesion Casting In Low Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond J.

    1996-01-01

    Adhesion casting in low gravity proposed as technique for making new and improved materials. Advantages of low-gravity adhesion casting, in comparison with adhesion casting in normal Earth gravity, comes from better control over, and greater uniformity of, thicknesses of liquid films that form on and adhere to solid surfaces during casting.

  12. Fertilizer Emission Scenario Tool for crop management system scenarios

    EPA Pesticide Factsheets

    The Fertilizer Emission Scenario Tool for CMAQ is a high-end computer interface that simulates daily fertilizer application information for any gridded domain. It integrates the Weather Research and Forecasting model and CMAQ.

  13. The virial theorem in Eddington-Born-Infeld gravity

    SciTech Connect

    Santos, Noelia S.; Santos, Janilo E-mail: janilo@dfte.ufrn.br

    2015-12-01

    We consider the possibility that the Eddington-Born-Infeld (EBI) modified gravity provides an alternative explanation for the mass discrepancy in clusters of galaxies. For this purpose we derive the modified Einstein field equations, finding an additional 'geometrical mass' term which provides an effective contribution to the gravitational binding energy. Using some approximations and assumptions for weak gravitational fields, and taking into account the collisionless relativistic Boltzmann equation, we derive a generalized version of the virial theorem in the framework of EBI gravity. We show that the 'geometrical mass' term may account for the well known virial mass discrepancy in clusters of galaxies. We also derive the velocity dispersion relation for galaxies in the clusters, which could provide an efficient method for testing EBI gravity from astrophysical observations.

  14. Uncertainty in Integrated Assessment Scenarios

    SciTech Connect

    Mort Webster

    2005-10-17

    The determination of climate policy is a decision under uncertainty. The uncertainty in future climate change impacts is large, as is the uncertainty in the costs of potential policies. Rational and economically efficient policy choices will therefore seek to balance the expected marginal costs with the expected marginal benefits. This approach requires that the risks of future climate change be assessed. The decision process need not be formal or quantitative for descriptions of the risks to be useful. Whatever the decision procedure, a useful starting point is to have as accurate a description of climate risks as possible. Given the goal of describing uncertainty in future climate change, we need to characterize the uncertainty in the main causes of uncertainty in climate impacts. One of the major drivers of uncertainty in future climate change is the uncertainty in future emissions, both of greenhouse gases and other radiatively important species such as sulfur dioxide. In turn, the drivers of uncertainty in emissions are uncertainties in the determinants of the rate of economic growth and in the technologies of production and how those technologies will change over time. This project uses historical experience and observations from a large number of countries to construct statistical descriptions of variability and correlation in labor productivity growth and in AEEI. The observed variability then provides a basis for constructing probability distributions for these drivers. The variance of uncertainty in growth rates can be further modified by expert judgment if it is believed that future variability will differ from the past. But often, expert judgment is more readily applied to projected median or expected paths through time. Analysis of past variance and covariance provides initial assumptions about future uncertainty for quantities that are less intuitive and difficult for experts to estimate, and these variances can be normalized and then applied to mean

  15. Student experience of a scenario-centred curriculum

    NASA Astrophysics Data System (ADS)

    Bell, Sarah; Galilea, Patricia; Tolouei, Reza

    2010-06-01

    In 2006 UCL implemented new scenario-centred degree programmes in Civil and Environmental Engineering. The new curriculum can be characterised as a hybrid of problem-based, project-based and traditional approaches to learning. Four times a year students work in teams for one week on a scenario which aims to integrate learning from lecture and laboratory classes and to develop generic skills including team working and communication. Student experience of the first two years the old and new curricula were evaluated using a modified Course Experience Questionnaire. The results showed that students on the new programme were motivated by the scenarios and perceived better generic skills development, but had a lower perception of teaching quality and the development of design skills. The results of the survey support the implementation new curriculum but highlight the importance of strong integration between conventional teaching and scenarios, and the challenges of adapting teaching styles to suit.

  16. Low Reynolds number suspension gravity currents.

    PubMed

    Saha, Sandeep; Salin, Dominique; Talon, Laurent

    2013-08-01

    The extension of a gravity current in a lock-exchange problem, proceeds as square root of time in the viscous-buoyancy phase, where there is a balance between gravitational and viscous forces. In the presence of particles however, this scenario is drastically altered, because sedimentation reduces the motive gravitational force and introduces a finite distance and time at which the gravity current halts. We investigate the spreading of low Reynolds number suspension gravity currents using a novel approach based on the Lattice-Boltzmann (LB) method. The suspension is modeled as a continuous medium with a concentration-dependent viscosity. The settling of particles is simulated using a drift flux function approach that enables us to capture sudden discontinuities in particle concentration that travel as kinematic shock waves. Thereafter a numerical investigation of lock-exchange flows between pure fluids of unequal viscosity, reveals the existence of wall layers which reduce the spreading rate substantially compared to the lubrication theory prediction. In suspension gravity currents, we observe that the settling of particles leads to the formation of two additional fronts: a horizontal front near the top that descends vertically and a sediment layer at the bottom which aggrandises due to deposition of particles. Three phases are identified in the spreading process: the final corresponding to the mutual approach of the two horizontal fronts while the laterally advancing front halts indicating that the suspension current stops even before all the particles have settled. The first two regimes represent a constant and a decreasing spreading rate respectively. Finally we conduct experiments to substantiate the conclusions of our numerical and theoretical investigation.

  17. Lunar transportation scenarios utilising the Space Elevator.

    PubMed

    Engel, Kilian A

    2005-01-01

    The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required delta v, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo.

  18. Industrial processes influenced by gravity

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon

    1988-01-01

    In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.

  19. Detection of Directions of Gravity by Organisms and Contributions to SmaggIce

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.

    2003-01-01

    Research covers the following: In the Microgravity Environment and Telescience Branch, a study wasI extended thar focused upon a flagellated alga or other swimming microbe and the effect of gravity upon its swimming direction. It has long been known that many organisms tend to swim up or down on Earth. How organisms detect the direction of gravity is a question not fully resolved. The response of such organisms to reduced gravity or the absence of gravity is also of interest, particularly because the expected modified behavior may affect the health of astronauts.

  20. Gravity from the Ground Up

    NASA Astrophysics Data System (ADS)

    Schutz, Bernard

    2003-12-01

    Preface; 1. Gravity on Earth: the inescapable force; 2. And then came Newton: gravity takes center stage; 3. Satellites: what goes up doesn't always come down; 4. The Solar System: a triumph for Newtonian gravity; 5. Tides and tidal forces: the real signature of gravity; 6. Interplanetary travel: the cosmic roller-coaster; 7. Atmospheres: keeping planets covered; 8. Gravity in the Sun: keeping the heat on; 9. Reaching for the stars: the emptiness of outer space; 10. The colors of stars: why they are black (bodies); 11. Stars at work: factories for the Universe; 12. Birth to death: the life cycle of the stars; 13. Binary stars: tidal forces on a huge scale; 14. Galaxies: atoms in the Universe; 15. Physics near the speed of light: Einstein stands on Galileo's shoulders; 16. Relating to Einstein: logic and experiment in relativity; 17. Spacetime geometry: finding out what is not relative; 18. Einstein's gravity: the curvature of spacetime in the Solar System; 19. Einstein's recipe: fashioning the geometry of gravity; 20. Neutron stars: laboratories of strong gravity; 21. Black holes: gravity's one-way street; 22. Gravitational waves: gravity speaks; 23. Gravitational lenses: bringing the Universe into focus; 24. Cosmology: the study of everything; 25. Big Bang: the seed from which we grew; 26. Einstein's Universe: the geometry of cosmology; 27. Ask the Universe: cosmic questions at the frontiers of gravity; Appendix A. Useful constants: values used in this book; Appendix B. Background: what you need to know before you start.

  1. Recent Advances in Conformal Gravity

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Chaykov, Spasen

    2016-03-01

    In recent years, significant advances have been made in alternative gravitational theories. Although MOND remains the leading candidate among the alternative models, Conformal Gravity has been studied by Mannheim and O'Brien to solve the rotation curve problem without the need for dark matter. Recently, Mannheim, O'Brien and Chaykov have begun solving other gravitational questions in Conformal Gravity. In this presentation, we highlight the new work of Conformal Gravity's application to random motions of clusters (the original Zwicky problem), gravitational bending of light, gravitational lensing and a very recent survey of dwarf galaxy rotation curves. We will show in each case that Conformal Gravity can provide an accurate explanation and prediction of the data without the need for dark matter. Coupled with the fact that Conformal Gravity is a fully re-normalizable metric theory of gravity, these results help to push Conformal Gravity onto a competitive stage against other alternative models.

  2. Constraints on massive gravity theory from big bang nucleosynthesis

    SciTech Connect

    Lambiase, G.

    2012-10-01

    The massive gravity cosmology is studied in the scenario of big bang nucleosynthesis. By making use of current bounds on the deviation from the fractional mass, we derive the constraints on the free parameters of the theory. The cosmological consequences of the model are also analyzed in the framework of the PAMELA experiment, i.e. an excess of positron events, that the conventional cosmology and particle physics cannot explain.

  3. Dipole magnetic field of neutron stars in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Bakirova, Elizat; Folomeev, Vladimir

    2016-10-01

    The structure of an interior dipole magnetic field of neutron stars in f( R) gravity is considered. For this purpose, the perturbative approaches are used when both the deviations from general relativity and the deformations of spherically symmetric configurations associated with the presence of the magnetic field are assumed to be small. Solutions are constructed which describe relativistic, spherically symmetric configurations consisting of a gravitating magnetized perfect fluid modeled by a realistic equation of state. Comparing configurations from general relativity and modified gravity, we reveal possible differences in the structure of the magnetic field which occur in considering neutron stars in modified gravity.

  4. Gravity wave initiated convection

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1990-01-01

    The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.

  5. Hamiltonian spinfoam gravity

    NASA Astrophysics Data System (ADS)

    Wieland, Wolfgang M.

    2014-01-01

    This paper presents a Hamiltonian formulation of spinfoam gravity, which leads to a straightforward canonical quantization. To begin with, we derive a continuum action adapted to a simplicial decomposition of space-time. The equations of motion admit a Hamiltonian formulation, allowing us to perform the constraint analysis. We do not find any secondary constraints, but only get restrictions on the Lagrange multipliers enforcing the reality conditions. This comes as a surprise—in the continuum theory, the reality conditions are preserved in time, only if the torsionless condition (a secondary constraint) holds true. Studying an additional conservation law for each spinfoam vertex, we discuss the issue of torsion and argue that spinfoam gravity may still miss an additional constraint. Finally, we canonically quantize and recover the EPRL (Engle-Pereira-Rovelli-Livine) face amplitudes. Communicated by P R L V Moniz

  6. Gravity Behaves Like That?

    NASA Astrophysics Data System (ADS)

    Pazmino, John

    2007-02-01

    Many concepts of chaotic action in astrodynamics can be appreciated through simulations with home computers and software. Many astrodynamical cases are illustrated. Although chaos theory is now applied to spaceflight trajectories, this presentation employs only inert bodies with no onboard impulse, e.g., from rockets or outgassing. Other nongravitational effects are also ignored, such as atmosphere drag, solar pressure, and radiation. The ability to simulate gravity behavior, even if not completely rigorous, on small mass-market computers allows a fuller understanding of the new approach to astrodynamics by home astronomers, scientists outside orbital mechanics, and students in middle and high school. The simulations can also help a lay audience visualize gravity behavior during press conferences, briefings, and public lectures. No review, evaluation, critique of the programs shown in this presentation is intended. The results from these simulations are not valid for - and must not be used for - making earth-colliding predictions.

  7. Plant gravity sensing

    NASA Technical Reports Server (NTRS)

    Sack, F. D.

    1991-01-01

    This review of plant gravity sensing examines sensing in organ gravitropism, sensing in single-cell gravitropism, and nongravitropic sensing. Topics related to sensing in organ gravitropism are (1) identification of the gravitropic susceptors, including intracellular asymmetry in equilibrium position and after reorientation, susceptor signal-to-noise ratio, signal integration over threshold stimulation periods, intracellular asymmetry and gravitropic competence, and starch deficiency and gravitropic competence; (2) possible root statocytes and receptors, including identification of presumptive statocytes, cytology, and possible receptors and models of sensing; and (3) negatively gravitropic organs, including identification and distribution of presumptive statocytes and cytology and possible receptors. Topics related to nongravitropic sensing include gravitaxis, reaction wood, gravimorphogenesis, other gravity-influenced organ movements, and cytoplasmic streaming.

  8. Computing Gravity's Strongest Grip

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre

    2008-04-01

    Gravitational physics is entering a new era, one driven by observation, that will begin once gravitational wave interferometers such as LIGO make their first detections. The gravitational waves are produced during violent events such as the merger of two black holes. The detection of these waves or ripples in the fabric of spacetime is a formidable undertaking, requiring innovative engineering, powerful data analysis tools and careful theoretical modeling. In support of this theoretical modeling, recent breakthroughs in numerical relativity have lead to the development of computational tools that allow us to explore where and how gravitational wave observations can constrain or inform our understanding of gravity and astrophysical phenomena. I will review these latest developments, focusing on binary black hole simulations and the role these simulations play in our new understanding of physics and astronomy where gravity exhibits its strongest grip on our spacetime.

  9. Resonant algebras and gravity

    NASA Astrophysics Data System (ADS)

    Durka, R.

    2017-04-01

    The S-expansion framework is analyzed in the context of a freedom in closing the multiplication tables for the abelian semigroups. Including the possibility of the zero element in the resonant decomposition, and associating the Lorentz generator with the semigroup identity element, leads to a wide class of the expanded Lie algebras introducing interesting modifications to the gauge gravity theories. Among the results, we find all the Maxwell algebras of type {{B}m} , {{C}m} , and the recently introduced {{D}m} . The additional new examples complete the resulting generalization of the bosonic enlargements for an arbitrary number of the Lorentz-like and translational-like generators. Some further prospects concerning enlarging the algebras are discussed, along with providing all the necessary constituents for constructing the gravity actions based on the obtained results.

  10. Plant gravity sensing.

    PubMed

    Sack, F D

    1991-01-01

    This review of plant gravity sensing examines sensing in organ gravitropism, sensing in single-cell gravitropism, and nongravitropic sensing. Topics related to sensing in organ gravitropism are (1) identification of the gravitropic susceptors, including intracellular asymmetry in equilibrium position and after reorientation, susceptor signal-to-noise ratio, signal integration over threshold stimulation periods, intracellular asymmetry and gravitropic competence, and starch deficiency and gravitropic competence; (2) possible root statocytes and receptors, including identification of presumptive statocytes, cytology, and possible receptors and models of sensing; and (3) negatively gravitropic organs, including identification and distribution of presumptive statocytes and cytology and possible receptors. Topics related to nongravitropic sensing include gravitaxis, reaction wood, gravimorphogenesis, other gravity-influenced organ movements, and cytoplasmic streaming.

  11. Gravity, Time, and Lagrangians

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2010-01-01

    Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…

  12. Reduced Gravity Walking Simulator

    NASA Technical Reports Server (NTRS)

    1963-01-01

    A test subject being suited up for studies on the Reduced Gravity Walking Simulator located in the hanger at Langley Research Center. The initial version of this simulator was located inside the hanger. Later a larger version would be located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. Francis B. Smith wrote in his paper 'Simulators For Manned Space Research,' 'I would like to conclude this talk with a discussion of a device for simulating lunar gravity which is very effective and yet which is so simple that its cost is in the order of a few thousand dollars at most, rather than hundreds of thousands. With a little ingenuity, one could almost build this type simulator in his backyard for children to play on. The principle is ...if a test subject is suspended in a sling so that his body axis makes an angle of 9 1/2 degrees with the horizontal and if he then 'stands' on a platform perpendicular to his body axis, the component of the earth's gravity forcing him toward the platform is one times the sine of 9 1/2 degrees or approximately 1/6 of the earth's normal gravity field. That is, a 180 pound astronaut 'standing' on the platform would exert a force of only 30 pounds - the same as if he were standing upright on the lunar surface.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308; Francis B. Smith, 'Simulators For Manned Space Research,' Paper for 1966 IEEE International Convention, New York, NY, March 21-25, 1966.

  13. Loop Quantum Gravity.

    PubMed

    Rovelli, Carlo

    2008-01-01

    The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  14. More about scalar gravity

    NASA Astrophysics Data System (ADS)

    Bittencourt, E.; Moschella, U.; Novello, M.; Toniato, J. D.

    2016-06-01

    We discuss a class of models for gravity based on a scalar field. The models include and generalize the old approach by Nordström which predated and, in some ways, inspired general relativity. The class include also a model that we have recently introduced and discussed in terms of its cosmological aspects (GSG). We present here a complete characterization of the Schwarschild geometry as a vacuum solution of GSG and sketch a discussion of the first post-Newtonian approximation.

  15. Gravity Science at Titan

    NASA Astrophysics Data System (ADS)

    Iess, Luciano; Rappaport, Nicole J.; Jacobson, Robert A.; Racioppa, Paolo; Stevenson, David J.; Tortora, Paolo; Armstrong, John W.; Asmar, Sami W.

    2010-05-01

    Doppler data from four Cassini flybys have provided a determination of the degree 3, order 3 gravity field of Titan. Thanks to the good quality of the data and the favourable geometry of the encounters, the unconstrained estimation of the harmonic coefficients has shown that Radau-Darwin equation can be used to infer the moment of inertia of the satellite. We present the results of the data analysis and outline their implications for the interior structure.

  16. Mars Gravity Anomoly Map

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is a vertical gravity map of Mars color-coded in mgals based on radio tracking. Note correlations and lack of correlations with the Mars Orbiter Laser Altimeter (MOLA) global topography.

    This map was created using MGS data under the direction of Bill Sjogren, a member of the MGS Radio Science Team. The Radio Science Team is led by G. Leonard Tyler of Stanford University in Palo Alto, CA.

  17. New improved massive gravity

    NASA Astrophysics Data System (ADS)

    Dereli, T.; Yetişmişoğlu, C.

    2016-06-01

    We derive the field equations for topologically massive gravity coupled with the most general quadratic curvature terms using the language of exterior differential forms and a first-order constrained variational principle. We find variational field equations both in the presence and absence of torsion. We then show that spaces of constant negative curvature (i.e. the anti de-Sitter space AdS 3) and constant torsion provide exact solutions.

  18. Gravity gradient study

    NASA Technical Reports Server (NTRS)

    Bell, C. C.

    1971-01-01

    The results of the noise and drift test, and the comparison of the experimental simulation tests with the theoretical predictions, confirm that the rotating gravity gradiometer is capable of extracting information about mascon distributions from lunar orbit, and that the sensitivity of the sensor is adequate for lunar orbital selenodesy. The experimental work also verified analytical and computer models for the directional and time response of the sensor.

  19. Modified cyanobacteria

    SciTech Connect

    Vermaas, Willem F J.

    2014-06-17

    Disclosed is a modified photoautotrophic bacterium comprising genes of interest that are modified in terms of their expression and/or coding region sequence, wherein modification of the genes of interest increases production of a desired product in the bacterium relative to the amount of the desired product production in a photoautotrophic bacterium that is not modified with respect to the genes of interest.

  20. Granular Superconductors and Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  1. Branes in Gravity's Rainbow

    NASA Astrophysics Data System (ADS)

    Ashour, Amani; Faizal, Mir; Ali, Ahmed Farag; Hammad, Fayçal

    2016-05-01

    In this work, we investigate the thermodynamics of black p-branes (BB) in the context of Gravity's Rainbow. We investigate this using rainbow functions that have been motivated from loop quantum gravity and κ -Minkowski non-commutative spacetime. Then for the sake of comparison, we examine a couple of other rainbow functions that have also appeared in the literature. We show that, for consistency, Gravity's Rainbow imposes a constraint on the minimum mass of the BB, a constraint that we interpret here as implying the existence of a black p-brane remnant. This interpretation is supported by the computation of the black p-brane's heat capacity that shows that the latter vanishes when the Schwarzschild radius takes on a value that is bigger than its extremal limit. We found that the same conclusion is reached for the third version of rainbow functions treated here but not with the second one for which only standard black p-brane thermodynamics is recovered.

  2. Variable gravity research facility

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Eight fourth-year engineering design students formed two teams to study methods of varying the perceived gravity level in a variable gravity research facility. A tether system and an arm system were the chosen topics. Both teams have produced and built scale models of their design. In addition, a three-credit Special Topics Course (Aviation 370) was formed, as the project offers an excellent opportunity to build a multi-disciplinary program around the initial conceptualization process. Fifty students were registered in the Special Topics course. Each week during a three hour class, a guest lecturer covered one or more of the many areas associated with the concept of a variable-gravity facility. The students formed small groups organized on a multi-disciplinary basis (there were twelve separate disciplines represented by one or more students) where they discussed among themselves the various issues involved. These groups also met outside class for three or more hours each week. During class each group presented oral reports on their findings during a one-hour general question and answer period.

  3. Large Quantum Gravity Effects

    NASA Astrophysics Data System (ADS)

    Angulo, María E.; Mena Marugán, Guillermo A.; Ashtekar, A.

    Linearly polarized cylindrical waves in four-dimensional vacuum gravity are mathematically equivalent to rotationally symmetric gravity coupled to a Maxwell (or Klein-Gordon) field in three dimensions. The quantization of this latter system was performed by Ashtekar and Pierri in a recent work. Employing that quantization, we obtain here a complete quantum theory which describes the four-dimensional geometry of the Einstein-Rosen waves. In particular, we construct regularized operators to represent the metric. It is shown that the results achieved by Ashtekar about the existence of important quantum gravity effects in the Einstein-Maxwell system at large distances from the symmetry axis continue to be valid from a four-dimensional point of view. The only significant difference is that, in order to admit an approximate classical description in the asymptotic region, states that are coherent in the Maxwell field need not contain a large number of photons anymore. We also analyze the metric fluctuations on the symmetry axis and argue that they are generally relevant for all of the coherent states.

  4. Asymmetric gravity jitter excited slosh waves at a liquid-vapor-solid interface in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.; Leslie, F. W.

    1992-01-01

    The dynamical behavior of fluids affected by the asymmetric gravity jitter oscillations is investigated focusing on the surface tension effect on partially filled rotating fluids in a sub-scale gravity probe-B spacecraft propellant dewar tank. Data obtained revealed that the lower frequency gravity jitter imposed on the time-dependent variations of the background gravity direction induced a greater amplitude of oscillations and a stronger degree of asymmetry in liquid-vapor interface geometry than that caused by the higher frequency gravity jitter. It is also found that the greater the components of background gravity in radial and circumferential directions the greater the contribution to driving more toward increasing amplitude and degrees of asymmetry of the liquid-vapor interface profiles, which in turn modify the disturbance of moment of inertia and angular momentum of spacecraft.

  5. Effect of Changing the Center of Gravity on Human Performance in Simulated Lunar Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.

    2009-01-01

    Subjective measures of physical exertion, compensation, and controllability while performing tasks in simulated reduced gravity can be affected by changing the center of gravity (CG) of the overall system. The CG of the overall system is defined as the combined CG of the subject, the spacesuit, and the equipment required to change the CG. PURPOSE: To determine if changing the CG affects subjective ratings of suited human performance in simulated lunar gravity. METHODS: A custom weight support structure interfaced with the lunar prototype spacesuit, allowing manipulation of the CG. Weight locations to alter CG were based on a reference subject (81.6 kg, 182.9 cm). Six subjects (80.0 +/- 10.6 kg, 182.3 +/- 6.2 cm) completed 4 tasks (walking, kneel/stand, rock pickup, and shoveling) with system CG at 3 different locations (B=4.8/1.0, C=7.6/14.4, and P=11.2/20.1 cm aft/above the standard subject?s CG). Lunar gravity (0.17-g) was simulated by parabolic flight. Suited testing was performed at 29.6 kPa with a combined suit and structure mass of 181 kg. In all conditions, subjects provided ratings of perceived exertion (RPE) and the gravity compensation and performance scale (GCPS) upon completion of each task. RESULTS: Mean RPE and GCPS were highest at P for all tasks. Variability was greatest at B and lowest at C, and large variations between subjects at the same CG existed for both RPE and GCPS. These trends were not consistent with results from unsuited CG studies performed in other underwater and overhead suspension lunar gravity simulations. CONCLUSION: Modifying CG during suited testing at lunar gravity seems to affect subjective human performance. However, variation in subjective ratings at a given CG location indicates that further study is needed to determine the interactions among lunar gravity simulation, system CG, system mass, and subject characteristics such as anthropometry, strength, and fitness.

  6. Sujata Relativity: Complete Relativity from Gravity to Quantum-Gravity

    NASA Astrophysics Data System (ADS)

    Sinha, Nilotpal

    2009-01-01

    Here, we describe gravity as a universal deformation of Minkowski metric depending on a "double-fold" complex number for fourth coordinate within a (3 + 1)D-space. A unification of Special Relativity and General Relativity, induced by Lorentz transformation, gives a Quantum-Gravity Wave Equation, much like as Wheeler-DeWitt equation, without considering Canonical or, Covariant Quantum Relativity. A complete and well-grown ("Sujata") Quantum-Gravity picture satisfies the Quantum Gravitational Field Equation.

  7. Medical Scenarios Relevant to Spaceflight

    NASA Technical Reports Server (NTRS)

    Bacal, Kira; Hurs, Victor; Doerr, Harold

    2004-01-01

    The Medical Operational Support Team (MOST) was tasked by the JSC Space Medicine and Life Sciences Directorate (SLSD) to incorporate medical simulation into 1) medical training for astronaut-crew medical officers (CMO) and medical flight control teams and 2) evaluations of procedures and resources required for medical care aboard the International Space Station (ISS). Development of evidence-based medical scenarios that mimic the physiology observed during spaceflight will be needed for the MOST to complete these two tasks. The MOST used a human patient simulator, the ISS-like resources in the Medical Simulation Laboratory (MSL), and evidence from space operations, military operations and medical literature to develop space relevant medical scenarios. These scenarios include conditions concerning airway management, Advanced Cardiac Life Support (ACLS) and mitigating anaphylactic symptoms. The MOST has used these space relevant medical scenarios to develop a preliminary space medical training regimen for NASA flight surgeons, Biomedical Flight Controllers (Biomedical Engineers; BME) and CMO-analogs. This regimen is conducted by the MOST in the MSL. The MOST has the capability to develop evidence-based space-relevant medical scenarios that can help SLSD I) demonstrate the proficiency of medical flight control teams to mitigate space-relevant medical events and 2) validate nextgeneration medical equipment and procedures for space medicine applications.

  8. Hydrostatic equilibrium and stellar structure in f(R) gravity

    SciTech Connect

    Capozziello, S.; De Laurentis, M.; Odintsov, S. D.; Stabile, A.

    2011-03-15

    We investigate the hydrostatic equilibrium of stellar structure by taking into account the modified Lane-Emden equation coming out from f(R) gravity. Such an equation is obtained in a metric approach by considering the Newtonian limit of f(R) gravity, which gives rise to a modified Poisson equation, and then introducing a relation between pressure and density with polytropic index n. The modified equation results an integro-differential equation, which, in the limit f(R){yields}R, becomes the standard Lane-Emden equation. We find the radial profiles of the gravitational potential by solving for some values of n. The comparison of solutions with those coming from general relativity shows that they are compatible and physically relevant.

  9. Testing Horava-Lifshitz gravity using thin accretion disk properties

    SciTech Connect

    Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S. N.

    2009-08-15

    Recently, a renormalizable gravity theory with higher spatial derivatives in four dimensions was proposed by Horava. The theory reduces to Einstein gravity with a nonvanishing cosmological constant in IR, but it has improved UV behaviors. The spherically symmetric black hole solutions for an arbitrary cosmological constant, which represent the generalization of the standard Schwarzschild-(anti) de Sitter solution, have also been obtained for the Horava-Lifshitz theory. The exact asymptotically flat Schwarzschild-type solution of the gravitational field equations in Horava gravity contains a quadratic increasing term, as well as the square root of a fourth order polynomial in the radial coordinate, and it depends on one arbitrary integration constant. The IR-modified Horava gravity seems to be consistent with the current observational data, but in order to test its viability more observational constraints are necessary. In the present paper we consider the possibility of observationally testing Horava gravity by using the accretion disk properties around black holes. The energy flux, the temperature distribution, the emission spectrum, as well as the energy conversion efficiency are obtained, and compared to the standard general relativistic case. Particular signatures can appear in the electromagnetic spectrum, thus leading to the possibility of directly testing Horava gravity models by using astrophysical observations of the emission spectra from accretion disks.

  10. Gravity waves as a probe of the Hubble expansion rate during an electroweak scale phase transition

    SciTech Connect

    Chung, Daniel J. H.; Zhou Peng

    2010-07-15

    Just as big bang nucleosynthesis allows us to probe the expansion rate when the temperature of the Universe was around 1 MeV, the measurement of gravity waves from electroweak scale first order phase transitions may allow us to probe the expansion rate when the temperature of the Universe was at the electroweak scale. We compute the simple transformation rule for the gravity wave spectrum under the scaling transformation of the Hubble expansion rate. We then apply this directly to the scenario of quintessence kination domination and show how gravity wave spectra would shift relative to Laser Interferometer Space Antenna and Big Bang Observer projected sensitivities.

  11. Dark matter from f (R ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Zaregonbadi, Raziyeh; Farhoudi, Mehrdad; Riazi, Nematollah

    2016-10-01

    We consider the f (R ,T ) modified theory of gravity, in which the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and the trace of the energy-momentum tensor of the matter, in order to investigate the dark-matter effects on the galaxy scale. We obtain the metric components for a spherically symmetric and static spacetime in the vicinity of general relativity solutions. However, we concentrate on a specific model of the theory where the matter is minimally coupled to the geometry, and derive the metric components in the galactic halo. Then, we fix the components by the rotational velocities of the galaxies for the model, and show that the mass corresponding to the interaction term (which appears in the Einstein modified field equation) leads to a flat rotation curve in the halo of galaxies. In addition, for the proposed model, the light-deflection angle has been derived and drawn using some observed data.

  12. Revised scenario for human missions to Mars

    NASA Astrophysics Data System (ADS)

    Salotti, Jean Marc

    2012-12-01

    We present a revised version of our scenario for human missions to Mars. The idea is to take into consideration the difficulties and constraints for entry, descent and landing by splitting the heavy vehicle into two smaller ones. The standard capsule shape is thus possible for aerocapture and landing on Mars. It is suggested to use the largest possible diameter such that the ballistic coefficient is minimized and the lift to drag ratio is kept small. The maneuvers for the descent and landing are then simplified and the risks are minimized. The scenario has been modified to cope with the new constraints. Different options have been taken into account. It is possible to land a small Mars ascent vehicle or to reuse the habitat lander for Mars ascent. All options perform as well as the others for the criterion of the initial mass in low Earth orbit. However, reusing the habitat lander allows a significant reduction of the size of the Earth return vehicle, which otherwise requires a huge launching capability.

  13. The development of gravity sensory systems during periods of altered gravity dependent sensory input.

    PubMed

    Horn, Eberhard R

    2003-01-01

    PSI was reduced by microgravity. After termination of the period of modified gravity sensory input, all behavioral and physiological modifications disappeared, in some preparations such as the PSI of Acheta or the eye response in Xenopus, however, delayed after exposure to hypergravity. Irreversible modifications were rare; one example were malformations of the body of Xenopus tadpoles caused by lesion induced deprivation. Several periods of life such as the period of hatching or first appearance of gravity related reflexes revealed a specific sensitivity to altered gravity. Although all studies gave clear evidences for a basic sensitivity of developing GSSs to long-lasting modifications of the gravity sensory input, clear arguments for the existence of a critical period in the development of the sense of gravity are still missing. It has to take into consideration that during long-term exposures, adaptation processes take place which are guided by central physiological and genetically determined set points. The International Space Station (ISS) is the necessary platform of excellence if biological research is focussed on the analysis of long-term space effects on organisms.

  14. Testing gravity with halo density profiles observed through gravitational lensing

    SciTech Connect

    Narikawa, Tatsuya; Yamamoto, Kazuhiro E-mail: kazuhiro@hiroshima-u.ac.jp

    2012-05-01

    We present a new test of the modified gravity endowed with the Vainshtein mechanism with the density profile of a galaxy cluster halo observed through gravitational lensing. A scalar degree of freedom in the galileon modified gravity is screened by the Vainshtein mechanism to recover Newtonian gravity in high-density regions, however it might not be completely hidden on the outer side of a cluster of galaxies. Then the modified gravity might yield an observational signature in a surface mass density of a cluster of galaxies measured through gravitational lensing, since the scalar field could contribute to the lensing potential. We investigate how the transition in the Vainshtein mechanism affects the surface mass density observed through gravitational lensing, assuming that the density profile of a cluster of galaxies follows the original Navarro-Frenk-White (NFW) profile, the generalized NFW profile and the Einasto profile. We compare the theoretical predictions with observational results of the surface mass density reported recently by other researchers. We obtain constraints on the amplitude and the typical scale of the transition in the Vainshtein mechanism in a subclass of the generalized galileon model.

  15. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  16. Geometric scalar theory of gravity

    SciTech Connect

    Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D.; Moschella, U. E-mail: eduhsb@cbpf.br E-mail: egoulart@cbpf.br E-mail: toniato@cbpf.br

    2013-06-01

    We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.

  17. Haunted Quantum Entanglement: Two Scenarios

    NASA Astrophysics Data System (ADS)

    Snyder, Douglas

    2010-04-01

    Two haunted quantum entanglement scenarios are proposed that are very close to the haunted measurement scenario in that: 1) the entity that is developing as a which-way marker is effectively restored to its state prior to its being fixed as a w-w marker, and 2) the entity for which the developing w-w marker provides information is restored to its state before it interacted with the entity which subsequent to the interaction begins developing as a w-w marker. In the hqe scenarios, the loss of developing w-w information through 1 relies on the loss of a developing entanglement. In scenario 1, the photon initially emitted in one of two micromaser cavities and developing into a w-w marker is effectively lost through the injection of classical microwave radiation into both of the microwave cavities after the atom initially emits the photon into one of the micromaser cavities, exits the cavity system, and before this atom reaches the 2 slit screen. The atom is restored in both of the two new scenarios to its original state before it emitted a photon by an rf coil situated at the exit of the micromaser cavity system. In scenario 2, the cavity system and everything from the atom source forward to the cavity system is enclosed in an evacuated box. After the atom that emits the photon exits the cavity system and before it reaches the 2 slit screen, the cavity system opens (and the photon escapes in the evacuated box) and then the box is opened and the photon escapes into the environment.

  18. Gravity monitoring of CO2 movement during sequestration: Model studies

    SciTech Connect

    Gasperikova, E.; Hoversten, G.M.

    2008-07-15

    We examine the relative merits of gravity measurements as a monitoring tool for geological CO{sub 2} sequestration in three different modeling scenarios. The first is a combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the second is sequestration in a brine formation, and the third is for a coalbed methane formation. EOR/sequestration petroleum reservoirs have relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}), whereas brine formations usually have much thicker injection intervals and only two components (brine and CO{sub 2}). Coal formations undergoing methane extraction tend to be thin (3-10 m), but shallow compared to either EOR or brine formations. The injection of CO{sub 2} into the oil reservoir produced a bulk density decrease in the reservoir. The spatial pattern of the change in the vertical component of gravity (G{sub z}) is directly correlated with the net change in reservoir density. Furthermore, time-lapse changes in the borehole G{sub z} clearly identified the vertical section of the reservoir where fluid saturations are changing. The CO{sub 2}-brine front, on the order of 1 km within a 20 m thick brine formation at 1900 m depth, with 30% CO{sub 2} and 70% brine saturations, respectively, produced a -10 Gal surface gravity anomaly. Such anomaly would be detectable in the field. The amount of CO{sub 2} in a coalbed methane test scenario did not produce a large enough surface gravity response; however, we would expect that for an industrial size injection, the surface gravity response would be measurable. Gravity inversions in all three scenarios illustrated that the general position of density changes caused by CO{sub 2} can be recovered, but not the absolute value of the change. Analysis of the spatial resolution and detectability limits shows that gravity measurements could, under certain circumstances, be used as a lower-cost alternative to seismic

  19. Gravity investigation of a Niagaran reef

    SciTech Connect

    Bolla, W.O.; Noel, J.A.

    1983-09-01

    North Ridge and West Ridge, two isolated hills north of Cary, Ohio, in Wyandott County, were described by Winchell more than 100 years ago. About 75 years later, Cummings designated the ridges as being underlain by Niagaran reefs after studying exposures in several small quarries. The extensive exposures in the large quarries subsequently operated in North Ridge left little doubt that this ridge is underlain by a Niagaran reef. West Ridge is analogous in size, shape, orientation, and topographic expression. From the similarities, coupled with Cummings' earlier studies, it is assumed that West Ridge is also a Niagaran reef. A gravity survey, using a LaCoste-Romberg gravity meter, was conducted over West Ridge. The survey was several traverses consisting of 423 stations with station spacing along the traverses of 200 ft (61 m). Elevations were determined by transit surveys, and densities were measured in the laboratory from samples collected in the reef and enclosing rocks exposed in the Wyandott Dolomite Co. quarry on North Ridge. The thickness of the glacial drift was determined from all available water well records. The gravity profiles were analyzed using the Talwani Method. The theoretical profiles were computed using parameters which simulated the size, shape, and density of the reef exposed in the quarries on North Ridge. The field gravity profiles over West Ridge matched the theoretical closely with only 0.008 mgal difference. A cross section constructed from electric logs shows the stratigraphy of the area. A structure contour map of the bed rock reveals that West Ridge is a bedrock-controlled topogrpahic feature, and that its size and shape, although modified by glacial erosion, are similar to other Niagaran reefs in northwestern Ohio.

  20. Weak gravitational lensing in fourth order gravity

    NASA Astrophysics Data System (ADS)

    Stabile, A.; Stabile, An.

    2012-02-01

    For a general class of analytic functions f(R,RαβRαβ,RαβγδRαβγδ) we discuss the gravitational lensing in the Newtonian limit of theory. From the properties of the Gauss-Bonnet invariant it is enough to consider only one curvature invariant between the Ricci tensor and the Riemann tensor. Then, we analyze the dynamics of a photon embedded in a gravitational field of a generic f(R,RαβRαβ) gravity. The metric is time independent and spherically symmetric. The metric potentials are Schwarzschild-like, but there are two additional Yukawa terms linked to derivatives of f with respect to two curvature invariants. Considering first the case of a pointlike lens, and after the one of a generic matter distribution of the lens, we study the deflection angle and the angular position of images. Though the additional Yukawa terms in the gravitational potential modifies dynamics with respect to general relativity, the geodesic trajectory of the photon is unaffected by the modification if we consider only f(R) gravity. We find different results (deflection angle smaller than the angle of general relativity) only due to the introduction of a generic function of the Ricci tensor square. Finally, we can affirm that the lensing phenomena for all f(R) gravities are equal to the ones known for general relativity. We conclude the paper by showing and comparing the deflection angle and position of images for f(R,RαβRαβ) gravity with respect to the gravitational lensing of general relativity.

  1. Linking loop quantum gravity quantization ambiguities with phenomenology

    NASA Astrophysics Data System (ADS)

    Brahma, Suddhasattwa; Ronco, Michele; Amelino-Camelia, Giovanni; Marcianò, Antonino

    2017-02-01

    It is well known that extracting viable testable predictions out of fundamental quantum gravity theories is notoriously difficult. In this paper, we aim to incorporate putative quantum corrections coming from loop quantum gravity in deriving modified dispersion relations for particles in a deformed Minkowski spacetime. We show how different choices of the Immirzi parameter can, in some cases, serendipitously lead to different outcomes for such modifications, depending on the quantization scheme chosen. This allows one to differentiate between these quantization choices via testable phenomenological predictions.

  2. Analysis of rotation curves in the framework of Rn gravity

    NASA Astrophysics Data System (ADS)

    Frigerio Martins, C.; Salucci, P.

    2007-11-01

    We present an analysis of a devised sample of rotation curves (RCs), with the aim of checking the consequences of a modified f(R) gravity on galactic scales. Originally motivated by the mystery of dark energy, this theory may explain the observed non-Keplerian profiles of galactic RCs in terms of a breakdown of Einstein general relativity. We show that, in general, the power-law f(R) version could fit the observations well, with reasonable values for the mass model parameters. This could encourage further investigation into Rn gravity from both observational and theoretical points of view.

  3. Testing gravity with EG: mapping theory onto observations

    NASA Astrophysics Data System (ADS)

    Leonard, C. Danielle; Ferreira, Pedro G.; Heymans, Catherine

    2015-12-01

    We present a complete derivation of the observationally motivated definition of the modified gravity statistic EG. Using this expression, we investigate how variations to theory and survey parameters may introduce uncertainty in the general relativistic prediction of EG. We forecast errors on EG for measurements using two combinations of upcoming surveys, and find that theoretical uncertainties may dominate for a futuristic measurement. Finally, we compute predictions of EG under modifications to general relativity in the quasistatic regime, and comment on the pros and cons of using EG to test gravity with future surveys.

  4. Cascading gravity is ghost free

    SciTech Connect

    Rham, Claudia de; Khoury, Justin; Tolley, Andrew J.

    2010-06-15

    We perform a full perturbative stability analysis of the 6D cascading gravity model in the presence of 3-brane tension. We demonstrate that for sufficiently large tension on the (flat) 3-brane, there are no ghosts at the perturbative level, consistent with results that had previously only been obtained in a specific 5D decoupling limit. These results establish the cascading gravity framework as a consistent infrared modification of gravity.

  5. Quantum Cosmology of f( R, T) gravity

    NASA Astrophysics Data System (ADS)

    Xu, Min-Xing; Harko, Tiberiu; Liang, Shi-Dong

    2016-08-01

    Modified gravity theories have the potential of explaining the recent acceleration of the Universe without resorting to the mysterious concept of dark energy. In particular, it has been pointed out that matter-geometry coupling may be responsible for the recent cosmological dynamics of the Universe, and matter itself may play a more fundamental role in the description of the gravitational processes that usually assumed. In the present paper we study the quantum cosmology of the f( R, T) theory of gravity, in which the effective Lagrangian of the gravitational field is given by an arbitrary function of the Ricci scalar, and the trace of the matter energy-momentum tensor, respectively. For the background geometry we adopt the Friedmann-Robertson-Walker metric, and we assume that matter content of the Universe consists of a perfect fluid. In this framework we obtain the general form of the gravitational Hamiltonian, of the quantum potential, and of the canonical momenta, respectively. This allows us to formulate the full Wheeler-de Witt equation describing the quantum properties of this modified gravity model. As a specific application we consider in detail the quantum cosmology of the f(R,T)=F^0(R)+θ RT model, in which F^0(R) is an arbitrary function of the Ricci scalar, and θ is a function of the scale factor only. The Hamiltonian form of the equations of motion, and the Wheeler-de Witt equations are obtained, and a time parameter for the corresponding dynamical system is identified, which allows one to formulate the Schrödinger-Wheeler-de Witt equation for the quantum-mechanical description of the model under consideration. A perturbative approach for the study of this equation is developed, and the energy levels of the Universe are obtained by using a twofold degenerate perturbation approach. A second quantization approach for the description of quantum time is also proposed and briefly discussed.

  6. Active Response Gravity Offload System

    NASA Technical Reports Server (NTRS)

    Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina

    2011-01-01

    The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.

  7. [Biology of size and gravity].

    PubMed

    Yamashita, Masamichi; Baba, Shoji A

    2004-03-01

    Gravity is a force that acts on mass. Biological effects of gravity and their magnitude depend on scale of mass and difference in density. One significant contribution of space biology is confirmation of direct action of gravity even at the cellular level. Since cell is the elementary unit of life, existence of primary effects of gravity on cells leads to establish the firm basis of gravitational biology. However, gravity is not limited to produce its biological effects on molecules and their reaction networks that compose living cells. Biological system has hierarchical structure with layers of organism, group, and ecological system, which emerge from the system one layer down. Influence of gravity is higher at larger mass. In addition to this, actions of gravity in each layer are caused by process and mechanism that is subjected and different in each layer of the hierarchy. Because of this feature, summing up gravitational action on cells does not explain gravity for biological system at upper layers. Gravity at ecological system or organismal level can not reduced to cellular mechanism. Size of cells and organisms is one of fundamental characters of them and a determinant in their design of form and function. Size closely relates to other physical quantities, such as mass, volume, and surface area. Gravity produces weight of mass. Organisms are required to equip components to support weight and to resist against force that arise at movement of body or a part of it. Volume and surface area associate with mass and heat transport process at body. Gravity dominates those processes by inducing natural convection around organisms. This review covers various elements and process, with which gravity make influence on living systems, chosen on the basis of biology of size. Cells and biochemical networks are under the control of organism to integrate a consolidated form. How cells adjust metabolic rate to meet to the size of the composed organism, whether is gravity

  8. Conformal tensors via Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Kastor, David

    2013-10-01

    Constructs from conformal geometry are important in low dimensional gravity models, while in higher dimensions the higher curvature interactions of Lovelock gravity are similarly prominent. Considering conformal invariance in the context of Lovelock gravity leads to natural, higher curvature generalizations of the Weyl, Schouten, Cotton and Bach tensors, with properties that straightforwardly extend those of their familiar counterparts. As a first application, we introduce a new set of conformally invariant gravity theories in D = 4k dimensions, based on the squares of the higher curvature Weyl tensors.

  9. Born-Infeld Gravity Revisited

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Sahraee, M.

    2013-12-01

    In this paper, we investigate the behavior of linearized gravitational excitation in the Born-Infeld gravity in AdS3 space. We obtain the linearized equation of motion and show that this higher-order gravity propagate two gravitons, massless and massive, on the AdS3 background. In contrast to the R2 models, such as TMG or NMG, Born-Infeld gravity does not have a critical point for any regular choice of parameters. So the logarithmic solution is not a solution of this model, due to this one cannot find a logarithmic conformal field theory as a dual model for Born-Infeld gravity.

  10. Phobos interior structure from its gravity field

    NASA Astrophysics Data System (ADS)

    Le Maistre, S.; Rosenblatt, P.; Rivoldini, A.

    2015-10-01

    Phobos origin remains mysterious. It could be a captured asteroid, or an in-situ object co-accreted with Mars or formed by accretion from a disk of impact ejecta.Although it is not straightforward to relate its interior properties to its origin, it is easy to agree that the interior properties of any body has to be accounted for to explain its life's history. What event could explain such an internal structure? Where should this object formed to present such interior characteristics and composition? We perform here numerical simulations to assess the ability of a gravity experiment to constrain the interior structure of the martian moon Phobos, which could in turn allow distinguishing among the competing scenarios for the moon's origin.

  11. Gravity localization in sine-Gordon braneworlds

    SciTech Connect

    Cruz, W.T.; Maluf, R.V.; Sousa, L.J.S.; Almeida, C.A.S.

    2016-01-15

    In this work we study two types of five-dimensional braneworld models given by sine-Gordon potentials. In both scenarios, the thick brane is generated by a real scalar field coupled to gravity. We focus our investigation on the localization of graviton field and the behaviour of the massive spectrum. In particular, we analyse the localization of massive modes by means of a relative probability method in a Quantum Mechanics context. Initially, considering a scalar field sine-Gordon potential, we find a localized state to the graviton at zero mode. However, when we consider a double sine-Gordon potential, the brane structure is changed allowing the existence of massive resonant states. The new results show how the existence of an internal structure can aid in the emergence of massive resonant modes on the brane.

  12. Critical role of gravity in filters.

    PubMed

    Araújo, A D; Andrade, J S; Herrmann, H J

    2006-09-29

    The efficiency of filters depends crucially on the mass of the particles one wants to capture. Using analytical and numerical calculations we reveal a very rich scenario of scaling laws relating this efficiency to particle size and density and the velocity and viscosity of the carrying fluid. These are combined in the dimensionless, so-called Stokes number St. In the case of horizontal flow or neutrally buoyant particles, we find a critical number St{c} below which no particles are trapped; i.e., the filter does not work. Above St{c} the capture efficiency increases like the square root of (St-St{c}). Under the action of gravity, the threshold abruptly vanishes and capture occurs at any Stokes number increasing linearly in St. We discovered further scaling laws in the penetration profile and as function of the porosity of the filter.

  13. Weyl gravity revisited

    NASA Astrophysics Data System (ADS)

    Álvarez, Enrique; González-Martín, Sergio

    2017-02-01

    The on shell equivalence of first order and second order formalisms for the Einstein-Hilbert action does not hold for those actions quadratic in curvature. It would seem that by considering the connection and the metric as independent dynamical variables, there are no quartic propagators for any dynamical variable. This suggests that it is possible to get both renormalizability and unitarity along these lines. We have studied a particular instance of those theories, namely Weyl gravity. In this first paper we show that it is not possible to implement this program with the Weyl connection alone.

  14. Gravity and Granular Materials

    NASA Technical Reports Server (NTRS)

    Behringer, R. P.; Hovell, Daniel; Kondic, Lou; Tennakoon, Sarath; Veje, Christian

    1999-01-01

    We describe experiments that probe a number of different types of granular flow where either gravity is effectively eliminated or it is modulated in time. These experiments include the shaking of granular materials both vertically and horizontally, and the shearing of a 2D granular material. For the shaken system, we identify interesting dynamical phenomena and relate them to standard simple friction models. An interesting application of this set of experiments is to the mixing of dissimilar materials. For the sheared system we identify a new kind of dynamical phase transition.

  15. The gravity apple tree

    NASA Astrophysics Data System (ADS)

    Espinosa Aldama, Mariana

    2015-04-01

    The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion.

  16. Numerical Simulations of Saturn's B-Ring: Granular Friciton as a Mediator between Self-Gravity and Viscous Overstability

    NASA Astrophysics Data System (ADS)

    Ballouz, Ronald; Richardson, Derek C.; Morishima, Ryuji; Spilker, Linda; Lu, Yuxi

    2016-10-01

    We study the B-ring's complex optical depth structure with pkdgrav. pkdgrav is a N-body code capable of simulating gravitational and collisional physics. The code has recently been modified to allow for the accurate modeling of inter-particle static and rolling friction. These changes have given us new insight into two mechanisms responsible for large km-scale structure in the rings: self-gravity wakes and viscous overstability. As previous studies have shown, we also find that ring particles with low internal densities are able to produce viscous overstability wakes, and ring particles with high internal densities produce self-gravity waves. However, for high density particles, an increase in the inter-particle friction parameters causes the self-gravity wakes to subside and the viscous overstability wakes begin to dominate. The increase in friction causes an enhancement in the bulk viscosity in the ring simulations and is clearly manifested through the visible formation of vertical axisymmetric structure even at large (greater than 0.45 g/cc) particle densities. We have completed a systematic study of the effects of granular-scale interactions, which include inter-particle friction and cohesion on the macro-scale ring structure. We present a large parameter space sweep of these particle properties in order to constrain the range of possible structure formation scenarios. We then attempt to constrain the values of these ring properties by comparing our simulations to observational signatures of ring structure. This work has important implications for understanding the physical properties of ring particles, and for determining the masses of the rings.

  17. Gravity field of the Western Weddell Sea: Comparison of airborne gravity and Geosat derived gravity

    NASA Technical Reports Server (NTRS)

    Bell, R. E.; Brozena, J. M.; Haxby, W. F.; Labrecque, J. L.

    1989-01-01

    Marine gravity surveying in polar regions was typically difficult and costly, requiring expensive long range research vessels and ice-breakers. Satellite altimetry can recover the gravity field in these regions where it is feasible to survey with a surface vessel. Unfortunately, the data collected by the first global altimetry mission, Seasat, was collected only during the austral winter, producing a very poor quality gravitational filed for the southern oceans, particularly in the circum-Antarctic regions. The advent of high quality airborne gravity (Brozena, 1984; Brozena and Peters, 1988; Bell, 1988) and the availability of satellite altimetry data during the austral summer (Sandwell and McAdoo, 1988) has allowed the recovery of a free air gravity field for most of the Weddell Sea. The derivation of the gravity field from both aircraft and satellite measurements are briefly reviewed, before presenting along track comparisons and shaded relief maps of the Weddell Sea gravity field based on these two data sets.

  18. Ultra-Perfect Sorting Scenarios

    NASA Astrophysics Data System (ADS)

    Ouangraoua, Aïda; Bergeron, Anne; Swenson, Krister M.

    Perfection has been used as a criteria to select rearrangement scenarios since 2004. However, there is a fundamental bias towards extant species in the original definition: ancestral species are not bound to perfection. Here we develop a new theory of perfection that takes an egalitarian view of species, and apply it to the complex evolution of mammal chromosome X.

  19. Future Scenarios and Environmental Education

    ERIC Educational Resources Information Center

    Kopnina, Helen

    2014-01-01

    This article explores a number of questions about visions of the future and their implications for environmental education (EE). If the future were known, what kind of actions would be needed to maintain the positive aspects and reverse the negative ones? How could these actions be translated into the aims of EE? Three future scenarios are…

  20. Space resources. Volume 1: Scenarios

    NASA Technical Reports Server (NTRS)

    Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)

    1992-01-01

    A number of possible future paths for space exploration and development are presented. The topics covered include the following: (1) the baseline program; (2) alternative scenarios utilizing nonterrestrial resources; (3) impacts of sociopolitical conditions; (4) common technologies; and issues for further study.

  1. Particle production in Ekpyrotic scenarios

    SciTech Connect

    Hipólito-Ricaldi, W.S.; Brandenberger, Robert; Ferreira, Elisa G.M.; Graef, L.L.

    2016-11-09

    We consider Parker particle production in the Ekpyrotic scenario (in particular in the New Ekpyrotic model) and show that the density of particles produced by the end of the phase of Ekpyrotic contraction can be sufficient to lead to a hot state of matter after the bounce. Hence, no separate reheating mechanism is necessary.

  2. Lovelock gravities from Born-Infeld gravity theory

    NASA Astrophysics Data System (ADS)

    Concha, P. K.; Merino, N.; Rodríguez, E. K.

    2017-02-01

    We present a Born-Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.

  3. New insights into quantum gravity from gauge/gravity duality

    NASA Astrophysics Data System (ADS)

    Engelhardt, Netta; Horowitz, Gary T.

    2016-06-01

    Using gauge/gravity duality, we deduce several nontrivial consequences of quantum gravity from simple properties of the dual field theory. These include: (1) a version of cosmic censorship, (2) restrictions on evolution through black hole singularities, and (3) the exclusion of certain cosmological bounces. In the classical limit, the latter implies a new singularity theorem.

  4. Consolidated science requirements for a next generation gravity field mission

    NASA Astrophysics Data System (ADS)

    Pail, Roland; Bingham, Rory; Braitenberg, Carla; Eicker, Annette; Floberghagen, Rune; Haagmans, Roger; Horwath, Martin; LaBrecque, John; Longuevergne, Laurent; Panet, Isabelle; Rolstad-Denby, Cecile; Wouters, Bert

    2014-05-01

    As a joint initiative of the IAG (International Association of Geodesy) Sub-Commissions 2.3 and 2.6, the GGOS (Global Geodetic Observing System) Working Group on Satellite Missions, and the IUGG (International Union of Geodesy and Geophysics), science requirements for a next generation gravity field mission (beyond GRACE-FO) shall be defined and consolidated. A consolidation of the user requirements is required, because several future gravity field studies have resulted in quite different performance numbers as a target for a future gravity mission (2025+). For this purpose, the science requirements shall be accorded by the different user groups, i.e. hydrology, ocean, cryosphere, solid Earth and atmosphere, under the boundary condition of the technical feasibility of the mission concepts and before the background of double- and multi-pair formations. This initiative shall mainly concentrate on the consolidation of the science requirements, and should result in a document that can be used as a solid basis for further programmatic and technological developments. Based on limited number of realistic mission scenarios, a consolidated view on the science requirements within the international user communities shall be derived, research fields that could not be tackled by current gravity missions shall be identified, and the added value (qualitatively and quantitatively) of these scenarios with respect to science return shall be evaluated. The final science requirements shall be agreed upon during a workshop which will be held in September 2014. In this contribution, the mission scenarios will be discussed and first results of the consolidation process will be presented.

  5. Addressing an Uncertain Future Using Scenario Analysis

    SciTech Connect

    Siddiqui, Afzal S.; Marnay, Chris

    2006-12-15

    The Office of Energy Efficiency and Renewable Energy (EERE) has had a longstanding goal of introducing uncertainty into the analysis it routinely conducts in compliance with the Government Performance and Results Act (GPRA) and for strategic management purposes. The need to introduce some treatment of uncertainty arises both because it would be good general management practice, and because intuitively many of the technologies under development by EERE have a considerable advantage in an uncertain world. For example, an expected kWh output from a wind generator in a future year, which is not exposed to volatile and unpredictable fuel prices, should be truly worth more than an equivalent kWh from an alternative fossil fuel fired technology. Indeed, analysts have attempted to measure this value by comparing the prices observed in fixed-price natural gas contracts compared to ones in which buyers are exposed to market prices (see Bolinger, Wiser, and Golove and (2004)). In addition to the routine reasons for exploring uncertainty given above, the history of energy markets appears to have exhibited infrequent, but troubling, regime shifts, i.e., historic turning points at which the center of gravity or fundamental nature of the system appears to have abruptly shifted. Figure 1 below shows an estimate of how the history of natural gas fired generating costs has evolved over the last three decades. The costs shown incorporate both the well-head gas price and an estimate of how improving generation technology has gradually tended to lower costs. The purpose of this paper is to explore scenario analysis as a method for introducing uncertainty into EERE's forecasting in a manner consistent with the preceding observation. The two questions are how could it be done, and what is its academic basis, if any. Despite the interest in uncertainty methods, applying them poses some major hurdles because of the heavy reliance of EERE on forecasting tools that are deterministic in

  6. Non-Gaussianity of a single scalar field in general covariant Hořava-Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Huang, Yongqing; Wang, Anzhong

    2012-11-01

    In this paper, we study non-Gaussianity generated by a single scalar field in slow-roll inflation in the framework of the nonrelativistic general covariant Hořava-Lifshitz theory of gravity with the projectability condition and an arbitrary coupling constant λ, where λ characterizes the deviation of the theory from general relativity (GR) in the infrared. We find that the leading effect of self-interaction, contrary to the case of the minimal scenario of GR, is in general of the order α^nɛ3/2, where ɛ is a slow-roll parameter, and α^n(n=3,5) are the dimensionless coupling coefficients of the sixth-order operators of the Lifshitz scalar and have no contributions to power spectra and indices of both scalar and tensor. The bispectrum, comparing with the standard one given in GR, is enhanced and gives rise to a large value of the nonlinearity parameter fNL. We study how the modified dispersion relation with high order moment terms affects the evaluation of the mode function and in turn the bispectrum, and we show explicitly that the mode function takes various asymptotic forms during different periods of its evolution. In particular, we find that it is in general of superpositions of oscillatory functions, instead of plane waves like in the minimal scenario of GR. This results in a large enhancement of the folded shape in the bispectrum.

  7. Integrating a Gravity Simulation and Groundwater Modeling on the Calibration of Specific Yield for Choshui Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Chang, Liang Cheng; Tsai, Jui pin; Chen, Yu Wen; Way Hwang, Chein; Chung Cheng, Ching; Chiang, Chung Jung

    2014-05-01

    For sustainable management, accurate estimation of recharge can provide critical information. The accuracy of estimation is highly related to uncertainty of specific yield (Sy). Because Sy value is traditionally obtained by a multi-well pumping test, the available Sy values are usually limited due to high installation cost. Therefore, this information insufficiency of Sy may cause high uncertainty for recharge estimation. Because gravity is a function of a material mass and the inverse square of the distance, gravity measurement can assist to obtain the mass variation of a shallow groundwater system. Thus, the groundwater level observation data and gravity measurements are used for the calibration of Sy for a groundwater model. The calibration procedure includes four steps. First, gravity variations of three groundwater-monitoring wells, Si-jhou, Tu-ku and Ke-cuo, are observed in May, August and November 2012. To obtain the gravity caused by groundwater variation, this study filters the noises from other sources, such as ocean tide and land subsidence, in the collected data The refined data, which are data without noises, are named gravity residual. Second, this study develops a groundwater model using MODFLOW 2005 to simulate the water mass variation of the groundwater system. Third, we use Newton gravity integral to simulate the gravity variation caused by the simulated water mass variation during each of the observation periods. Fourth, comparing the ratio of the gravity variation between the two data sets, which are observed gravity residuals and simulated gravities. The values of Sy is continuously modified until the gravity variation ratios of the two data sets are the same. The Sy value of Si-jhou is 0.216, which is obtained by the multi-well pumping test. This Sy value is assigned to the simulation model. The simulation results show that the simulated gravity can well fit the observed gravity residual without parameter calibration. This result indicates

  8. Entraining gravity currents

    NASA Astrophysics Data System (ADS)

    Johnson, Chris; Hogg, Andrew

    2012-11-01

    Large-scale gravity currents, such as those formed when industrial effluent is discharged at sea, are greatly affected by the entrainment and mixing of ambient fluid into the current, which both dilutes the flow and causes an effective drag between the current and ambient. We study these currents theoretically by combining a shallow-water model for gravity currents flowing under a deep ambient with an empirical model for entrainment, and seek long-time similarity solutions of this model. We find that the dependence of entrainment on the bulk Richardson number plays a crucial role in the current dynamics, and results in entrainment occurring mainly in a region close to the flow front, reminiscent of the entraining current `head' observed in natural flows. The long-time solution of an entraining lock-release current is a similarity solution of the second kind, in which the current grows as a power of time that is dependent on the form of the entrainment model, approximately as t 0 . 44. The structure of a current driven by a constant buoyancy flux is quite different, with the current length growing as t 4 / 5. Scaling arguments suggest that these solutions are reached only at very long times, and so may be attained in large natural flows, but not in small-scale experiments.

  9. Gravity Cancellation in Plants

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2005-04-01

    I have measured a 22% reduction in gravity, at maximum sap flow, with an accelerometer placed in a small hole in a tree. Accelerometer manipulation indicates a possible reduction of 100% changing the geometry. This agrees with the author's related work indicating that plants are regulated by gravity related standing waves. There apparently are a limited set of plant internodal spacings (representing half wavelengths) and corresponding harmonically related frequencies. These repeat from plant to plant and from species to species. Measuring the angle of growth of a straight portion of a branch with respect to the horizontal or vertical most often yields an integral multiple of 5^o with respect to the horizontal or vertical. Plants are well known to grow correction tissue to correct artificially produced angle errors. The velocities of the waves in plants are integral multiples of a basic velocity like 48cm/s, much greater than ionic velocities. Disturbing the standing waves in one tree seems to disturb the standing waves in nearby trees. The waves causing the disturbance are found to travel at about 5m/s horizontally in air (and probably vacuum) thus they are not sound waves. See chatlink.com/˜oedphd.

  10. Phases of massive gravity

    NASA Astrophysics Data System (ADS)

    Dubovsky, Sergei L.

    2004-10-01

    We systematically study the most general Lorentz-violating graviton mass invariant under three-dimensional Eucledian group. We find that at general values of mass parameters the massive graviton has six propagating degrees of freedom, and some of them are ghosts or lead to rapid classical instabilities. However, there is a number of different regions in the mass parameter space where massive gravity is described by a consistent low-energy effective theory with cutoff ~ (mMPl)1/2. This theory is free of rapid instabilities and vDVZ discontinuity. Each of these regions is characterized by certain fine-tuning relations between mass parameters, generalizing the Fierz Pauli condition. In some cases the required fine-tunings are consequences of the existence of the subgroups of the diffeomorphism group that are left unbroken by the graviton mass. We found two new cases, when the resulting theories have a property of UV insensitivity, i.e. remain well behaved after inclusion of arbitrary higher dimension operators without assuming any fine-tunings among the coefficients of these operators, besides those enforced by the symmetries. These theories can be thought of as generalizations of the ghost condensate model with a smaller residual symmetry group. We briefly discuss what kind of cosmology can one expect in massive gravity and argue that the allowed values of the graviton mass may be quite large, affecting growth of primordial perturbations, structure formation and, perhaps, enhancing the backreaction of inhomogeneities on the expansion rate of the Universe.

  11. Torsion effects in braneworld scenarios

    SciTech Connect

    Hoff da Silva, J. M.; Rocha, R. da

    2010-01-15

    We present gravitational aspects of braneworld models endowed with torsion terms both in the bulk and on the brane. In order to investigate a conceivable and measurable gravitational effect, arising genuinely from bulk torsion terms, we analyze the variation in the black hole area by the presence of torsion. Furthermore, we extend the well-known results about consistency conditions in a framework that incorporates brane torsion terms. It is shown, in a rough estimate, that the resulting effects are generally suppressed by the internal space volume. This formalism provides manageable models and their possible ramifications into some aspects of gravity in this context, and cognizable corrections and physical effects as well.

  12. Testing Hu-Sawicki f(R) gravity with the effective field theory approach

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Raveri, Marco; Rizzato, Matteo; Silvestri, Alessandra

    2016-07-01

    We show how to fully map a specific model of modified gravity into the Einstein-Boltzmann solver EFTCAMB. This approach consists in few steps and allows to obtain the cosmological phenomenology of a model with minimal effort. We discuss all these steps, from the solution of the dynamical equations for the cosmological background of the model to the use of the mapping relations to cast the model into the effective field theory language and use the latter to solve for perturbations. We choose the Hu-Sawicki f(R) model of gravity as our working example. After solving the background and performing the mapping, we interface the algorithm with EFTCAMB and take advantage of the effective field theory framework to integrate the full dynamics of linear perturbations, returning all quantities needed to accurately compare the model with observations. We discuss some observational signatures of this model, focusing on the linear growth of cosmic structures. In particular we present the behaviour of fσ8 and EG that, unlike the Λ cold dark matter (ΛCDM) scenario, are generally scale dependent in addition to redshift dependent. Finally, we study the observational implications of the model by comparing its cosmological predictions to the Planck 2015 data, including cosmic microwave background lensing, the WiggleZ galaxy survey and the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), weak-lensing survey measurements. We find that while WiggleZ data favour a non-vanishing value of the Hu-Sawicki model parameter, log _{10}(-f^0R), and consequently a large value of σ8, CFHTLenS drags the estimate of log _{10}(-f^0R) back to the ΛCDM limit.

  13. The role of disc self-gravity in circumbinary planet systems - I. Disc structure and evolution

    NASA Astrophysics Data System (ADS)

    Mutter, Matthew M.; Pierens, Arnaud; Nelson, Richard P.

    2017-03-01

    We present the results of two-dimensional hydrodynamic simulations of self-gravitating circumbinary discs around binaries whose parameters match those of the circumbinary planet-hosting systems Kepler-16, Kepler-34 and Kepler-35. Previous work has shown that non-self-gravitating discs in these systems form an eccentric precessing inner cavity due to tidal truncation by the binary, and planets which form at large radii migrate until stalling at this cavity. Whilst this scenario appears to provide a natural explanation for the observed orbital locations of the circumbinary planets, previous simulations have failed to match the observed planet orbital parameters. The aim of this work is to examine the role of self-gravity in modifying circumbinary disc structure as a function of disc mass, prior to considering the evolution of embedded circumbinary planets. In agreement with previous work, we find that for disc masses between one and five times the minimum mass solar nebula (MMSN), disc self-gravity affects modest changes in the structure and evolution of circumbinary discs. Increasing the disc mass to 10 or 20 MMSN leads to two dramatic changes in disc structure. First, the scale of the inner cavity shrinks substantially, bringing its outer edge closer to the binary. Secondly, in addition to the eccentric inner cavity, additional precessing eccentric ring-like features develop in the outer regions of the discs. If planet formation starts early in the disc lifetime, these changes will have a significant impact on the formation and evolution of planets and precursor material.

  14. Hypersonic Interplanetary Flight: Aero Gravity Assist

    NASA Technical Reports Server (NTRS)

    Bowers, Al; Banks, Dan; Randolph, Jim

    2006-01-01

    The use of aero-gravity assist during hypersonic interplanetary flights is highlighted. Specifically, the use of large versus small planet for gravity asssist maneuvers, aero-gravity assist trajectories, launch opportunities and planetary waverider performance are addressed.

  15. Exploring NASA Human Spaceflight and Pioneering Scenarios

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; Wilhite, Alan

    2015-01-01

    The life cycle cost analysis of space exploration scenarios is explored via a merger of (1) scenario planning, separating context and (2) modeling and analysis of specific content. Numerous scenarios are presented, leading to cross-cutting recommendations addressing life cycle costs, productivity, and approaches applicable to any scenarios. Approaches address technical and non-technical factors.

  16. Jeans analysis of Bok globules in {\\varvec{f(R)}} gravity

    NASA Astrophysics Data System (ADS)

    Vainio, Jaakko; Vilja, Iiro

    2016-10-01

    We examine the effects of f( R) gravity on Jeans analysis of collapsing dust clouds. We provide a method for testing modified gravity models by their effects on star formation as the presence of f(R) gravity is found to modify the limit for collapse. In this analysis we add perturbations to a de Sitter background. As the standard Einstein-Hilbert Lagrangian is modified, new types of dynamics emerge. Depending on the characteristics of a chosen f( R) model, the appearance of new limits is possible. The physicality of these limits is further examined. We find the asymptotic Jeans masses for f( R) theories compared to standard Jeans mass. Through this ratio, the effects of the f( R) modified Jeans mass for viable theories are examined in molecular clouds. Bok globules have a mass range comparable to Jeans masses in question and are therefore used for comparing different f( R) models. Viable theories are found to assist in star formation.

  17. Born-Infeld-Horava gravity

    SciTech Connect

    Guellue, Ibrahim; Sisman, Tahsin Cagri; Tekin, Bayram

    2010-05-15

    We define various Born-Infeld gravity theories in 3+1 dimensions which reduce to Horava's model at the quadratic level in small curvature expansion. In their exact forms, our actions provide z{yields}{infinity} extensions of Horava's gravity, but when small curvature expansion is used, they reproduce finite z models, including some half-integer ones.

  18. Gravity...It's So Attractive!

    ERIC Educational Resources Information Center

    Lewis, Carol

    1992-01-01

    Describes six simple experiments that can enable students to better understand gravity and the role it plays in the universe. Includes discussions of Newton's experiments, weight and mass, center of gravity, center of mass, and the velocity of falling objects. (JJK)

  19. Reduced Gravity Zblan Optical Fiber

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    2000-01-01

    Two optical fiber pullers have been designed for pulling ZBLAN optical fiber in reduced gravity. One fiber puller was designed, built and flown on board NASA's KC135 reduced gravity aircraft. A second fiber puller has been designed for use on board the International Space Station.

  20. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  1. Fixed points of quantum gravity.

    PubMed

    Litim, Daniel F

    2004-05-21

    Euclidean quantum gravity is studied with renormalization group methods. Analytical results for a nontrivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameters in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.

  2. Is There Gravity in Space?

    ERIC Educational Resources Information Center

    Bar, Varda; And Others

    1997-01-01

    Investigates students' ideas about gravity beyond the earth's surface. Presents a lesson plan designed to help students understand that gravity can act beyond Earth's atmosphere. Also helps students gain a more adequate intuitive understanding of how natural and artificial satellites stay in orbit. Reports that this strategy changed some students'…

  3. Modified gravity and large scale flows, a review

    NASA Astrophysics Data System (ADS)

    Mould, Jeremy

    2017-02-01

    Large scale flows have been a challenging feature of cosmography ever since galaxy scaling relations came on the scene 40 years ago. The next generation of surveys will offer a serious test of the standard cosmology.

  4. Probing modified gravity with atom-interferometry: A numerical approach

    NASA Astrophysics Data System (ADS)

    Schlögel, Sandrine; Clesse, Sébastien; Füzfa, André

    2016-05-01

    Refined constraints on chameleon theories are calculated for atom-interferometry experiments, using a numerical approach consisting in solving for a four-region model the static and spherically symmetric Klein-Gordon equation for the chameleon field. By modeling not only the test mass and the vacuum chamber but also its walls and the exterior environment, the method allows one to probe new effects on the scalar field profile and the induced acceleration of atoms. In the case of a weakly perturbing test mass, the effect of the wall is to enhance the field profile and to lower the acceleration inside the chamber by up to 1 order of magnitude. In the thin-shell regime, results are found to be in good agreement with the analytical estimations, when measurements are realized in the immediate vicinity of the test mass. Close to the vacuum chamber wall, the acceleration becomes negative and potentially measurable. This prediction could be used to discriminate between fifth-force effects and systematic experimental uncertainties, by doing the experiment at several key positions inside the vacuum chamber. For the chameleon potential V (ϕ )=Λ4 +α/ϕα and a coupling function A (ϕ )=exp (ϕ /M ), one finds M ≳7 ×1016 GeV , independently of the power-law index. For V (ϕ )=Λ4(1 +Λ /ϕ ), one finds M ≳1014 GeV . A sensitivity of a ˜10-11 m /s2 would probe the model up to the Planck scale. Finally, a proposal for a second experimental setup, in a vacuum room, is presented. In this case, Planckian values of M could be probed provided that a ˜10-10 m /s2 , a limit reachable by future experiments. Our method can easily be extended to constrain other models with a screening mechanism, such as symmetron, dilaton and f(R) theories.

  5. Foam formation in low gravity

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C.; Mcmanus, Samuel P.; Matthews, John; Patel, Darayas

    1990-01-01

    An apparatus that produced the first polyurethane foam in low gravity has been described. The chemicals were mixed together in an apparatus designed for operation in low gravity. Mixing was by means of stirring the chemicals with an electric motor and propeller in a mixing chamber. The apparatus was flown on Consort 1, the first low-gravity materials payload launched by a commercial rocket launch team. The sounding rocket flight produced over 7 min of low gravity during which a polyurethane spheroidal foam of approximately 2300 cu cm was formed. Photographs of the formation of the foam during the flight show the development of the spheroidal form. This begins as a small sphere and grows to approximately a 17-cm-diam spheroid. The apparatus will be flown again on subsequent low-gravity flights.

  6. Gravity effects on cellulose assembly

    NASA Technical Reports Server (NTRS)

    Brown, R. M. Jr; Kudlicka, K.; Cousins, S. K.; Nagy, R.; Brown RM, J. r. (Principal Investigator)

    1992-01-01

    The effect of microgravity on cellulose synthesis using the model system of Acetobacter xylinum was the subject of recent investigations using The National Aeronautics and Space Administration's Reduced Gravity Laboratory, a modified KC-135 aircraft designed to produce 20 sec of microgravity during the top of a parabolic dive. Approximately 40 parabolas were executed per mission, and a period of 2 x g was integral to the pullout phase of each parabola. Cellulose biosynthesis was initiated on agar surfaces, liquid growth medium, and buffered glucose during parabolic flight and terminated with 2.0% sodium azide or 50.0% ethanol. While careful ground and in-flight controls indicated normal, compact ribbons of microbial cellulose, data from five different flights consistently showed that during progression into the parabola regime, the cellulose ribbons became splayed. This observation suggests that some element of the parabola (the 20 sec microgravity phase, the 20 sec 2 x g phase, or a combination of both) was responsible for this effect. Presumably the cellulose I alpha crystalline polymorph normally is produced under strain, and the microgravity/hypergravity combination may relieve this stress to produce splayed ribbons. An in-flight video microscopy analysis of bacterial motions during a parabolic series demonstrated that the bacteria continue to synthesize cellulose during all phases of the parabolic series. Thus, the splaying may be a reflection of a more subtle alteration such as reduction of intermicrofibrillar hydrogen bonding. Long-term microgravity exposures during spaceflight will be necessary to fully understand the cellulose alterations from the short-term microgravity experiments.

  7. Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory

    SciTech Connect

    Chan, H.A.; Paik, H.J.

    1987-06-15

    Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges.

  8. Constraints on deviations from ΛCDM within Horndeski gravity

    SciTech Connect

    Bellini, Emilio; Cuesta, Antonio J.; Jimenez, Raul; Verde, Licia E-mail: ajcuesta@icc.ub.edu E-mail: liciaverde@icc.ub.edu

    2016-02-01

    Recent anomalies found in cosmological datasets such as the low multipoles of the Cosmic Microwave Background or the low redshift amplitude and growth of clustering measured by e.g., abundance of galaxy clusters and redshift space distortions in galaxy surveys, have motivated explorations of models beyond standard ΛCDM. Of particular interest are models where general relativity (GR) is modified on large cosmological scales. Here we consider deviations from ΛCDM+GR within the context of Horndeski gravity, which is the most general theory of gravity with second derivatives in the equations of motion. We adopt a parametrization in which the four additional Horndeski functions of time α{sub i}(t) are proportional to the cosmological density of dark energy Ω{sub DE}(t). Constraints on this extended parameter space using a suite of state-of-the art cosmological observations are presented for the first time. Although the theory is able to accommodate the low multipoles of the Cosmic Microwave Background and the low amplitude of fluctuations from redshift space distortions, we find no significant tension with ΛCDM+GR when performing a global fit to recent cosmological data and thus there is no evidence against ΛCDM+GR from an analysis of the value of the Bayesian evidence ratio of the modified gravity models with respect to ΛCDM, despite introducing extra parameters. The posterior distribution of these extra parameters that we derive return strong constraints on any possible deviations from ΛCDM+GR in the context of Horndeski gravity. We illustrate how our results can be applied to a more general frameworks of modified gravity models.

  9. Testing gravity in space.

    NASA Astrophysics Data System (ADS)

    Boyarsky, Alexey; Ruchayskiy, Oleg; Dvali, Gia

    General concept of non-minimal field theory is discussed and a catalog of models describing the curvature coupling of gravity field with scalar, electromagnetic, vector and gauge fields is presented. Non-minimal extensions of the Einstein-Maxwell, Einstein-Yang-Mills and Einstein-Yang-Mills-Higgs theories are considered in detail. New exact solutions of the self-consistent non-minimally extended field equations, which describe non-minimal Wu-Yang monopole, non-minimal Wu-Yang wormhole, non-minimal Dirac monopole, non-minimal electrically charged objects, are presented. Physical phenomena induced by the curvature coupling are discussed, the main attention is focused on the problem of alternative explanation of the accelerated expansion of the universe and on an effective cosmological constant formation due to the non-minimal coupling.

  10. Rotating gravity gradiometer study

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1982-01-01

    Two rotating gravity gradiometer (RGG) sensors, along with all the external electronics needed to operate them, and the fixtures and special test equipment needed to fill and align the bearings, were assembled in a laboratory, and inspected. The thermal noise threshold of the RGG can be lowered by replacing a damping resistor in the first stage electronics by an active artificial resistor that generates less random voltage noise per unit bandwidth than the Johnson noise from the resistor it replaces. The artificial resistor circuit consists of an operational amplifier, three resistors, and a small DC to DC floating power supply. These are small enough to be retrofitted to the present circuit boards inside the RGG rotor in place of the 3 Megohm resistor. Using the artificial resistor, the thermal noise of the RGG-2 sensor can be lowered from 0.3 Eotvos to 0.15 Eotvos for a 10 sec integration time.

  11. DBI from gravity

    NASA Astrophysics Data System (ADS)

    Maxfield, Travis; Sethi, Savdeep

    2017-02-01

    We study the dynamics of gravitational lumps. By a lump, we mean a metric configuration that asymptotes to a flat space-time. Such lumps emerge in string theory as strong coupling descriptions of D-branes. We provide a physical argument that the broken global symmetries of such a background, generated by certain large diffeomorphisms, constrain the dynamics of localized modes. These modes include the translation zero modes and any localized tensor modes. The constraints we find are gravitational analogues of those found in brane physics. For the example of a Taub-NUT metric in eleven-dimensional supergravity, we argue that a critical value for the electric field arises from standard gravity without higher derivative interactions.

  12. Transverse gravity versus observations

    SciTech Connect

    Álvarez, Enrique; Faedo, Antón F.; López-Villarejo, J.J. E-mail: anton.fernandez@uam.es

    2009-07-01

    Theories of gravity invariant under those diffeomorphisms generated by transverse vectors, ∂{sub μ}ξ{sup μ} = 0 are considered. Such theories are dubbed transverse, and differ from General Relativity in that the determinant of the metric, g, is a transverse scalar. We comment on diverse ways in which these models can be constrained using a variety of observations. Generically, an additional scalar degree of freedom mediates the interaction, so the usual constraints on scalar-tensor theories have to be imposed. If the purely gravitational part is Einstein-Hilbert but the matter action is transverse, the models predict that the three a priori different concepts of mass (gravitational active and gravitational passive as well as inertial) are not equivalent anymore. These transverse deviations from General Relativity are therefore tightly constrained, actually correlated with existing bounds on violations of the equivalence principle, local violations of Newton's third law and/or violation of Local Position Invariance.

  13. Gravity Probe B Inspection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)

  14. Neutron stars in Scalar-Tensor-Vector Gravity

    NASA Astrophysics Data System (ADS)

    Lopez Armengol, Federico G.; Romero, Gustavo E.

    2017-02-01

    Scalar-Tensor-Vector Gravity (STVG), also referred as Modified Gravity (MOG), is an alternative theory of the gravitational interaction. Its weak field approximation has been successfully used to describe Solar System observations, galaxy rotation curves, dynamics of clusters of galaxies, and cosmological data, without the imposition of dark components. The theory was formulated by John Moffat in 2006. In this work, we derive matter-sourced solutions of STVG and construct neutron star models. We aim at exploring STVG predictions about stellar structure in the strong gravity regime. Specifically, we represent spacetime with a static, spherically symmetric manifold, and model the stellar matter content with a perfect fluid energy-momentum tensor. We then derive the modified Tolman-Oppenheimer-Volkoff equation in STVG and integrate it for different equations of state. We find that STVG allows heavier neutron stars than General Relativity (GR). Maximum masses depend on a normalized parameter that quantifies the deviation from GR. The theory exhibits unusual predictions for extreme values of this parameter. We conclude that STVG admits suitable spherically symmetric solutions with matter sources, relevant for stellar structure. Since recent determinations of neutron stars masses violate some GR predictions, STVG appears as a viable candidate for a new gravity theory.

  15. Gravity quantized: Loop quantum gravity with a scalar field

    SciTech Connect

    Domagala, Marcin; Kaminski, Wojciech; Giesel, Kristina; Lewandowski, Jerzy

    2010-11-15

    ...''but we do not have quantum gravity.'' This phrase is often used when analysis of a physical problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can be completed using loop quantum gravity techniques. The model we present in this paper consists of the gravitational field coupled to a scalar field. The result has similar structure to the loop quantum cosmology models, except that it involves all the local degrees of freedom of the gravitational field because no symmetry reduction has been performed at the classical level.

  16. New Bi-Gravity from New Massive Gravity

    NASA Astrophysics Data System (ADS)

    Akhavan, A.; Alishahiha, M.; Naseh, A.; Nemati, A.; Shirzad, A.

    2016-05-01

    Using the action of three dimensional New Massive Gravity (NMG) we construct a new bi-gravity in three dimensions. This can be done by promoting the rank two auxiliary field appearing in the expression of NMG's action into a dynamical field. We show that small fluctuations around the AdS vacuum of the model are non-tachyonic and ghost free within certain range of the parameters of the model. We study central charges of the dual field theory and observe that in this range they are positive too. This suggests that the proposed model might be a consistent three dimensional bi-gravity.

  17. AdS Chern-Simons gravity induces conformal gravity

    NASA Astrophysics Data System (ADS)

    Aros, Rodrigo; Díaz, Danilo E.

    2014-04-01

    The leitmotif of this paper is the question of whether four- and higher even-dimensional conformal gravities do have a Chern-Simons pedigree. We show that Weyl gravity can be obtained as the dimensional reduction of a five-dimensional Chern-Simons action for a suitable (gauge-fixed, tractorlike) five-dimensional anti-de Sitter connection. The gauge-fixing and dimensional reduction program readily admits a generalization to higher dimensions for the case of certain conformal gravities obtained by contractions of the Weyl tensor.

  18. Artificial gravity - The evolution of variable gravity research

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard

    1987-01-01

    The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.

  19. Brane structure from a scalar field in general covariant Horava-Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Brito, F. A.; Costa, F. G.

    2015-02-01

    In this paper we have considered the structure of the nonprojectable Horava-Melby-Thompson gravity to find braneworld scenarios. A relativistic scalar field is considered in the matter sector and we have shown how to reduce the equations of motion to first-order differential equations. In particular, we have studied thick brane solutions of both the dilatonic and Randall-Sundrum types.

  20. Some Cosmological Models for Poincare Gauge Gravity and Accelerated Expansion of the Universe

    SciTech Connect

    Mebarki, N.

    2010-10-31

    Two cosmological Models for the Poincare Gauge Gravity theory with a non vanishing torsion are proposed. It is shown that the torsion plays an important role in explaining the accelerated expansion of the universe. Some of the cosmological parameters are also expressed in terms of the redshift and the dark energy scenarios are discussed.

  1. Designing Asteroid Impact Scenario Trajectories

    NASA Astrophysics Data System (ADS)

    Chodas, Paul

    2016-05-01

    In order to study some of the technical and geopolitical issues of dealing with an asteroid on impact trajectory, a number of hypothetical impact scenarios have been presented over the last ten years or so. These have been used, for example, at several of the Planetary Defense Conferences (PDCs), as well as in tabletop exercises with the Federal Emergency Management Agency (FEMA), along with other government agencies. The exercise at the 2015 PDC involved most of the attendees, consisted of seven distinct steps (“injects”), and with all the presentations and discussions, took up nearly 10 hours of conference time. The trajectory for the PDC15 scenario was entirely realistic, and was posted ahead of the meeting. It was made available in the NEO Program’s Horizons ephemeris service so that users could , for example, design their own deflection missions. The simulated asteroid and trajectory had to meet numerous very exacting requirements: becoming observable on the very first day of the conference, yet remaining very difficult to observe for the following 7 years, and far enough away from Earth that it was out of reach of radar until just before impact. It had to be undetectable in the past, and yet provide multiple perihelion opportunities for deflection in the future. It had to impact in a very specific region of the Earth, a specific number of years after discovery. When observations of the asteroid are simulated to generate an uncertainty region, that entire region must impact the Earth along an axis that cuts across specific regions of the Earth, the “risk corridor”. This is important because asteroid deflections generally move an asteroid impact point along this corridor. One scenario had a requirement that the asteroid pass through a keyhole several years before impact. The PDC15 scenario had an additional constraint that multiple simulated kinetic impactor missions altered the trajectory at a deflection point midway between discovery and impact

  2. Human Locomotion under Reduced Gravity Conditions: Biomechanical and Neurophysiological Considerations

    PubMed Central

    Sylos-Labini, Francesca; Ivanenko, Yuri P.

    2014-01-01

    Reduced gravity offers unique opportunities to study motor behavior. This paper aims at providing a review on current issues of the known tools and techniques used for hypogravity simulation and their effects on human locomotion. Walking and running rely on the limb oscillatory mechanics, and one way to change its dynamic properties is to modify the level of gravity. Gravity has a strong effect on the optimal rate of limb oscillations, optimal walking speed, and muscle activity patterns, and gait transitions occur smoothly and at slower speeds at lower gravity levels. Altered center of mass movements and interplay between stance and swing leg dynamics may challenge new forms of locomotion in a heterogravity environment. Furthermore, observations in the lack of gravity effects help to reveal the intrinsic properties of locomotor pattern generators and make evident facilitation of nonvoluntary limb stepping. In view of that, space neurosciences research has participated in the development of new technologies that can be used as an effective tool for gait rehabilitation. PMID:25247179

  3. Static spherically symmetric solutions in mimetic gravity: rotation curves and wormholes

    NASA Astrophysics Data System (ADS)

    Myrzakulov, Ratbay; Sebastiani, Lorenzo; Vagnozzi, Sunny; Zerbini, Sergio

    2016-06-01

    In this work, we analyse static spherically symmetric solutions in the framework of mimetic gravity, an extension of general relativity where the conformal degree of freedom of gravity is isolated in a covariant fashion. Here we extend previous works by considering, in addition, a potential for the mimetic field. An appropriate choice of such a potential allows for the reconstruction of a number of interesting cosmological and astrophysical scenarios. We explicitly show how to reconstruct such a potential for a general static spherically symmetric space-time. A number of applications and scenarios are then explored, among which are traversable wormholes. Finally, we analytically reconstruct potentials, which leads to solutions to the equations of motion featuring polynomial corrections to the Schwarzschild space-time. Accurate choices for such corrections could provide an explanation for the inferred flat rotation curves of spiral galaxies within the mimetic gravity framework, without the need for particle dark matter.

  4. Gravity Forcing Of Surface Waves

    NASA Astrophysics Data System (ADS)

    Kenyon, K. E.

    2005-12-01

    Surface waves in deep water are forced entirely by gravity at the air-sea interface when no other forces act tangent to the surface. Then according to Newton's second law, the fluid acceleration parallel to the surface must equal the component of gravity parallel to the surface. Between crest and trough the fluid accelerates; between trough and crest the fluid decelerates. By replacing Bernoulli's law, gravity forcing becomes the dynamic boundary condition needed to solve the mathematical problem of these waves. Irrotational waves with a sinusoidal profile satisfy the gravity forcing condition, with the usual dispersion relation, provided the slope is small compared to one, as is true also of the Stokes development. However, the exact wave shape can be calculated using the gravity forcing method in a way that is less complex and less time consuming than that of the Stokes perturbation expansion. To the second order the surface elevation is the same as the Stokes result; the third order calculation has not been made yet. Extensions of the gravity forcing method can easily be carried out for multiple wave trains, solitary waves and bores, waves in finite constant mean depths, and internal waves in a two-layer system. For shoaling surface waves gravity forcing provides a physical understanding of the progressive steepening often observed near shore.

  5. Progress in the Determination of the Earth's Gravity Field

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H. (Editor)

    1989-01-01

    Topics addressed include: global gravity model development; methods for approximation of the gravity field; gravity field measuring techniques; global gravity field applications and requirements in geophysics and oceanography; and future gravity missions.

  6. Dynamical behavior in mimetic F(R) gravity

    SciTech Connect

    Leon, Genly; Saridakis, Emmanuel N. E-mail: Emmanuel_Saridakis@baylor.edu

    2015-04-01

    We investigate the cosmological behavior of mimetic F(R) gravity. This scenario is the F(R) extension of usual mimetic gravity classes, which are based on re-parametrizations of the metric using new, but not propagating, degrees of freedom, that can lead to a wider family of solutions. Performing a detailed dynamical analysis for exponential, power-law, and arbitrary F(R) forms, we extracted the corresponding critical points. Interestingly enough, we found that although the new features of mimetic F(R) gravity can affect the universe evolution at early and intermediate times, at late times they will not have any effect, and the universe will result at stable states that coincide with those of usual F(R) gravity. However, this feature holds for the late-time background evolution only. On the contrary, the behavior of the perturbations is expected to be different since the new term contributes to the perturbations even if it does not contribute at the background level.

  7. Natural inflation and quantum gravity.

    PubMed

    de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman

    2015-04-17

    Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.

  8. Ocean gravity and geoid determination

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Siry, J. W.; Brown, R. D.; Wells, W. T.

    1977-01-01

    Gravity anomalies have been recovered in the North Atlantic and the Indian Ocean regions. Comparisons of 63 2 deg x 2 deg mean free air gravity anomalies recovered in the North Atlantic area and 24 5 deg x 5 deg mean free air gravity anomalies in the Indian Ocean area with surface gravimetric measurements have shown agreement to + or - 8 mgals for both solutions. Geoids derived from the altimeter solutions are consistent with altimetric sea surface height data to within the precision of the data, about + or - 2 meters.

  9. Cosmology in Weyl transverse gravity

    NASA Astrophysics Data System (ADS)

    Oda, Ichiro

    2016-11-01

    We study the Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology in the Weyl-transverse (WTDiff) gravity in a general spacetime dimension. The WTDiff gravity is invariant under both the local Weyl (conformal) transformation and the volume preserving diffeormorphisms (transverse diffeomorphisms) and is believed to be equivalent to general relativity at least at the classical level (perhaps, even in the quantum regime). It is explicitly shown by solving the equations of motion that the FLRW metric is a classical solution in the WTDiff gravity only when the spatial metric is flat, that is, the Euclidean space, and the lapse function is a nontrivial function of the scale factor.

  10. Wormhole solutions in f(R) gravity satisfying energy conditions

    NASA Astrophysics Data System (ADS)

    Mazharimousavi, S. Habib; Halilsoy, M.

    2016-10-01

    Without reference to exotic sources construction of viable wormholes in Einstein’s general relativity remained ever a myth. With the advent of modified theories, however, specifically the f(R) theory, new hopes arose for the possibility of such objects. From this token, we construct traversable wormholes in f(R) theory supported by a fluid source which respects at least the weak energy conditions. We provide an example (Example 1) of asymptotically flat wormhole in f(R) gravity without ghosts.

  11. Compact stars in vector-tensor-Horndeski theory of gravity

    NASA Astrophysics Data System (ADS)

    Momeni, Davood; Faizal, Mir; Myrzakulov, Kairat; Myrzakulov, Ratbay

    2017-01-01

    In this paper, we will analyze a theory of modified gravity, in which the field content of general relativity will be increased to include a vector field. We will use the Horndeski formalism to non-minimally couple this vector field to the metric. As we will be using the Horndeski formalism, this theory will not contain Ostrogradsky ghost degree of freedom. We will analyze compact stars using this vector-tensor-Horndeski theory.

  12. Multiple Potts models coupled to two-dimensional quantum gravity

    NASA Astrophysics Data System (ADS)

    Baillie, C. F.; Johnston, D. A.

    1992-07-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of multiple q=2, 3, 4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1.

  13. Phenomenology in minimal theory of massive gravity

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Mukohyama, Shinji

    2016-04-01

    We investigate the minimal theory of massive gravity (MTMG) recently introduced. After reviewing the original construction based on its Hamiltonian in the vielbein formalism, we reformulate it in terms of its Lagrangian in both the vielbein and the metric formalisms. It then becomes obvious that, unlike previous attempts in the literature of Lorentz-violating massive gravity, not only the potential but also the kinetic structure of the action is modified from the de Rham-Gabadadze-Tolley (dRGT) massive gravity theory. We confirm that the number of physical degrees of freedom in MTMG is two at fully nonlinear level. This proves the absence of various possible pathologies such as superluminality, acausality and strong coupling. Afterwards, we discuss the phenomenology of MTMG in the presence of a dust fluid. We find that on a flat homogeneous and isotropic background we have two branches. One of them (self-accelerating branch) naturally leads to acceleration without the genuine cosmological constant or dark energy. For this branch both the scalar and the vector modes behave exactly as in general relativity (GR). The phenomenology of this branch differs from GR in the tensor modes sector, as the tensor modes acquire a non-zero mass. Hence, MTMG serves as a stable nonlinear completion of the self-accelerating cosmological solution found originally in dRGT theory. The other branch (normal branch) has a dynamics which depends on the time-dependent fiducial metric. For the normal branch, the scalar mode sector, even though as in GR only one scalar mode is present (due to the dust fluid), differs from the one in GR, and, in general, structure formation will follow a different phenomenology. The tensor modes will be massive, whereas the vector modes, for both branches, will have the same phenomenology as in GR.

  14. Phenomenology in minimal theory of massive gravity

    SciTech Connect

    Felice, Antonio De; Mukohyama, Shinji

    2016-04-15

    We investigate the minimal theory of massive gravity (MTMG) recently introduced. After reviewing the original construction based on its Hamiltonian in the vielbein formalism, we reformulate it in terms of its Lagrangian in both the vielbein and the metric formalisms. It then becomes obvious that, unlike previous attempts in the literature of Lorentz-violating massive gravity, not only the potential but also the kinetic structure of the action is modified from the de Rham-Gabadadze-Tolley (dRGT) massive gravity theory. We confirm that the number of physical degrees of freedom in MTMG is two at fully nonlinear level. This proves the absence of various possible pathologies such as superluminality, acausality and strong coupling. Afterwards, we discuss the phenomenology of MTMG in the presence of a dust fluid. We find that on a flat homogeneous and isotropic background we have two branches. One of them (self-accelerating branch) naturally leads to acceleration without the genuine cosmological constant or dark energy. For this branch both the scalar and the vector modes behave exactly as in general relativity (GR). The phenomenology of this branch differs from GR in the tensor modes sector, as the tensor modes acquire a non-zero mass. Hence, MTMG serves as a stable nonlinear completion of the self-accelerating cosmological solution found originally in dRGT theory. The other branch (normal branch) has a dynamics which depends on the time-dependent fiducial metric. For the normal branch, the scalar mode sector, even though as in GR only one scalar mode is present (due to the dust fluid), differs from the one in GR, and, in general, structure formation will follow a different phenomenology. The tensor modes will be massive, whereas the vector modes, for both branches, will have the same phenomenology as in GR.

  15. New Cosmologies on the Horizon. Cosmology and Holography in bigravity and massive gravity

    SciTech Connect

    Tolley, Andrew James

    2013-03-31

    The goal of this research program is to explore the cosmological dynamics, the nature of cosmological and black hole horizons, and the role of holography in a new class of infrared modified theories of gravity. This will capitalize of the considerable recent progress in our understanding of the dynamics of massive spin two fields on curved spacetimes, culminating in the formulation of the first fully consistent theories of massive gravity and bigravity/bimetric theories.

  16. Spent fuel receipt scenarios study

    SciTech Connect

    Ballou, L.B.; Montan, D.N.; Revelli, M.A.

    1990-09-01

    This study reports on the results of an assignment from the DOE Office of Civilian Radioactive Waste Management to evaluate of the effects of different scenarios for receipt of spent fuel on the potential performance of the waste packages in the proposed Yucca Mountain high-level waste repository. The initial evaluations were performed and an interim letter report was prepared during the fall of 1988. Subsequently, the scope of work was expanded and additional analyses were conducted in 1989. This report combines the results of the two phases of the activity. This study is a part of a broader effort to investigate the options available to the DOE and the nuclear utilities for selection of spent fuel for acceptance into the Federal Waste Management System for disposal. Each major element of the system has evaluated the effects of various options on its own operations, with the objective of providing the basis for performing system-wide trade-offs and determining an optimum acceptance scenario. Therefore, this study considers different scenarios for receipt of spent fuel by the repository only from the narrow perspective of their effect on the very-near-field temperatures in the repository following permanent closure. This report is organized into three main sections. The balance of this section is devoted to a statement of the study objective, a summary of the assumptions. The second section of the report contains a discussion of the major elements of the study. The third section summarizes the results of the study and draws some conclusions from them. The appendices include copies of the waste acceptance schedule and the existing and projected spent fuel inventory that were used in the study. 10 refs., 27 figs.

  17. Europa Explorer Operational Scenarios Development

    NASA Technical Reports Server (NTRS)

    Lock, Robert E.; Pappalardo, Robert T.; Clark, Karla B.

    2008-01-01

    In 2007, NASA conducted four advanced mission concept studies for outer planets targets: Europa, Ganymede, Titan and Enceladus. The studies were conducted in close cooperation with the planetary science community. Of the four, the Europa Explorer Concept Study focused on refining mission options, science trades and implementation details for a potential flagship mission to Europa in the 2015 timeframe. A science definition team (SDT) was appointed by NASA to guide the study. A JPL-led engineering team worked closely with the science team to address 3 major focus areas: 1) credible cost estimates, 2) rationale and logical discussion of radiation risk and mitigation approaches, and 3) better definition and exploration of science operational scenario trade space. This paper will address the methods and results of the collaborative process used to develop Europa Explorer operations scenarios. Working in concert with the SDT, and in parallel with the SDT's development of a science value matrix, key mission capabilities and constraints were challenged by the science and engineering members of the team. Science goals were advanced and options were considered for observation scenarios. Data collection and return strategies were tested via simulation, and mission performance was estimated and balanced with flight and ground system resources and science priorities. The key to this successful collaboration was a concurrent development environment in which all stakeholders could rapidly assess the feasibility of strategies for their success in the full system context. Issues of science and instrument compatibility, system constraints, and mission opportunities were treated analytically and objectively leading to complementary strategies for observation and data return. Current plans are that this approach, as part of the system engineering process, will continue as the Europa Explorer Concept Study moves toward becoming a development project.

  18. Artificial Gravity Research Project

    NASA Technical Reports Server (NTRS)

    Kamman, Michelle R.; Paloski, William H.

    2005-01-01

    Protecting the health, safety, and performance of exploration-class mission crews against the physiological deconditioning resulting from long-term weightlessness during transit and long-term hypogravity during surface operations will require effective, multi-system countermeasures. Artificial gravity (AG), which would replace terrestrial gravity with inertial forces generated by rotating the transit vehicle or by a human centrifuge device within the transit vehicle or surface habitat, has long been considered a potential solution. However, despite its attractiveness as an efficient, multi-system countermeasure and its potential for improving the environment and simplifying operational activities (e.g., WCS, galley, etc.), much still needs to be learned regarding the human response to rotating environments before AG can be successfully implemented. This paper will describe our approach for developing and implementing a rigorous AG Research Project to address the key biomedical research questions that must be answered before developing effective AG countermeasure implementation strategies for exploration-class missions. The AG Research Project will be performed at JSC, ARC, extramural academic and government research venues, and international partner facilities maintained by DLR and IMBP. The Project includes three major ground-based human research subprojects that will lead to flight testing of intermittent short-radius AG in ISS crewmembers after 201 0, continuous long-radius AG in CEV crews transiting to and from the Moon, and intermittent short-radius AG plus exercise in lunar habitats. These human ground-based subprojects include: 1) a directed, managed international short-radius project to investigate the multi-system effectiveness of intermittent AG in human subjects deconditioned by bed rest, 2) a directed, managed long-radius project to investigate the capacity of humans to live and work for extended periods in rotating environments, and 3) a focused

  19. Gravity effect of sediment compaction: examples from the North Sea and the Rhine Graben

    NASA Astrophysics Data System (ADS)

    Cowie, Patience A.; Karner, Garry D.

    1990-07-01

    A Fourier domain expression for calculating the gravity effect of a continuously varying density structure is used to investigate the way in which sediment compaction modifies the shape of the gravity anomaly across a sedimentary basin. In general, sediment density increases with depth in a basin as the overburden thickness increases. The effect of the increase in sediment density is to reduce the gravity contribution from the density contrasts in the deeper parts of the basin relative to near surface contributions. For a theoretical uncompensated basin, the gravity effect of the sediments is calculated for a density-depth variation described by: (1) a simple exponential increase in sediment density with depth, and (2) an exponential modified to include a local density inversion representative of sediment overpressuring. It is shown that for both cases, the calculated gravity does not necessarily reflect the morphology of the sediment-basement interface. The gravity effect is most sensitive to the distribution of the youngest stratigraphic units within the basin. Results of modeling observed gravity anomalies across the Viking and Rhine Graben show that the small peak-to-trough amplitude of the gravity anomalies across these basins can be attributed to the increase in sediment density with depth rather than the compensation of the basin. For the Rhine Graben, it is further shown that the wavelength of the gravity anomaly is strongly controlled by the flexural strength of the lithosphere. Together these results suggest that while the amplitude of gravity anomalies across extensional basins may be primarily reflecting compaction of the sediment infill, the anomaly wavelength is more sensitive to the compensation mechanism.

  20. Cutoff for extensions of massive gravity and bi-gravity

    NASA Astrophysics Data System (ADS)

    Matas, Andrew

    2016-04-01

    Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware-Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity.