Sample records for modified high performance

  1. Engineering characterisation of epoxidized natural rubber-modified hot-mix asphalt

    PubMed Central

    Al-Mansob, Ramez A.; Ismail, Amiruddin; Yusoff, Nur Izzi Md.; Rahmat, Riza Atiq O. K.; Borhan, Muhamad Nazri; Albrka, Shaban Ismael; Azhari, Che Husna; Karim, Mohamed Rehan

    2017-01-01

    Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR)-modified hot-mix asphalt. Tests were conducted using ENR–asphalt mixes prepared using the wet process. Mechanical testing on the ENR–asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR–asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR–asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress. PMID:28182724

  2. Engineering characterisation of epoxidized natural rubber-modified hot-mix asphalt.

    PubMed

    Al-Mansob, Ramez A; Ismail, Amiruddin; Yusoff, Nur Izzi Md; Rahmat, Riza Atiq O K; Borhan, Muhamad Nazri; Albrka, Shaban Ismael; Azhari, Che Husna; Karim, Mohamed Rehan

    2017-01-01

    Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR)-modified hot-mix asphalt. Tests were conducted using ENR-asphalt mixes prepared using the wet process. Mechanical testing on the ENR-asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR-asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR-asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress.

  3. Field test method to determine presence and quantity of modifiers in liquid asphalt - follow-up data analysis : [technical summary].

    DOT National Transportation Integrated Search

    2015-09-01

    Asphalt modified with styrene butadiene styrene (SBS) polymer and/or ground tire rubber : (GTR) is widely used in the U.S. to improve asphalt concrete performance. The high cost and : proven performance benefits of modified binders make it important ...

  4. Synthesis of monodisperse silica microspheres and modification with diazoresin for mixed-mode ultra high performance liquid chromatography separations.

    PubMed

    Cong, Hailin; Yu, Bing; Tian, Chao; Zhang, Shuai; Yuan, Hua

    2017-11-01

    Monodisperse silica particles with average diameters of 1.9-2.9 μm were synthesized by a modified Stöber method, in which tetraethyl orthosilicate was continuously supplied to the reaction mixture containing KCl electrolyte, water, ethanol, and ammonia. The obtained silica particles were modified by self-assembly with positively charged photosensitive diazoresin on the surface. After treatment with ultraviolet light, the ionic bonding between silica and diazoresin was converted into covalent bonding through a unique photochemistry reaction of diazoresin. Depending on the chemical structure of diazoresin and mobile phase composition, the diazoresin-modified silica stationary phase showed different separation mechanisms, including reversed phase and hydrophilic interactions. Therefore, a variety of baseline separation of benzene analogues and organic acids was achieved by using the diazoresin-modified silica particles as packing materials in ultra high performance liquid chromatography. According to the π-π interactional difference between carbon rings of fullerenes and benzene rings of diazoresin, C 60 and C 70 were also well separated by ultra-high performance liquid chromatography. Because it has a small size, the ∼2.5 μm monodisperse diazoresin-modified silica stationary phase shows ultra-high efficiency compared with the commercial C 18 -silica high-performance liquid chromatography stationary phase with average diameters of ∼5 μm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Low-VOC wood floor varnishes from waterborne oil-modified urethanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingle, D.M.; Petschke, G.H.

    Varnishes protect wood flooring and enhance its beauty. Varnish compositions have varied from drying oils and alkyds to more durable systems (moisture-cured urethanes, oil-modified urethanes, epoxies and UV-curable coatings). Some chemistries are better suited for professional or factory applied situations. Oils, alkyds and oil-modified urethanes (OMU) are suitable for onsite professional application or even refinish application by homeowners (DIY market). These materials traditionally have been high in VOC. Recently, waterborne (WB) systems (such as polyurethane dispersions) with greatly reduced VOC have been used; high costs and relatively poor durability are drawbacks. A new generation of high performance waterborne oil-modified urethanemore » is now available with extended shelf-stability required for contractor and consumer markets. Formulated varnishes are coming onto the market that offer performance similar to conventional OMU, but with significant reductions in VOC. For example, a typical formulation for a conventional solvent-borne oil-modified urethane can be supplied at 1.6 lb/gal (less water). This represents a VOC reduction of 70-75% at equal application coating weight. Furthermore, waterborne oil-modified urethane offers advantages over polyurethane dispersions in performance areas such as durability and mar resistance.« less

  6. Highly Branched Polyethylenes as Lubricant Viscosity and Friction Modifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Joshua W.; Zhou, Yan; Qu, Jun

    2016-10-08

    A series of highly branched polyethylenes (BPE) were prepared and used in a Group I base oil as potential viscosity and friction modifiers. The lubricating performance of these BPEs supports the expected dual functionality. Changes in polarity, topology, and molecular weight of the BPEs showed significant effects on the lubricants’ performance, which provide scientific insights for polymer design in future lubricant development.

  7. Using sewage sludge pyrolytic gas to modify titanium alloy to obtain high-performance anodes in bio-electrochemical systems

    NASA Astrophysics Data System (ADS)

    Gu, Yuan; Ying, Kang; Shen, Dongsheng; Huang, Lijie; Ying, Xianbin; Huang, Haoqian; Cheng, Kun; Chen, Jiazheng; Zhou, Yuyang; Chen, Ting; Feng, Huajun

    2017-12-01

    Titanium is under consideration as a potential stable bio-anode because of its high conductivity, suitable mechanical properties, and electrochemical inertness in the operating potential window of bio-electrochemical systems; however, its application is limited by its poor electron-transfer capacity with electroactive bacteria and weak ability to form biofilms on its hydrophobic surface. This study reports an effective and low-cost way to convert a hydrophobic titanium alloy surface into a hydrophilic surface that can be used as a bio-electrode with higher electron-transfer rates. Pyrolytic gas of sewage sludge is used to modify the titanium alloy. The current generation, anodic biofilm formation surface, and hydrophobicity are systematically investigated by comparing bare electrodes with three modified electrodes. Maximum current density (15.80 A/m2), achieved using a modified electrode, is 316-fold higher than that of the bare titanium alloy electrode (0.05 A/m2) and that achieved by titanium alloy electrodes modified by other methods (12.70 A/m2). The pyrolytic gas-modified titanium alloy electrode can be used as a high-performance and scalable bio-anode for bio-electrochemical systems because of its high electron-transfer rates, hydrophilic nature, and ability to achieve high current density.

  8. Evaluation of permanent deformation and durability of epoxidized natural rubber modified asphalt mix

    NASA Astrophysics Data System (ADS)

    Al-Mansob, Ramez A.; Ismail, Amiruddin; Rahmat, Riza Atiq O. K.; Nazri Borhan, Muhamad; Alsharef, Jamal M. A.; Albrka, Shaban Ismael; Rehan Karim, Mohamed

    2017-09-01

    The road distresses have caused too much in maintenance cost. However, better understandings of the behaviours and properties of asphalt, couples with greater development in technology, have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, modifiers such as polymers are the most popular modifiers used to improve the performance of asphalt mix. This study was conducted to investigate the use of epoxidized natural rubber (ENR) to be mixed with asphalt mix. Tests were conducted to investigate the performance characteristics of ENR-asphalt mixes, where the mixes were prepared according to the wet process. Mechanical testing on the ENR-asphalt mixes have demonstrated that the asphalt mix permanent deformation performance at high temperature was found to be improved compared to the base mixes. However, the durability studies have indicated that ENR-asphalt mixes are slightly susceptible with the presence of moisture. The durability of the ENR-asphalt mixes were found to be enhanced in term of permanent deformation at high and intermediate temperatures compared to the base asphalt mixes. As conclusion, asphalt pavement performance can be enhanced by using ENR as modifier to face the major road distresses.

  9. Enhanced the performance of graphene oxide/polyimide hybrid membrane for CO2 separation by surface modification of graphene oxide using polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Wu, Li-guang; Yang, Cai-hong; Wang, Ting; Zhang, Xue-yang

    2018-05-01

    Polyethylene glycol (PEG) with different molecular weights was first used to modify graphene oxide (GO) samples. Subsequently, polyimide (PI) hybrid membranes containing modified-GO were fabricated via in situ polymerization. The separation performance of these hybrid membranes was evaluated using permeation experiments for CO2 and N2 gases. The morphology characterization showed that PEG with suitable molecular weight could be successfully grafted on the GO surface. PEG modification altered the surface properties of GO and introduced defective structures onto GO surface. This caused strong surface polarity and high free volume of membranes containing PEG-modified GO, thereby improving the separation performance of membranes. The addition of PEG-GO with low molecular weight effectively increased gas diffusion through hybrid membranes. The hybrid membranes containing PEG-GO with large molecular weight had high solubility performance for CO2 gas due to the introduction of numerous polar groups into polymeric membranes. With the loading content of modified GO, the CO2 gas permeability of hybrid membranes initially increased but eventually decreased. The optimal content of modified GO in membranes reached 3.0 wt%. When too much PEG added (exceeding 30 g), some impurities formed on GO surface and some aggregates appeared in the resulting hybrid membrane, which depressed the membrane performance.

  10. Highly branched polyethylenes as lubricant viscosity and friction modifiers

    DOE PAGES

    Robinson, Joshua W.; Zhou, Yan; Qu, Jun; ...

    2016-10-08

    A series of highly branched polyethylene (BPE) were prepared and evaluated in a Group I base oil as potential viscosity and friction modifiers. The performance of these BPEs supports the expected dual functionality. Changes in polarity, topology, and molecular weight of the BPEs showed significant effects on the lubricants' performance with respect to viscosity index and friction reduction. In conclusion, this study provides scientific insights into polymer design for future lubricant development activities.

  11. Determination of proenkephalin products in brain tissue by high-performance liquid chromatography and a modified bioassay procedure.

    PubMed

    Bailey, C; Kitchen, I

    1985-06-01

    A method is described for the separation of proenkephalin products using gradient high-performance liquid chromatography preceded by Sep-Pak chromatography. Samples can be assayed simply by use of a modified mouse vas deferens bioassay which is sufficiently sensitive for most applications. The preliminary Sep-Pak chromatography method excludes alpha-neoendorphin and the dynorphins and thus provides a suitable procedure for separation of prodynorphin and proenkephalin products.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercier, C.W.

    The Network File System (NFS) will be the user interface to a High-Performance Data System (HPDS) being developed at Los Alamos National Laboratory (LANL). HPDS will manage high-capacity, high-performance storage systems connected directly to a high-speed network from distributed workstations. NFS will be modified to maximize performance and to manage massive amounts of data. 6 refs., 3 figs.

  13. Parallel high-precision orbit propagation using the modified Picard-Chebyshev method

    NASA Astrophysics Data System (ADS)

    Koblick, Darin C.

    2012-03-01

    The modified Picard-Chebyshev method, when run in parallel, is thought to be more accurate and faster than the most efficient sequential numerical integration techniques when applied to orbit propagation problems. Previous experiments have shown that the modified Picard-Chebyshev method can have up to a one order magnitude speedup over the 12th order Runge-Kutta-Nystrom method. For this study, the evaluation of the accuracy and computational time of the modified Picard-Chebyshev method, using the Java Astrodynamics Toolkit high-precision force model, is conducted to assess its runtime performance. Simulation results of the modified Picard-Chebyshev method, implemented in MATLAB and the MATLAB Parallel Computing Toolbox, are compared against the most efficient first and second order Ordinary Differential Equation (ODE) solvers. A total of six processors were used to assess the runtime performance of the modified Picard-Chebyshev method. It was found that for all orbit propagation test cases, where the gravity model was simulated to be of higher degree and order (above 225 to increase computational overhead), the modified Picard-Chebyshev method was faster, by as much as a factor of two, than the other ODE solvers which were tested.

  14. Growth of Ionic Selectivity Prussian Blue Modified Celgard Separator for High Performance Lithium Sulfur Battery.

    PubMed

    Wu, Xian; Fan, Lishuang; Qiu, Yue; Wang, Maoxu; Cheng, Junhan; Guan, Bin; Guo, Zhikun; Zhang, Naiqing; Sun, Kening

    2018-06-26

    Lithium sulfur batteries have been restricted on their major technical problem of shuttling soluble polysulfides between electrodes, resulting in serious capacity fading. For purpose of develop a high-performance lithium-sulfur battery, we first time utilize a simple growth method to introduce a Prussian blue modified Celgard separator as an ion selective membrane in lithium sulfur batteries. The unique structure of Prussian blue could effectively suppress the shuttle of polysulfides but scarcely affect the transfer ability of lithium ions, which is beneficial to achieve high sulfur conversion efficiency and capacity retention. The lithium sulfur battery with Prussian blue modified Celgard separator reveals an average capacity decaying of only 0.03% per cycle at 1C after 1000 cycles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrocatalytic response of poly(cobalt tetraaminophthalocyanine)/multi-walled carbon nanotubes-Nafion modified electrode toward sulfadiazine in urine*

    PubMed Central

    Hong, Xiao-ping; Zhu, Yan; Zhang, Yan-zhen

    2012-01-01

    A highly sensitive amperometric sulfadiazine sensor fabricated by electrochemical deposition of poly(cobalt tetraaminophthalocyanine) (poly(CoIITAPc)) on the surface of a multi-walled carbon nanotubes-Nafion (MWCNTs-Nafion) modified electrode is described. This electrode showed a very attractive performance by combining the advantages of CoIITAPc, MWCNTs, and Nafion. Compared with the bare glassy carbon electrode (GCE) and the MWCNTs-Nafion modified electrode, the electrocatalytic activity of poly(CoIITAPc)-coated MWCNTs-Nafion GCE generated greatly improved electrochemical detections toward sulfadiazine including low oxidation potential, high current responses, and good anti-fouling performance. The oxidation peak currents of sulfadiazine obtained on the new modified electrode increased linearly while increasing the concentration of sulfadiazine from 0.5 to 43.5 μmol/L with the detection limit of 0.17 μmol/L. PMID:22661213

  16. Efficient inverted polymer solar cells based on conjugated polyelectrolyte and zinc oxide modified ITO electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli, E-mail: tgl@hust.edu.cn

    Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a usefulmore » approach to improve the performance of inverted polymer solar cells.« less

  17. Performance-based analysis of polymer-modified emulsions in asphalt surface treatments.

    DOT National Transportation Integrated Search

    2009-10-01

    Chip seals provide a durable and functional pavement surface and serve as a highly economical highway : maintenance option when constructed properly. Data and literature suggest that chip seal sections constructed with : polymer-modified emulsions (P...

  18. Advanced Modified High Performance Synthetic Jet Actuator with Curved Chamber

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Su, Ji (Inventor); Jiang, Xiaoning (Inventor)

    2014-01-01

    The advanced modified high performance synthetic jet actuator with optimized curvature shape chamber (ASJA-M) is a synthetic jet actuator (SJA) with a lower volume reservoir or chamber. A curved chamber is used, instead of the conventional cylinder chamber, to reduce the dead volume of the jet chamber and increase the efficiency of the synthetic jet actuator. The shape of the curvature corresponds to the maximum displacement (deformation) profile of the electroactive diaphragm. The jet velocity and mass flow rate for the ASJA-M will be several times higher than conventional piezoelectric actuators.

  19. JT8D-15/17 High Pressure Turbine Root Discharged Blade Performance Improvement. [engine design

    NASA Technical Reports Server (NTRS)

    Janus, A. S.

    1981-01-01

    The JT8D high pressure turbine blade and seal were modified, using a more efficient blade cooling system, improved airfoil aerodynamics, more effective control of secondary flows, and improved blade tip sealing. Engine testing was conducted to determine the effect of these improvements on performance. The modified turbine package demonstrated significant thrust specific fuel consumption and exhaust gas temperature improvements in sea level and altitude engine tests. Inspection of the improved blade and seal hardware after testing revealed no unusual wear or degradation.

  20. Controllable Synthesis of Formaldehyde Modified Manganese Oxide Based on Gas-Liquid Interfacial Reaction and Its Application of Electrochemical Sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Nie, Fei; Zheng, Jianbin

    2015-12-30

    Controllable synthesis of manganese oxides was performed via a simple one-step synthetic method. Then obtained manganese oxides which exhibit flower-like, cloud-like, hexagon-like, and rod-like morphologies were modified by formaldehyde based on a simple self-made gas-liquid reaction device respectively and the modified manganese oxides with coral-like, scallop-like and rod-like morphology were synthesized accordingly. The obtained materials were characterized and the formation mechanism was also researched. Then the modified manganese oxides were used to fabricate electrochemical sensors to detect H2O2. Comparison of electrochemical properties between three kinds of modified manganese oxides was investigated and the best one has been successfully employed as H2O2 sensor which shows a low detection limit of 0.01 μM, high sensitivity of 162.69 μA mM(-1) cm(-2), and wide linear range of 0.05 μM-12.78 mM. The study provides a new method for controllable synthesis of metal oxides, and electrochemical application of formaldehyde modified manganese oxides will provides a new strategy for electrochemical sensing with high performance, low cost, and simple fabrication.

  1. Chemical etching mechanism and properties of microstructures in sapphire modified by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Liu, Manyu; Hu, Youwang; Sun, Xiaoyan; Wang, Cong; Zhou, Jianying; Dong, Xinran; Yin, Kai; Chu, Dongkai; Duan, Ji'an

    2017-01-01

    Sapphire, with extremely high hardness, high-temperature stability and wear resistance, often corroded in molten KOH at 300 °C after processing. The fabrication of microstructures on sapphire substrate performed by femtosecond laser irradiation combined with KOH solution chemical etching at room temperature is presented. It is found that this method reduces the harsh requirements of sapphire corrosion. After femtosecond irradiation, the sapphire has a high corrosion speed at room temperature. Through the analysis of Raman spectrum and XRD spectrum, a novel insight of femtosecond laser interaction with sapphire (α-Al2O3) is proposed. Results indicated that grooves on sapphire surface were formed by the lasers ablation removal, and the groove surface was modified in a certain depth. The modified area of the groove surface was changed from α-Al2O3 to γ-Al2O3. In addition, the impacts of three experimental parameters, laser power, scanning velocities and etching time, on the width and depth of microstructures are investigated, respectively. The modified area dimension is about 2 μm within limits power and speed. This work could fabricate high-quality arbitrary microstructures and enhance the performance of sapphire processing.

  2. A Modified Mean Gray Wolf Optimization Approach for Benchmark and Biomedical Problems.

    PubMed

    Singh, Narinder; Singh, S B

    2017-01-01

    A modified variant of gray wolf optimization algorithm, namely, mean gray wolf optimization algorithm has been developed by modifying the position update (encircling behavior) equations of gray wolf optimization algorithm. The proposed variant has been tested on 23 standard benchmark well-known test functions (unimodal, multimodal, and fixed-dimension multimodal), and the performance of modified variant has been compared with particle swarm optimization and gray wolf optimization. Proposed algorithm has also been applied to the classification of 5 data sets to check feasibility of the modified variant. The results obtained are compared with many other meta-heuristic approaches, ie, gray wolf optimization, particle swarm optimization, population-based incremental learning, ant colony optimization, etc. The results show that the performance of modified variant is able to find best solutions in terms of high level of accuracy in classification and improved local optima avoidance.

  3. Flexible Carbon Nanotube Modified Separator for High-Performance Lithium-Sulfur Batteries

    PubMed Central

    Liu, Bin; Wu, Xiaomeng; Wang, Shan; Tang, Zhen; Yang, Quanling; Hu, Guo-Hua; Xiong, Chuanxi

    2017-01-01

    Lithium-sulfur (Li-S) batteries have become promising candidates for electrical energy storage systems due to their high theoretical specific energy density, low cost and environmental friendliness. However, there are some technical obstacles of lithium-sulfur batteries to be addressed, such as the shuttle effect of polysulfides. Here, we introduced organically modified carbon nanotubes (CNTs) as a coating layer for the separator to optimize structure and enhance the performance of the Li-S battery. The results showed that the cell with a CNTs-coated separator exhibited an excellent cycling performance. Compared to the blank separator, the initial discharge capacity and the capacity after 100 cycles for the CNTs-coated separator was increased by 115% and 161%, respectively. Besides, according to the rate capability test cycling from 0.1C to 2C, the battery with a CNTs-coated separator still released a capacity amounting to 90.2% of the initial capacity, when the current density returned back to 0.1C. It is believed that the organically modified CNTs coating effectively suppresses the shuttle effect during the cycling. The employment of a CNTs-coated separator provides a promising approach for high-performance lithium-sulfur batteries. PMID:28933721

  4. Chemically modified graphene based supercapacitors for flexible and miniature devices

    NASA Astrophysics Data System (ADS)

    Ghosh, Debasis; Kim, Sang Ouk

    2015-09-01

    Rapid progress in the portable and flexible electronic devises has stimulated supercapacitor research towards the design and fabrication of high performance flexible devices. Recent research efforts for flexible supercapacitor electrode materials are highly focusing on graphene and chemically modified graphene owing to the unique properties, including large surface area, high electrical and thermal conductivity, excellent mechanical flexibility, and outstanding chemical stability. This invited review article highlights current status of the flexible electrode material research based on chemically modified graphene for supercapacitor application. A variety of electrode architectures prepared from chemically modified graphene are summarized in terms of their structural dimensions. Novel prototypes for the supercapacitor aiming at flexible miniature devices, i.e. microsupercapacitor with high energy and power density are highlighted. Future challenges relevant to graphene-based flexible supercapacitors are also suggested. [Figure not available: see fulltext.

  5. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.

    PubMed

    Kim, Tae Young; Lee, Hyun Wook; Stoller, Meryl; Dreyer, Daniel R; Bielawski, Christopher W; Ruoff, Rodney S; Suh, Kwang S

    2011-01-25

    We report a high-performance supercapacitor incorporating a poly(ionic liquid)-modified reduced graphene oxide (PIL:RG-O) electrode and an ionic liquid (IL) electrolyte (specifically, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide or EMIM-NTf(2)). PIL:RG-O provides enhanced compatibility with the IL electrolyte, thereby increasing the effective electrode surface area accessible to electrolyte ions. The supercapacitor assembled with PIL:RG-O electrode and EMIM-NTf(2) electrolyte showed a stable electrochemical response up to 3.5 V operating voltage and was capable of yielding a maximum energy density of 6.5 W·h/kg with a power density of 2.4 kW/kg. These results demonstrate the potential of the PIL:RG-O material as an electrode in high-performance supercapacitors.

  6. Strong composition dependence of adhesive properties of ultraviolet curing adhesives with modified acrylates

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Li, Yandong; Wang, Fupeng; Peng, Cheng; Xu, Zhichao; Hu, Jianbing

    2018-05-01

    Ultraviolet (UV) curable adhesives have been widely researched in fields of health care and electronic components. UV curing systems with modified acrylic ester prepolymers have been frequently employed. In order to clarify composition dependence of adhesive properties of adhesives containing modified acrylates, in this work, several UV curing adhesives bearing urethane and epoxy acrylates were designed and fabricated. The effects of prepolymer, diluent, feed ratio, initiator and assistant on adhesive performances were investigated. This work might offer a facile route to gain promising high-performance UV curable adhesives with desired adhesive traits through regulating their compositions.

  7. Performance of the heavy fraction of pyrolysis oil derived from waste printed circuit boards in modifying asphalt.

    PubMed

    Yang, Fan; Sun, Shuiyu; Zhong, Sheng; Li, Shenyong; Wang, Yi; Wu, Jiaqi

    2013-09-15

    The focus of this research was the development of efficient and affordable asphalt modifiers. Pyrolysis oil was produced as a byproduct from the pyrolysis of waste printed circuit boards (WPCBs). The high boiling point fraction was separated from the pyrolysis oil through distillation and is referred to as the heavy fraction of pyrolysis oil (HFPO). The HFPO was tested as an asphalt modifier. Three asphalt modifiers were tested: HFPO; styrene-butadiene rubber (SBR); and HFPO + SBR (1:1). The physical properties and road performance of the three modified asphalts were measured and evaluated. The results have shown that when the amount of modifier was less than 10%, the HFPO modified asphalt had the highest softening point of the three. The dynamic stability (DS) and water resistance of the asphalt mixture with the HFPO modified asphalt was 10,161 cycles/mm and 87.2%, respectively. The DS was much larger than for the HFPO + SBR and SBR modified asphalt mixtures. These results indicate that using HFPO as an asphalt modifier has significant benefits not only for road engineering but also for resource recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Facile synthesis of NiAl-layered double hydroxide/graphene hybrid with enhanced electrochemical properties for detection of dopamine

    NASA Astrophysics Data System (ADS)

    Li, Meixia; Zhu, Jun E.; Zhang, Lili; Chen, Xu; Zhang, Huimin; Zhang, Fazhi; Xu, Sailong; Evans, David G.

    2011-10-01

    Layered double hydroxides (LDHs), also known as hydrotalcite-like anionic clays, have been investigated widely as promising electrochemical active materials. Due to the inherently weak conductivity, the electrochemical properties of LDHs were improved typically by utilization of either functional molecules intercalated between LDH interlayer galleries, or proteins confined between exfoliated LDH nanosheets. Here, we report a facile protocol to prepare NiAl-LDH/graphene (NiAl-LDH/G) nanocomposites using a conventional coprecipitation process under low-temperature conditions and subsequent reduction of the supporting graphene oxide. Electrochemical tests showed that the NiAl-LDH/G modified electrode exhibited highly enhanced electrochemical performance of dopamine electrooxidation in comparison with the pristine NiAl-LDH modified electrode. Results of high-resolution transmission electron microscopy and Raman spectra provide convincing information on the nanostructure and composition underlying the enhancement. Our results of the NiAl-LDH/G modified electrodes with the enhanced electrochemical performance may allow designing a variety of promising hybrid sensors via a simple and feasible approach.Layered double hydroxides (LDHs), also known as hydrotalcite-like anionic clays, have been investigated widely as promising electrochemical active materials. Due to the inherently weak conductivity, the electrochemical properties of LDHs were improved typically by utilization of either functional molecules intercalated between LDH interlayer galleries, or proteins confined between exfoliated LDH nanosheets. Here, we report a facile protocol to prepare NiAl-LDH/graphene (NiAl-LDH/G) nanocomposites using a conventional coprecipitation process under low-temperature conditions and subsequent reduction of the supporting graphene oxide. Electrochemical tests showed that the NiAl-LDH/G modified electrode exhibited highly enhanced electrochemical performance of dopamine electrooxidation in comparison with the pristine NiAl-LDH modified electrode. Results of high-resolution transmission electron microscopy and Raman spectra provide convincing information on the nanostructure and composition underlying the enhancement. Our results of the NiAl-LDH/G modified electrodes with the enhanced electrochemical performance may allow designing a variety of promising hybrid sensors via a simple and feasible approach. Electronic supplementary information (ESI) available: Fig. S1 showing 2D fast Fourier transform (FFT) image of NiAl-LDH phase in NiAl-LDH/G composites, and Fig. S2 showing CV curve of the pristine G modified electrode. See DOI: 10.1039/c1nr10592b.

  9. An assessment of SBS modified asphalt concrete pavements performance features performing numerical analysis

    NASA Astrophysics Data System (ADS)

    Karakas, Ahmet Sertac; Bozkurt, Tarik Serhat; Sayin, Baris; Ortes, Faruk

    2017-07-01

    In passenger and freight traffic on the roads, which has the largest share of the hot mix asphalt (HMA) prepared asphalt concrete pavement is one of the most preferred type of flexible superstructure. During the service life of the road, they must provide the performance which is expected to show. HMA must be high performance mix design, comfortable, safe and resistance to degradation. In addition, it becomes a critical need to use various additives materials for roads to be able to serve long-term against environmental conditions such as traffic and climate due to the fact that the way of raw materials is limited. Styrene Butadiene Styrene (SBS) polymers are widely used among additives. In this study, the numerical analysis of SBS modified HMA designed asphalt concrete coatings prepared with different thicknesses with SBS modified HMA is performed. After that, stress and deformation values of the three pavement models are compared and evaluated.

  10. Towards high-performance materials for road construction

    NASA Astrophysics Data System (ADS)

    Gladkikh, V.; Korolev, E.; Smirnov, V.

    2017-10-01

    Due to constant increase of traffic, modern road construction is in need of high-performance pavement materials. The operational performance of such materials can be characterized by many properties. Nevertheless, the most important ones are resistance to rutting and resistance to dynamical loads. It was proposed earlier to use sulfur extended asphalt concrete in road construction practice. To reduce the emission of sulfur dioxide and hydrogen sulfide during the concrete mix preparation and pavement production stages, it is beneficial to make such a concrete on the base of complex sulfur modifier. In the present work the influence of the complex modifier to mechanical properties of sulfur extended asphalt concrete was examined. It was shown that sulfur extended asphalt concrete is of high mechanical properties. It was also revealed that there as an anomalous negative correlations between strain capacity, fatigue life and fracture toughness.

  11. Ultralow-power complementary metal-oxide-semiconductor inverters constructed on Schottky barrier modified nanowire metal-oxide-semiconductor field-effect-transistors.

    PubMed

    Ma, R M; Peng, R M; Wen, X N; Dai, L; Liu, C; Sun, T; Xu, W J; Qin, G G

    2010-10-01

    We show that the threshold voltages of both n- and p-channel metal-oxide-semiconductor field-effect-transistors (MOSFETs) can be lowered to close to zero by adding extra Schottky contacts on top of nanowires (NWs). Novel complementary metal-oxide-semiconductor (CMOS) inverters are constructed on these Schottky barrier modified n- and p-channel NW MOSFETs. Based on the high performances of the modified n- and p-channel MOSFETs, especially the low threshold voltages, the as-fabricated CMOS inverters have low operating voltage, high voltage gain, and ultra-low static power dissipation.

  12. Electrochemical and in vitro neuronal recording characteristics of multi-electrode arrays surface-modified with electro-co-deposited gold-platinum nanoparticles.

    PubMed

    Kim, Yong Hee; Kim, Ah Young; Kim, Gook Hwa; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2016-02-01

    In order to complement the high impedance electrical property of gold nanoparticles (Au NPs) we have performed electro-co-deposition of gold-platinum nanoparticles (Au-Pt NPs) onto the Au multi-electrode array (MEA) and modified the Au-Pt NPs surface with cell adhesive poly-D-lysine via thiol chemistry based covalent binding. The Au-Pt NPs were analyzed to have bimetallic nature not the mixture of Au NPs and Pt NPs by X-ray diffraction analysis and to have impedance value (4.0 × 10(4) Ω (at 1 kHz)) comparable to that of Pt NPs. The performance of Au-Pt NP-modified MEAs was also checked in relation to neuronal signal recording. The noise level in Au-Pt NP-modified MEAs was lower than in that of Au NP-modified MEA.

  13. Application of nickel zinc ferrite/graphene nanocomposite as a modifier for fabrication of a sensitive electrochemical sensor for determination of omeprazole in real samples.

    PubMed

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2017-06-01

    In the present study, a simple and highly sensitive sensor for the determination of omeprazole based on nickel-zinc ferrite/graphene modified glassy carbon electrode is reported. The morphology and electro analytical performance of the fabricated sensor were characterized with X-ray diffraction spectrometry, Fourier transform infrared spectrometry, scanning electron microscopy, electrochemical impedance spectroscopy, cyclic voltammetry, differential pulse voltammetry and operation of the sensor. Results were compared with those achieved at the graphene modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions, linear response was over the range of 0.03-100.0µmolL -1 . The lower detection limit was found to be 0.015µmolL -1 . The effect of different interferences on the anodic current response of OMZ was investigated. By measuring the concentrations of omeprazole in plasma and pharmaceutical samples, the practical application of the modified electrode was evaluated. This revealed that the nickel-zinc ferrite/graphene modified glassy carbon electrode shows excellent analytical performance for the determination of omeprazole with a very low detection limit, high sensitivity, and very good accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Classification of lung cancer patients and controls by chromatography of modified nucleosides in serum

    USGS Publications Warehouse

    McEntire, John E.; Kuo, Kenneth C.; Smith, Mark E.; Stalling, David L.; Richens, Jack W.; Zumwalt, Robert W.; Gehrke, Charles W.; Papermaster, Ben W.

    1989-01-01

    A wide spectrum of modified nucleosides has been quantified by high-performance liquid chromatography in serum of 49 male lung cancer patients, 35 patients with other cancers, and 48 patients hospitalized for nonneoplastic diseases. Data for 29 modified nucleoside peaks were normalized to an internal standard and analyzed by discriminant analysis and stepwise discriminant analysis. A model based on peaks selected by a stepwise discriminant procedure correctly classified 79% of the cancer and 75% of the noncancer subjects. It also demonstrated 84% sensitivity and 79% specificity when comparing lung cancer to noncancer subjects, and 80% sensitivity and 55% specificity in comparing lung cancer to other cancers. The nucleoside peaks having the greatest influence on the models varied dependent on the subgroups compared, confirming the importance of quantifying a wide array of nucleosides. These data support and expand previous studies which reported the utility of measuring modified nucleoside levels in serum and show that precise measurement of an array of 29 modified nucleosides in serum by high-performance liquid chromatography with UV scanning with subsequent data modeling may provide a clinically useful approach to patient classification in diagnosis and subsequent therapeutic monitoring.

  15. An organic surface modifier to produce a high work function transparent electrode for high performance polymer solar cells.

    PubMed

    Choi, Hyosung; Kim, Hak-Beom; Ko, Seo-Jin; Kim, Jin Young; Heeger, Alan J

    2015-02-04

    Modification of an ITO electrode with small-molecule organic surface modifier, 4-chloro-benzoic acid (CBA), via a simple spin-coating method produces a high-work-function electrode with high transparency and a hydrophobic surface. As an alternative to PEDOT:PSS, CBA modification achieves efficiency enhancement up to 8.5%, which is attributed to enhanced light absorption within the active layer and smooth hole transport from the active layer to the anode. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Formation flight and collision avoidance for multiple UAVs based on modified tentacle algorithm in unstructured environments

    PubMed Central

    2017-01-01

    This paper presents a method for formation flight and collision avoidance of multiple UAVs. Due to the shortcomings such as collision avoidance caused by UAV’s high-speed and unstructured environments, this paper proposes a modified tentacle algorithm to ensure the high performance of collision avoidance. Different from the conventional tentacle algorithm which uses inverse derivation, the modified tentacle algorithm rapidly matches the radius of each tentacle and the steering command, ensuring that the data calculation problem in the conventional tentacle algorithm is solved. Meanwhile, both the speed sets and tentacles in one speed set are reduced and reconstructed so as to be applied to multiple UAVs. Instead of path iterative optimization, the paper selects the best tentacle to obtain the UAV collision avoidance path quickly. The simulation results show that the method presented in the paper effectively enhances the performance of flight formation and collision avoidance for multiple high-speed UAVs in unstructured environments. PMID:28763498

  17. Evaluation of a new modified QuEChERS method for the monitoring of carbamate residues in high-fat cheeses by using UHPLC-MS/MS.

    PubMed

    Hamed, Ahmed M; Moreno-González, David; Gámiz-Gracia, Laura; García-Campaña, Ana M

    2017-01-01

    A simple and efficient method for the determination of 28 carbamates in high-fat cheeses is proposed. The methodology is based on a modified quick, easy, cheap, effective, rugged, and safe procedure as sample treatment using a new sorbent (Z-Sep + ) followed by ultra-high performance liquid chromatography with tandem mass spectrometry determination. The method has been validated in different kinds of cheese (Gorgonzola, Roquefort, and Camembert), achieving recoveries of 70-115%, relative standard deviations lower than 13% and limits of quantification lower than 5.4 μg/kg, below the maximum residue levels tolerated for these compounds by the European legislation. The matrix effect was lower than ±30% for all the studied pesticides. The combination of ultra-high performance liquid chromatography and tandem mass spectrometry with this modified quick, easy, cheap, effective, rugged, and safe procedure using Z-Sep + allowed a high sample throughput and an efficient cleaning of extracts for the control of these residues in cheeses with a high fat content. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Incorporation of Rubber Powder as Filler in a New Dry-Hybrid Technology: Rheological and 3D DEM Mastic Performances Evaluation

    PubMed Central

    Vignali, Valeria; Mazzotta, Francesco; Sangiorgi, Cesare; Simone, Andrea; Lantieri, Claudio; Dondi, Giulio

    2016-01-01

    In recent years, the use of crumb rubber as modifier or additive within asphalt concretes has allowed obtaining mixtures able to bind high performances to recovery and reuse of discarded tires. To date, the common technologies that permit the reuse of rubber powder are the wet and dry ones. In this paper, a dry-hybrid technology for the production of Stone Mastic Asphalt mixtures is proposed. It allows the use of the rubber powder as filler, replacing part of the limestone one. Fillers are added and mixed with a high workability bitumen, modified with SBS (styrene-butadiene-styrene) polymer and paraffinic wax. The role of rubber powder and limestone filler within the bituminous mastic has been investigated through two different approaches. The first one is a rheological approach, which comprises a macro-scale laboratory analysis and a micro-scale DEM simulation. The second, instead, is a performance approach at high temperatures, which includes Multiple Stress Creep Recovery tests. The obtained results show that the rubber works as filler and it improves rheological characteristics of the polymer modified bitumen. In particular, it increases stiffness and elasticity at high temperatures and it reduces complex modulus at low temperatures. PMID:28773965

  19. Different CO2 absorbents-modified SBA-15 sorbent for highly selective CO2 capture

    NASA Astrophysics Data System (ADS)

    Liu, Xiuwu; Zhai, Xinru; Liu, Dongyang; Sun, Yan

    2017-05-01

    Different CO2 absorbents-modified SBA-15 materials are used as CO2 sorbent to improve the selectivity of CH4/CO2 separation. The SBA-15 sorbents modified by physical CO2 absorbents are very limited to increasing CO2 adsorption and present poor selectivity. However, the SBA-15 sorbents modified by chemical CO2 absorbents increase CO2 adsorption capacity obviously. The separation coefficients of CO2/CH4 increase in this case. The adsorption and regeneration properties of the SBA-15 sorbents modified by TEA, MDEA and DIPA have been compared. The SBA-15 modified by triethanolamine (TEA) presents better CO2/CH4 separation performance than the materials modified by other CO2 absorbents.

  20. Investigation of follicular and non-follicular pathways for polyarginine and oleic acid modified nanoparticles

    PubMed Central

    Hayden, Patrick; Singh, Mandip

    2013-01-01

    Purpose The aim of the current study was to investigate the percutaneous permeation pathways of cell penetrating peptide modified lipid nanoparticles and oleic acid modified polymeric nanoparticles. Methods Confocal microscopy was performed on skin cultures (EpiDermFT™) for modified and un-modified nanoparticles. Differential stripping was performed following in vitro skin permeation of Ibuprofen (Ibu) encapsulated nanoparticles to estimate Ibu levels in different skin layers and receiver compartment. The hair follicles (HF) were blocked and in vitro skin permeation of nanoparticles was then compared with unblocked HF. The surface modified nanoparticles were investigated for response on allergic contact dermatitis (ACD). Results Surface modified nanoparticles showed a significant higher (p < 0.05) in fluorescence in EpiDermFT™ cultures compared to controls. The HF play less than 5% role in total nanoparticle permeation into the skin. The Ibu levels were significantly high (p<0.05) for surface modified nanoparticles compared to controls. The Ibu levels in skin and receiver compartment were not significantly different when HF were open or closed. Modified nanoparticles showed significant improvement in treatment of ACD compared to solution. Conclusions Our studies demonstrate that increased skin permeation of surface modified nanoparticles is not only dependent on a follicular pathway but also occur through non-follicular pathway(s). PMID:23187866

  1. Application and Prospects of High-strength Lightweight Materials used in Coal mine

    NASA Astrophysics Data System (ADS)

    He, Pan

    2017-09-01

    This paper describes some high-strength lightweight materials used in coal mine, and if their performance can meet the requirements of underground safety for explosion-proof, anti-static, friction sparks mine; and reviewed the species, characteristic, preparation process of high-strength lightweight materials for having inspired lightweight high-strength performance by modifying or changing the synthesis mode used in coal mine equipment.

  2. H3PO4 treated surface modified CuS counter electrodes with high electrocatalytic activity for enhancing photovoltaic performance of quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Panthakkal Abdul Muthalif, Mohammed; Sunesh, Chozhidakath Damodharan; Choe, Youngson

    2018-05-01

    Herein we report a simple synthetic strategy to prepare highly efficient and surface modified CuS counter electrodes (CEs) for quantum dot-sensitized solar cells (QDSSCs) in the presence of phosphoric acid (H3PO4) using the chemical bath deposition method. This is the first report of successful treatment of H3PO4 on the surface of CuS CEs for designing a high-performance QDSSCs with improved photovoltaic properties. After optimization, the 4 ml H3PO4 treated CuS CE-based QDSSC exhibits excellent photovoltaic performance with a conversion efficiency (η) of 4.20% (Voc = 0.592 V, Jsc = 13.35 mA cm-2, FF = 0.532) under one full-sun illumination (100 mW cm-2, AM 1.5 G).

  3. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tu, Xiaofeng; Zhou, Yingke; Song, Yijie

    2017-04-01

    The three-dimensional porous LiFePO4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  4. Specifying, Installing and Maintaining Built-Up and Modified Bitumen Roofing Systems.

    ERIC Educational Resources Information Center

    Hobson, Joseph W.

    2000-01-01

    Examines built-up, modified bitumen, and hybrid combinations of the two roofing systems and offers advise on how to assure high- quality performance and durability when using them. Included is a glossary of commercial roofing terms and asphalt roofing resources to aid in making decisions on roofing and systems product selection. (GR)

  5. A comparative analysis between NACA 4412 airfoil and it's modified form with tubercles

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Jonayed; Islam, Md. Tazul; Hassan, Md. Mehedi

    2017-06-01

    The effect of tubercles on the leading edge of an airfoil become more vivid at high angle of attacks. The effect of tubercles with large wavelength and small amplitude on the leading edge of a NACA 4412 airfoil section was investigated numerically and experimentally. The phenomena of improving the airfoil performance by modifying the contours drove our interest to do this analysis. The models were developed & numerical simulations were carried out with both NACA 4412 airfoil and modified airfoil model at Re=1.03×106 and angles of attack ranging from 0° to 20°. Flow separation was analyzed with vector profiles. CL, CD at different angle of attacks was developed and it gave down noticeable pre-stall & post-stall behavior. The airfoils were studied experimentally in a low speed wind tunnel. Pressure distribution over the two airfoils was obtained. It was evident from the pressure distributions that the modified airfoil exhibits significant aerodynamic performance at high angles of attack. We can infer that these effects will be advantageous for maneuverability and post-stall behavior.

  6. High performance membrane-electrode assembly based on a surface-modified membrane

    NASA Astrophysics Data System (ADS)

    Han, Sangil; Lee, Jang Woo; Kwak, Chan; Chai, Geun Seok; Son, In Hyuk; Jang, Moon Yup; An, Sung Guk; Cho, Sung Yong; Kim, Jun Young; Kim, Hyung Wook; Serov, Alexey Alexandrovych; Yoo, Youngtai; Nam, Kie Hyun

    A surface-modified membrane is prepared using a sputtering technique that deposits gold directly on a Nafion ® 115 membrane surface that is roughened with silicon carbide paper. The surface-modified membranes are characterized by means of a scanning electron microscope (SEM), differential scanning calorimetry (DSC), and water contact-angle analysis. A single direct methanol fuel cell (DMFC) with a surface-modified membrane exhibits enhanced performance (160 mW cm -2), while a bare Nafion ® 115 cell yields 113 mW cm -2 at 0.4 V and an operating temperature of 70 °C. From FE-SEM images and CO ad stripping voltammograms, it is also found that the gold layer is composed of clusters of porous nodule-like particles, which indicates that an anode with nodule-like gold leads to the preferential oxidation of carbon monoxide. These results suggest that the topology of gold in the interfacial area and its electrocatalytic nature may be the critical factors that affect DMFC performance.

  7. High Stability Pentacene Transistors Using Polymeric Dielectric Surface Modifier.

    PubMed

    Wang, Xiaohong; Lin, Guangqing; Li, Peng; Lv, Guoqiang; Qiu, Longzhen; Ding, Yunsheng

    2015-08-01

    1,6-bis(trichlorosilyl)hexane (C6Cl), polystyrene (PS), and cross-linked polystyrene (CPS) were investigated as gate dielectric modified layers for high performance organic transistors. The influence of the surface energy, roughness and morphology on the charge transport of the organic thin-film transistors (OTFTs) was investigated. The surface energy and roughness both affect the grain size of the pentacene films which will control the charge carrier mobility of the devices. Pentacene thin-film transistors fabricated on the CPS modified dielectric layers exhibited charge carrier mobility as high as 1.11 cm2 V-1 s-1. The bias stress stability for the CPS devices shows that the drain current only decays 1% after 1530 s and the mobility never decreases until 13530 s.

  8. High-performance computational fluid dynamics: a custom-code approach

    NASA Astrophysics Data System (ADS)

    Fannon, James; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain; Náraigh, Lennon Ó.

    2016-07-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier-Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing.

  9. High performance dye-sensitized solar cells using graphene modified fluorine-doped tin oxide glass by Langmuir–Blodgett technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roh, Ki-Min; Jo, Eun-Hee; Chang, Hankwon

    Since the introduction of dye-sensitized solar cells (DSSCs) with low fabrication cost and high power conversion efficiency, extensive studies have been carried out to improve the charge transfer rate and performance of DSSCs. In this paper, we present DSSCs that use surface modified fluorine-doped tin oxide (FTO) substrates with reduced graphene oxide (r-GO) sheets prepared using the Langmuir–Blodgett (LB) technique to decrease the charge recombination at the TiO{sub 2}/FTO interface. R-GO sheets were excellently attached on FTO surface without physical deformations such as wrinkles; effects of the surface coverage of r-GO on the DSSC performance were also investigated. By usingmore » graphene modified FTO substrates, the resistance at the interface of TiO{sub 2}/FTO was reduced and the power conversion efficiency was increased to 8.44%. - Graphical abstract: DSSCs with graphene modified FTO glass were fabricated with the Langmuir Blodgett technique. GO sheets were transferred to FTO at various surface pressures in order to change the surface density of graphene and the highest power conversion efficiency of the DSSC was 8.44%. - Highlights: • By LB technique, r-GO sheets were coated on FTO without physical deformation. • DSSCs were fabricated with, r-GO modified FTO substrates. • With surface modification by r-GO, the interface resistance of DSSC decreased. • Maximum PCE of the DSSC was increased up to 8.44%.« less

  10. Synthesis and electrospinning carboxymethyl cellulose lithium (CMC-Li) modified 9,10-anthraquinone (AQ) high-rate lithium-ion battery.

    PubMed

    Qiu, Lei; Shao, Ziqiang; Liu, Minglong; Wang, Jianquan; Li, Pengfa; Zhao, Ming

    2014-02-15

    New cellulose derivative CMC-Li was synthesized, and nanometer CMC-Li fiber was applied to lithium-ion battery and coated with AQ by electrospinning. Under the protection of inert gas, modified AQ/carbon nanofibers (CNF)/Li nanometer composite material was obtained by carbonization in 280 °C as lithium battery anode materials for the first time. The morphologies and structures performance of materials were characterized by using IR, (1)H NMR, SEM, CV and EIS, respectively. Specific capacity was increased from 197 to 226.4 mAhg(-1) after modification for the first discharge at the rate of 2C. Irreversible reduction reaction peaks of modified material appeared between 1.5 and 1.7 V and the lowest oxidation reduction peak of the difference were 0.42 V, the polarization was weaker. Performance of cell with CMC-Li with the high degree of substitution (DS) was superior to that with low DS. Cellulose materials were applied to lithium battery to improve battery performance by electrospinning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Guidelines on design and construction of high performance thin HMA overlays.

    DOT National Transportation Integrated Search

    2016-08-01

    Key Components of Mix Design and Material Properties: : High-quality aggregate - SAC A for high : volume roads : - PG 70 or 76 (Polymer Modified binders) : - RAP and RAS (shingles) not allowed : - Minimum binder content ( Over 6%) : - Pay for binder ...

  12. Modified Separator Performing Dual Physical/Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultrastable Li-S Batteries.

    PubMed

    Abbas, Syed Ali; Ding, Jiang; Wu, Sheng Hui; Fang, Jason; Boopathi, Karunakara Moorthy; Mohapatra, Anisha; Lee, Li Wei; Wang, Pen-Cheng; Chang, Chien-Cheng; Chu, Chih Wei

    2017-12-26

    In this paper we describe a modified (AEG/CH) coated separator for Li-S batteries in which the shuttling phenomenon of the lithium polysulfides is restrained through two types of interactions: activated expanded graphite (AEG) flakes interacted physically with the lithium polysulfides, while chitosan (CH), used to bind the AEG flakes on the separator, interacted chemically through its abundance of amino and hydroxyl functional groups. Moreover, the AEG flakes facilitated ionic and electronic transfer during the redox reaction. Live H-cell discharging experiments revealed that the modified separator was effective at curbing polysulfide shuttling; moreover, X-ray photoelectron spectroscopy analysis of the cycled separator confirmed the presence of lithium polysulfides in the AEG/CH matrix. Using this dual functional interaction approach, the lifetime of the pure sulfur-based cathode was extended to 3000 cycles at 1C-rate (1C = 1670 mA/g), decreasing the decay rate to 0.021% per cycle, a value that is among the best reported to date. A flexible battery based on this modified separator exhibited stable performance and could turn on multiple light-emitting diodes. Such modified membranes with good mechanical strength, high electronic conductivity, and anti-self-discharging shield appear to be a scalable solution for future high-energy battery systems.

  13. Nano-particle modified stationary phases for high-performance liquid chromatography.

    PubMed

    Nesterenko, Ekaterina P; Nesterenko, Pavel N; Connolly, Damian; He, Xiaoyun; Floris, Patrick; Duffy, Emer; Paull, Brett

    2013-08-07

    This review covers the latest developments and applications of nano-materials in stationary phase development for various modes of high-performance liquid chromatography. Specific attention is placed upon the development of new composite phases, including the synthetic and immobilisation strategies used, to produce either encapsulated nano-particles, or surface attached nano-particles, layers, coatings and other structures. The resultant chromatographic applications, where applicable, are discussed with comment upon enhanced selectivity and/or efficiency of the nano-particle modified phases, where such effects have been identified. In the main this review covers developments over the past five years and is structured according to the nature of the nano-particles themselves, including carbonaceous, metallic, inorganic, and organopolymer based materials.

  14. Epoxy composites coating with Fe3O4 decorated graphene oxide: Modified bio-inspired surface chemistry, synergistic effect and improved anti-corrosion performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yingqing; Zhang, Jieming; Wan, Xinyi; Long, Zhihang; He, Shuangjiang; He, Yi

    2018-04-01

    To obtain graphene or graphene derivatives based epoxy composite coatings with high anti-corrosion performance, the morphology of nanostructures, dispersion, and interfacial adhesion are key factors that need to be considered. We here demonstrated the bio-inspired co-modification of graphene oxide/Fe3O4 hybrid (GO-Fe3O4@ poly (DA+KH550)) and its synergistic effect on the anti-corrosion performance of epoxy coating. For this purpose, graphene oxide/Fe3O4 hybrid obtained from hydrothermal route was modified by self-polymerization between dopamine and secondary functional monomer (KH550), which led to the modified bio-inspired surface functionalization. This novel modified bio-inspired functionalization was quite distinct from conventional surface modification or decoration. Namely, abundant amino groups were introduced by modified bio-inspired functionalization, which allowed the graphene oxide/Fe3O4 hybrid to disperse well in epoxy resin and enhanced the interfacial adhesion between modified nanofiller and epoxy resin through chemical crosslinking reaction. The electrochemical impedance spectroscopy (EIS) test revealed that anti-corrosive performance of epoxy coatings was significantly enhanced by addition of 0.5 wt% modified bio-inspired functionalized GO-Fe3O4 hybrid compared with neat epoxy and other nanofillers/epoxy composite coatings. Moreover, the micro-hardness of epoxy coating was enhanced by 71.8% compared with pure epoxy coating at the same loading content. In addition, the anticorrosion mechanism of GO-Fe3O4@poly (DA+KH550) was tentatively discussed.

  15. Highly sensitive and selective detection of dopamine based on hollow gold nanoparticles-graphene nanocomposite modified electrode.

    PubMed

    Zhu, Wencai; Chen, Ting; Ma, Xuemei; Ma, Houyi; Chen, Shenhao

    2013-11-01

    Highly dispersed hollow gold-graphene (HAu-G) nanocomposites were synthesized by a two-step method. The immobilization of hollow gold nanoparticles (HAu NPs) onto the surface of graphene sheets was achieved by mixing an aqueous solution of HAu NPs with a poly(N-vinylpyrrolidone)-functionalized graphene dispersion at room temperature. A glassy carbon electrode (GCE) was modified with the nanocomposites, and the as-prepared modified electrode displayed high electrocatalytic activity and extraordinary electronic transport properties. Amperometric detection of dopamine (DA) performed with the HAu-G modified electrode exhibits a good linearity between 0.08 and 600 μM with a low detection limit of 0.05 μM (S/N=3) and also possesses good reproducibility and operational stability. The interference of ascorbic acid (AA) and uric acid (UA) can be excluded when using differential pulse voltammetric technique. In addition, this type of modified electrode can also be applied to the determination of DA content in dopamine hydrochloride injection. It is obvious that the HAu-G modified electrode provides a new way to detect dopamine sensitively and selectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. A performance comparison of asphalt mixtures modified with hydrated lime, polymer modified binder and reclaimed asphalt shingles (RAS) on Route 50 Moniteau, Morgan and Pettis counties.

    DOT National Transportation Integrated Search

    2013-03-01

    Hydrated lime was required in high traffic asphalt mixtures controlled by Section 403 of the Missouri Standard Specifications for Highway Construction from the late 1980s through much of the 1990s primarily as an anti-stripping agent but also f...

  17. A self-sacrifice template route to iodine modified BiOIO3: band gap engineering and highly boosted visible-light active photoreactivity.

    PubMed

    Feng, Jingwen; Huang, Hongwei; Yu, Shixin; Dong, Fan; Zhang, Yihe

    2016-03-21

    The development of high-performance visible-light photocatalysts with a tunable band gap has great significance for enabling wide-band-gap (WBG) semiconductors visible-light sensitive activity and precisely tailoring their optical properties and photocatalytic performance. In this work we demonstrate the continuously adjustable band gap and visible-light photocatalysis activation of WBG BiOIO3via iodine surface modification. The iodine modified BiOIO3 was developed through a facile in situ reduction route by applying BiOIO3 as the self-sacrifice template and glucose as the reducing agent. By manipulating the glucose concentration, the band gap of the as-prepared modified BiOIO3 could be orderly narrowed by generation of the impurity or defect energy level close to the conduction band, thus endowing it with a visible light activity. The photocatalytic assessments uncovered that, in contrast to pristine BiOIO3, the modified BiOIO3 presents significantly boosted photocatalytic properties for the degradation of both liquid and gaseous contaminants, including Rhodamine B (RhB), methyl orange (MO), and ppb-level NO under visible light. Additionally, the band structure evolution as well as photocatalysis mechanism triggered by the iodine surface modification is investigated in detail. This study not only provides a novel iodine surface-modified BiOIO3 for environmental application, but also provides a facile and general way to develop highly efficient visible-light photocatalysts.

  18. The Processing and Mechanical Properties of High Temperature/High Performance Composites. Book 2. Constituent Properties and Macroscopic Performance: CMCs

    DTIC Science & Technology

    1993-04-01

    Evans. Zok). Cyclic loading into the stress range at which matrix craiks exist is known to modify the interface sliding stress and may weaken the...Leiske and Duwayne Brodnicky; the engineering staff: Jennifer Heine and Barrie Peters; and the management: Brad Cowles and Doug Nethaway. Mackin et

  19. Improving Mechanical Properties of Hot Mix Asphalt Using Fibres and Polymers in Developing Countries

    NASA Astrophysics Data System (ADS)

    Preciado, Jaime; Martínez Arguelles, Gilberto; Dugarte, Margareth; Bonicelli, Alessandra; Cantero, Julio; Vega, Daniela; Barros, Yennis

    2017-10-01

    The enhancement of mechanical properties and long term performance of hot mix asphalt (HMA) should be considered as a goal in order to achieve a transport infrastructure really sustainable. However, this issue becomes a difficult task, if conventional HMA are used. In fact, performance of conventional HMA, usually presents poor long term performance and functional distresses related to high and low temperatures, which in turn implies higher maintenance costs and superior carbon footprints. To overcome this weaken, bitumen industry has been developing new polymer modifiers, additives to improve HMA behaviour. One of the techniques most used in developed countries to enhance HMA behaviour is the use of modified bitumen. Modifying the bitumen, and then producing modified HMA requires specific equipment and facilities that may be time-consuming, expensive and hard to manage. For instance, to warranty a successful modifying process, storage and handling of the modified bitumen are issues very complex to handle. On the other hand, producing a polymer modified HMA by adding polymers and additives directly during the bitumen/aggregate mixing process may offer very interesting advantages since the economical, production and sustainability standpoint. This paper aimed to determine the feasibility of the incorporation of fibres and plastomeric polymers into different types of HMA by means of the “dry process” (to add polymers during the mixing of aggregate and bitumen in the HMA plant) to produce polymer modified mixes. Thus, laboratory tests including Marshall Stability, Indirect Tensile Stiffness Modulus, repeated load test and Indirect Tensile Strength test were performed to assess the effect of the inclusion of fibres and plastomeric polymers on mechanical and volumetric properties of selected mixes. Results showed that the modification of bituminous mixtures following the “dry process” could be used to improve the performance and long term properties of HMA.

  20. Fluorescence imaging technology (FI) for high-throughput screening of selenide-modified nano-TiO2 catalysts.

    PubMed

    Wang, Liping; Lee, Jianchao; Zhang, Meijuan; Duan, Qiannan; Zhang, Jiarui; Qi, Hailang

    2016-02-18

    A high-throughput screening (HTS) method based on fluorescence imaging (FI) was implemented to evaluate the catalytic performance of selenide-modified nano-TiO2. Chemical ink-jet printing (IJP) technology was reformed to fabricate a catalyst library comprising 1405 (Ni(a)Cu(b)Cd(c)Ce(d)In(e)Y(f))Se(x)/TiO2 (M6Se/Ti) composite photocatalysts. Nineteen M6Se/Tis were screened out from the 1405 candidates efficiently.

  1. Failure Behavior Characterization of Mo-Modified Ti Surface by Impact Test and Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Qin, Jianfeng; Zhang, Xiangyu; Lin, Naiming; Huang, Xiaobo; Tang, Bin

    2015-07-01

    Using the impact test and finite element simulation, the failure behavior of the Mo-modified layer on pure Ti was investigated. In the impact test, four loads of 100, 300, 500, and 700 N and 104 impacts were adopted. The three-dimensional residual impact dents were examined using an optical microscope (Olympus-DSX500i), indicating that the impact resistance of the Ti surface was improved. Two failure modes cohesive and wearing were elucidated by electron backscatter diffraction and energy-dispersive spectrometer performed in a field-emission scanning electron microscope. Through finite element forward analysis performed at a typical impact load of 300 N, stress-strain distributions in the Mo-modified Ti were quantitatively determined. In addition, the failure behavior of the Mo-modified layer was determined and an ideal failure model was proposed for high-load impact, based on the experimental and finite element forward analysis results.

  2. Electrocatalytic oxidation of 2-mercaptoethanol using modified glassy carbon electrode by MWCNT in combination with unsymmetrical manganese (II) Schiff base complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohebbi, Sajjad, E-mail: smohebbi@uok.ac.ir; Eslami, Saadat

    2015-06-15

    Highlights: • High electocatalytic efficiency and stability of modified hybrid electrode GC/MWCNTs/MnSaloph. • Direct reflection of catalytic activity of manganese complexes on electrocatalytic oxidation of 2-ME. • Decreasing overpotential and increasing catalytic peak current toward oxidation of 2-ME. • Deposition of range of novel substituted N{sub 2}O{sub 2} Saloph complexes of manganese(II) on GCE/MWCNT. • Enhancement of electrocatalytic oxidation activity upon electron donating substitutions on the Saloph. - Abstract: The performance of modified hybrid glassy carbon electrode with composite of carbon nanotubes and manganese complexes for the electrocatalytic oxidation of 2-mercaptoethanol is developed. GC electrode was modified using MWCNT andmore » new N{sub 2}O{sub 2} unsymmetrical tetradentate Schiff base complexes of manganese namely Manganese Saloph complexes 1-5, with general formula Mn[(5-x-4-y-Sal)(5-x′-4-y′-Sal) Ph], where x, x′ = H, Br, NO{sub 2} and y, y′ = H, MeO. Direct immobilization of CNT on the surface of GCE is performed by abrasive immobilization, and then modified by manganese(II) complexes via direct deposition method. These novel modified electrodes clearly demonstrate the necessity of modifying bare carbon electrodes to endow them with the desired behavior and were identified by HRTEM. Also complexes were characterized by elemental analyses, MS, UV–vis and IR spectroscopy. Modified hybrid GC/MWCNT/MnSaloph electrode exhibits strong and stable electrocatalytic activity towards the electrooxidation of 2-mercaptoethanol molecules in comparison with bare glassy carbon electrode with advantages of very low over potential and high catalytic current. Such ability promotes the thiol’s electron transfer reaction. Also, electron withdrawing substituent on the Saloph was enhanced electrocatalytic oxidation activity.« less

  3. Role of modifiers for analytical-scale supercritical fluid extraction of environmental samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenfeld, J.J.; Hawthorne, S.B.; Miller, D.J.

    1994-03-15

    Supercritical fluid extraction (SFE) using eight different CO[sub 2] + organic modifier mixtures and one ternary mixture (CO[sub 2] + methanol/toluene) at two different concentrations (1 and 10% v/v) was performed on two certified reference materials including polychlorinated biphenyls (PCBs) from river sediment and polycyclic aromatic hydrocarbons (PAHs) from urban air particulate matter. The modifier identity was more important than modifier concentration for increasing extraction efficiencies. Acidic/basic modifiers including methanol, acetic acid, and aniline greatly enhanced the extraction of PCBs. Low molecular weight PAHs were best extracted with modifiers including aniline, acetic acid, acetonitrile, methanol/toluene, hexane, and diethylamine. In contrast,more » modifiers capable of dipole-induced dipole interactions and [pi]-[pi] interactions such as toluene, diethylamine, and methylene chloride were the best modifiers to use for SFE of high molecular weight PAHs from air particulates. 37 refs., 6 tabs.« less

  4. Estimating rice yield related traits and quantitative trait loci analysis under different nitrogen treatments using a simple tower-based field phenotyping system with modified single-lens reflex cameras

    NASA Astrophysics Data System (ADS)

    Naito, Hiroki; Ogawa, Satoshi; Valencia, Milton Orlando; Mohri, Hiroki; Urano, Yutaka; Hosoi, Fumiki; Shimizu, Yo; Chavez, Alba Lucia; Ishitani, Manabu; Selvaraj, Michael Gomez; Omasa, Kenji

    2017-03-01

    Application of field based high-throughput phenotyping (FB-HTP) methods for monitoring plant performance in real field conditions has a high potential to accelerate the breeding process. In this paper, we discuss the use of a simple tower based remote sensing platform using modified single-lens reflex cameras for phenotyping yield traits in rice under different nitrogen (N) treatments over three years. This tower based phenotyping platform has the advantages of simplicity, ease and stability in terms of introduction, maintenance and continual operation under field conditions. Out of six phenological stages of rice analyzed, the flowering stage was the most useful in the estimation of yield performance under field conditions. We found a high correlation between several vegetation indices (simple ratio (SR), normalized difference vegetation index (NDVI), transformed vegetation index (TVI), corrected transformed vegetation index (CTVI), soil-adjusted vegetation index (SAVI) and modified soil-adjusted vegetation index (MSAVI)) and multiple yield traits (panicle number, grain weight and shoot biomass) across a three trials. Among all of the indices studied, SR exhibited the best performance in regards to the estimation of grain weight (R2 = 0.80). Under our tower-based field phenotyping system (TBFPS), we identified quantitative trait loci (QTL) for yield related traits using a mapping population of chromosome segment substitution lines (CSSLs) and a single nucleotide polymorphism data set. Our findings suggest the TBFPS can be useful for the estimation of yield performance during early crop development. This can be a major opportunity for rice breeders whom desire high throughput phenotypic selection for yield performance traits.

  5. Mix design procedure for crumb rubber modified hot mix asphalt.

    DOT National Transportation Integrated Search

    2005-06-01

    To improve the performance of hot-mix asphalt concrete at high temperatures, crumb-rubber is typically used. Although hot-mix asphalt concrete consisting of crumb-rubber has been successfully placed and have performed well over the years, the laborat...

  6. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liao, Caizhi; Mak, Chun Hin; You, Peng; Mak, Chee Leung; Yan, Feng

    2015-02-01

    Noninvasive glucose detections are convenient techniques for the diagnosis of diabetes mellitus, which require high performance glucose sensors. However, conventional electrochemical glucose sensors are not sensitive enough for these applications. Here, highly sensitive glucose sensors are successfully realized based on whole-graphene solution-gated transistors with the graphene gate electrodes modified with an enzyme glucose oxidase. The sensitivity of the devices is dramatically improved by co-modifying the graphene gates with Pt nanoparticles due to the enhanced electrocatalytic activity of the electrodes. The sensing mechanism is attributed to the reaction of H2O2 generated by the oxidation of glucose near the gate. The optimized glucose sensors show the detection limits down to 0.5 μM and good selectivity, which are sensitive enough for non-invasive glucose detections in body fluids. The devices show the transconductances two orders of magnitude higher than that of a conventional silicon field effect transistor, which is the main reason for their high sensitivity. Moreover, the devices can be conveniently fabricated with low cost. Therefore, the whole-graphene solution-gated transistors are a high-performance sensing platform for not only glucose detections but also many other types of biosensors that may find practical applications in the near future.

  7. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors

    PubMed Central

    Zhang, Meng; Liao, Caizhi; Mak, Chun Hin; You, Peng; Mak, Chee Leung; Yan, Feng

    2015-01-01

    Noninvasive glucose detections are convenient techniques for the diagnosis of diabetes mellitus, which require high performance glucose sensors. However, conventional electrochemical glucose sensors are not sensitive enough for these applications. Here, highly sensitive glucose sensors are successfully realized based on whole-graphene solution-gated transistors with the graphene gate electrodes modified with an enzyme glucose oxidase. The sensitivity of the devices is dramatically improved by co-modifying the graphene gates with Pt nanoparticles due to the enhanced electrocatalytic activity of the electrodes. The sensing mechanism is attributed to the reaction of H2O2 generated by the oxidation of glucose near the gate. The optimized glucose sensors show the detection limits down to 0.5 μM and good selectivity, which are sensitive enough for non-invasive glucose detections in body fluids. The devices show the transconductances two orders of magnitude higher than that of a conventional silicon field effect transistor, which is the main reason for their high sensitivity. Moreover, the devices can be conveniently fabricated with low cost. Therefore, the whole-graphene solution-gated transistors are a high-performance sensing platform for not only glucose detections but also many other types of biosensors that may find practical applications in the near future. PMID:25655666

  8. Conceptual design of a high-speed electromagnetic switch for a modified flux-coupling-type SFCL and its application in renewable energy system.

    PubMed

    Chen, Lei; Chen, Hongkun; Yang, Jun; Shu, Zhengyu; He, Huiwen; Shu, Xin

    2016-01-01

    The modified flux-coupling-type superconducting fault current (SFCL) is a high-efficient electrical auxiliary device, whose basic function is to suppress the short-circuit current by controlling the magnetic path through a high-speed switch. In this paper, the high-speed switch is based on electromagnetic repulsion mechanism, and its conceptual design is carried out to promote the application of the modified SFCL. Regarding that the switch which is consisting of a mobile copper disc, two fixed opening and closing coils, the computational method for the electromagnetic force is discussed, and also the dynamic mathematical model including circuit equation, magnetic field equation as well as mechanical motion equation is theoretically deduced. According to the mathematical modeling and calculation of characteristic parameters, a feasible design scheme is presented, and the high-speed switch's response time can be less than 0.5 ms. For that the modified SFCL is equipped with this high-speed switch, the SFCL's application in a 10 kV micro-grid system with multiple renewable energy sources are assessed in the MATLAB software. The simulations are well able to affirm the SFCL's performance behaviors.

  9. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying.

    PubMed

    Wang, Zhili; Liu, Pan; Han, Jiuhui; Cheng, Chun; Ning, Shoucong; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2017-10-20

    Tuning surface structures by bottom-up synthesis has been demonstrated as an effective strategy to improve the catalytic performances of nanoparticle catalysts. Nevertheless, the surface modification of three-dimensional nanoporous metals, fabricated by a top-down dealloying approach, has not been achieved despite great efforts devoted to improving the catalytic performance of three-dimensional nanoporous catalysts. Here we report a surfactant-modified dealloying method to tailor the surface structure of nanoporous gold for amplified electrocatalysis toward methanol oxidation and oxygen reduction reactions. With the assistance of surfactants, {111} or {100} faceted internal surfaces of nanoporous gold can be realized in a controllable manner by optimizing dealloying conditions. The surface modified nanoporous gold exhibits significantly enhanced electrocatalytic activities in comparison with conventional nanoporous gold. This study paves the way to develop high-performance three-dimensional nanoporous catalysts with a tunable surface structure by top-down dealloying for efficient chemical and electrochemical reactions.

  10. Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance

    PubMed Central

    Fang, Fang; Bai, Lu; Song, Dongsheng; Yang, Hongping; Sun, Xiaoming; Sun, Hongyu; Zhu, Jing

    2015-01-01

    Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10–30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion) and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications. PMID:26287205

  11. Honeycomb-like Porous Carbon-Cobalt Oxide Nanocomposite for High-Performance Enzymeless Glucose Sensor and Supercapacitor Applications.

    PubMed

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming; Manikandan, Arumugam; Lo, An-Ya; Chueh, Yu-Lun

    2015-07-29

    Herein, we report the preparation of Pongam seed shells-derived activated carbon and cobalt oxide (∼2-10 nm) nanocomposite (PSAC/Co3O4) by using a general and facile synthesis strategy. The as-synthesized PSAC/Co3O4 samples were characterized by a variety of physicochemical techniques. The PSAC/Co3O4-modified electrode is employed in two different applications such as high performance nonenzymatic glucose sensor and supercapacitor. Remarkably, the fabricated glucose sensor is exhibited an ultrahigh sensitivity of 34.2 mA mM(-1) cm(-2) with a very low detection limit (21 nM) and long-term durability. The PSAC/Co3O4 modified stainless steel electrode possesses an appreciable specific capacitance and remarkable long-term cycling stability. The obtained results suggest the as-synthesized PSAC/Co3O4 is more suitable for the nonenzymatic glucose sensor and supercapacitor applications outperforming the related carbon based modified electrodes, rendering practical industrial applications.

  12. Prediction of the Chloride Resistance of Concrete Modified with High Calcium Fly Ash Using Machine Learning

    PubMed Central

    Marks, Michał; Glinicki, Michał A.; Gibas, Karolina

    2015-01-01

    The aim of the study was to generate rules for the prediction of the chloride resistance of concrete modified with high calcium fly ash using machine learning methods. The rapid chloride permeability test, according to the Nordtest Method Build 492, was used for determining the chloride ions’ penetration in concrete containing high calcium fly ash (HCFA) for partial replacement of Portland cement. The results of the performed tests were used as the training set to generate rules describing the relation between material composition and the chloride resistance. Multiple methods for rule generation were applied and compared. The rules generated by algorithm J48 from the Weka workbench provided the means for adequate classification of plain concretes and concretes modified with high calcium fly ash as materials of good, acceptable or unacceptable resistance to chloride penetration. PMID:28793740

  13. A modified MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Chang, Yaping; Qin, Dahe; Ding, Yongjian; Zhao, Qiudong; Zhang, Shiqiang

    2018-06-01

    The long-term change of evapotranspiration (ET) is crucial for managing water resources in areas with extreme climates, such as the Tibetan Plateau (TP). This study proposed a modified algorithm for estimating ET based on the MOD16 algorithm on a global scale over alpine meadow on the TP in China. Wind speed and vegetation height were integrated to estimate aerodynamic resistance, while the temperature and moisture constraints for stomatal conductance were revised based on the technique proposed by Fisher et al. (2008). Moreover, Fisher's method for soil evaporation was adopted to reduce the uncertainty in soil evaporation estimation. Five representative alpine meadow sites on the TP were selected to investigate the performance of the modified algorithm. Comparisons were made between the ET observed using the Eddy Covariance (EC) and estimated using both the original and modified algorithms. The results revealed that the modified algorithm performed better than the original MOD16 algorithm with the coefficient of determination (R2) increasing from 0.26 to 0.68, and root mean square error (RMSE) decreasing from 1.56 to 0.78 mm d-1. The modified algorithm performed slightly better with a higher R2 (0.70) and lower RMSE (0.61 mm d-1) for after-precipitation days than for non-precipitation days at Suli site. Contrarily, better results were obtained for non-precipitation days than for after-precipitation days at Arou, Tanggula, and Hulugou sites, indicating that the modified algorithm may be more suitable for estimating ET for non-precipitation days with higher accuracy than for after-precipitation days, which had large observation errors. The comparisons between the modified algorithm and two mainstream methods suggested that the modified algorithm could produce high accuracy ET over the alpine meadow sites on the TP.

  14. High-performance tandem organic light-emitting diodes based on a buffer-modified p/n-type planar organic heterojunction as charge generation layer

    NASA Astrophysics Data System (ADS)

    Wu, Yukun; Sun, Ying; Qin, Houyun; Hu, Shoucheng; Wu, Qingyang; Zhao, Yi

    2017-04-01

    High-performance tandem organic light-emitting diodes (TOLEDs) were realized using a buffer-modified p/n-type planar organic heterojunction (OHJ) as charge generation layer (CGL) consisting of common organic materials, and the configuration of this p/n-type CGL was "LiF/N,N'-diphenyl-N,N'-bis(1-napthyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,7-diphenyl-1,10-phenanthroline (Bphen)/molybdenum oxide (MoOx)". The optimized TOLED exhibited a maximum current efficiency of 77.6 cd/A without any out-coupling techniques, and the efficiency roll-off was greatly improved compared to the single-unit OLED. The working mechanism of the p/n-type CGL was discussed in detail. It is found that the NPB/Bphen heterojunction generated enough charges under a forward applied voltage and the carrier extraction was a tunneling process. These results could provide a new method to fabricate high-performance TOLEDs.

  15. Determination of drug lipophilicity by phosphatidylcholine-modified microemulsion high-performance liquid chromatography.

    PubMed

    Xuan, Xueyi; Xu, Liyuan; Li, Liangxing; Gao, Chongkai; Li, Ning

    2015-07-25

    A new biomembrane-mimetic liquid chromatographic method using a C8 stationary phase and phosphatidylcholine-modified (PC-modified) microemulsion mobile phase was used to estimate unionized and ionized drugs lipophilicity expressed as an n-octanol/water partition coefficient (logP and logD). The introduction of PC into sodium dodecyl sulfate (SDS) microemulsion yielded a good correlation between logk and logD (R(2)=0.8). The optimal composition of the PC-modified microemulsion liquid chromatography (PC-modified MELC) mobile phase was 0.2% PC-3.0% SDS-6.0% n-butanol-0.8% ethyl acetate-90.0% water (pH 7.0) for neutral and ionized molecules. The interactions between the analytes and system described by this chromatographic method is more similar to biological membrane than the n-octanol/water partition system. The result in this paper suggests that PC-modified MELC can serve as a possible alternative to the shake-flask method for high-throughput unionized and ionized drugs lipophilicity determination and simulation of biological processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Inorganically modified diatomite as a potential prolonged-release drug carrier.

    PubMed

    Janićijević, Jelena; Krajišnik, Danina; Calija, Bojan; Dobričić, Vladimir; Daković, Aleksandra; Krstić, Jugoslav; Marković, Marija; Milić, Jela

    2014-09-01

    Inorganic modification of diatomite was performed with the precipitation product of partially neutralized aluminum sulfate solution at three different mass ratios. The starting and the modified diatomites were characterized by SEM-EDS, FTIR, thermal analysis and zeta potential measurements and evaluated for drug loading capacity in adsorption batch experiments using diclofenac sodium (DS) as a model drug. In vitro drug release studies were performed in phosphate buffer pH6.8 from comprimates containing: the drug adsorbed onto the selected modified diatomite sample (DAMD), physical mixture of the drug with the selected modified diatomite sample (PMDMD) and physical mixture of the drug with the starting diatomite (PMDD). In vivo acute toxicity testing of the modified diatomite samples was performed on mice. High adsorbent loading of the selected modified diatomite sample (~250mg/g in 2h) enabled the preparation of comprimates containing adsorbed DS in the amount near to its therapeutic dose. Drug release studies demonstrated prolonged release of DS over a period of 8h from both DAMD comprimates (18% after 8h) and PMDMD comprimates (45% after 8h). The release kinetics for DAMD and PMDMD comprimates fitted well with Korsmeyer-Peppas and Bhaskar models, indicating that the release mechanism was a combination of non-Fickian diffusion and ion exchange process. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. An empirical study on the preparation of the modified coke and its catalytic oxidation properties

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Jiang, Wenqiang

    2017-05-01

    T As a methyl acrylic ester fungicide, pyraclostrobin has the advantages of high activity, wide sterilization spectrum and high safety level comparing with the traditional fungicide. Due to less toxicity and side effects on human and environment, the use of pyraclostrobin and its mixture in agriculture is increasing. The heavy use of pyraclostrobin will inevitably cause pollution to the biological and abiotic environment. Therefore, it is of great significance to do the research on the degradation of pyraclostrobin. In this study, coke, as matrix, was modified by chemical modification. The modified coke was used as the catalyst and the pyraclostrobin was used as the degradation object. The degradation experiment of pyraclostrobin was carried out by using catalytic oxidation. The catalytic oxidation performance of modified coke was studied. The result showed that in the catalytic oxidation system of using modified coke as catalyst and H2O2 as oxidant, the best reaction condition is as following: The modified coke which is modified by using 70% concentration nitric acid is used as catalyst; The dosage of the catalyst is10g; The dosage of H2O2 is 0.6ml; The reaction time is 6 hours.

  18. Modified-BRISQUE as no reference image quality assessment for structural MR images.

    PubMed

    Chow, Li Sze; Rajagopal, Heshalini

    2017-11-01

    An effective and practical Image Quality Assessment (IQA) model is needed to assess the image quality produced from any new hardware or software in MRI. A highly competitive No Reference - IQA (NR - IQA) model called Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) initially designed for natural images were modified to evaluate structural MR images. The BRISQUE model measures the image quality by using the locally normalized luminance coefficients, which were used to calculate the image features. The modified-BRISQUE model trained a new regression model using MR image features and Difference Mean Opinion Score (DMOS) from 775 MR images. Two types of benchmarks: objective and subjective assessments were used as performance evaluators for both original and modified-BRISQUE models. There was a high correlation between the modified-BRISQUE with both benchmarks, and they were higher than those for the original BRISQUE. There was a significant percentage improvement in their correlation values. The modified-BRISQUE was statistically better than the original BRISQUE. The modified-BRISQUE model can accurately measure the image quality of MR images. It is a practical NR-IQA model for MR images without using reference images. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Pre-exercise nutrition: the role of macronutrients, modified starches and supplements on metabolism and endurance performance.

    PubMed

    Ormsbee, Michael J; Bach, Christopher W; Baur, Daniel A

    2014-04-29

    Endurance athletes rarely compete in the fasted state, as this may compromise fuel stores. Thus, the timing and composition of the pre-exercise meal is a significant consideration for optimizing metabolism and subsequent endurance performance. Carbohydrate feedings prior to endurance exercise are common and have generally been shown to enhance performance, despite increasing insulin levels and reducing fat oxidation. These metabolic effects may be attenuated by consuming low glycemic index carbohydrates and/or modified starches before exercise. High fat meals seem to have beneficial metabolic effects (e.g., increasing fat oxidation and possibly sparing muscle glycogen). However, these effects do not necessarily translate into enhanced performance. Relatively little research has examined the effects of a pre-exercise high protein meal on subsequent performance, but there is some evidence to suggest enhanced pre-exercise glycogen synthesis and benefits to metabolism during exercise. Finally, various supplements (i.e., caffeine and beetroot juice) also warrant possible inclusion into pre-race nutrition for endurance athletes. Ultimately, further research is needed to optimize pre-exercise nutritional strategies for endurance performance.

  20. Pre-Exercise Nutrition: The Role of Macronutrients, Modified Starches and Supplements on Metabolism and Endurance Performance

    PubMed Central

    Ormsbee, Michael J.; Bach, Christopher W.; Baur, Daniel A.

    2014-01-01

    Endurance athletes rarely compete in the fasted state, as this may compromise fuel stores. Thus, the timing and composition of the pre-exercise meal is a significant consideration for optimizing metabolism and subsequent endurance performance. Carbohydrate feedings prior to endurance exercise are common and have generally been shown to enhance performance, despite increasing insulin levels and reducing fat oxidation. These metabolic effects may be attenuated by consuming low glycemic index carbohydrates and/or modified starches before exercise. High fat meals seem to have beneficial metabolic effects (e.g., increasing fat oxidation and possibly sparing muscle glycogen). However, these effects do not necessarily translate into enhanced performance. Relatively little research has examined the effects of a pre-exercise high protein meal on subsequent performance, but there is some evidence to suggest enhanced pre-exercise glycogen synthesis and benefits to metabolism during exercise. Finally, various supplements (i.e., caffeine and beetroot juice) also warrant possible inclusion into pre-race nutrition for endurance athletes. Ultimately, further research is needed to optimize pre-exercise nutritional strategies for endurance performance. PMID:24787031

  1. Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $$\\sqrt{s}=$$ 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    The CMS muon detector system, muon reconstruction software, and high-level trigger underwent significant changes in 2013-2014 in preparation for running at higher LHC collision energy and instantaneous luminosity. The performance of the modified system is studied using proton-proton collision data at center-of-mass energymore » $$\\sqrt{s}=$$ 13 TeV, collected at the LHC in 2015 and 2016. The measured performance parameters, including spatial resolution, efficiency, and timing, are found to meet all design specifications and are well reproduced by simulation. Despite the more challenging running conditions, the modified muon system is found to perform as well as, and in many aspects better than, previously.« less

  2. CVD aluminiding process for producing a modified platinum aluminide bond coat for improved high temperature performance

    NASA Technical Reports Server (NTRS)

    Nagaraj, Bangalore A. (Inventor); Williams, Jeffrey L. (Inventor)

    2003-01-01

    A method of depositing by chemical vapor deposition a modified platinum aluminide diffusion coating onto a superalloy substrate comprising the steps of applying a layer of a platinum group metal to the superalloy substrate; passing an externally generated aluminum halide gas through an internal gas generator which is integral with a retort, the internal gas generator generating a modified halide gas; and co-depositing aluminum and modifier onto the superalloy substrate. In one form, the modified halide gas is hafnium chloride and the modifier is hafnium with the modified platinum aluminum bond coat comprising a single phase additive layer of platinum aluminide with at least about 0.5 percent hafnium by weight percent and about 1 to about 15 weight percent of hafnium in the boundary between a diffusion layer and the additive layer. The bond coat produced by this method is also claimed.

  3. Modified tandem gratings anastigmatic imaging spectrometer with oblique incidence for spectral broadband

    NASA Astrophysics Data System (ADS)

    Cui, Chengguang; Wang, Shurong; Huang, Yu; Xue, Qingsheng; Li, Bo; Yu, Lei

    2015-09-01

    A modified spectrometer with tandem gratings that exhibits high spectral resolution and imaging quality for solar observation, monitoring, and understanding of coastal ocean processes is presented in this study. Spectral broadband anastigmatic imaging condition, spectral resolution, and initial optical structure are obtained based on geometric aberration theory. Compared with conventional tandem gratings spectrometers, this modified design permits flexibility in selecting gratings. A detailed discussion of the optical design and optical performance of an ultraviolet spectrometer with tandem gratings is also included to explain the advantage of oblique incidence for spectral broadband.

  4. Wear behavior of AISI 1090 steel modified by pulse plasma technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayday, Aysun; Durman, Mehmet

    2012-09-06

    AISI 1090 steel was pulse plasma treated (PPT) using a Molybdenum electrode. Two different pulse numbers were chosen to obtain modified layers of 20{+-}5 {mu}m thickness. The dry sliding wear studies performed on this steel with and without PPT against an alumina ball counterpart showed that the PPT improved the wear resistance. The pulse number of the PPT modified layer was found to be highly influential in imparting the wear resistance to this steel, due to enhancement of surface hardness depending on treatment time.

  5. Installation and laboratory evaluation of alternatives to conventional polymer modification for asphalt.

    DOT National Transportation Integrated Search

    2015-01-01

    The Virginia Department of Transportation (VDOT) specifies polymer-modified asphalt binders for certain asphalt : mixtures used on high-volume, high-priority routes. These binders must meet performance grade (PG) requirements for a PG : 76-22 binder ...

  6. A new method for promoting adhesion between precious metal alloys and dental adhesives.

    PubMed

    Ohno, H; Araki, Y; Endo, K

    1992-06-01

    A new, simple method of modifying the adherend metal surface by a liquid Ga-Sn alloy (Adlloy) was applied to dental precious and base-metal alloys for adhesion with 4-META adhesive resin. Adhesions of 4-META resin to three other surface states--as-polished, oxidized at high temperature, and electroplated tin--were also performed for comparison with the adhesion on Adlloy-modified surfaces. Bond strength measurements were made, and the durability against water at the adhering interface was evaluated. The Adlloy-modified gold alloys (Type IV and 14 K) and silver-based alloys (Ag-Pd and Ag-Cu) showed not only high bond strengths but also excellent water durability at the adhesion interface. Surface modification by Adlloy, however, did not affect adhesion to Ag-In-Zn and base-metal (SUS, Co-Cr, and Ni-Cr) alloys. Adhesion to the tin-electroplated specimens was comparable with that to the Adlloy-modified specimens.

  7. High-velocity-oxidation performance of metal-chromium-aluminum (MCrAl), cermet, and modified aluminide coatings on IN-100 and type VIA alloys at 1093 C

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.

    1974-01-01

    Cermet, MCrAl, and modified aluminide types of coatings applied to IN-100 and NASA-TRW-VIA alloy specimens were cyclically oxidation tested in a high velocity (Mach 1) gas flame at 1093 C. Several coating compositions of each type were evaluated for oxidation resistance. The modified aluminide coating, Pt-Al, applied to alloy 6A proved to be the best, providing oxidation protection to approximately 750 hours based on weight change measurements. The second best, a CoCrAlY coating applied to 6A, provided protection to 450 hours. The third best was a cermet + aluminide coating on 6A with a protection time to 385 hours.

  8. Improving surface-enhanced Raman scattering effect using gold-coated hierarchical polystyrene bead substrates modified with postgrowth microwave treatment.

    PubMed

    Yuen, Clement; Zheng, Wei; Huang, Zhiwei

    2008-01-01

    We report a novel postgrowth microwave heating implementation by selectively modifying hierarchical polystyrene (PS) bead substrates coated with gold (Au) films to effectively improve the surface-enhanced Raman scattering (SERS) effect on the analytes. The SERS signal of probe molecule rhodamine 6G (Rh 6G) on the microwave-treated Au-PS substrates can be improved by 10-fold, while the detection limit of Rh 6G in concentration can be enhanced by two orders of magnitude compared to the as-growth substrates. The high-quality SERS spectrum of saliva can also be acquired using the modified substrates, demonstrating the potential for the realization of the high-performance SERS substrates for biomedical applications.

  9. N- and C-Modified TiO2 Nanotube Arrays: Enhanced Photoelectrochemical Properties and Effect of Nanotubes Length on Photoconversion Efficiency

    PubMed Central

    Mohamed, Ahmed El Ruby; Barghi, Shahzad

    2018-01-01

    In this investigation, a new, facile, low cost and environmental-friendly method was introduced to fabricate N- and C-modified TiO2 nanotube arrays by immersing the as-anodized TiO2 nanotube arrays (TNTAs) in a urea aqueous solution with mechanical agitation for a short time and keeping the TNTAs immersed in the solution for 6 h at room temperature. Then, the TNTAs were annealed at different temperatures. The produced N-, C-modified TNTAs were characterized using FESEM, EDX, XRD, XPS, UV-Vis diffuse reflectance spectra. Modified optical properties with narrow band gap energy, Eg, of 2.65 eV was obtained after annealing the modified TNTAs at 550 °C. Modified TNTAs showed enhanced photoelectochemical performance. Photoconversion efficiency (PCE) was increased from 4.35% for pristine (unmodified) TNTAs to 5.18% for modified TNTAs, an increase of 19%. Effect of nanotubes length of modified TNTAs on photoelectrochemical performance was also studied. Photocurrent density and PCE were increased by increasing nanotube length with a maximum PCE of 6.38% for nanotube length of 55 µm. This high PCE value was attributed to: band gap reduction due to C- and N-modification of TNTAs surface, increased surface area of long TNTAs compared with short TNTAs, investigated in previous studies. PMID:29597248

  10. Development and validation of a 48-target analytical method for high-throughput monitoring of genetically modified organisms.

    PubMed

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-05

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection.

  11. Development and Validation of A 48-Target Analytical Method for High-throughput Monitoring of Genetically Modified Organisms

    PubMed Central

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-01

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection. PMID:25556930

  12. Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

    NASA Astrophysics Data System (ADS)

    Hamdani, Fethi; Das, Nishith K.; Shoji, Tetsuo

    2018-06-01

    The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

  13. Polypyrrole/sargassum activated carbon modified stainless-steel sponge as high-performance and low-cost bioanode for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Gaoming; Bao, Han; Xia, Zheng; Yang, Bin; Lei, Lecheng; Li, Zhongjian; Liu, Chunxian

    2018-04-01

    Anode materials, as the core component of microbial fuel cells (MFCs), have huge impacts on power generation performance and overall cost. Stainless-steel sponge (SS) can be a promising material for MFC anodes, due to its open continuous three-dimensional structure, high conductivity and low cost. However, poor biocompatibility limits its application. In this paper, a polypyrrole/sargassum activated carbon modified SS anode (Ppy/SAC/SS) is developed by electrochemical polymerization of pyrrole on the SS with the SAC as a dopant. The maximum power density achieved with the Ppy/SAC/SS anode is 45.2 W/m3, which is increased by 2 orders of magnitude and 2.9 times compared with an unmodified SS anode and a solely Ppy modified SS anode (Ppy/SS), respectively. In addition, the Ppy/SAC layer effectively eliminates electrochemical corrosion of the SS substrate. Electrochemical impedance spectroscopy reveals that Ppy/SAC modification decreases electron transfer resistance between the bacteria and the electrode. Furthermore, in vivo fluorescence imaging indicates that a more uniform biofilm is formed on the Ppy/SAC/SS compared to the unmodified SS and Ppy/SS. Due to the low cost of the materials, easy fabrication process and relatively high performance, our developed Ppy/SAC/SS can be a cost efficient anode material for MFCs in practical applications.

  14. Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

    NASA Astrophysics Data System (ADS)

    Hamdani, Fethi; Das, Nishith K.; Shoji, Tetsuo

    2018-03-01

    The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

  15. Modified signed-digit trinary addition using synthetic wavelet filter

    NASA Astrophysics Data System (ADS)

    Iftekharuddin, K. M.; Razzaque, M. A.

    2000-09-01

    The modified signed-digit (MSD) number system has been a topic of interest as it allows for parallel carry-free addition of two numbers for digital optical computing. In this paper, harmonic wavelet joint transform (HWJT)-based correlation technique is introduced for optical implementation of MSD trinary adder implementation. The realization of the carry-propagation-free addition of MSD trinary numerals is demonstrated using synthetic HWJT correlator model. It is also shown that the proposed synthetic wavelet filter-based correlator shows high performance in logic processing. Simulation results are presented to validate the performance of the proposed technique.

  16. Effect of Preexercise Ingestion of Modified Amylomaize Starch on Glycemic Response While Cycling.

    PubMed

    Parks, Rachel B; Angus, Hector F; King, Douglas S; Sharp, Rick L

    2018-01-01

    Amylomaize-7 is classified as a resistant corn starch and is 68% digestible. When modified by partial hydrolysis in ethanol and hydrochloric acid its digestibility is 92%, yet retains its low glycemic and insulinemic properties. The purpose of this study was to characterize the metabolic response when modified amylomaize-7 or dextrose is consumed in the hour before exercise, and to compare the effect on performance of a brief high-intensity cycling trial. Ten male, trained cyclists were given 1 g/kg body mass of dextrose (DEX) or modified amylomaize-7 (AMY-7) or a flavored water placebo (PL) 45 min prior to exercise on a cycle ergometer. A 15-min ride at 60% W max was immediately followed by a self-paced time trial (TT) equivalent to 15 min at 80% W max . When cyclists consumed DEX, mean serum glucose concentration increased by 3.3 ± 2.1 mmol/L before exercise, compared to stable serum glucose observed for AMY-7 or PL. Glucose concentrations returned to baseline by pre-TT in all treatments. However, the mean post-TT glucose concentration of the DEX group was significantly lower than baseline, AMY-7, or PL. Serum insulin concentration increased nine-fold from baseline to preexercise in the DEX trial, whereas PL or AMY-7 remained unchanged. Time required to complete the performance trial was not significantly different between DEX, AMY-7 or PL. Preexercise ingestion of modified amylomaize-7 compared to dextrose resulted in a more stable serum glucose concentration, but did not offer a performance advantage in this high-intensity cycling trial.

  17. Hierarchical structured Sm2O3 modified CuO nanoflowers as electrode materials for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojuan; He, Mingqian; He, Ping; Liu, Hongtao; Bai, Hongmei; Chen, Jingchao; He, Shaoying; Zhang, Xingquan; Dong, Faqing; Chen, Yang

    2017-12-01

    By a simple and cost effective chemical precipitation-hydrothermal method, novel hierarchical structured Sm2O3 modified CuO nanoflowers are prepared and investigated as electrode materials for supercapacitors. The physical properties of prepared materials are characterized by XRD, FE-SEM, EDX and FTIR techniques. Furthermore, electrochemical performances of prepared materials are investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum in 1.0 M KOH electrolyte. The resulting Sm2O3 modified CuO based electrodes exhibit obviously enhanced capacitive properties owing to the unique nanostructures and strong synergistic effects. It is worth noting that the optimized SC-3 based electrode exhibits the best electrochemical performances in all prepared electrodes, including higher specific capacitance (383.4 F g-1 at 0.5 A g-1) and good rate capability (393.2 F g-1 and 246.3 F g-1 at 0.3 A g-1 and 3.0 A g-1, respectively), as well as excellent cycling stability (84.6% capacitance retention after 2000 cycles at 1.0 A g-1). The present results show that Sm2O3 is used as a promising modifier to change the morphology and improve electrochemical performances of CuO materials.

  18. Enhanced electrocaloric analysis and energy-storage performance of lanthanum modified lead titanate ceramics for potential solid-state refrigeration applications.

    PubMed

    Zhang, Tian-Fu; Huang, Xian-Xiong; Tang, Xin-Gui; Jiang, Yan-Ping; Liu, Qiu-Xiang; Lu, Biao; Lu, Sheng-Guo

    2018-01-10

    The unique properties and great variety of relaxer ferroelectrics make them highly attractive in energy-storage and solid-state refrigeration technologies. In this work, lanthanum modified lead titanate ceramics are prepared and studied. The giant electrocaloric effect in lanthanum modified lead titanate ceramics is revealed for the first time. Large refrigeration efficiency (27.4) and high adiabatic temperature change (1.67 K) are achieved by indirect analysis. Direct measurements of electrocaloric effect show that reversible adiabatic temperature change is also about 1.67 K, which exceeds many electrocaloric effect values in current direct measured electrocaloric studies. Both theoretical calculated and direct measured electrocaloric effects are in good agreements in high temperatures. Temperature and electric field related energy storage properties are also analyzed, maximum energy-storage density and energy-storage efficiency are about 0.31 J/cm 3 and 91.2%, respectively.

  19. The Modified Checklist for Autism in Toddlers: A Follow-Up Study Investigating the Early Detection of Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Kleinman, Jamie M.; Robins, Diana L.; Ventola, Pamela E.; Pandey, Juhi; Boorstein, Hilary C.; Esser, Emma L.; Wilson, Leandra B.; Rosenthal, Michael A.; Sutera, Saasha; Verbalis, Alyssa D.; Barton, Marianne; Hodgson, Sarah; Green, James; Dumont-Mathieu, Thyde; Volkmar, Fred; Chawarska, Katarzyna; Klin, Ami; Fein, Deborah

    2008-01-01

    Autism spectrum disorders (ASD) often go undetected in toddlers. The Modified Checklist for Autism in Toddlers (M-CHAT) was used to screen 3,793 children aged 16-30 months from low- and high-risk sources; screen positive cases were diagnostically evaluated. Re-screening was performed on 1,416 children aged 42-54 months. Time1 Positive Predictive…

  20. Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea.

    PubMed

    Attama, A A; Reichl, S; Müller-Goymann, C C

    2009-08-01

    The aim of the study was to formulate and evaluate surface-modified solid lipid nanoparticles sustained delivery system of timolol hydrogen maleate, a prototype ocular drug using a human cornea construct. Surface-modified solid lipid nanoparticles containing timolol with and without phospholipid were formulated by melt emulsification with high-pressure homogenization and characterized by particle size, wide-angle X-ray diffraction, encapsulation efficiency, and in vitro drug release. Drug transport studies through cornea bioengineered from human donor cornea cells were carried out using a modified Franz diffusion cell and drug concentration analyzed by high-performance liquid chromatography. Results show that surface-modified solid lipid nanoparticles possessed very small particles (42.9 +/- 0.3 nm, 47.2 +/- 0.3 nm, 42.7 +/- 0.7 nm, and 37.7 +/- 0.3 nm, respectively for SM-SLN 1, SM-SLN 2, SM-SLN 3, and SM-SLN 4) with low polydispersity indices, increased encapsulation efficiency (> 44%), and sustained in vitro release compared with unmodified lipid nanoparticles whose particles were greater than 160 nm. Permeation of timolol hydrogen maleate from the surface-modified lipid nanoparticles across the cornea construct was sustained compared with timolol hydrogen maleate solution in distilled water. Surface-modified solid lipid nanoparticles could provide an efficient way of improving ocular bioavailability of timolol hydrogen maleate.

  1. Genotoxic effect and antigen binding characteristics of SLE auto-antibodies to peroxynitrite-modified human DNA.

    PubMed

    Khan, Md Asad; Alam, Khursheed; Mehdi, Syed Hassan; Rizvi, M Moshahid A

    2017-12-01

    Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease characterized by auto-antibodies against native deoxyribonucleic acid after modification and is one of the reasons for the development of SLE. Here, we have evaluated the structural perturbations in human placental DNA by peroxynitrite using spectroscopy, thermal denaturation and high-performance liquid chromatography (HPLC). Peroxynitrite is a powerful potent bi-functional oxidative/nitrative agent that is produced both endogenously and exogenously. In experimental animals, the peroxynitrite-modified DNA was found to be highly immunogenic. The induced antibodies showed cross-reactions with different types of DNA and nitrogen bases that were modified with peroxynitrite by inhibition ELISA. The antibody activity was inhibited by approximately 89% with its immunogen as the inhibitor. The antigen-antibodies interaction between induced antibodies with peroxynitrite-modified DNA showed retarded mobility as compared to the native form. Furthermore, significantly increased binding was also observed in SLE autoantibodies with peroxynitrite-modified DNA than native form. Moreover, DNA isolated from lymphocyte of SLE patients revealed significant recognition of anti-peroxynitrite-modified DNA immunoglobulin G (IgG). Our data indicates that DNA modified with peroxynitrite presents unique antigenic determinants that may induce autoantibody response in SLE. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Efficient Residue to Binary Conversion Based on a Modified Flexible Moduli Set

    NASA Astrophysics Data System (ADS)

    Molahosseini, Amir Sabbagh

    2011-09-01

    The Residue Number System (RNS) is a non-weighted number system which can perform addition (subtraction) and multiplication on residues without carry-propagation; resulting in high-speed hardware implementations of computation systems. The problem of converting residue numbers to equivalent binary weighted form has been attracted a lot of research for many years. Recently, some researchers proposed using flexible moduli sets instead of previous traditional moduli sets to enhance the performance of residue to binary converters. This paper introduces the modified flexible moduli set {22p+k. 22p+1, 2p+1, 2p-1} which is achieved from the flexible set {2p+k, 22p+1, 2p+1, 2p-1} by enhancing modulo 2p+k. Next, new Chinese remainder theorem-1 is used to design simple and efficient residue to binary converter for this modified set with better performance than the converter of the moduli set {2p+k, 22p+1, 2p+1, 2p-1}.

  3. Dip-Coating Process Engineering and Performance Optimization for Three-State Electrochromic Devices

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Yang, Dejiang; Fei, Lixun; Huang, Yue; Wu, Fang; Sun, Yiling; Shi, Jiayuan; Xiang, Yong

    2017-06-01

    Titanium dioxide (TiO2) nanoparticles were modified onto fluorine-doped tin oxide (FTO) via dip-coating technique with different nanoparticle sizes, lifting speeds, precursor concentrations, and dipping numbers. Electrodeposition-based electrochromic device with reversible three-state optical transformation (transparent, mirror, and black) was fabricated subsequently by sandwiching a suitable amount of gel electrolyte between modified FTO electrode and flat FTO electrode. Correlation between dip-coating process engineering, morphological features of TiO2 thin films, i.e., thickness and roughness, as well as performance of electrochromic devices, i.e., optical contrast, switching time, and cycling stability, were investigated. The modified device exhibits high optical contrast of 57%, the short coloration/bleaching switching time of 6 and 20 s, and excellent cycling stability after 1500 cycles of only 27% decrement rate by adjusting dip-coating processes engineering. The results in this study will provide valuable guidance for rational design of the electrochromic device with satisfactory performance.

  4. Dynamic modulus of nanosilica modified porous asphalt

    NASA Astrophysics Data System (ADS)

    Arshad, A. K.; Masri, K. A.; Ahmad, J.; Samsudin, M. S.

    2017-11-01

    Porous asphalt (PA) is a flexible pavement layer with high interconnected air void contents and constructed using open-graded aggregates. Due to high temperature environment and increased traffic volume in Malaysia, PA may have deficiencies particularly in rutting and stiffness of the mix. A possible way to improve these deficiencies is to improve the asphalt binder used. Binder is normally modified using polymer materials to improve its properties. However, nanotechnology presently is being gradually used for asphalt modification. Nanosilica (NS), a byproduct of rice husk and palm oil fuel ash is used as additive in this study. The aim of this study is to enhance the rutting resistance and stiffness performance of PA using NS. This study focused on the performance of PA in terms of dynamic modulus with the addition of NS modified binder to produce better and more durable PA. From the result of Dynamic SPT Test, it shows that the addition of NS was capable in enhancing the stiffness and rutting resistance of PA. The addition of NS also increase the dynamic modulus value of PA by 50%.

  5. High performance Aurivillius phase sodium-potassium bismuth titanate lead-free piezoelectric ceramics with lithium and cerium modification

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Ming; Wang, Jin-Feng

    2006-11-01

    The piezoelectric properties of the lithium and cerium modified A-site vacancies sodium-potassium bismuth titanate (NKBT) lead-free piezoceramics are investigated. The piezoelectric activity of NKBT ceramics is significantly improved by the modification of lithium and cerium. The Curie temperature TC, piezoelectric coefficient d33, and mechanical quality factor Qm for the NKBT ceramics modified with 0.10mol% (LiCe) are found to be 660°C, 25pC/N, and 3135, respectively. The Curie temperature gradually decreases from 675to650°C with the increase of (LiCe) modification. The dielectric spectroscopy shows that all the samples possess stable piezoelectric properties, demonstrating that the (LiCe) modified NKBT-based ceramics are the promising candidates for high temperature applications.

  6. Alteration layer formation of Ca- and Zn-oxide bearing alkali borosilicate glasses for immobilisation of UK high level waste: A vapour hydration study

    NASA Astrophysics Data System (ADS)

    Cassingham, N. J.; Corkhill, C. L.; Stennett, M. C.; Hand, R. J.; Hyatt, N. C.

    2016-10-01

    The UK high level nuclear waste glass modified with CaO/ZnO was investigated using the vapour phase hydration test, performed at 200 °C, with the aim of understanding the impact of the modification on the chemical composition and microstructure of the alteration layer. Experiments were undertaken on non-modified and CaO/ZnO-modified base glass, with or without 25 wt% of simulant Magnox waste calcine. The modification resulted in a dramatic reduction in gel layer thickness and also a reduction in the reaction rate, from 3.4 ± 0.3 g m-2 d-1 without CaO/ZnO modification to 0.9 ± 0.1 g m-2 d-1 with CaO/ZnO. The precipitated phase assemblage for the CaO/ZnO-modified compositions was identified as hydrated Ca- and Zn-bearing silicate phases, which were absent from the non-modified counterpart. These results are in agreement with other recent studies showing the beneficial effects of ZnO additions on glass durability.

  7. Arginine-glycine-aspartic acid-conjugated dendrimer-modified quantum dots for targeting and imaging melanoma.

    PubMed

    Li, Zhiming; Huang, Peng; Lin, Jing; He, Rong; Liu, Bing; Zhang, Xiaomin; Yang, Sen; Xi, Peng; Zhang, Xuejun; Ren, Qiushi; Cui, Daxiang

    2010-08-01

    Angiogenesis is essential for the development of malignant tumors and provides important targets for tumor diagnosis and therapy. Quantum dots have been broadly investigated for their potential application in cancer molecular imaging. In present work, CdSe quantum dots were synthesized, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified CdSe quantum dots were conjugated with arginine-glycine-aspartic acid (RGD) peptides. These prepared nanoprobes were injected into nude mice loaded with melanoma (A375) tumor xenografts via tail vessels, IVIS imaging system was used to image the targeting and bio-distribution of as-prepared nanoprobes. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. RGD-conjugated quantum dots can specifically target human umbilical vein endothelial cells (HUVEC) and A375 melanoma cells, as well as nude mice loaded with A735 melanoma cells. High-performance RGD-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as tumor diagnosis and therapy.

  8. Association of Practice-Level Social and Medical Risk With Performance in the Medicare Physician Value-Based Payment Modifier Program

    PubMed Central

    Epstein, Arnold M.; Orav, E. John; Filice, Clara E.; Samson, Lok Wong; Joynt Maddox, Karen E.

    2017-01-01

    Importance Medicare recently launched the Physician Value-Based Payment Modifier (PVBM) Program, a mandatory pay-for-performance program for physician practices. Little is known about performance by practices that serve socially or medically high-risk patients. Objective To compare performance in the PVBM Program by practice characteristics. Design, Setting, and Participants Cross-sectional observational study using PVBM Program data for payments made in 2015 based on performance of large US physician practices caring for fee-for-service Medicare beneficiaries in 2013. Exposures High social risk (defined as practices in the top quartile of proportion of patients dually eligible for Medicare and Medicaid) and high medical risk (defined as practices in the top quartile of mean Hierarchical Condition Category risk score among fee-for-service beneficiaries). Main Outcomes and Measures Quality and cost z scores based on a composite of individual measures. Higher z scores reflect better performance on quality; lower scores, better performance on costs. Results Among 899 physician practices with 5 189 880 beneficiaries, 547 practices were categorized as low risk (neither high social nor high medical risk) (mean, 7909 beneficiaries; mean, 320 clinicians), 128 were high medical risk only (mean, 3675 beneficiaries; mean, 370 clinicians), 102 were high social risk only (mean, 1635 beneficiaries; mean, 284 clinicians), and 122 were high medical and social risk (mean, 1858 beneficiaries; mean, 269 clinicians). Practices categorized as low risk performed the best on the composite quality score (z score, 0.18 [95% CI, 0.09 to 0.28]) compared with each of the practices categorized as high risk (high medical risk only: z score, −0.55 [95% CI, −0.77 to −0.32]; high social risk only: z score, −0.86 [95% CI, −1.17 to −0.54]; and high medical and social risk: −0.78 [95% CI, −1.04 to −0.51]) (P < .001 across groups). Practices categorized as high social risk only performed the best on the composite cost score (z score, −0.52 [95% CI, −0.71 to −0.33]), low risk had the next best cost score (z score, −0.18 [95% CI, −0.25 to −0.10]), then high medical and social risk (z score, 0.40 [95% CI, 0.23 to 0.57]), and then high medical risk only (z score, 0.82 [95% CI, 0.65 to 0.99]) (P < .001 across groups). Total per capita costs were $9506 for practices categorized as low risk, $13 683 for high medical risk only, $8214 for high social risk only, and $11 692 for high medical and social risk. These patterns were associated with fewer bonuses and more penalties for high-risk practices. Conclusions and Relevance During the first year of the Medicare Physician Value-Based Payment Modifier Program, physician practices that served more socially high-risk patients had lower quality and lower costs, and practices that served more medically high-risk patients had lower quality and higher costs. PMID:28763549

  9. Modified harmony search

    NASA Astrophysics Data System (ADS)

    Mohamed, Najihah; Lutfi Amri Ramli, Ahmad; Majid, Ahmad Abd; Piah, Abd Rahni Mt

    2017-09-01

    A metaheuristic algorithm, called Harmony Search is quite highly applied in optimizing parameters in many areas. HS is a derivative-free real parameter optimization algorithm, and draws an inspiration from the musical improvisation process of searching for a perfect state of harmony. Propose in this paper Modified Harmony Search for solving optimization problems, which employs a concept from genetic algorithm method and particle swarm optimization for generating new solution vectors that enhances the performance of HS algorithm. The performances of MHS and HS are investigated on ten benchmark optimization problems in order to make a comparison to reflect the efficiency of the MHS in terms of final accuracy, convergence speed and robustness.

  10. Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications

    PubMed Central

    Abdulrazzaq, Bilal I.; Ibrahim, Omar J.; Kawahito, Shoji; Sidek, Roslina M.; Shafie, Suhaidi; Yunus, Nurul Amziah Md.; Lee, Lini; Halin, Izhal Abdul

    2016-01-01

    A Delay-Locked Loop (DLL) with a modified charge pump circuit is proposed for generating high-resolution linear delay steps with sub-picosecond jitter performance and adjustable delay range. The small-signal model of the modified charge pump circuit is analyzed to bring forth the relationship between the DLL’s internal control voltage and output time delay. Circuit post-layout simulation shows that a 0.97 ps delay step within a 69 ps delay range with 0.26 ps Root-Mean Square (RMS) jitter performance is achievable using a standard 0.13 µm Complementary Metal-Oxide Semiconductor (CMOS) process. The post-layout simulation results show that the power consumption of the proposed DLL architecture’s circuit is 0.1 mW when the DLL is operated at 2 GHz. PMID:27690040

  11. Identification of Explosives from Porous Materials: Applications Using Reverse Phase High Performance Liquid Chromatography and Gas Chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.J. Miller; G. Elias; N.C. Schmitt

    2010-06-01

    High performance liquid chromatography and gas chromatography techniques are well documented and widely used for the detection of trace explosives from organic solvents. These techniques were modified to specifically identify and quantify explosives extracted from various materials taken from people who had recently handled explosives. Documented techniques were modified to specifically detect and quantify RDX, TNT, and PETN from denim, colored flannel, vinyl, and canvas extracted in methanol using no sample cleanup prior to analysis. The methanol extracts were injected directly into several different column types and analyzed by HPLC-UV and/or GC-ECD. This paper describes general screening methods that weremore » used to determine the presence of explosives in unknown samples and techniques that have been optimized for quantification of each explosive from the substrate extracts.« less

  12. Fabrication of interdigitated high-performance zinc oxide nanowire modified electrodes for glucose sensing.

    PubMed

    Haarindraprasad, R; Hashim, Uda; Gopinath, Subash C B; Perumal, Veeradasan; Liu, Wei-Wen; Balakrishnan, S R

    2016-06-21

    Diabetes is a metabolic disease with a prolonged elevated level of glucose in the blood leads to long-term complications and increases the chances for cardiovascular diseases. The present study describes the fabrication of a ZnO nanowire (NW)-modified interdigitated electrode (IDE) to monitor the level of blood glucose. A silver IDE was generated by wet etching-assisted conventional lithography, with a gap between adjacent electrodes of 98.80 μm. The ZnO-based thin films and NWs were amended by sol-gel and hydrothermal routes. High-quality crystalline and c-axis orientated ZnO thin films were observed by XRD analyses. The ZnO thin film was annealed for 1, 3 and 5 h, yielding a good-quality crystallite with sizes of 50, 100 and 110 nm, and the band gaps were measured as 3.26, 3.20 and 3.17 eV, respectively. Furthermore, a flower-modeled NW was obtained with the lowest diameter of 21 nm. Our designed ZnO NW-modified IDE was shown to have a detection limit as low as 0.03 mg/dL (correlation coefficient = 0.98952) of glucose with a low response time of 3 s, perform better than commercial glucose meter, suitable to instantly monitor the glucose level of diabetes patients. This study demonstrated the high performance of NW-mediated IDEs for glucose sensing as alternative to current glucose sensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Validation and Development of a Modified Breast Graded Prognostic Assessment As a Tool for Survival in Patients With Breast Cancer and Brain Metastases.

    PubMed

    Subbiah, Ishwaria M; Lei, Xiudong; Weinberg, Jeffrey S; Sulman, Erik P; Chavez-MacGregor, Mariana; Tripathy, Debu; Gupta, Rohan; Varma, Ankur; Chouhan, Jay; Guevarra, Richard P; Valero, Vicente; Gilbert, Mark R; Gonzalez-Angulo, Ana M

    2015-07-10

    Several indices have been developed to predict overall survival (OS) in patients with breast cancer with brain metastases, including the breast graded prognostic assessment (breast-GPA), comprising age, tumor subtype, and Karnofsky performance score. However, number of brain metastases-a highly relevant clinical variable-is less often incorporated into the final model. We sought to validate the existing breast-GPA in an independent larger cohort and refine it integrating number of brain metastases. Data were retrospectively gathered from a prospectively maintained institutional database. Patients with newly diagnosed brain metastases from 1996 to 2013 were identified. After validating the breast-GPA, multivariable Cox regression and recursive partitioning analysis led to the development of the modified breast-GPA. The performances of the breast-GPA and modified breast-GPA were compared using the concordance index. In our cohort of 1,552 patients, the breast-GPA was validated as a prognostic tool for OS (P < .001). In multivariable analysis of the breast-GPA and number of brain metastases (> three v ≤ three), both were independent predictors of OS. We therefore developed the modified breast-GPA integrating a fourth clinical parameter. Recursive partitioning analysis reinforced the prognostic significance of these four factors. Concordance indices were 0.78 (95% CI, 0.77 to 0.80) and 0.84 (95% CI, 0.83 to 0.85) for the breast-GPA and modified breast-GPA, respectively (P < .001). The modified breast-GPA incorporates four simple clinical parameters of high prognostic significance. This index has an immediate role in the clinic as a formative part of the clinician's discussion of prognosis and direction of care and as a potential patient selection tool for clinical trials. © 2015 by American Society of Clinical Oncology.

  14. Highly water-absorbing silk yarn with interpenetrating network via in situ polymerization.

    PubMed

    Lee, Ka I; Wang, Xiaowen; Guo, Xia; Yung, Ka-Fu; Fei, Bin

    2017-02-01

    Silk was modified via in situ polymerization of two monomers acrylamide and sodium acrylate by swelling in an effective LiBr dissolution system. Swelling of natural silks in LiBr solutions of low concentration was clearly observed under optical microscope, and their conformational changes were revealed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Dissolution tests and FTIR spectra of these modified silks suggested the presence of interpenetrating network of polyacrylamide and poly(sodium acrylate) in the silk yarns. These modified silks exhibited superior water absorption to that of raw silk and greatly improved mechanical properties in both dry and wet states. These novel modified silks also showed low cytotoxicity towards skin keratinocytes, having potential applications in biomedical textiles. This modification method by in situ polymerization after swelling in LiBr provides a new route to highly enhance the properties and performance of silk for various applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Design of biobased and biodegradable - compostable engineered plastics based on poly(lactide)

    NASA Astrophysics Data System (ADS)

    Schneider, Jeffrey Samuelson

    Poly(lactide) (PLA) is a biobased and biodegradable - compostable plastic that is derived from renewable resources such as corn and sugar cane. It possesses excellent strength and stiffness properties and is recognized as safe for biomedical and food packaging applications. Commercially, it costs $1/lb and is now competitive with petroleum based polymers that have dominated the industry for decades. However, the material has some inherently weak properties that prevent it from certain applications - most notably, its rheological properties, brittleness, and poor high temperature performance. Cost effective modifications of the polymer to enhance these deficiencies could allow for increased applications and further its commercial growth. Multiple synthetic strategies have been developed to address PLA's performance property deficiencies. PLA typically exhibits poor melt strength and does not have the ability to strain harden, partially a result of its highly linear nature. Strain hardening and high melt strength are crucial elements of a material when producing blown films, a large untapped market for PLA. By increasing molecular weight and introducing long-chain branching into the material, these properties can be improved. Epoxy-functionalized PLA (EF-PLA) was synthesized by reacting PLA with a multifunctional epoxy polymer (MEP) using reactive extrusion processing (REX). These modified PLA polymers can function as a rheology modifier for PLA and a compatibilizer for blends with other biopolyesters. The modified PLA showed an increased melt strength and exhibited significant strain hardening, thus making it more suited for blown film applications. Blown films comprised of PLA and poly(butylene adipate-co-terephthalate) (PBAT) were produced using EF-PLA as a reactive modifier for rheological enhancement and compatibilization. This resulted in films with better processability (as seen by increased bubble stability) and improved mechanical properties, compared to a common rheology modifier used in industry. These modifiers have been successfully scaled up to a 400 kg/hr process and are currently used to make high quality biodegradable blown films for multiple commercial applications. PLA is an extremely brittle material, typically experiencing only 3-4% elongation prior to fracture. This hinders some of its applications and therefore toughening is needed for future commercial growth. Two different methods of modifying PLA with polysiloxanes are studied and discussed. Polysiloxanes serve as a highly attractive material for toughening PLA due to their inherent properties. Because of the longer bond and higher bond angle of the -Si-O-Si- (siloxane) backbone compared to a carbon based backbone, there is a reduced energy barrier for rotation leading to substantial flexibility. Polysiloxanes also possess good thermal and oxidative stability, biocompatibility, and very low surface tension values, all which could benefit PLA greatly. Lastly, most injection molded PLA products lose their rigidity above Tg (˜55°C) due to a rubbery amorphous phase and low crystallinity. This prevents products like PLA cutlery from being used effectively at elevated temperatures, like those of hot foods. The high temperature mechanical properties of injection molded PLA are enhanced using a combination of nucleating agents and processing improvements to impart high levels of crystallinity, resulting in a substantial increase in the mechanical performance at these temperatures.

  16. Toward High Performance 2D/2D Hybrid Photocatalyst by Electrostatic Assembly of Rationally Modified Carbon Nitride on Reduced Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Xu, Xiaochan; Li, Tao; Pandiselvi, Kannusamy; Wang, Jingyu

    2016-11-01

    Efficient metal-free visible photocatalysts with high stability are highly desired for sufficient utilization of solar energy. In this work, the popular carbon nitride (CN) photocatalyst is rationally modified by acid exfoliation of molecular grafted CN, achieving improved visible-light utilization and charge carriers mobility. Moreover, the modification process tuned the surface electrical property of CN, which enabled it to be readily coupled with the oppositely charged graphene oxide during the following photo-assisted electrostatic assembly. Detailed characterizations indicate the formation of well-contacted 2D/2D heterostructure with strong interfacial interaction between the modified CN nanosheets (CNX-NSs) and reduced graphene oxide (RGO). The optimized hybrid (with a RGO ratio of 20%) exhibits the best photocatalytic performance toward MB degradation, which is almost 12.5 and 7.0 times of CN under full spectrum and visible-light irradiation, respectively. In addition, the hybrid exhibits high stability after five successive cycles with no obvious change in efficiency. Unlike pure CNX-NSs, the dye decomposition mostly depends on the H2O2 generation by a two-electron process due to the electron reservoir property of RGO. Thus the enhancement in photocatalytic activity could be ascribed to the improved light utilization and increased charge transfer ability across the interface of CNX-NSs/RGO heterostructure.

  17. Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography.

    PubMed

    Horie, Kanta; Ikegami, Tohru; Hosoya, Ken; Saad, Nabil; Fiehn, Oliver; Tanaka, Nobuo

    2007-09-14

    Monolithic silica capillary columns for hydrophilic interaction liquid chromatography (HILIC) were prepared by on-column polymerization of acrylic acid on monolithic silica in a fused silica capillary modified with anchor groups. The products maintained the high permeability (K=5 x 10(-14)m(2)) and provided a plate height (H) of less than 10 microm at optimum linear velocity (u) and H below 20 microm at u=6mm/s for polar solutes including nucleosides and carbohydrates. The HILIC mode monolithic silica capillary column was able to produce 10000 theoretical plates (N) with column dead time (t(0)) of 20s at a pressure drop of 20 MPa or lower. The total performance was much higher than conventional particle-packed HILIC columns currently available. The gradient separations of peptides by a capillary LC-electrospray mass spectrometry system resulted in very different retention selectivity between reversed-phase mode separations and the HILIC mode separations with a peak capacity of ca. 100 in a 10 min gradient time in either mode. The high performance observed with the monolithic silica capillary column modified with poly(acrylic acid) suggests that the HILIC mode can be an alternative to the reversed-phase mode for a wide range of compounds, especially for those of high polarity in isocratic as well as gradient elution.

  18. Solution-processable alumina: PVP nanocomposite dielectric layer for high-performance organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Kong, Xiao; Li, Yiran; Kuang, Peng; Tao, Silu

    2018-03-01

    In this article, we have investigated the effect of nanocomposite gate dielectric layer built by alumina (Al2O3) and poly(4-vinyphenol) (PVP) with solution method which could enhance the dielectric capability and decrease the surface polarity. Then, we used modify layer to optimize the surface morphology of dielectric layer to further improve the insulation capability, and finally we fabricated the high-performance and low-voltage organic thin-film transistors by using this nanocomposite dielectric layer. The result shows that the devices with Al2O3:10%PVP dielectric layer with a modified layer exhibited a mobility of 0.49 cm2/Vs, I on/Ioff ratio of 7.8 × 104, threshold voltage of - 1.2 V, sub-threshold swing of 0.3 V/dec, and operating voltage as low as - 4 V. The improvement of devices performance was owing to the good insulation capability, appropriate capacitance of dielectric layer, and preferable interface contact, smaller crystalline size of active layer.

  19. Nickel Hydroxide-Modified Sulfur/Carbon Composite as a High-Performance Cathode Material for Lithium Sulfur Battery.

    PubMed

    Niu, Xiao-Qing; Wang, Xiu-Li; Xie, Dong; Wang, Dong-Huang; Zhang, Yi-Di; Li, Yi; Yu, Ting; Tu, Jiang-Ping

    2015-08-05

    Tailored sulfur cathode is vital for the development of a high performance lithium-sulfur (Li-S) battery. A surface modification on the sulfur/carbon composite would be an efficient strategy to enhance the cycling stability. Herein, we report a nickel hydroxide-modified sulfur/conductive carbon black composite (Ni(OH)2@S/CCB) as the cathode material for the Li-S battery through the thermal treatment and chemical precipitation method. In this composite, the sublimed sulfur is stored in the CCB, followed by a surface modification of Ni(OH)2 nanoparticles with size of 1-2 nm. As a cathode for the Li-S battery, the as-prepared Ni(OH)2@S/CCB electrode exhibits better cycle stability and higher rate discharge capacity, compared with the bare S/CCB electrode. The improved performance is largely due to the introduction of Ni(OH)2 surface modification, which can effectively suppress the "shuttle effect" of polysulfides, resulting in enhanced cycling life and higher capacity.

  20. Study of CeO2 Modified AlNi Mixed Pillared Clays Supported Palladium Catalysts for Benzene Adsorption/Desorption-Catalytic Combustion

    PubMed Central

    Li, Jingrong; Yang, Peng; Qi, Chenze

    2017-01-01

    A new functional AlNi-pillared clays (AlNi-PILC) with a large surface area and pore volume was synthesized. The performance of adsorption/desorption-catalytic combustion over CeO2-modified Pd/AlNi-PILC catalysts was also studied. The results showed that the d001-value and specific surface area (SBET) of AlNi-PILC reached 2.11 nm and 374.8 m2/g, respectively. The large SBET and the d001-value improved the high capacity for benzene adsorption. Also, the strong interaction between PdCe mixed oxides and AlNi-PILC led to the high dispersion of PdO and CeO2 on the support, which was responsible for the high catalytic performance. Especially, 0.2% Pd/12.5% Ce/AlNi-PILC presented high performance for benzene combustion at 240 °C and high CO2 selectivity. Also, the combustion temperatures were lower compared to the desorption temperatures, which demonstrated that it could accomplish benzene combustion during the desorption process. Furthermore, its activity did not decrease after continuous reaction for 1000 h in dry air, and it also displayed good resistance to water and the chlorinated compound, making it a promising catalytic material for the elimination of volatile organic compounds. PMID:28809809

  1. Study of CeO₂ Modified AlNi Mixed Pillared Clays Supported Palladium Catalysts for Benzene Adsorption/Desorption-Catalytic Combustion.

    PubMed

    Li, Jingrong; Zuo, Shufeng; Yang, Peng; Qi, Chenze

    2017-08-15

    A new functional AlNi-pillared clays (AlNi-PILC) with a large surface area and pore volume was synthesized. The performance of adsorption/desorption-catalytic combustion over CeO 2- modified Pd/AlNi-PILC catalysts was also studied. The results showed that the d 001 -value and specific surface area ( S BET ) of AlNi-PILC reached 2.11 nm and 374.8 m²/g, respectively. The large S BET and the d 001 -value improved the high capacity for benzene adsorption. Also, the strong interaction between PdCe mixed oxides and AlNi-PILC led to the high dispersion of PdO and CeO₂ on the support, which was responsible for the high catalytic performance. Especially, 0.2% Pd/12.5% Ce/AlNi-PILC presented high performance for benzene combustion at 240 °C and high CO₂ selectivity. Also, the combustion temperatures were lower compared to the desorption temperatures, which demonstrated that it could accomplish benzene combustion during the desorption process. Furthermore, its activity did not decrease after continuous reaction for 1000 h in dry air, and it also displayed good resistance to water and the chlorinated compound, making it a promising catalytic material for the elimination of volatile organic compounds.

  2. Correlation between the Modified Systemic Lupus Erythematosus Disease Activity Index 2000 and the European Consensus Lupus Activity Measurement in juvenile systemic lupus erythematosus.

    PubMed

    Sato, J O; Corrente, J E; Saad-Magalhães, C

    2016-11-01

    Objective The objective of this study was to assess Modified Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) and European Consensus Lupus Activity Measurement (ECLAM) disease activity correlation in addition to their respective correlation to Pediatric Systemic Lupus International Collaborative Clinics/American College of Rheumatology (SLICC/ACR) Damage Index (Ped-SDI), in juvenile systemic lupus erythematosus (JSLE). Methods The activity indices were scored retrospectively and summarized by adjusted means during follow-up. The Ped-SDI was scored during the last visit for those with more than six months follow-up. Pearson correlation between the Modified SLEDAI-2K and ECLAM, as well as Spearman correlations between the Modified SLEDAI-2K, ECLAM, and Ped-SDI were calculated. The receiver operating characteristic (ROC) curve was calculated for both activity indices discriminating damage measured by Ped-SDI. Results Thirty-seven patients with mean age at diagnosis 11 ± 2.9 years and mean follow-up time 3.2 ± 2.4 years were studied. The Modified SLEDAI-2K and ECLAM adjusted means were highly correlated ( r = 0.78, p < 0.001). Similarly, Spearman correlation between the activity indices was also high ( r s  > 0.7, p < 0.001), but Modified SLEDAI-2K and ECLAM correlation with Ped-SDI was only moderate. ROC analysis discriminant performance for both activity indices resulted in area under curve (AUC) of 0.74 and 0.73 for Modified SLEDAI-2K and ECLAM, respectively. Conclusion The high correlation found between the Modified SLEDAI-2K and ECLAM adjusted means indicated that both tools can be equally useful for longitudinal estimates of JSLE activity.

  3. The association between modifiable well-being risks and productivity: a longitudinal study in pooled employer sample.

    PubMed

    Shi, Yuyan; Sears, Lindsay E; Coberley, Carter R; Pope, James E

    2013-04-01

    To examine the longitudinal relationship between modifiable well-being risks and productivity. A total of 19,121 employees from five employers participated in baseline and follow-up well-being assessment surveys. Multivariate regressions assessed whether changes in absenteeism, presenteeism, and job performance were associated with changes in 19 modifiable well-being risks. Over time, a 5% reduction in total count of well-being risks was significantly associated with 0.74% decrease in absenteeism, 2.38% decrease in presenteeism, and 0.24% increase in performance. High blood pressure, recurring pain, unhealthy diet, inadequate exercise, poor emotional health, poor supervisor relationship, not utilizing strengths doing job, and organization unsupportive of well-being had greater independent contributions in explaining productivity impairment. The often-ignored well-being risks such as work-related and financial health risks provided incremental explanation of longitudinal productivity variations beyond traditional measures of health-related risks.

  4. A modified resistance equation for modeling underwater spark discharge with salinity and high pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Pengfei; Roy, Subrata, E-mail: roy@ufl.edu

    2014-05-07

    This work investigates the performance of underwater spark discharge relating to bubble growth and decay under high pressure and with salinity conditions by introducing a modified form of the resistance equation. Here, we study salinity influence on circuit parameters by fitting the experimental data for which gap resistance is much larger in conductive water than in dielectric water. Accordingly, the resistance equation is modified by considering the influence of both plasma and its surrounding liquid. Thermal radiation effect of the bubble is also studied by comparing two different radiation models. Numerical results predict a larger bubble pressure for saline watermore » but a reduced size and a smaller bubble cycle at a greater water depth. Such study may be useful in many saltwater applications, including that for deep sea conditions.« less

  5. A comparison of two microscale laboratory reporting methods in a secondary chemistry classroom

    NASA Astrophysics Data System (ADS)

    Martinez, Lance Michael

    This study attempted to determine if there was a difference between the laboratory achievement of students who used a modified reporting method and those who used traditional laboratory reporting. The study also determined the relationships between laboratory performance scores and the independent variables score on the Group Assessment of Logical Thinking (GALT) test, chronological age in months, gender, and ethnicity for each of the treatment groups. The study was conducted using 113 high school students who were enrolled in first-year general chemistry classes at Pueblo South High School in Colorado. The research design used was the quasi-experimental Nonequivalent Control Group Design. The statistical treatment consisted of the Multiple Regression Analysis and the Analysis of Covariance. Based on the GALT, students in the two groups were generally in the concrete and transitional stages of the Piagetian cognitive levels. The findings of the study revealed that the traditional and the modified methods of laboratory reporting did not have any effect on the laboratory performance outcome of the subjects. However, the students who used the traditional method of reporting showed a higher laboratory performance score when evaluation was conducted using the New Standards rubric recommended by the state. Multiple Regression Analysis revealed that there was a significant relationship between the criterion variable student laboratory performance outcome of individuals who employed traditional laboratory reporting methods and the composite set of predictor variables. On the contrary, there was no significant relationship between the criterion variable student laboratory performance outcome of individuals who employed modified laboratory reporting methods and the composite set of predictor variables.

  6. BUILDING A BETTER GLUTEAL BRIDGE: ELECTROMYOGRAPHIC ANALYSIS OF HIP MUSCLE ACTIVITY DURING MODIFIED SINGLE-LEG BRIDGES.

    PubMed

    Lehecka, B J; Edwards, Michael; Haverkamp, Ryan; Martin, Lani; Porter, Kambry; Thach, Kailey; Sack, Richard J; Hakansson, Nils A

    2017-08-01

    Gluteal strength plays a role in injury prevention, normal gait patterns, eliminating pain, and enhancing athletic performance. Research shows high gluteal muscle activity during a single-leg bridge compared to other gluteal strengthening exercises; however, prior studies have primarily measured muscle activity with the active lower extremity starting in 90 ° of knee flexion with an extended contralateral knee. This standard position has caused reports of hamstring cramping, which may impede optimal gluteal strengthening. The purpose of this study was to determine which modified position for the single-leg bridge is best for preferentially activating the gluteus maximus and medius. Cross-Sectional. Twenty-eight healthy males and females aged 18-30 years were tested in five different, randomized single-leg bridge positions. Electromyography (EMG) electrodes were placed on subjects' gluteus maximus, gluteus medius, rectus femoris, and biceps femoris of their bridge leg (i.e., dominant or kicking leg), as well as the rectus femoris of their contralateral leg. Subjects performed a maximal voluntary isometric contraction (MVIC) for each tested muscle prior to performing five different bridge positions in randomized order. All bridge EMG data were normalized to the corresponding muscle MVIC data. A modified bridge position with the knee of the bridge leg flexed to 135 ° versus the traditional 90 ° of knee flexion demonstrated preferential activation of the gluteus maximus and gluteus medius compared to the traditional single-leg bridge. Hamstring activation significantly decreased (p < 0.05) when the dominant knee was flexed to 135 ° (23.49% MVIC) versus the traditional 90 ° (75.34% MVIC), while gluteal activation remained similarly high (51.01% and 57.81% MVIC in the traditional position, versus 47.35% and 57.23% MVIC in the modified position for the gluteus maximus and medius, respectively). Modifying the traditional single-leg bridge by flexing the active knee to 135 ° instead of 90 ° minimizes hamstring activity while maintaining high levels of gluteal activation, effectively building a bridge better suited for preferential gluteal activation. 3.

  7. Performance characteristics of the ARCHITECT anti-HCV assay.

    PubMed

    Jonas, Gesa; Pelzer, Claudia; Beckert, Christian; Hausmann, Michael; Kapprell, Hans-Peter

    2005-10-01

    The ARCHITECT Anti-HCV assay is a fully automated high throughput chemiluminescent microparticle immunoassay (CMIA) for the detection of antibodies to structural and nonstructural proteins of the hepatitis C virus (HCV). To further enhance the performance of this test, the assay was modified to improve the specificity for blood donor specimens. The specificity of the enhanced ARCHITECT Anti-HCV assay was evaluated by screening blood donor samples randomly collected from various German blood banks, as well as hospitalized patient samples derived from Germany and the US. Additionally, antibody sensitivity was determined on commercially available anti-HCV seroconversion panels and on a commercially available worldwide anti-HCV genotype performance panel. Apparent specificity of the modified ARCHITECT Anti-HCV assay in a blood donor population consisting of 3811 specimens was 99.92%, compared to 99.76% for the current on-market assay. Additionally, antibody sensitivity was determined on commercially available anti-HCV seroconversion panels. Seroconversion sensitivity equivalent to or better than the current on-market product was observed by testing 33 seroconversion panels. This study demonstrates that the modified version of the ARCHITECT Anti-HCV assay shows improved specificity for blood donor specimens compared to the current assay on market without compromising sensitivity. With the availability of the improved ARCHITECT Anti-HCV assay and the recent launch of the ARCHITECT HIV Ag/Ab Combo assay, the ARCHITECT system now offers a full hepatitis/retrovirus menu with excellent performance on a high throughput, random access, automated analyzer, ideally suited for blood screening and diagnostic applications.

  8. A simple tool for tubing modification to improve spiral high-speed counter-current chromatography for protein purification

    PubMed Central

    Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert

    2016-01-01

    A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 – 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography. PMID:27818942

  9. Correlation between defect transition levels and thermoelectric operational temperature of doped CrSi2

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek; Pandey, Tribhuwan

    2014-03-01

    The performance of a thermoelectric material is quantified by figure of merit ZT. The challenge in achieving high ZT value requires simultaneously high thermopower, high electrical conductivity and low thermal conductivity at optimal carrier concentration. So far doping is the most versatile approach used for modifying thermoelectric properties. Previous studies have shown that doping can significantly improve the thermoelectric performance, however the tuning the operating temperature of a thermoelectric device is a main issue. Using first principles density functional theory, we report for CrSi2, a linear relationship between thermodynamic charge state transition levels of defects and temperature at which thermopower peaks. We show for doped CrSi2 that the peak of thermopower occurs at the temperature Tm, which corresponds to the position of defect transition level. Therefore, by modifying the defect transition level, a thermoelectric material with a given operational temperature can be designed. The authors thankfully acknowledge support from ADA under NpMASS.

  10. Carbon-encapsulated nickel-cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media

    NASA Astrophysics Data System (ADS)

    Guo, Hailing; Youliwasi, Nuerguli; Zhao, Lei; Chai, Yongming; Liu, Chenguang

    2018-03-01

    This paper addresses a new post-treatment strategy for the formation of carbon-encapsulated nickel-cobalt alloys nanoparticles, which is easily controlled the performance of target products via changing precursor composition, calcination conditions (e.g., temperature and atmosphere) and post-treatment condition. Glassy carbon electrode (GCE) modified by the as-obtained carbon-encapsulated mono- and bi-transition metal nanoparticles exhibit excellent electro-catalytic activity for hydrogen production in alkaline water electrolysis. Especially, Ni0.4Co0.6@N-Cs800-b catalyst prepared at 800 °C under an argon flow exhibited the best electrocatalytic performance towards HER. The high HER activity of the Ni0.4Co0.6@N-Cs800-b modified electrode is related to the appropriate nickel-cobalt metal ratio with high crystallinity, complete and homogeneous carbon layers outside of the nickel-cobalt with high conductivity and the synergistic effect of nickel-cobalt alloys that also accelerate electron transfer process.

  11. A simple tool for tubing modification to improve spiral high-speed counter-current chromatography for protein purification.

    PubMed

    Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert

    2016-01-01

    A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 - 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography.

  12. Simply modified indium tin oxides by ultrathin aluminum and sodium chloride composite interlayer for high performance inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Zheng, Shuang; Wu, Zhenxuan; Zhang, Chuan; Liu, Huan; Yan, Minnan; Su, Xiaodan; Wang, Jin; Zhang, Hongmei; Ma, Dongge

    2017-07-01

    We report the fabrication of high performance inverted polymer solar cells with simply modified indium tin oxide (ITO) by an ultrathin aluminum (Al) and sodium chloride (NaCl) composite layer. The device efficiency and stability were both improved. The optimized device with poly(3-hexylthiophene) as the donor and [6,6]-phenyl-C61-butyric acid methylester as the acceptor under AM 1.5 (100 mw cm-2) radiation achieved a high power conversion efficiency of 3.88% with an open-circuit voltage of 0.60 V and a fill factor of 0.61, which is significantly higher than those of the inverted devices with only Al or NaCl as modification interlayer, respectively. Moreover, the stability is enhanced by about 70% more than that of the conventional device. The significant enhancement is attributed to the reduced work function of ITO electrode from 4.75 to 3.90 eV by modification as well as the improvement of the electrode interface.

  13. Robust Timing Synchronization in Aeronautical Mobile Communication Systems

    NASA Technical Reports Server (NTRS)

    Xiong, Fu-Qin; Pinchak, Stanley

    2004-01-01

    This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines the rankings of the Gardner Zero-Crossing Detector and both versions of the Early-Late Gate Synchronizer. The least robust models are the high and low-sample-rate Sliding Window Synchronizers. Consequently, the recommended replacement synchronizer for NASA's Advanced Air Transportation Technologies mobile aeronautical communications system is the high-sample-rate Modified Sliding Window Synchronizer. By incorporating this synchronizer into their system, NASA can be assured that their system will be operational in extremely adverse conditions. The quick convergence time of the MSWS should allow the use of high-level protocols. However, if NASA feels that reduced system complexity is the most important aspect of their replacement synchronizer, the Gardner Zero-Crossing Detector would be the best choice.

  14. Improving mixing efficiency of a polymer micromixer by use of a plastic shim divider

    NASA Astrophysics Data System (ADS)

    Li, Lei; Lee, L. James; Castro, Jose M.; Yi, Allen Y.

    2010-03-01

    In this paper, a critical modification to a polymer based affordable split-and-recombination static micromixer is described. To evaluate the improvement, both the original and the modified design were carefully investigated using an experimental setup and numerical modeling approach. The structure of the micromixer was designed to take advantage of the process capabilities of both ultraprecision micromachining and microinjection molding process. Specifically, the original and the modified design were numerically simulated using commercial finite element method software ANSYS CFX to assist the re-designing of the micromixers. The simulation results have shown that both designs are capable of performing mixing while the modified design has a much improved performance. Mixing experiments with two different fluids were carried out using the original and the modified mixers again showed a significantly improved mixing uniformity by the latter. The measured mixing coefficient for the original design was 0.11, and for the improved design it was 0.065. The developed manufacturing process based on ultraprecision machining and microinjection molding processes for device fabrication has the advantage of high-dimensional precision, low cost and manufacturing flexibility.

  15. Rapid preparation of biosorbents with high ion exchange capacity from rice straw and bagasse for removal of heavy metals.

    PubMed

    Rungrodnimitchai, Supitcha

    2014-01-01

    This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g) and shorter reaction time (1.5-5.0 min) than the phosphorylation by oil bath heating. Adsorption experiments towards Pb²⁺, Cd²⁺, and Cr³⁺ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L). The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax). As a result of Pb²⁺ sorption test, the modified rice straw (RH-NaOH 450W) removed Pb²⁺ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin) took 90 min for the same removal efficiency.

  16. Aerodynamic Performance and Static Stability at Mach Number 3.3 of an Aircraft Configuration Employing Three Triangular Wing Panels and a Body Equal Length

    NASA Technical Reports Server (NTRS)

    James, Carlton S.

    1960-01-01

    An aircraft configuration, previously conceived as a means to achieve favorable aerodynamic stability characteristics., high lift-drag ratio, and low heating rates at high supersonic speeds., was modified in an attempt to increase further the lift-drag ratio without adversely affecting the other desirable characteristics. The original configuration consisted of three identical triangular wing panels symmetrically disposed about an ogive-cylinder body equal in length to the root chord of the panels. This configuration was modified by altering the angular disposition of the wing panels, by reducing the area of the panel forming the vertical fin, and by reshaping the body to produce interference lift. Six-component force and moment tests of the modified configuration at combined angles of attack and sideslip were made at a Mach number of 3.3 and a Reynolds number of 5.46 million. A maximum lift-drag ratio of 6.65 (excluding base drag) was measured at a lift coefficient of 0.100 and an angle of attack of 3.60. The lift-drag ratio remained greater than 3 up to lift coefficient of 0.35. Performance estimates, which predicted a maximum lift-drag ratio for the modified configuration 27 percent greater than that of the original configuration, agreed well with experiment. The modified configuration exhibited favorable static stability characteristics within the test range. Longitudinal and directional centers of pressure were slightly aft of the respective centroids of projected plan-form and side area.

  17. Low Temperature and Modified Atmosphere: Hurdles for Antibiotic Resistance Transfer?

    PubMed

    Van Meervenne, Eva; Van Coillie, Els; Van Weyenberg, Stephanie; Boon, Nico; Herman, Lieve; Devlieghere, Frank

    2015-12-01

    Food is an important dissemination route for antibiotic-resistant bacteria. Factors used during food production and preservation may contribute to the transfer of antibiotic resistance genes, but research on this subject is scarce. In this study, the effect of temperature (7 to 37°C) and modified atmosphere packaging (air, 50% CO2-50% N2, and 100% N2) on antibiotic resistance transfer from Lactobacillus sakei subsp. sakei to Listeria monocytogenes was evaluated. Filter mating was performed on nonselective agar plates with high-density inocula. A more realistic setup was created by performing modified atmosphere experiments on cooked ham using high-density and low-density inocula. Plasmid transfer was observed between 10 and 37°C, with plasmid transfer also observed at 7°C during a prolonged incubation period. When high-density inocula were used, transconjugants were detected, both on agar plates and cooked ham, under the three atmospheres (air, 50% CO2-50% N2, and 100% N2) at 7°C. This yielded a median transfer ratio (number of transconjugants/number of recipients) with an order of magnitude of 10(-4) to 10(-6). With low-density inocula, transfer was only detected under the 100% N2 atmosphere after 10-day incubation at 7°C, yielding a transfer ratio of 10(-5). Under this condition, the highest bacterial density was obtained. The results indicate that low temperature and modified atmosphere packaging, two important hurdles in the food industry, do not necessarily prevent plasmid transfer from Lactobacillus sakei subsp. sakei to Listeria monocytogenes.

  18. Decreases in high-fat and/or high added sugar food group intake occur when a hypocaloric, low-fat diet is prescribed within a lifestyle intervention: a secondary cohort analysis

    PubMed Central

    Keshani, Vaishali Deepak; Sheikh, Vaishali Keshani; Raynor, Hollie Anne

    2016-01-01

    Background When a hypocaloric, low-fat diet is prescribed, intake of currently consumed foods can decrease, foods naturally low in fat and/or added sugar may increase, or fat- or sugar-modified foods may increase. Objective Examine food group intake change and its relation to reductions in energy and fat intake, and weight during a lifestyle intervention. Design Secondary cohort analysis. Participants One hundred sixty-nine participants (52.0 ± 8.6 years, 34.9 ± 4.5 kg/m2, 92% white, 97.6% non-Hispanic, and 56.8% female) with complete data at 0 and 6 months collected in a research setting. Main Outcome Measures From 3, 24-hr phone dietary recalls, 165 food groups from NDSR software were coded into 25 larger food groups assessing intake of higher fat and/or added sugar food groups vs. naturally lower fat and/or added sugar food groups and into 17 larger food groups assessing intake of non-modified vs. fat- and/or sugar-modified food groups. Statistical Analyses Performed Repeated measures analyses of covariance (intervention group: covariate) assessed changes from 0 to 6 months. Hierarchical regressions examined changes in food group intake and changes in energy intake, percent energy from fat intake, and weight from 0 to 6 months. Results Significant reductions (p < 0.05) in intake of high-fat and/or high-added sugar food groups (Higher Fat Dairy, Higher Fat Eggs, Higher Fat Fats, Higher Fat Fruit, Higher Fat Meat, Non-Modified Higher Fat Fats Oils and Sweets, Non-Modified Higher Fat Sugar Sweetened Fats Oils and Sweets, Non-Modified Regular Fat Dairy, Non-Modified Regular Fat Sugar Sweetened Dairy) occurred. Decreases in Higher Fat Meat were significantly (p < 0.05) related to decreases in energy intake, percent energy from fat intake, and weight. Conclusion When a hypocaloric, low-fat diet is prescribed, reductions in high-fat and/or high-added sugar food groups occur. Targeting reductions in high-fat meats may improve outcomes. PMID:27436530

  19. Stable, fast and high-energy-density LiCoO2 cathode at high operation voltage enabled by glassy B2O3 modification

    NASA Astrophysics Data System (ADS)

    Zhou, Aijun; Wang, Weihang; Liu, Qin; Wang, Yi; Yao, Xu; Qing, Fangzhu; Li, Enzhu; Yang, Tingting; Zhang, Long; Li, Jingze

    2017-09-01

    In this work, commercial LiCoO2 is modified with a glassy B2O3 by solution mixing with H3BO3 followed by post-calcination in order to enhance its high-voltage electrochemical performance. The glassy B2O3 coating/additive is believed to serve as an effective physiochemical buffer and protection between LiCoO2 and liquid electrolyte, which can suppress the high-voltage induced electrolyte decomposition and active material dissolution. During the early cycling and due to the electrochemical force, the as-coated B2O3 glasses which have 3D open frameworks tend to accommodate some mobile Li+ and form a more chemically-resistant and ion-conductive lithium boron oxide (LBO) interphase as a major component of the solid electrolyte interphase (SEI), which consequently enables much easier Li+ diffusion/transfer at the solid-liquid interfaces upon further cycling. Due to the synergetic effects of B2O3 coating/modification, the high-voltage capacity and energy density of the B2O3-modified LiCoO2 cathode are promisingly improved by 35% and 30% after 100 cycles at 1 C within 3.0-4.5 V vs. Li/Li+. Meanwhile, the high-rate performance of the B2O3-modified electrode is even more greatly improved, showing a capacity of 105 mAh g-1 at 10 C while the bare electrode has dropped to no more than 30 mAh g-1 under this rate condition.

  20. High performance SMC matrix for structural applications

    NASA Astrophysics Data System (ADS)

    Salard, T.; Lortie, F.; Gérard, J. F.; Peyre, C.

    2016-07-01

    Mechanical properties of a common SMC (Sheet Molding Compound) matrix constituted of a vinylester resin and a Low-Profile Additive (LPA) were compared to those of vinylester modified with core-shell rubber (CSR) particles. Valuable properties are brought by CSR, especially high impact strength, high fracture toughness with little loss in stiffness, in spite of the presence of CSR agglomerates in blends.

  1. High Resolution Full-Aperture ISAR Processing through Modified Doppler History Based Motion Compensation

    PubMed Central

    Song, Jung-Hwan; Lee, Kee-Woong; Lee, Woo-Kyung; Jung, Chul-Ho

    2017-01-01

    A high resolution inverse synthetic aperture radar (ISAR) technique is presented using modified Doppler history based motion compensation. To this purpose, a novel wideband ISAR system is developed that accommodates parametric processing over extended aperture length. The proposed method is derived from an ISAR-to-SAR approach that makes use of high resolution spotlight SAR and sub-aperture recombination. It is dedicated to wide aperture ISAR imaging and exhibits robust performance against unstable targets having non-linear motions. We demonstrate that the Doppler histories of the full aperture ISAR echoes from disturbed targets are efficiently retrieved with good fitting models. Experiments have been conducted on real aircraft targets and the feasibility of the full aperture ISAR processing is verified through the acquisition of high resolution ISAR imagery. PMID:28555036

  2. Free-standing sulfur host based on titanium-dioxide-modified porous-carbon nanofibers for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Song, Xiong; Gao, Tuo; Wang, Suqing; Bao, Yue; Chen, Guoping; Ding, Liang-Xin; Wang, Haihui

    2017-07-01

    Lithium-sulfur (Li-S) batteries are regarded as a promising next-generation electrical-energy-storage technology due to their low cost and high theoretical energy density. Furthermore, flexible and wearable electronics urgently requires their power sources to be mechanically robust and flexible. However, the effective progress of high-performance, flexible Li-S batteries is still hindered by the poor conductivity of sulfur cathodes and the dissolution of lithium polysulfides as well as the weak mechanical properties of sulfur cathodes. Herein, a new type of flexible porous carbon nanofiber film modified with graphene and ultrafine polar TiO2 nanoparticles is designed as a sulfur host, in which the artful structure enabled the highly efficient dispersion of sulfur for a high capacity and a strong confinement capability of lithium polysulfides, resulting in prolonged cycle life. Thus, the cathode shows an extremely high initial specific discharge capacity of 1501 mA h g-1 at 0.1 C and an excellent rate capability of 668 mA h g-1 at 5 C as well as prolonged cycling stability. The artful design provides a facile method to fabricate high-performance, flexible sulfur cathodes for Li-S batteries.

  3. Power-Stepped HF Cross-Modulation Experiments: Simulations and Experimental Observations

    NASA Astrophysics Data System (ADS)

    Greene, S.; Moore, R. C.

    2014-12-01

    High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. The interaction between the heating wave and the probing pulse depends on the ambient and modified conditions of the D-region ionosphere. Cross-modulation observations are employed as a measure of the HF-modified refractive index. We employ an optimized version of Fejer's method that we developed during previous experiments. Experiments were performed in March 2013 at the High Frequency Active Auroral Research Program (HAARP) observatory in Gakona, Alaska. During these experiments, the power of the HF heating signal incrementally increased in order to determine the dependence of cross-modulation on HF power. We found that a simple power law relationship does not hold at high power levels, similar to previous ELF/VLF wave generation experiments. In this paper, we critically compare these experimental observations with the predictions of a numerical ionospheric HF heating model and demonstrate close agreement.

  4. New Finger Biometric Method Using Near Infrared Imaging

    PubMed Central

    Lee, Eui Chul; Jung, Hyunwoo; Kim, Daeyeoul

    2011-01-01

    In this paper, we propose a new finger biometric method. Infrared finger images are first captured, and then feature extraction is performed using a modified Gaussian high-pass filter through binarization, local binary pattern (LBP), and local derivative pattern (LDP) methods. Infrared finger images include the multimodal features of finger veins and finger geometries. Instead of extracting each feature using different methods, the modified Gaussian high-pass filter is fully convolved. Therefore, the extracted binary patterns of finger images include the multimodal features of veins and finger geometries. Experimental results show that the proposed method has an error rate of 0.13%. PMID:22163741

  5. Enhancing Application Performance Using Mini-Apps: Comparison of Hybrid Parallel Programming Paradigms

    NASA Technical Reports Server (NTRS)

    Lawson, Gary; Sosonkina, Masha; Baurle, Robert; Hammond, Dana

    2017-01-01

    In many fields, real-world applications for High Performance Computing have already been developed. For these applications to stay up-to-date, new parallel strategies must be explored to yield the best performance; however, restructuring or modifying a real-world application may be daunting depending on the size of the code. In this case, a mini-app may be employed to quickly explore such options without modifying the entire code. In this work, several mini-apps have been created to enhance a real-world application performance, namely the VULCAN code for complex flow analysis developed at the NASA Langley Research Center. These mini-apps explore hybrid parallel programming paradigms with Message Passing Interface (MPI) for distributed memory access and either Shared MPI (SMPI) or OpenMP for shared memory accesses. Performance testing shows that MPI+SMPI yields the best execution performance, while requiring the largest number of code changes. A maximum speedup of 23 was measured for MPI+SMPI, but only 11 was measured for MPI+OpenMP.

  6. Strandboard made from soy-based adhesive with high soy content

    Treesearch

    Zhiyong Cai; James M. Wescott; Jerrold E. Winandy

    2005-01-01

    A novel green adhesive with high soy content has recently been developed (13) with a process that denatures soy flour, modifies resulting protein with formaldehyde, and uses suitable phenolic crosslinking agents for copolymerization. Compared with mechanical and physical performances of oriented strandboard, the new adhesive showed promise for improving panel...

  7. Surface-modified Mg{sub 2}Ni-type negative electrode materials for Ni-MH battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, N.; Luan, B.; Bradhurst, D.

    1997-12-01

    In order to further improve the electrode performance of Mg{sub 1.9}Y{sub 0.1}Ni{sub 0.9}Al{sub 0.1} alloy at ambient temperature, its surface was modified by an ultrasound pretreatment in the alkaline solution and microencapsulation with Ni-P coating. The effects of various surface modifications on the microstructure and electrochemical performance of the alloy electrodes were investigated and compared in this paper. It was found that the modification with ultrasound pretreatment significantly improved the electrocatalytic activity of the negative electrode and then reduced the overpotential of charging/discharging, resulting in a remarkable increase of electrode capacity and high-rate discharge capability but having little influence onmore » the cycle life. However, the electrode fabricated from the microencapsulated alloy powder showed a higher discharge capacity, better high-rate discharge capability and longer cycle life as well.« less

  8. The Evaluation of a Modified Chrome Oxide Based High Temperature Solid Lubricant Coating for Foil Gas Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Chris

    1998-01-01

    This paper describes the friction and wear performance of PS304, a modified chrome oxide based coating, for foil gas bearings. PS304 contains 60 wt% NiCr binder, 20 wt% Cr2O3 hardener, and 10 wt% each Ag, and BaF2/CaF2 lubricants. For evaluation, the coating is plasma spray deposited onto test journals which are slid against a superalloy partial arc foil bearing. The test load was 10 KPa (1.5 psi) and the bearings were run under start/stop cyclic conditions. The data show good wear performance of the bearing, especially at temperatures above 25 deg. C. Bearing friction was moderate (micron approx. or equal to 0.4) over the entire temperature range. Based upon the results obtained, the PS304 coating has promise for high temperature, oil-free turbomachinery applications.

  9. A novel carbon electrode material for highly improved EDLC performance.

    PubMed

    Fang, Baizeng; Binder, Leo

    2006-04-20

    Porous materials, developed by grafting functional groups through chemical surface modification with a surfactant, represent an innovative concept in energy storage. This work reports, in detail, the first practical realization of a novel carbon electrode based on grafting of vinyltrimethoxysilane (vtmos) functional group for energy storage in electric double layer capacitor (EDLC). Surface modification with surfactant vtmos enhances the hydrophobisation of activated carbon and the affinity toward propylene carbonate (PC) solvent, which improves the wettability of activated carbon in the electrolyte solution based on PC solvent, resulting in not only a lower resistance to the transport of electrolyte ions within micropores of activated carbon but also more usable surface area for the formation of electric double layer, and accordingly, higher specific capacitance, energy density, and power capability available from the capacitor based on modified carbon. Especially, the effects from surface modification become superior at higher discharge rate, at which much better EDLC performance (i.e., much higher energy density and power capability) has been achieved by the modified carbon, suggesting that the modified carbon is a novel and very promising electrode material of EDLC for large current applications where both high energy density and power capability are required.

  10. High Photocatalytic Performance of Two Types of Graphene Modified TiO2 Composite Photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Sen; Tang, Bo; Wang, Zhengwei; Ji, Guojian; Huang, Weiqiu; Wang, Jinping

    2017-07-01

    High quality and naturally continuous structure of three-dimensional graphene network (3DGN) endow it a promising candidate to modify TiO2. Although the resulting composite photocatalysts display outstanding performances, the lacking of active sites of the 3DGN not only goes against a close contact between the graphene basal plane and TiO2 nanoparticles (weaken electron transport ability) but also limits the efficient adsorption of pollutant molecules. Similar with surface functional groups of the reduced graphene oxide (RGO) nanosheets, surface defects of the 3DGN can act as the adsorption sites. However, the defect density of the 3DGN is difficult to control (a strict cool rate of substrate and a strict flow of precursor gas are necessary) because of its growth approach (chemical vapor deposition method). In this study, to give full play to the functions of graphene, the RGO nanosheets and 3DGN co-modified TiO2 composite photocatalysts are prepared. After optimizing the mass fraction of the RGO nanosheets in the composite photocatalyst, the resulting chemical adsorption ability and yields of strong oxidizing free radicals increase significantly, indicating the synergy of the RGO nanosheets and 3DGN.

  11. Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene black-CoS2 modified separator: Mechanism research and performance improvement

    NASA Astrophysics Data System (ADS)

    Zeng, Pan; Huang, Liwu; Zhang, Xinling; Han, Yamiao; Chen, Yungui

    2018-01-01

    Lithium-sulfur (Li-S) batteries are considered as one of the most promising chemistries in secondary energy storage field owing to their high energy density. However, the poor electrochemical performance mainly associated with the polysulfides shuttle has greatly hampered their practical application. Herein, a simple acetylene black (AB)-CoS2 coated separator is first designed to suppress the migration of polysulfides. The AB-CoS2 modified separator can not only efficiently capture the polysulfides by forming strong chemical bonding but also guarantee the rapid lithium ions diffusion. Moreover, the AB-CoS2 coating could serve as an upper current collector to accelerate electron transport for reinforcing the utilization of sulfur and ensuring the reactivation of the trapped active material. Consequently, the Li-S cell using AB-CoS2 modified separator shows a long-term cycling stability with an extremely low decay rate (0.09% per cycle) up to 450 cycles at a high rate of 2 C (3350 mA g-1). It also exhibits excellent rate capabilities, which maintains a capacity of 475 mAh g-1 even at 4.0 C rate.

  12. Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $$\\sqrt{s}=$$ 13 TeV

    DOE PAGES

    Sirunyan, Albert M; et al.

    2018-06-19

    The CMS muon detector system, muon reconstruction software, and high-level trigger underwent significant changes in 2013-2014 in preparation for running at higher LHC collision energy and instantaneous luminosity. The performance of the modified system is studied using proton-proton collision data at center-of-mass energymore » $$\\sqrt{s}=$$ 13 TeV, collected at the LHC in 2015 and 2016. The measured performance parameters, including spatial resolution, efficiency, and timing, are found to meet all design specifications and are well reproduced by simulation. Despite the more challenging running conditions, the modified muon system is found to perform as well as, and in many aspects better than, previously. We dedicate this paper to the memory of Prof. Alberto Benvenuti, whose work was fundamental for the CMS muon detector.« less

  13. Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $$\\sqrt{s}=$$ 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    The CMS muon detector system, muon reconstruction software, and high-level trigger underwent significant changes in 2013-2014 in preparation for running at higher LHC collision energy and instantaneous luminosity. The performance of the modified system is studied using proton-proton collision data at center-of-mass energymore » $$\\sqrt{s}=$$ 13 TeV, collected at the LHC in 2015 and 2016. The measured performance parameters, including spatial resolution, efficiency, and timing, are found to meet all design specifications and are well reproduced by simulation. Despite the more challenging running conditions, the modified muon system is found to perform as well as, and in many aspects better than, previously. We dedicate this paper to the memory of Prof. Alberto Benvenuti, whose work was fundamental for the CMS muon detector.« less

  14. How Does the Relationship Between Motor Skill Performance and Body Mass Index Impact Physical Activity in Preschool Children?

    PubMed

    Guo, Haixia; Schenkelberg, Michaela A; O'Neill, Jennifer R; Dowda, Marsha; Pate, Russell R

    2018-05-01

    To determine if weight status modifies the relationship between motor skill (MS) performance and physical activity (PA) in preschoolers. Preschoolers (N = 227, age 3-5 y) were recruited from 22 preschools. Preschoolers' MS (locomotor, object control, and total MS) were assessed with the Children's Activity and Movement in Preschool Study MS protocol. PA was measured by accelerometry. Mixed linear models were used to examine the relationship of MS performance and body mass index (BMI) z score to PA. Models were adjusted for age, race, sex, and parent education, with preschool as a random effect. There was a significant correlation between MS performance and PA (r = .14-.17, P < .05). A significant interaction was observed between BMI z score and object control, and between BMI z score and total MS score on PA (P = .03). Preschoolers with higher BMI z scores and high object control scores engaged in significantly (P = .03) more PA than preschoolers with lower BMI z scores and high object control scores (PA = 15.04 min/h and 13.54 min/h, respectively). Similarly, preschoolers with higher BMI z scores and high total MS scores spent significantly (P = .01) more time in PA compared with those with lower BMI z scores and high total MS scores (PA = 15.65 min/h and 13.91 min/h, respectively). Preschool children's MS performance is positively correlated with PA, and BMI z score modified the relationship between MS performance and PA.

  15. Silver-modified mobile phase for normal-phase liquid chromatographic determination of prostaglandins and their 5,6-trans isomers in prostaglandin bulk drugs and triacetin solutions.

    PubMed

    Kissinger, L D; Robins, R H

    1985-03-15

    A silver-modified, normal-phase, high-performance liquid chromatographic system has been developed for prostaglanding bulk drugs and triacetin solutions. Silver nitrate present in the mobile phase results in high selectivity for cis/trans isomers with conventional silica columns. Prostaglandins were esterified with alpha-bromo-2'-acetonaphthone prior to chromatography to provide high detectability at 254 nm. For dilute triacetin solutions, a sample preparation scheme based on gravity-flow chromatography with silica columns was developed to isolate the prostaglandin from triacetin prior to derivatization. The analytical technique was applied to triacetin solutions containing as little as 10 micrograms/ml arbaprostil [15-(R)-methyl-PGE2].

  16. Effects of preparation process on performance of rubber modified asphalt

    NASA Astrophysics Data System (ADS)

    Liu, Hanbing; Luo, Guobao; Wang, Xianqiang; Jiao, Yubo

    2015-06-01

    The rational utilization of waste rubber tire is essential for the environmental protection. Utilizing rubber particles to modify asphalt can not only improve asphalt performance, but also help the recycling of waste materials. Considering the effect of different preparation process parameters on the performance of rubber modified asphalt, this paper analyzes the effects of the shear temperature, shear time and shear rate on the performance of rubber modified asphalt, and provided a reference for its preparation.

  17. Optimal modified tracking performance for MIMO networked control systems with communication constraints.

    PubMed

    Wu, Jie; Zhou, Zhu-Jun; Zhan, Xi-Sheng; Yan, Huai-Cheng; Ge, Ming-Feng

    2017-05-01

    This paper investigates the optimal modified tracking performance of multi-input multi-output (MIMO) networked control systems (NCSs) with packet dropouts and bandwidth constraints. Some explicit expressions are obtained by using co-prime factorization and the spectral decomposition technique. The obtained results show that the optimal modified tracking performance is related to the intrinsic properties of a given plant such as non-minimum phase (NMP) zeros, unstable poles, and their directions. Furthermore, the modified factor, packet dropouts probability and bandwidth also impact the optimal modified tracking performance of the NCSs. The optimal modified tracking performance with channel input power constraint is obtained by searching through all stabilizing two-parameter compensator. Finally, some typical examples are given to illustrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Investigation of the Effect of Oil Modification on Critical Characteristics of Asphalt Binders

    NASA Astrophysics Data System (ADS)

    Golalipour, Amir

    Thermally induced cracking of asphalt pavement continues to be a serious issue in cold climate regions as well as in areas which experience extreme daily temperature differentials. Low temperature cracking of asphalt pavements is attributed to thermal stresses and strains developed during cooling cycles. Improving asphalt binder low temperature fracture and stiffness properties continues to be a subject of particular concern. Therefore, significant amount of research has been focused on improving asphalt binder properties through modification. In recent years, wide ranges of oil based modifications have been introduced to improve asphalt binder performance, especially at the low service temperatures. Although, significant use of these oils is seen in practice, knowledge of the fundamental mechanisms of oil modification and their properties for achieving optimum characteristics is limited. Hence, this study focuses on better understanding of the effect of oil modifiers which would help better material selection and achieve optimum performance in terms of increasing the life span of pavements. In this study, the effect of oil modification on the rheological properties of the asphalt binder is investigated. To examine the effect of oil modification on binder characteristics, low temperature properties as well as high temperature performance of oil modified binders were evaluated. It is found that oils vary in their effects on asphalt binder performance. However, for all oils used in the study, adding an oil to binder can improve binder low temperature performance, and this result mainly attributed to the softening effect. In addition to that, a simple linear model is proposed to predict the performance grade of oil modified binder based on the properties of its constituents at high and low temperatures. Another part of this study focuses on the oil modification effect on asphalt binder thermal strain and stresses. A viscoelastic analytical procedure is combined with experimentally derived failure stress and strain envelopes to determine the controlling failure mechanism, strain tolerance or critical stress, in thermal cracking of oil modified binders. The low temperature failure results depict that oil modification has a good potential of improving the cracking resistance of asphalt binders during thermal cycles.

  19. Versatile quantitative phase imaging system applied to high-speed, low noise and multimodal imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Federici, Antoine; Aknoun, Sherazade; Savatier, Julien; Wattellier, Benoit F.

    2017-02-01

    Quadriwave lateral shearing interferometry (QWLSI) is a well-established quantitative phase imaging (QPI) technique based on the analysis of interference patterns of four diffraction orders by an optical grating set in front of an array detector [1]. As a QPI modality, this is a non-invasive imaging technique which allow to measure the optical path difference (OPD) of semi-transparent samples. We present a system enabling QWLSI with high-performance sCMOS cameras [2] and apply it to perform high-speed imaging, low noise as well as multimodal imaging. This modified QWLSI system contains a versatile optomechanical device which images the optical grating near the detector plane. Such a device is coupled with any kind of camera by varying its magnification. In this paper, we study the use of a sCMOS Zyla5.5 camera from Andor along with our modified QWLSI system. We will present high-speed live cell imaging, up to 200Hz frame rate, in order to follow intracellular fast motions while measuring the quantitative phase information. The structural and density information extracted from the OPD signal is complementary to the specific and localized fluorescence signal [2]. In addition, QPI detects cells even when the fluorophore is not expressed. This is very useful to follow a protein expression with time. The 10 µm spatial pixel resolution of our modified QWLSI associated to the high sensitivity of the Zyla5.5 enabling to perform high quality fluorescence imaging, we have carried out multimodal imaging revealing fine structures cells, like actin filaments, merged with the morphological information of the phase. References [1]. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, "Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells," Opt. Express, vol. 17, pp. 13080-13094, 2009. [2] P. Bon, S. Lécart, E. Fort and S. Lévêque-Fort, "Fast label-free cytoskeletal network imaging in living mammalian cells," Biophysical journal, 106(8), pp. 1588-1595, 2014

  20. Assessing performance outcomes of new graduates utilizing simulation in a military transition program.

    PubMed

    Hughes, Robie V; Smith, Sherrill J; Sheffield, Clair M; Wier, Grady

    2013-01-01

    This multi-site, quasi-experimental study examined the performance outcomes of nurses (n = 152) in a military nurse transition program. A modified-performance instrument was used to assess participants in two high-fidelity simulation scenarios. Although results indicated a significant increase in scores posttraining, only moderate interrater reliability results were found for the new instrument. These findings have implications for nurse educators assessing performance-based outcomes of new nurses completing transition programs.

  1. Genetic engineering of industrial Saccharomyces cerevisiae strains using a selection/counter-selection approach.

    PubMed

    Kutyna, Dariusz R; Cordente, Antonio G; Varela, Cristian

    2014-01-01

    Gene modification of laboratory yeast strains is currently a very straightforward task thanks to the availability of the entire yeast genome sequence and the high frequency with which yeast can incorporate exogenous DNA into its genome. Unfortunately, laboratory strains do not perform well in industrial settings, indicating the need for strategies to modify industrial strains to enable strain development for industrial applications. Here we describe approaches we have used to genetically modify industrial strains used in winemaking.

  2. Finite element analysis of constrained total Condylar Knee Prosthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-13

    Exactech, Inc., is a prosthetic joint manufacturer based in Gainesville, FL. The company set the goal of developing a highly effective prosthetic articulation, based on scientific principles, not trial and error. They developed an evolutionary design for a total knee arthroplasty system that promised improved performance. They performed static load tests in the laboratory with similar previous designs, but dynamic laboratory testing was both difficult to perform and prohibitively expensive for a small business to undertake. Laboratory testing also cannot measure stress levels in the interior of the prosthesis where failures are known to initiate. To fully optimize their designsmore » for knee arthroplasty revisions, they needed range-of-motion stress/strain data at interior as well as exterior locations within the prosthesis. LLNL developed computer software (especially NIKE3D) specifically designed to perform stress/strain computations (finite element analysis) for complex geometries in large displacement/large deformation conditions. Additionally, LLNL had developed a high fidelity knee model for other analytical purposes. The analysis desired by Exactech could readily be performed using NIKE3D and a modified version of the high fidelity knee that contained the geometry of the condylar knee components. The LLNL high fidelity knee model was a finite element computer model which would not be transferred to Exactech during the course of this CRADA effort. The previously performed laboratory studies by Exactech were beneficial to LLNL in verifying the analytical capabilities of NIKE3D for human anatomical modeling. This, in turn, gave LLNL further entree to perform work-for-others in the prosthetics field. There were two purposes to the CRADA (1) To modify the LLNL High Fidelity Knee Model to accept the geometry of the Exactech Total Knee; and (2) To perform parametric studies of the possible design options in appropriate ranges of motion so that an optimum design could be selected for production. Because of unanticipated delays in the CRADA funding, the knee design had to be finalized before the analysis could be accomplished. Thus, the scope of work was modified by the industrial partner. It was decided that it would be most beneficial to perform FEA that would closely replicate the lab tests that had been done as the basis of the design. Exactech was responsible for transmitting the component geometries to Livermore, as well as providing complete data from the quasi-static laboratory loading tests that were performed on various designs. LLNL was responsible for defining the basic finite element mesh and carrying out the analysis. We performed the initial computer simulation and verified model integrity, using the laboratory data. After performing the parametric studies, the results were reviewed with Exactech. Also, the results were presented at the Orthopedic Research Society meeting in a poster session.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourdon, Christopher Jay; Olsen, Michael G.; Gorby, Allen D.

    The analytical model for the depth of correlation (measurement depth) of a microscopic particle image velocimetry (micro-PIV) experiment derived by Olsen and Adrian (Exp. Fluids, 29, pp. S166-S174, 2000) has been modified to be applicable to experiments using high numerical aperture optics. A series of measurements are presented that experimentally quantify the depth of correlation of micro-PIV velocity measurements which employ high numerical aperture and magnification optics. These measurements demonstrate that the modified analytical model is quite accurate in estimating the depth of correlation in micro-PIV measurements using this class of optics. Additionally, it was found that the Gaussian particlemore » approximation made in this model does not significantly affect the model's performance. It is also demonstrated that this modified analytical model easily predicts the depth of correlation when viewing into a medium of a different index of refraction than the immersion medium.« less

  4. Chromium and reactive element modified aluminide diffusion coatings on superalloys - Environmental testing

    NASA Technical Reports Server (NTRS)

    Bianco, Robert; Rapp, Robert A.; Smialek, James L.

    1993-01-01

    The high temperature performance of reactive element (RE)-doped and Cr/RE-modified aluminide diffusion coatings on commercial Ni-base alloy substrates was determined. In isothermal oxidation at 1100 C in air, RE-doped aluminide coatings on IN 713LC substrates formed a continuous slow-growing n-Al2O3 scale after 44 hrs of exposure. The coatings were protected by either an outer ridge Al2O3 scale with an inner compact Al2O3 scale rich in RE or by a continuous compact scale without any noticeable cracks or flaws. The cyclic oxidation behavior of Cr/RE-modified aluminide coatings on Rene 80 and IN 713LC alloys and of RE-doped aluminide coatings on IN 713LC alloys at 1100 C in static air was determined. Pack powder entrapment from the powder contacting (PC) process detracted significantly from the overall cyclic oxidation performance. Type I hot corrosion behavior of Cr/RE-modified aluminide coatings on Rene 80 and Mar-M247 alloy substrates at 900 C in a catalyzed 0.1 percent SO3/O3 gas mixture was determined. The modified coatings produced from the PC arrangement provided significantly better resistance to hot corrosion attack than commercial low-activity aluminide coatings produced by the above pack arrangement.

  5. Attention Modifies Spatial Resolution According to Task Demands.

    PubMed

    Barbot, Antoine; Carrasco, Marisa

    2017-03-01

    How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands.

  6. Attention Modifies Spatial Resolution According to Task Demands

    PubMed Central

    Barbot, Antoine; Carrasco, Marisa

    2017-01-01

    How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands. PMID:28118103

  7. Molecular interfaces for plasmonic hot electron photovoltaics

    NASA Astrophysics Data System (ADS)

    Pelayo García de Arquer, F.; Mihi, Agustín; Konstantatos, Gerasimos

    2015-01-01

    The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices.The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices. Electronic supplementary information (ESI) available: Contact-potential differentiometry measurements, FTIR characterization, performance statistics and gold devices. See DOI: 10.1039/c4nr06356b

  8. Improving quantitative gas chromatography-electron ionization mass spectrometry results using a modified ion source: demonstration for a pharmaceutical application.

    PubMed

    D'Autry, Ward; Wolfs, Kris; Hoogmartens, Jos; Adams, Erwin; Van Schepdael, Ann

    2011-07-01

    Gas chromatography-mass spectrometry is a well established analytical technique. However, mass spectrometers with electron ionization sources may suffer from signal drifts, hereby negatively influencing quantitative performance. To demonstrate this phenomenon for a real application, a static headspace-gas chromatography method in combination with electron ionization-quadrupole mass spectrometry was optimized for the determination of residual dichloromethane in coronary stent coatings. Validating the method, the quantitative performance of an original stainless steel ion source was compared to that of a modified ion source. Ion source modification included the application of a gold coating on the repeller and exit plate. Several validation aspects such as limit of detection, limit of quantification, linearity and precision were evaluated using both ion sources. It was found that, as expected, the stainless steel ion source suffered from signal drift. As a consequence, non-linearity and high RSD values for repeated analyses were obtained. An additional experiment was performed to check whether an internal standard compound would lead to better results. It was found that the signal drift patterns of the analyte and internal standard were different, consequently leading to high RSD values for the response factor. With the modified ion source however, a more stable signal was observed resulting in acceptable linearity and precision. Moreover, it was also found that sensitivity improved compared to the stainless steel ion source. Finally, the optimized method with the modified ion source was applied to determine residual dichloromethane in the coating of coronary stents. The solvent was detected but found to be below the limit of quantification. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Emotion processing facilitates working memory performance.

    PubMed

    Lindström, Björn R; Bohlin, Gunilla

    2011-11-01

    The effect of emotional stimulus content on working memory performance has been investigated with conflicting results, as both emotion-dependent facilitation and impairments are reported in the literature. To clarify this issue, 52 adult participants performed a modified visual 2-back task with highly arousing positive stimuli (sexual scenes), highly arousing negative stimuli (violent death) and low-arousal neutral stimuli. Emotional stimulus processing was found to facilitate task performance relative to that of neutral stimuli, both in regards to response accuracy and reaction times. No emotion-dependent differences in false-alarm rates were found. These results indicate that emotional information can have a facilitating effect on working memory maintenance and processing of information.

  10. Dithiothreitol-Regulated Coverage of Oligonucleotide-Modified Gold Nanoparticles To Achieve Optimized Biosensor Performance.

    PubMed

    Liang, Pingping; Canoura, Juan; Yu, Haixiang; Alkhamis, Obtin; Xiao, Yi

    2018-01-31

    DNA-modified gold nanoparticles (AuNPs) are useful signal-reporters for detecting diverse molecules through various hybridization- and enzyme-based assays. However, their performance is heavily dependent on the probe DNA surface coverage, which can influence both target binding and enzymatic processing of the bound probes. Current methods used to adjust the surface coverage of DNA-modified AuNPs require the production of multiple batches of AuNPs under different conditions, which is costly and laborious. We here develop a single-step assay utilizing dithiothreitol (DTT) to fine-tune the surface coverage of DNA-modified AuNPs. DTT is superior to the commonly used surface diluent, mercaptohexanol, as it is less volatile, allowing for the rapid and reproducible controlling of surface coverage on AuNPs with only micromolar concentrations of DTT. Upon adsorption, DTT forms a dense monolayer on gold surfaces, which provides antifouling capabilities. Furthermore, surface-bound DTT adopts a cyclic conformation, which reorients DNA probes into an upright position and provides ample space to promote DNA hybridization, aptamer assembly, and nuclease digestion. We demonstrate the effects of surface coverage on AuNP-based sensors using DTT-regulated DNA-modified AuNPs. We then use these AuNPs to visually detect DNA and cocaine in colorimetric assays based on enzyme-mediated AuNP aggregation. We determine that DTT-regulated AuNPs with lower surface coverage achieve shorter reaction times and lower detection limits relative to those for assays using untreated AuNPs or DTT-regulated AuNPs with high surface coverage. Additionally, we demonstrate that our DTT-regulated AuNPs can perform cocaine detection in 50% urine without any significant matrix effects. We believe that DTT regulation of surface coverage can be broadly employed for optimizing DNA-modified AuNP performance for use in biosensors as well as drug delivery and therapeutic applications.

  11. Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors

    NASA Astrophysics Data System (ADS)

    Mani, Sivakumar; Vediyappan, Veeramani; Chen, Shen-Ming; Madhu, Rajesh; Pitchaimani, Veerakumar; Chang, Jia-Yaw; Liu, Shang-Bin

    2016-04-01

    A facile hydrothermal route for the synthesis of ordered NiWO4 nanocrystals, which show promising applications as high performance non-enzymatic glucose sensor is reported. The NiWO4-modified electrodes showed excellent sensitivity (269.6 μA mM-1 cm-2) and low detection limit (0.18 μM) for detection of glucose with desirable selectivity, stability, and tolerance to interference, rendering their prospective applications as cost-effective, enzyme-free glucose sensors.

  12. Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors.

    PubMed

    Mani, Sivakumar; Vediyappan, Veeramani; Chen, Shen-Ming; Madhu, Rajesh; Pitchaimani, Veerakumar; Chang, Jia-Yaw; Liu, Shang-Bin

    2016-04-18

    A facile hydrothermal route for the synthesis of ordered NiWO4 nanocrystals, which show promising applications as high performance non-enzymatic glucose sensor is reported. The NiWO4-modified electrodes showed excellent sensitivity (269.6 μA mM(-1 )cm(-2)) and low detection limit (0.18 μM) for detection of glucose with desirable selectivity, stability, and tolerance to interference, rendering their prospective applications as cost-effective, enzyme-free glucose sensors.

  13. SOI layout decomposition for double patterning lithography on high-performance computer platforms

    NASA Astrophysics Data System (ADS)

    Verstov, Vladimir; Zinchenko, Lyudmila; Makarchuk, Vladimir

    2014-12-01

    In the paper silicon on insulator layout decomposition algorithms for the double patterning lithography on high performance computing platforms are discussed. Our approach is based on the use of a contradiction graph and a modified concurrent breadth-first search algorithm. We evaluate our technique on 45 nm Nangate Open Cell Library including non-Manhattan geometry. Experimental results show that our soft computing algorithms decompose layout successfully and a minimal distance between polygons in layout is increased.

  14. Targeted partial surface modification with nano-SiO2@Li2CoPO4F as high-voltage cathode material for LIBs

    NASA Astrophysics Data System (ADS)

    Chang, Caiyun; Huang, Zhipeng; Tian, Runsai; Jiang, Xinyu; Li, Chunsheng; Feng, Jijun

    2017-10-01

    Tuning whole/partial surface modification on cathode material with oxide material is a sought-after method to enhance the electrochemical performance in power storage field. Herein, nano-SiO2 targeted partial surface modified high voltage cathode material Li2CoPO4F has been successfully fabricated via a facile self-assembly process in silica dispersion at ambient temperature. With the aid of polar -OH groups attracted on the surface of SiO2 micelles, the nano-SiO2 preferentially nestle up along the borders and boundaries of Li2CoPO4F particles, where protection should be deployed with emphasis against the undesirable interactions between materials and electrolytes. Compared with pristine Li2CoPO4F, the SiO2 selectively modified Li2CoPO4F cathode materials, especially LCPF-3S, exhibit desirable electrochemical performances with higher discharge capacity, more outstanding cycle stability and favorable rate capability without any additional carbon involved. The greatly enhanced electrochemical properties can be attributed to the improved lithium-ion diffusion kinetics and structure tolerance during repeated lithiation/delithiation process. Such findings reveal a great potential of nano-SiO2 modified Li2CoPO4F as high energy cathode material for lithium ion batteries.

  15. Eco-Friendly Superwetting Material for Highly Effective Separations of Oil/Water Mixtures and Oil-in-Water Emulsions.

    PubMed

    Wang, Chih-Feng; Yang, Sheng-Yi; Kuo, Shiao-Wei

    2017-02-20

    Because the treatment of oily wastewater, generated from many industrial processes, has become an increasing environmental concern, the search continues for simple, inexpensive, eco-friendly, and readily scalable processes for fabricating novel materials capable of effective oil/water separation. In this study we prepared an eco-friendly superhydrophilic and underwater superoleophobic polyvinylpyrrolidone (PVP)-modified cotton that mediated extremely efficient separations of mixtures of oil/water and oil/corrosive solutions. This PVP-modified cotton exhibited excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 20 h. Moreover, the compressed PVP-modified cotton could separate both surfactant-free and -stabilized oil-in-water emulsions with fluxes of up to 23,500 L m -2 h -1 bar -1 -a level one to two orders of magnitude higher than that possible when using traditional ultrafiltration membranes having similar rejection properties. The high performance of our PVP-modified cotton and its green, low-energy, cost-effective preparation suggest its great potential for practical applications.

  16. Eco-Friendly Superwetting Material for Highly Effective Separations of Oil/Water Mixtures and Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Feng; Yang, Sheng-Yi; Kuo, Shiao-Wei

    2017-02-01

    Because the treatment of oily wastewater, generated from many industrial processes, has become an increasing environmental concern, the search continues for simple, inexpensive, eco-friendly, and readily scalable processes for fabricating novel materials capable of effective oil/water separation. In this study we prepared an eco-friendly superhydrophilic and underwater superoleophobic polyvinylpyrrolidone (PVP)-modified cotton that mediated extremely efficient separations of mixtures of oil/water and oil/corrosive solutions. This PVP-modified cotton exhibited excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 20 h. Moreover, the compressed PVP-modified cotton could separate both surfactant-free and -stabilized oil-in-water emulsions with fluxes of up to 23,500 L m-2 h-1 bar-1—a level one to two orders of magnitude higher than that possible when using traditional ultrafiltration membranes having similar rejection properties. The high performance of our PVP-modified cotton and its green, low-energy, cost-effective preparation suggest its great potential for practical applications.

  17. Eco-Friendly Superwetting Material for Highly Effective Separations of Oil/Water Mixtures and Oil-in-Water Emulsions

    PubMed Central

    Wang, Chih-Feng; Yang, Sheng-Yi; Kuo, Shiao-Wei

    2017-01-01

    Because the treatment of oily wastewater, generated from many industrial processes, has become an increasing environmental concern, the search continues for simple, inexpensive, eco-friendly, and readily scalable processes for fabricating novel materials capable of effective oil/water separation. In this study we prepared an eco-friendly superhydrophilic and underwater superoleophobic polyvinylpyrrolidone (PVP)-modified cotton that mediated extremely efficient separations of mixtures of oil/water and oil/corrosive solutions. This PVP-modified cotton exhibited excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 20 h. Moreover, the compressed PVP-modified cotton could separate both surfactant-free and -stabilized oil-in-water emulsions with fluxes of up to 23,500 L m−2 h−1 bar−1—a level one to two orders of magnitude higher than that possible when using traditional ultrafiltration membranes having similar rejection properties. The high performance of our PVP-modified cotton and its green, low-energy, cost-effective preparation suggest its great potential for practical applications. PMID:28216617

  18. Standard and modified administrations of the Iowa Tests of Basic Skills with learning disabled students.

    PubMed

    Estes, R E; Baum, D L; Bray, N M

    1986-04-01

    The purpose of this study was to investigate the performance of junior high school learning disabled students on standard and modified administrations of selected subtests from the Iowa Tests of Basic Skills. No significant differences were noted for correlations between types of administration and teachers' ratings on any of the subtest comparisons. Grade placements for Vocabulary and Reading Comprehension using the modified administration were significantly higher than those using the standard administration and more closely aligned with teachers' ratings. Math Concept and Math Problem-solving grade-placement scores did not differ by type of administration; teachers' ratings were higher than those produced by either testing format.

  19. Extravehicular Activity Testing in Analog Environments: Evaluating the Effects of Center of Gravity and Environment on Human Performance

    NASA Technical Reports Server (NTRS)

    Gernhardt, M.L.; Chappell, S.P.

    2009-01-01

    The EVA Physiology, Systems and Performance (EPSP) Project is performing tests in different analog environments to understand human performance during Extravehicular Activity (EVA) with the aim of developing more safe and efficient systems for lunar exploration missions and the Constellation Program. The project is characterizing human EVA performance in studies using several test beds, including the underwater NASA Extreme Environment Mission Operations (NEEMO) and Neutral Buoyancy Laboratory (NBL) facilities, JSC fs Partial Gravity Simulator (POGO), and the NASA Reduced Gravity Office (RGO) parabolic flight aircraft. Using these varied testing environments, NASA can gain a more complete understanding of human performance issues related to EVA and the limitations of each testing environment. Tests are focused on identifying and understanding the EVA system factors that affect human performance such as center of gravity (CG), inertial mass, ground reaction forces (GRF), suit weight, and suit pressure. The test results will lead to the development of lunar EVA systems operations concepts and design requirements that optimize human performance and exploration capabilities. METHODS: Tests were conducted in the NBL and during NEEMO missions in the NOAA Aquarius Habitat. A reconfigurable back pack with repositionable mass was used to simulate Perfect, Low, Forward, High, Aft and NASA Baseline CG locations. Subjects performed simulated exploration tasks that included ambulation, kneel and recovery, rock pick-up, and shoveling. Testing using POGO, that simulates partial gravity via pneumatic weight offload system and a similar reconfigurable rig, is underway for a subset of the same tasks. Additionally, test trials are being performed on the RGO parabolic flight aircraft. Subject performance was assessed using a modified Cooper-Harper scale to assess operator compensation required to achieve desired performance. All CG locations are based on the assumption of a standardized 6 ft 180 lb subject. RESULTS: The modified Cooper-Harper Scale assesses desired task performance described as performance in a reduced gravity environment as compared to a 1G environment. Modified Cooper-Harper ratings of . 3 indicate no improvements are needed, ratings of 4-6 indicate improvements are desirable, and ratings . 7 indicate improvements are mandatory. DISCUSSION: Differences were noted in suited CH results based on environment at the same CG and suit pressure. Additionally, results suggest that CG location affects unsuited human performance. Subjects preferred locations near their natural CG over those that are high, aft, or a combination of high and aft. Further testing and analyses are planned to compare these unsuited results to suited performance.

  20. Do Leaders' Experience and Concentration Area Influence School Performance?

    ERIC Educational Resources Information Center

    Sturgis, Kimberlin; Shiflett, Brittanee; Tanner, Tyrone

    2017-01-01

    The purpose of this study was to examine the educational background of leaders in small, high poverty, high minority schools in an effort to determine if the leader's concentration area and background were related to the academic success of the students. Through a causal comparative design, a modified version of the Interstate School Leaders…

  1. Absolute quantitation of NAPQI-modified rat serum albumin by LC-MS/MS: monitoring acetaminophen covalent binding in vivo.

    PubMed

    LeBlanc, André; Shiao, Tze Chieh; Roy, René; Sleno, Lekha

    2014-09-15

    Acetaminophen is known to cause hepatoxicity via the formation of a reactive metabolite, N-acetyl p-benzoquinone imine (NAPQI), as a result of covalent binding to liver proteins. Serum albumin (SA) is known to be covalently modified by NAPQI and is present at high concentrations in the bloodstream and is therefore a potential biomarker to assess the levels of protein modification by NAPQI. A newly developed method for the absolute quantitation of serum albumin containing NAPQI covalently bound to its active site cysteine (Cys34) is described. This optimized assay represents the first absolute quantitation of a modified protein, with very low stoichiometric abundance, using a protein-level standard combined with isotope dilution. The LC-MS/MS assay is based on a protein standard modified with a custom-designed reagent, yielding a surrogate peptide (following digestion) that is a positional isomer to the target peptide modified by NAPQI. To illustrate the potential of this approach, the method was applied to quantify NAPQI-modified SA in plasma from rats dosed with acetaminophen. The resulting method is highly sensitive (capable of quantifying down to 0.0006% of total RSA in its NAPQI-modified form) and yields excellent precision and accuracy statistics. A time-course pharmacokinetic study was performed to test the usefulness of this method for following acetaminophen-induced covalent binding at four dosing levels (75-600 mg/kg IP), showing the viability of this approach to directly monitor in vivo samples. This approach can reliably quantify NAPQI-modified albumin, allowing direct monitoring of acetaminophen-related covalent binding.

  2. An Overview of Controls and Flying Qualities Technology on the F/A-18 High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Pahle, Joseph W.; Wichman, Keith D.; Foster, John V.; Bundick, W. Thomas

    1996-01-01

    The NASA F/A-18 High Alpha Research Vehicle (HARV) has been the flight test bed of a focused technology effort to significantly increase maneuvering capability at high angles of attack. Development and flight test of control law design methodologies, handling qualities metrics, performance guidelines, and flight evaluation maneuvers are described. The HARV has been modified to include two research control effectors, thrust vectoring, and actuated forebody strakes in order to provide increased control power at high angles of attack. A research flight control system has been used to provide a flexible, easily modified capability for high-angle-of-attack research controls. Different control law design techniques have been implemented and flight-tested, including eigenstructure assignment, variable gain output feedback, pseudo controls, and model-following. Extensive piloted simulation has been used to develop nonlinear performance guide-lines and handling qualities criteria for high angles of attack. This paper reviews the development and evaluation of technologies useful for high-angle-of-attack control. Design, development, and flight test of the research flight control system, control laws, flying qualities specifications, and flight test maneuvers are described. Flight test results are used to illustrate some of the lessons learned during flight test and handling qualities evaluations.

  3. Traditional test administration and proactive interference undermine visual-spatial working memory performance in schizophrenia-spectrum disorders.

    PubMed

    Girard, Todd A; Wilkins, Leanne K; Lyons, Kathleen M; Yang, Lixia; Christensen, Bruce K

    2018-05-31

    Introduction Working-memory (WM) is a core cognitive deficit among individuals with Schizophrenia Spectrum Disorders (SSD). However, the underlying cognitive mechanisms of this deficit are less known. This study applies a modified version of the Corsi Block Test to investigate the role of proactive interference in visuospatial WM (VSWM) impairment in SSD. Methods Healthy and SSD participants completed a modified version of the Corsi Block Test involving both high (typical ascending set size from 4 to 7 items) and low (descending set size from 7 to 4 items) proactive interference conditions. Results The results confirmed that the SSD group performed worse overall relative to a healthy comparison group. More importantly, the SSD group demonstrated greater VSWM scores under low (Descending) versus high (Ascending) proactive interference; this pattern is opposite to that of healthy participants. Conclusions This differential pattern of performance supports that proactive interference associated with the traditional administration format contributes to VSWM impairment in SSD. Further research investigating associated neurocognitive mechanisms and the contribution of proactive interference across other domains of cognition in SSD is warranted.

  4. Numerical studies on sizing/ rating of plate fin heat exchangers for a modified Claude cycle based helium liquefier/ refrigerator

    NASA Astrophysics Data System (ADS)

    Goyal, M.; Chakravarty, A.; Atrey, M. D.

    2017-02-01

    Performance of modern helium refrigeration/ liquefaction systems depends significantly on the effectiveness of heat exchangers. Generally, compact plate fin heat exchangers (PFHE) having very high effectiveness (>0.95) are used in such systems. Apart from basic fluid film resistances, various secondary parameters influence the sizing/ rating of these heat exchangers. In the present paper, sizing calculations are performed, using in-house developed numerical models/ codes, for a set of high effectiveness PFHE for a modified Claude cycle based helium liquefier/ refrigerator operating in the refrigeration mode without liquid nitrogen (LN2) pre-cooling. The combined effects of secondary parameters like axial heat conduction through the heat exchanger metal matrix, parasitic heat in-leak from surroundings and variation in the fluid/ metal properties are taken care of in the sizing calculation. Numerical studies are carried out to predict the off-design performance of the PFHEs in the refrigeration mode with LN2 pre-cooling. Iterative process cycle calculations are also carried out to obtain the inlet/ exit state points of the heat exchangers.

  5. Solid-phase extraction using bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes for the simultaneous determination of flavonoids and aromatic organic acid preservatives.

    PubMed

    Wang, Na; Liao, Yuan; Wang, Jiamin; Tang, Sheng; Shao, Shijun

    2015-12-01

    A novel bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes sorbent for solid-phase extraction was designed and synthesized by chemical immobilization of nitro-substituted 3,3'-bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high-performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single-step solid-phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R(2) ) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5-5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro-substituted 3,3'-bis(indolyl)methane-modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro-substituted 3,3'-bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface-to-volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π-π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as-established solid-phase extraction with high-performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cationic surfactants-modified natural zeolites: improvement of the excipients functionality.

    PubMed

    Krajisnik, Danina; Milojević, Maja; Malenović, Anđelija; Daković, Aleksandra; Ibrić, Svetlana; Savić, Snezana; Dondur, Vera; Matijasević, Srđan; Radulović, Aleksandra; Daniels, Rolf; Milić, Jela

    2010-10-01

    In this study an investigation of cationic surfactants-modified natural zeolites as drug formulation excipient was performed. The aim of this work was to carry out a study of the purified natural zeolitic tuff with high amount of clinoptilolite as a potential carrier for molecules of pharmaceutical interest. Two cationic surfactants (benzalkonium chloride and hexadecyltrimethylammonium bromide) were used for modification of the zeolitic surface in two levels (equal to and twice as external cation-exchange capacity of the zeolitic tuff). Prepared samples were characterized by Fourier transform infrared spectroscopy, thermogravimetric, high-performance liquid chromatography analysis, and powder flow determination. Different surfactant/zeolite composites were used for additional investigation of three model drugs: diclofenac diethylamine, diclofenac sodium, and ibuprofen by means of adsorption isotherm measurements in aqueous solutions. The modified zeolites with two levels of surfactant coverage within the short activation time were prepared. Determination of flow properties showed that modification of zeolitic surface reflected on powder flow characteristics. Investigation of the model drugs adsorption on the obtained composites revealed that a variation between adsorption levels was influenced by the surfactant type and the amount present at the surface of the composites. In vitro release profiles of the drugs from the zeolite-surfactant-drug composites revealed that sustained drug release could be attained over a period of 8 hours. The presented results for drug uptake by surfactant-zeolite composites and the afterward drug release demonstrated the potential use of investigated modified natural zeolite as excipients for advanced excipients in drug formulations.

  7. Cu-modified carbon spheres/reduced graphene oxide as a high sensitivity of gas sensor for NO2 detection at room temperature

    NASA Astrophysics Data System (ADS)

    Su, Zhibin; Tan, Li; Yang, Ruiqiang; Zhang, Yu; Tao, Jin; Zhang, Nan; Wen, Fusheng

    2018-03-01

    Nitrogen dioxide (NO2) as one of the most serious air pollution is harmful to people's health, therefore high-performance gas sensors is critically needed. Here, Cu-modified carbon spheres/reduced graphene oxide (Cu@CS/RGO) composite have been prepared as NO2 gas sensor material. Carbon sphere in the interlayer of RGO can increase the specific surface area of RGO. Copper nanoparticles decorated on the surface of CS can effectively enhance the adsorption activity of RGO as supplier of free electrons. The experimental results showed that its particular structure improved the gas sensitivity of RGO at different NO2 concentrations at room temperature.

  8. The synthesis of monomers with pendent ethynyl group for modified high performance thermoplastics

    NASA Technical Reports Server (NTRS)

    Nwokogu, Godson C.; Antoine, Miquel D.; Ansong, Omari

    1992-01-01

    The objectives of this project were to develop synthetic schemes for the following classes of modified monomers: (1) difunctional triarylethanes with pendent acetylenic groups; and (2) tertiary aspartimides with terminal acetylene groups at the two ends. Our efforts have resulted in the successful development of high yield schemes for the syntheses of several diamino and bisphenolic analogs of difunctional triarylethanes with pendent ethynyl group. A scheme for one new tertiary aspartimide was also established. Multi-gram samples of all prepared new monomers were provided to our technical contact at NASA-LaRC and preliminary polymerization studies were encouraging. Details of the accomplished work within the last four years are described.

  9. Is RNASEL:p.Glu265* a modifier of early-onset breast cancer risk for carriers of high-risk mutations?

    PubMed

    Nguyen-Dumont, Tú; Teo, Zhi L; Hammet, Fleur; Roberge, Alexis; Mahmoodi, Maryam; Tsimiklis, Helen; Park, Daniel J; Pope, Bernard J; Lonie, Andrew; Kapuscinski, Miroslav K; Mahmood, Khalid; Goldgar, David E; Giles, Graham G; Winship, Ingrid; Hopper, John L; Southey, Melissa C

    2018-02-08

    Breast cancer risk for BRCA1 and BRCA2 pathogenic mutation carriers is modified by risk factors that cluster in families, including genetic modifiers of risk. We considered genetic modifiers of risk for carriers of high-risk mutations in other breast cancer susceptibility genes. In a family known to carry the high-risk mutation PALB2:c.3113G>A (p.Trp1038*), whole-exome sequencing was performed on germline DNA from four affected women, three of whom were mutation carriers. RNASEL:p.Glu265* was identified in one of the PALB2 carriers who had two primary invasive breast cancer diagnoses before 50 years. Gene-panel testing of BRCA1, BRCA2, PALB2 and RNASEL in the Australian Breast Cancer Family Registry identified five carriers of RNASEL:p.Glu265* in 591 early onset breast cancer cases. Three of the five women (60%) carrying RNASEL:p.Glu265* also carried a pathogenic mutation in a breast cancer susceptibility gene compared with 30 carriers of pathogenic mutations in the 586 non-carriers of RNASEL:p.Glu265* (5%) (p < 0.002). Taqman genotyping demonstrated that the allele frequency of RNASEL:p.Glu265* was similar in affected and unaffected Australian women, consistent with other populations. Our study suggests that RNASEL:p.Glu265* may be a genetic modifier of risk for early-onset breast cancer predisposition in carriers of high-risk mutations. Much larger case-case and case-control studies are warranted to test the association observed in this report.

  10. Role of Modified Endoscopic Medial Maxillectomy in Persistent Chronic Maxillary Sinusitis

    PubMed Central

    Thulasidas, Ponnaiah; Vaidyanathan, Venkatraman

    2014-01-01

    Introduction Functional endoscopic sinus surgery has a long-term high rate of success for symptomatic improvement in patients with medically refractory chronic rhinosinusitis. As the popularity of the technique continues to grow, however, so does the population of patients with postsurgical persistent sinus disease, especially in those with a large window for ventilation and drainage. In addition, chronic infections of the sinuses especially fungal sinusitis have a higher incidence of recurrence even though a wide maxillary ostium had been performed earlier. This subset of patients often represents a challenge to the otorhinolaryngologist. Objectives To identify the patients with chronic recalcitrant maxillary sinusitis and devise treatment protocols for this subset of patients. Methods A retrospective review was done of all patients with persistent maxillary sinus disease who had undergone modified endoscopic medial maxillectomy between 2009 and 2012. We studied patient demographics, previous surgical history, and follow-up details and categorized the types of endoscopic medial maxillectomies performed in different disease situations. Results We performed modified endoscopic medial maxillectomies in 37 maxillary sinuses of 24 patients. The average age was 43.83 years. Average follow-up was 14.58 months. All patients had good disease control in postoperative visits with no clinical evidence of recurrences. Conclusion Modified endoscopic medial maxillectomy appears to be an effective surgery for treatment of chronic, recalcitrant maxillary sinusitis. PMID:25992084

  11. Computational fluid modeling and performance analysis of a bidirectional rotating perfusion culture system.

    PubMed

    Kang, Chang-Wei; Wang, Yan; Tania, Marshella; Zhou, Huancheng; Gao, Yi; Ba, Te; Tan, Guo-Dong Sean; Kim, Sangho; Leo, Hwa Liang

    2013-01-01

    A myriad of bioreactor configurations have been investigated as extracorporeal medical support systems for temporary replacement of vital organ functions. In recent years, studies have demonstrated that the rotating bioreactors have the potential to be utilized as bioartificial liver assist devices (BLADs) owing to their advantage of ease of scalability of cell-culture volume. However, the fluid movement in the rotating chamber will expose the suspended cells to unwanted flow structures with abnormally high shear conditions that may result in poor cell stability and in turn lower the efficacy of the bioreactor system. In this study, we compared the hydrodynamic performance of our modified rotating bioreactor design with that of an existing rotating bioreactor design. Computational fluid dynamic analysis coupled with experimental results were employed in the optimization process for the development of the modified bioreactor design. Our simulation results showed that the modified bioreactor had lower fluid induced shear stresses and more uniform flow conditions within its rotating chamber than the conventional design. Experimental results revealed that the cells within the modified bioreactor also exhibited better cell-carrier attachment, higher metabolic activity, and cell viability compared to those in the conventional design. In conclusion, this study was able to provide important insights into the flow physics within the rotating bioreactors, and help enhanced the hydrodynamic performance of an existing rotating bioreactor for BLAD applications. © 2013 American Institute of Chemical Engineers.

  12. Surface Modified Pinecone Shaped Hierarchical Structure Fluorinated Mesocarbon Microbeads for Ultrafast Discharge and Improved Electrochemical Performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yang; Fang, Yuan; Cai, Sendan

    2016-12-01

    Among all primary lithium batteries, Li/CF x primary battery possesses the highest energy density of 2180 Wh kg -1. However, a key limitation is its poor rate capability because the cathode material CF x is intrinsically a poor electronic conductor. Here, we developed a so-called “doing subtraction” method to modify the pinecone shaped fluorinated mesocarbon microbead (F-MCMB). The modified fluorinated mesocarbon microbead (MF-MCMB), manifests the advantage of open-framed structure, possesses good electronic conductivity and removes transport barrier for lithium ions. Thus, high capacity performance and excellent rate capability without compromising capacity can be obtained. A capacity of 343 mAhg -1more » and a maximum power density of 54600 W kg -1 are realized at an ultrafast rate of 40 C (28A g -1). Additionally, the MF-MCMB cathode does not show any voltage delay even at 5C during the discharge, which is a remarkable improvement over the state-of-the-art CF xmaterials.« less

  13. High-performance reagent modes for flotation recovery of platiniferous copper and nickel sulfides from hard-to-beneficiate ores

    NASA Astrophysics Data System (ADS)

    Matveeva, T. N.; Chanturiya, V. A.

    2017-07-01

    The paper presents the results of the recent research performed in IPKON Russian Academy of Sciences that deals with development and substantiation of new selective reagents for effective flotation recovery of non-ferrous and noble metals from refractory ores. The choice and development of new selective reagents PTTC, OPDTC, modified butylxanthate (BXm) and modified diethyl-dithiocarbamate (DEDTCm) to float platiniferous copper and nickel sulfide minerals from hard-to-beneficiate ores is substantiated. The mechanism of reagents adsorption and regulation of minerals floatability is discussed. The study of reagent modes indicates that by combining PTTC with the modified xanthate results in 6 - 7 % increase in the recovery of copper, nickel and PGM in the flotation of the low-sulfide platiniferous Cu-Ni ore from the Fedorovo-Panskoye deposit. The substitution of OPDTC for BX makes it possible to increase recovery of Pt by 13 %, Pd by 9 % and 2 - 4 times the noble metal content in the flotation concentrate.

  14. Performance Assessment of a Plate Beam Splitter for Deep-Ultraviolet Raman Measurements with a Spatial Heterodyne Raman Spectrometer.

    PubMed

    Lamsal, Nirmal; Angel, S Michael

    2017-06-01

    In earlier works, we demonstrated a high-resolution spatial heterodyne Raman spectrometer (SHRS) for deep-ultraviolet (UV) Raman measurements, and showed its ability to measure UV light-sensitive compounds using a large laser spot size. We recently modified the SHRS by replacing the cube beam splitter (BS) with a custom plate beam splitter with higher light transmission, an optimized reflectance/transmission ratio, higher surface flatness, and better refractive index homogeneity than the cube beam splitter. Ultraviolet Raman measurements were performed using a SHRS modified to use the plate beam splitter and a matching compensator plate and compared to the previously described cube beam splitter setup. Raman spectra obtained using the modified SHRS exhibit much higher signals and signal-to-noise (S/N) ratio and show fewer spectral artifacts. In this paper, we discuss the plate beam splitter SHRS design features, the advantages over previous designs, and discuss some general SHRS issues such as spectral bandwidth, S/N ratio characteristics, and optical efficiency.

  15. Three dimensional magnetic fields in extra high speed modified Lundell alternators computed by a combined vector-scalar magnetic potential finite element method

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Wang, R.; Secunde, R.

    1992-01-01

    A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.

  16. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility.

    PubMed

    Polacco, Giovanni; Filippi, Sara; Merusi, Filippo; Stastna, George

    2015-10-01

    During the last decades, the number of vehicles per citizen as well as the traffic speed and load has dramatically increased. This sudden and somehow unplanned overloading has strongly shortened the life of pavements and increased its cost of maintenance and risks to users. In order to limit the deterioration of road networks, it is necessary to improve the quality and performance of pavements, which was achieved through the addition of a polymer to the bituminous binder. Since their introduction, polymer-modified asphalts have gained in importance during the second half of the twentieth century, and they now play a fundamental role in the field of road paving. With high-temperature and high-shear mixing with asphalt, the polymer incorporates asphalt molecules, thereby forming a swallowed network that involves the entire binder and results in a significant improvement of the viscoelastic properties in comparison with those of the unmodified binder. Such a process encounters the well-known difficulties related to the poor solubility of polymers, which limits the number of macromolecules able to not only form such a structure but also maintain it during high-temperature storage in static conditions, which may be necessary before laying the binder. Therefore, polymer-modified asphalts have been the subject of numerous studies aimed to understand and optimize their structure and storage stability, which gradually attracted polymer scientists into this field that was initially explored by civil engineers. The analytical techniques of polymer science have been applied to polymer-modified asphalts, which resulted in a good understanding of their internal structure. Nevertheless, the complexity and variability of asphalt composition rendered it nearly impossible to generalize the results and univocally predict the properties of a given polymer/asphalt pair. The aim of this paper is to review these aspects of polymer-modified asphalts. Together with a brief description of the specification and techniques proposed to quantify the storage stability, state-of-the-art knowledge about the internal structure and morphology of polymer-modified asphalts is presented. Moreover, the chemical, physical, and processing solutions suggested in the scientific and patent literature to improve storage stability are extensively discussed, with particular attention to an emerging class of asphalt binders in which the technologies of polymer-modified asphalts and polymer nanocomposites are combined. These polymer-modified asphalt nanocomposites have been introduced less than ten years ago and still do not meet the requirements of industrial practice, but they may constitute a solution for both the performance and storage requirements. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Glutatione modified ultrathin SnS2 nanosheets with highly photocatalytic activity for wastewater treatment

    NASA Astrophysics Data System (ADS)

    Wei, Renjie; Zhou, Tengfei; Hu, Juncheng; Li, Jinlin

    2014-04-01

    L-Glutatione (GSH) modified ultrathin SnS2 nanosheets were successfully synthesized via a one-pot, facile and rapid solvothermal approach. During the process, the GSH not only served as the sulfur sources, the structure-directing agent, but also as the surface modified ligands. The as-synthesized samples mainly consist of ultrathin nanosheets with the thickness of about 10 nm. Inspiringly, even under the visible light (λ > 420 nm) irradiation, the as-synthesized products exhibited highly photocatalytic activities for both the degradation of methyl orange (MO) and the reductive conversion of Cr (VI) in aqueous solution. The superior performance was presented by completely removed the methyl orange and aqueous Cr(VI) in 20 min and 60 min, respectively. It was much higher than the pure samples, which suggested that these obtained photocatalysts have the potential for wastewater treatment in a green way. The high-efficiency of photocatalytic properties could attribute to the ultrathin size of the photocatalysts and the chelation between GSH and Sn (IV), which have the advantages of electron-hole pairs separation. Moreover, modified organic compounds with common electron donors would also enhance the spectral response even to the near infrared region through ligand-to-metal charge transfer (LMCT) mechanism.

  18. Designing a balanced scorecard for a tertiary care hospital in Pakistan: a modified Delphi group exercise.

    PubMed

    Rabbani, Fauziah; Jafri, Syed M Wasim; Abbas, Farhat; Shah, Mairaj; Azam, Syed Iqbal; Shaikh, Babar Tasneem; Brommels, Mats; Tomson, Goran

    2010-01-01

    Balanced Scorecards (BSC) are being implemented in high income health settings linking organizational strategies with performance data. At this private university hospital in Pakistan an elaborate information system exists. This study aimed to make best use of available data for better performance management. Applying the modified Delphi technique an expert panel of clinicians and hospital managers reduced a long list of indicators to a manageable size. Indicators from existing documents were evaluated for their importance, scientific soundness, appropriateness to hospital's strategic plan, feasibility and modifiability. Panel members individually rated each indicator on a scale of 1-9 for the above criteria. Median scores were assigned. Of an initial set of 50 indicators, 20 were finally selected to be assigned to the four BSC quadrants. These were financial (n = 4), customer or patient (n = 4), internal business or quality of care (n = 7) and innovation/learning or employee perspectives (n = 5). A need for stringent definitions, international benchmarking and standardized measurement methods was identified. BSC compels individual clinicians and managers to jointly work towards improving performance. This scorecard is now ready to be implemented by this hospital as a performance management tool for monitoring indicators, addressing measurement issues and enabling comparisons with hospitals in other settings. Copyright 2010 John Wiley & Sons, Ltd.

  19. Boronic Acid vs. Folic Acid: A Comparison of the bio-recognition performances by Impedimetric Cytosensors based on Ferrocene cored dendrimer.

    PubMed

    Dervisevic, Muamer; Şenel, Mehmet; Sagir, Tugba; Isik, Sevim

    2017-05-15

    A comparative study is reported where folic acid (FA) and boronic acid (BA) based cytosensors and their analytical performances in cancer cell detection were analyzed by using electrochemical impedance spectroscopy (EIS) method. Cytosensors were fabricated using self-assembled monolayer principle by modifying Au electrode with cysteamine (Cys) and immobilization of ferrocene cored polyamidiamine dendrimers second generation (Fc-PAMAM (G2)), after which electrodes were modified with FA and BA. Au/Fc-PAMAM(G2)/FA and Au/Fc-PAMAM(G2)/BA based cytosensors showed extremely good analytical performances in cancer cell detection with linear range of 1×10 2 to 1×10 6 cellsml -1 , detection limit of 20cellsml -1 with incubation time of 20min for FA based electrode, and for BA based electrode detection limit was 28cellsml -1 with incubation time of 10min. Next to excellent analytical performances, cytosensors showed high selectivity towards cancer cells which was demonstrated in selectivity study using human embryonic kidney 293 cells (HEK 293) as normal cells and Au/Fc-PAMAM(G2)/FA electrode showed two times better selectivity than BA modified electrode. These cytosensors are promising for future applications in cancer cell diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Qualitative and quantitative analysis of hyaluronan oligosaccharides with high performance thin layer chromatography using reagent-free derivatization on amino-modified silica and electrospray ionization-quadrupole time-of-flight mass spectrometry coupling on normal phase.

    PubMed

    Rothenhöfer, Martin; Scherübl, Rosmarie; Bernhardt, Günther; Heilmann, Jörg; Buschauer, Armin

    2012-07-27

    Purified oligomers of hyalobiuronic acid are indispensable tools to elucidate the physiological and pathophysiological role of hyaluronan degradation by various hyaluronidase isoenzymes. Therefore, we established and validated a novel sensitive, convenient, rapid, and cost-effective high performance thin layer chromatography (HPTLC) method for the qualitative and quantitative analysis of small saturated hyaluronan oligosaccharides consisting of 2-4 hyalobiuronic acid moieties. The use of amino-modified silica as stationary phase allows a simple reagent-free in situ derivatization by heating, resulting in a very low limit of detection (7-19 pmol per band, depending on the analyzed saturated oligosaccharide). By this derivatization procedure for the first time densitometric quantification of the analytes could be performed by HPTLC. The validated method showed a quantification limit of 37-71 pmol per band and was proven to be superior in comparison to conventional detection of hyaluronan oligosaccharides. The analytes were identified by hyphenation of normal phase planar chromatography to mass spectrometry (TLC-MS) using electrospray ionization. As an alternative to sequential techniques such as high performance liquid chromatography (HPLC) and capillary electrophoresis (CE), the validated HPTLC quantification method can easily be automated and is applicable to the analysis of multiple samples in parallel. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance.

    PubMed

    Hutchins, Daniel Orrin; Weidner, Tobias; Baio, Joe; Polishak, Brent; Acton, Orb; Cernetic, Nathan; Ma, Hong; Jen, Alex K-Y

    2013-01-04

    A systematic study of six phosphonic acid (PA) self-assembled monolayers (SAMs) with tailored molecular structures is performed to evaluate their effectiveness as dielectric modifying layers in organic field-effect transistors (OFETs) and determine the relationship between SAM structural order, surface homogeneity, and surface energy in dictating device performance. SAM structures and surface properties are examined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy, contact angle goniometry, and atomic force microscopy (AFM). Top-contact pentacene OFET devices are fabricated on SAM modified Si with a thermally grown oxide layer as a dielectric. For less ordered methyl- and phenyl-terminated alkyl ~(CH 2 ) 12 PA SAMs of varying surface energies, pentacene OFETs show high charge carrier mobilities up to 4.1 cm 2 V -1 s -1 . It is hypothesized that for these SAMs, mitigation of molecular scale roughness and subsequent control of surface homogeneity allow for large pentacene grain growth leading to high performance pentacene OFET devices. PA SAMs that contain bulky terminal groups or are highly crystalline in nature do not allow for a homogenous surface at a molecular level and result in charge carrier mobilities of 1.3 cm 2 V -1 s -1 or less. For all molecules used in this study, no causal relationship between SAM surface energy and charge carrier mobility in pentacene FET devices is observed.

  2. Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance

    PubMed Central

    Hutchins, Daniel Orrin; Weidner, Tobias; Baio, Joe; Polishak, Brent; Acton, Orb; Cernetic, Nathan; Ma, Hong; Jen, Alex K.-Y.

    2013-01-01

    A systematic study of six phosphonic acid (PA) self-assembled monolayers (SAMs) with tailored molecular structures is performed to evaluate their effectiveness as dielectric modifying layers in organic field-effect transistors (OFETs) and determine the relationship between SAM structural order, surface homogeneity, and surface energy in dictating device performance. SAM structures and surface properties are examined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy, contact angle goniometry, and atomic force microscopy (AFM). Top-contact pentacene OFET devices are fabricated on SAM modified Si with a thermally grown oxide layer as a dielectric. For less ordered methyl- and phenyl-terminated alkyl ~(CH2)12 PA SAMs of varying surface energies, pentacene OFETs show high charge carrier mobilities up to 4.1 cm2 V−1 s−1. It is hypothesized that for these SAMs, mitigation of molecular scale roughness and subsequent control of surface homogeneity allow for large pentacene grain growth leading to high performance pentacene OFET devices. PA SAMs that contain bulky terminal groups or are highly crystalline in nature do not allow for a homogenous surface at a molecular level and result in charge carrier mobilities of 1.3 cm2 V−1 s−1 or less. For all molecules used in this study, no causal relationship between SAM surface energy and charge carrier mobility in pentacene FET devices is observed. PMID:24086795

  3. Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer

    PubMed Central

    Pasternak, Anna; Hernandez, Frank J.; Rasmussen, Lars M.; Vester, Birte; Wengel, Jesper

    2011-01-01

    A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA-U placed in position U3, U7 or U12 increases the thermodynamic stability of TBA by 0.15–0.50 kcal/mol. In contrast, modification of any position within the two G-quartet structural elements is unfavorable for quadruplex formation. The intramolecular folding of the quadruplexes is confirmed by Tm versus ln c analysis. Moreover, circular dichroism and thermal difference spectra of the modified TBAs displaying high thermodynamic stability show bands that are characteristic for antiparallel quadruplex formation. Surface plasmon resonance studies of the binding of the UNA-modified TBAs to thrombin show that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation. PMID:20870750

  4. High-Energy-Density Shear Flow and Instability Experiments

    NASA Astrophysics Data System (ADS)

    Doss, F. W.; Flippo, K. A.; Merritt, E. C.; di Stefano, C. A.; Devolder, B. G.; Kurien, S.; Kline, J. L.

    2017-10-01

    High-energy-density shear experiments have been performed by LANL at the OMEGA Laser Facility and National Ignition Facility (NIF). The experiments have been simulated using the LANL radiation-hydrocode RAGE and have been used to assess turbulence models ability to function in the high-energy-density, inertial- fusion-relevant regime. Beginning with the basic configuration of two counter-oriented shock-driven flows of >= 100 km/s, which initiate a strong shear instability across an initially solid-density, 20 μm thick Al plate, variations of the experiment to details of the initial conditions have been performed. These variations have included increasing the fluid densities (by modifying the plate material from Al to Ti and Cu), imposing sinusoidal seed perturbations on the plate, and directly modifying the plate's intrinsic surface roughness. Radiography of the unseeded layer has revealed the presence of emergent Kelvin-Helmholtz structures which may be analyzed to infer fluid-mechanical properties including turbulent energy density. This work is conducted by the US DOE by LANL under contract DE-0AC52-06NA25396. This abstract is LA-UR-16-24930.

  5. Modified femoral pressuriser generates a longer lasting high pressure during cement pressurisation

    PubMed Central

    2011-01-01

    Background The strength of the cement-bone interface in hip arthroplasty is strongly related to cement penetration into the bone. A modified femoral pressuriser has been investigated, designed for closer fitting into the femoral opening to generate higher and more constant cement pressure compared to a commercial (conventional) design. Methods Femoral cementation was performed in 10 Sawbones® models, five using the modified pressuriser and five using a current commercial pressuriser as a control. Pressure during the cementation was recorded at the proximal and distal regions of the femoral implant. The peak pressure and the pressure-time curves were analysed by student's t-test and Two way ANOVA. Results The modified pressuriser showed significantly and substantially longer durations at higher cementation pressures and slightly, although not statistically, higher peak pressures compared to the conventional pressuriser. The modified pressuriser also produced more controlled cement leakage. Conclusion The modified pressuriser generates longer higher pressure durations in the femoral model. This design modification may enhance cement penetration into cancellous bone and could improve femoral cementation. PMID:22004662

  6. Validity of multiple stress creep recovery (MSCR) test for DOTD asphalt binder specification : final report 564.

    DOT National Transportation Integrated Search

    2017-09-01

    Numerous studies have shown that G*/Sin, the high temperature specification parameter for current Performance Graded (PG) asphalt binder is not adequate to reflect the rutting characteristics of polymer-modified binders. Consequently, many state De...

  7. Formability of new high performance A710 grade 50 structural steel.

    DOT National Transportation Integrated Search

    2014-01-01

    This project compared the formability of modified ASTM A710 Grade B50 ksi yield strength steel, jointly developed by : Northwestern University and the Illinois Department of Transportation, with ASTM A606 Type 4 weathering steel used in Illinois : an...

  8. Simple New Screw Insertion Technique without Extraction for Broken Pedicle Screws.

    PubMed

    Kil, Jin-Sang; Park, Jong-Tae

    2018-05-01

    Spinal transpedicular screw fixation is widely performed. Broken pedicle screw rates range from 3%-7.1%. Several techniques have been described for extraction of broken pedicle screws. However, most of these techniques require special instruments. We describe a simple, modified technique for management of broken pedicle screws without extraction. No special instruments or drilling in an adjacent pedicle are required. We used a high-speed air drill with a round burr. With C-arm fluoroscopy guidance, the distal fragment of a broken pedicle screw was palpated using free-hand technique through the screw entry hole. A high-speed air drill with a round burr (not a diamond burr) was inserted through the hole. Drilling began slowly and continued until enough space was obtained for new screw insertion. Using this space, we performed new pedicle screw fixation medially alongside the distal fragment of the broken pedicle screw. We performed the insertion with a previously used entry hole and pathway in the pedicle. The same size pedicle screw was used. Three patients were treated with this modified technique. New screw insertion was successful in all cases after partial drilling of the distal broken pedicle screw fragment. There were no complications, such as screw loosening, dural tears, or root injury. We describe a simple, modified technique for management of broken pedicle screws without extraction. This technique is recommended in patients who require insertion of a new screw. Copyright © 2017. Published by Elsevier Inc.

  9. Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test.

    PubMed

    Pszczola, Marek; Jaczewski, Mariusz; Rys, Dawid; Jaskula, Piotr; Szydlowski, Cezary

    2018-01-10

    Low-temperature cracking is one of the most common road pavement distress types in Poland. While bitumen performance can be evaluated in detail using bending beam rheometer (BBR) or dynamic shear rheometer (DSR) tests, none of the normalized test methods gives a comprehensive representation of low-temperature performance of the asphalt mixtures. This article presents the Bending Beam Creep test performed at temperatures from -20 °C to +10 °C in order to evaluate the low-temperature performance of asphalt mixtures. Both validation of the method and its utilization for the assessment of eight types of wearing courses commonly used in Poland were described. The performed test indicated that the source of bitumen and its production process (and not necessarily only bitumen penetration) had a significant impact on the low-temperature performance of the asphalt mixtures, comparable to the impact of binder modification (neat, polymer-modified, highly modified) and the aggregate skeleton used in the mixture (Stone Mastic Asphalt (SMA) vs. Asphalt Concrete (AC)). Obtained Bending Beam Creep test results were compared with the BBR bitumen test. Regression analysis confirmed that performing solely bitumen tests is insufficient for comprehensive low-temperature performance analysis.

  10. Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test

    PubMed Central

    Rys, Dawid; Jaskula, Piotr; Szydlowski, Cezary

    2018-01-01

    Low-temperature cracking is one of the most common road pavement distress types in Poland. While bitumen performance can be evaluated in detail using bending beam rheometer (BBR) or dynamic shear rheometer (DSR) tests, none of the normalized test methods gives a comprehensive representation of low-temperature performance of the asphalt mixtures. This article presents the Bending Beam Creep test performed at temperatures from −20 °C to +10 °C in order to evaluate the low-temperature performance of asphalt mixtures. Both validation of the method and its utilization for the assessment of eight types of wearing courses commonly used in Poland were described. The performed test indicated that the source of bitumen and its production process (and not necessarily only bitumen penetration) had a significant impact on the low-temperature performance of the asphalt mixtures, comparable to the impact of binder modification (neat, polymer-modified, highly modified) and the aggregate skeleton used in the mixture (Stone Mastic Asphalt (SMA) vs. Asphalt Concrete (AC)). Obtained Bending Beam Creep test results were compared with the BBR bitumen test. Regression analysis confirmed that performing solely bitumen tests is insufficient for comprehensive low-temperature performance analysis. PMID:29320443

  11. Surface modified CF x cathode material for ultrafast discharge and high energy density

    DOE PAGES

    Dai, Yang; Zhu, Yimei; Cai, Sendan; ...

    2014-11-10

    Li/CF x primary possesses the highest energy density of 2180 W h kg⁻¹ among all primary lithium batteries. However, a key limitation for the utility of this type of battery is in its poor rate capability because the cathode material, CF x, is an intrinsically poor electronic conductor. Here, we report on our development of a controlled process of surface de-fluorination under mild hydrothermal conditions to modify the highly fluorinated CF x. The modified CF x, consisting of an in situ generated shell component of F-graphene layers, possesses good electronic conductivity and removes the transporting barrier for lithium ions, yieldingmore » a high-capacity performance and an excellent rate-capability. Indeed, a capacity of 500 mA h g⁻¹ and a maximum power density of 44 800 W kg⁻¹ can be realized at the ultrafast rate of 30 C (24 A g⁻¹), which is over one order of magnitude higher than that of the state-of-the-art primary lithium-ion batteries.« less

  12. Effect of Autoclaved Aerated Concrete Modification with High-Impact Polystyrene on Sound Insulation

    NASA Astrophysics Data System (ADS)

    Brelak, Sylwia; Dachowski, Ryszard

    2017-10-01

    Autoclaved aerated concrete is one of the most commonly used building materials. Its advantages include low density, high thermal insulation capacity and high fire resistance. It has a relatively high compressive strength, though not high enough to be able to compete with other building materials in this respect. One of the directions leading to the improvement of physical and mechanical properties of autoclaved aerated concrete is the modification of its composition. A noticeable effect of pulverized high-impact polystyrene (improved compressive strength and water absorption) was relevant for the decision to continue the study of its effects. This paper discusses the effect of high-impact polystyrene on sound insulation in AAC products. The tests demonstrated a positive influence of the modifier on AAC sound insulation enhancement. Results from the tests performed on HIPS-modified AAC products were showed and compared with the properties of conventional products. The effect of the polymer on the microstructure of the products obtained was described briefly.

  13. Peregrine Transition from CentOS6 to CentOS7 | High-Performance Computing |

    Science.gov Websites

    ). Users should consider them primarily as examples, which they can copy and modify for their own use with HPC environments. This can permit one-step access to pre-existing complex software stacks, or /projects. This is not a highly suggested mechanism, but might serve for one-time needs. In the unlikely

  14. The Application of a Modified d-ROMs Test for Measurement of Oxidative Stress and Oxidized High-Density Lipoprotein

    PubMed Central

    Ito, Fumiaki; Ito, Tomoyuki; Suzuki, Chinatsu; Yahata, Tomoyo; Ikeda, Kazuyuki; Hamaoka, Kenji

    2017-01-01

    Reactive oxygen species (ROS) are involved in the initiation and progression of atherosclerosis. ROS-derived hydroperoxides, as an indicator of ROS production, have been measured by using the diacron reactive oxygen metabolites (d-ROMs) test, which requires iron-containing transferrin in the reaction mixture. In this study we developed a modified d-ROMs test, termed the Fe-ROMs test, where iron ions were exogenously added to the reaction mixture. This modification is expected to exclude the assay variation that comes from different blood iron levels in individuals. In addition, this Fe-ROMs test was helpful for determining the class of plasma lipoproteins that are hydroperoxidized. Low-density lipoprotein/very low-density lipoprotein (LDL/VLDL) and high-density lipoprotein (HDL) were purified by use of an LDL/VLDL purification kit and the dextran sulfate-Mg2+ precipitation method, respectively; their hydroperoxide contents were assessed by performing the Fe-ROMs test. The majority of the hydroperoxides were detected only in the HDL fraction, not in the LDL/VLDL. Further detailed analysis of HDLs by size-exclusion high-performance liquid chromatography revealed that the hydroperoxide-containing molecules were small-sized HDLs. Because HDL was shown to be the principal vehicle for the plasma hydroperoxides, this Fe-ROMs test is a beneficial method for the assessment of oxidized-HDL levels. Indeed, Fe-ROMs levels were strongly associated with the levels of oxidized HDL, which were determined by performing the malondialdehyde-modified HDL enzyme immunoassay. In conclusion, the Fe-ROMs test using plasma itself or the HDL fraction after dextran sulfate-Mg2+ precipitation is useful to assess the functionality of HDL, because the oxidation of HDL impairs its antiatherogenic capacity. PMID:28230785

  15. The Application of a Modified d-ROMs Test for Measurement of Oxidative Stress and Oxidized High-Density Lipoprotein.

    PubMed

    Ito, Fumiaki; Ito, Tomoyuki; Suzuki, Chinatsu; Yahata, Tomoyo; Ikeda, Kazuyuki; Hamaoka, Kenji

    2017-02-21

    Reactive oxygen species (ROS) are involved in the initiation and progression of atherosclerosis. ROS-derived hydroperoxides, as an indicator of ROS production, have been measured by using the diacron reactive oxygen metabolites (d-ROMs) test, which requires iron-containing transferrin in the reaction mixture. In this study we developed a modified d-ROMs test, termed the Fe-ROMs test, where iron ions were exogenously added to the reaction mixture. This modification is expected to exclude the assay variation that comes from different blood iron levels in individuals. In addition, this Fe-ROMs test was helpful for determining the class of plasma lipoproteins that are hydroperoxidized. Low-density lipoprotein/very low-density lipoprotein (LDL/VLDL) and high-density lipoprotein (HDL) were purified by use of an LDL/VLDL purification kit and the dextran sulfate-Mg 2+ precipitation method, respectively; their hydroperoxide contents were assessed by performing the Fe-ROMs test. The majority of the hydroperoxides were detected only in the HDL fraction, not in the LDL/VLDL. Further detailed analysis of HDLs by size-exclusion high-performance liquid chromatography revealed that the hydroperoxide-containing molecules were small-sized HDLs. Because HDL was shown to be the principal vehicle for the plasma hydroperoxides, this Fe-ROMs test is a beneficial method for the assessment of oxidized-HDL levels. Indeed, Fe-ROMs levels were strongly associated with the levels of oxidized HDL, which were determined by performing the malondialdehyde-modified HDL enzyme immunoassay. In conclusion, the Fe-ROMs test using plasma itself or the HDL fraction after dextran sulfate-Mg 2+ precipitation is useful to assess the functionality of HDL, because the oxidation of HDL impairs its antiatherogenic capacity.

  16. Development of modified FT (MFT) process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jinglai Zhou; Zhixin Zhang; Wenjie Shen

    1995-12-31

    Two-Stage Modified FT (MFT) process has been developed for producing high-octane gasoline from coal-based syngas. The main R&D are focused on the development of catalysts and technologies process. Duration tests were finished in the single-tube reactor, pilot plant (100T/Y), and industrial demonstration plant (2000T/Y). A series of satisfactory results has been obtained in terms of operating reliability of equipments, performance of catalysts, purification of coal - based syngas, optimum operating conditions, properties of gasoline and economics etc. Further scaling - up commercial plant is being considered.

  17. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery

    NASA Astrophysics Data System (ADS)

    Hurkat, Pooja; Jain, Aviral; Jain, Ashish; Shilpi, Satish; Gulbake, Arvind; Jain, Sanjay K.

    2012-11-01

    Major research issues in oral protein delivery include the stabilization of protein in delivery devices which could increase its oral bioavailability. The study deals with development of oral insulin delivery system utilizing biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and modifying its surface with Concanavalin A to increase lymphatic uptake. Surface-modified PLGA nanoparticles were characterized for conjugation efficiency of ligand, shape and surface morphology, particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro drug release. Stability of insulin in the developed formulation was confirmed by SDS-PAGE, and integrity of entrapped insulin was assessed using circular dichroism spectrum. Ex vivo study was performed on Wistar rats, which exhibited the higher intestinal uptake of Con A conjugated nanoparticles. In vivo study performed on streptozotocin-induced diabetic rats which indicate that a surface-modified nanoparticle reduces blood glucose level effectively within 4 h of its oral administration. In conclusion, the present work resulted in successful production of Con A NPs bearing insulin with sustained release profile, and better absorption and stability. The Con A NPs showed high insulin uptake, due to its relative high affinity for non-reducing carbohydrate residues i.e., fucose present on M cells and have the potential for oral insulin delivery in effective management of Type 1 diabetes condition.

  18. Superelliptical insert gradient coil with a field-modifying layer for breast imaging.

    PubMed

    Moon, Sung M; Goodrich, K Craig; Hadley, J Rock; Kim, Seong-Eun; Zeng, Gengsheng L; Morrell, Glen R; McAlpine, Matthew A; Chronik, Blaine A; Parker, Dennis L

    2011-03-01

    Many MRI applications such as dynamic contrast-enhanced MRI of the breast require high spatial and temporal resolution and can benefit from improved gradient performance, e.g., increased gradient strength and reduced gradient rise time. The improved gradient performance required to achieve high spatial and temporal resolution for this application may be achieved by using local insert gradients specifically designed for a target anatomy. Current flat gradient systems cannot create an imaging volume large enough to accommodate both breasts; further, their gradient fields are not homogeneous, dropping off rapidly with distance from the gradient coil surface. To attain an imaging volume adequate for bilateral breast MRI, a planar local gradient system design has been modified into a superellipse shape, creating homogeneous gradient volumes that are 182% (Gx), 57% (Gy), and 75% (Gz) wider (left/right direction) than those of the corresponding standard planar gradient. Adding an additional field-modifying gradient winding results in an additional improvement of the homogeneous gradient field near the gradient coil surface over the already enlarged homogeneous gradient volumes of the superelliptical gradients (67%, 89%, and 214% for Gx, Gy, and Gz respectively). A prototype y-gradient insert has been built to demonstrate imaging and implementation characteristics of the superellipse gradient in a 3 T MRI system. Copyright © 2010 Wiley-Liss, Inc.

  19. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.

    PubMed

    Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui

    2015-09-15

    Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Carbon felt interlayer derived from rice paper and its synergistic encapsulation of polysulfides for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Zhong, Lei; Guan, Ruiteng; Xiao, Min; Han, Dongmei; Wang, Shuanjin; Meng, Yuezhong

    2018-05-01

    Lithium-sulfur (Li-S) batteries have remarkably high theoretical specific capacity as promising candidates for next-generation energy storage. However, the "polysulfides shuttle" effect hampers its commercial application. Here, we use a kind of rice paper as a raw material to get inorganic oxides doping carbon felt by the facile carbonization method, and then modified by a simple coating process using poly (fluorenyl ether ketone) and Super P slurry. The special structure of the carbon felt derived from rice paper and its modified layer endow the final electronic conductive interlayer with inherent polysulfides absorbents and ion Coulombic repulsion functions, respectively, which show synergistic effect for trapping polysulfides. As an interlayer of Li-S batteries, the obtained carbon felt/poly (fluorenyl ether ketone)& Super P (CFSS) interlayer shows excellent electrochemical performance in improving specific capacity and decreasing polarization. The batteries with CFSS interlayer exhibit a high capacity of 837 mA h g-1 at 2.0 C and a high initial capacity of 1073.4 mA h g-1 and good capacity retention of 824.5 mA h g-1 after 500 cycles at 0.5 C. CFSS interlayer also shows excellent anti-self-discharge performance. Therefore, the simple and economical CFSS interlayer can be considered as a promising component for high performance Li-S batteries.

  1. Improving the performance of lactate/oxygen biofuel cells using a microfluidic design

    NASA Astrophysics Data System (ADS)

    Escalona-Villalpando, Ricardo A.; Reid, Russell C.; Milton, Ross D.; Arriaga, L. G.; Minteer, Shelley D.; Ledesma-García, Janet

    2017-02-01

    Lactate/O2 biofuel cells (BFC) can have high theoretical energy densities due to high solubility and high fuel energy density; however, they are rarely studied in comparison to glucose BFCs. In this paper, lactate oxidase (LOx) was coupled with a ferrocene-based redox polymer (dimethylferrocene-modified linear polyethylenimine, FcMe2-LPEI) as the bioanode and laccase (Lc) connected to pyrene-anthracene modified carbon nanotubes (PyrAn-MWCNT) to facilitate the direct electron transfer (DET) at the biocathode. Both electrodes were evaluated in two BFC configurations using different concentrations of lactate, in the range found in sweat (0-40 mM). A single compartment BFC evaluated at pH 5.6 provided an open circuit potential (OCP) of 0.68 V with a power density of 61.2 μWcm-2. On the other hand, a microfluidic BFC operating under the same conditions resulted in an OCP of 0.67 V, although an increase in the power density, increasing to 305 μW cm-2, was observed. Upon changing the pH to 7.4 in only the anolyte, its performance was further increased to 0.73 V and 404 μW cm-2, respectively. This work reports the first microfluidic lactate/oxygen enzymatic BFC and shows the importance of microfluidic flow in high performing BFCs where lactate is utilized as the fuel and O2 is the final electron acceptor.

  2. A new security solution to JPEG using hyper-chaotic system and modified zigzag scan coding

    NASA Astrophysics Data System (ADS)

    Ji, Xiao-yong; Bai, Sen; Guo, Yu; Guo, Hui

    2015-05-01

    Though JPEG is an excellent compression standard of images, it does not provide any security performance. Thus, a security solution to JPEG was proposed in Zhang et al. (2014). But there are some flaws in Zhang's scheme and in this paper we propose a new scheme based on discrete hyper-chaotic system and modified zigzag scan coding. By shuffling the identifiers of zigzag scan encoded sequence with hyper-chaotic sequence and accurately encrypting the certain coefficients which have little relationship with the correlation of the plain image in zigzag scan encoded domain, we achieve high compression performance and robust security simultaneously. Meanwhile we present and analyze the flaws in Zhang's scheme through theoretical analysis and experimental verification, and give the comparisons between our scheme and Zhang's. Simulation results verify that our method has better performance in security and efficiency.

  3. Bouc-Wen hysteresis model identification using Modified Firefly Algorithm

    NASA Astrophysics Data System (ADS)

    Zaman, Mohammad Asif; Sikder, Urmita

    2015-12-01

    The parameters of Bouc-Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc-Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc-Wen model parameters. Finally, the proposed method is used to find the Bouc-Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data.

  4. Haemorrhoidectomy as a one-day surgical procedure: modified Ferguson technique.

    PubMed

    Kosorok, P; Mlakar, B

    2005-04-01

    Modification of Ferguson haemorrhoidectomy had been started because it was easier to ligate the haemorrhoidal pedicle with a rubber band instead of using the stitch. There is no need to use a retractor for such a procedure as it would cause discomfort to the patient when only infiltrative anaesthesia for one or two haemorrhoidal complexes was given. In the period from 1994 to 1999, we performed 398 haemorrhoidectomies as a one-day surgical procedure under local infiltrative anaesthesia. The examination follow-ups of the patients were performed and medical charts were reviewed. Early postoperative complications were rare: haemorrhage occurred in 1.8%, urine retention in 0.5%, high temperature in 1.3% and temporary incontinence in 0.3%. Overall, 28 patients (7%) had additional treatment for residual haemorrhoid problems 5-10 years after the primary haemorrhoidectomy was performed. We believe that our modified technique is a welcome alternative to the one-day surgical practice.

  5. Biocompatible high performance hyperbranched epoxy/clay nanocomposite as an implantable material.

    PubMed

    Barua, Shaswat; Dutta, Nipu; Karmakar, Sanjeev; Chattopadhyay, Pronobesh; Aidew, Lipika; Buragohain, Alak K; Karak, Niranjan

    2014-04-01

    Polymeric biomaterials are in extensive use in the domain of tissue engineering and regenerative medicine. High performance hyperbranched epoxy is projected here as a potential biomaterial for tissue regeneration. Thermosetting hyperbranched epoxy nanocomposites were prepared with Homalomena aromatica rhizome oil-modified bentonite as well as organically modified montmorillonite clay. Fourier transformed infrared spectroscopy, x-ray diffraction and scanning and transmission electron microscopic techniques confirmed the strong interfacial interaction of clay layers with the epoxy matrix. The poly(amido amine)-cured thermosetting nanocomposites exhibited high mechanical properties like impact resistance (>100 cm), scratch hardness (>10 kg), tensile strength (48-58 MPa) and elongation at break (11.9-16.6%). Cytocompatibility of the thermosets was found to be excellent as evident by MTT and red blood cell hemolytic assays. The nanocomposites exhibited antimicrobial activity against Staphylococcus aureus (ATCC 11632), Escherichia coli (ATCC 10536), Mycobacterium smegmatis (ATCC14468) and Candida albicans (ATCC 10231) strains. In vivo biocompatibility of the best performing nanocomposite was ascertained by histopathological study of the brain, heart, liver and skin after subcutaneous implantation in Wistar rats. The material supported the proliferation of dermatocytes without induction of any sign of toxicity to the above organs. The adherence and proliferation of cells endorse the nanocomposite as a non-toxic biomaterial for tissue regeneration.

  6. The development of nano-modified Ti(C,N) cermets.

    PubMed

    Rong, Chunlan; Chen, Wenling; Zhang, Xiaobo; Liu, Ning

    2007-01-01

    The unique combination of mechanical properties such as excellent wear resistance and good chemical stability at elevated temperature helps titanium carbonitride based (Ti (C, N)-based) cermets to play an important roles in metal cutting operations. Nowadays, cermets cutting tools are widely used for semi-finishing and finishing works on steel and cast iron. However, their brittleness is still an unavoidable limitation for their utilization. With the development of nano-technology, nano-modified cermets have received more attention due to the high toughening enhancements. In this review, the development of nano-modified Ti(C,N) cermets is discussed including the fabrication, microstructure, mechanical properties, cutting performance and the practical applications in different fields. Many patents having important effect on the development of cermets were noticed, too.

  7. Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment.

    PubMed

    Du, Jennifer R; Peldszus, Sigrid; Huck, Peter M; Feng, Xianshe

    2009-10-01

    A commercial poly(vinylidene fluoride) flat sheet membrane was modified by surface coating with a dilute poly(vinyl alcohol) (PVA) aqueous solution followed by solid-vapor interfacial crosslinking. The resulting PVA layer increased membrane smoothness and hydrophilicity and resulted in comparable pure water permeation between the modified and unmodified membranes. Fouling tests using a 5 mg/L protein solution showed that a short period of coating and crosslinking improved the anti-fouling performance. After 18 h ultrafiltration of a surface water with a TOC of approximately 7 mg C/L, the flux of the modified membrane was twice as high as that of the unmodified membrane. The improved fouling resistance of the modified membrane was related to the membrane physiochemical properties, which were confirmed by pure water permeation, X-ray photoelectron spectroscopy, and contact angle, zeta potential and roughness measurements.

  8. An ultrasensitive and selective electrochemical sensor for determination of estrone 3-sulfate sodium salt based on molecularly imprinted polymer modified carbon paste electrode.

    PubMed

    Song, Han; Wang, Yuli; Zhang, Lu; Tian, Liping; Luo, Jun; Zhao, Na; Han, Yajie; Zhao, Feilang; Ying, Xue; Li, Yingchun

    2017-11-01

    A highly sensitive and selective electrochemical sensor based on carbon paste electrode (CPE) modified with molecularly imprinted polymers (MIPs) has been developed for the determination of estrone 3-sulfate sodium salt (ESS). MIPs were prepared in polar medium via bulk polymerization and characterized by scanning electron microscopy and infrared spectroscopy. Cyclic voltammetry was performed to the study preparation process and binding behavior of the MIP-modified CPE (MIP/CPE) toward ESS. The conditions for preparing MIPs and MIP/CPE as well as ESS detection were optimized. Under the optimal experimental conditions, the detection linear range for ESS is 4 × 10 -12 to 6 × 10 -9  M with a limit of detection of 1.18 × 10 -12  M (S/N = 3). In addition, the sensor exhibits high binding affinity toward ESS over its structural analogues with excellent repeatability and stability. The fabricated MIP/CPE was then successfully employed to detect ESS in pregnant mare urine (PMU) without any pretreatment, and the average recoveries were from 99.6 to 104.9% with relative standard deviation less than 3.0%. High-performance liquid chromatography was adopted as a reference to validate the established approach in detecting ESS and their results showed good agreement. The as-prepared sensor has high potential to be a decent tool for on-site determination of ESS in PMU in a fast and convenient manner. Graphical Abstract ᅟ.

  9. Evaluation of FPGA to PC feedback loop

    NASA Astrophysics Data System (ADS)

    Linczuk, Pawel; Zabolotny, Wojciech M.; Wojenski, Andrzej; Krawczyk, Rafal D.; Pozniak, Krzysztof T.; Chernyshova, Maryna; Czarski, Tomasz; Gaska, Michal; Kasprowicz, Grzegorz; Kowalska-Strzeciwilk, Ewa; Malinowski, Karol

    2017-08-01

    The paper presents the evaluation study of the performance of the data transmission subsystem which can be used in High Energy Physics (HEP) and other High-Performance Computing (HPC) systems. The test environment consisted of Xilinx Artix-7 FPGA and server-grade PC connected via the PCIe 4xGen2 bus. The DMA engine was based on the Xilinx DMA for PCI Express Subsystem1 controlled by the modified Xilinx XDMA kernel driver.2 The research is focused on the influence of the system configuration on achievable throughput and latency of data transfer.

  10. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones.

    PubMed

    Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2017-09-01

    A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Test Results of the Modified Space Shuttle Main Engine at the Marshall Space Flight Center Technology Test Bed Facility

    NASA Technical Reports Server (NTRS)

    Cook, J.; Dumbacher, D.; Ise, M.; Singer, C.

    1990-01-01

    A modified space shuttle main engine (SSME), which primarily includes an enlarged throat main combustion chamber with the acoustic cavities removed and a main injector with the stability control baffles removed, was tested. This one-of-a-kind engine's design changes are being evaluated for potential incorporation in the shuttle flight program in the mid-1990's. Engine testing was initiated on September 15, 1988 and has accumulated 1,915 seconds and 19 starts. Testing is being conducted to characterize the engine system performance, combustion stability with the baffle-less injector, and both low pressure oxidizer turbopump (LPOTP) and high pressure oxidizer turbopump (HPOTP) for suction performance. These test results are summarized and compared with the SSME flight configuration data base. Testing of this new generation SSME is the first product from the technology test bed (TTB). Figure test plans for the TTB include the highly instrumented flight configuration SSME and advanced liquid propulsion technology items.

  12. Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater.

    PubMed

    Lau, Abbe Y T; Tsang, Daniel C W; Graham, Nigel J D; Ok, Yong Sik; Yang, Xin; Li, Xiang-Dong

    2017-02-01

    Bioretention systems have been recommended as one of the best management practices for low impact development for water recycling/reuse systems. Although improvement of the stormwater quality has been reported regarding pollutants eliminations such as suspended solids and heavy metals, a substantial removal of indicator bacteria is required for possible non-potable reuse. This study investigated the efficiency of wood biochar with H 2 SO 4 -, H 3 PO 4 -, KOH-, and amino-modifications for E. coli removal from synthetic stormwater under intermittent flow. The H 2 SO 4 -modified biochar showed a specific surface area of 234.7 m 2  g -1 (approximately double the area of original biochar), whereas a substantial reduction in surface area was found with amino-modified biochar. The E. coli removal (initial concentration of 0.3-3.2 × 10 6  CFU mL -1 ) by modified biochars as filter media was very promising with, for example, over 98% removal efficiency in the first 20 pore volumes of stormwater infiltration and over 92% removal by the end of the second infiltration cycle. Only a small portion of E. coli attached on the modified biochars (<0.3%, except KOH- and amino-modified biochars) was remobilized during the drainage phase of intermittent flow. The high removal capacity and stability against drainage were attributed to the high surface area, porous structure, and surface characteristics (e.g. hydrophobicity and O-containing functional groups) of the biochars. Thus, the H 2 SO 4 -modified biochar appeared to give the best treatment performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A Sensitive Branched DNA HIV-1 Signal Amplification Viral Load Assay with Single Day Turnaround

    PubMed Central

    Baumeister, Mark A.; Zhang, Nan; Beas, Hilda; Brooks, Jesse R.; Canchola, Jesse A.; Cosenza, Carlo; Kleshik, Felix; Rampersad, Vinod; Surtihadi, Johan; Battersby, Thomas R.

    2012-01-01

    Branched DNA (bDNA) is a signal amplification technology used in clinical and research laboratories to quantitatively detect nucleic acids. An overnight incubation is a significant drawback of highly sensitive bDNA assays. The VERSANT® HIV-1 RNA 3.0 Assay (bDNA) (“Versant Assay”) currently used in clinical laboratories was modified to allow shorter target incubation, enabling the viral load assay to be run in a single day. To dramatically reduce the target incubation from 16–18 h to 2.5 h, composition of only the “Lysis Diluent” solution was modified. Nucleic acid probes in the assay were unchanged. Performance of the modified assay (assay in development; not commercially available) was evaluated and compared to the Versant Assay. Dilution series replicates (>950 results) were used to demonstrate that analytical sensitivity, linearity, accuracy, and precision for the shorter modified assay are comparable to the Versant Assay. HIV RNA-positive clinical specimens (n = 135) showed no significant difference in quantification between the modified assay and the Versant Assay. Equivalent relative quantification of samples of eight genotypes was demonstrated for the two assays. Elevated levels of several potentially interfering endogenous substances had no effect on quantification or specificity of the modified assay. The modified assay with drastically improved turnaround time demonstrates the viability of signal-amplifying technology, such as bDNA, as an alternative to the PCR-based assays dominating viral load monitoring in clinical laboratories. Highly sensitive bDNA assays with a single day turnaround may be ideal for laboratories with especially stringent cost, contamination, or reliability requirements. PMID:22479381

  14. A sensitive branched DNA HIV-1 signal amplification viral load assay with single day turnaround.

    PubMed

    Baumeister, Mark A; Zhang, Nan; Beas, Hilda; Brooks, Jesse R; Canchola, Jesse A; Cosenza, Carlo; Kleshik, Felix; Rampersad, Vinod; Surtihadi, Johan; Battersby, Thomas R

    2012-01-01

    Branched DNA (bDNA) is a signal amplification technology used in clinical and research laboratories to quantitatively detect nucleic acids. An overnight incubation is a significant drawback of highly sensitive bDNA assays. The VERSANT® HIV-1 RNA 3.0 Assay (bDNA) ("Versant Assay") currently used in clinical laboratories was modified to allow shorter target incubation, enabling the viral load assay to be run in a single day. To dramatically reduce the target incubation from 16-18 h to 2.5 h, composition of only the "Lysis Diluent" solution was modified. Nucleic acid probes in the assay were unchanged. Performance of the modified assay (assay in development; not commercially available) was evaluated and compared to the Versant Assay. Dilution series replicates (>950 results) were used to demonstrate that analytical sensitivity, linearity, accuracy, and precision for the shorter modified assay are comparable to the Versant Assay. HIV RNA-positive clinical specimens (n = 135) showed no significant difference in quantification between the modified assay and the Versant Assay. Equivalent relative quantification of samples of eight genotypes was demonstrated for the two assays. Elevated levels of several potentially interfering endogenous substances had no effect on quantification or specificity of the modified assay. The modified assay with drastically improved turnaround time demonstrates the viability of signal-amplifying technology, such as bDNA, as an alternative to the PCR-based assays dominating viral load monitoring in clinical laboratories. Highly sensitive bDNA assays with a single day turnaround may be ideal for laboratories with especially stringent cost, contamination, or reliability requirements.

  15. Evaluation of Thermal Oxidative Aging Effect on the Rheological Performance of Modified Asphalt Binders

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng

    Modified asphalt binder, which is combined by base binder and additive modifier, has been implemented in pavement industry for more than 30 years. Recently, the oxidative aging mechanism of asphalt binder has been studied for several decades, and appreciable finding results of asphalt binder aging mechanism were achieved from the chemistry and rheological performance aspects. However, most of these studies were conducted with neat binders, the research of aging mechanism of modified asphalt binder was limited. Nowadays, it is still highly necessary to clarify how the asphalt binder aging happens with the modified asphalt binder, what is the effect of the different modifiers (additives) on the binder aging process, how the rheological performance changes under the thermal oxidative aging conditions and so on. The objective of this study was to investigate the effect of isothermal oxidative aging conditions on the rheological performance change of the modified and controlled asphalt binders. There were totally 14 different sorts of asphalt binders had been aged in the PAV pans in the air-force drafted ovens at 50°C, 60°C and 85°C for 0.5 day to 240 days. The Fourier-Transform Infrared Spectroscopy (FT-IR) and Dynamic Shear Rheometer (DSR) were used to perform the experiments. The analysis of rheological indices (Low shear viscosity-LSV, Crossover modulus-G*c, Glover-Rowe Parameter-G-R, DSR function-DSR Fn) as a function of carbonyl area (CA) was conducted. With the SBS modification, both of the hardening susceptibility of the rheological index-LSV and G-R decreases compared with the corresponding base binder. The TR increased the hardening susceptibility of all the rheological indexes. While for the G*c, SBS increases the slope of the most modified asphalt binders except A and B_TR_X series binders. The multiple linear regression statistical analysis results indicate that the oxidative aging conditions play an important role on the CA, and rheological performance indexes. The modifiers-SBS and TR have different directional effect on these parameters. The field asphalt binder carbonyl area prediction was conducted. The pavement temperatures which were calculated by TEMP software were input into MATLAB(TM) as a parameter with other factors, e.g the asphalt binder oxidative aging parameters, the binder film thickness, the air void radius, etc., to calculate the field asphalt CA value as a function of time out to 20 years. It was found that the different rheological index method resulted different conclusion with the asphalt binder. The SBS modified asphalt binders of A, C version and B version had close average increasing rate of LSV, higher average decreasing rate of G*c, lower average increasing rate of DSR Fn compared with the corresponding base binders. D_HPM had lower average increasing rate of LSV, G*c and DSR Fn than base binder Base D. The tire rubber modified binder B_TR had higher average increasing rate of LSV, DSR Fn, and higher average decreasing rate of G*c than base binder Base B. The main finding of this study was that the modifier SBS and tire rubber can reduce the thermal oxidation aging rate (kf and kc) compared with the corresponding base binder, the activation energy was asphalt binder source dependent. For the hardening susceptibility, the modifiers-SBS, X, Y, Z reduced the HS of LSV and G-R. The tire rubber slightly increased the HS of LSV and G-R. A_PM, B_TR_X_PM reduced the HS of G*c and other modified binders increased the HS of G*c.

  16. Comparative Flight Performance with an NACA Roots Supercharger and a Turbocentrifugal Supercharger

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1931-01-01

    This report presents the comparative flight results of a roots supercharger and a turbocentrifugal supercharger. The tests were conducted using a modified DH-4M2 airplane. The rate of climb and the high speed in level flight of the airplane were obtained for each supercharger from sea level to the ceiling. The unsupercharged performance with each supercharger mounted in place was also determined. The results of these tests show that the ceiling and rate of climb obtained were nearly the same for each supercharger, but that the high speed obtained with the turbocentrifugal was better than that obtained with the roots. The high-speed performance at 21,000 feet was 122 and 142 miles per hour for the roots and turbocentrifugal, respectively.

  17. Effect of intake swirl on the performance of single cylinder direct injection diesel engine

    NASA Astrophysics Data System (ADS)

    Sharma, Vinod Kumar; Mohan, Man; Mouli, Chandra

    2017-11-01

    In the present work, the effect of inlet manifold geometry and swirl intensity on the direct injection (DI) diesel engine performance was investigated experimentally. Modifications in inlet manifold geometry have been suggested to achieve optimized swirl for the better mixing of fuel with air. The intake swirl intensities of modified cylinder head were measured in swirl test rig at different valve lifts. Later, the overall performance of 435 CC DI diesel engine was measured using modified cylinder head. In addition, the performance of engine was compared for both modified and old cylinder head. For same operating conditions, the brake power and brake specific fuel consumption was improved by 6% and 7% respectively with modified cylinder head compared to old cylinder head. The maximum brake power of 9 HP was achieved for modified cylinder head. The results revealed that the intake swirl has great influence on engine performance.

  18. Sandwich-structured nanohybrid paper based on controllable growth of nanostructured MnO2 on ionic liquid functionalized graphene paper as a flexible supercapacitor electrode.

    PubMed

    Sun, Yimin; Fang, Zheng; Wang, Chenxu; Ariyawansha, K R Rakhitha Malinga; Zhou, Aijun; Duan, Hongwei

    2015-05-07

    A sandwich-structured flexible supercapacitor electrode has been developed based on MnO2 nanonest (MNN) modified ionic liquid (IL) functionalized graphene paper (GP), which is fabricated by functionalizing graphene nanosheets with an amine-terminated IL (i.e., 1-(3-aminopropyl)-3-methylimidazolium bromide) to form freestanding IL functionalized GP (IL-GP), and then modifying IL-GP with a unique MNN structure via controllable template-free ultrasonic electrodeposition. The as-obtained MNN modified IL-GP (MNN/IL-GP) inherits the excellent pseudocapacity of the metal oxide, the high conductivity and electric double layer charging/discharging of IL-graphene composites, and therefore shows an enhanced supercapacitor performance. The maximum specific capacitance of 411 F g(-1) can be achieved by chronopotentiometry at a current density of 1 A g(-1). Meanwhile, the MNN/IL-GP electrode exhibits excellent rate capability and cycling stability, its specific capacitance is maintained at 70% as the current densities increase from 1 to 20 A g(-1) and 85% at a current density of 10 A g(-1) after 10 000 cycles. More importantly, the MNN/IL-GP displays distinguished mechanical stability and flexibility for device packaging, although its thickness is merely 8 μm. These features collectively demonstrate the potential of MNN/IL-GP as a high-performance paper electrode for flexible and lightweight and highly efficient electrochemical capacitor applications.

  19. Determining Methane Leak Locations and Rates with a Wireless Network Composed of Low-Cost, Printed Sensors

    NASA Astrophysics Data System (ADS)

    Smith, C. J.; Kim, B.; Zhang, Y.; Ng, T. N.; Beck, V.; Ganguli, A.; Saha, B.; Daniel, G.; Lee, J.; Whiting, G.; Meyyappan, M.; Schwartz, D. E.

    2015-12-01

    We will present our progress on the development of a wireless sensor network that will determine the source and rate of detected methane leaks. The targeted leak detection threshold is 2 g/min with a rate estimation error of 20% and localization error of 1 m within an outdoor area of 100 m2. The network itself is composed of low-cost, high-performance sensor nodes based on printed nanomaterials with expected sensitivity below 1 ppmv methane. High sensitivity to methane is achieved by modifying high surface-area-to-volume-ratio single-walled carbon nanotubes (SWNTs) with materials that adsorb methane molecules. Because the modified SWNTs are not perfectly selective to methane, the sensor nodes contain arrays of variously-modified SWNTs to build diversity of response towards gases with adsorption affinity. Methane selectivity is achieved through advanced pattern-matching algorithms of the array's ensemble response. The system is low power and designed to operate for a year on a single small battery. The SWNT sensing elements consume only microwatts. The largest power consumer is the wireless communication, which provides robust, real-time measurement data. Methane leak localization and rate estimation will be performed by machine-learning algorithms built with the aid of computational fluid dynamics simulations of gas plume formation. This sensor system can be broadly applied at gas wells, distribution systems, refineries, and other downstream facilities. It also can be utilized for industrial and residential safety applications, and adapted to other gases and gas combinations.

  20. Performance Testing of a High Temperature Linear Alternator for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan; Geng, Steven

    2016-01-01

    The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpowers Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 C. Increasing the temperature capability of the linear alternator could expand the mission space of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to uses. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 C is currently underway.

  1. Performance Testing of a High Temperature Linear Alternator for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan F.; Geng, Steven M.

    2016-01-01

    The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpower's Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 deg. Increasing the temperature capability of the linear alternator could expand the mission set of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to use. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 deg is currently underway.

  2. A millimeter-wave tunneLadder TWT

    NASA Technical Reports Server (NTRS)

    Jacquez, A.; Karp, A.; Wilson, D.; Scott, A.

    1988-01-01

    A millimeter wave traveling wave tube was developed using a dispersive, high impedance forward interaction structure based on a ladder, with non-space harmonic interaction, for a tube with high gain per unit length and high efficiency. The TunneLadder interaction structure combines ladder properties modified to accommodate Pierce gun beam optics in a radially magnetized permanent magnet focusing structure. The development involved the fabrication of chemically milled, shaped ladders diffusion brazed to diamond cubes which are in turn active-diffusion brazed to each ridge of a doubly ridged waveguide. Cold test data are presented, representing the omega-beta and impedance characteristics of the modified ladder circuit. These results were used in small and large signal computer programs to predict TWT gain and efficiency. Actual data from tested tubes verify the predicted performance while providing broader bandwidth than expected.

  3. A millimeter-wave tunneladder TWT

    NASA Technical Reports Server (NTRS)

    Wilson, D.

    1988-01-01

    A millimeter-wave traveling wave tube (TWT) was developed using a dispersive, high-impedance forward wave interaction structure based on a ladder, with non-space-harmonic interaction, for a tube with high gain per inch and high efficiency. The 'TunneLadder' interaction structure combines ladder properties modified to accommodate Pierce gun beam optics in a radially magnetized PM focusing structure. The development involved the fabrication of chemically milled, shaped ladders diffusion brazed to diamond cubes which are in turn active diffusion brazed to each ridge of a doubly ridged waveguide. Cold-test data, representing the (omega)(beta) and and impedance characteristics of the modified ladder circuit, were used in small and large-signal computer programs to predict TWT gain and efficiency. The structural design emphasizes ruggedness and reliability. Actual data from tested tubes verify the predicted performance while providing broader bandwidth than expected.

  4. Optimized Signaling Method for High-Speed Transmission Channels with Higher Order Transfer Function

    NASA Astrophysics Data System (ADS)

    Ševčík, Břetislav; Brančík, Lubomír; Kubíček, Michal

    2017-08-01

    In this paper, the selected results from testing of optimized CMOS friendly signaling method for high-speed communications over cables and printed circuit boards (PCBs) are presented and discussed. The proposed signaling scheme uses modified concept of pulse width modulated (PWM) signal which enables to better equalize significant channel losses during data high-speed transmission. Thus, the very effective signaling method to overcome losses in transmission channels with higher order transfer function, typical for long cables and multilayer PCBs, is clearly analyzed in the time and frequency domain. Experimental results of the measurements include the performance comparison of conventional PWM scheme and clearly show the great potential of the modified signaling method for use in low power CMOS friendly equalization circuits, commonly considered in modern communication standards as PCI-Express, SATA or in Multi-gigabit SerDes interconnects.

  5. A Modified Magnetic Gradient Contraction Based Method for Ferromagnetic Target Localization

    PubMed Central

    Wang, Chen; Zhang, Xiaojuan; Qu, Xiaodong; Pan, Xiao; Fang, Guangyou; Chen, Luzhao

    2016-01-01

    The Scalar Triangulation and Ranging (STAR) method, which is based upon the unique properties of magnetic gradient contraction, is a high real-time ferromagnetic target localization method. Only one measurement point is required in the STAR method and it is not sensitive to changes in sensing platform orientation. However, the localization accuracy of the method is limited by the asphericity errors and the inaccurate value of position leads to larger errors in the estimation of magnetic moment. To improve the localization accuracy, a modified STAR method is proposed. In the proposed method, the asphericity errors of the traditional STAR method are compensated with an iterative algorithm. The proposed method has a fast convergence rate which meets the requirement of high real-time localization. Simulations and field experiments have been done to evaluate the performance of the proposed method. The results indicate that target parameters estimated by the modified STAR method are more accurate than the traditional STAR method. PMID:27999322

  6. Acoustics and Trust of Separate-Flow Exhaust Nozzles With Mixing Devices for High-Bypass-Ratio Engines

    NASA Technical Reports Server (NTRS)

    Saiyed, Naseem H.; Mikkelsen, Kevin L.; Bridges, James E.

    2000-01-01

    The NASA Glenn Research Center recently completed an experimental study to reduce the jet noise from modern turbofan engines. The study concentrated on exhaust nozzle designs for high-bypass-ratio engines. These designs modified the core and fan nozzles individually and simultaneously. Several designs provided an ideal jet noise reduction of over 2.5 EPNdB for the effective perceived noise level (EPNL) metric. Noise data, after correcting for takeoff thrust losses, indicated over a 2.0-EPNdB reduction for nine designs. Individually modifying the fan nozzle did not provide attractive EPNL reductions. Designs in which only the core nozzle was modified provided greater EPNL reductions. Designs in which core and fan nozzles were modified simultaneously provided the greatest EPNL reduction. The best nozzle design had a 2.7-EPNdB reduction (corrected for takeoff thrust loss) with a 0.06-point cruise thrust loss. This design simultaneously employed chevrons on the core and fan nozzles. In comparison with chevrons, tabs appeared to be an inefficient method for reducing jet noise. Data trends indicate that the sum of the thrust losses from individually modifying core and fan nozzles did not generally equal the thrust loss from modifying them simultaneously. Flow blockage from tabs did not scale directly with cruise thrust loss and the interaction between fan flow and the core nozzle seemed to strongly affect noise and cruise performance. Finally, the nozzle configuration candidates for full-scale engine demonstrations are identified.

  7. Sorption of lead ions on diatomite and manganese oxides modified diatomite.

    PubMed

    Al-Degs, Y; Khraisheh, M A; Tutunji, M F

    2001-10-01

    Naturally occurring diatomaceous earth (diatomite) has been tested as a potential sorbent for Pb(II) ions. The intrinsic exchange properties were further improved by modification with manganese oxides. Modified adsorbent (referred to as Mn-diatomite) showed a higher tendency for adsorbing lead ions from solution at pH 4. The high performance exhibited by Mn-diatomite was attributed to increased surface area and higher negative surface charge after modification. Scanning electron microscope pictures revealed a birnessite structure of manganese oxides, which was featured by a plate-like-crystal structure. Diatomite filtration quality was improved after modification by manganese oxides. Good filtration qualities combined with high exchange capacity emphasised the potential use of Mn-diatomite in filtration systems.

  8. Modified radiotherapy technique in the treatment of medulloblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewit, L.; Van Dam, J.; Rijnders, A.

    1984-02-01

    Craniospinal irradiation is a standard treatment technique in patients who receive surgery for medulloblastoma. In most centers megavoltage photon irradiation is used, resulting in significant irradiation exposure to critical organs. In order to overcome this difficulty, the authors recently modified the technique applied in their center, by using high energy electrons (20 MeV) for irradiation of the spinal cord. The reliability of this technique was checked by performing dosimetry in a specially constructed wax phantom. Attention was focused upon dose variations at the junction of fields. Furthermore, the influence of vertebrae on the absorbed dose distribution of high energy electronsmore » is presented. This technique seems to be safe and reliable in selected patients (children and teenagers).« less

  9. Dispersion-engineered and highly nonlinear microstructured polymer optical fibres

    NASA Astrophysics Data System (ADS)

    Frosz, Michael H.; Nielsen, Kristian; Hlubina, Petr; Stefani, Alessio; Bang, Ole

    2009-05-01

    We demonstrate dispersion-engineering of microstructured polymer optical fibres (mPOFs) made of poly(methyl methacrylate) (PMMA). A significant shift of the total dispersion from the material dispersion is confirmed through measurement of the mPOF dispersion using white-light spectral interferometry. The influence of strong loss peaks on the dispersion (through the Kramers-Kronig relations) is investigated theoretically. It is found that the strong loss peaks of PMMA above 1100 nm can significantly modify the dispersion, while the losses below 1100 nm only modify the dispersion slightly. To increase the nonlinearity of the mPOFs we investigated doping of PMMA with the highly-nonlinear dye Disperse Red 1. Both doping of a PMMA cane and direct doping of a PMMA mPOF was performed.

  10. Diets high in corn oil or extra-virgin olive oil differentially modify the gene expression profile of the mammary gland and influence experimental breast cancer susceptibility.

    PubMed

    Moral, Raquel; Escrich, Raquel; Solanas, Montserrat; Vela, Elena; Ruiz de Villa, M Carme; Escrich, Eduard

    2016-06-01

    Nutritional factors, especially dietary lipids, may have a role in the etiology of breast cancer. We aimed to analyze the effects of high-fat diets on the susceptibility of the mammary gland to experimental malignant transformation. Female Sprague-Dawley rats were fed a low-fat, high-corn-oil, or high-extra-virgin olive oil (EVOO) diet from weaning or from induction. Animals were induced with 7,12-dimethylbenz[a]anthracene at 53 days and euthanized at 36, 51, 100 and 246 days. Gene expression profiles of mammary glands were determined by microarrays. Further molecular analyses were performed by real-time PCR, TUNEL and immunohistochemistry. Carcinogenesis parameters were determined at 105 and 246 days. High-corn-oil diet increased body weight and mass when administered from weaning. The EVOO diet did not modify these parameters and increased the hepatic expression of UCP2, suggesting a decrease in intake/expenditure balance. Both diets differentially modified the gene expression profile of the mammary gland, especially after short dietary intervention. Corn oil down-regulated the expression of genes related to immune system and apoptosis, whereas EVOO modified the expression of metabolism genes. Further analysis suggested an increase in proliferation and lower apoptosis in the mammary glands by effect of the high-corn-oil diet, which may be one of the mechanisms of its clear stimulating effect on carcinogenesis. The high-corn-oil diet strongly stimulates mammary tumorigenesis in association with modifications in the expression profile and an increased proliferation/apoptosis balance of the mammary gland.

  11. Organic/Inorganic Nano-hybrids with High Dielectric Constant for Organic Thin Film Transistor Applications

    NASA Astrophysics Data System (ADS)

    Yu, Yang-Yen; Jiang, Ai-Hua; Lee, Wen-Ya

    2016-11-01

    The organic material soluble polyimide (PI) and organic-inorganic hybrid PI-barium titanate (BaTiO3) nanoparticle dielectric materials (IBX, where X is the concentration of BaTiO3 nanoparticles in a PI matrix) were successfully synthesized through a sol-gel process. The effects of various BaTiO3 contents on the hybrid film performance and performance optimization were investigated. Furthermore, pentacene-based organic thin film transistors (OTFTs) with PI-BaTiO3/polymethylmethacrylate or cyclic olefin copolymer (COC)-modified gate dielectrics were fabricated and examined. The hybrid materials showed effective dispersion of BaTiO3 nanoparticles in the PI matrix and favorable thermal properties. X-ray diffraction patterns revealed that the BaTiO3 nanoparticles had a perovskite structure. The hybrid films exhibited high formability and planarity. The IBX hybrid dielectric films exhibited tunable insulating properties such as the dielectric constant value and capacitance in ranges of 4.0-8.6 and 9.2-17.5 nF cm-2, respectively. Adding the modified layer caused the decrease of dielectric constant values and capacitances. The modified dielectric layer without cross-linking displayed a hydrophobic surface. The electrical characteristics of the pentacene-based OTFTs were enhanced after the surface modification. The optimal condition for the dielectric layer was 10 wt% hybrid film with the COC-modified layer; moreover, the device exhibited a threshold voltage of 0.12 V, field-effect mobility of 4.32 × 10-1 cm2 V-1 s-1, and on/off current of 8.4 × 107.

  12. Consequences of transition from liquid chromatography to supercritical fluid chromatography on the overall performance of a chiral zwitterionic ion-exchanger.

    PubMed

    Wolrab, Denise; Frühauf, Peter; Gerner, Christopher; Kohout, Michal; Lindner, Wolfgang

    2017-09-29

    Major differences in the chromatographic performance of a zwitterion ion-exchange type (ZWIX) chiral stationary phase (CSP) in supercritical fluid chromatography (SFC) and high-performance liquid chromatography (HPLC) have been observed. To explain these differences, transition from HPLC to SFC conditions has been performed. The amount of a protic organic modifier in supercritical carbon dioxide (scCO 2 ) was stepwise increased and the effect of this change studied using acidic, basic and ampholytic analytes. At the same time, the effect of various basic additives to the mobile phase and transient acidic buffer species, formed by the reaction of scCO 2 with the organic modifier and additives, was assessed. Evidence is provided that a transient acid together with the intrinsic counter-ions present in the ZWIX selector structure drive the elution of analytes even when no buffer is employed. We show that the tested analytes can be enantioseparated under both SFC and HPLC conditions; the best conditions for the resolution of ampholytes are in the so-called enhanced-fluidity mobile phase region. As a consequence, subcritical fluid and enhanced-fluidity mobile phase regions seem to be chromatographic modes with a high potential for operating ZWIX CSPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive.

    PubMed

    Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei

    2018-05-15

    Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors.

  14. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive

    PubMed Central

    Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei

    2018-01-01

    Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors. PMID:29762528

  15. Advances in rubber/halloysite nanotubes nanocomposites.

    PubMed

    Jia, Zhixin; Guo, Baochun; Jia, Demin

    2014-02-01

    The research advances in rubber/halloysite nanotubes (rubber/HNTs) nanocomposites are reviewed. HNTs are environmentally-friendly natural nanomaterials, which could be used to prepare the rubber-based nanocomposites with high performance and low cost. Unmodified HNTs could be adopted to prepare the rubber/HNTs composites with improved mechanical properties, however, the rubber/HNTs nanocomposites with fine morphology and excellent properties were chiefly prepared with various modifiers by in situ mixing method. A series of rubber/HNTs nanocomposites containing several rubbers (SBR, NR, xSBR, NBR, PU) and different modifiers (ENR, RH, Si69, SA, MAA, ILs) have been investigated. The results showed that all the rubber/HNTs nanocomposites achieved strong interfacial interaction via interfacial covalent bonds, hydrogen bonds or multiple interactions, realized significantly improved dispersion of HNTs at nanoscale and exhibited excellent mechanical performances and other properties.

  16. A modified error correction protocol for CCITT signalling system no. 7 on satellite links

    NASA Astrophysics Data System (ADS)

    Kreuer, Dieter; Quernheim, Ulrich

    1991-10-01

    Comite Consultatif International des Telegraphe et Telephone (CCITT) Signalling System No. 7 (SS7) provides a level 2 error correction protocol particularly suited for links with propagation delays higher than 15 ms. Not being originally designed for satellite links, however, the so called Preventive Cyclic Retransmission (PCR) Method only performs well on satellite channels when traffic is low. A modified level 2 error control protocol, termed Fix Delay Retransmission (FDR) method is suggested which performs better at high loads, thus providing a more efficient use of the limited carrier capacity. Both the PCR and the FDR methods are investigated by means of simulation and results concerning throughput, queueing delay, and system delay, respectively. The FDR method exhibits higher capacity and shorter delay than the PCR method.

  17. Development of on-line monitoring system for Nuclear Power Plant (NPP) using neuro-expert, noise analysis, and modified neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subekti, M.; Center for Development of Reactor Safety Technology, National Nuclear Energy Agency of Indonesia, Puspiptek Complex BO.80, Serpong-Tangerang, 15340; Ohno, T.

    2006-07-01

    The neuro-expert has been utilized in previous monitoring-system research of Pressure Water Reactor (PWR). The research improved the monitoring system by utilizing neuro-expert, conventional noise analysis and modified neural networks for capability extension. The parallel method applications required distributed architecture of computer-network for performing real-time tasks. The research aimed to improve the previous monitoring system, which could detect sensor degradation, and to perform the monitoring demonstration in High Temperature Engineering Tested Reactor (HTTR). The developing monitoring system based on some methods that have been tested using the data from online PWR simulator, as well as RSG-GAS (30 MW research reactormore » in Indonesia), will be applied in HTTR for more complex monitoring. (authors)« less

  18. Inquiring Minds

    Science.gov Websites

    -performance Computing Grid Computing Networking Mass Storage Plan for the Future State of the Laboratory to help decipher the language of high-energy physics. Virtual Ask-a-Scientist Read transcripts from past online chat sessions. last modified 1/04/2005 email Fermilab Fermi National Accelerator Laboratory

  19. Modified screening and ranking algorithm for copy number variation detection.

    PubMed

    Xiao, Feifei; Min, Xiaoyi; Zhang, Heping

    2015-05-01

    Copy number variation (CNV) is a type of structural variation, usually defined as genomic segments that are 1 kb or larger, which present variable copy numbers when compared with a reference genome. The screening and ranking algorithm (SaRa) was recently proposed as an efficient approach for multiple change-points detection, which can be applied to CNV detection. However, some practical issues arise from application of SaRa to single nucleotide polymorphism data. In this study, we propose a modified SaRa on CNV detection to address these issues. First, we use the quantile normalization on the original intensities to guarantee that the normal mean model-based SaRa is a robust method. Second, a novel normal mixture model coupled with a modified Bayesian information criterion is proposed for candidate change-point selection and further clustering the potential CNV segments to copy number states. Simulations revealed that the modified SaRa became a robust method for identifying change-points and achieved better performance than the circular binary segmentation (CBS) method. By applying the modified SaRa to real data from the HapMap project, we illustrated its performance on detecting CNV segments. In conclusion, our modified SaRa method improves SaRa theoretically and numerically, for identifying CNVs with high-throughput genotyping data. The modSaRa package is implemented in R program and freely available at http://c2s2.yale.edu/software/modSaRa. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Influence of natural fibers on the phase transitions in high-density polyethylene composites using dynamic mechanical analysis

    Treesearch

    Mehdi Tajvidi; Robert H. Falk; John C. Hermanson; Colin Felton

    2003-01-01

    Dynamic mechanical analysis was employed to evaluate the performance of various natural fibers in high-density polyethylene composites. Kenaf, newsprint, rice hulls, and wood flour were sources of fiber. Composites were made at 25 percent and 50 percent by weight fiber contents. Maleic anhydride modified polyethylene was also added at 1:25 ratio to the fiber....

  1. Beyond δ : Tailoring marked statistics to reveal modified gravity

    NASA Astrophysics Data System (ADS)

    Valogiannis, Georgios; Bean, Rachel

    2018-01-01

    Models that seek to explain cosmic acceleration through modifications to general relativity (GR) evade stringent Solar System constraints through a restoring, screening mechanism. Down-weighting the high-density, screened regions in favor of the low density, unscreened ones offers the potential to enhance the amount of information carried in such modified gravity models. In this work, we assess the performance of a new "marked" transformation and perform a systematic comparison with the clipping and logarithmic transformations, in the context of Λ CDM and the symmetron and f (R ) modified gravity models. Performance is measured in terms of the fractional boost in the Fisher information and the signal-to-noise ratio (SNR) for these models relative to the statistics derived from the standard density distribution. We find that all three statistics provide improved Fisher boosts over the basic density statistics. The model parameters for the marked and clipped transformation that best enhance signals and the Fisher boosts are determined. We also show that the mark is useful both as a Fourier and real-space transformation; a marked correlation function also enhances the SNR relative to the standard correlation function, and can on mildly nonlinear scales show a significant difference between the Λ CDM and the modified gravity models. Our results demonstrate how a series of simple analytical transformations could dramatically increase the predicted information extracted on deviations from GR, from large-scale surveys, and give the prospect for a much more feasible potential detection.

  2. Comparison of NASA-TLX scale, Modified Cooper-Harper scale and mean inter-beat interval as measures of pilot mental workload during simulated flight tasks.

    PubMed

    Mansikka, Heikki; Virtanen, Kai; Harris, Don

    2018-04-30

    The sensitivity of NASA-TLX scale, modified Cooper-Harper (MCH) scale and the mean inter-beat interval (IBI) of successive heart beats, as measures of pilot mental workload (MWL), were evaluated in a flight training device (FTD). Operational F/A-18C pilots flew instrument approaches with varying task loads. Pilots' performance, subjective MWL ratings and IBI were measured. Based on the pilots' performance, three performance categories were formed; high-, medium- and low-performance. Values of the subjective rating scales and IBI were compared between categories. It was found that all measures were able to differentiate most task conditions and there was a strong, positive correlation between NASA-TLX and MCH scale. An explicit link between IBI, NASA-TLX, MCH and performance was demonstrated. While NASA-TLX, MCH and IBI have all been previously used to measure MWL, this study is the first one to investigate their association in a modern FTD, using a realistic flying mission and operational pilots.

  3. Perovskite LaTiO₃-Ag0.2 nanomaterials for nonenzymatic glucose sensor with high performance.

    PubMed

    Wang, Yin-zhu; Zhong, Hui; Li, Xiao-mo; Jia, Fei-fei; Shi, Yi-xiang; Zhang, Wei-guang; Cheng, Zhi-peng; Zhang, Li-li; Wang, Ji-kui

    2013-10-15

    In this paper, a nonenzymatic glucose biosensor based on perovskite LaTiO3-Ag0.2(LTA) modified electrode was presented. The morphology and the composition of the perovskite LaTiO₃-Ag0.2 nanomaterials were characterized by using scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. The LaTiO₃-Ag0.2(LTA) composite was investigated by electrochemical characterization using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimal conditions, CV and chronoamperometry (I-t) study revealed that, compared with the bare glassy carbon electrode (GCE), the modified electrode showed a remarkable increase in the efficiency of the electrocatalytic oxidation of glucose, starting at around +0.70 V (vs. Ag/AgCl). The prepared sensor exhibited a high sensitivity of 784.14 µAmM⁻¹ cm⁻², a low detection limit of 2.1×10⁻⁷ M and a wide linear range from 2.5 µM to 4 mM (R=0.9997). More importantly, the LTA modified electrode was also relatively insensitive to commonly interfering species such as ascorbic acid (AA), uric acid (UA), dopamine (DA) in high potential. Moreover, the nonenzymatic sensor was applied to the determination of glucose in human serum samples and the results were in good agreement with clinical data. Electrodes modified with perovskite nanomaterials are highly promising for nonenzymatic electrochemical detection of glucose because of their high sensitivity, fast response, excellent stability and good reproducibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Magnetic induction of hyperthermia by a modified self-learning fuzzy temperature controller

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Cheng; Tai, Cheng-Chi

    2017-07-01

    The aim of this study involved developing a temperature controller for magnetic induction hyperthermia (MIH). A closed-loop controller was applied to track a reference model to guarantee a desired temperature response. The MIH system generated an alternating magnetic field to heat a high magnetic permeability material. This wireless induction heating had few side effects when it was extensively applied to cancer treatment. The effects of hyperthermia strongly depend on the precise control of temperature. However, during the treatment process, the control performance is degraded due to severe perturbations and parameter variations. In this study, a modified self-learning fuzzy logic controller (SLFLC) with a gain tuning mechanism was implemented to obtain high control performance in a wide range of treatment situations. This implementation was performed by appropriately altering the output scaling factor of a fuzzy inverse model to adjust the control rules. In this study, the proposed SLFLC was compared to the classical self-tuning fuzzy logic controller and fuzzy model reference learning control. Additionally, the proposed SLFLC was verified by conducting in vitro experiments with porcine liver. The experimental results indicated that the proposed controller showed greater robustness and excellent adaptability with respect to the temperature control of the MIH system.

  5. Physical Performance Comparison between Under 15 Elite and Sub-Elite Soccer Players

    PubMed Central

    Trecroci, Athos; Milanović, Zoran; Frontini, Matteo; Iaia, F. Marcello; Alberti, Giampietro

    2018-01-01

    Abstract The aim of this study was to compare the physical performance profile among young soccer players of different competitive levels. Two teams of elite (n = 22) and sub-elite (n = 22) soccer players at national (highly skilled) and regional (moderately skilled) level were recruited in the study. All participants were tested using a modified Illinois change of direction speed test, a T-drill with and without a ball, a countermovement jump, and a 10-m sprint. The analysis revealed significant differences in favor of elite players in sprint (d = 1.54, large) and vertical jump (d = 2.03, very large) outcomes, while no differences were observed in both modified Illinois change of direction speed (d = 0.16, trivial) and T-drill (d = 0.20, small) tests between the groups. The ability to change direction and speed with and without a ball was found not to be suitable enough to highlight the difference among youth players with moderate-to-high level of play. In conclusion, multi-testing approach based on task-related power should include vertical jump and sprint performance to delineate players of a higher level. PMID:29599873

  6. Investigation of turbines for driving supersonic compressors II : performance of first configuration with 2.2 percent reduction in nozzle flow area / Warner L. Stewart, Harold J. Schum, Robert Y. Wong

    NASA Technical Reports Server (NTRS)

    Stewart, Warner L; Schum, Harold J; Wong, Robert Y

    1952-01-01

    The experimental performance of a modified turbine for driving a supersonic compressor is presented and compared with the performance of the original configuration to illustrate the effect of small changes in the ratio of nozzle-throat area to rotor-throat area. Performance is based on the performance of turbines designed to operate with both blade rows close to choking. On the basis of the results of this investigation, the ratio of areas is concluded to become especially critical in the design of turbines such as those designed to drive high-speed, high-specific weight-flow compressors where the turbine nozzles and rotor are both very close to choking.

  7. Mercury removal from coal combustion flue gas by modified fly ash.

    PubMed

    Xu, Wenqing; Wang, Hairui; Zhu, Tingyu; Kuang, Junyan; Jing, Pengfei

    2013-02-01

    Fly ash is a potential alternative to activated carbon for mercury adsorption. The effects of physicochemical properties on the mercury adsorption performance of three fly ash samples were investigated. X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, and other methods were used to characterize the samples. Results indicate that mercury adsorption on fly ash is primarily physisorption and chemisorption. High specific surface areas and small pore diameters are beneficial to efficient mercury removal. Incompletely burned carbon is also an important factor for the improvement of mercury removal efficiency, in particular. The C-M bond, which is formed by the reaction of C and Ti, Si and other elements, may improve mercury oxidation. The samples modified with CuBr2, CuCl2 and FeCl3 showed excellent performance for Hg removal, because the chlorine in metal chlorides acts as an oxidant that promotes the conversion of elemental mercury (Hg0) into its oxidized form (Hg2+). Cu2+ and Fe3+ can also promote Hg0 oxidation as catalysts. HCl and O2 promote the adsorption of Hg by modified fly ash, whereas SO2 inhibits the Hg adsorption because of competitive adsorption for active sites. Fly ash samples modified with CuBr2, CuCl2 and FeCl3 are therefore promising materials for controlling mercury emissions.

  8. Investigation of oxygen reduction and methanol oxidation reaction activity of PtAu nano-alloy on surface modified porous hybrid nanocarbon supports

    NASA Astrophysics Data System (ADS)

    Parambath Vinayan, Bhaghavathi; Nagar, Rupali; Ramaprabhu, Sundara

    2016-09-01

    We investigate the electrocatalytic activity of PtAu alloy nanoparticles supported on various chemically modified carbon morphologies towards oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). The surface-modification of graphene nanosheets (f-G), multi-walled carbon nanotubes (f-MWNTs) and (graphene nanosheets-carbon nanotubes) hybrid support (f-G-MWNTs) were carried out by soft functionalization method using a cationic polyelectrolyte poly-(diallyldimethyl ammonium chloride). The Pt and PtAu alloy nanoparticles were dispersed over chemically modified carbon supports by sodium-borohydride assisted modified polyol reduction method. The electrochemical performance of all electrocatalysts were studied by half- and full-cell proton exchange membrane fuel cell (PEMFC) measurements and PtAu/f-G-MWNTs catalyst comparatively yielded the best catalytic performance. PEMFC full cell measurements of PtAu/f-G-MWNTs cathode electrocatalyst yield a maximum power density of 319 mW cm-2 at 60 °C without any back pressure,which is 2.1 times higher than that of cathode electrocatalyst Pt on graphene support. The high ORR and MOR activity of PtAu/f-G-MWNTs electrocatalyst is due to the alloying effect and inherent beneficial properties of porous hybrid nanocarbon support.

  9. Quadratic Frequency Modulation Signals Parameter Estimation Based on Two-Dimensional Product Modified Parameterized Chirp Rate-Quadratic Chirp Rate Distribution.

    PubMed

    Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong

    2018-05-19

    In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.

  10. Fabrication of Polyimide Membrane Incorporated with Functional Graphene Oxide for CO2 Separation: The Effects of GO Surface Modification on Membrane Performance.

    PubMed

    Wang, Ting; Cheng, Cheng; Wu, Li-Guang; Shen, Jiang-Nan; Van der Bruggen, Bart; Chen, Qian; Chen, Di; Dong, Chun-Ying

    2017-06-06

    Two kinds of isocyanate were used to modify graphene oxide (GO) samples. Then, polyimide (PI) hybrid membranes containing GO and modified GO were prepared by in situ polymerization. The permeation of CO 2 and N 2 was studied using these novel membranes. The morphology experiments showed that the isocyanate groups were successfully grafted on the surface of GO by replacement of the oxygen-containing functional groups. After modification, the surface polarity of the GO increased, and more defect structures were introduced into the GO surface. This resulted in a good distribution of more modified GO samples in the PI polymer matrix. Thus, the PI hybrid membranes incorporated by modified GO samples showed a high gas permeability and ideal selectivity of membranes. In addition, enhancement of the selectivity due to the solubility of CO 2 played a major role in the increase in the separation performance of the hybrid membranes for CO 2 , although the diffusion coefficients for CO 2 also increased. Both the higher condensability and the strong affinity between CO 2 molecules and GO in the polymer matrix caused an enhancement of the solubility selectivity higher than the diffusion selectivity after GO surface modification.

  11. Designing peptide inhibitor of insulin receptor to induce diabetes mellitus type 2 in animal model Mus musculus.

    PubMed

    Permatasari, Galuh W; Utomo, Didik H; Widodo

    2016-10-01

    A designing peptide as agent for inducing diabetes mellitus type 2 (T2DM) in an animal model is challenging. The computational approach provides a sophisticated tool to design a functional peptide that may block the insulin receptor activity. The peptide that able to inhibit the binding between insulin and insulin receptor is a warrant for inducing T2DM. Therefore, we designed a potential peptide inhibitor of insulin receptor as an agent to generate T2DM animal model by bioinformatics approach. The peptide has been developed based on the structure of insulin receptor binding site of insulin and then modified it to obtain the best properties of half life, hydrophobicity, antigenicity, and stability binding into insulin receptor. The results showed that the modified peptide has characteristics 100h half-life, high-affinity -95.1±20, and high stability 28.17 in complex with the insulin receptor. Moreover, the modified peptide has molecular weight 4420.8g/Mol and has no antigenic regions. Based on the molecular dynamic simulation, the complex of modified peptide-insulin receptor is more stable than the commercial insulin receptor blocker. This study suggested that the modified peptide has the promising performance to block the insulin receptor activity that potentially induce diabetes mellitus type 2 in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Flight and Test-stand Investigation of High-performance Fuels in Modified Double-row Radial Air-cooled Engines III: Knock-limited Performance of 33-R as Compared with a Triptane Blend and 28-R in Flight

    NASA Technical Reports Server (NTRS)

    Blackman, Calvin C.; White, H. Jack

    1945-01-01

    A comparison has been made in flight of the antiknock characteristics of 33-R fuel with that of 28-R and a triptane blent. The knock-limited performance of the three fuels - 33-R, a blend of 80 percent 28-R plus 20 percent triptane (leaded to 4.5 ml TEL/gal), and 28-R - was investigated in two modified 14-cylinder double-row radial air-cooled engines. Tests were conducted on the engines as installed in the left inboard nacelle of an airplane. A carburetor-air temperature of approximately 85 deg F was maintained. The conditions covered at an engine speed of 2250 rpm were high and low blower ratios and spark advances of 25 deg and 32 deg B.T.C. For an engine speed of 1800 rpm only the high-blower condition was investigated for both 25 deg and 32 deg spark advances. For the conditions investigated the difference between 33-R and the triptane blend was found to be slight; the performance of 33-R fuel, however, was slightly higher than that of the triptane blend in the lean region. The knock-limited power obtained with the 33-R fuel was from 14 to 28 percent higher than that of the 28-R fuel for the entire range of test conditions; the greatest improvement was shown in the lean region.

  13. Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Tan, Ting; Yan, Zhimiao

    2017-03-01

    The performance of cantilever-beam piezoelectric energy harvester is usually analyzed with pure resistive circuit. The optimal performance of such a vibration-based energy harvesting system is limited by narrow bandwidth around its modified natural frequency. For broadband piezoelectric energy harvesting, series and parallel inductive-resistive circuits are introduced. The electromechanical coupled distributed parameter models for such systems under harmonic base excitations are decoupled with modified natural frequency and electrical damping to consider the coupling effect. Analytical solutions of the harvested power and tip displacement for the electromechanical decoupled model are confirmed with numerical solutions for the coupled model. The optimal performance of piezoelectric energy harvesting with inductive-resistive circuits is revealed theoretically as constant maximal power at any excitation frequency. This is achieved by the scenarios of matching the modified natural frequency with the excitation frequency and equating the electrical damping to the mechanical damping. The inductance and load resistance should be simultaneously tuned to their optimal values, which may not be applicable for very high electromechanical coupling systems when the excitation frequency is higher than their natural frequencies. With identical optimal performance, the series inductive-resistive circuit is recommended for relatively small load resistance, while the parallel inductive-resistive circuit is suggested for relatively large load resistance. This study provides a simplified optimization method for broadband piezoelectric energy harvesters with inductive-resistive circuits.

  14. Free-anchored Nb2O5@graphene networks for ultrafast-stable lithium storage.

    PubMed

    Deng, Qinglin; Li, Mengjiao; Wang, Junyong; Jiang, Kai; Hu, Zhigao; Chu, Junhao

    2018-05-04

    Orthorhombic Nb 2 O 5 (T-Nb 2 O 5 ) has structural merit but poor electrical conductivity, limiting their applications in energy storage. Although graphene is frequently adopted to effectively improve its electrochemical properties, the ordinary modified methods cannot meet the growing demands for high-performance. Here, we demonstrate that different graphene modified routes play a vital role in affecting the electrochemical performances of T-Nb 2 O 5 . By only manual shaking within one minute, Nb 2 O 5 nano-particles can be rapidly adsorbed onto graphene, then the free-anchored T-Nb 2 O 5 @graphene three-dimensional networks can be successfully prepared based on hydrogel method. As for the application in lithium-ion batteries, it performs outstanding rate character (129 mA h g -1 (25C rate), 110 mA h g -1 (50C rate) and 90 mA h g -1 (100C rate), correspond to 79%, 67% and 55% capacity of 0.5C rate, respectively) and excellent long-term cycling feature (∼70% capacity retention after 20000 cycles). Moreover, it still maintains similar ultrafast-stable lithium storage performances when Cu foil is substituted by Al foil as current collector. In addition, relevant kinetics mechanisms are also expounded. This work provides a versatile strategy for the preparation of graphene modified Nb 2 O 5 or other types of nanoparticles.

  15. Free-anchored Nb2O5@graphene networks for ultrafast-stable lithium storage

    NASA Astrophysics Data System (ADS)

    Deng, Qinglin; Li, Mengjiao; Wang, Junyong; Jiang, Kai; Hu, Zhigao; Chu, Junhao

    2018-05-01

    Orthorhombic Nb2O5 (T-Nb2O5) has structural merit but poor electrical conductivity, limiting their applications in energy storage. Although graphene is frequently adopted to effectively improve its electrochemical properties, the ordinary modified methods cannot meet the growing demands for high-performance. Here, we demonstrate that different graphene modified routes play a vital role in affecting the electrochemical performances of T-Nb2O5. By only manual shaking within one minute, Nb2O5 nano-particles can be rapidly adsorbed onto graphene, then the free-anchored T-Nb2O5@graphene three-dimensional networks can be successfully prepared based on hydrogel method. As for the application in lithium-ion batteries, it performs outstanding rate character (129 mA h g-1 (25C rate), 110 mA h g-1 (50C rate) and 90 mA h g-1 (100C rate), correspond to 79%, 67% and 55% capacity of 0.5C rate, respectively) and excellent long-term cycling feature (˜70% capacity retention after 20000 cycles). Moreover, it still maintains similar ultrafast-stable lithium storage performances when Cu foil is substituted by Al foil as current collector. In addition, relevant kinetics mechanisms are also expounded. This work provides a versatile strategy for the preparation of graphene modified Nb2O5 or other types of nanoparticles.

  16. Epistemic motivation affects the processing of negative emotional stimuli in interpersonal decisions.

    PubMed

    Wei, Zhenyu; Ruz, María; Zhao, Zhiying; Zheng, Yong

    2015-01-01

    The present electrophysiological study investigated the role of the need for cognitive closure (NFC) in emotional processing. The NFC is conceptualized as an epistemic motive that is related to how and why people seek out information in social environments. Event-related potentials were recorded while individuals with high NFC (i.e., low epistemic motivation) or low NFC (i.e., high epistemic motivation) performed a modified Ultimatum Game, in which the emotions of happy or angry game agents were employed to predict their most likely offer. High-NFC participants more closely adhered to the decisions rules of the game than low-NFC individuals did. The electrophysiological results showed that the dispositional NFC modified early perceptual components (N170, N200, and P200). The potentials showed that high-NFC subjects had a processing bias to angry faces, whereas low-NFC individuals exhibited no such effects. These findings indicated that high-NFC individuals were more sensitive to negative emotional stimuli than low-NFC individuals in an interpersonal decision-making task.

  17. Cellulose-Silica Nanocomposites of High Reinforcing Content with Fungi Decay Resistance by One-Pot Synthesis

    PubMed Central

    Rodríguez-Robledo, M. Concepción; González-Lozano, M. Azucena; Ponce-Peña, Patricia; Quintana Owen, Patricia; Aguilar-González, Miguel Angel; Nieto-Castañeda, Georgina; López-Martínez, Rubén; Ramírez-Galicia, Guillermo

    2018-01-01

    Hybrid bionanocomposites based on cellulose matrix, with silica nanoparticles as reinforcers, were prepared by one-pot synthesis of cellulose surface modified by solvent exchange method to keep the biopolymer net void for hosting inorganic nanoparticles. Neither expensive inorganic-particle precursors nor crosslinker agents or catalysts were used for effective dispersion of reinforcer concentration up to 50 wt %. Scanning electron microscopy of the nanocomposites shows homogeneous dispersion of reinforcers in the surface modified cellulose matrix. The FTIR spectra demonstrated the cellulose features even at 50 weight percent content of silica nanoparticles. Such a high content of silica provides high thermal stability to composites, as seen by TGA-DSC. The fungi decay resistance to Trametes versicolor was measured by standard test showing good resistance even with no addition of antifungal agents. This one-pot synthesis of biobased hybrid materials represents an excellent way for industrial production of high performance materials, with a high content of inorganic nanoparticles, for a wide variety of applications. PMID:29642522

  18. Cellulose-Silica Nanocomposites of High Reinforcing Content with Fungi Decay Resistance by One-Pot Synthesis.

    PubMed

    Rodríguez-Robledo, M Concepción; González-Lozano, M Azucena; Ponce-Peña, Patricia; Quintana Owen, Patricia; Aguilar-González, Miguel Angel; Nieto-Castañeda, Georgina; Bazán-Mora, Elva; López-Martínez, Rubén; Ramírez-Galicia, Guillermo; Poisot, Martha

    2018-04-09

    Hybrid bionanocomposites based on cellulose matrix, with silica nanoparticles as reinforcers, were prepared by one-pot synthesis of cellulose surface modified by solvent exchange method to keep the biopolymer net void for hosting inorganic nanoparticles. Neither expensive inorganic-particle precursors nor crosslinker agents or catalysts were used for effective dispersion of reinforcer concentration up to 50 wt %. Scanning electron microscopy of the nanocomposites shows homogeneous dispersion of reinforcers in the surface modified cellulose matrix. The FTIR spectra demonstrated the cellulose features even at 50 weight percent content of silica nanoparticles. Such a high content of silica provides high thermal stability to composites, as seen by TGA-DSC. The fungi decay resistance to Trametes versicolor was measured by standard test showing good resistance even with no addition of antifungal agents. This one-pot synthesis of biobased hybrid materials represents an excellent way for industrial production of high performance materials, with a high content of inorganic nanoparticles, for a wide variety of applications.

  19. Epistemic motivation affects the processing of negative emotional stimuli in interpersonal decisions

    PubMed Central

    Wei, Zhenyu; Ruz, María; Zhao, Zhiying; Zheng, Yong

    2015-01-01

    The present electrophysiological study investigated the role of the need for cognitive closure (NFC) in emotional processing. The NFC is conceptualized as an epistemic motive that is related to how and why people seek out information in social environments. Event-related potentials were recorded while individuals with high NFC (i.e., low epistemic motivation) or low NFC (i.e., high epistemic motivation) performed a modified Ultimatum Game, in which the emotions of happy or angry game agents were employed to predict their most likely offer. High-NFC participants more closely adhered to the decisions rules of the game than low-NFC individuals did. The electrophysiological results showed that the dispositional NFC modified early perceptual components (N170, N200, and P200). The potentials showed that high-NFC subjects had a processing bias to angry faces, whereas low-NFC individuals exhibited no such effects. These findings indicated that high-NFC individuals were more sensitive to negative emotional stimuli than low-NFC individuals in an interpersonal decision-making task. PMID:26257698

  20. High frequency electromagnetic properties of interstitial-atom-modified Ce2Fe17NX and its composites

    NASA Astrophysics Data System (ADS)

    Li, L. Z.; Wei, J. Z.; Xia, Y. H.; Wu, R.; Yun, C.; Yang, Y. B.; Yang, W. Y.; Du, H. L.; Han, J. Z.; Liu, S. Q.; Yang, Y. C.; Wang, C. S.; Yang, J. B.

    2014-07-01

    The magnetic and microwave absorption properties of the interstitial atom modified intermetallic compound Ce2Fe17NX have been investigated. The Ce2Fe17NX compound shows a planar anisotropy with saturation magnetization of 1088 kA/m at room temperature. The Ce2Fe17NX paraffin composite with a mass ratio of 1:1 exhibits a permeability of μ ' = 2.7 at low frequency, together with a reflection loss of -26 dB at 6.9 GHz with a thickness of 1.5 mm and -60 dB at 2.2 GHz with a thickness of 4.0 mm. It was found that this composite increases the Snoek limit and exhibits both high working frequency and permeability due to its high saturation magnetization and high ratio of the c-axis anisotropy field to the basal plane anisotropy field. Hence, it is possible that this composite can be used as a high-performance thin layer microwave absorber.

  1. Measuring Attention in Rodents: Comparison of a Modified Signal Detection Task and the 5-Choice Serial Reaction Time Task

    PubMed Central

    Turner, Karly M.; Peak, James; Burne, Thomas H. J.

    2016-01-01

    Neuropsychiatric research has utilized cognitive testing in rodents to improve our understanding of cognitive deficits and for preclinical drug development. However, more sophisticated cognitive tasks have not been as widely exploited due to low throughput and the extensive training time required. We developed a modified signal detection task (SDT) based on the growing body of literature aimed at improving cognitive testing in rodents. This study directly compares performance on the modified SDT with a traditional test for measuring attention, the 5-choice serial reaction time task (5CSRTT). Adult male Sprague-Dawley rats were trained on either the 5CSRTT or the SDT. Briefly, the 5CSRTT required rodents to pay attention to a spatial array of five apertures and respond with a nose poke when an aperture was illuminated. The SDT required the rat to attend to a light panel and respond either left or right to indicate the presence of a signal. In addition, modifications were made to the reward delivery, timing, control of body positioning, and the self-initiation of trials. It was found that less training time was required for the SDT, with both sessions to criteria and daily session duration significantly reduced. Rats performed with a high level of accuracy (>87%) on both tasks, however omissions were far more frequent on the 5CSRTT. The signal duration was reduced on both tasks as a manipulation of task difficulty relevant to attention and a similar pattern of decreasing accuracy was observed on both tasks. These results demonstrate some of the advantages of the SDT over the traditional 5CSRTT as being higher throughput with reduced training time, fewer omission responses and their body position was controlled at stimulus onset. In addition, rats performing the SDT had comparable high levels of accuracy. These results highlight the differences and similarities between the 5CSRTT and a modified SDT as tools for assessing attention in preclinical animal models. PMID:26834597

  2. Effect of valence state and particle size on NO oxidation in fresh and aged Pt-based diesel oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Liang, Yanli; Ding, Xinmei; Zhao, Ming; Wang, Jianli; Chen, Yaoqiang

    2018-06-01

    To stabilize Pt, Magnesium-modified SiO2-Al2O3 materials was used to impregnate with Pt, which could strengthen the bonding effect between Pt and Mg. Before and after aging, both showed a higher dispersion. High valence state of Pt in fresh modified catalyst was unfavorable of NO oxidation, indicating that the valence state of Pt was the leader factor in fresh catalytic performance. While for the aged Mg-modified sample, its reaction temperature of 30% NO conversion lowered by around 30 °C. The Pt stabilization via interacting with Mg derives a relation that the variation of Pt valence state and its exposed sites played a significant role in fresh and aged catalytic NO activity, respectively.

  3. Maintenance on the Advanced Colloids Experiment Module

    NASA Image and Video Library

    2018-04-16

    iss055e035366 (April 16, 2018) --- NASA astronaut Ricky Arnold performs maintenance on the Advanced Colloids Experiment Module located inside the Light Microscopy Module which is a modified commercial, highly flexible, state-of-the-art light imaging microscope facility that provides researchers with powerful diagnostic hardware and software in microgravity.

  4. Acrolein inhalation causes myocardial strain delay and decreased cardiac performance as detected by high-frequency echocardiography in mice

    EPA Science Inventory

    Acrolein, an unsaturated aldehyde found in air pollution, impairs Ca2+ flux and contraction in cardiomyocytes in vitro. To better define direct and delayed functional cardiac effects, we hypothesized that a single exposure to acrolein would modify myocardial strain and performanc...

  5. Modified scoring criteria for the RBANS figures.

    PubMed

    Duff, Kevin; Leber, W R; Patton, Doyle E; Schoenberg, Mike R; Mold, James W; Scott, James G; Adams, Russell L

    2007-01-01

    Visual construction and memory tasks are routinely used in neuropsychological assessment, but their subjective scoring criteria can negatively affect the reliability of these instruments. The current study examined the standard scoring criteria for the Figure Copy and Recall subtests of the RBANS and compared them to a modified set of scoring criteria in two samples. In both a large community dwelling sample of older adults and in a mixed clinical sample, the original scoring criteria consistently led to lower scores than the modified criteria. Inter-rater reliability was high for the modified scoring criteria, and no age effects were found with the modified scoring criteria. In both samples, the modified scoring criteria led to Figure Copy scores that more closely approximated other performances on the RBANS compared to the standard criteria, whereas both scoring systems led to plausible Figure Recall scores. Despite these results, the present study cannot identify one scoring criterion as the "better," but only points out the significant differences between them. Such differences can have important clinical implications, and practitioners and researchers who utilize the RBANS with patient samples should be cautious when interpreting low scores on Figure Copy and Recall if the standard criteria are used.

  6. Redesign of a Variable-Gain Output Feedback Longitudinal Controller Flown on the High-Alpha Research Vehicle (HARV)

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.

    1998-01-01

    This paper describes a redesigned longitudinal controller that flew on the High-Alpha Research Vehicle (HARV) during calendar years (CY) 1995 and 1996. Linear models are developed for both the modified controller and a baseline controller that was flown in CY 1994. The modified controller was developed with three gain sets for flight evaluation, and several linear analysis results are shown comparing the gain sets. A Neal-Smith flying qualities analysis shows that performance for the low- and medium-gain sets is near the level 1 boundary, depending upon the bandwidth assumed, whereas the high-gain set indicates a sensitivity problem. A newly developed high-alpha Bode envelope criterion indicates that the control system gains may be slightly high, even for the low-gain set. A large motion-base simulator in the United Kingdom was used to evaluate the various controllers. Desired performance, which appeared to be satisfactory for flight, was generally met with both the low- and medium-gain sets. Both the high-gain set and the baseline controller were very sensitive, and it was easy to generate pilot-induced oscillation (PIO) in some of the target-tracking maneuvers. Flight target-tracking results varied from level 1 to level 3 and from no sensitivity to PIO. These results were related to pilot technique and whether actuator rate saturation was encountered.

  7. Preston Probe Calibrations at High Reynolds Number

    NASA Technical Reports Server (NTRS)

    Smits, Alexander J.

    1998-01-01

    The overall goal of the research effort is to study the performance of two Preston probes designed by NASA Langley Research Center across an unprecedented range of Reynolds number (based on friction velocity and probe diameter), and perform an accurate calibration over the same Reynolds number range. Using the Superpipe facility in Princeton, two rounds of experiments were performed. In each round of experiments for each Reynolds number, the pressure gradient, static pressure from the Preston probes and the total pressure from the Preston probes were measured. In the first round, 3 Preston probes having outer diameters of 0.058 inches, 0.083 inches and 0.203 inches were tested over a large range of pipe Reynolds numbers. Two data reduction methods were employed: first, the static pressure measured on the Preston probe was used to calculate P (modified Preston probe configuration), and secondly, the static pressure measured at the reference pressure tap was used to calculate P (un-modified Preston probe configuration). For both methods, the static pressure was adjusted to correspond with the static pressure at the Preston probe tip using the pressure gradient. The measurements for Preston probes with diameters of 0.058 inches, and 0.083 inches respectively were performed in the test pipe before it was polished a second time. Therefore, the measurements at high pipe Reynolds numbers may have been affected by roughness. In the second round of experiments the 0.058 inches and 0.083 inches diameter, un-modified probes were tested after the pipe was polished and prepared to ensure that the surface was smooth. The average velocity was estimated by assuming that the connection between the centerline velocity and the average velocity was known, and by using a Pitot tube to measure the centerline velocity. A preliminary error estimate suggests that it is possible to introduce a 1% to 2% error in estimating the average velocity using this approach. The evidence on the errors attending the second data set is somewhat circumstantial, and the measurements have not been repeated using a better approach, it seems probable that the correlation given applies to un-modified Preston probes over the range 6.4 less than x* less than 11.3.

  8. Thermal behavior of crumb-rubber modified asphalt concrete mixtures

    NASA Astrophysics Data System (ADS)

    Epps, Amy Louise

    Thermal cracking is one of the primary forms of distress in asphalt concrete pavements, resulting from either a single drop in temperature to an extreme low or from multiple temperature cycles above the fracture temperature of the asphalt-aggregate mixture. The first mode described is low temperature cracking; the second is thermal fatigue. The addition of crumb-rubber, manufactured from scrap tires, to the binder in asphalt concrete pavements has been suggested to minimize both types of thermal cracking. Four experiments were designed and completed to evaluate the thermal behavior of crumb-rubber modified (CRM) asphalt-aggregate mixtures. Modified and unmodified mixture response to thermal stresses was measured in four laboratory tests. The Thermal Stress Restrained Specimen Test (TSRST) and the Indirect Tensile Test (IDT) were used to compare mixture resistance to low temperature cracking. Modified mixtures showed improved performance, and cooling rate did not affect mixture resistance according to the statistical analysis. Therefore results from tests with faster rates can predict performance under slower field rates. In comparison, predicted fracture temperatures and stresses (IDT) were generally higher than measured values (TSRST). In addition, predicted fracture temperatures from binder test results demonstrated that binder testing alone is not sufficient to evaluate CRM mixtures. Thermal fatigue was explored in the third experiment using conventional load-induced fatigue tests with conditions selected to simulate daily temperature fluctuations. Test results indicated that thermal fatigue may contribute to transverse cracking in asphalt pavements. Both unmodified and modified mixtures had a finite capacity to withstand daily temperature fluctuations coupled with cold temperatures. Modified mixtures again exhibited improved performance. The fourth experiment examined fracture properties of modified and unmodified mixtures using a common fracture toughness test. Results showed no effect from modification, but the small experiment size may have masked this effect. Reliability concepts were introduced to include risk and uncertainty in a comparison of mixture response measured in the laboratory and estimated environmental conditions. This comparison provided evidence that CRM mixtures exhibit improved resistance to both types of thermal cracking at high levels of reliability. In conclusion, a mix design and analysis framework for evaluating thermal behavior was recommended.

  9. Modeling and control study of the NASA 0.3-meter transonic cryogenic tunnel for use with sulfur hexafluoride medium

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen

    1992-01-01

    The NASA Langley 0.3-m Transonic Cryogenic Tunnel is to be modified to operate with sulfur hexafluoride gas while retaining its present capability to operate with nitrogen. The modified tunnel will provide high Reynolds number flow on aerodynamic models with two different test gases. The document details a study of the SF6 tunnel performance boundaries, thermodynamic modeling of the tunnel process, nonlinear dynamical simulation of math model to yield tunnel responses, the closed loop control requirements, control laws, and mechanization of the control laws on the microprocessor based controller.

  10. Space Shuttle Orbiter trimmed center-of-gravity extension study. Volume 7: Effects of configuration modifications on the subsonic aerodynamic characteristics of the 1140 A/B orbbiter at high Reynolds numbers. [Langley low turbulence pressure tunnel

    NASA Technical Reports Server (NTRS)

    Phillips, W. P.

    1981-01-01

    Subsonic longitudinal andd laternal directional characteristics were obtained for several modified configurations of the 140 A/B orbiter (0.010 scale). These modifications, designed to extend longitudinal trim capability forward of the 65 percent fuselage length station, consisted of modified wing planform fillet and a canard. Tests were performed in the Langley Low Turbulence Pressure Tunnel at Reynolds numbers from about 4.2 million to 14.3 million based on the fuselage reference length.

  11. High throughput reconfigurable data analysis system

    NASA Technical Reports Server (NTRS)

    Bearman, Greg (Inventor); Pelletier, Michael J. (Inventor); Seshadri, Suresh (Inventor); Pain, Bedabrata (Inventor)

    2008-01-01

    The present invention relates to a system and method for performing rapid and programmable analysis of data. The present invention relates to a reconfigurable detector comprising at least one array of a plurality of pixels, where each of the plurality of pixels can be selected to receive and read-out an input. The pixel array is divided into at least one pixel group for conducting a common predefined analysis. Each of the pixels has a programmable circuitry programmed with a dynamically configurable user-defined function to modify the input. The present detector also comprises a summing circuit designed to sum the modified input.

  12. Conversions of formaldehyde-modified 2'-deoxyadenosine 5'-monophosphate in conditions modeling formalin-fixed tissue dehydration.

    PubMed

    Rait, Vladimir K; Zhang, Qingrong; Fabris, Daniele; Mason, Jeffrey T; O'Leary, Timothy J

    2006-03-01

    Formalin-fixed, paraffin-embedded specimens typically provide molecular biologists with low yields of extractable nucleic acids that exhibit extensive strand cleavage and covalent modification of nucleic acid bases. This study supports the idea that these deleterious effects are promoted by the first step in formalin-fixed tissue processing--i.e., tissue dehydration with a graded series of alcohols. We analyzed the conversions of formaldehyde-modified 2'-deoxyadenosine 5'-monophosphate (dAMP) by reverse-phase ion-pair, high-performance liquid chromatography and found that dehydration does not stabilize N-methylol groups in the modified nucleotide. Furthermore, spontaneous demodification in a dry state or in anhydrous ethanol can be as fast as it is in aqueous solutions if the preparation is contaminated with salts of orthophosphoric acid. In ethanol, orthophosphates also catalyze formation of abundant N6-ethoxymethyl-dAMP, as well as cross-linking and depurination of nucleotides present in the mixture. Identification of the products was performed using ultraviolet absorbance spectroscopy and electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry. Alternatives to the traditional processing of formalin-fixed tissues are discussed.

  13. Bacterial community shift and incurred performance in response to in situ microbial self-assembly graphene and polarity reversion in microbial fuel cell.

    PubMed

    Chen, Junfeng; Zhang, Lihua; Hu, Yongyou; Huang, Wantang; Niu, Zhuyu; Sun, Jian

    2017-10-01

    In this work, bacterial community shift and incurred performance of graphene modified bioelectrode (GM-BE) in microbial fuel cell (MFC) were illustrated by high throughput sequencing technology and electrochemical analysis. The results showed that Firmicutes occupied 48.75% in graphene modified bioanode (GM-BA), while Proteobacteria occupied 62.99% in graphene modified biocathode (GM-BC), both were dominant bacteria in phylum level respectively. Typical exoelectrogens, including Geobacter, Clostridium, Pseudomonas, Geothrix and Hydrogenophaga, were counted 26.66% and 17.53% in GM-BA and GM-BC. GM-BE was tended to decrease the bacterial diversity and enrich the dominant species. Because of the enrichment of exoelectrogens and excellent electrical conductivity of graphene, the maximum power density of MFC with GM-BA and GM-BC increased 33.1% and 21.6% respectively, and the transfer resistance decreased 83.8% and 73.6% compared with blank bioelectrode. This study aimed to enrich the microbial study in MFC and broaden the development and application for bioelectrode. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Detection of Genetically Modified Maize in Processed Foods Sold Commercially in Iran by Qualitative PCR

    PubMed Central

    Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud

    2013-01-01

    Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer’s right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses. PMID:24250568

  15. Detection of genetically modified maize in processed foods sold commercially in iran by qualitative PCR.

    PubMed

    Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud

    2013-01-01

    Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer's right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses.

  16. Sensitive and selective determination of Cu2+ at D-penicillamine functionalized nano-cellulose modified pencil graphite electrode

    NASA Astrophysics Data System (ADS)

    Taheri, M.; Ahour, F.; Keshipour, S.

    2018-06-01

    A novel electrochemical sensor based on D-penicillamine anchored nano-cellulose (DPA-NC) modified pencil graphite electrode was fabricated and used for highly selective and sensitive determination of copper (II) ions in the picomolar concentration by square wave adsorptive stripping voltammetric (SWV) method. The modified electrode showed better and increased SWV response compared to the bare and NC modified electrodes which may be related to the porous structure of modifier along with formation of complex between Cu2+ ions and nitrogen or oxygen containing groups in DPA-NC. Optimization of various experimental parameters influence the performance of the sensor, were investigated. Under optimized condition, DPA-NC modified electrode was used for the analysis of Cu2+ in the concentration range from 0.2 to 50 pM, and a lower detection limit of 0.048 pM with good stability, repeatability, and selectivity. Finally, the practical applicability of DPA-NC-PGE was confirmed via measuring trace amount of Cu (II) in tap and river water samples.

  17. Performance testing of asphalt concrete containing crumb rubber modifier and warm mix additives

    NASA Astrophysics Data System (ADS)

    Ikpugha, Omo John

    Utilisation of scrap tire has been achieved through the production of crumb rubber modified binders and rubberised asphalt concrete. Terminal and field blended asphalt rubbers have been developed through the wet process to incorporate crumb rubber into the asphalt binder. Warm mix asphalt technologies have been developed to curb the problem associated with the processing and production of such crumb rubber modified binders. Also the lowered production and compaction temperatures associated with warm mix additives suggests the possibility of moisture retention in the mix, which can lead to moisture damage. Conventional moisture sensitivity tests have not effectively discriminated good and poor mixes, due to the difficulty of simulating field moisture damage mechanisms. This study was carried out to investigate performance properties of crumb rubber modified asphalt concrete, using commercial warm mix asphalt technology. Commonly utilised asphalt mixtures in North America such as dense graded and stone mastic asphalt were used in this study. Uniaxial Cyclic Compression Testing (UCCT) was used to measure permanent deformation at high temperatures. Indirect Tensile Testing (IDT) was used to investigate low temperature performance. Moisture Induced Sensitivity Testing (MiST) was proposed to be an effective method for detecting the susceptibility of asphalt mixtures to moisture damage, as it incorporates major field stripping mechanisms. Sonnewarm(TM), Sasobit(TM) and Evotherm(TM) additives improved the resistance to permanent deformation of dense graded mixes at a loading rate of 0.5 percent by weight of the binder. Polymer modified mixtures showed superior resistance to permanent deformation compared to asphalt rubber in all mix types. Rediset(TM) WMX improves low temperature properties of dense graded mixes at 0.5 percent loading on the asphalt cement. Rediset LQ and Rediset WMX showed good anti stripping properties at 0.5 percent loading on the asphalt cement. The American Association of State Highway and Transportation Official's Mechanistic-Empirical Pavement Design Guide (AASHTO MEPDG) software was used to predict long term low temperature performance of the mixtures in various areas of Ontario. Sasobit, Rediset LQ and Rediset WMX gave good 15 years prediction with stone mastic asphalt mixtures but the performance of dense graded mixtures was less satisfactory.

  18. Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene

    NASA Astrophysics Data System (ADS)

    Tu, Dandan; He, Yu; Rong, Yuanzhen; Wang, You; Li, Guang

    2016-04-01

    In this work, an amperometric L-lactate biosensor based on a graphene-modified screen-printed carbon electrode (SPCE) was constructed. First, the electrocatalytic performance of the SPCE modified with graphene by a one-step electrodeposition process (OerGO/SPCE) was investigated. The cyclic voltammogram of OerGO/SPCE, which showed a well-defined redox peak, had a smaller peak potential separation than that of SPCE, revealing the improvement in electron transfer speed brought about by modifying with graphene. Next, lactate oxidase and potassium ferricyanide were dropped on the OerGO/SPCE to construct a graphene-modified L-lactate biosensor (LOD/K3[Fe(CN)6]/OerGO/SPCE). The proposed biosensor, with a detection limit of 60 μM, had a high sensitivity (42.42 μA mM-1 cm-2) when working at a low working potential (0.15 V). The linear range was 0.5 mM-15 mM, covering the detecting range of L-lactate in clinical applications. The L-lactate biosensor had a short response time (10 s) and required only 10 μl of the sample. This L-lactate sensor modified with electrodeposited graphene had a larger sensitivity than that based on the bare SPCE. Thus, our low-cost and disposable L-lactate biosensor enhanced by graphene can perform as an attractive electrochemical device that can be manufactured for point-of-care testing (POCT) devices and be employed in POCT applications.

  19. Effects of caffeine and alcohol on mood and performance changes following consumption of lager.

    PubMed

    Smith, Andrew P

    2013-06-01

    The present study examined whether caffeine would modify the behavioural effects of alcohol. The aim of the study was to determine whether caffeine modifies the effects of alcohol on mood and psychomotor performance and to identify possible dose-response and temporal relationships. A double-blind study examined the effects of three successive lager drinks (330 ml each) in the early afternoon on mood and psychomotor performance assessed at 30-min intervals over a 2-h period. Participants carried out a baseline session and were then randomly assigned to one of six conditions formed by combining three different doses of caffeine (0, 62.5 and 125 mg per drink) with either no alcohol or 4.3 % alcohol. One hundred and forty-six young adults (65 male, 81 female; age range 18-30 years) participated in the study. Mood (alertness, hedonic tone and anxiety) was assessed before and after performing simple reaction time and choice reaction time tasks. Alcohol was associated with higher hedonic tone (p < 0.005), reduced anxiety (p < 0.05) and reduced alertness (p < 0.005). Caffeine had no modifying effect on hedonic tone or anxiety. However, the highest dose of caffeine did remove the effect of alcohol on alertness (p < 0.05). Effects of alcohol and caffeine were found on the performance tasks (all p values < 0.05) but these were independent effects. The results from the present study confirm that caffeine does not remove the negative effects of alcohol on performance although high doses counteract the drop in subjective alertness produced by alcohol.

  20. Experimental thrust performance of a high-area-ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Pavli, Albert J.; Kacynski, Kenneth J.; Smith, Tamara A.

    1987-01-01

    An experimental investigation was conducted to determine the thrust performance attainable from high-area-ratio rocket nozzles. A modified Rao-contoured nozzle with an expansion area of 1030 was test fired with hydrogen-oxygen propellants at altitude conditions. The nozzle was also tested as a truncated nozzle, at an expansion area ratio of 428. Thrust coefficient and thrust coefficient efficiency values are presented for each configuration at various propellant mixture ratios (oxygen/fuel). Several procedural techniques were developed permitting improved measurement of nozzle performance. The more significant of these were correcting the thrust for the aneroid effects, determining the effective chamber pressure, and referencing differential pressure transducers to a vacuum reference tank.

  1. Experimental thrust performance of a high area-ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Pavli, A. J.; Kacynski, K. J.; Smith, T. A.

    1986-01-01

    An experimental investigation was conducted to determine the thrust performance attainable from high-area-ratio rocket nozzles. A modified Rao-contoured nozzle with an expansion area of 1030 was test fired with hydrogen-oxygen propellants at altitude conditions. The nozzle was also tested as a truncated nozzle, at an expansion area ratio of 428. Thrust coefficient and thrust coefficient efficiency values are presented for each configuration at various propellant mixture ratios (oxygen/fuel). Several procedural techniques were developed permitting improved measurement of nozzle performance. The more significant of these were correcting the thrust for the aneroid effects, determining the effective chamber pressure, and referencing differential pressure transducers to a vacuum reference tank.

  2. Performance and Thermal Characterization of the NASA-300MS 20 kW Hall Effect Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Soulas, George; Smith, Timothy; Mikellides, Ioannis; Hofer, Richard

    2013-01-01

    NASA's Space Technology Mission Directorate is sponsoring the development of a high fidelity 15 kW-class long-life high performance Hall thruster for candidate NASA technology demonstration missions. An essential element of the development process is demonstration that incorporation of magnetic shielding on a 20 kW-class Hall thruster will yield significant improvements in the throughput capability of the thruster without any significant reduction in thruster performance. As such, NASA Glenn Research Center and the Jet Propulsion Laboratory collaborated on modifying the NASA-300M 20 kW Hall thruster to improve its propellant throughput capability. JPL and NASA Glenn researchers performed plasma numerical simulations with JPL's Hall2De and a commercially available magnetic modeling code that indicated significant enhancement in the throughput capability of the NASA-300M can be attained by modifying the thruster's magnetic circuit. This led to modifying the NASA-300M magnetic topology to a magnetically shielded topology. This paper presents performance evaluation results of the two NASA-300M magnetically shielded thruster configurations, designated 300MS and 300MS-2. The 300MS and 300MS-2 were operated at power levels between 2.5 and 20 kW at discharge voltages between 200 and 700 V. Discharge channel deposition from back-sputtered facility wall flux, and plasma potential and electron temperature measurements made on the inner and outer discharge channel surfaces confirmed that magnetic shielding was achieved. Peak total thrust efficiency of 64% and total specific impulse of 3,050 sec were demonstrated with the 300MS-2 at 20 kW. Thermal characterization results indicate that the boron nitride discharge chamber walls temperatures are approximately 100 C lower for the 300MS when compared to the NASA- 300M at the same thruster operating discharge power.

  3. Advanced composite structural concepts and materials technologies for primary aircraft structures: Advanced material concepts

    NASA Technical Reports Server (NTRS)

    Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.

    1993-01-01

    To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.

  4. Cable testing for Fermilab's high field magnets using small racetrack coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feher, S.; Ambrosio, G.; Andreev, N.

    As part of the High Field Magnet program at Fermilab simple magnets have been designed utilizing small racetrack coils based on a sound mechanical structure and bladder technique developed by LBNL. Two of these magnets have been built in order to test Nb{sub 3}Sn cables used in cos-theta dipole models. The powder-in-tube strand based cable exhibited excellent performance. It reached its critical current limit within 14 quenches. Modified jelly roll strand based cable performance was limited by magnetic instabilities at low fields as previously tested dipole models which used similar cable.

  5. High temperature solar receiver

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of a high temperature solar thermal receiver is described. A prototype receiver and associated test support (auxiliary) hardware was fabricated. Shakedown and initial performance tests of the prototype receiver were performed. Maximum outlet temperatures of 1600 F were achieved at 100% solar (70-75 kW) input power with 900 F inlet temperatures and a subsequent testing was concluded by a 2550 F outlet run. The window retaining assembly was modified to improve its tolerance for thermal distortion of the flanges. It is shown that cost effective receiver designs can be implemented within the framework of present materials technology.

  6. Zeppelin NT - Measurement Platform for the Exploration of Atmospheric Chemistry and Dynamics in the Planetary Boundary Layer

    NASA Astrophysics Data System (ADS)

    Hofzumahaus, Andreas; Holland, Frank; Oebel, Andreas; Rohrer, Franz; Mentel, Thomas; Kiendler-Scharr, Astrid; Wahner, Andreas; Brauchle, Artur; Steinlein, Klaus; Gritzbach, Robert

    2014-05-01

    The planetary boundary layer (PBL) is the chemically most active and complex part of the atmosphere where freshly emitted reactive trace gases, tropospheric radicals, atmospheric oxidation products and aerosols exhibit a large variability and spatial gradients. In order to investigate the chemical degradation of trace gases and the formation of secondary pollutants in the PBL, a commercial Zeppelin NT was modified to be used as an airborne measurement platform for chemical and physical observations with high spatial resolution. The Zeppelin NT was developed by Zeppelin Luftschifftechnik (ZLT) and is operated by Deutsche Zeppelin Reederei (DZR) in Friedrichshafen, Germany. The modification was performed in cooperation between Forschungszentrum Jülich and ZLT. The airship has a length of 75 m, can lift about 1 ton of scientific payload and can be manoeuvered with high precision by propeller engines. The modified Zeppelin can carry measurement instruments mounted on a platform on top of the Zeppelin, or inside the gondola beneath the airship. Three different instrument packages were developed to investigate a. gas-phase oxidation processes involving free radicals (OH, HO2) b. formation of secondary organic aerosols (SOA) c. new particle formation (nucleation) The presentation will describe the modified airship and provide an overview of its technical performance. Examples of its application during the recent PEGASOS flight campaigns in Europe will be given.

  7. Using the modified Delphi method to establish a new Chinese clinical consensus of the treatments for cervical radiculopathy.

    PubMed

    Zang, Lei; Fan, Ning; Hai, Yong; Lu, S B; Su, Q J; Yang, J C; Du, Peng; Gao, Y J

    2015-06-01

    Although cervical radiculopathy is very common, there is no standard treatment for this condition, with little high-level evidence available to guide the treatment choice. Thus, this study aimed to review the current data on the management of cervical radiculopathy; and, further, to establish a new Chinese clinical consensus of the treatments for cervical radiculopathy using the Delphi method. First, a systematic review of the previously established treatment guidelines and of articles related to cervical radiculopathy was conducted to establish a protocol for the clinical consensus of the treatment for cervical radiculopathy. Second, from February 2012 to June 2014, we performed a modified Delphi survey in which the current professional opinions from 30 experienced experts, representing almost all of the Chinese provinces, were gathered. Three rounds were performed, and consensus was defined as ≥70% agreement. Consensus of the treatments for cervical radiculopathy was reached on seven aspects, including the proportion of patients requiring only non-surgical therapies; the effectiveness of neck immobilization, physiotherapy, pharmacologic treatment; surgical indications; contraindications; surgery. The modified Delphi study conducted herein reached a consensus concerning several treatment issues for cervical radiculopathy. In the absence of high-level evidence, at present, these expert opinion findings will help guide health care providers to define the appropriate treatment in their regions. Items with no consensus provide excellent areas for future research.

  8. Recycling of engineering plastics from waste electrical and electronic equipments: influence of virgin polycarbonate and impact modifier on the final performance of blends.

    PubMed

    Ramesh, V; Biswal, Manoranjan; Mohanty, Smita; Nayak, Sanjay K

    2014-05-01

    This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.

  9. No-cost manual method for preparation of tissue microarrays having high quality comparable to semiautomated methods.

    PubMed

    Foda, Abd Al-Rahman Mohammad

    2013-05-01

    Manual tissue microarray (TMA) construction had been introduced to avoid the high cost of automated and semiautomated techniques. The cheapest and simplest technique for constructing manual TMA was that of using mechanical pencil tips. This study was carried out to modify this method, aiming to raise its quality to reach that of expensive ones. Some modifications were introduced to Shebl's technique. Two conventional mechanical pencil tips of different diameters were used to construct the recipient blocks. A source of mild heat was used, and blocks were incubated at 38°C overnight. With our modifications, 3 high-density TMA blocks were constructed. We successfully performed immunostaining without substantial tissue loss. Our modifications increased the number of cores per block and improved the stability of the cores within the paraffin block. This new, modified technique is a good alternative for expensive machines in many laboratories.

  10. Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification

    NASA Astrophysics Data System (ADS)

    Longoria, Adriana; Tinoco, Raunel; Torres, Eduardo

    An overview of enzyme technology applied to peroxidases is made. Immobilization on organic, inorganic, and hybrid supports; chemical modification of amino acids and heme group; and genetic modification by site-directed and random mutagenesis are included. Different strategies that were carried out to improve peroxidase performance in terms of stability, selectivity, and catalytic activity are analyzed. Immobilization of peroxidases on inorganic and organic materials enhances the tolerance of peroxidases toward the conditions normally found in many industrial processes, such as the presence of an organic solvent and high temperature. In addition, it is shown that immobilization helps to increase the Total Turnover Number at levels high enough to justify the use of a peroxidase-based biocatalyst in a synthesis process. Chemical modification of peroxidases produces modified enzymes with higher thermostability and wider substrate variability. Finally, through mutagenesis approaches, it is possible to produce modified peroxidases capable of oxidizing nonnatural substrates with high catalytic activity and affinity.

  11. Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay.

    PubMed

    Hebbar, Raghavendra S; Isloor, Arun M; Prabhu, Balakrishna; Inamuddin; Asiri, Abdullah M; Ismail, A F

    2018-03-16

    Functional surfaces and polymers with branched structures have a major impact on physicochemical properties and performance of membrane materials. With the aim of greener approach for enhancement of permeation, fouling resistance and detrimental heavy metal ion rejection capacity of polyetherimide membrane, novel grafting of poly (4-styrenesulfonate) brushes on low cost, natural bentonite was carried out via distillation-precipitation polymerisation method and employed as a performance modifier. It has been demonstrated that, modified bentonite clay exhibited significant improvement in the hydrophilicity, porosity, and water uptake capacity with 3 wt. % of additive dosage. SEM and AFM analysis showed the increase in macrovoides and surface roughness with increased additive concentration. Moreover, the inclusion of modified bentonite displayed an increase in permeation rate and high anti-irreversible fouling properties with reversible fouling ratio of 75.6%. The humic acid rejection study revealed that, PEM-3 membrane having rejection efficiency up to 87.6% and foulants can be easily removed by simple hydraulic cleaning. Further, nanocomposite membranes can be significantly employed for the removal of hazardous heavy metal ions with a rejection rate of 80% and its tentative mechanism was discussed. Conspicuously, bentonite clay-bearing poly (4-styrenesulfonate) brushes are having a synergistic effect on physicochemical properties of nanocomposite membrane to enhance the performance in real field applications.

  12. Discovering the Unknown: Improving Detection of Novel Species and Genera from Short Reads

    DOE PAGES

    Rosen, Gail L.; Polikar, Robi; Caseiro, Diamantino A.; ...

    2011-01-01

    High-throughput sequencing technologies enable metagenome profiling, simultaneous sequencing of multiple microbial species present within an environmental sample. Since metagenomic data includes sequence fragments (“reads”) from organisms that are absent from any database, new algorithms must be developed for the identification and annotation of novel sequence fragments. Homology-based techniques have been modified to detect novel species and genera, but, composition-based methods, have not been adapted. We develop a detection technique that can discriminate between “known” and “unknown” taxa, which can be used with composition-based methods, as well as a hybrid method. Unlike previous studies, we rigorously evaluate all algorithms for theirmore » ability to detect novel taxa. First, we show that the integration of a detector with a composition-based method performs significantly better than homology-based methods for the detection of novel species and genera, with best performance at finer taxonomic resolutions. Most importantly, we evaluate all the algorithms by introducing an “unknown” class and show that the modified version of PhymmBL has similar or better overall classification performance than the other modified algorithms, especially for the species-level and ultrashort reads. Finally, we evaluate theperformance of several algorithms on a real acid mine drainage dataset.« less

  13. External validation of the Probability of repeated admission (Pra) risk prediction tool in older community-dwelling people attending general practice: a prospective cohort study.

    PubMed

    Wallace, Emma; McDowell, Ronald; Bennett, Kathleen; Fahey, Tom; Smith, Susan M

    2016-11-14

    Emergency admission is associated with the potential for adverse events in older people and risk prediction models are available to identify those at highest risk of admission. The aim of this study was to externally validate and compare the performance of the Probability of repeated admission (Pra) risk model and a modified version (incorporating a multimorbidity measure) in predicting emergency admission in older community-dwelling people. 15 general practices (GPs) in the Republic of Ireland. n=862, ≥70 years, community-dwelling people prospectively followed up for 2 years (2010-2012). Pra risk model (original and modified) calculated for baseline year where ≥0.5 denoted high risk (patient questionnaire, GP medical record review) of future emergency admission. Emergency admission over 1 year (GP medical record review). descriptive statistics, model discrimination (c-statistic) and calibration (Hosmer-Lemeshow statistic). Of 862 patients, a total of 154 (18%) had ≥1 emergency admission(s) in the follow-up year. 63 patients (7%) were classified as high risk by the original Pra and of these 26 (41%) were admitted. The modified Pra classified 391 (45%) patients as high risk and 103 (26%) were subsequently admitted. Both models demonstrated only poor discrimination (original Pra: c-statistic 0.65 (95% CI 0.61 to 0.70); modified Pra: c-statistic 0.67 (95% CI 0.62 to 0.72)). When categorised according to risk-category model, specificity was highest for the original Pra at cut-point of ≥0.5 denoting high risk (95%), and for the modified Pra at cut-point of ≥0.7 (95%). Both models overestimated the number of admissions across all risk strata. While the original Pra model demonstrated poor discrimination, model specificity was high and a small number of patients identified as high risk. Future validation studies should examine higher cut-points denoting high risk for the modified Pra, which has practical advantages in terms of application in GP. The original Pra tool may have a role in identifying higher-risk community-dwelling older people for inclusion in future trials aiming to reduce emergency admissions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Arg354 in the catalytic centre of bovine liver catalase is protected from methylglyoxal-mediated glycation.

    PubMed

    Scheckhuber, Christian Q

    2015-12-30

    In addition to controlled post-translational modifications proteins can be modified with highly reactive compounds. Usually this leads to a compromised functionality of the protein. Methylglyoxal is one of the most common agents that attack arginine residues. Methylglyoxal is also regarded as a pro-oxidant that affects cellular redox homeostasis by contributing to the formation of reactive oxygen species. Antioxidant enzymes like catalase are required to protect the cell from oxidative damage. These enzymes are also targets for methylglyoxal-mediated modification which could severely affect their catalytic activity in breaking down reactive oxygen species to less reactive or inert compounds. Here, bovine liver catalase was incubated with high levels of methylglyoxal to induce its glycation. This treatment did not lead to a pronounced reduction of enzymatic activity. Subsequently methylglyoxal-mediated arginine modifications (hydroimidazolone and dihydroxyimidazolidine) were quantitatively analysed by sensitive nano high performance liquid chromatography/electron spray ionisation/tandem mass spectrometry. Whereas several arginine residues displayed low to moderate levels of glycation (e.g., Arg93, Arg365, Arg444) Arg354 in the active centre of catalase was never found to be modified. Bovine liver catalase is able to tolerate very high levels of the modifying α-oxoaldehyde methylglyoxal so that its essential enzymatic function is not impaired.

  15. SU-E-I-62: Reduction of Susceptibility Artifacts by Increasing the Bandwidth (BW) and Echo Train Length (ETL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavroidis, P; Boci, N; Kostopoulos, S

    2015-06-15

    Purpose: The aim of this present study is to increase bandwidth (BW) and echo train length (ETL) in Proton Density Turbo Spin Echo (PD TSE) sequences with and without fat saturation (FS) as well as in Turbo Inversion Recovery Magnitude sequences (TIRM) in order to assess whether these sequences are capable of reducing susceptibility artifacts. Methods: We compared 1) TIRM coronal (COR) with the same sequence with increased both BW and ETL 2) Conventional PD TSE sagittal (SAG) with FS with an increased BW 3) Conventional PD TSE SAG without FS with an increased BW 4) Conventional PD TSE SAGmore » without FS with increased both BW and ETL. A quantitative analysis was performed to measure the extent of the susceptibility artifacts. Furthermore, a qualitative analysis was performed by two radiologists in order to evaluate the susceptibility artifacts, image distortion and fat suppression. The depiction of cartilage, menisci, muscles, tendons and bone marrow were also qualitatively analyzed. Results: The quantitative analysis found that the modified TIRM sequence is significantly superior to the conventional one regarding the extent of the susceptibility artifacts. In the qualitative analysis, the modified TIRM sequence was superior to the corresponding conventional one in eight characteristics out of ten that were analyzed. The modified PD TSE with FS was superior to the corresponding conventional one regarding the susceptibility artifacts, image distortion and depiction of bone marrow and cartilage while achieving effective fat saturation. The modified PD TSE sequence without FS with a high (H) BW was found to be superior corresponding to the conventional one in the case of cartilage. Conclusion: Consequently, TIRM sequence with an increased BW and ETL is proposed for producing images of high quality and modified PD TSE with H BW for smaller metals, especially when FS is used.« less

  16. A modified adaptive algorithm of dealing with the high chirp when chirped pulses propagating in optical fiber

    NASA Astrophysics Data System (ADS)

    Wu, Lianglong; Fu, Xiquan; Guo, Xing

    2013-03-01

    In this paper, we propose a modified adaptive algorithm (MAA) of dealing with the high chirp to efficiently simulate the propagation of chirped pulses along an optical fiber for the propagation distance shorter than the "temporal focal length". The basis of the MAA is that the chirp term of initial pulse is treated as the rapidly varying part by means of the idea of the slowly varying envelope approximation (SVEA). Numerical simulations show that the performance of the MAA is validated, and that the proposed method can decrease the number of sampling points by orders of magnitude. In addition, the computational efficiency of the MAA compared with the time-domain beam propagation method (BPM) can be enhanced with the increase of the chirp of initial pulse.

  17. JT9D-70/59 Improved High Pressure Turbine Active Clearance Control System. [for specific fuel consumption improvement

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1979-01-01

    The JT9D-70/59 high pressure turbine active clearance control system was modified to provide reduction of blade tip clearance when the system is activated during cruise operation. The modification increased the flow capacity and air impingement effectiveness of the cooling air manifold to augment turbine case shrinkage capability, and increased responsiveness of the airseal clearance to case shrinkage. The simulated altitude engine testing indicated a significant improvement in specific fuel consumption with the modified system. A 1000 cycle engine endurance test showed no unusual wear or performance deterioration effects on the engine or the clearance control system. Rig tests indicated that the air impingement and seal support configurations used in the engine tests are near optimum.

  18. Analysis of source/drain engineered 22nm FDSOI using high-k spacers

    NASA Astrophysics Data System (ADS)

    Malviya, Abhishek Kumar; Chauhan, R. K.

    2018-04-01

    While looking at the current classical scaling of devices there are lots of short channel effects come into consideration. In this paper, a novel device structure is proposed that is an improved structure of Modified Source(MS) FDSOI in terms of better electrical performance, on current and reduced off state leakage current with a higher Ion/Ioff ratio that helps in fast switching of low power nano electronic devices. Proposed structure has Modified drain and source regions with two different type to doping profile at 22nm gate length. In the upper part of engineered region (MD and MS) the doping concentration is kept high and less in the lower region. The purpose was to achieve low parasitic capacitance in source and drain region by reducing doping concentration [1].

  19. Performance of an improved first generation optical CT scanner for 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Adamovics, John; Wuu, Cheng-Shie

    2013-12-01

    Performance analysis of a modified 3D dosimetry optical scanner based on the first generation optical CT scanner OCTOPUS is presented. The system consists of PRESAGE™ dosimeters, the modified 3D scanner, and a new developed in-house user control panel written in Labview program which provides more flexibility to optimize mechanical control and data acquisition technique. The total scanning time has been significantly reduced from initial 8 h to ∼2 h by using the modified scanner. The functional performance of the modified scanner has been evaluated in terms of the mechanical integrity uncertainty of the data acquisition process. Optical density distribution comparison between the modified scanner, OCTOPUS and the treatment plan system has been studied. It has been demonstrated that the agreement between the modified scanner and treatment plans is comparable with that between the OCTOPUS and treatment plans.

  20. Graphene Modified TiO2 Composite Photocatalysts: Mechanism, Progress and Perspective

    PubMed Central

    Tang, Bo; Chen, Haiqun; Peng, Haoping; Wang, Zhengwei; Huang, Weiqiu

    2018-01-01

    Graphene modified TiO2 composite photocatalysts have drawn increasing attention because of their high performance. Some significant advancements have been achieved with the continuous research, such as the corresponding photocatalytic mechanism that has been revealed. Specific influencing factors have been discovered and potential optimizing methods are proposed. The latest developments in graphene assisted TiO2 composite photocatalysts are abstracted and discussed. Based on the primary reasons behind the observed phenomena of these composite photocatalysts, probable development directions and further optimizing strategies are presented. Moreover, several novel detective technologies—beyond the decomposition test—which can be used to judge the photocatalytic performances of the resulting photocatalysts are listed and analyzed. Although some objectives have been achieved, new challenges still exist and hinder the widespread application of graphene-TiO2 composite photocatalysts, which deserves further study. PMID:29439545

  1. Performance Enhancement of a Sulfur/Carbon Cathode by Polydopamine as an Efficient Shell for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Zhang, Xuqing; Xie, Dong; Zhong, Yu; Wang, Donghuang; Wu, Jianbo; Wang, Xiuli; Xia, Xinhui; Gu, Changdong; Tu, Jiangping

    2017-08-04

    Lithium-sulfur batteries (LSBs) are considered to be among the most promising next-generation high-energy batteries. It is a consensus that improving the conductivity of sulfur cathodes and impeding the dissolution of lithium polysulfides are two key accesses to high-performance LSBs. Herein we report a sulfur/carbon black (S/C) cathode modified by self-polymerized polydopamine (pDA) with the assistance of polymerization treatment. The pDA acts as a novel and effective shell on the S/C cathode to stop the shuttle effect of polysulfides. By the synergistic effect of enhanced conductivity and multiple blocking effect for polysulfides, the S/C@pDA electrode exhibits improved electrochemical performances including large specific capacity (1135 mAh g -1 at 0.2 C), high rate capability (533 mAh g -1 at 5 C) and long cyclic life (965 mAh g -1 after 200 cycles). Our smart design strategy may promote the development of high-performance LSBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. STGSTK- PREDICTING MULTISTAGE AXIAL-FLOW COMPRESSOR PERFORMANCE BY A MEANLINE STAGE-STACKING METHOD

    NASA Technical Reports Server (NTRS)

    Steinke, R. J.

    1994-01-01

    The STGSTK computer program was developed for predicting the off-design performance of multistage axial-flow compressors. The axial-flow compressor is widely used in aircraft engines. In addition to its inherent advantage of high mass flow per frontal area, it can exhibit very good aerodynamic performance. However, good aerodynamic performance over an acceptable range of operating conditions is not easily attained. STGSTK provides an analytical tool for the development of new compressor designs. The simplicity of a one-dimensional compressible flow model enables the stage-stacking method used in STGSTK to have excellent convergence properties and short computer run times. Also, the simplicity of the model makes STGSTK a manageable code that eases the incorporation, or modification, of empirical correlations directly linked to test data. Thus, the user can adapt the code to meet varying design needs. STGSTK uses a meanline stage-stacking method to predict off-design performance. Stage and cumulative compressor performance is calculated from representative meanline velocity diagrams located at rotor inlet and outlet meanline radii. STGSTK includes options for the following: 1) non-dimensional stage characteristics may be input directly or calculated from stage design performance input, 2) stage characteristics may be modified for off-design speed and blade reset, and 3) rotor design deviation angle may be modified for off-design flow, speed, and blade setting angle. Many of the code's options use correlations that are normally obtained from experimental data. The STGSTK user may modify these correlations as needed. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 85K of 8 bit bytes. STGSTK was developed in 1982.

  3. Performance of polyacrylonitrile-carbon nanotubes composite on carbon cloth as electrode material for microbial fuel cells.

    PubMed

    Kim, Sun-Il; Lee, Jae-Wook; Roh, Sung-Hee

    2011-02-01

    The performance of carbon nanotubes composite-modified carbon cloth electrodes in two-chambered microbial fuel cell (MFC) was investigated. The electrode modified with polyacrylonitrile-carbon nanotubes (PAN-CNTs) composite showed better electrochemical performance than that of plain carbon cloth. The MFC with the composite-modified anode containing 5 mg/cm2 PAN-CNTs exhibited a maximum power density of 480 mW/m2.

  4. High-performance polymer/layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Heidecker, Matthew J.

    High-performance layered-silicate nanocomposites of Polycarbonate (PC), poly(ethylene terephthalate) (PET), and their blends were produced via conventional melt-blending techniques. The focus of this thesis was on the fundamentals of dispersion, control of thermal stability, maintenance of melt-blending processing conditions, and on optimization of the composites' mechanical properties via the design of controlled and thermodynamically favorable nano-filler dispersions within the polymer matrices. PET and PC require high temperatures for melt-processing, rendering impractical the use of conventional/commercial organically-modified layered-silicates, since the thermal degradation temperatures of their ammonium surfactants lies below the typical processing temperatures. Thus, different surfactant chemistries must be employed in order to develop melt-processable nanocomposites, also accounting for polymer matrix degradation due to water (PET) or amine compounds (PC). Novel high thermal-stability surfactants were developed and employed in montmorillonite nanocomposites of PET, PC, and PC/PET blends, and were compared to the respective nanocomposites based on conventional quaternary-ammonium modified montmorillonites. Favorable dispersion was achieved in all cases, however, the overall material behavior -- i.e., the combination of crystallization, mechanical properties, and thermal degradation -- was better for the nanocomposites based on the thermally-stable surfactant fillers. Studies were also done to trace, and ultimately limit, the matrix degradation of Polycarbonate/montmorillonite nanocomposites, through varying the montmorillonite surfactant chemistry, processing conditions, and processing additives. Molecular weight degradation was, maybe surprisingly, better controlled in the conventional quaternary ammonium based nanocomposites -- even though the thermal stability of the organically modified montmorillonites was in most cases the lowest. Dependence of the resultant nanocomposites' mechanical properties on the preferential alignment of the montmorillonite nano-platelet was also evaluated. Highly aligned filler platelets did not result in an additional enhancement in mechanical properties. PC/PET blends and their respective PC/PET/montmorillonite nanocomposites were synthesized and compared. The dispersion of the organically modified nano-fillers in the PC/PET blends was controlled via thermodynamic considerations, realized through proper surfactant choice: Nanocomposites in which the layered silicate was preferentially sequestered in the PET phase were designed and synthesized. This preferential dispersion of the nano-filler in the PET phase of the PC/PET blend was insensitive to processing conditions, including approaches employing a master-batch (filler concentrate); regardless of the master-batch matrix, both PC and PET were employed, thermodynamics drove the layered silicate to preferentially migrate to the PET phase of the PC/PET blend. In a second approach, the development of a nanocomposite with controlled PC/PET compatibilization near the montmorillonite platelets, in absence of appreciable transesterification reactions, led to the formation of very high performance nanocomposites. These latter systems, point to an exciting new avenue of future considerations for nanocomposite blends with selective nano-filler dispersions, where performance can be tailored via the controlled preferential dispersion of nano-fillers in one phase, or by filler-induced polymer compatibilization.

  5. Polar Aprotic Modifiers for Chromatographic Separation and Back-Exchange Reduction for Protein Hydrogen/Deuterium Exchange Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Valeja, Santosh G.; Emmett, Mark R.; Marshall, Alan G.

    2012-04-01

    Hydrogen/deuterium exchange monitored by mass spectrometry is an important non-perturbing tool to study protein structure and protein-protein interactions. However, water in the reversed-phase liquid chromatography mobile phase leads to back-exchange of D for H during chromatographic separation of proteolytic peptides following H/D exchange, resulting in incorrect identification of fast-exchanging hydrogens as unexchanged hydrogens. Previously, fast high-performance liquid chromatography (HPLC) and supercritical fluid chromatography have been shown to decrease back-exchange. Here, we show that replacement of up to 40% of the water in the LC mobile phase by the modifiers, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) (i.e., polar organic modifiers that lack rapid exchanging hydrogens), significantly reduces back-exchange. On-line LC micro-ESI FT-ICR MS resolves overlapped proteolytic peptide isotopic distributions, allowing for quantitative determination of the extent of back-exchange. The DMF modified solvent composition also improves chromatographic separation while reducing back-exchange relative to conventional solvent.

  6. Water adsorption on surface-modified cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Wei, Zonghui; Sinko, Robert; Keten, Sinan; Luijten, Erik

    Cellulose nanocrystals (CNCs) have attracted much attention as a filler phase for polymer nanocomposites due to their impressive mechanical properties, low cost, and environmental sustainability. Despite their promise for this application, there are still numerous obstacles that prevent optimal performance of CNC-polymer nanocomposites, such as poor filler dispersion and high levels of water absorption. One way to mitigate these negative effects is to modify CNC surfaces. Computational approaches can be utilized to obtain direct insight into the properties of modified CNC surfaces and probe the interactions of CNCs with other materials to facilitate the experimental design of nanocomposites. We use atomistic grand-canonical Monte Carlo simulations to study how surface modification of ion-exchanged sulfated cellulose nanocrystals (Na-CNCs) impacts water adsorption. We find that methyl(triphenyl)phosphonium-exchanged CNCs adsorb less water than Na-CNCs at the same relative humidity, supporting recent experimental dynamic vapor sorption measurements. By characterizing the distribution and configuration of water molecules near the modified CNC surfaces we determine how surface modifications disrupt CNC-water interactions.

  7. Surface modification of a low cost bentonite for post-combustion CO2 capture

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Park, Dong-Wha; Ahn, Wha-Seung

    2013-10-01

    A low cost bentonite was modified with PEI (polyethylenimine) through a physical impregnation method. Bentonite in its natural state and after amine modification were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy, X-ray diffraction, N2 adsorption-desorption isotherms, and investigated for CO2 capture using a thermogravimetric analysis unit connected to a flow panel. The effect of adsorption temperature, PEI loading and CO2 partial pressure on the CO2 capture performance of the PEI-modified bentonite was examined. A cyclic CO2 adsorption-desorption test was also carried out to assess the stability of PEI-modified bentonite as a CO2 adsorbent. Bentonite in its natural state showed negligible CO2 uptake. After amine modification, the CO2 uptake increased significantly due to CO2 capture by amine species introduced via chemisorption. The PEI-modified bentonites showed high CO2 capture selectivity over N2, and exhibited excellent stability in cyclic CO2 adsorption-desorption runs.

  8. Quantifying cardiometabolic risk using modifiable non-self-reported risk factors.

    PubMed

    Marino, Miguel; Li, Yi; Pencina, Michael J; D'Agostino, Ralph B; Berkman, Lisa F; Buxton, Orfeu M

    2014-08-01

    Sensitive general cardiometabolic risk assessment tools of modifiable risk factors would be helpful and practical in a range of primary prevention interventions or for preventive health maintenance. To develop and validate a cumulative general cardiometabolic risk score that focuses on non-self-reported modifiable risk factors such as glycosylated hemoglobin (HbA1c) and BMI so as to be sensitive to small changes across a span of major modifiable risk factors, which may not individually cross clinical cut-off points for risk categories. We prospectively followed 2,359 cardiovascular disease (CVD)-free subjects from the Framingham offspring cohort over a 14-year follow-up. Baseline (fifth offspring examination cycle) included HbA1c and cholesterol measurements. Gender-specific Cox proportional hazards models were considered to evaluate the effects of non-self-reported modifiable risk factors (blood pressure, total cholesterol, high-density lipoprotein cholesterol, smoking, BMI, and HbA1c) on general CVD risk. We constructed 10-year general cardiometabolic risk score functions and evaluated its predictive performance in 2012-2013. HbA1c was significantly related to general CVD risk. The proposed cardiometabolic general CVD risk model showed good predictive performance as determined by cross-validated discrimination (male C-index=0.703, 95% CI=0.668, 0.734; female C-index=0.762, 95% CI=0.726, 0.801) and calibration (lack-of-fit chi-square=9.05 [p=0.338] and 12.54 [p=0.128] for men and women, respectively). This study presents a risk factor algorithm that provides a convenient and informative way to quantify cardiometabolic risk on the basis of modifiable risk factors that can motivate an individual's commitment to prevention and intervention. Copyright © 2014 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  9. High-rate lithium/manganese dioxide batteries; the double cell concept

    NASA Astrophysics Data System (ADS)

    Drews, Jürgen; Wolf, Rüdiger; Fehrmann, Gerd; Staub, Roland

    An implantable defibrillator battery has to provide pulse-power capabilities as well as high energy density. Low self-discharge rates are mandatory and an ability to check the state of charge is required. To accomplish these requirements, a lithium/manganese dioxide battery with a modified active cathode mass has been developed. Usage of a double cell design increases significantly the battery performance within an implantable defibrillator. The design features of a high-rate, pulse-power, manganese dioxide double cell are described.

  10. Anterior Chamber Angle Measurements Using Schwalbe's Line with High Resolution Fourier-Domain Optical Coherence Tomography

    PubMed Central

    Qin, Bing; Francis, Brian A.; Li, Yan; Tang, Maolong; Zhang, Xinbo; Jiang, Chunhui; Cleary, Catherine; Huang, David

    2012-01-01

    Purpose To use Fourier-domain optical coherence tomography (OCT) to measure the angle opening distance at Schwalbe's line (AOD-SL) and determine its value in anterior chamber angle assessment. Methods Horizontal scans of the nasal and temporal anterior chamber angles in glaucoma subjects were performed by 830 nm wavelength Fourier-domain OCT. Images were graded by two ophthalmologists who assessed the visibility of Schwalbe’s line (SL), anterior limbus (AL), scleral spur (SS), and angle recess (AR). AOD-SL was measured with computer calipers. SL was manually identified by the termination of the corneal endothelium. Gonioscopy was used to classify anterior chamber angles according to a modified Shaffer system. Spearman's rho analysis was performed to assess correlation between AOD-SL and modified Shaffer grade. A cut-off value of AOD-SL for diagnosing occludable angles (modified Shaffer grade ≤1) was determined by receiver operating characteristic (ROC) analyses. Results Thirty-five glaucoma subjects (65 eyes) were enrolled. SL, AL, AR, and SS were visible by OCT in 97.7%, 99.2%, 87.3%, and 80.8% of eyes, respectively. Nasal and temporal AOD-SLs were 322.6 ± 200.2 µm and 341.4 ± 197.4 µm, respectively. Correlation coefficients between AOD-SL and modified Shaffer grade were 0.80 (nasal) and 0.81 (temporal). The diagnostic cut-off value of AOD-SL for occludable angles was 290 µm. The areas under the ROC curve, sensitivity, specificity values were 0.90, 0.80, 0.87 (nasal) and 0.90, 0.85, 0.77 (temporal). Conclusions The measurement of AOD-SL by Fourier-domain OCT is highly correlated with gonioscopy and may be a useful noncontact method of assessing angle closure risk. PMID:22827999

  11. Which is the optimal risk stratification system for surgically treated localized primary GIST? Comparison of three contemporary prognostic criteria in 171 tumors and a proposal for a modified Armed Forces Institute of Pathology risk criteria.

    PubMed

    Goh, Brian K P; Chow, Pierce K H; Yap, Wai-Ming; Kesavan, Sittampalam M; Song, In-Chin; Paul, Pradeep G; Ooi, Boon-Swee; Chung, Yaw-Fui A; Wong, Wai-Keong

    2008-08-01

    This study aims to validate and compare the performance of the National Institute of Health (NIH) criteria, Huang modified NIH criteria, and Armed Forces Institute of Pathology (AFIP) risk criteria for gastrointestinal stromal tumors (GISTs) in a large series of localized primary GISTs surgically treated at a single institution to determine the ideal risk stratification system for GIST. The clinicopathological features of 171 consecutive patients who underwent surgical resection for GISTs were retrospectively reviewed. Statistical analyses were performed to compare the prognostic value of the three risk criteria by analyzing the discriminatory ability linear trend, homogeneity, monotonicity of gradients, and Akaike information criteria. The median actuarial recurrence-free survival (RFS) for all 171 patients was 70%. On multivariate analyses, size >10 cm, mitotic count >5/50 high-power field, tumor necrosis, and serosal involvement were independent prognostic factors of RFS. All three risk criteria demonstrated a statistically significant difference in the recurrence rate, median actuarial RFS, actuarial 5-year RFS, and tumor-specific death across the different stages. Comparison of the various risk-stratification systems demonstrated that our proposed modified AFIP criteria had the best independent predictive value of RFS when compared with the other systems. The NIH, modified NIH, and AFIP criteria are useful in the prognostication of GIST, and the AFIP risk criteria provided the best prognostication among the three systems for primary localized GIST. However, remarkable prognostic heterogeneity exists in the AFIP high-risk category, and with our proposed modification, this system provides the most accurate prognostic information.

  12. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries

    DOE PAGES

    Liu, Qi; Li, Zhe-Fei; Liu, Yadong; ...

    2015-01-20

    The long-standing issues of low intrinsic electronic conductivity, slow lithium-ion diffusion and irreversible phase transitions on deep discharge prevent the high specific capacity/energy (443 mAh g -1 and 1,550 Wh kg -1) vanadium pentoxide from being used as the cathode material in practical battery applications. Here we develop a method to incorporate graphene sheets into vanadium pentoxide nanoribbons via the sol–gel process. The resulting graphene-modified nanostructured vanadium pentoxide hybrids contain only 2 wt. % graphene, yet exhibits extraordinary electrochemical performance: a specific capacity of 438 mAh g -1, approaching the theoretical value (443 mAh g -1), a long cyclability andmore » significantly enhanced rate capability. Such performance is the result of the combined effects of the graphene on structural stability, electronic conduction, vanadium redox reaction and lithium-ion diffusion supported by various experimental studies. Finally, this method provides a new avenue to create nanostructured metal oxide/graphene materials for advanced battery applications.« less

  13. Enhancement of partial robust M-regression (PRM) performance using Bisquare weight function

    NASA Astrophysics Data System (ADS)

    Mohamad, Mazni; Ramli, Norazan Mohamed; Ghani@Mamat, Nor Azura Md; Ahmad, Sanizah

    2014-09-01

    Partial Least Squares (PLS) regression is a popular regression technique for handling multicollinearity in low and high dimensional data which fits a linear relationship between sets of explanatory and response variables. Several robust PLS methods are proposed to accommodate the classical PLS algorithms which are easily affected with the presence of outliers. The recent one was called partial robust M-regression (PRM). Unfortunately, the use of monotonous weighting function in the PRM algorithm fails to assign appropriate and proper weights to large outliers according to their severity. Thus, in this paper, a modified partial robust M-regression is introduced to enhance the performance of the original PRM. A re-descending weight function, known as Bisquare weight function is recommended to replace the fair function in the PRM. A simulation study is done to assess the performance of the modified PRM and its efficiency is also tested in both contaminated and uncontaminated simulated data under various percentages of outliers, sample sizes and number of predictors.

  14. Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft

    NASA Astrophysics Data System (ADS)

    Boozer, Charles Maxwell

    A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.

  15. Sn-Based Nanocomposite for Li-Ion Battery Anode with High Energy Density, Rate Capability, and Reversibility.

    PubMed

    Park, Min-Gu; Lee, Dong-Hun; Jung, Heechul; Choi, Jeong-Hee; Park, Cheol-Min

    2018-03-27

    To design an easily manufactured, large energy density, highly reversible, and fast rate-capable Li-ion battery (LIB) anode, Co-Sn intermetallics (CoSn 2 , CoSn, and Co 3 Sn 2 ) were synthesized, and their potential as anode materials for LIBs was investigated. Based on their electrochemical performances, CoSn 2 was selected, and its C-modified nanocomposite (CoSn 2 /C) as well as Ti- and C-modified nanocomposite (CoSn 2 / a-TiC/C) was straightforwardly prepared. Interestingly, the CoSn 2 , CoSn 2 /C, and CoSn 2 / a-TiC/C showed conversion/nonrecombination, conversion/partial recombination, and conversion/full recombination during Li insertion/extraction, respectively, which were thoroughly investigated using ex situ X-ray diffraction and extended X-ray absorption fine structure analyses. As a result of the interesting conversion/full recombination mechanism, the easily manufactured CoSn 2 / a-TiC/C nanocomposite for the Sn-based Li-ion battery anode showed large energy density (first reversible capacity of 1399 mAh cm -3 ), high reversibility (first Coulombic efficiency of 83.2%), long cycling behavior (100% capacity retention after 180 cycles), and fast rate capability (appoximately 1110 mAh cm -3 at 3 C rate). In addition, degradation/enhancement mechanisms for high-capacity and high-performance Li-alloy-based anode materials for next-generation LIBs were also suggested.

  16. Enhanced dielectric performance of three phase percolative composites based on thermoplastic-ceramic composites and surface modified carbon nanotube

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Sun, Haoliang; Zhu, Benpeng; Wang, Ziyu; Wei, Jianhong; Xiong, Rui; Shi, Jing; Liu, Zhengyou; Lei, Qingquan

    2015-01-01

    Three-phase composites were prepared by embedding CaCu3Ti4O12(CCTO) nanoparticles and Multiwalled Carbon Nanotube (MWNT) into polyimide (PI) matrix via in-situ polymerization. The dependences of electric and dielectric properties of the resultant composites on volume fractions of filler and frequency were investigated. The dielectric permittivity of PI/CCTO-surface modified MWNT (MWNT-S) composite reached as high as 252 at 100 Hz at 0.1 vol. % filler (MWNT-S), which is about 63 times higher than that of pure PI. Also the dielectric loss is only 0.02 at 100 Hz. The results are in good agreement with the percolation theory. It is shown that embedding high aspect ratio MWNT-S in PI/CCTO composites is an effective means to enhance the dielectric permittivity and reduce the percolation threshold. The dielectric properties of the composites will meet the practical requirements for the application in high dielectric constant capacitors and high energy density materials.

  17. Vibration extraction based on fast NCC algorithm and high-speed camera.

    PubMed

    Lei, Xiujun; Jin, Yi; Guo, Jie; Zhu, Chang'an

    2015-09-20

    In this study, a high-speed camera system is developed to complete the vibration measurement in real time and to overcome the mass introduced by conventional contact measurements. The proposed system consists of a notebook computer and a high-speed camera which can capture the images as many as 1000 frames per second. In order to process the captured images in the computer, the normalized cross-correlation (NCC) template tracking algorithm with subpixel accuracy is introduced. Additionally, a modified local search algorithm based on the NCC is proposed to reduce the computation time and to increase efficiency significantly. The modified algorithm can rapidly accomplish one displacement extraction 10 times faster than the traditional template matching without installing any target panel onto the structures. Two experiments were carried out under laboratory and outdoor conditions to validate the accuracy and efficiency of the system performance in practice. The results demonstrated the high accuracy and efficiency of the camera system in extracting vibrating signals.

  18. Functional Screening of Metagenome and Genome Libraries for Detection of Novel Flavonoid-Modifying Enzymes

    PubMed Central

    Rabausch, U.; Juergensen, J.; Ilmberger, N.; Böhnke, S.; Fischer, S.; Schubach, B.; Schulte, M.

    2013-01-01

    The functional detection of novel enzymes other than hydrolases from metagenomes is limited since only a very few reliable screening procedures are available that allow the rapid screening of large clone libraries. For the discovery of flavonoid-modifying enzymes in genome and metagenome clone libraries, we have developed a new screening system based on high-performance thin-layer chromatography (HPTLC). This metagenome extract thin-layer chromatography analysis (META) allows the rapid detection of glycosyltransferase (GT) and also other flavonoid-modifying activities. The developed screening method is highly sensitive, and an amount of 4 ng of modified flavonoid molecules can be detected. This novel technology was validated against a control library of 1,920 fosmid clones generated from a single Bacillus cereus isolate and then used to analyze more than 38,000 clones derived from two different metagenomic preparations. Thereby we identified two novel UDP glycosyltransferase (UGT) genes. The metagenome-derived gtfC gene encoded a 52-kDa protein, and the deduced amino acid sequence was weakly similar to sequences of putative UGTs from Fibrisoma and Dyadobacter. GtfC mediated the transfer of different hexose moieties and exhibited high activities on flavones, flavonols, flavanones, and stilbenes and also accepted isoflavones and chalcones. From the control library we identified a novel macroside glycosyltransferase (MGT) with a calculated molecular mass of 46 kDa. The deduced amino acid sequence was highly similar to sequences of MGTs from Bacillus thuringiensis. Recombinant MgtB transferred the sugar residue from UDP-glucose effectively to flavones, flavonols, isoflavones, and flavanones. Moreover, MgtB exhibited high activity on larger flavonoid molecules such as tiliroside. PMID:23686272

  19. Electrode Modification and Optimization in Air-Cathode Single-Chamber Microbial Fuel Cells.

    PubMed

    Wang, Yanhua; Wu, Jiayan; Yang, Shengke; Li, Huihui; Li, Xiaoping

    2018-06-27

    Due to the known problems of microbial fuel cells (MFCs), such as low electricity generation performance and high cost of operation, we modified the electrode with graphene and polyaniline (PANI) is a single-chamber air-cathode MFC and then evaluated the effects of electrode modification on MFC electricity generation performance. Carbon cloth electrodes (unmodified, CC; graphene-modified, G/CC; and polyaniline-graphene-modified, PANI-G/CC) were prepared using the impregnation method. Sulfonated cobalt phthalocyanine (CoPcS) was then introduced as a cathode catalyst. The Co-PANI-G/CC cathode showed higher catalytic activity toward oxygen reduction compared with other electrodes. The maximum power density of the MFC with Co-PANI-G/CC cathode was 32.2 mW/m², which was 1.8 and 6.1 times higher than the value obtained with Co-G/CC and Co/CC cathodes, respectively. This indicates a significant improvement in the electricity generation of single-chamber MFCs and provides a simple, effective cathode modification method. Furthermore, we constructed single-chamber MFCs using the modified anode and cathode and analyzed electricity generation and oxytetracycline (OTC) degradation with different concentrations of OTC as the fuel. With increasing added OTC concentration, the MFC performance in both electricity generation and OTC degradation gradually decreased. However, when less than 50 mg/L OTC was added, the 5-day degradation rate of OTC reached more than 90%. It is thus feasible to process OTC-containing wastewater and produce electricity using single-chamber MFCs, which provides a new concept for wastewater treatment.

  20. Charged polymers in high dimensions

    NASA Technical Reports Server (NTRS)

    Kantor, Yacov

    1990-01-01

    A Monte Carlo study of charged polymers with either homogeneously distributed frozen charges or with mobile charges has been performed in four and five space dimensions. The results are consistent with the renormalization-group predictions and contradict the predictions of Flory-type theory. Introduction of charge mobility does not modify the behavior of the polymers.

  1. Modifying Status Relations in Israel Youth: An Application of Expectation States Theory.

    ERIC Educational Resources Information Center

    Cohen, Elizabeth G.; Sharan, Shlomo

    Group participation by Israeli youth is examined in light of the Theory of Status Characteristics and Expectation States. This theory maintains that social and/or group status influences expectations of competence and triggers self-fulfilling prophecies of performance. An experiment designed to prevent unwanted dominance of high status…

  2. An improved grey model for the prediction of real-time GPS satellite clock bias

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Chen, Y. Q.; Lu, X. S.

    2008-07-01

    In real-time GPS precise point positioning (PPP), real-time and reliable satellite clock bias (SCB) prediction is a key to implement real-time GPS PPP. It is difficult to hold the nuisance and inenarrable performance of space-borne GPS satellite atomic clock because of its high-frequency, sensitivity and impressionable, it accords with the property of grey model (GM) theory, i. e. we can look on the variable process of SCB as grey system. Firstly, based on limits of quadratic polynomial (QP) and traditional GM to predict SCB, a modified GM (1,1) is put forward to predict GPS SCB in this paper; and then, taking GPS SCB data for example, we analyzed clock bias prediction with different sample interval, the relationship between GM exponent and prediction accuracy, precision comparison of GM to QP, and concluded the general rule of different type SCB and GM exponent; finally, to test the reliability and validation of the modified GM what we put forward, taking IGS clock bias ephemeris product as reference, we analyzed the prediction precision with the modified GM, It is showed that the modified GM is reliable and validation to predict GPS SCB and can offer high precise SCB prediction for real-time GPS PPP.

  3. Mechanism of H adatoms improving the O2 reduction reaction on the Zn-modified anatase TiO2 (101) surface studied by first principles calculation.

    PubMed

    Liu, Liangliang; Li, Chongyang; Jiang, Man; Li, Xiaodong; Huang, Xiaowei; Wang, Zhu; Jia, Yu

    2018-06-05

    First principles calculations were performed to cast insight into the mechanism of the improvement of O2 reduction reaction (ORR) activity by Zn and H interstitials on the anatase TiO2 (101) surface. For the Zn-modified anatase TiO2 (101) surface, both surface and subsurface Zn interstitials could contribute to O2 adsorption and dissociation, but the dissociation barriers of O2 molecules are still too high, which limits the ORR activity. After a H adatom is introduced onto the Zn-modified anatase TiO2 (101) surface, the highest energy barriers are greatly reduced compared with those of the Zn-modified surface. Meanwhile, it is observed that the dissociation barriers decrease almost linearly with the increase of the charge difference of adsorption O2 between initial and transition state configurations. Specifically, subsurface Zn and surface H interstitials facilitate O2 dissociation and subsequent oxidation reactions, and further frequency analysis shows that these dissociation processes are frequent even at the room temperature of 300 K. In a word, this work provides a theoretical support to design a high ORR activity catalyst of the TiO2 nanocrystal comparable to precious Pt catalysts.

  4. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene.

    PubMed

    Xu, Guangyuan; Jarjes, Zahraa A; Desprez, Valentin; Kilmartin, Paul A; Travas-Sejdic, Jadranka

    2018-06-01

    The fabrication of a novel, and highly selective electrochemical sensor based on a poly(3,4-ethylenedioxythiophene) (PEDOT) modified laser scribed graphene (LSG), and detection of dopamine (DA) in the presence of ascorbic acid (AA) and uric acid (UA) is described. LSG electrodes were produced with a 3-dimensional macro-porous network and large electrochemically-active surface area via direct laser writing on polyimide sheets. PEDOT was electrodeposited on the LSG electrode, and the physical properties of the obtained films were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray diffraction microanalysis (EDAX). The modified electrodes were applied for the determination of DA in the presence of AA and UA using cyclic voltammetry (CV), and differential pulse voltammetry (DPV) techniques. The linear range for dopamine detection was found to be 1-150 µM with a sensitivity of 0.220 ± 0.011 µA μM -1 and a detection limit of 0.33 µM; superior values to those obtained without PEDOT. For the first time, PEDOT-modified LSG have been fabricated and assessed for high-performance dopamine sensing using cost-effective, disposable electrodes, with potential for development in further sensing applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Determination of glutathione in human plasma using high-performance liquid chromatography with electrochemical detection with a carbon-epoxy resin composite electrode chemically modified with cobalt phthalocyanine.

    PubMed

    Wring, S A; Hart, J P; Birch, B J

    1989-12-01

    High-performance liquid chromatography with electrochemical detection (LCEC), incorporating a novel carbon-epoxy resin working electrode modified with cobalt phthalocyanine, has been employed for preliminary studies directed towards the determination of normal circulating levels of reduced glutathione (GSH) in human plasma. The mobile phase consisted of 0.05 M phosphate buffer (pH 3) containing 0.1% m/m ethylenediaminetetraacetic acid (EDTA); the calibration graph was linear in the range 0.24-30.7 ng of GSH injected. The mean recovery of GSH added to a control serum over the physiological concentration range (0.38-3.07 ng ml-1) was 99%; this was achieved following a simple sample pre-treatment method, prior to LCEC, involving chelation of divalent cations with EDTA and subsequent acidification with orthophosphoric acid. Using the LCEC method, the mean circulating level of GSH in plasma, found in three normal subjects, was 2.69 microM, GSH; this indicates that the method might be applicable to the determination of depressed circulating levels of GSH.

  6. Electrochemical Oxidation of l-selenomethionine and Se-methylseleno-l-cysteine at a Thiol-Compound-Modified Gold Electrode: Its Application in a Flow-Through Voltammetric Sensor.

    PubMed

    Wang, Lai-Hao; Zhang, Yu-Han

    2017-02-16

    A flow-electrolytic cell that consists of a bare gold wire or of different thiol-compound-modified gold electrodes (such as 2,4-thiazolidinedione, 2-mercapto-5-thiazoline, 2-mercaptothiazoline, l-cysteine, thioglycolic acid) was designed to be used in a voltammetric detector to identify l-selenomethionine and Se-methylseleno-l-cysteine using high-performance liquid chromatography. Both l-selenomethionine and Se-methylseleno-l-cysteine are more efficiently electrochemically oxidized on a thiol/gold than on a bare gold electrode. For the DC mode, and for measurements with suitable experimental parameters, a linear concentration from 10 to 1600 ng·mL -1 was found. The limits of quantification for l-selenomethionine and Se-methylseleno-l-cysteine were below 10 ng·mL -1 . The method can be applied to the quantitative determination of l-selenomethionine and Se-methylseleno-l-cysteine in commercial selenium-containing supplement products. Findings using high-performance liquid chromatography with a flow-through voltammetric detector and ultraviolet detector are comparable.

  7. Coupling catalytic hydrolysis and oxidation of HCN over HZSM-5 modified by metal (Fe,Cu) oxides

    NASA Astrophysics Data System (ADS)

    Hu, Yanan; Liu, Jiangping; Cheng, Jinhuan; Wang, Langlang; Tao, Lei; Wang, Qi; Wang, Xueqian; Ning, Ping

    2018-01-01

    In this work, a series of metal oxides (Fe,Cu) modified HZSM-5 catalysts were synthesized by incipient-wetness impregnation method and then characterized by XRD, N2 adsorption-desorption, H2-TPR, NH3-TPD, UV-vis, FT-IR and XPS measurements. The catalytic hydrolysis and oxidation behaviors toward HCN were investigated. The results indicated that the Fe-Cu/HZSM-5 catalysts exhibited more excellent performence on coupling catalytic hydrolysis and oxidation of HCN than HZSM-5, Fe/HZSM-5, Cu/HZSM-5, and both nearly 100% HCN conversion and 80% N2 selectivity were obtained at about 250 °C. The improved catalytic performance could be ascribed to the creation of highly dispersed iron and copper composites on the surface of the HZSM-5 support, the excellent redox and regulated acid properties of the active ingredients. Moreover, the highly N2 selectivity could be attributed to the good interaction between the Fe and Cu nanocomposites which was facilitated to the NH3-SCR (selective catalytic reduction of NO by NH3) reaction.

  8. Insight into capacitive performance of polyaniline/graphene oxide composites with ecofriendly binder

    NASA Astrophysics Data System (ADS)

    Bilal, Salma; Fahim, Muhammad; Firdous, Irum; Ali Shah, Anwar-ul-Haq

    2018-03-01

    The behaviour of gold electrode modified with polyaniline/graphene oxide composites (PGO) was studied for electrochemical and charge storage properties in aqueous acidic media. The surface of gold electrode was modified with aqueous slurry of PGO by using Carboxymethyl cellulose (CMC) as binder. The intercalation of polyaniline in the GO layers, synthesized by in situ polymerization was confirmed by scanning electron microscopy (SEM). The electrochemical behaviour and charge storing properties were investigated using cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopy (EIS). A high specific capacitance of 1721 F g-1 was obtained for PGO with 69.8% retention of capacitance even after 1000 voltammetric cycles in the potential range of 0-0.9 V at 20 mV s-1. EIS indicated low charge transfer resistance (Rct) and solution resistance (Rs) values of 0.51 Ω and 0.07 Ω, respectively. This good performance of PGO coated electrode is attributed to the use of CMC binder which generate a high electrode/ electrolyte contact area and short path lengths for electronic transport and electrolyte ion.

  9. Comparison of Waste Heat Driven and Electrically Driven Cooling Systems for a High Ambient Temperature, Off-Grid Application

    DTIC Science & Technology

    2012-12-10

    combustion (IC) engine , Type 907, and its dat file was modified to match the expected fuel consumption and performance of the ...temperature output by the AS desorber. Depending on this DB set temperature, fuel would be burned to raise the temperature of the engine exhaust stream...in the simulations, it was based upon experimental data provided for this project indicating the performance of a 3 kW diesel

  10. In Situ FTIR and NMR Spectroscopic Investigations on Ruthenium-Based Catalysts for Alkene Hydroformylation.

    PubMed

    Kubis, Christoph; Profir, Irina; Fleischer, Ivana; Baumann, Wolfgang; Selent, Detlef; Fischer, Christine; Spannenberg, Anke; Ludwig, Ralf; Hess, Dieter; Franke, Robert; Börner, Armin

    2016-02-18

    Homogeneous ruthenium complexes modified by imidazole-substituted monophosphines as catalysts for various highly efficient hydroformylation reactions were characterized by in situ IR spectroscopy under reaction conditions and NMR spectroscopy. A proper protocol for the preformation reaction from [Ru3 (CO)12] is decisive to prevent the formation of inactive ligand-modified polynuclear complexes. During catalysis, ligand-modified mononuclear ruthenium(0) carbonyls were detected as resting states. Changes in the ligand structure have a crucial impact on the coordination behavior of the ligand and consequently on the catalytic performance. The substitution of CO by a nitrogen atom of the imidazolyl moiety in the ligand is not a general feature, but it takes place when structural prerequisites of the ligand are fulfilled. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A High-Performance and Recyclable Al-Air Coin Cell Based on Eco-Friendly Chitosan Hydrogel Membranes.

    PubMed

    Liu, Yisi; Sun, Qian; Yang, Xiaofei; Liang, Jianneng; Wang, Biqiong; Koo, Alicia; Li, Ruying; Li, Jie; Sun, Xueliang

    2018-05-18

    Aluminum-air batteries are a promising power supply for electronics due to its low cost and high energy density. However, portable coin-type Al-air batteries operating under ambient air condition for small electronic appliances have rarely been reported. Herein, coin cell-type Al-air batteries using cost-effective and eco-friendly chitosan hydrogel membranes modified by SiO2, SnO2, and ZnO have been prepared and assembled. The Al-air coin cell employing chitosan hydrogel membrane containing 10 wt.% SiO2 as a separator exhibits better discharge performance with a higher flat voltage plateau, longer discharge duration, and higher power density than the cells using a chitosan hydrogel membrane containing SnO2 or ZnO. Moreover, we also demonstrate that the presented Al-air coin cell can be recycled by a series of eco-friendly procedures using food grade ingredients, resulting in recycled products that are environmentally safe and ready for reuse. The Al-air coin cell adopting a recycled cathode from a fully discharged Al-air coin cell using the above-mentioned procedure has shown comparable performance to cells assembled with a new cathode. With these merits of enhanced electrochemical performance and recyclability, this new Al-air coin cell with modified chitosan hydrogel membrane can find wide applications for powering portable and small-size electronics.

  12. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-05-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00465b

  13. Nonlinear stability and control study of highly maneuverable high performance aircraft

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1993-01-01

    This project is intended to research and develop new nonlinear methodologies for the control and stability analysis of high-performance, high angle-of-attack aircraft such as HARV (F18). Past research (reported in our Phase 1, 2, and 3 progress reports) is summarized and more details of final Phase 3 research is provided. While research emphasis is on nonlinear control, other tasks such as associated model development, system identification, stability analysis, and simulation are performed in some detail as well. An overview of various models that were investigated for different purposes such as an approximate model reference for control adaptation, as well as another model for accurate rigid-body longitudinal motion is provided. Only a very cursory analysis was made relative to type 8 (flexible body dynamics). Standard nonlinear longitudinal airframe dynamics (type 7) with the available modified F18 stability derivatives, thrust vectoring, actuator dynamics, and control constraints are utilized for simulated flight evaluation of derived controller performance in all cases studied.

  14. Discovering body site and severity modifiers in clinical texts

    PubMed Central

    Dligach, Dmitriy; Bethard, Steven; Becker, Lee; Miller, Timothy; Savova, Guergana K

    2014-01-01

    Objective To research computational methods for discovering body site and severity modifiers in clinical texts. Methods We cast the task of discovering body site and severity modifiers as a relation extraction problem in the context of a supervised machine learning framework. We utilize rich linguistic features to represent the pairs of relation arguments and delegate the decision about the nature of the relationship between them to a support vector machine model. We evaluate our models using two corpora that annotate body site and severity modifiers. We also compare the model performance to a number of rule-based baselines. We conduct cross-domain portability experiments. In addition, we carry out feature ablation experiments to determine the contribution of various feature groups. Finally, we perform error analysis and report the sources of errors. Results The performance of our method for discovering body site modifiers achieves F1 of 0.740–0.908 and our method for discovering severity modifiers achieves F1 of 0.905–0.929. Discussion Results indicate that both methods perform well on both in-domain and out-domain data, approaching the performance of human annotators. The most salient features are token and named entity features, although syntactic dependency features also contribute to the overall performance. The dominant sources of errors are infrequent patterns in the data and inability of the system to discern deeper semantic structures. Conclusions We investigated computational methods for discovering body site and severity modifiers in clinical texts. Our best system is released open source as part of the clinical Text Analysis and Knowledge Extraction System (cTAKES). PMID:24091648

  15. Discovering body site and severity modifiers in clinical texts.

    PubMed

    Dligach, Dmitriy; Bethard, Steven; Becker, Lee; Miller, Timothy; Savova, Guergana K

    2014-01-01

    To research computational methods for discovering body site and severity modifiers in clinical texts. We cast the task of discovering body site and severity modifiers as a relation extraction problem in the context of a supervised machine learning framework. We utilize rich linguistic features to represent the pairs of relation arguments and delegate the decision about the nature of the relationship between them to a support vector machine model. We evaluate our models using two corpora that annotate body site and severity modifiers. We also compare the model performance to a number of rule-based baselines. We conduct cross-domain portability experiments. In addition, we carry out feature ablation experiments to determine the contribution of various feature groups. Finally, we perform error analysis and report the sources of errors. The performance of our method for discovering body site modifiers achieves F1 of 0.740-0.908 and our method for discovering severity modifiers achieves F1 of 0.905-0.929. Results indicate that both methods perform well on both in-domain and out-domain data, approaching the performance of human annotators. The most salient features are token and named entity features, although syntactic dependency features also contribute to the overall performance. The dominant sources of errors are infrequent patterns in the data and inability of the system to discern deeper semantic structures. We investigated computational methods for discovering body site and severity modifiers in clinical texts. Our best system is released open source as part of the clinical Text Analysis and Knowledge Extraction System (cTAKES).

  16. A-site- and/or B-site-modified PbZrTiO3 materials and (Pb, Sr, Ca, Ba, Mg) (Zr, Ti, Nb, Ta)O3 films having utility in ferroelectric random access memories and high performance thin film microactuators

    NASA Technical Reports Server (NTRS)

    Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor); Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor)

    2001-01-01

    A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.

  17. A-SITE-AND/OR B-SITE-MODIFIED PBZRTIO3 MATERIALS AND (PB, SR, CA, BA, MG) (ZR, TI,NB, TA)O3 FILMS HAVING UTILITY IN FERROELECTRIC RANDOM ACCESS MEMORIES AND HIGH PERFORMANCE THIN FILM MICROACTUATORS

    NASA Technical Reports Server (NTRS)

    Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor); Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor)

    2004-01-01

    A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.

  18. The Budget of the United States Government. Department of Defense Extract for Fiscal Year 1985

    DTIC Science & Technology

    1984-02-01

    with real GNP rising over 6% and industrial production by 16%. Unemployment, though still unacceptably high , has declined by a record 2l/z...the administration will focus its legislative effort on three of those proposals, in modified form: cost-of-living adjustment (COLA) reform, a high 5...computer matching, adjusted payment schedules, contractor and grantee performance incentives, and a streamlined field structure. All of these efforts

  19. Influence of a high vacuum on the precise positioning using an ultrasonic linear motor.

    PubMed

    Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu

    2011-01-01

    This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.

  20. Modified constraint-induced movement therapy for clients with chronic stroke: interrupted time series (ITS) design.

    PubMed

    Park, JuHyung; Lee, NaYun; Cho, YongHo; Yang, YeongAe

    2015-03-01

    [Purpose] The purpose of this study was to investigate the impact that modified constraint-induced movement therapy has on upper extremity function and the daily life of chronic stroke patients. [Subjects and Methods] Modified constraint-induced movement therapy was conduct for 2 stroke patients with hemiplegia. It was performed 5 days a week for 2 weeks, and the participants performed their daily living activities wearing mittens for 6 hours a day, including the 2 hours of the therapy program. The assessment was conducted 5 times in 3 weeks before and after intervention. The upper extremity function was measured using the box and block test and a dynamometer, and performance daily of living activities was assessed using the modified Barthel index. The results were analyzed using a scatterplot and linear regression. [Results] All the upper extremity functions of the participants all improved after the modified constraint-induced movement therapy. Performance of daily living activities by participant 1 showed no change, but the results of participant 2 had improved after the intervention. [Conclusion] Through the results of this research, it was identified that modified constraint-induced movement therapy is effective at improving the upper extremity functions and the performance of daily living activities of chronic stroke patients.

  1. The effects of modified constraint-induced movement therapy and mirror therapy on upper extremity function and its influence on activities of daily living.

    PubMed

    Ju, Yumi; Yoon, In-Jin

    2018-01-01

    [Purpose] Modified constraint-induced movement therapy and mirror therapy are recognized as stroke rehabilitation methods. The aim of the present study was to determine whether these therapies influence upper extremity function and whether upper extremity function influences the ability to perform activities of daily living in further. [Subjects and Methods] Twenty-eight stroke patients participated in the study. Interventions were administered five times per week for 3 weeks. Activities of daily living or self-exercise were performed after modified constraint-induced movement therapy or mirror therapy, respectively. Analyses were performed on the results of the Manual Function Test and the Korean version of the Modified Barthel Index to determine the factors influencing activities of daily living. [Results] Both groups showed improvement in upper extremity function, but only the modified constraint-induced movement therapy group showed a correlation between upper extremity function and performance in the hygiene, eating, and dressing. The improved hand manipulation function found in the modified constraint-induced movement therapy had statistically significant influences on eating and dressing. [Conclusion] Our results suggest that a patient's attempts to move the affected side result in improved performance in activities of daily living as well as physical function.

  2. The effects of modified constraint-induced movement therapy and mirror therapy on upper extremity function and its influence on activities of daily living

    PubMed Central

    Ju, Yumi; Yoon, In-Jin

    2018-01-01

    [Purpose] Modified constraint-induced movement therapy and mirror therapy are recognized as stroke rehabilitation methods. The aim of the present study was to determine whether these therapies influence upper extremity function and whether upper extremity function influences the ability to perform activities of daily living in further. [Subjects and Methods] Twenty-eight stroke patients participated in the study. Interventions were administered five times per week for 3 weeks. Activities of daily living or self-exercise were performed after modified constraint-induced movement therapy or mirror therapy, respectively. Analyses were performed on the results of the Manual Function Test and the Korean version of the Modified Barthel Index to determine the factors influencing activities of daily living. [Results] Both groups showed improvement in upper extremity function, but only the modified constraint-induced movement therapy group showed a correlation between upper extremity function and performance in the hygiene, eating, and dressing. The improved hand manipulation function found in the modified constraint-induced movement therapy had statistically significant influences on eating and dressing. [Conclusion] Our results suggest that a patient’s attempts to move the affected side result in improved performance in activities of daily living as well as physical function. PMID:29410571

  3. Fluoride removal in water by a hybrid adsorbent lanthanum-carbon.

    PubMed

    Vences-Alvarez, Esmeralda; Velazquez-Jimenez, Litza Halla; Chazaro-Ruiz, Luis Felipe; Diaz-Flores, Paola E; Rangel-Mendez, Jose Rene

    2015-10-01

    Various health problems associated with drinking water containing high fluoride levels, have motivated researchers to develop more efficient adsorbents to remove fluoride from water for beneficial concentrations to human health. The objective of this research was to anchor lanthanum oxyhydroxides on a commercial granular activated carbon (GAC) to remove fluoride from water considering the effect of the solution pH, and the presence of co-existing anions and organic matter. The activated carbon was modified with lanthanum oxyhydroxides by impregnation. SEM and XRD were performed in order to determine the crystal structure and morphology of the La(III) particles anchored on the GAC surface. FT-IR and pK(a)'s distribution were determined in order to elucidate both the possible mechanism of the lanthanum anchorage on the activated carbon surface and the fluoride adsorption mechanism on the modified material. The results showed that lanthanum ions prefer binding to carboxyl and phenolic groups on the activated carbon surface. Potentiometric titrations revealed that the modified carbon (GAC-La) possesses positive charge at a pH lower than 9. The adsorption capacity of the modified GAC increased five times in contrast to an unmodified GAC adsorption capacity at an initial F(-) concentration of 20 mg L(-1). Moreover, the presence of co-existing anions had no effect on the fluoride adsorption capacity at concentrations below 30 mg L(-1), that indicated high F(-) affinity by the modified adsorbent material (GAG-La). Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Designing hybrid gate dielectric for fully printing high-performance carbon nanotube thin film transistors

    NASA Astrophysics Data System (ADS)

    Li, Qian; Li, Shilong; Yang, Dehua; Su, Wei; Wang, Yanchun; Zhou, Weiya; Liu, Huaping; Xie, Sishen

    2017-10-01

    The electrical characteristics of carbon nanotube (CNT) thin-film transistors (TFTs) strongly depend on the properties of the gate dielectric that is in direct contact with the semiconducting CNT channel materials. Here, we systematically investigated the dielectric effects on the electrical characteristics of fully printed semiconducting CNT-TFTs by introducing the organic dielectrics of poly(methyl methacrylate) (PMMA) and octadecyltrichlorosilane (OTS) to modify SiO2 dielectric. The results showed that the organic-modified SiO2 dielectric formed a favorable interface for the efficient charge transport in s-SWCNT-TFTs. Compared to single-layer SiO2 dielectric, the use of organic-inorganic hybrid bilayer dielectrics dramatically improved the performances of SWCNT-TFTs such as mobility, threshold voltage, hysteresis and on/off ratio due to the suppress of charge scattering, gate leakage current and charge trapping. The transport mechanism is related that the dielectric with few charge trapping provided efficient percolation pathways for charge carriers, while reduced the charge scattering. High density of charge traps which could directly act as physical transport barriers and significantly restrict the charge carrier transport and, thus, result in decreased mobile carriers and low device performance. Moreover, the gate leakage phenomenon is caused by conduction through charge traps. So, as a component of TFTs, the gate dielectric is of crucial importance to the manufacture of high quality TFTs from the aspects of affecting the gate leakage current and device operation voltage, as well as the charge carrier transport. Interestingly, the OTS-modified SiO2 allows to directly print horizontally aligned CNT film, and the corresponding devices exhibited a higher mobility than that of the devices with the hybrid PMMA/SiO2 dielectric although the thickness of OTS layer is only ˜2.5 nm. Our present result may provide key guidance for the further development of printed nanomaterial electronics.

  5. Characterization, optical properties and laser ablation behavior of epoxy resin coatings reinforced with high reflectivity ceramic particles

    NASA Astrophysics Data System (ADS)

    Li, Wenzhi; Kong, Jing; Wu, Taotao; Gao, Lihong; Ma, Zhuang; Liu, Yanbo; Wang, Fuchi; Wei, Chenghua; Wang, Lijun

    2018-04-01

    Thermal damage induced by high power energy, especially high power laser, significantly affects the lifetime and performance of equipment. High-reflectance coating/film has attracted considerable attention due to its good performance in the damage protection. Preparing a high-reflectance coating with high reaction endothermal enthalpy will effectively consume a large amount of incident energy and in turn protect the substrate from thermal damage. In this study, a low temperature process was used to prepare coatings onto substrate with complex shape and avoid thermal effect during molding. An advanced high reflection ceramic powder, La1‑xSrxTiO3+δ , was added in the epoxy adhesive matrix to improve the reflectivity of coating. The optical properties and laser ablation behaviors of coatings with different ceramic additive ratio of La1‑xSrxTiO3+δ and modified epoxy-La1‑xSrxTiO3+δ with ammonium polyphosphate coatings were investigated, respectively. We found that the reflectivity of coatings is extremely high due to mixed high-reflection La1‑xSrxTiO3+δ particles, up to 96% at 1070 nm, which can significantly improve the laser resistance. In addition, the ammonium polyphosphate modifies the residual carbon structure of epoxy resin from discontinuous fine particles structure to continuous and porous structure, which greatly enhances the thermal-insulation property of coating. Furthermore, the laser ablation threshold is improved obviously, which is from 800 W cm‑2 to 1000 W cm‑2.

  6. Silica Fume Functionalized With Amine-Based Additives as a Modifier to Enhance Asphalt Resistance to Oxidation

    NASA Astrophysics Data System (ADS)

    Abutalib, Nader Turki

    This dissertation investigates the practical feasibility of functionalizing silica fume particles with the amine groups in Bio-binder and pure APTES chemical to disperse silica fume in asphalt binder matrix to produce silica-fume-modified binder (SFMB). Dispersed silica fume was then introduced to asphalt to reduce oxidative aging. It has been widely reported that asphalt binder oxidation is one of the phenomena that reduces the service life of asphalt pavement by negatively affecting its rheological properties. This in turn can lead to a more brittle pavement, which is more prone to cracks due to thermal stress and traffic loading. It has been shown that the introduction of 4% silica fume to asphalt can reduce asphalt oxidative aging. However, the challenge with a higher percentage of silica fume was found to be the agglomeration of nano- particles to form micro-size clusters, which can reduce the effectiveness of silica fume while making asphalt binder more susceptible to shear. Therefore, this dissertation studies the effectiveness of functionalizing the SFMB to reduce asphalt oxidative aging while alleviating the agglomeration effect. To do so, various percentages of bio-binder (BB) and bio-char (BC) were introduced to SFMB, and the rheological properties and high-temperature performance of each specimen were evaluated by measuring the rotational viscosity and complex shear modulus before and after oxidative aging. It is hypothesized that fine-graded BC and BB with nano- to micro-level particles can be used to reduce asphalt oxidation and create a new generation of low- agglomeration SFMB with higher resistance to oxidative aging. To further study the effects of functionalization on dispersion of silica fume, silica fume particles were produced with different functional groups: amine (APTES) groups and phosphonate (THPMP) groups. Agglomeration studies using a scanning electron microscope and zeta potential analysis indicate that modifying asphalt binder with amine-modified silica fume particles can reduce the agglomeration of the silica fume particles. The performance characteristics of functionalized silica fume particles and non-functionalized silica fume particles are compared with those of base asphalt. The following research hypotheses were investigated: 1) Functionalized and well-dispersed silica fume will enhance asphalt's aging resistance. 2) The amine groups in functionalizing agent interact with silica fume particles and promote their dispersion. To test these hypotheses, a rotational viscometer was used to study the effect of functionalized-silica-fume-modified binder on the high-temperature properties of the asphalt binder. Fourier transform infrared spectroscopy analysis was used to determine the chemical compounds of the amine-group silica-fume- modified binder matrix. Scanning electron microscopy was used to observe the surface morphology and analyze the microstructure characteristics of materials. The positive effect of amine groups on the rheological properties of SFMB could be attributed to the high surface area of the silica fume and its granular particles with high polarity, factors that could improve the blending properties of the bio-modified silica fume and result in a uniformly distributed silica- fume-modified matrix with enhanced oxidative aging resistance. Surface adsorption of amines on silica fume particles helps promote repulsive forces between them to enhance dispersion.

  7. Differential phase-shift keying and channel equalization in free space optical communication system

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Wan, Xiongfeng; Xu, Chenlu

    2018-01-01

    We present the performance benefits of differential phase-shift keying (DPSK) modulation in eliminating influence from atmospheric turbulence, especially for coherent free space optical (FSO) communication with a high communication rate. Analytic expression of detected signal is derived, based on which, homodyne detection efficiency is calculated to indicate the performance of wavefront compensation. Considered laser pulses always suffer from atmospheric scattering effect by clouds, intersymbol interference (ISI) in high-speed FSO communication link is analyzed. Correspondingly, the channel equalization method of a binormalized modified constant modulus algorithm based on set-membership filtering (SM-BNMCMA) is proposed to solve the ISI problem. Finally, through the comparison with existing channel equalization methods, its performance benefits of both ISI elimination and convergence speed are verified. The research findings have theoretical significance in a high-speed FSO communication system.

  8. Catalytic dehydrogenation of isobutane in the presence of hydrogen over Cs-modified Ni2P supported on active carbon

    NASA Astrophysics Data System (ADS)

    Xu, Yanli; Sang, Huanxin; Wang, Kang; Wang, Xitao

    2014-10-01

    In this article, an environmentally friendly non-noble-metal class of Cs-Ni2P/active carbon (AC) catalyst was prepared and demonstrated to exhibit enhanced catalytic performance in isobutane dehydrogenation. The results of activity tests reveal that Ni/AC catalyst was highly active for isobutane cracking, which led to the formation of abundant methane and coke. After the introduction of phosphorus through impregnation with ammonium di-hydrogen phosphate and H2-temperature programmed reduction, undesired cracking reactions were effectively inhibited, and the selectivity to isobutene and stability of catalyst increased remarkably. The characterization results indicate that, after the addition of phosphorous, the improvement of dehydrogenation selectivity is ascribed to the partial positive charges carried on Ni surface in Ni2P particles, which decreases the strength of Nisbnd C bond between Ni and carbonium-ion intermediates and the possibility of excessive dehydrogenation. In addition, Cs-modified Ni2P/AC catalysts display much higher catalytic performance as compared to Ni2P/AC catalyst. Cs-Ni2P-6.5 catalyst has the highest catalytic performance, and the selectivity to isobutene higher than 93% can be obtained even after 4 h reaction. The enhancement in catalytic performance of the Cs-modified catalysts is mainly attributed to the function of Cs to improve the dispersion of Ni2P particles, transfer electron from Cs to Ni, and decrease acid site number and strength.

  9. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance.

    PubMed

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-12-05

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m 2 and ~78 kW/m 2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  10. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    NASA Astrophysics Data System (ADS)

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-12-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  11. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    PubMed Central

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-01-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay. PMID:27917901

  12. Prospective Comparison of Live Evaluation and Video Review in the Evaluation of Operator Performance in a Pediatric Emergency Airway Simulation

    PubMed Central

    House, Joseph B.; Dooley-Hash, Suzanne; Kowalenko, Terry; Sikavitsas, Athina; Seeyave, Desiree M.; Younger, John G.; Hamstra, Stanley J.; Nypaver, Michele M.

    2012-01-01

    Introduction Real-time assessment of operator performance during procedural simulation is a common practice that requires undivided attention by 1 or more reviewers, potentially over many repetitions of the same case. Objective To determine whether reviewers display better interrater agreement of procedural competency when observing recorded, rather than live, performance; and to develop an assessment tool for pediatric rapid sequence intubation (pRSI). Methods A framework of a previously established Objective Structured Assessment of Technical Skills (OSATS) tool was modified for pRSI. Emergency medicine residents (postgraduate year 1–4) were prospectively enrolled in a pRSI simulation scenario and evaluated by 2 live raters using the modified tool. Sessions were videotaped and reviewed by the same raters at least 4 months later. Raters were blinded to their initial rating. Interrater agreement was determined by using the Krippendorff generalized concordance method. Results Overall interrater agreement for live review was 0.75 (95% confidence interval [CI], 0.72–0.78) and for video was 0.79 (95% CI, 0.73–0.82). Live review was significantly superior to video review in only 1 of the OSATS domains (Preparation) and was equivalent in the other domains. Intrarater agreement between the live and video evaluation was very good, greater than 0.75 for all raters, with a mean of 0.81 (95% CI, 0.76–0.85). Conclusion The modified OSATS assessment tool demonstrated some evidence of validity in discriminating among levels of resident experience and high interreviewer reliability. With this tool, intrareviewer reliability was high between live and 4-months' delayed video review of the simulated procedure, which supports feasibility of delayed video review in resident assessment. PMID:23997874

  13. Austenitizing Temperature Effects on the Martensitic Transformation, Microstructural Characteristics, and Mechanical Performance of Modified Ferritic Heat-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaosheng; Liu, Yongchang; Liu, Chenxi; Yu, Liming; Li, Huijun

    2018-06-01

    The martensitic transformation, microstructural characteristics, and mechanical performance of modified ferritic heat-resistant steels under various austenitizing conditions were investigated by differential scanning calorimetry, microstructural examination, and mechanical tests. When the austenitizing temperature was as high as 1200 °C, a considerable amount of δ-ferrite formed, and the austenite grain size was seen to decrease. Higher austenitizing temperatures were found to promote martensite formation, but retard martensite growth, and the lath width increased as the austenitizing temperature increased. After tempering, rod-like and granular M23C6 carbides appeared within the tempered martensite, the average size and composition of which were dependent on the austenitizing conditions. When the austenitizing temperature was 1050 °C, granular MX with sizes less than 6 nm were identified in the δ-ferrite, while for other austenitizing temperatures, plate MX was inside the δ-ferrite. At 1200 °C, the length of the plate MX was as high as 100 nm, and the number density of plate MX decreased. The steel austenitized at 1150 °C exhibited the best tensile performance. It was found that the presence of a large amount of δ-ferrite would initiate cracking, thereby impeding the tensile strength.

  14. Direct alcohol fuel cells: Increasing platinum performance by modification with sp-group metals

    NASA Astrophysics Data System (ADS)

    Figueiredo, Marta C.; Sorsa, Olli; Doan, Nguyet; Pohjalainen, Elina; Hildebrand, Helga; Schmuki, Patrik; Wilson, Benjamin P.; Kallio, Tanja

    2015-02-01

    By using sp group metals as modifiers, the catalytic properties of Pt can be improved toward alcohols oxidation. In this work we report the performance increase of direct alcohol fuel cells (DAFC) fuelled with ethanol or 2-propanol with platinum based anode electrodes modified with Bi and Sb adatoms. For example, by simply adding Sb to the Pt/C based anode ink during membrane electrode assembly fabrication of a direct ethanol fuel cell (DEFC) its performance is improved three-fold, with more than 100 mV increase in the open circuit potential. For the fuel cell fuelled with 2-propanol high power densities are obtained at very high potentials with these catalyst materials suggesting a great improvement for practical applications. Particularly in the case of Pt/C-Bi, the improvement is such that within 0.6 V (from 0.7 to 0.1 V) the power densities are between 7 and 9 mW/cm2. The results obtained with these catalysts are in the same range as those obtained with other bimetallic catalysts comprising of PtRu and PtSn, which are currently considered to be the best for these type of fuel cells and that are obtained by more complicated (and consequently more expensive) methods.

  15. Novel use of residue from direct coal liquefaction process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianli Yang; Zhaixia Wang; Zhenyu Liu

    2009-09-15

    Direct coal liquefaction residue (DCLR) is, commonly, designed to be used as a feed stock for gasification or combustion. Use of DCLR as a value added product is very important for improving overall economy of direct coal liquefaction processes. This study shows that the DCLR may be used as a pavement asphalt modifier. The modification ability is similar to that of Trinidad Lake Asphalt (TLA), a superior commercial modifier. Asphalts modified by two DCLRs meet the specifications of ASTM D5710 and BSI BS-3690 designated for the TLA-modified asphalts. The required addition amount for the DCLRs tested is less than thatmore » for TLA due possibly to the high content of asphaltene in DCLRs. Different compatibility was observed for the asphalts with the same penetration grade but from the different origin. Different components in the DCLR play different roles in the modification. Positive synergetic effects among the fractions were observed, which may due to the formation of the stable colloid structure. Unlike polymer-type modifier, the structure of asphalt-type modifier has a similarity with petroleum asphalts which favors the formation of a stable dispersed polar fluid (DPF) colloid structure and improves the performance of pavement asphalt. 12 refs., 1 fig., 6 tabs.« less

  16. Classification of drugs with different risk profiles.

    PubMed

    Saedder, Eva Aggerholm; Brock, Birgitte; Nielsen, Lars Peter; Bonnerup, Dorthe Krogsgaard; Lisby, Marianne

    2015-08-01

    A risk stratification approach is needed to identify patients at high risk of medication errors and a resulting high need of medication review. The aim of this study was to perform risk stratification (distinguishing between low-risk, medium-risk and high-risk drugs) for drugs found to cause serious adverse reactions due to medication errors. The study employed a modified Delphi technique. Drugs from a systematic literature search were included into two rounds of a Delphi process. A panel of experts was asked to evaluate each identified drug's potential for harm and for clinically relevant drug-drug interactions on a scale from 1 (low risk) to 9 (high risk). A total of 36 experts were appointed to serve on the panel. Consensus was reached for 29/57 (51%) drugs or drug classes that cause harm, and for 32/57 (56%) of the drugs or drug classes that cause interactions. For the remaining drugs, a decision was made based on the median score. Two lists, one stating the drugs' potential for causing harm and the other stating clinically relevant drug-drug interactions, were stratified into low-risk, medium-risk and high-risk drugs. Based on a modified Delphi technique, we created two lists of drugs stratified into a low-risk, a medium-risk and a high-risk group of clinically relevant interactions or risk of harm to patients. The lists could be incorporated into a risk-scoring tool that stratifies the performance of medication reviews according to patients' risk of experiencing adverse reactions. none. not relevant.

  17. [Preparation and performance characterization of gold nanoparticles modified chiral capillary electrochromatography stationary phase].

    PubMed

    Xiong, Lele; Li, Ruijun; Ji, Yibing

    2017-07-08

    Gold nanoparticles (GNPs, 15 nm) were prepared and introduced to amino groups derived silica monolithic column. Bovine serum albumin (BSA) was immobilized via covalent modification method onto the carboxylic functionalized GNPs to afford chiral stationary phase (CSP) for enantioseparation. GNPs were well dispersed and successfully incorporated onto the columns with the contents as high as 17.18% by characterization method such as transmission electron microscopy (TEM), ultraviolet (UV)-visible absorption spectra and scanning electron microscopy (SEM). The preparation conditions of the BSA modified CSP were optimized and 10% (v/v) 3-aminopropyltriethoxysilane (APTES) and 15 g/L BSA were selected as appropriate reaction conditions. The enantioseparation performance of the BSA modified CSP has been investigated by capillary electrochromatography (CEC). Enantiomers of tryptophan, ephedrine and atenolol were resolved, and the baseline separation of tryptophan was achieved. Meanwhile, the influences of pH value, buffer concentrations and applied voltages used on the chiral separation were studied, and the optimal separation conditions were 10 mmol/L phosphate buffer at pH 7.4 and 15 kV applied voltages. In comparison with the BSA modified CSP prepared by physical adsorption, the CSP prepared by covalent modification method had better separation results, and the analytes could be separated directly without pre-column derivatization. In addition, the prepared BSA modified CSP exhibited good run to run repeatability with relative standard deviations (RSDs) of the migration times and selectivity factors not more than 2.3% and 0.96%, respectively. This work offers a good thinking for modification with other proteins or other types of chiral selectors.

  18. Methodology for the preliminary design of high performance schools in hot and humid climates

    NASA Astrophysics Data System (ADS)

    Im, Piljae

    A methodology to develop an easy-to-use toolkit for the preliminary design of high performance schools in hot and humid climates was presented. The toolkit proposed in this research will allow decision makers without simulation knowledge easily to evaluate accurately energy efficient measures for K-5 schools, which would contribute to the accelerated dissemination of energy efficient design. For the development of the toolkit, first, a survey was performed to identify high performance measures available today being implemented in new K-5 school buildings. Then an existing case-study school building in a hot and humid climate was selected and analyzed to understand the energy use pattern in a school building and to be used in developing a calibrated simulation. Based on the information from the previous step, an as-built and calibrated simulation was then developed. To accomplish this, five calibration steps were performed to match the simulation results with the measured energy use. The five steps include: (1) Using an actual 2006 weather file with measured solar radiation, (2) Modifying lighting & equipment schedule using ASHRAE's RP-1093 methods, (3) Using actual equipment performance curves (i.e., scroll chiller), (4) Using the Winkelmann's method for the underground floor heat transfer, and (5) Modifying the HVAC and room setpoint temperature based on the measured field data. Next, the calibrated simulation of the case-study K-5 school was compared to an ASHRAE Standard 90.1-1999 code-compliant school. In the next step, the energy savings potentials from the application of several high performance measures to an equivalent ASHRAE Standard 90.1-1999 code-compliant school. The high performance measures applied included the recommendations from the ASHRAE Advanced Energy Design Guides (AEDG) for K-12 and other high performance measures from the literature review as well as a daylighting strategy and solar PV and thermal systems. The results show that the net energy consumption of the final high performance school with the solar thermal and a solar PV system would be 1,162.1 MMBtu, which corresponds to the 14.9 kBtu/sqft-yr of EUI. The calculated final energy and cost savings over the code compliant school are 68.2% and 69.9%, respectively. As a final step of the research, specifications for a simplified easy-to-use toolkit were then developed, and a prototype screenshot of the toolkit was developed. The toolkit is expected to be used by non-technical decision-maker to select and evaluate high performance measures for a new school building in terms of energy and cost savings in a quick and easy way.

  19. Organically Modified Nanoclay-Reinforced Rigid Polyurethane Films

    NASA Astrophysics Data System (ADS)

    Park, Yong Tae; Qian, Yuqiang; Lindsay, Chris; Stein, Andreas; Macosko, Christopher

    2012-02-01

    The nanodispersion of vermiculite in polyurethanes was investigated to produce organoclay-reinforced rigid gas barrier films. Reducing gas transport can improve the insulation performance of closed cell polyurethane foam. In a previous study, the dispersion of vermiculite in polyurethanes without organic modification was not sufficient due to the non-uniform dispersion morphology. When vermiculite was modified by cation exchange with long-chain quaternary ammonium cations, the dispersion in methylene diphenyl diisocyanate (MDI) was significantly improved. Dispersion was improved by combining high intensity dispersive mixing with efficient distributive mixing. Polymerization conditions were also optimized in order to provide a high state of nanodispersion in the polyurethane nanocomposite. The dispersions were characterized using rheological, microscopic and scattering/diffraction techniques. The final nanocomposites showed enhancement of mechanical properties and reduction in permeability to carbon dioxide at low clay concentration (around 2 wt percent).

  20. Sol-gel hybrid films based on organosilane and montmorillonite for corrosion inhibition of AA2024.

    PubMed

    Dalmoro, V; dos Santos, J H Z; Armelin, E; Alemán, C; Azambuja, D S

    2014-07-15

    The present work reports the production of films on AA2024-T3 composed of vinyltrimethoxysilane (VTMS)/tetraethylorthosilicate (TEOS) with incorporation of montmorillonite (sodium montmorillonite and montmorillonite modified with quaternary ammonium salt, abbreviated Na and 30B, respectively), generated by the sol-gel process. According to FT-IR analyses the incorporation of montmorillonite does not affect silica network. Electrochemical characterization was performed by electrochemical impedance spectroscopy measurement in 0.05 mol L(-1) NaCl solution. Results indicate that montmorillonite incorporation improves the corrosion protection compared to the non-modified system. Scanning electron microscopy micrographs reveal that high concentrations of montmorillonite provide agglomerations on the metallic surface, which is in detriment of the anticorrosive performance. The VTMS/TEOS/30B films with the lowest concentration (22 mg L(-1)) of embedded clay provide the highest corrosion protection. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Sensitivity optimization of ZnO clad-modified optical fiber humidity sensor by means of tuning the optical fiber waist diameter

    NASA Astrophysics Data System (ADS)

    Azad, Saeed; Sadeghi, Ebrahim; Parvizi, Roghaieh; Mazaheri, Azardokht; Yousefi, M.

    2017-05-01

    In this work, the multimode optical fiber size effects on the performances of the clad-modified fiber with ZnO nanorods relative humidity (RH) sensor were experimentally investigated. Simple and controlled chemical etching method through on line monitoring was used to prepare different fiber waist diameter with long length of 15 mm. More precisely, the competition behavior of sensor performances with varying fiber waist diameter was studied to find appropriate size of maximizing evanescent fields. The obtained results revealed that evanescent wave absorption coefficient (γ) enhanced more than 10 times compare to bare fiber at the proposed optimum fiber diameter of 28 μm. Also, high linearity and fast recovery time about 7 s was obtained at the proposed fiber waist diameter. Applicable features of the proposed sensor allow this device to be used for humidity sensing applications, especially to be applied in remote sensing technologies.

  2. Nonlinear integral sliding mode control design of photovoltaic pumping system: Real time implementation.

    PubMed

    Chihi, Asma; Ben Azza, Hechmi; Jemli, Mohamed; Sellami, Anis

    2017-09-01

    The aim of this paper is to provide high performance control of pumping system. The proposed method is designed by an indirect field oriented control based on Sliding Mode (SM) technique. The first contribution of this work is to design modified switching surfaces which presented by adding an integral action to the considered controlled variables. Then, in order to prevent the chattering phenomenon, modified nonlinear component is developed. The SM concept and a Lyapunov function are combined to compute the Sliding Mode Control (SMC) gains. Besides, the motor performance is validated by numeric simulations and real time implementation using a dSpace system with DS1104 controller board. Also, to show the effectiveness of the proposed approach, the obtained results are compared with other techniques such as conventional PI, Proportional Sliding Mode (PSM) and backstepping controls. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.

    PubMed

    Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo

    2014-03-01

    A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Thickness-dependently enhanced photodetection performance of vertically grown SnS2 nanoflakes with large size and high production.

    PubMed

    Jia, Xiansheng; Tang, Chengchun; Pan, Ruhao; Long, Yun-Ze; Gu, Changzhi; Li, Junjie

    2018-05-10

    Photodetection based on Two-dimensional (2D) SnS2 has attracted a growing interest due to its superiority in response rate and responsivity, but high-quality growth and high performance photodetecting of 2D SnS2still face great challenges. Here, high-quality SnS2 nanoflakes with large-size and high-production are vertically grown on Si substrate by a modified CVD method, having an average size of 30 m with different thicknesses. Then a single SnS2 nanoflake-based phototransistor was fabricated to obtain a high current on/off ratio of 107 and excellent performances in photodetection, including fast response rates, low dark current, high responsivity and detectivity. Specifically, the SnS2 nanoflakes show the thickness-dependent photodetection capability and the highest responsivity of 354.4 A W-1 is obtained at the average thickness of 100.5 nm. A sensitized process using HfO2 nanolayer can further enhance the responsivity up to 1922 A W-1. Our work provides an efficient path to select SnS2 crystal samples with the optimal thickness as promising candidates for high-performance optoelectronic applications.

  5. Preparation of graphene foam with high performance by modified self-assembly method

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhui; Sun, Youyi; Liu, Tantan; Li, Diansen; Hou, Chunlin; Gao, Li; Liu, Yaqing

    2016-03-01

    Recently, self-assembly method was applied for preparation of graphene foam. However, it is still a great challenge to obtain a three-dimensional graphene network with high performance (e.g., low density, high mechanical strength and high conductivity together) for the self-assembly method. Herein, a modified self-assembly method applied for preparation of graphene foam was investigated, in which, L-ascorbic acid and HI were firstly chosen as the reducing agent, and further reduced by hydrazine hydrate. The results demonstrated that the graphene foam showed high compressive strength (ca. 320 kPa), high electrical conductivity (20.6 S/m) and low density (14.7 mg/cm-1). Especially, the obtained compressive strength (ca. 320 kPa) is the highest value compared to the data of graphene foam reported in previous works. This phenomenon may be due to following three reasons: (1) the reaction between hydrazine hydrate and graphene brought some covalent bonds among graphene sheets; (2) graphene foam was achieved by high hydrophobicity and electrostatic repulsion which inhibit the restacking of graphene sheets; (3) the removal of the oxygen groups by hydrazine hydrate efficiently restores conjugation of sp2 regions and the π-π interaction in the cross-linking sites, which tightly bonds the sheets together. The obtained graphene foam not only had good porous structure and mechanical strength, but also showed excellent satisfactory double-layer capacitive behavior with good electrochemical cyclic stability and high specific capacitance of 171.0 F/g for application in electrode of supercapacitors and absorption capacities for the removal of various oils and dyes from water.

  6. Evaluation of moisture-induced damage of dense graded and gap graded asphalt mixture with nanopolymer modified binder

    NASA Astrophysics Data System (ADS)

    Shaffie, E.; Arshad, A. K.; Ahmad, J.; Hashim, W.

    2018-04-01

    The purpose of this research is to study the moisture induce damage performance of dense graded (AC14) and stone mastic asphalt (SMA14) asphalt pavement using Nanolyacrylate polymer modified asphalt binder. The physical properties of aggregate, volumetric and performance of asphalt mixes were assessed and evaluated with the laboratory tests. The study investigates fourteenth different asphalt mixtures consisting of NP modified asphalt binder formulations at 2%, 4% and 6%. Two types of asphalt binder, penetration grade PEN 80-100 and performance grade PG 76 were added with Nanopolyacrylate as asphalt modifier. The modified asphalt binder was prepared by adding 6 percent of Nanopolyacrylate (NP) to the asphalt binder. Both AC14 and SMA14 mixtures passed the Marshall requirements which indicate that these mixtures were good with respect to durability and flexibility. In terms of moisture induce damage, it was observed that the strength of the asphalt mixes increased with the addition of NP polymer modified asphalt binder. Similar trend could also be seen for SMA14 mixes, where the ITS value of SMA14 showed a significant difference compared to AC14 and all the mixtures exceeded the minimum requirement value as specified in the specification. Thus, addition of nanopolyacrylate polymer to the asphalt binder has significantly improved the cohesion as well as adhesion properties of the asphalt binder, and hence the stripping performance. Therefore, it can be concluded that the nanopolyacylate is suitable to be used as a modifier to the modified asphalt binder in order to enhance the properties of the asphalt binder and thus improving the performance of asphalt in both AC14 and SMA14 mixes.

  7. Glucose oxidase immobilization on different modified surfaces of platinum nanowire for application in glucose detection

    NASA Astrophysics Data System (ADS)

    Thanh Tuyen Le, Thi; Duy Tran, Phu; Pham, Xuan Tung; Hien Tong, Duy; Chien Dang, Mau

    2010-09-01

    In this work, the surface of platinum (Pt) nanowires was modified by using several chemicals, including a compound of gelatin gel with SiO2, polyvinyl alcohol (PVA) with Prussian blue (PB) mediator and cysteamine self-assembled monolayers (SAM). Then, glucose oxidase (GOD) enzyme was immobilized on the modified surfaces of Pt nanowire electrodes by using techniques of electrochemical adsorption and chemical binding. The GOD immobilized Pt nanowires were used for application in glucose detection by performing a cyclic voltammetry measurement. The detection results showed that GOD was immobilized on all of the tested surfaces and the highest glucose detection sensitivity of 60 μM was obtained when the Pt nanowires were modified by PVA with PB mediator. Moreover, the sensors showed very high current response when the Pt nanowires were modified with the cysteamine SAM. The stability and catalyst activity of GOD are also reported here. For instance, the catalyst activity of GOD retained about 60% of its initial value after it was stored at 4 °C in a 100 mM PBS buffer solution with a pH of 7.2 for a period of 30 days.

  8. Ultrafast adsorption and selective desorption of aqueous aromatic dyes by graphene sheets modified by graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Ying, Yulong; He, Peng; Ding, Guqiao; Peng, Xinsheng

    2016-06-01

    Graphene modified by graphene quantum dots (GQDs) has been employed to remove toxic organic dyes. An excellent removal capacity (497 mg g-1) and record-breaking adsorption rate (475 mg g-1 min-1 at 20 °C) were demonstrated for Rhodamine B. The enhancement in performance by nearly a factor of three compared to that of graphene was ascribed to the greatly increased accessible surface area of graphene in aqueous solution as well as the increase in surface charges with the modification with GQDs. Besides, this unique adsorption behavior of the modified graphene was expanded to other typical toxic aqueous aromatic dyes such as Evans Blue, Methyl Orange, Malachite Green and Rose Bengal. What is more, a unique desorption behavior of dyes was first observed when employing different solvents, which enabled the GQD-modified graphene to be exploited for selective extraction of dyes and recycling of the adsorbent. The adsorption and desorption mechanism were further investigated. Combining high removal capacity, rapid adsorption kinetics, good recyclability and unique selective desorption, GQD-modified graphene has potential applications in both water purification and separation of aromatic dyes.

  9. Carbonyl iron powder surface modification of magnetorheological elastomers for vibration absorbing application

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Yu, Miao; Zhu, Mi; Qi, Song; Fu, Jie

    2016-11-01

    With excellent characteristic of magnetic-control stiffness, magnetorheological elastomer (MRE) is well suited as a spring element of vibration absorber. To improve the vibration attenuation performance of MRE vibration absorbers, this paper expects to improve the mechanical strength and reduce the loss factor of MRE by interface modification. The surface of carbonyl iron powder (CIP) was modified with silica coating by a simple and convenient approach. Several MRE samples, with different proportions of modified CIPs were fabricated under a constant magnetic field. The morphology and composition of modified CIP were characterized by scanning electron microscope and Fourier transform infrared spectra. The results indicated that the modified CIPs were coated with uniform and continuous silica, which can make a better combination between particle and matrix. The tensile strength, magnetorheological properties and the damping properties of the MRE samples were tested by material testing machine and rheometer. The experimental results demonstrated that the loss factor of the MRE which incorporated with modified CIPs decreased markedly, and the tensile strength of such material has been much improved, at the same time this kind of MRE kept high MR effect. It is expected that this MRE material will meet the requirements of vibration absorber.

  10. Preparation, characterization, and scale-up of ketoconazole with enhanced dissolution and bioavailability.

    PubMed

    Elder, Edmund J; Evans, Jonathan C; Scherzer, Brian D; Hitt, James E; Kupperblatt, Gary B; Saghir, Shakil A; Markham, Dan A

    2007-07-01

    Many new molecular entities targeted for pharmaceutical applications face serious development challenges because of poor water solubility. Although particle engineering technologies such as controlled precipitation have been shown to enhance aqueous dissolution and bioavailability of poorly water soluble active pharmaceutical ingredients, the data available are the results of laboratory-scale experiments. These technologies must be evaluated at larger scale to ensure that the property enhancement is scalable and that the modified drugs can be processed on conventional equipment. In experiments using ketoconazole as the model drug, the controlled precipitation process was shown to produce kg-scale modified drug powder with enhanced dissolution comparable to that of lab-scale powder. Ketoconazole was demonstrated to be stable throughout the controlled precipitation process, with a residual methanol level below the ICH limit. The modified crystalline powder can be formulated, and then compressed using conventional high-speed tableting equipment, and the resulting tablets showed bioavailability more than double that of commercial tablets. When appropriately protected from moisture, both the modified powder and tablets prepared from the modified powder showed no change in dissolution performance for at least 6 months following storage at accelerated conditions and for at least 18 months following storage at room temperature.

  11. Modified artificial bee colony for the vehicle routing problems with time windows.

    PubMed

    Alzaqebah, Malek; Abdullah, Salwani; Jawarneh, Sana

    2016-01-01

    The natural behaviour of the honeybee has attracted the attention of researchers in recent years and several algorithms have been developed that mimic swarm behaviour to solve optimisation problems. This paper introduces an artificial bee colony (ABC) algorithm for the vehicle routing problem with time windows (VRPTW). A Modified ABC algorithm is proposed to improve the solution quality of the original ABC. The high exploration ability of the ABC slows-down its convergence speed, which may due to the mechanism used by scout bees in replacing abandoned (unimproved) solutions with new ones. In the Modified ABC a list of abandoned solutions is used by the scout bees to memorise the abandoned solutions, then the scout bees select a solution from the list based on roulette wheel selection and replace by a new solution with random routs selected from the best solution. The performance of the Modified ABC is evaluated on Solomon benchmark datasets and compared with the original ABC. The computational results demonstrate that the Modified ABC outperforms the original ABC also produce good solutions when compared with the best-known results in the literature. Computational investigations show that the proposed algorithm is a good and promising approach for the VRPTW.

  12. Alteration of methotrexate binding to human serum albumin induced by oxidative stress. Spectroscopic comparative study

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J.

    2016-01-01

    Changes of oxidative modified albumin conformation by comparison of non-modified (HSA) and modified (oHSA) human serum albumin absorption spectra, Red Edge Excitation Shift (REES) effect and fluorescence synchronous spectra were investigated. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region from 200 to 250 nm involve structural alterations related to variations in peptide backbone conformation. Analysis of the REES effect allowed for the observation of changes caused by oxidation in the region of the hydrophobic pocket containing the tryptophanyl residue. Synchronous fluorescence spectroscopy confirmed changes of the position of the tryptophanyl and tyrosil residues fluorescent band. Effect of oxidative stress on binding of methotrexate (MTX) was investigated by spectrofluorescence, UV-VIS and 1HNMR spectroscopy. MTX caused the fluorescence quenching of non-modified (HSA) and modified (oHSA) human serum albumin molecule. The values of binding constants, Hill's coefficients and a number of binding sites in the protein molecule in the high affinity binding site were calculated for the binary MTX-HSA and MTX-oHSA systems. For these systems, qualitative analysis in the low affinity binding sites was performed with the use of the 1HNMR technique.

  13. Evaluation of the Cost-Effectiveness of Pyramidal, Modified Pyramidal and Monoscreen Traps for the Control of the Tsetse Fly, Glossina fuscipes fuscipes, in Uganda

    PubMed Central

    Abila, P.P.; Okello-Onen, J.; Okoth, J.O.; Matete, G.O.; Wamwiri, F.; Politzar, H.

    2007-01-01

    Several trap designs have been used for sampling and control of the tsetse fly, Glossina fuscipes fuscipes, Newstead (Diptera: Glossinidae) based on preferences of individual researchers and program managers with little understanding of the comparative efficiency and cost-effectiveness of trap designs. This study was carried out to evaluate the cost-effectiveness of four commonly used trap designs: monoscreen, modified pyramidal and pyramidal, relative to the standard biconical trap. The study was performed under high tsetse challenge on Buvuma Island, Lake Victoria, Uganda, using a 4 × 4 Latin square design replicated 3 times, so as to separate the trap positions and day effects from the treatment effect. A total of 12 trap positions were tested over 4 days. The monoscreen trap caught significantly higher numbers of G. f. fuscipes (P<0.05) followed by biconical, modified pyramidal and pyramidal traps. Analysis of variance showed that treatment factor was a highly significant source of variation in the data. The index of increase in trap catches relative biconical were O.60 (pyramidal), 0.68 (modified pyramidal) and 1.25 (monoscreen). The monoscreen trap was cheaper (US$ 2.61) and required less material to construct than pyramidal trap (US$ 3.48), biconical and the modified pyramidal traps (US$ 4.06 each). Based on the number of flies caught per meter of material, the monoscreen trap proved to be the most cost-effective (232 flies/m) followed by the biconical trap (185 flies/m). The modified pyramidal and the pyramidal traps caught 112 and 125 flies/m, respectively. PMID:20345292

  14. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    NASA Astrophysics Data System (ADS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-06-01

    The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  15. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-01-01

    The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  16. The Effects of Scaling Tennis Equipment on the Forehand Groundstroke Performance of Children

    PubMed Central

    Larson, Emma J.; Guggenheimer, Joshua D.

    2013-01-01

    The modifications that have taken place within youth sports have made games, such as basketball, soccer, or tennis, easier for children to play. The purpose of this study was to determine the effects low compression (LC) tennis balls and scaled tennis courts had on the forehand groundstroke performance of children. The forehand groundstroke performances of eight subjects’ (8.10 ± 0.74 yrs) using LC tennis balls were measured on a scaled tennis court and standard compression balls (SC) on a standard court. Forehand groundstroke performance was assessed by the ForeGround test which measures Velocity Precision Success Index (VPS) and Velocity Precision Index (VP). Participants attempted three different forehand rally patterns on two successive days, using LC balls on the 18.3m court one day and SC balls on the 23.8m court the other. When using LC balls, participants’ recorded higher overall VPS performance scores (p < 0.001) for each non-error stroke as well as higher VP scores (p = 0.01). The results of this study confirmed that the use of modified balls and modified court size may increase the control, velocity and overall success rate of the tennis forehand groundstroke of children. Key Points This study observed the effects of modified tennis balls and court had on the forehand groundstroke performance in children. Modified ball compression and modified court size can increase control, velocity and overall success of tennis performance. Children will have more success learning the game of tennis using modified equipment than using standard equipment. PMID:24149812

  17. Phosphorylation of psyllium seed polysaccharide and its characterization.

    PubMed

    Rao, Monica R P; Warrier, Deepa U; Gaikwad, Snehal R; Shevate, Prachi M

    2016-04-01

    Psyllium is widely used as a medicinally active natural polysaccharide for treating conditions like constipation, diarrhea, and irritable bowel syndrome, inflammatory bowel disease, ulcerative colitis and colon cancer. Studies have been performed to characterize and modify the polysaccharide obtained from psyllium seed husk and to evaluate its use as a pharmaceutical excipient, but no studies have been performed to evaluate the properties of the polysaccharide present in psyllium seeds. The present study focuses on phosphorylation of psyllium seed polysaccharide (PPS) using sodium tri-meta phosphate as the cross-linking agent. The modified phosphorylated psyllium seed polysaccharide was then evaluated for physicochemical properties, rheological properties, spectral analysis, thermal analysis, crosslinking density and acute oral toxicity studies. The modified polysaccharide (PhPPS) has a high swelling index due to which it can be categorized as a hydrogel. The percent increase in swelling of PhPPS as compared to PPS was found to be 90.26%. The PPS & PhPPS mucilages of all strengths were found to have shear thinning properties. These findings are suggestive of the potential use of PhPPS as gelling & suspending agent. PhPPS was found to have a mucoadhesive property which was comparable with carbopol. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Validation of the breast evaluation questionnaire for breast hypertrophy and breast reduction.

    PubMed

    Lewin, Richard; Elander, Anna; Lundberg, Jonas; Hansson, Emma; Thorarinsson, Andri; Claudelin, Malin; Bladh, Helena; Lidén, Mattias

    2018-06-13

    There is a lack of published, validated questionnaires for evaluating psychosocial morbidity in patients with breast hypertrophy undergoing breast reduction surgery. To validate the breast evaluation questionnaire (BEQ), originally developed for the assessment of breast augmentation patients, for the assessment of psychosocial morbidity in patients with breast hypertrophy undergoing breast reduction surgery. Validation study Subjects: Women with macromastia Methods: The validation of the BEQ, adapted to breast reduction, was performed in several steps. Content validity, reliability, construct validity and responsiveness were assessed. The original version was adjusted according to the results for content validity and resulted in item reduction and a modified BEQ (mBEQ) that was then assessed for reliability, construct validity and responsiveness. Internal and external validation was performed for the modified BEQ. Convergent validity was tested against Breast-Q (reduction) and discriminate validity was tested against the SF-36. Known-groups validation revealed significant differences between the normal population and patients undergoing breast reduction surgery. The BEQ showed good reliability by test-re-test analysis and high responsiveness. The modified BEQ may be reliable, valid and responsive instrument for assessing women who undergo breast reduction.

  19. Evaluation of a Modified User Guide for Hearing Aid Management.

    PubMed

    Caposecco, Andrea; Hickson, Louise; Meyer, Carly; Khan, Asaduzzaman

    2016-01-01

    This study investigated if a hearing aid user guide modified using best practice principles for health literacy resulted in superior ability to perform hearing aid management tasks, compared with the user guide in the original form. This research utilized a two-arm study design to compare the original manufacturer's user guide with a modified user guide for the same hearing aid--an Oticon Acto behind-the-ear aid with an open dome. The modified user guide had a lower reading grade level (4.2 versus 10.5), used a larger font size, included more graphics, and had less technical information. Eighty-nine adults ages 55 years and over were included in the study; none had experience with hearing aid use or management. Participants were randomly assigned either the modified guide (n = 47) or the original guide (n = 42). All participants were administered the Hearing Aid Management test, designed for this study, which assessed their ability to perform seven management tasks (e.g., change battery) with their assigned user guide. The regression analysis indicated that the type of user guide was significantly associated with performance on the Hearing Aid Management test, adjusting for 11 potential covariates. In addition, participants assigned the modified guide required significantly fewer prompts to perform tasks and were significantly more likely to perform four of the seven tasks without the need for prompts. The median time taken by those assigned the modified guide was also significantly shorter for three of the tasks. Other variables associated with performance on the Hearing Aid Management test were health literacy level, finger dexterity, and age. Findings indicate that the need to design hearing aid user guides in line with best practice principles of health literacy as a means of facilitating improved hearing aid management in older adults.

  20. Cognitive Mechanisms, Specificity and Neural Underpinnings of Visuospatial Peaks in Autism

    ERIC Educational Resources Information Center

    Caron, M.-J.; Mottron, L.; Berthiaume, C.; Dawson, M.

    2006-01-01

    In order to explain the cognitive and cerebral mechanisms responsible for the visuospatial peak in autism, and to document its specificity to this condition, a group of eight high-functioning individuals with autism and a visuospatial peak (HFA-P) performed a modified block-design task (BDT; subtest from Wechsler scales) at various levels of…

  1. Will algorithms modified with soil and weather information improve in-field reflectance-sensing corn nitrogen applications?

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) needs to support corn (Zea mays L.) production can be highly variable within fields. Canopy reflectance sensing for assessing crop N health has been implemented on many farmers’ fields to side-dress or top-dress variable-rate N application, but at times farmers report the performance of...

  2. A high-performance electrochemical sensor for biologically meaningful l-cysteine based on a new nanostructured l-cysteine electrocatalyst.

    PubMed

    Cao, Fei; Huang, Yikun; Wang, Fei; Kwak, Dongwook; Dong, Qiuchen; Song, Donghui; Zeng, Jie; Lei, Yu

    2018-08-17

    As a new class of l-cysteine electrocatalyst explored in this study, Au/CeO 2 composite nanofibers (CNFs) were employed to modify the screen printed carbon electrode (SPCE) to fabricate a novel l-cysteine (CySH) electrochemical sensor with high performance. Its electrochemical behavior and the roles of Au and CeO 2 in the composite toward electro-oxidation of CySH were elucidated and demonstrated using cyclic voltammetry and amperometry techniques for the first time through the comparison with pure CeO 2 NFs. More specifically, the Au/CeO 2 CNFs modified SPCE possessed greatly enhanced electrocatalytic activity toward CySH oxidation. An ultra high sensitivity of 321 μA mM -1 cm -2 was obtained, which is almost 2.7 times higher than that of pure CeO 2 NFs, revealing that the presence of Au imposed an important influence on the electrocatalytic activity toward CySH. The detailed reasons on such high performance were also discussed. In addition, the as-prepared sensor showed a low detection limit of 10 nM (signal to noise ratio of 3), a wide linear range up to 200 μM for the determination of CySH, an outstanding reproducibility and good long-term stability, as well as an excellent selectivity against common interferents such as tryptophan, tyrosine, methionine, ascorbic acid and uric acid. All these features indicate that the Au/CeO 2 composite nanofiber is a promising candidate as a new class of l-cysteine electrocatalyst in the development of highly sensitive and selective CySH electrochemical sensor. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Evaluation of an affinity-amplified immunoassay of graphene oxide using surface plasmon resonance biosensors

    NASA Astrophysics Data System (ADS)

    Chiu, Nan-Fu; Huang, Teng-Yi; Kuo, Chun-Chuan

    2015-05-01

    We describe a fundamental study on the plasmonic properties and advanced biosensing mechanisms of functionalized graphene. We discuss a specific design using modified carboxyl groups, which can modulate surface plasmon (SP) coupling and provide an advantage for their binding to the sensing layer with high-performance affinity in an immunological reaction. The functionalized graphene-based surface plasmon resonance (SPR) biosensors have three advantages: high performance, high sensitivity, and excellent molecular kinetic response. In the future, functionalized graphene sheets will make a unique contribution to photonic and SPR diagnosis devices. We wish to highlight the essential characteristics of functionalized graphene-based SPR biosensors to assist researchers in developing and advancing suitable biosensors for unique applications.

  4. Kinetic studies on the removal of phenol by MBBR from saline wastewater.

    PubMed

    Ahmadi, Mehdi; Jaafarzadeh, Neamat; Rahmat, Zeinab Ghaed; Babaei, Ali Akbar; Alavi, Nadali; Baboli, Zeinab; Niri, Mehdi Vosoughi

    2017-01-01

    Phenols are chemical compounds which are included in the high priority of pollutants by environmental protection agency (USEPA). The presence of high concentrations of phenols in wastewaters like oil refineries, petrochemical plants, olive oil, pesticide production and oil field operations contain high soluble solids (TDS) and in an olive oil plant, wastewater is acidic, high salty and phenol concentrations are in the range of 0.1- 1%. Kinetic parameters were calculated according to Monod, Modified Stover- Kincannon, Hamoda and Haldane models. The influence of different initial phenol concentrations on the biodegradation rate was performed. The concentrations of phenol varied from 0 to 500 mg / l. The value of K i in saline phenolic wastewater in attached growth systems was higher than suspended growth systems that represented a higher phenol inhibition in suspended growth systems. It was obvious that the best model fitting the obtained data are Hamoda model and the Modified Stover-Kincannon model, having highest R 2 values of 0.991 and 1, respectively. The value of K i in saline phenolic wastewater in attached growth system was higher than suspended growth systems which represented a higher phenol inhibition in suspended growth systems. Hamoda model and the Modified Stover-Kincannon model having highest R2 value of 0.991 and 1, respectively, and also predicting reasonable kinetic coefficient values.

  5. Enhanced electrochemical performance and carbon anti-coking ability of solid oxide fuel cells with silver modified nickel-yttrium stabilized zirconia anode by electroless plating

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyan; Tian, Yu; Zhang, Jun; Zuo, Wei; Kong, Xiaowei; Wang, Jinghui; Sun, Kening; Zhou, Xiaoliang

    2016-01-01

    In this paper, silver (Ag) particles are introduced into the conventional Ni/YSZ anode by utilizing electroless plating method to improve its carbon anti-coking ability in hydrocarbons. The experimental results show that electrochemical performances of the decorated cells in H2, CH4 and C2H6 are all increased as compared to the cell with unmodified Ni/YSZ anode, which are verified by impedance spectrums as well. The durability experiment is carried out for as long as 24 h at the current density of 0.33 A/cm2 where the modified anode is subjected to dry C2H6 indicating the anti-coking ability of the anode is greatly improved. Scanning electron microscope shows that the slight decreasing in the cell terminal voltage can be attributed to the minimized carbon deposition which maybe resulted from the aggregation of silver particles at high temperature. Energy-dispersive X-ray spectroscopy line scanning results after long-term stability operation of the anode suggest that the carbon deposition can be depressed effectively both inside the anode and on the surface of the anode. Therefore, the results show that silver is a promising candidate material for modifying the Ni/YSZ anode with regard to improving electrochemical performance and suppressing the carbon deposition when taking the hydrocarbons as fuels.

  6. High-Quality TiS2 For Li/TiS2 Cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo; Surampudi, Subbarao; Shen, David H.; Delgiannis, Fotios; Halpert, Gerald

    1992-01-01

    Modified process for synthesis of battery-grade titanium sulfide (TiS2) yields substantially improved material for Li/TiS2 electrochemical cells. Includes all-vapor-phase reaction between sulfur and titanium. Product less dense and more homogeneous, consists of smaller particles of higher crystalline quality, and purer. Cells have high cathode utilization and long cycle life performance. Expected to find applications in rechargeable lithium batteries for spacecraft, military equipment, telecommunication systems, automobiles, and consumer products.

  7. Improving the High Temperature Creep and Rupture Resistance of Oxide- Dispersion-Strengthened Alloys

    DTIC Science & Technology

    1982-04-30

    more ready availability and its es - tablished high temperature data base. When work was formally initiated, an order was placed for a billet of...between the specimen heads and grips. -. The test apparatus used to perform the tensile tests was an Instron- Satec furnace combination, Temperature...12,000 lb. capacity) modified to produce constant stress rather than constant load. The furnaces were of the Satec tube-type, with a maximum temperature

  8. Magnetic dispersive solid-phase extraction based on modified magnetic nanoparticles for the detection of cocaine and cocaine metabolites in human urine by high-performance liquid chromatography-mass spectrometry.

    PubMed

    Yang, Feiyu; Zou, Yun; Ni, Chunfang; Wang, Rong; Wu, Min; Liang, Chen; Zhang, Jiabin; Yuan, Xiaoliang; Liu, Wenbin

    2017-11-01

    An easy-to-handle magnetic dispersive solid-phase extraction procedure was developed for preconcentration and extraction of cocaine and cocaine metabolites in human urine. Divinyl benzene and vinyl pyrrolidone functionalized silanized Fe 3 O 4 nanoparticles were synthesized and used as adsorbents in this procedure. Scanning electron microscopy, vibrating sample magnetometry, and infrared spectroscopy were employed to characterize the modified adsorbents. A high-performance liquid chromatography with mass spectrometry method for determination of cocaine and its metabolites in human urine sample has been developed with pretreatment of the samples by magnetic dispersive solid-phase extraction. The obtained results demonstrated the higher extraction capacity of the prepared nanoparticles with recoveries between 75.1 to 105.7% and correlation coefficients higher than 0.9971. The limits of detection for the cocaine and cocaine metabolites were 0.09-1.10 ng/mL. The proposed magnetic dispersive solid-phase extraction method provided a rapid, environmentally friendly and magnetic stuff recyclable approach and it was confirmed that the prepared adsorbents material was a kind of highly effective extraction materials for the trace cocaine and cocaine metabolites analyses in human urine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Impact of conventional or intensive milk replacer programs on Holstein heifer performance through six months of age and during first lactation.

    PubMed

    Raeth-Knight, M; Chester-Jones, H; Hayes, S; Linn, J; Larson, R; Ziegler, D; Ziegler, B; Broadwater, N

    2009-02-01

    The objectives were to evaluate the impact of conventional or intensive milk replacer (MR) feeding programs on heifer calf performance through 6 mo of age, age at first calving, and first lactation performance. At 3 (+/-1 d) d of age, 133 Holstein heifer calves from 3 commercial dairy farms were randomly assigned, within calf source, to a conventional [20% crude protein (CP), 20% fat] or intensive MR (28% CP, 18% fat). Milk replacer treatments and percent solids were 1) conventional nonacidified (CNA), 13.9%; 2) conventional acidified (CA), 13.9%; 3) modified intensive high solids (IHS), 16.7%; 4) modified intensive low solids (ILS), 12.5%; and 5) intensive high solids, high feeding (IHSHF), 16.7%. Calves were individually housed and remained on trial for 56 d. At 2 mo of age, heifers were grouped in pens by treatment with 6 heifers per pen (4 pens per treatment). An 18.1% CP grower concentrate mix (dry matter basis) was fed to heifers that received a conventional MR and a 21.2% CP grower concentrate mix was fed to heifers that received the intensive MR preweaning. Heifers were offered 2.45 kg/d (dry matter basis) of their respective grower concentrate mix for 112 d plus free access to hay and water. At approximately 24 wk of age, heifers were transported to a second-stage grower before returning to their respective farms approximately 1 mo before calving. First-lactation performance was determined using Dairy Herd Improvement Association records. The IHSHF treatment resulted in increased calf body weight and hip height during the preweaning and early postweaning (PEP) period and the postweaning heifer grower (PHG) period as compared with the conventional (CNA and CA) or modified intensive MR treatments (IHS and ILS). Calves receiving the IHS treatment were heavier at d 56 of the PEP period compared with the conventional or ILS treatments; however, this growth advantage was not maintained in the PHG period. Feed cost per kilogram of gain during the PEP period was lowest for CNA and CA, intermediate for IHS and ILS, and highest for the IHSHF treatment. There was no effect of MR feeding program on first-lactation performance; however, heifers that received the IHSHF MR preweaning calved 27.5 d earlier than those fed a conventional MR.

  10. Electrochemical sensor for hazardous food colourant quinoline yellow based on carbon nanotube-modified electrode.

    PubMed

    Zhao, Jun; Zhang, Yu; Wu, Kangbing; Chen, Jianwei; Zhou, Yikai

    2011-09-15

    A novel electrochemical method using multi-wall carbon nanotube (MWNT) film-modified electrode was developed for the detection of quinoline yellow. In pH 8 phosphate buffer, an irreversible oxidation peak at 0.71V was observed for quinoline yellow. Compared with the unmodified electrode, the MWNT film-modified electrode greatly increases the oxidation peak current of quinoline yellow, showing notable enhancement effect. The effects of pH value, amount of MWNT, accumulation potential and time were studied on the oxidation peak current of quinoline yellow. The linear range is from 0.75 to 20mgL(-1), and the limit of detection is 0.5mgL(-1). It was applied to the detection of quinoline yellow in commercial soft drinks, and the results consisted with the value that obtained by high-performance liquid chromatography. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Cosmic Tsunamis in Modified Gravity: Disruption of Screening Mechanisms from Scalar Waves.

    PubMed

    Hagala, R; Llinares, C; Mota, D F

    2017-03-10

    Extending general relativity by adding extra degrees of freedom is a popular approach for explaining the accelerated expansion of the Universe and to build high energy completions of the theory of gravity. The presence of such new degrees of freedom is, however, tightly constrained from several observations and experiments that aim to test general relativity in a wide range of scales. The viability of a given modified theory of gravity, therefore, strongly depends on the existence of a screening mechanism that suppresses the extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of freedom can significantly impact the efficiency of some screening mechanisms, thereby threatening the viability of these modified gravity theories. Specifically, we show that the waves produced in the symmetron model can increase the amplitude of the fifth force and the parametrized post Newtonian parameters by several orders of magnitude.

  12. Efficient degradation of H2S over transition metal modified TiO2 under VUV irradiation: Performance and mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Gaoyuan; Ji, Jian; Hu, Peng; Lin, Sixin; Huang, Haibao

    2018-03-01

    Odor pollution causes great harm to the atmospheric environment and human health. H2S, as an odor gas, is highly toxic and corrosive and thus requires removal efficiently. In this study, TiO2 catalysts modified by transition metals including Mn, Cu, Ni and Co, were prepared using a modified sol-gelatin method and tested under UV-PCO or VUV-PCO process. H2S degradation was great enhanced in VUV-PCO compared with conventional UV-PCO. Among the catalysts, 1 wt% Mn-TiO2 showed the highest removal efficiency of 89.9%, which is 30 times higher than that under 254 nm UV irradiation. Residual ozone in the outlet can be completely eliminated by Mn-TiO2. Photocatalytic oxidation, photolysis and ozone-assisted catalytic oxidation all involved in the VUV-PCO process and their contribution were determined by H2S removal efficiency.

  13. Inhibition of human papillomavirus expression using DNAzymes.

    PubMed

    Benítez-Hess, María Luisa; Reyes-Gutiérrez, Pablo; Alvarez-Salas, Luis Marat

    2011-01-01

    Deoxyribozymes (DXZs) are catalytic oligodeoxynucleotides capable of performing diverse functions including the specific cleavage of a target RNA. These molecules represent a new type of therapeutic oligonucleotides combining the efficiency of ribozymes and the intracellular endurance and simplicity of modified antisense oligonucleotides. Commonly used DXZs include the 8-17 and 10-23 motifs, which have been engineered to destroy disease-associated genes with remarkable efficiency. Targeting DXZs to disease-associated transcripts requires extensive biochemical testing to establish target RNA accessibility, catalytic efficiency, and nuclease sensibility. The usage of modified nucleotides to render nuclease-resistance DXZs must be counterweighted against deleterious consequences on catalytic activity. Further intracellular testing is required to establish the effect of microenvironmental conditions on DXZ activity and off-target issues. Application of modified DXZs to cervical cancer results in specific growth inhibition, cell death, and apoptosis. Thus, DXZs represent a highly effective antisense moiety with minimal secondary effects.

  14. Numerical modelling of effective thermal conductivity for modified geomaterial using lattice element method

    NASA Astrophysics Data System (ADS)

    Rizvi, Zarghaam Haider; Shrestha, Dinesh; Sattari, Amir S.; Wuttke, Frank

    2018-02-01

    Macroscopic parameters such as effective thermal conductivity (ETC) is an important parameter which is affected by micro and meso level behaviour of particulate materials, and has been extensively examined in the past decades. In this paper, a new lattice based numerical model is developed to predict the ETC of sand and modified high thermal backfill material for energy transportation used for underground power cables. 2D and 3D simulations are performed to analyse and detect differences resulting from model simplification. The thermal conductivity of the granular mixture is determined numerically considering the volume and the shape of the each constituting portion. The new numerical method is validated with transient needle measurements and the existing theoretical and semi empirical models for thermal conductivity prediction sand and the modified backfill material for dry condition. The numerical prediction and the measured values are in agreement to a large extent.

  15. Direct determination of creatinine based on poly(ethyleneimine)/phosphotungstic acid multilayer modified electrode.

    PubMed

    Han, Ping; Xu, Shimei; Feng, Shun; Hao, Yanjun; Wang, Jide

    2016-05-01

    In this work, the direct determination of creatinine was achieved using a poly(ethyleneimine)/phosphotungstic acid multilayer modified electrode with the assistance of Copper(II) ions by cyclic voltammetry. The quantity of creatinine were determined by measuring the redox peak current of Cu(II)-creatinine complex/Cu(I)-creatinine complex. Factors affecting the response current of creatinine at the modified electrode were optimized. A linear relationship between the response current and the concentration of creatinine ranging from 0.125 to 62.5μM was obtained with a detection limit of 0.06μM. The proposed method was applied to determine creatinine in human urine, and satisfied results were gotten which was validated in accordance with high performance liquid chromatography. The proposed electrode provided a promising alternative in routine sensing for creatinine without enzymatic assistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Performance of diatomite/iron oxide modified nonwoven membrane used in membrane bioreactor process for wastewater reclamation.

    PubMed

    He, Yueling; Zhang, Wenqi; Rao, Pinhua; Jin, Peng

    2014-01-01

    This study describes an approach for surface modification of a nonwoven membrane by diatomite/iron oxide to examine its filterability. Analysis results showed that nonwoven hydrophilicity is enhanced. Static contact angle decreases dramatically from 122.66° to 39.33°. Scanning electron micrograph images show that diatomite/iron oxide is attached on nonwoven fiber. X-ray diffraction analysis further proves that the compound is mostly magnetite. Fourier transformed infrared spectra results reveal that two new absorption peaks might be attributed to Si-O and Fe-O, respectively. Modified and original membranes were used in double nonwoven membrane bioreactors (MBRs) for synthetic wastewater treatment. High critical flux, long filtration time, slow trans-membrane pressure rise and stable sludge volume index confirmed the advantages of modified nonwoven. Comparing with original nonwoven, similar effluent qualities are achieved, meeting the requirements for wastewater reclamation.

  17. Modified Brewster angle on conducting 2D materials

    NASA Astrophysics Data System (ADS)

    Majérus, Bruno; Cormann, Mirko; Reckinger, Nicolas; Paillet, Matthieu; Henrard, Luc; Lambin, Philippe; Lobet, Michaël

    2018-04-01

    Insertion of two-dimensional (2D) materials in optical systems modifies their electrodynamical response. In particular, the Brewster angle undergoes an up-shift if a substrate is covered with a conducting 2D material. This work theoretically and experimentally investigates this effect related to the 2D induced current at the interface. The shift is predicted for all conducting 2D materials and tunability with respect to the Fermi level of graphene is evidenced. Analytical approximations for high and low 2D conductivities are proposed and avoid cumbersome numerical analysis of experimental data. Experimental demonstration using spectroscopic ellipsometry has been performed in the UV to NIR range on mono-, bi- and trilayer graphene samples. The non-contact measurement of this modified Brewster angle allows to deduce the optical conductivity of 2D materials. Applications to telecommunication technologies can be considered thanks to the tunability of the shift at 1.55 μm.

  18. Cosmic Tsunamis in Modified Gravity: Disruption of Screening Mechanisms from Scalar Waves

    NASA Astrophysics Data System (ADS)

    Hagala, R.; Llinares, C.; Mota, D. F.

    2017-03-01

    Extending general relativity by adding extra degrees of freedom is a popular approach for explaining the accelerated expansion of the Universe and to build high energy completions of the theory of gravity. The presence of such new degrees of freedom is, however, tightly constrained from several observations and experiments that aim to test general relativity in a wide range of scales. The viability of a given modified theory of gravity, therefore, strongly depends on the existence of a screening mechanism that suppresses the extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of freedom can significantly impact the efficiency of some screening mechanisms, thereby threatening the viability of these modified gravity theories. Specifically, we show that the waves produced in the symmetron model can increase the amplitude of the fifth force and the parametrized post Newtonian parameters by several orders of magnitude.

  19. A Framework to Debug Diagnostic Matrices

    NASA Technical Reports Server (NTRS)

    Kodal, Anuradha; Robinson, Peter; Patterson-Hine, Ann

    2013-01-01

    Diagnostics is an important concept in system health and monitoring of space operations. Many of the existing diagnostic algorithms utilize system knowledge in the form of diagnostic matrix (D-matrix, also popularly known as diagnostic dictionary, fault signature matrix or reachability matrix) gleaned from physical models. But, sometimes, this may not be coherent to obtain high diagnostic performance. In such a case, it is important to modify this D-matrix based on knowledge obtained from other sources such as time-series data stream (simulated or maintenance data) within the context of a framework that includes the diagnostic/inference algorithm. A systematic and sequential update procedure, diagnostic modeling evaluator (DME) is proposed to modify D-matrix and wrapper logic considering least expensive solution first. This iterative procedure includes conditions ranging from modifying 0s and 1s in the matrix, or adding/removing the rows (failure sources) columns (tests). We will experiment this framework on datasets from DX challenge 2009.

  20. A Modified Importance-Performance Framework for Evaluating Recreation-Based Experiential Learning Programs

    ERIC Educational Resources Information Center

    Pitas, Nicholas; Murray, Alison; Olsen, Max; Graefe, Alan

    2017-01-01

    This article describes a modified importance-performance framework for use in evaluation of recreation-based experiential learning programs. Importance-performance analysis (IPA) provides an effective and readily applicable means of evaluating many programs, but the near universal satisfaction associated with recreation inhibits the use of IPA in…

  1. New tools using the hardware performance monitor to help users tune programs on the Cray X-MP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engert, D.E.; Rudsinski, L.; Doak, J.

    1991-09-25

    The performance of a Cray system is highly dependent on the tuning techniques used by individuals on their codes. Many of our users were not taking advantage of the tuning tools that allow them to monitor their own programs by using the Hardware Performance Monitor (HPM). We therefore modified UNICOS to collect HPM data for all processes and to report Mflop ratings based on users, programs, and time used. Our tuning efforts are now being focused on the users and programs that have the best potential for performance improvements. These modifications and some of the more striking performance improvements aremore » described.« less

  2. High-resolution continuous flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2014-12-01

    Here we present an experimental setup for water stable isotopes (δ18O and δD) continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research - LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. A Water Vapor Isotopic Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to: (1) increase the temporal resolution by reducing the response time (2) enable measurements on several water standards, and (3) to reduce the influence from memory effects. While this setup was designed for the Continuous Flow Analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The modified setup provides a shorter response time (~54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the modified setup has a reduced memory effect. Stability tests comparing the modified WVISS and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the 2013 modified setup the precision after integration times of 103 s are 0.060 and 0.070‰ for δ18O and δD, respectively. For the WVISS setup the corresponding σAllan values are 0.030, 0.060 and 0.043‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042‰ after 103 s for δ18O, δD and δ17O, respectively. Both the modified setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O of 0.30 and 0.18‰ for the modified (2013) and WVISS setup, respectively after averaging times of 104 s (2.78 h). The Isotopic Water Analyzer (IWA)-modified WVISS setup used during the 2013 Roosevelt Island Climate Evolution (RICE) ice core processing campaign achieved high precision measurements, in particular for δD, with high temporal resolution for the upper part of the core, where a seasonally resolved isotopic signal is preserved.

  3. Comparison of Two Variants Of a Kata Technique (Unsu): The Neuromechanical Point of View

    PubMed Central

    Camomilla, Valentina; Sbriccoli, Paola; Mario, Alberto Di; Arpante, Alessandro; Felici, Francesco

    2009-01-01

    The objective of this work was to characterize from a neuromechanical point of view a jump performed within the sequence of Kata Unsu in International top level karateka. A modified jumping technique was proposed to improve the already acquired technique. The neuromechanical evaluation, paralleled by a refereeing judgment, was then used to compare modified and classic technique to test if the modification could lead to a better performance capacity, e.g. a higher score during an official competition. To this purpose, four high ranked karateka were recruited and instructed to perform the two jumps. Surface electromyographic signals were recorded in a bipolar mode from the vastus lateralis, rectus femoris, biceps femoris, gluteus maximus, and gastrocnemious muscles of both lower limbs. Mechanical data were collected by means of a stereophotogrammetric system and force platforms. Performance was associated to parameters characterizing the initial conditions of the aerial phase and to the CoM maximal height. The most critical elements having a negative influence on the arbitral evaluation were associated to quantitative error indicators. 3D reconstruction of the movement and videos were used to obtain the referee scores. The Unsu jump was divided into five phases (preparation, take off, ascending flight, descending flight, and landing) and the critical elements were highlighted. When comparing the techniques, no difference was found in the pattern of sEMG activation of the throwing leg muscles, while the push leg showed an earlier activation of RF and GA muscles at the beginning of the modified technique. The only significant improvement associated with the modified technique was evidenced at the beginning of the aerial phase, while there was no significant improvement of the referee score. Nevertheless, the proposed neuromechanical analysis, finalized to correlate technique features with the core performance indicators, is new in the field and is a promising tool to perform further analyses. Key Points A quantitative phase analysis, highlighting the critical features of the technique, was provided for the jump executed during the Kata Unsu. Kinematics and neuromuscular activity can be assessed during the Kata Unsu jump performed by top level karateka. Neuromechanical parameters change during different Kata Unsu jump techniques. Appropriate performance capacity indicators based on the neuromechanical evaluation can describe changes due to a modification of the technique. PMID:24474884

  4. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler.

    PubMed

    Singh, Deepak J; Jain, Rajesh R; Soni, P S; Abdul, Samad; Darshana, Hegde; Gaikwad, Rajiv V; Menon, Mala D

    2015-08-01

    Dry powder inhalers (DPI) are generally formulated by mixing micronized drug particles with coarse lactose carrier particles to assist powder handling during the manufacturing and powder aerosol delivery during patient use. In the present study, surface modified lactose (SML) particles were produced using force control agents, and their in vitro performance on dry powder inhaler (DPI) formulation of Fluticasone propionate was studied. With a view to reduce surface passivation of high surface free energy sites on the most commonly used DPI carrier, α- lactose monohydrate, effects of various force control agents such as Pluronic F-68, Cremophor RH 40, glyceryl monostearate, polyethylene glycol 6000, magnesium stearate, and soya lecithin were studied. DPI formulations prepared with SML showed improved flow properties, and atomic force microscopy (AFM) studies revealed decrease in surface roughness. The DSC and X-ray diffraction patterns of SML showed no change in the crystal structure and thermal behavior under the experimental conditions. The fine particle fraction (FPF) values of lactose modified with Pluronic F-68, Cremophor RH 40, glyceryl monostearate were improved, with increase in concentration up to 0.5%. Soya lecithin and PEG 6000 modified lactose showed decrease in FPF value with increase in concentration. Increase in FPF value was observed with increasing concentration of magnesium stearate. Two different DPI devices, Rotahaler(®) and Diskhaler(®), were compared to evaluate the performance of SML formulations. FPF value of all SML formulations were higher using both devices as compared to the same formulations prepared using untreated lactose. One month stability of SML formulations at 40°C/75% RH, in permeable polystyrene tubes did not reveal any significant changes in FPF values. SML particles can help in reducing product development hindrances and improve inhalational properties of DPI.

  5. Chemically Modified Metal Oxide Nanostructure for Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Wang, Gongming

    Hydrogen gas is chemical fuel with high energy density, and represents a clean, renewable and carbon-free burning fuel, which has the potential to solve the more and more urgent energy crisis in today's society. Inspired by natural photosynthesis, artificial photosynthesis to generate hydrogen energy has attracted a lot of attentions in the field of chemistry, physics and material. Photoelectrochemical water splitting based on semiconductors represents a green and low cost method to generate hydrogen fuel. However, the current overall efficiency of solar to hydrogen is quite low, due to some intrinsic limitations such as bandgap, diffusion distance, carrier lifetime and photostability of semiconductors. Although nanostructured semiconductors can improve their photoelectrochemical water splitting performance to some extent, by increasing electrolyte accessible area and shortening minority carrier diffusion distance, nanostructure engineering cannot change their intrinsic electronic properties. Recent development in chemically modified nanostructures such as surface catalyst decoration, element doping, plasmonic modification and interfacial hetero-junction design have led to significant advancement in the photoelectrochemical water splitting, by improving surface reaction kinetics and charge separation, transportation and collection efficiency. In this thesis, I will give a detailed discussion on the chemically modified metal oxide nanostructures for photoelectrocemical hydrogen generation, with a focus on the element doping, hydrogen treatment and catalyst modification. I have demonstrated nitrogen doping on ZnO and Ti doping on hematite can improve their photoelectrochemical performance. In addition, we found hydrogen treatment is a general and effective method to improve the photocatalytic performance, by increasing their carrier desities. Hydrogen treatment has been demonstrated on TiO2, WO3 and BiVO4. In the end, we also used electrochemical catalyt to modify these metal oxide photoelectrode for waste water treatment and chemical fuel generation.

  6. Modification split type air conditioning unit by installing internal heat exchanger and condenser precooling

    NASA Astrophysics Data System (ADS)

    Ambarita, H.

    2018-03-01

    In this paper, a modified of air conditioning (AC) system is proposed. In the modified system, an internal heat exchanger and condenser precooling unit are installed. The objective is to explore the effect of the additional equipment to the performance of the system. An AC with compressor power of 1 PK is modified and compared with the original one. The results show that ER of the modified system is higher than the original one in order of 3.6%. The work of the compressor of the modified system is 12.5% lower than work of the compressor without modification. Finally, the COP of the modified system is 11.71% higher than the original one. These facts reveal that the combination of IHX and condenser precooling shows positive impact on the performance of the AC. It is recommended to use the modified system to improve the energy efficiency of the Air Conditioning system.

  7. Performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data.

    PubMed

    Yelland, Lisa N; Salter, Amy B; Ryan, Philip

    2011-10-15

    Modified Poisson regression, which combines a log Poisson regression model with robust variance estimation, is a useful alternative to log binomial regression for estimating relative risks. Previous studies have shown both analytically and by simulation that modified Poisson regression is appropriate for independent prospective data. This method is often applied to clustered prospective data, despite a lack of evidence to support its use in this setting. The purpose of this article is to evaluate the performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data, by using generalized estimating equations to account for clustering. A simulation study is conducted to compare log binomial regression and modified Poisson regression for analyzing clustered data from intervention and observational studies. Both methods generally perform well in terms of bias, type I error, and coverage. Unlike log binomial regression, modified Poisson regression is not prone to convergence problems. The methods are contrasted by using example data sets from 2 large studies. The results presented in this article support the use of modified Poisson regression as an alternative to log binomial regression for analyzing clustered prospective data when clustering is taken into account by using generalized estimating equations.

  8. A Modified Alderman-Grant Coil makes possible an efficient cross-coil probe for high field solid-state NMR of lossy biological samples

    NASA Astrophysics Data System (ADS)

    Grant, Christopher V.; Yang, Yuan; Glibowicka, Mira; Wu, Chin H.; Park, Sang Ho; Deber, Charles M.; Opella, Stanley J.

    2009-11-01

    The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman-Grant Coil (MAGC) tuned to the 1H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B 1 field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the 1H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194-241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed.

  9. Experimental Study of Tool Wear and Grinding Forces During BK-7 Glass Micro-grinding with Modified PCD Tool

    NASA Astrophysics Data System (ADS)

    Pratap, A.; Sahoo, P.; Patra, K.; Dyakonov, A. A.

    2017-09-01

    This study focuses on the improvement in grinding performance of BK-7 glass using polycrystalline diamond micro-tool. Micro-tools are modified using wire EDM and performance of modified tools is compared with that of as received tool. Tool wear of different types of tools are observed. To quantify the tool wear, a method based on weight loss of tool is introduced in this study. Modified tools significantly reduce tool wear in comparison to the normal tool. Grinding forces increase with machining time due to tool wear. However, modified tools produce lesser forces thus can improve life of the PCD micro-grinding tool.

  10. Critical Current of Superconducting Rutherford Cable in High Magnetic Fields with Transverse Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietderich, D.R.; Scanlan, R.M.; Walsh, R.P.

    For high energy physics applications superconducting cables are subjected to large stresses and high magnetic fields during service. It is essential to know how these cables perform in these operating conditions. A loading fixture capable of applying loads of up to 700 kN has been developed by NHMFL for LBNL. This fixture permits uniform loading of straight cables over a 122 mm length in a split-pair solenoid in fields up to 12 T at 4.2 K. The first results from this system for Rutherford cables of internal-tin and modified jelly roll strand of Nb{sub 3}Sn produced by IGC and TWCmore » showed that little permanent degradation occurs up to 210 MPa. However, the cable made from internal-tin strand showed a 40% reduction in K{sub c} at 11T and 210 MPa while a dable made from modified jelly roll material showed only a 15% reduction in I{sub c} at 11T and 185 MPa.« less

  11. Extremely efficient flexible organic light-emitting diodes with modified graphene anode

    NASA Astrophysics Data System (ADS)

    Han, Tae-Hee; Lee, Youngbin; Choi, Mi-Ri; Woo, Seong-Hoon; Bae, Sang-Hoon; Hong, Byung Hee; Ahn, Jong-Hyun; Lee, Tae-Woo

    2012-02-01

    Although graphene films have a strong potential to replace indium tin oxide anodes in organic light-emitting diodes (OLEDs), to date, the luminous efficiency of OLEDs with graphene anodes has been limited by a lack of efficient methods to improve the low work function and reduce the sheet resistance of graphene films to the levels required for electrodes. Here, we fabricate flexible OLEDs by modifying the graphene anode to have a high work function and low sheet resistance, and thus achieve extremely high luminous efficiencies (37.2 lm W-1 in fluorescent OLEDs, 102.7 lm W-1 in phosphorescent OLEDs), which are significantly higher than those of optimized devices with an indium tin oxide anode (24.1 lm W-1 in fluorescent OLEDs, 85.6 lm W-1 in phosphorescent OLEDs). We also fabricate flexible white OLED lighting devices using the graphene anode. These results demonstrate the great potential of graphene anodes for use in a wide variety of high-performance flexible organic optoelectronics.

  12. Applications of Endothermic Reaction Technology to the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Glickstein, Marvin R.; Spadaccini, Louis J.

    1998-01-01

    The success of strategies for controlling emissions and enhancing performance in High Speed Research applications may be Increased by more effective utilization of the heat sink afforded by the fuel in the vehicle thermal management system. This study quantifies the potential benefits associated with the use of supercritical preheating and endothermic cracking of let fuel prior to combustion to enhance the thermal management capabilities of the propulsion systems in the High Speed Civil Transport (HSCT). A fuel-cooled thermal management system, consisting of plate-fin heat exchangers and a small auxiliary compressor, is defined for the HSCT, Integrated with the engine, and an assessment of the effect on engine performance, weight, and operating cost is performed. The analysis indicates significant savings due a projected improvement in fuel economy, and the potential for additional benefit if the cycle is modified to take full advantage of all the heat sink available in the fuel.

  13. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, T.; Jensen, R.; Christensen, M. K.

    2012-07-15

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/{Delta}m > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detectionmore » by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH{sub 3}.« less

  14. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    NASA Astrophysics Data System (ADS)

    Andersen, T.; Jensen, R.; Christensen, M. K.; Pedersen, T.; Hansen, O.; Chorkendorff, I.

    2012-07-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH3.

  15. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors.

    PubMed

    Andersen, T; Jensen, R; Christensen, M K; Pedersen, T; Hansen, O; Chorkendorff, I

    2012-07-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH(3).

  16. Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode.

    PubMed

    Rafiee, Banafsheh; Fakhari, Ali Reza

    2013-08-15

    Nickel oxide nanoparticles modified nafion-multiwalled carbon nanotubes screen printed electrode (NiONPs/Nafion-MWCNTs/SPE) were prepared using pulsed electrodeposition of NiONPs on the MWCNTs/SPE surface. The size, distribution and structure of the NiONPs/Nafion-MWCNTs were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD) and also the results show that NiO nanoparticles were homogeneously electrodeposited on the surfaces of MWCNTs. Also, the electrochemical behavior of NiONPs/Nafion-MWCNTs composites in aqueous alkaline solutions of insulin was studied by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS). It was found that the prepared nanoparticles have excellent electrocatalytic activity towards insulin oxidation due to special properties of NiO nanoparticles. Cyclic voltammetric studies showed that the NiONPs/Nafion-MWCNTs film modified SPE, lowers the overpotentials and improves electrochemical behavior of insulin oxidation, as compared to the bare SPE. Amperometry was also used to evaluate the analytical performance of modified electrode in the quantitation of insulin. Excellent analytical features, including high sensitivity (1.83 μA/μM), low detection limit (6.1 nM) and satisfactory dynamic range (20.0-260.0 nM), were achieved under optimized conditions. Moreover, these sensors show good repeatability and a high stability after a while or successive potential cycling. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Numerical studies of wall–plasma interactions and ionization phenomena in an ablative pulsed plasma thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Lei; School of Astronautics, Beihang University, Beijing 100191; Zeng, Guangshang

    2016-07-15

    Wall–plasma interactions excited by ablation controlled arcs are very critical physical processes in pulsed plasma thrusters (PPTs). Their effects on the ionization processes of ablated vapor into discharge plasma directly determine PPT performances. To reveal the physics governing the ionization phenomena in PPT discharge, a modified model taking into account the pyrolysis effect of heated polytetrafluoroethylene propellant on the wall–plasma interactions was developed. The feasibility of the modified model was analyzed by creating a one-dimensional simulation of a rectangular ablative PPT. The wall–plasma interaction results based on this modified model were found to be more realistic than for the unmodifiedmore » model; this reflects the dynamic changes of the inflow parameters during discharge in our model. Furthermore, the temporal and spatial variations of the different plasma species in the discharge chamber were numerically studied. The numerical studies showed that polytetrafluoroethylene plasma was mainly composed of monovalent ions; carbon and fluorine ions were concentrated in the upstream and downstream discharge chamber, respectively. The results based on this modified model were in good agreement with the experimental formation times of the various plasma species. A large number of short-lived and highly ionized carbon and fluorine species (divalent and trivalent ions) were created during initial discharge. These highly ionized species reached their peak density earlier than the singly ionized species.« less

  18. Fatigue Properties of Modified 316LN Stainless Steel at 4 K for High Field Cable-In Applications

    NASA Astrophysics Data System (ADS)

    Toplosky, V. J.; Walsh, R. P.; Han, K.

    2010-04-01

    Cable-In-Conduit-Conductor (CICC) alloys, exposed to Nb3Sn reaction heat-treatments, such as modified 316LN require a design specific database. A lack of fatigue life data (S-n curves) that could be applied in the design of the ITER CS and the NHMFL Series Connected Hybrid magnets is the impetus for the research presented here. The modified 316LN is distinguished by a lower carbon content and higher nitrogen content when compared to conventional 316LN. Because the interstitial alloying elements affect the mechanical properties significantly, it is necessary to characterize this alloy in a systematic way. In conjunction, to ensure magnet reliability and performance, several criteria and expectations must be met, including: high fatigue life at the operating stresses, optimal stress management at cryogenic temperatures and thin walled conduit to reduce coil mass. Tension-tension load control axial fatigue tests have good applicability to CICC solenoid magnet design, thus a series of 4 K strength versus fatigue life curves have been generated. In-situ samples of 316LN base metal, seam welded, butt welded and seam plus butt welded are removed directly from the conduit in order to address base and weld material fatigue life variability. The more than 30 fatigue tests show good grouping on the fatigue life curve and allow discretionary 4 K fatigue life predictions for conduit made with modified 316LN.

  19. Treatment of laundry wastewater using polyethersulfone/polyvinylpyrollidone ultrafiltration membranes.

    PubMed

    Sumisha, A; Arthanareeswaran, G; Lukka Thuyavan, Y; Ismail, A F; Chakraborty, S

    2015-11-01

    In this study, laundry wastewater filtration was studied using hydrophilic polyvinylpyrollidone (PVP) modified polyethersulfone (PES) ultrafiltration membranes. The performances of PES/PVP membranes were assessed using commercial PES membrane with 10kDa in ultrafiltration. Operating parameters The influence of transmembrane pressure (TMP) and stirring speed on laundry wastewater flux was investigated. A higher permeate flux of 55.2L/m(2)h was obtained for modified PES membrane with high concentration of PVP at TMP of 500kPa and 750rpm of stirring speed. The separation efficiencies of membranes were also studied with respect to chemical oxygen demand (COD), total dissolved solids (TDS), turbidity and conductivity. Results showed that PES membrane with 10% of PVP had higher permeate flux, flux recovery and less fouling when compared with other membranes. Higher COD and TDS rejection of 88% and 82% were also observed for modified membranes due to the improved surface property of membranes. This indicated that modified PES membranes are suitable for the treatment of surfactant, detergent and oil from laundry wastewater. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Multiport backside-illuminated CCD imagers for high-frame-rate camera applications

    NASA Astrophysics Data System (ADS)

    Levine, Peter A.; Sauer, Donald J.; Hseuh, Fu-Lung; Shallcross, Frank V.; Taylor, Gordon C.; Meray, Grazyna M.; Tower, John R.; Harrison, Lorna J.; Lawler, William B.

    1994-05-01

    Two multiport, second-generation CCD imager designs have been fabricated and successfully tested. They are a 16-port 512 X 512 array and a 32-port 1024 X 1024 array. Both designs are back illuminated, have on-chip CDS, lateral blooming control, and use a split vertical frame transfer architecture with full frame storage. The 512 X 512 device has been operated at rates over 800 frames per second. The 1024 X 1024 device has been operated at rates over 300 frames per second. The major changes incorporated in the second-generation design are, reduction in gate length in the output area to give improved high-clock-rate performance, modified on-chip CDS circuitry for reduced noise, and optimized implants to improve performance of blooming control at lower clock amplitude. This paper discusses the imager design improvements and presents measured performance results at high and moderate frame rates. The design and performance of three moderate frame rate cameras are discussed.

  1. Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high-performance lithium-ion battery.

    PubMed

    Chen, Wenju; Shi, Liyi; Wang, Zhuyi; Zhu, Jiefang; Yang, Haijun; Mao, Xufeng; Chi, Mingming; Sun, Lining; Yuan, Shuai

    2016-08-20

    The developments of high-performance lithium ion battery are eager to the separators with high ionic conductivity and thermal stability. In this work, a new way to adjust the comprehensive properties of inorganic-organic composite separator was investigated. The cellulose diacetate (CDA)-SiO2 composite coating is beneficial for improving the electrolyte wettability and the thermal stability of separators. Interestingly, the pore structure of composite coating can be regulated by the weight ratio of SiO2 precursor tetraethoxysilane (TEOS) in the coating solution. The electronic performance of lithium ion batteries assembled with modified separators are improved compared with the pristine PE separator. When weight ratio of TEOS in the coating solution was 9.4%, the composite separator shows the best comprehensive performance. Compared with the pristine PE separator, its meltdown temperature and the break-elongation at elevated temperature increased. More importantly, the discharge capacity and the capacity retention improved significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of Memory Load and Test Position on Short-Duration Sustained Attention Tasks.

    PubMed

    Laurie-Rose, Cynthia; Frey, Meredith C; Sibata, Erick; Zamary, Amanda

    2015-01-01

    The current study applies a dual-task working memory and vigilance task to examine sustained attention performance and perceived workload in a multi-instrument battery. In Experiment 1 we modified a task developed by Helton and Russell (2011) to examine declines in performance and to assess the effects of its position within a larger battery. Experiment 1 failed to reveal a sensitivity decrement, and test position revealed only spurious influence. Workload scores derived from the NASA-TLX fell at the high end of the scale, with mental and temporal demand receiving the highest ratings. In Experiment 2, we modified the dual task to place more emphasis on attention rather than working memory. Results revealed a significant decline in performance across the vigil for the perceptual sensitivity index A'. Test position (early vs. late) effects appeared with the reaction time variability measure, with performance becoming more variable when the task appeared in the latter half of the battery. Workload scores varied according to position in the battery: Workload scores were higher when the vigilance task appeared in the latter half of the battery. Practical and theoretical implications are discussed.

  3. Field test method to determine presence and quantity of modifiers in liquid asphalt.

    DOT National Transportation Integrated Search

    2015-05-01

    Asphalt modified with styrene butadiene styrene (SBS) polymer and/or ground tire rubber (GTR) is widely used in the U.S. : to enhance its performance. However, there are very few field tests developed to verify the content of modifier(s) in asphalt :...

  4. Modifiable factors associated with caregiver burden among family caregivers of terminally ill Korean cancer patients.

    PubMed

    Yoon, Seok-Joon; Kim, Jong-Sung; Jung, Jin-Gyu; Kim, Sung-Soo; Kim, Samyong

    2014-05-01

    Higher caregiver burden is associated with poor quality of life among family caregivers. However, in Korea, very few studies have examined factors associated with caregiver burden. The present study investigated factors associated with caregiver burden among family caregivers of terminally ill Korean cancer patients, particularly modifiable factors as a potential target of intervention strategies. A cross-sectional study using self-administered questionnaires was performed. Sixty-four family caregivers of terminally ill cancer patients who were admitted to the hospice-palliative care unit of a university hospital in South Korea were included. To identify caregiver burden, the Caregiver Reaction Assessment scale (CRA) was used in this study. Time spent in providing care per day, number of visits per week from other family members, family functioning, and a positive subscale, self-esteem, of the CRA were deemed as modifiable factors. Other sociodemographic, caregiving characteristics of the subjects were non-modifiable factors. Longer time spent providing care per day, fewer weekly visits from other family members, poor family functioning, and low self-esteem were considered as modifiable factors associated with caregiver burden. Low monthly income and the spouse being the family caregiver were non-modifiable factors. Our study has practical significance in that it identifies modifiable factors that can be used to devise intervention strategies. Developing and applying such intervention strategies for alleviating the factors associated with high caregiver burden could be important for improving the quality of life of both patients and their families.

  5. Electrochemical glucose biosensor based on nickel oxide nanoparticle-modified carbon paste electrode.

    PubMed

    Erdem, Ceren; Zeybek, Derya Koyuncu; Aydoğdu, Gözde; Zeybek, Bülent; Pekyardımcı, Sule; Kılıç, Esma

    2014-08-01

    In the present work, we designed an amperometric glucose biosensor based on nickel oxide nanoparticles (NiONPs)-modified carbon paste electrode. The biosensor was prepared by incorporation of glucose oxidase and NiONPs into a carbon paste matrix. It showed good analytical performances such as high sensitivity (367 μA mmolL(-1)) and a wide linear response from 1.9×10(-3) mmolL(-1) to 15.0 mmolL(-1) with a limit of detection (0.11 μmolL(-1)). The biosensor was used for the determination of glucose in human serum samples. The results illustrate that NiONPs have enormous potential in the construction of biosensor for determination of glucose.

  6. Simple Fabrication of Gd(III)-DTPA-Nanodiamond Particles by Chemical Modification for Use as Magnetic Resonance Imaging (MRI) Contrast Agent

    NASA Astrophysics Data System (ADS)

    Nakamura, Takako; Ohana, Tsuguyori; Yabuno, Hajime; Kasai, Rumiko; Suzuki, Tetsuya; Hasebe, Terumitsu

    2013-01-01

    We have developed a simple and useful process for fabricating nanodiamond (ND) particles modified with an organogadolinium moiety by chemical modification for their use as a magnetic resonance imaging (MRI) contrast agent. The introduction of the organogadolinium moiety on the surface of the ND particles was performed by the condensation of ND and diethylenetriaminepentaacetic acid (DTPA) followed by treatment with GdCl3. The modified surfaces were evaluated by X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, mass spectroscopy, and inductively coupled plasma atomic emission spectroscopy analyses. MRI experiments on the Gd-DTPA-ND particles indicated their high signal intensity on T1-weighted images.

  7. Space Shuttle Projects

    NASA Image and Video Library

    1991-07-01

    This photograph shows the Solid Propellant Test Article (SPTA) test stand with the Modified Nasa Motor (M-NASA) test article at the Marshall Space Flight Center (MSFC). The SPTA test stand, 12-feet wide by 12-feet long by 24-feet high, was built in 1989 to provide comparative performance data on nozzle and case insulation material and to verify thermostructural analysis models. A modified NASA 48-inch solid motor (M-NASA motor) with a 12-foot blast tube and 10-inch throat makes up the SPTA. The M-NASA motor is being used to evaluate solid rocket motor internal non-asbestos insulation materials, nozzle designs, materials, and new inspection techniques. New internal motor case instrumentation techniques are also being evaluated.

  8. Non-enzymatic electrochemical glucose sensor based on NiMoO4 nanorods

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Cai, Daoping; Huang, Hui; Liu, Bin; Wang, Lingling; Liu, Yuan; Li, Han; Wang, Yanrong; Li, Qiuhong; Wang, Taihong

    2015-04-01

    A non-enzymatic glucose sensor based on the NiMoO4 nanorods has been fabricated for the first time. The electrocatalytic performance of the NiMoO4 nanorods’ modified electrode toward glucose oxidation was evaluated by cyclic voltammetry and amperometry. The NiMoO4 nanorods’ modified electrode showed a greatly enhanced electrocatalytic property toward glucose oxidation, as well as an excellent anti-interference and a good stability. Impressively, good accuracy and high precision for detecting glucose concentration in human serum samples were obtained. These excellent sensing properties, combined with good reproducibility and low cost, indicate that NiMoO4 nanorods are a promising candidate for non-enzymatic glucose sensors.

  9. A Modified Isotropic-Kinematic Hardening Model to Predict the Defects in Tube Hydroforming Process

    NASA Astrophysics Data System (ADS)

    Jin, Kai; Guo, Qun; Tao, Jie; Guo, Xun-zhong

    2017-11-01

    Numerical simulations of tube hydroforming process of hollow crankshafts were conducted by using finite element analysis method. Moreover, the modified model involving the integration of isotropic-kinematic hardening model with ductile criteria model was used to more accurately optimize the process parameters such as internal pressure, feed distance and friction coefficient. Subsequently, hydroforming experiments were performed based on the simulation results. The comparison between experimental and simulation results indicated that the prediction of tube deformation, crack and wrinkle was quite accurate for the tube hydroforming process. Finally, hollow crankshafts with high thickness uniformity were obtained and the thickness distribution between numerical and experimental results was well consistent.

  10. Compact ultra wide band microstrip bandpass filter based on multiple-mode resonator and modified complementary split ring resonator.

    PubMed

    Marcotegui, J Antonio; Illescas, Jesús Miguel; Estevez, Aritz; Falcone, Francisco

    2013-01-01

    A new class of broadband microstrip filters for Ultra Wide Band (UWB) applications is proposed. In the design, different stages of parallel-coupled microstrip line and other stages with a Modified Complementary Split Ring Resonator (MCSRR)-a concept proposed here for the first time-are adjusted to obtain the desired response with broadband, sharp rejection, low insertion loss, and low return loss. Full wave simulation results as well as measurement results from fabricated prototypes are presented, showing good agreement. The proposed technique offers a new alternative to implement low-cost high-performance filter devices, applicable to a wide range of communication systems.

  11. Compact Ultra Wide Band Microstrip Bandpass Filter Based on Multiple-Mode Resonator and Modified Complementary Split Ring Resonator

    PubMed Central

    Marcotegui, J. Antonio; Illescas, Jesús Miguel; Estevez, Aritz

    2013-01-01

    A new class of broadband microstrip filters for Ultra Wide Band (UWB) applications is proposed. In the design, different stages of parallel-coupled microstrip line and other stages with a Modified Complementary Split Ring Resonator (MCSRR)—a concept proposed here for the first time—are adjusted to obtain the desired response with broadband, sharp rejection, low insertion loss, and low return loss. Full wave simulation results as well as measurement results from fabricated prototypes are presented, showing good agreement. The proposed technique offers a new alternative to implement low-cost high-performance filter devices, applicable to a wide range of communication systems. PMID:24319366

  12. Vanderbilt University Gamma Irradiation of Nano-modified Concrete (2017 Milestone Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deichert, Geoffrey G.; Linton, Kory D.; Terrani, Kurt A.

    This document outlines the irradiation of concrete specimens in the Gamma Irradiation Facility in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Two gamma irradiation runs were performed in July of 2017 on 18 reference mortar bar specimens, 26 reference cement paste bar specimens, and 28 reference cement paste tab specimens to determine the dose and temperature response of the specimens in the gamma irradiation environment. Specimens from the first two gamma irradiations were surveyed and released to Vanderbilt University. The temperature and dose information obtained informs the test parameters of the final two gamma irradiationsmore » of nano-modified concrete planned for FY 2018.« less

  13. Nutrients removal and bacterial community structure for low C/N municipal wastewater using a modified anaerobic/anoxic/oxic (mA2/O) process in North China.

    PubMed

    Zhang, Shihua; Huang, Zhijia; Lu, Shujian; Zheng, Jun; Zhang, Xinxi

    2017-11-01

    A modified anaerobic/anoxic/oxic (mA2/O) process based on utilizing the internal carbon source and adding polypropylene carriers was operated for 90d to investigate the nutrients removal performance and bacterial community. This system exhibited a stable and efficient performance, particularly, in removing the NH 4 + -N and total phosphorus. The results of high-throughput sequencing showed that the 13 dominant genera containing Pseudomonas, Comamonas, Arcobacter, Nitrobacteria, Nitrosospira, Nitrosomonas, Bacteroides, Flavobacterium, Rhizobium, Acinetobacter, Zoogloea, Rhodocyclus and Moraxella were shared by five zones, inferring that they were the essential players in treating low C/N (below 5.0) municipal wastewater around 10°C. The average abundance of Nitrosospira (4.21%) was higher than that of Nitrosomonas (2.93%), suggested that Nitrosospira performed well under low temperature for nitrification. Additionally, both known Rhodocyclus-related PAOs and GAOs Competibacter were not detected possibly due to low temperature. Redundancy analysis (RDA) indicated that DO played more important roles in regulating bacterial community composition than HRT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Modeling and measurement of fault-tolerant multiprocessors

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Woodbury, M. H.; Lee, Y. H.

    1985-01-01

    The workload effects on computer performance are addressed first for a highly reliable unibus multiprocessor used in real-time control. As an approach to studing these effects, a modified Stochastic Petri Net (SPN) is used to describe the synchronous operation of the multiprocessor system. From this model the vital components affecting performance can be determined. However, because of the complexity in solving the modified SPN, a simpler model, i.e., a closed priority queuing network, is constructed that represents the same critical aspects. The use of this model for a specific application requires the partitioning of the workload into job classes. It is shown that the steady state solution of the queuing model directly produces useful results. The use of this model in evaluating an existing system, the Fault Tolerant Multiprocessor (FTMP) at the NASA AIRLAB, is outlined with some experimental results. Also addressed is the technique of measuring fault latency, an important microscopic system parameter. Most related works have assumed no or a negligible fault latency and then performed approximate analyses. To eliminate this deficiency, a new methodology for indirectly measuring fault latency is presented.

  15. Developing a modified preservative efficacy testing approach as a predictive tool for the evaluation of preservative systems in liquid home care products under variable test conditions.

    PubMed

    Hoyt, Anne L; Bushman, Don; Lewis, Nathan; Faber, Robert

    2012-01-01

    How can a formulator have confidence that a preservative system will perform as expected under adverse conditions? Extreme conditions that can lead to the development of "off odors" in the product can be a serious challenge for companies providing home care products in the global market. Formulation and stability testing occur under controlled parameters that simulate limited environmental conditions and microbial challenges are typically performed with a standard inoculum level. While this is an acceptable and dependable process, it does not necessarily assess how well a preservative system can perform under extreme environmental conditions or against unusually high levels of bacterial challenges. This is especially true when formulations are diluted and stored by the end-user. By modifying microbial challenge testing of a liquid dishwashing product to include unexpected dilution schemes, increased microbial assaults, and elevated temperatures, a pattern of preservative efficacy was established. The resulting approach proved to be a useful tool when developing use directions, recommended dilution levels, the overall surfactant system, preservative type, and storage restrictions.

  16. Synthesis and testing of hypergolic ionic liquids for chemical propulsion

    NASA Astrophysics Data System (ADS)

    Stovbun, S. V.; Shchegolikhin, A. N.; Usachev, S. V.; Khomik, S. V.; Medvedev, S. P.

    2017-06-01

    Synthesis of new highly energetic ionic liquids (ILs) is described, and their hypergolic ignition properties are tested. The synthesized ILs combine the advantages of conventional rocket propellants with the energy characteristics of acetylene derivatives. To this end, N-alkylated imidazoles (alkyl = ethyl, butyl) have been synthesized and alkylated with propargyl bromide. The desired ionic liquids have been produced by metathesis using Ag dicyanamide. Modified hypergolic drop tests with white fuming nitric acid have been performed for N-ethyl (IL-1) and N-butyl propargylimidazolium (IL-2) ionic liquids. In the modified drop tests, high-speed shadowgraph imaging is used to visualize the process, and the temperature rise due to ignition is monitored with a two-color photodetector. It is shown that the ignition delay is shorter for IL-1 as compared to IL-2. The ignition of IL-1 occurs in two stages, whereas the combustion of IL-2 proceeds smoothly without secondary flashes.

  17. Perceptual load modifies processing of unattended stimuli both in the presence and absence of attended stimuli.

    PubMed

    Couperus, J W

    2010-11-26

    This study explored effects of perceptual load on stimulus processing in the presence and absence of an attended stimulus. Participants were presented with a bilateral or unilateral display and asked to perform a discrimination task at either low or high perceptual load. Electrophysiological responses to stimuli were then compared at the P100 and N100. As in previous studies, perceptual load modified processing of attended and unattended stimuli seen at occipital scalp sites. Moreover, perceptual load modulated attention effects when the attended stimulus was presented at high perceptual load for unilateral displays. However, this was not true when the attended and unattended stimulus appeared simultaneously in bilateral displays. Instead, only a main effect of perceptual load was found. Reductions in processing contralateral to the unattended stimulus at the N100 provide support for Lavie's (1995) theory of selective attention. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Rapid and accurate reversed-phase high-performance liquid chromatographic determination of conjugated bile acids in human bile for routine clinical applications. Therapeutic control during gallstone dissolution therapy.

    PubMed

    Swobodnik, W; Klüppelberg, U; Wechsler, J G; Volz, M; Normandin, G; Ditschuneit, H

    1985-05-03

    This paper introduces a new method to detect the taurine and glycine conjugates of five different bile acids (cholic acid, deoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid and lithocholic acid) in human bile. Advantages of this method are sufficient separation of compounds within a short period of time and a high rate of reproducibility. Using a mobile phase gradient of acetonitrile and water, modified with tetrabutylammonium hydrogen sulphate (0.0075 mol/l), we were able to maximize the differentiation between ursodeoxycholic acid and lithocholic acid, which is of primary interest during conservative gallstone dissolution therapy. Use of this gradient reduced analysis time to less than 0.5 h. Recovery rates for this modified method ranged from 94% to 100%, and reproducibility was 98%, sufficient for routine clinical applications.

  19. The relationship between health risks and health and productivity costs among employees at Pepsi Bottling Group.

    PubMed

    Henke, Rachel M; Carls, Ginger S; Short, Meghan E; Pei, Xiaofei; Wang, Shaohung; Moley, Susan; Sullivan, Mark; Goetzel, Ron Z

    2010-05-01

    To evaluate relationships between modifiable health risks and costs and measure potential cost savings from risk reduction programs. Health risk information from active Pepsi Bottling Group employees who completed health risk assessments between 2004 and 2006 (N = 11,217) were linked to medical care, workers' compensation, and short-term disability cost data. Ten health risks were examined. Multivariate analyses were performed to estimate costs associated with having high risk, holding demographics, and other risks constant. Potential savings from risk reduction were estimated. High risk for weight, blood pressure, glucose, and cholesterol had the greatest impact on total costs. A one-percentage point annual reduction in the health risks assessed would yield annual per capita savings of $83.02 to $103.39. Targeted programs that address modifiable health risks are expected to produce substantial cost reductions in multiple benefit categories.

  20. Development of adaptive observation strategy using retrospective optimal interpolation

    NASA Astrophysics Data System (ADS)

    Noh, N.; Kim, S.; Song, H.; Lim, G.

    2011-12-01

    Retrospective optimal interpolation (ROI) is a method that is used to minimize cost functions with multiple minima without using adjoint models. Song and Lim (2011) perform the experiments to reduce the computational costs for implementing ROI by transforming the control variables into eigenvectors of background error covariance. We adapt the ROI algorithm to compute sensitivity estimates of severe weather events over the Korean peninsula. The eigenvectors of the ROI algorithm is modified every time the observations are assimilated. This implies that the modified eigenvectors shows the error distribution of control variables which are updated by assimilating observations. So, We can estimate the effects of the specific observations. In order to verify the adaptive observation strategy, High-impact weather over the Korean peninsula is simulated and interpreted using WRF modeling system and sensitive regions for each high-impact weather is calculated. The effects of assimilation for each observation type is discussed.

  1. Modified Phenylethynyl Containing Imides for Secondary Bonding: Non-Autoclave, Low Temperature Processable Adhesives

    NASA Technical Reports Server (NTRS)

    Dezern, James F. (Technical Monitor); Chang, Alice C.

    1999-01-01

    As part of a program to develop structural adhesives for high performance aerospace applications, research continued on the development of modified phenylethynyl containing imides, LaRC(trademark)MPEIs. In previous reports, the polymer properties were controlled by varying the molecular weight, the amount of branching, and the phenylethynyl content and by blending with low molecular weight materials. This research involves changing the flexibility in the copolyimide backbone of the branched, phenylethynyl terminated adhesives. These adhesives exhibit excellent processability at pressures as low as 15 psi and temperatures as low as 288 C. The Ti/Ti lap shear specimens are processable in an autoclave or a temperature programmable oven under a vacuum bag at 288-300 C without external pressure. The cured polymers exhibit high mechanical properties and excellent solvent resistance. The chemistry and properties of these adhesives are presented.

  2. Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

    PubMed Central

    Khan, Shadab Ali; Gambhir, Sanjay

    2014-01-01

    Summary As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3) nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconjugate in the treatment of cancer. The biosynthesized Gd2O3 nanoparticles were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS). The Gd2O3–taxol bioconjugate was confirmed by UV–vis spectroscopy and fluorescence microscopy and was purified by using high performance liquid chromatography (HPLC). PMID:24778946

  3. Quantitative Analysis of Scattering Mechanisms in Highly Crystalline CVD MoS2 through a Self-Limited Growth Strategy by Interface Engineering.

    PubMed

    Wan, Xi; Chen, Kun; Xie, Weiguang; Wen, Jinxiu; Chen, Huanjun; Xu, Jian-Bin

    2016-01-27

    The electrical performance of highly crystalline monolayer MoS2 is remarkably enhanced by a self-limited growth strategy on octadecyltrimethoxysilane self-assembled monolayer modified SiO2 /Si substrates. The scattering mechanisms in low-κ dielectric, including the dominant charged impurities, acoustic deformation potentials, optical deformation potentials), Fröhlich interaction, and the remote interface phonon interaction in dielectrics, are quantitatively analyzed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The development of an automated flight test management system for flight test planning and monitoring

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.; Tartt, David M.; Duke, Eugene L.; Antoniewicz, Robert F.; Brumbaugh, Randal W.

    1988-01-01

    The development of an automated flight test management system (ATMS) as a component of a rapid-prototyping flight research facility for AI-based flight systems concepts is described. The rapid-prototyping facility includes real-time high-fidelity simulators, numeric and symbolic processors, and high-performance research aircraft modified to accept commands for a ground-based remotely augmented vehicle facility. The flight system configuration of the ATMS includes three computers: the TI explorer LX and two GOULD SEL 32/27s.

  5. P/M Processing of Rare Earth Modified High Strength Steels.

    DTIC Science & Technology

    1980-12-01

    AA094 165 TRW INC CLEVELAND OH MATERIALS TECHNOLOGY F 6 P/N PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS DEC So A A SHEXM(ER NOOŕT76-C...LEVEL’ (7 PIM PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS By A. A. SHEINKER 00 TECHNICAL REPORT Prepared for Office of Naval Research...Processing of Rare Earth Modified High 1 Technical -’ 3t eC"Strength Steels * 1dc4,093Se~ 9PEFRIGOGNZTONAEADADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

  6. Viologen-modified electrodes for protection of hydrogenases from high potential inactivation while performing H2 oxidation at low overpotential.

    PubMed

    Oughli, Alaa A; Vélez, Marisela; Birrell, James A; Schuhmann, Wolfgang; Lubitz, Wolfgang; Plumeré, Nicolas; Rüdiger, Olaf

    2018-06-08

    In this work we present a viologen-modified electrode providing protection for hydrogenases against high potential inactivation. Hydrogenases, including O2-tolerant classes, suffer from reversible inactivation upon applying high potentials, which limits their use in biofuel cells to certain conditions. Our previously reported protection strategy based on the integration of hydrogenase into redox matrices enabled the use of these biocatalysts in biofuel cells even under anode limiting conditions. However, mediated catalysis required application of an overpotential to drive the reaction, and this translates into a power loss in a biofuel cell. In the present work, the enzyme is adsorbed on top of a covalently-attached viologen layer which leads to mixed, direct and mediated, electron transfer processes; at low overpotentials, the direct electron transfer process generates a catalytic current, while the mediated electron transfer through the viologens at higher potentials generates a redox buffer that prevents oxidative inactivation of the enzyme. Consequently, the enzyme starts the catalysis at no overpotential with viologen self-activated protection at high potentials.

  7. Highly Modified Cellulose Nanocrystals and Formation of Epoxy-CNC Nanocomposites.

    PubMed

    Abraham, Eldho; Kam, Doron; Nevo, Yuval; Slattegard, Rikard; Rivkin, Amit; Lapidot, Shaul; Shoseyov, Oded

    2016-10-05

    This work presents an environmentally friendly, iodine-catalysed chemical modification method to generate highly hydrophobic, optically active cellulose nanocrystals (CNC). The high degree of ester substitution (DS=2.18), hydrophobicity, crystalline behaviour and optical activity of the generated acetylated CNC (Ac-CNC) were quantified by TEM, FTIR, solid 13C NMR, contact angle, XRD and POM analyses. Ac-CNC possessing substantial enhancement in thermal stability (16.8%) and forms thin films with interlayer distance of 50-150 nm, presenting cavities suitable for entrapping nano and micro particles. Generated Ac-CNC proved as an effective reinforcing agent in hydrophobic polymer matrices for fabricating high performance nanocomposites. When integrated at a very low weight percentage (0.5%) in an epoxy matrix, Ac-CNC provided for a 73% increase in tensile strength and a 98% increase in modulus, demonstrating its remarkable reinforcing potential and effective stress transfer behaviour. The method of modification and the unique properties of the modified CNC (hydrophobicity, crystallinity, reinforcing ability and optical activity) render them a novel bionanomaterial for a range of multipurpose applications.

  8. The strain-rate sensitivity of high-strength high-toughness steels.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilmore, M.F.; Crenshaw, Thomas B.; Boyce, Brad Lee

    2006-01-01

    The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate.more » Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.« less

  9. Standardization and performance evaluation of "modified" and "ultrasensitive" versions of the Abbott RealTime HIV-1 assay, adapted to quantify minimal residual viremia.

    PubMed

    Amendola, Alessandra; Bloisi, Maria; Marsella, Patrizia; Sabatini, Rosella; Bibbò, Angela; Angeletti, Claudio; Capobianchi, Maria Rosaria

    2011-09-01

    Numerous studies investigating clinical significance of HIV-1 minimal residual viremia (MRV) suggest potential utility of assays more sensitive than those routinely used to monitor viral suppression. However currently available methods, based on different technologies, show great variation in detection limit and input plasma volume, and generally suffer from lack of standardization. In order to establish new tools suitable for routine quantification of minimal residual viremia in patients under virological suppression, some modifications were introduced into standard procedure of the Abbott RealTime HIV-1 assay leading to a "modified" and an "ultrasensitive" protocols. The following modifications were introduced: calibration curve extended towards low HIV-1 RNA concentration; 4 fold increased sample volume by concentrating starting material; reduced volume of internal control; adoption of "open-mode" software for quantification. Analytical performances were evaluated using the HIV-1 RNA Working Reagent 1 for NAT assays (NIBSC). Both tests were applied to clinical samples from virologically suppressed patients. The "modified" and the "ultrasensitive" configurations of the assay reached a limit of detection of 18.8 (95% CI: 11.1-51.0 cp/mL) and 4.8 cp/mL (95% CI: 2.6-9.1 cp/mL), respectively, with high precision and accuracy. In clinical samples from virologically suppressed patients, "modified" and "ultrasensitive" protocols allowed to detect and quantify HIV RNA in 12.7% and 46.6%, respectively, of samples resulted "not-detectable", and in 70.0% and 69.5%, respectively, of samples "detected <40 cp/mL" in the standard assay. The "modified" and "ultrasensitive" assays are precise and accurate, and easily adoptable in routine diagnostic laboratories for measuring MRV. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Development and validation of a sensitive and fast chemiluminescent enzyme immunoassay for the detection of genetically modified maize.

    PubMed

    Roda, A; Mirasoli, M; Guardigli, M; Michelini, E; Simoni, P; Magliulo, M

    2006-03-01

    Proteins from the Cry 1 family, in particular Cry 1Ab, are commonly expressed in genetically modified Bt maize in order to control chewing insect pests. A sensitive chemiluminescent sandwich enzyme immunoassay for the detection of Cry1Ab protein from genetically modified Bt maize has been developed and validated. A Cry1Ab protein-specific antibody was immobilized on 96- or 384-well microtiter plates in order to capture the Cry1Ab toxin in the sample; the bound toxin was then detected by employing a second anti-Cry1Ab antibody and a horseradish peroxidase-labeled anti-antibody, followed by measurement of the enzyme activity with an enhanced chemiluminescent system. The chemiluminescent assay fulfilled all the requirements of accuracy and precision and exhibited limits of detection of a few pg mL(-1) Cry1Ab (3 or 5 pg mL(-1), depending on the assay format), which are significantly lower than that achievable using conventional colorimetric detection of peroxidase activity and also represent an improvement compared to previously developed Cry1Ab immunoassays. High-throughput analysis can be performed using the 384-well microtiter plate format immunoassay, which also allows one to reduce the consumption of samples and reagents. Validation of the assay, performed by analyzing certified reference materials, proved that the immunoassay is able to detect the presence of the Cry1Ab protein in certified reference samples containing as low as 0.1% of MON 810 genetically modified Bt maize. This value is below the threshold requiring mandatory labeling of foods containing genetically modified material according to the actual EU regulation.

  11. A high performance normally closed solenoid-actuated cold valve.

    PubMed

    Taminiau, I A J; Benningshof, O W B; Jochemsen, R

    2009-08-01

    An electromagnetically driven normally closed valve for liquid helium is presented, which is meant to regulate the input flow to a 1 K pot. An earlier design is modified to be normally closed (not actuated) and tuned for durability and reliability. A new feature is presented which prevents seat deformation at room temperature and provides comfort and durability for intensive use.

  12. Hold Firm: Gifted Learners Value Standing One's Ground in Disagreements with a Friend

    ERIC Educational Resources Information Center

    Chichekian, Tanya; Shore, Bruce M.

    2017-01-01

    Seventy-four students in three different Grade 9 classrooms of high-performing learners from the same suburban, comprehensive secondary school, completed a questionnaire focused on their preferences for a friend to stand by his or her position in case of a disagreement, to maintain their own position themselves, and to modify their own stance.…

  13. Automating the generation of finite element dynamical cores with Firedrake

    NASA Astrophysics Data System (ADS)

    Ham, David; Mitchell, Lawrence; Homolya, Miklós; Luporini, Fabio; Gibson, Thomas; Kelly, Paul; Cotter, Colin; Lange, Michael; Kramer, Stephan; Shipton, Jemma; Yamazaki, Hiroe; Paganini, Alberto; Kärnä, Tuomas

    2017-04-01

    The development of a dynamical core is an increasingly complex software engineering undertaking. As the equations become more complete, the discretisations more sophisticated and the hardware acquires ever more fine-grained parallelism and deeper memory hierarchies, the problem of building, testing and modifying dynamical cores becomes increasingly complex. Here we present Firedrake, a code generation system for the finite element method with specialist features designed to support the creation of geoscientific models. Using Firedrake, the dynamical core developer writes the partial differential equations in weak form in a high level mathematical notation. Appropriate function spaces are chosen and time stepping loops written at the same high level. When the programme is run, Firedrake generates high performance C code for the resulting numerics which are executed in parallel. Models in Firedrake typically take a tiny fraction of the lines of code required by traditional hand-coding techniques. They support more sophisticated numerics than are easily achieved by hand, and the resulting code is frequently higher performance. Critically, debugging, modifying and extending a model written in Firedrake is vastly easier than by traditional methods due to the small, highly mathematical code base. Firedrake supports a wide range of key features for dynamical core creation: A vast range of discretisations, including both continuous and discontinuous spaces and mimetic (C-grid-like) elements which optimally represent force balances in geophysical flows. High aspect ratio layered meshes suitable for ocean and atmosphere domains. Curved elements for high accuracy representations of the sphere. Support for non-finite element operators, such as parametrisations. Access to PETSc, a world-leading library of programmable linear and nonlinear solvers. High performance adjoint models generated automatically by symbolically reasoning about the forward model. This poster will present the key features of the Firedrake system, as well as those of Gusto, an atmospheric dynamical core, and Thetis, a coastal ocean model, both of which are written in Firedrake.

  14. New antibody and immunoassay pretreatment strategy to screen polychlorinated biphenyls in Korean transformer oil.

    PubMed

    Terakado, Shingo; Ohmura, Naoya; Park, Seok-Un; Lee, Seung-Min; Glass, Thomas R

    2013-01-01

    Development and modifications are described that expand the application of an immunoassay from the detection of Kanechlors (Japanese technical PCBs mixtures) to the detection of Aroclors (U. S. technical PCB mixtures, used in Korea) in contaminated Korean transformer oil. The first necessary modification was the development of a new antibody with a reactivity profile favorable for Aroclors. The second modification was the addition of a second column to the solid-phase extraction method to reduce assay interference caused by the Korean oil matrix. The matrix interference is suspected to be caused by the presence of synthetic oils (or similar materials) present as contaminants. The modified assay was validated by comparison to high-resolution gas chromatography/high-resolution mass spectrometry analysis, and was shown to be tolerant of up to 10% of several common synthetic insulating oils. Finally the screening performance of the modified assay was evaluated using 500 used transformer oil samples of Korean origin, and was shown to have good performance in terms of false positive and false negative rates. This report provides evidence for the first establishment of immunoassay screening for Aroclor based PCB contamination in Korean transformer oil.

  15. An overview of nanomaterials applied for removing dyes from wastewater.

    PubMed

    Cai, Zhengqing; Sun, Youmin; Liu, Wen; Pan, Fei; Sun, Peizhe; Fu, Jie

    2017-07-01

    Organic dyes are one of the most commonly discharged pollutants in wastewaters; however, many conventional treatment methods cannot treat them effectively. Over the past few decades, we have witnessed rapid development of nanotechnologies, which offered new opportunities for developing innovative methods to treat dye-contaminated wastewater with low price and high efficiency. The large surface area, modified surface properties, unique electron conduction properties, etc. offer nanomaterials with excellent performances in dye-contaminated wastewater treatment. For examples, the agar-modified monometallic/bimetallic nanoparticles have the maximum methylene blue adsorption capacity of 875.0 mg/g, which are several times higher than conventional adsorbents. Among various nanomaterials, the carbonaceous nanomaterials, nano-sized TiO 2 , and graphitic carbon nitride (g-C 3 N 4 ) are considered as the most promising nanomaterials for removing dyes from water phase. However, some challenges, such as high cost and poor separation performance, still limit their engineering application. This article reviewed the recent advances in the nanomaterials used for dye removal via adsorption, photocatalytic degradation, and biological treatment. The modification methods for improving the effectiveness of nanomaterials are highlighted. Finally, the current knowledge gaps of developing nanomaterials on the environmental application were discussed, and the possible further research direction is proposed.

  16. MgO Nanoparticle Modified Anode for Highly Efficient SnO2-Based Planar Perovskite Solar Cells.

    PubMed

    Ma, Junjie; Yang, Guang; Qin, Minchao; Zheng, Xiaolu; Lei, Hongwei; Chen, Cong; Chen, Zhiliang; Guo, Yaxiong; Han, Hongwei; Zhao, Xingzhong; Fang, Guojia

    2017-09-01

    Reducing the energy loss and retarding the carrier recombination at the interface are crucial to improve the performance of the perovskite solar cell (PSCs). However, little is known about the recombination mechanism at the interface of anode and SnO 2 electron transfer layer (ETL). In this work, an ultrathin wide bandgap dielectric MgO nanolayer is incorporated between SnO 2 :F (FTO) electrode and SnO 2 ETL of planar PSCs, realizing enhanced electron transporting and hole blocking properties. With the use of this electrode modifier, a power conversion efficiency of 18.23% is demonstrated, an 11% increment compared with that without MgO modifier. These improvements are attributed to the better properties of MgO-modified FTO/SnO 2 as compared to FTO/SnO 2 , such as smoother surface, less FTO surface defects due to MgO passivation, and suppressed electron-hole recombinations. Also, MgO nanolayer with lower valance band minimum level played a better role in hole blocking. When FTO is replaced with Sn-doped In 2 O 3 (ITO), a higher power conversion efficiency of 18.82% is demonstrated. As a result, the device with the MgO hole-blocking layer exhibits a remarkable improvement of all J-V parameters. This work presents a new direction to improve the performance of the PSCs based on SnO 2 ETL by transparent conductive electrode surface modification.

  17. Electrochemical Cathodic Polarization, a Simplified Method That Can Modified and Increase the Biological Activity of Titanium Surfaces: A Systematic Review

    PubMed Central

    2016-01-01

    Background The cathodic polarization seems to be an electrochemical method capable of modifying and coat biomolecules on titanium surfaces, improving the surface activity and promoting better biological responses. Objective The aim of the systematic review is to assess the scientific literature to evaluate the cellular response produced by treatment of titanium surfaces by applying the cathodic polarization technique. Data, Sources, and Selection The literature search was performed in several databases including PubMed, Web of Science, Scopus, Science Direct, Scielo and EBSCO Host, until June 2016, with no limits used. Eligibility criteria were used and quality assessment was performed following slightly modified ARRIVE and SYRCLE guidelines for cellular studies and animal research. Results Thirteen studies accomplished the inclusion criteria and were considered in the review. The quality of reporting studies in animal models was low and for the in vitro studies it was high. The in vitro and in vivo results reported that the use of cathodic polarization promoted hydride surfaces, effective deposition, and adhesion of the coated biomolecules. In the experimental groups that used the electrochemical method, cellular viability, proliferation, adhesion, differentiation, or bone growth were better or comparable with the control groups. Conclusions The use of the cathodic polarization method to modify titanium surfaces seems to be an interesting method that could produce active layers and consequently enhance cellular response, in vitro and in vivo animal model studies. PMID:27441840

  18. Structure and Performance of Epoxy Resin Cladded Graphite Used as Anode

    NASA Astrophysics Data System (ADS)

    Zhou, Zhentao; Li, Haijun

    This paper is concerning to prepare modified natural graphite which is low-cost and advanced materials used as lithium ion battery anode using the way of cladding natural graphite with epoxy resin. The results shows that the specific capacity and circular performance of the modified natural graphite, which is prepared in the range of 600°C and 1000°C, have been apparently improved compare with the not-modified natural graphite. The first reversible capacity of the modified natural graphite is 338mAh/g and maintain more than 330mAh/g after 20 charge/discharge circles.

  19. Changes in surgical procedures for acromioclavicular joint dislocation over the past 30 years.

    PubMed

    Takase, Katsumi; Yamamoto, Kengo

    2013-10-01

    Generally, surgical treatment is recommended for Rockwood type 5 traumatic acromioclavicular joint dislocations. Since 1980, the authors have performed the modified Dewar procedure, the modified Cadenat procedure, and anatomical reconstruction of the coracoclavicular ligaments for this injury. The goal of this study was to determine the ideal surgical procedure for acromioclavicular joint dislocations by comparing these 3 procedures. The modified Dewar procedure was performed on 55 patients (Dewar group), the modified Cadenat procedure was performed on 73 patients (Cadenat group), and anatomical reconstruction of the coracoclavicular ligaments was performed on 11 patients (reconstruction group). According to the UCLA scoring system, therapeutic results averaged 27.3 points in the Dewar group, 28.2 in the Cadenat group, and 28.4 in the reconstruction group. The incidence of residual subluxation or dislocation in the acromioclavicular joint was evaluated at final radiographic follow-up. Subluxation occurred in 21 patients in the Dewar group, 18 in the Cadenat group, and 3 in the reconstruction group. Dislocation occurred in 3 patients in the Dewar group. Osteoarthritic changes in the acromioclavicular joint occurred in 20 patients in the Dewar group, 9 in the Cadenat group, and 1 in the reconstruction group. The modified Cadenat procedure can provide satisfactory therapeutic results and avoid postoperative failure or loss of reduction compared with the modified Dewar procedure. However, the modified Cadenat procedure does not anatomically restore the coracoclavicular ligaments. Anatomic restoration of both coracoclavicular ligaments can best restore acromioclavicular joint function. Copyright 2013, SLACK Incorporated.

  20. The effects of NACA 0012 airfoil modification on aerodynamic performance improvement and obtaining high lift coefficient and post-stall airfoil

    NASA Astrophysics Data System (ADS)

    Sogukpinar, Haci

    2018-02-01

    In this study, aerodynamic performances of NACA 0012 airfoils with distinct modification are numerically investigated to obtain high lift coefficient and post-stall airfoils. NACA 0012 airfoil is divided into two part thought chord line then suction sides kept fixed and by changing the thickness of the pressure side new types of airfoil are created. Numerical experiments are then conducted by varying thickness of NACA 0012 from lower surface and different relative thicknesses asymmetrical airfoils are modified and NACA 0012-10, 0012-08, 0012-07, 0012-06, 0012-04, 0012-03, 0012-02, 0012-01 are created and simulated by using COMSOL software.

  1. Water Deluge Test at Pad 39B

    NASA Image and Video Library

    2018-05-24

    About 450,000 gallons of water flow at high speed from a holding tank through new and modified piping and valves, the flame trench, flame deflector nozzles and mobile launcher interface risers during a wet flow test on May 24, 2018, at Launch Pad 39B at NASA's Kennedy Space Center in Florida. At peak flow, the water reached about 100 feet in the air above the pad surface. The test was performed by Exploration Ground Systems to confirm the performance of the Ignition Overpressure/Sound Suppression system. During launch of NASA's Space Launch System rocket and Orion spacecraft, the high-speed water flow will help protect the vehicle from the extreme acoustic and temperature environment during ignition and liftoff.

  2. Characterisation of LSO:Tb scintillator films for high resolution X-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Cecilia, A.; Rack, A.; Douissard, P.-A.; Martin, T.; Dos Santos Rolo, T.; Vagovič, P.; Pelliccia, D.; Couchaud, M.; Dupré, K.; Baumbach, T.

    2011-05-01

    Within the framework of an FP6 project (SCINTAX)1The Project SCINTAX is funded by the European Community (STRP 033 427), . we developed a new thin film single crystal scintillator for high resolution X-ray imaging based on a layer of modified LSO (Lu2SiO5) grown by liquid phase epitaxy (LPE) on a dedicated substrate. In this work we present the characterisation of the scintillating LSO films in terms of optical and scintillation properties as well as spatial resolution performances. The obtained results are discussed and compared with the performances of the thin scintillating films commonly used in synchrotron-based micro-imaging applications.

  3. Progress and recent developments in sodium-metal chloride batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1991-01-01

    Significant strides have been made in the development of high-temperature rechargeable sodium batteries utilizing transition metal chloride cathodes in the last decade, mainly due to the expertise available on Na/S batteries. These systems have already performed attractively in the various feasibility studies and have an excellent safety record. Despite the encouraging figures obtained for specific energies, certain design changes such as modifying the geometry of the beta alumina electrolyte and optimization of the porous cathodes for enhanced electrolyte flow need to be made to achieve high power densities required in applications such as electric vehicles and space. The chemistry of MCl2 cathodes, electrode fabrication, and design options are discussed, and performance data are examined.

  4. Versatile ligands for high-performance liquid chromatography: An overview of ionic liquid-functionalized stationary phases.

    PubMed

    Zhang, Mingliang; Mallik, Abul K; Takafuji, Makoto; Ihara, Hirotaka; Qiu, Hongdeng

    2015-08-05

    Ionic liquids (ILs), a class of unique substances composed purely by cation and anions, are renowned for their fascinating physical and chemical properties, such as negligible volatility, high dissolution power, high thermal stability, tunable structure and miscibility. They are enjoying ever-growing applications in a great diversity of disciplines. IL-modified silica, transforming the merits of ILs into chromatographic advantages, has endowed the development of high-performance liquid chromatography (HPLC) stationary phase with considerable vitality. In the last decade, IL-functionalized silica stationary phases have evolved into a series of branches to accommodate to different HPLC modes. An up-to-date overview of IL-immobilized stationary phases is presented in this review, and divided into five parts according to application mode, i.e., ion-exchange, normal-phase, reversed-phase, hydrophilic interaction and chiral recognition. Specific attention is channeled to synthetic strategies, chromatographic behavior and separation performance of IL-functionalized silica stationary phases. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Ligand Assisted Stabilization of Fluorescence Nanoparticles; an Insight on the Fluorescence Characteristics, Dispersion Stability and DNA Loading Efficiency of Nanoparticles.

    PubMed

    Rhouati, Amina; Hayat, Akhtar; Mishra, Rupesh K; Bueno, Diana; Shahid, Shakir Ahmad; Muñoz, Roberto; Marty, Jean Louis

    2016-07-01

    This work reports on the ligand assisted stabilization of Fluospheres® carboxylate modified nanoparticles (FCMNPs), and subsequently investigation on the DNA loading capacity and fluorescence response of the modified particles. The designed fluorescence bioconjugate was characterized with enhanced fluorescence characteristics, good stability and large surface area with high DNA loading efficiency. For comparison purpose, bovine serum albumin (BSA) and polyethylene glycol (PEG) with three different length strands were used as cross linkers to modify the particles, and their DNA loading capacity and fluorescence characteristics were investigated. By comparing the performance of the particles, we found that the most improved fluorescence characteristics, enhanced DNA loading and high dispersion stability were obtained, when employing PEG of long spacer arm length. The designed fluorescence bioconjugate was observed to maintain all its characteristics under varying pH over an extended period of time. These types of bioconjugates are in great demand for fluorescence imaging and in vivo fluorescence biomedical application, especially when most of the as synthesized fluorescence particles cannot withstand to varying in vivo physiological conditions with decreases in fluorescence response and DNA loading efficiency.

  6. Effects of modified constraint-induced movement therapy on reach-to-grasp movements and functional performance after chronic stroke: a randomized controlled study.

    PubMed

    Lin, K-C; Wu, C-Y; Wei, T-H; Lee, C-Y; Liu, J-S

    2007-12-01

    To evaluate changes in (1) motor control characteristics of the hemiparetic hand during the performance of a functional reach-to-grasp task and (2) functional performance of daily activities in patients with stroke treated with modified constraint-induced movement therapy. Two-group randomized controlled trial with pretreatment and posttreatment measures. Rehabilitation clinics. Thirty-two chronic stroke patients (21 men, 11 women; mean age=57.9 years, range=43-81 years) 13-26 months (mean 16.3 months) after onset of a first-ever cerebrovascular accident. Thirty-two patients were randomized to receive modified constraint-induced movement therapy (restraint of the unaffected limb combined with intensive training of the affected limb) or traditional rehabilitation for three weeks. Kinematic analysis was used to assess motor control characteristics as patients reached to grasp a beverage can. Functional outcomes were evaluated using the Motor Activity Log and Functional Independence Measure. There were moderate and significant effects of modified constraint-induced movement therapy on some aspects of motor control of reach-to-grasp and on functional ability. The modified constraint-induced movement therapy group preplanned reaching and grasping (P=0.018) more efficiently and depended more on the feedforward control of reaching (P=0.046) than did the traditional rehabilitation group. The modified constraint-induced movement therapy group also showed significantly improved functional performance on the Motor Activity Log (P<0.0001) and the Functional Independence Measure (P=0.016). In addition to improving functional use of the affected arm and daily functioning, modified constraint-induced movement therapy improved motor control strategy during goal-directed reaching, a possible mechanism for the improved movement performance of stroke patients undergoing this therapy.

  7. Crack-free CH3NH3PbI3 layer via continuous dripping method for high-performance mesoporous perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Guo; Zheng, Jianghui; Zheng, LingLing; Yan, Xin; Lin, Huangding; Zhang, Fengyan

    2017-01-01

    The past five years have witnessed the uniquely rapid emergence of the mixed organic-inorganic halide perovskite solar cells. Here, a modified deposition process, continuous dripping method, is reported for fabricating high-performance and reproducible perovskite solar cells. We have systematically investigated the impact of different molar ratio of lead iodide (PbI2) to dimethylsulfoxide (DMSO) on the growth, morphology and crystallinity of CH3NH3PbI3 (MAPbI3) films obtained via this process. The high power conversion efficiency (PCE) perovskite solar cell originates in crack-free and highly crystallographic perovskite films prepared with optimized ratio of PbI2 to DMSO in first precursor solution. The best PCE of 17.76% and an average PCE of 16.37 ± 0.51% were obtained via this process. Moreover, the conventional solution two steps method was also carried out as a comparison to this process. This work provides a new simple solution approach to obtain high quality of perovskite thin films for high-performance and reproducible PSCs.

  8. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance

    PubMed Central

    Huang, Runzhou; Xu, Xinwu; Lee, Sunyoung; Zhang, Yang; Kim, Birm-June; Wu, Qinglin

    2013-01-01

    The effect of individual and combined talc and glass fibers (GFs) on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE) composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE) values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites. PMID:28788322

  9. Hollow cathode restartable 15 cm diameter ion thruster

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    The effects of substituting high perveance dished grids for low perveance flat ones on performance variables and plasma properties within a 15 cm modified SERT II thruster are discussed. Results suggest good performance may be achieved as an ion thruster is throttled if the screen grid transparency is decreased with propellant flow rate. Thruster startup tests, which employ a pulsed high voltage tickler electrode between the keeper and the cathode to initiate the discharge, are described. High startup reliability at cathode tip temperatures of about 500 C without excessive component wear over 2000 startup cycles is demonstrated. Testing of a single cusp magnetic field concept of discharge plasma containment is discussed. A theory which explains the observed behavior of the device is presented and proposed thruster modifications and future testing plans are discussed.

  10. A study of prediction methods for the high angle-of-attack aerodynamics of straight wings and fighter aircraft

    NASA Technical Reports Server (NTRS)

    Mcmillan, O. J.; Mendenhall, M. R.; Perkins, S. C., Jr.

    1984-01-01

    Work is described dealing with two areas which are dominated by the nonlinear effects of vortex flows. The first area concerns the stall/spin characteristics of a general aviation wing with a modified leading edge. The second area concerns the high-angle-of-attack characteristics of high performance military aircraft. For each area, the governing phenomena are described as identified with the aid of existing experimental data. Existing analytical methods are reviewed, and the most promising method for each area used to perform some preliminary calculations. Based on these results, the strengths and weaknesses of the methods are defined, and research programs recommended to improve the methods as a result of better understanding of the flow mechanisms involved.

  11. High Efficiency Low Cost CO2 Compression Using Supersonic Shock Wave Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J; Aarnio, M; Grosvenor, A

    2010-12-31

    Development and testing results from a supersonic compressor are presented. The compressor achieved record pressure ratio for a fully-supersonic stage and successfully demonstrated the technology potential. Several tasks were performed in compliance with the DOE award objectives. A high-pressure ratio compressor was retrofitted to improve rotordynamics behavior and successfully tested. An outside review panel confirmed test results and design approach. A computational fluid dynamics code used to analyze the Ramgen supersonic flowpath was extensively and successfully modified to improve use on high-performance computing platforms. A comprehensive R&D implementation plan was developed and used to lay the groundwork for a futuremore » full-scale compressor demonstration. Conceptual design for a CO2 demonstration compressor was developed and reviewed.« less

  12. Development of gold nanoparticles modified screen-printed carbon electrode for the analysis of thiram, disulfiram and their derivative in food using ultra-high performance liquid chromatography.

    PubMed

    Charoenkitamorn, Kanokwan; Chailapakul, Orawon; Siangproh, Weena

    2015-01-01

    For the first time, gold nanoparticles (AuNPs) modified screen-printed carbon electrode (SPCE) was developed as working electrode in ultra-high performance liquid chromatography (UHPLC) coupled with electrochemical detection (UHPLC-ED) for simultaneous determination of thiram, disulfiram, and N,N-diethyl-N',N'-dimethylthiuram disulfide, their derivative compound. The separation was performed in reversed-phase mode using C18 column, mobile phase consisting of 55:45 (v/v) ratio of 0.05 M phosphate buffer solution (pH 5) and acetonitrile at a flow rate of 1.5 mL min(-1). For the detection part, the amperometric detection was chosen with a detection potential of 1.2 V vs. Ag/AgCl. Under the optimal conditions, the good linear relationship was obtained in the range of 0.07-15, 0.07-12, and 0.5-15 µg mL(-1) (correlation coefficient more than 0.9900) for thiram, N,N-diethyl-N',N'-dimethylthiuram disulfide, and disulfiram, respectively. The limits of detection (LODs) of thiram, N,N-diethyl-N',N'-dimethylthiuram disulfide, and disulfiram were 0.022, 0.023, and 0.165 µg mL(-1), respectively. Moreover, this method was successfully applied for the detection of these compounds in real samples (apple, grape and lettuce) with the recoveries ranging from 94.3% to 108.8%. To validate this developed method, a highly quantitative agreement was clearly observed compared to standard UHPLC-UV system. Therefore, the proposed electrode can be effectively used as an alternative electrode in UHPLC-ED for rapid, selective, highly sensitive, and simultaneous determination of thiram, disulfiram, and N,N-diethyl-N',N'-dimethylthiuram disulfide. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Signal enhancement for gradient reverse-phase high-performance liquid chromatography-electrospray ionization mass spectrometry analysis with trifluoroacetic and other strong acid modifiers by postcolumn addition of propionic acid and isopropanol.

    PubMed

    Kuhlmann, F E; Apffel, A; Fischer, S M; Goldberg, G; Goodley, P C

    1995-12-01

    Trifluoroacetic acid (TFA) and other volatile strong acids, used as modifiers in reverse-phase high-performance liquid chromatography, cause signal suppression for basic compounds when analyzed by electrospray ionization mass spectrometry (ESI-MS). Evidence is presented that signal suppression is caused by strong ion pairing between the TFA anion and the protonated sample cation of basic sample molecules. The ion-pairing process "masks" the protonated sample cations from the ESI-MS electric fields by rendering them "neutral. " Weakly basic molecules are not suppressed by this process. The TFA signal suppression effect is independent from the well-known spray problem that electrospray has with highly aqueous solutions that contain TFA. This previously reported spray problem is caused by the high conductivity and surface tension of aqueous TFA solutions. A practical method to enhance the signal for most basic analytes in the presence of signal-suppressing volatile strong acids has been developed. The method employs postcolumn addition of a solution of 75% propionic acid and 25% isopropanol in a ratio 1:2 to the column flow. Signal enhancement is typically 10-50 times for peptides and other small basic molecules. Thus, peptide maps that use ESI-MS for detection can be performed at lower levels, with conventional columns, without the need to use capillary chromatography or reduced mass spectral resolution to achieve satisfactory sensitivity. The method may be used with similar results for heptafluorobutyric acid and hydrochloric acid. A mechanism for TFA signal suppression and signal enhancement by the foregoing method, is proposed.

  14. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection

    PubMed Central

    Chan, Kamfai; Coen, Mauricio; Hardick, Justin; Gaydos, Charlotte A.; Wong, Kah-Yat; Smith, Clayton; Wilson, Scott A.; Vayugundla, Siva Praneeth; Wong, Season

    2016-01-01

    Most molecular diagnostic assays require upfront sample preparation steps to isolate the target’s nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer’s heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers. PMID:27362424

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rainer, Leo I.; Hoeschele, Marc A.; Apte, Michael G.

    This report addresses the results of detailed monitoring completed under Program Element 6 of Lawrence Berkeley National Laboratory's High Performance Commercial Building Systems (HPCBS) PIER program. The purpose of the Energy Simulations and Projected State-Wide Energy Savings project is to develop reasonable energy performance and cost models for high performance relocatable classrooms (RCs) across California climates. A key objective of the energy monitoring was to validate DOE2 simulations for comparison to initial DOE2 performance projections. The validated DOE2 model was then used to develop statewide savings projections by modeling base case and high performance RC operation in the 16 Californiamore » climate zones. The primary objective of this phase of work was to utilize detailed field monitoring data to modify DOE2 inputs and generate performance projections based on a validated simulation model. Additional objectives include the following: (1) Obtain comparative performance data on base case and high performance HVAC systems to determine how they are operated, how they perform, and how the occupants respond to the advanced systems. This was accomplished by installing both HVAC systems side-by-side (i.e., one per module of a standard two module, 24 ft by 40 ft RC) on the study RCs and switching HVAC operating modes on a weekly basis. (2) Develop projected statewide energy and demand impacts based on the validated DOE2 model. (3) Develop cost effectiveness projections for the high performance HVAC system in the 16 California climate zones.« less

  16. Influence of bentonite in polymer membranes for effective treatment of car wash effluent to protect the ecosystem.

    PubMed

    Kiran, S Aditya; Arthanareeswaran, G; Thuyavan, Y Lukka; Ismail, A F

    2015-11-01

    In this study, modified polyethersulfone (PES) and cellulose acetate (CA) membranes were used in the treatment of car wash effluent using ultrafiltration. Hydrophilic sulfonated poly ether ether ketone (SPEEK) and bentonite as nanoclay were used as additives for the PES and CA membrane modification. Performances of modified membranes were compared with commercial PES membrane with 10kDa molecular weight cut off (MWCO). The influencing parameters like stirrer speed (250-750rpm) and transmembrane pressure (100-600kPa) (TMP) were varied and their effects were studied as a function of flux. In the treatment of car wash effluent, a higher permeate flux of 52.3L/m(2)h was obtained for modified CA membrane at TMP of 400kPa and stirrer speed of 750rpm. In comparison with modified PES membrane and commercial PES membrane, modified CA membranes showed better performance in terms of flux and flux recovery ratio. The highest COD removal (60%) was obtained for modified CA membrane and a lowest COD removal (47%) was observed for commercial PES membrane. The modified membranes were better at removing COD, turbidity and maintained more stable flux than commercial PES membrane, suggesting they will provide better economic performance in car wash effluent reclamation. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Aerodynamic effects of moveable sidewall nozzle geometry and rotor exit restriction on the performance of a radial turbine

    NASA Technical Reports Server (NTRS)

    Rogo, C.; Hajek, T.; Roelke, R.

    1983-01-01

    Attention is given to the experimental results obtained with a high work capacity radial inflow turbine of known performance, whose baseline configuration was modified to accept a variety of movable nozzle sidewall, diffusing or accelerating rotor inlet ramp, and rotor exit restriction ring combinations. The performance of this variable geometry turbine was measured at constant speed and pressure ratio for 31 different test configurations, yielding test data over a nozzle area range from 50 to 100 percent of maximum depending on the movement of the nozzle assembly's forward and rearward sidewalls. Performance comparisons with data for a variable stagger angle vane concept indicate the present system's viability.

  18. A cross-sectional study on schistosomiasis and soil-transmitted helminths in Mbita district, western Kenya using different copromicroscopic techniques.

    PubMed

    Ng'etich, Annette I; Rawago, Fredrick O; Jura, Walter G Z O; Mwinzi, Pauline N; Won, Kimberly Y; Odiere, Maurice R

    2016-02-16

    Identification of populations to be targeted for individual treatment and broad-spectrum therapy in schistosomiasis-endemic areas, assessment of therapy efficacy, morbidity, and evaluation of control strategies need to be based on reliable diagnostic tools. Kato-Katz is routinely used and remains the standard diagnostic technique for schistosomiasis, despite its many challenges. This study was conducted in Nyamanga village, Mbita, western Kenya, and evaluated the diagnostic performance of Kato-Katz, Mini-Parasep and modified Mini-FLOTAC techniques in detection of Schistosoma mansoni and soil-transmitted helminths (Ascaris lumbricoides, Trichuris trichiura and hookworm) ova. Stool samples from 132 individuals were screened for eggs of S. mansoni by the 3 techniques. Mini-Parasep faecal parasite concentrator (Apacor Ltd, England), a single-use diagnostic device with a built-in filter for faecal concentration of helminth eggs by sedimentation was employed on stool samples fixed in 10% formalin. A modified Mini-FLOTAC (University of Naples, Italy) was based on floatation of helminths eggs with two different solutions (FS2 and FS7) using a closed system (Fill-FLOTAC) with 5% formalin. Kato-Katz was performed following WHO recommendation. Prevalence of S. mansoni and STH, sensitivity and degree of agreement among the 3 techniques were determined. Prevalence of S. mansoni was 47.0%, 34.1% and 20.5% by Mini-Parasep, Kato-Katz and modified Mini-FLOTAC FS7 techniques, respectively. Prevalence of any STH infection was 6.1%, 3.0%, 6.1% and 6.8% by Mini-Parasep, Kato-Katz, modified Mini-FLOTAC FS2 and modified Mini-FLOTAC FS7 techniques, respectively. Considering the pooled results of the three methods (Mini-Parasep, Kato-Katz and modified Mini-FLOTAC FS7) as diagnostic 'gold' standard, the sensitivity of Mini-Parasep, Kato-Katz and modified Mini-FLOTAC FS7 for S. mansoni was 77.5%, 56.1%, and 33.8%, respectively. Mini-Parasep and modified Mini-FLOTAC FS7 techniques had moderate (κ = 0.46) and fairly good (κ = 0.25) agreements with Kato-Katz for S. mansoni, respectively. Mini-Parasep detected a higher proportion of light intensity S. mansoni infections compared to Kato-Katz, which detected high proportions of heavy infections. Mini-Parasep detected a similar mean number of S. mansoni eggs per gram (EPG) of stool compared to the standard Kato-Katz (62.9 vs 97.3; t (131) = -0.49, P = 0.6265) and significantly higher EPG compared to the modified Mini-FLOTAC FS7 (62.9 vs 34.6; t (131) = 5.39, P < 0.0001). The high sensitivity of Mini-Parasep suggests its promising potential as an alternative tool in enhancing diagnosis and in monitoring schistosomiasis transmission and determining endpoint of intervention programs, especially in low endemicity areas. Mini-Parasep is also easy to operate, safe and also permits work with fresh stool.

  19. Poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemically detecting dopamine at low concentration.

    PubMed

    Mao, Hui; Liang, Jiachen; Ji, Chunguang; Zhang, Haifeng; Pei, Qi; Zhang, Yuyang; Zhang, Yu; Hisaeda, Yoshio; Song, Xi-Ming

    2016-08-01

    Poly(3-(1-vinylimidazolium-3-yl)propane-1-sulfonate) (PVIPS), a novel kind of poly(zwitterionic liquids) (PZILs) containing both imidazolium cation and sulfonate anion, was successfully modified on the surface of polypyrrole/graphene oxide nanosheets (PPy/GO) by covalent bonding. The obtained novel PZILs functionalized PPy/GO nanosheets (PVIPS/PPy/GO) modified glassy carbon electrode (GCE) presented the excellent electrochemical catalytic activity towards dopamine (DA) with high stability, sensitivity, selectivity and wide linear range (40-1220nM), especially having a lower detection limit (17.3nM). The excellent analytical performance is attributed to the strongly negative charges on the surface of modified GCE in aqueous solution, which is different from conventional poly(ionic liquids) modified GCE. DA cations could be quickly enriched on the electrode surface by electrostatic interaction in solution due to the existence of SO3(-) groups with negative charge at the end of pendant groups in zwitterionic PVIPS, resulting in a change of the electrons transmission mode in the oxidation of DA, that is, from a typical diffusion-controlled process at conventional poly(1-vinyl-3-ethylimidazole bromide) (PVEIB)/PPy/GO modified GCE to a typical surface-controlled process. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Modified local diatomite as potential functional drug carrier--A model study for diclofenac sodium.

    PubMed

    Janićijević, Jelena; Krajišnik, Danina; Čalija, Bojan; Vasiljević, Bojana Nedić; Dobričić, Vladimir; Daković, Aleksandra; Antonijević, Milan D; Milić, Jela

    2015-12-30

    Diatomite makes a promising candidate for a drug carrier because of its high porosity, large surface area, modifiable surface chemistry and biocompatibility. Herein, refined diatomite from Kolubara coal basin, which complied with the pharmacopoeial requirements for heavy metals content and microbiological quality, was used as a starting material. Inorganic modification of the starting material was performed through a simple, one-step procedure. Significant increase in adsorbent loading with diclofenac sodium (DS) was achieved after the modification process (∼373mg/g) which enabled the preparation of comprimates containing therapeutic dose of the adsorbed drug. Adsorption of DS onto modified diatomite resulted in the alteration of the drug's XRD pattern and FTIR spectrum. In vitro drug release studies in phosphate buffer pH 7.5 demonstrated prolonged DS release over 8h from comprimates containing DS adsorbed on modified diatomite (up to 37% after 8h) and those containing physical mixture of the same composition (up to 45% after 8h). The results of in vivo toxicity testing on mice pointed on potential safety of both unmodified (starting) and modified diatomite. All these findings favor the application of diatomite as a potential functional drug carrier. Copyright © 2015 Elsevier B.V. All rights reserved.

Top