Modified host cells with efflux pumps
Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila
2016-08-30
The present invention provides for a modified host cell comprising a heterologous expression of an efflux pump capable of transporting an organic molecule out of the host cell wherein the organic molecule at a sufficiently high concentration reduces the growth rate of or is lethal to the host cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruegg, Thomas Lawrence; Thelen, Michael P.
The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.
Zhang, Quan; Yuan, Yi; Li, Su-Bo; Dou, Na; Ma, Fu-Ling; Ji, Shou-Ping
2004-05-01
To find out why mPEG modification of donor's lymphocytes can attenuate the occurrence of graft versus host disease(GVHD), but not affect the hemopoietic reconstitution of stem/progenitor cells after transplanting the mPEG-modified mononuclear cells from human cord blood into the SCID mice. The followings were observed: (1) Changes of CD4(+) and CD8(+) T cells and the ratio of CD4(+)/CD8(+) T cells were examined by flow cytometry before and after mononuclear cells from human cord blood were modified with mPEG. (2) The difference in forming the CFU-GM in-vitro between the mPEG modified-stem/progenitor cell group and non-modified cell group was observed. (3) The time of appearance of GVHD and the survival of the SCID mice were observed after the pre- and post-modification mononuclear cells were transplanted. (4) The number of humanized CD45(+) cells in the mouse's bone marrow was detected about 7 weeks after transplantation. (1) mPEG nearly completely covered up the CD4 and CD8 antigens on T cells, while the number of CFU-GM did not show any obvious change between the modified and non-modified cell groups. (2) GVHD appeared later in the modified mononuclear cell group than in the non-modified group, and the survival rate was elevated in the modified group than in the non-modified group. (3) Humanized CD45 cells were found in mouse's bone marrow at the 47th day after transplantation of both mPEG-modified and non-modified mononuclear cells. After CD4 and CD8 antigens were covered up with mPEG, the graft's immune response against host was weakened, but the proliferation and differentiation of transplanted hemopoietic stem/progenitor cells were not affected.
Host cells and methods for producing isoprenyl alkanoates
Lee, Taek Soon; Fortman, Jeffrey L.; Keasling, Jay D.
2015-12-01
The invention provides for a method of producing an isoprenyl alkanoate in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses an enzyme capable of catalyzing the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) or lipase, under a suitable condition so that the isoprenyl alkanoate is produced.
Host cells and methods for producing diacid compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steen, Eric J.; Fortman, Jeffrey L.; Dietrich, Jeffrey A.
The present invention provides for a method of producing one or more fatty acid derived dicarboxylic acids in a genetically modified host cell which does not naturally produce the one or more derived fatty acid derived dicarboxylic acids. The invention provides for the biosynthesis of dicarboxylic acid ranging in length from C3 to C26. The host cell can be further modified to increase fatty acid production or export of the desired fatty acid derived compound, and/or decrease fatty acid storage or metabolism.
Butanol tolerance in microorganisms
Bramucci, Michael G.; Nagarajan, Vasantha
2016-03-01
Provided herein are recombinant yeast host cells and methods for their use for production of fermentation products from a pyruvate utilizing pathway. Yeast host cells provided herein comprise reduced pyruvate decarboxylase activity and modified adenylate cyclase activity. In embodiments, yeast host cells provided herein comprise resistance to butanol and increased biomass production.
Distribution of O-Acetylated Sialic Acids among Target Host Tissues for Influenza Virus
Barnard, Karen N.; Ossiboff, Robert J.; Khedri, Zahra; Feng, Kurtis H.; Yu, Hai; Chen, Xi; Varki, Ajit
2017-01-01
ABSTRACT Sialic acids (Sias) are important glycans displayed on the cells and tissues of many different animals and are frequent targets for binding and modification by pathogens, including influenza viruses. Influenza virus hemagglutinins bind Sias during the infection of their normal hosts, while the encoded neuraminidases and/or esterases remove or modify the Sia to allow virion release or to prevent rebinding. Sias naturally occur in a variety of modified forms, and modified Sias can alter influenza virus host tropisms through their altered interactions with the viral glycoproteins. However, the distribution of modified Sia forms and their effects on pathogen-host interactions are still poorly understood. Here we used probes developed from viral Sia-binding proteins to detect O-acetylated (4-O-acetyl, 9-O-acetyl, and 7,9-O-acetyl) Sias displayed on the tissues of some natural or experimental hosts for influenza viruses. These modified Sias showed highly variable displays between the hosts and tissues examined. The 9-O-acetyl (and 7,9-) modified Sia forms were found on cells and tissues of many hosts, including mice, humans, ferrets, guinea pigs, pigs, horses, dogs, as well as in those of ducks and embryonated chicken egg tissues and membranes, although in variable amounts. The 4-O-acetyl Sias were found in the respiratory tissues of fewer animals, being primarily displayed in the horse and guinea pig, but were not detected in humans or pigs. The results suggest that these Sia variants may influence virus tropisms by altering and selecting their cell interactions. IMPORTANCE Sialic acids (Sias) are key glycans that control or modulate many normal cell and tissue functions while also interacting with a variety of pathogens, including many different viruses. Sias are naturally displayed in a variety of different forms, with modifications at several positions that can alter their functional interactions with pathogens. In addition, Sias are often modified or removed by enzymes such as host or pathogen esterases or sialidases (neuraminidases), and Sia modifications can alter those enzymatic activities to impact pathogen infections. Sia chemical diversity in different hosts and tissues likely alters the pathogen-host interactions and influences the outcome of infection. Here we explored the display of 4-O-acetyl, 9-O-acetyl, and 7,9-O-acetyl modified Sia forms in some target tissues for influenza virus infection in mice, humans, birds, guinea pigs, ferrets, swine, horses, and dogs, which encompass many natural and laboratory hosts of those viruses. PMID:28904995
Chou, Howard H [Berkeley, CA; Keasling, Jay D [Berkeley, CA
2011-07-26
The invention provides for a method for producing a 5-carbon alcohol in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses a first enzyme capable of catalyzing the dephosphorylation of an isopentenyl pyrophosphate (IPP) or dimethylallyl diphosphate (DMAPP), such as a Bacillus subtilis phosphatase (YhfR), under a suitable condition so that 5-carbon alcohol is 3-methyl-2-buten-1-ol and/or 3-methyl-3-buten-1-ol is produced. Optionally, the host cell may further comprise a second enzyme capable of reducing a 3-methyl-2-buten-1-ol to 3-methyl-butan-1-ol, such as a reductase.
Pathogen trafficking pathways and host phosphoinositide metabolism.
Weber, Stefan S; Ragaz, Curdin; Hilbi, Hubert
2009-03-01
Phosphoinositide (PI) glycerolipids are key regulators of eukaryotic signal transduction, cytoskeleton architecture and membrane dynamics. The host cell PI metabolism is targeted by intracellular bacterial pathogens, which evolved intricate strategies to modulate uptake processes and vesicle trafficking pathways. Upon entering eukaryotic host cells, pathogenic bacteria replicate in distinct vacuoles or in the host cytoplasm. Vacuolar pathogens manipulate PI levels to mimic or modify membranes of subcellular compartments and thereby establish their replicative niche. Legionella pneumophila, Brucella abortus, Mycobacterium tuberculosis and Salmonella enterica translocate effector proteins into the host cell, some of which anchor to the vacuolar membrane via PIs or enzymatically turnover PIs. Cytoplasmic pathogens target PI metabolism at the plasma membrane, thus modulating their uptake and antiapoptotic signalling pathways. Employing this strategy, Shigella flexneri directly injects a PI-modifying effector protein, while Listeria monocytogenes exploits PI metabolism indirectly by binding to transmembrane receptors. Thus, regardless of the intracellular lifestyle of the pathogen, PI metabolism is critically involved in the interactions with host cells.
SELENIUM-DEFICIENCY MODIFIES INFLUENZA INFECTION OF DIFFERENTIATED HUMAN BRONCHIAL EPITHELIAL CELLS
The nutritional status of the host is important in the defense against invading pathogens. Many studies regarding the effects of host nutritional status on the immune response have demonstrated that suboptimal host nutrition results in impaired host immunity and increased suscept...
Allogeneic chimeric antigen receptor-modified cells for adoptive cell therapy of cancer.
Marcus, Assaf; Eshhar, Zelig
2014-07-01
Chimeric antigen (or antibody) receptors (CAR) are fusion proteins typically combining an antibody-derived targeting fragment with signaling domains capable of activating immune cells. Recent clinical trials have shown the tremendous potential of adoptive cell transfer (ACT) of autologous T cells engineered to express a CD19-specific CAR targeting B-cell malignancies. Building on this approach, ACT therapies employing allogeneic CAR-expressing cytotoxic cells are now being explored. The basic principles of CAR-ACT are introduced. The potential benefits as well as problems of using allogeneic CAR-modified cells against tumor antigens are discussed. Various approaches to allogeneic CAR therapy are presented, including donor leukocyte infusion, CAR-redirected γδ T cells and natural killer cells, strategies to avoid graft-versus-host disease, modulation of lymphocyte migration, and exploitation of graft-versus-host reactivity. CAR-modified allogeneic cells have the potential to act as universal effector cells, which can be administered to any patient regardless of MHC type. Such universal effector cells could be used as an 'off-the-shelf' cell-mediated treatment for cancer.
Zhukov, V A; Shishkina, L N; Safatov, A S; Sergeev, A A; P'iankov, O V; Petrishchenko, V A; Zaĭtsev, B N; Toporkov, V S; Sergeev, A N; Nesvizhskiĭ, Iu V; Vorob'ev, A A
2010-01-01
The paper presents results of testing a modified algorithm for predicting virus ID50 values in a host of interest by extrapolation from a model host taking into account immune neutralizing factors and thermal inactivation of the virus. The method was tested for A/Aichi/2/68 influenza virus in SPF Wistar rats, SPF CD-1 mice and conventional ICR mice. Each species was used as a host of interest while the other two served as model hosts. Primary lung and trachea cells and secretory factors of the rats' airway epithelium were used to measure parameters needed for the purpose of prediction. Predicted ID50 values were not significantly different (p = 0.05) from those experimentally measured in vivo. The study was supported by ISTC/DARPA Agreement 450p.
Host-microbiota interactions: Epigenomic regulation
Woo, Vivienne; Alenghat, Theresa
2016-01-01
The coevolution of mammalian hosts and their commensal microbiota has led to the development of complex symbiotic relationships between resident microbes and mammalian cells. Epigenomic modifications enable host cells to alter gene expression without modifying the genetic code, and therefore represent potent mechanisms by which mammalian cells can transcriptionally respond, transiently or stably, to environmental cues. Advances in genome-wide approaches are accelerating our appreciation of microbial influences on host physiology, and increasing evidence highlights that epigenomics represent a level of regulation by which the host integrates and responds to microbial signals. In particular, bacterial-derived short chain fatty acids have emerged as one clear link between how the microbiota intersects with host epigenomic pathways. Here we review recent findings describing crosstalk between the microbiota and epigenomic pathways in multiple mammalian cell populations. Further, we discuss interesting links that suggest that the scope of our understanding of epigenomic regulation in the host-microbiota relationship is still in its infancy. PMID:28103497
Exploitation of the host cell ubiquitin machinery by microbial effector proteins.
Lin, Yi-Han; Machner, Matthias P
2017-06-15
Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu ( J. Cell Sci. 130 , 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' ( J. Cell Sci. 130 , 1981-1983). © 2017. Published by The Company of Biologists Ltd.
Blanco-Ulate, Barbara; Morales-Cruz, Abraham; Amrine, Katherine C. H.; Labavitch, John M.; Powell, Ann L. T.; Cantu, Dario
2014-01-01
Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth), secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes) identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue. PMID:25232357
Yersinia virulence factors - a sophisticated arsenal for combating host defences
Atkinson, Steve; Williams, Paul
2016-01-01
The human pathogens Yersinia pseudotuberculosis and Yersinia enterocolitica cause enterocolitis, while Yersinia pestis is responsible for pneumonic, bubonic, and septicaemic plague. All three share an infection strategy that relies on a virulence factor arsenal to enable them to enter, adhere to, and colonise the host while evading host defences to avoid untimely clearance. Their arsenal includes a number of adhesins that allow the invading pathogens to establish a foothold in the host and to adhere to specific tissues later during infection. When the host innate immune system has been activated, all three pathogens produce a structure analogous to a hypodermic needle. In conjunction with the translocon, which forms a pore in the host membrane, the channel that is formed enables the transfer of six ‘effector’ proteins into the host cell cytoplasm. These proteins mimic host cell proteins but are more efficient than their native counterparts at modifying the host cell cytoskeleton, triggering the host cell suicide response. Such a sophisticated arsenal ensures that yersiniae maintain the upper hand despite the best efforts of the host to counteract the infecting pathogen. PMID:27347390
Johnsen, Hanne R; Striberny, Bernd; Olsen, Stian; Vidal-Melgosa, Silvia; Fangel, Jonatan U; Willats, William G T; Rose, Jocelyn K C; Krause, Kirsten
2015-08-01
Host plant penetration is the gateway to survival for holoparasitic Cuscuta and requires host cell wall degradation. Compositional differences of cell walls may explain why some hosts are amenable to such degradation while others can resist infection. Antibody-based techniques for comprehensive profiling of cell wall epitopes and cell wall-modifying enzymes were applied to several susceptible hosts and a resistant host of Cuscuta reflexa and to the parasite itself. Infected tissue of Pelargonium zonale contained high concentrations of de-esterified homogalacturonans in the cell walls, particularly adjacent to the parasite's haustoria. High pectinolytic activity in haustorial extracts and high expression levels of pectate lyase genes suggest that the parasite contributes directly to wall remodeling. Mannan and xylan concentrations were low in P. zonale and in five susceptible tomato introgression lines, but high in the resistant Solanum lycopersicum cv M82, and in C. reflexa itself. Knowledge of the composition of resistant host cell walls and the parasite's own cell walls is useful in developing strategies to prevent infection by parasitic plants. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Bannister, L H
1979-04-11
Intracellular genera are found in all the major groups of Protista, but are particularly common among the dinoflagellates, trypanosomatid zooflagellates and suctorian ciliates; the Sporozoa are nearly all intracellular at some stage of their life, and the Microspora entirely so. Intracellular forms can dwell in the nucleus, within phagosomal or other vacuoles or may lie free in the hyaloplasm of their host cells. Organisms tend to select their hosts from a restricted taxonomic range although there are some notable exceptions. There is also great variation in the types of host cell inhabited. There are various reasons for both host and cell selectivity including recognition phenomena at the cell surfaces. Invasion of host cells is usually preceded by surface interactions with the invader. Some organisms depend upon phagocytosis for entry, but others induce host cells to engulf them by non-phagocytic means or invade by microinjection through the host plasma membrane. Protista avoid lysosomal destruction by their resistance to enzyme attack, by surrounding themselves with lysosome-inhibiting vacuoles, by escaping from the phagosomal system into the hyaloplasm and by choosing host cells which lack lysosomes. Nutrition of intracellular heterotrophic organisms involves some degree of competition with the host cell's metabolism as well as erosion of host cell cytoplasm. In Plasmodium infections, red cells are made more permeable to required nutrients by the action of the parasite on the host cell membrane. The parasite is often dependent upon the host cell for complex nutrients which it cannot synthesize for itself. Intracellular forms often profoundly modify the structure and metabolism of the host cell or interfere with its growth and multiplication. This may result in the final lysis of the host cell at the end of the intracellular phase or before the infection of other cells. Certain types of intracellular organisms may have arisen initially as forms attached to the cell surface of digestive or other organs, but the intracellular habit appears to have arisen independently in several groups of Protista.
Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter
2015-01-01
The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses. PMID:25606855
Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter
2015-01-01
The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.
Hewezi, Tarek
2015-10-01
Plant-parasitic cyst and root-knot nematodes synthesize and secrete a suite of effector proteins into infected host cells and tissues. These effectors are the major virulence determinants mediating the transformation of normal root cells into specialized feeding structures. Compelling evidence indicates that these effectors directly hijack or manipulate refined host physiological processes to promote the successful parasitism of host plants. Here, we provide an update on recent progress in elucidating the molecular functions of nematode effectors. In particular, we emphasize how nematode effectors modify plant cell wall structure, mimic the activity of host proteins, alter auxin signaling, and subvert defense signaling and immune responses. In addition, we discuss the emerging evidence suggesting that nematode effectors target and recruit various components of host posttranslational machinery in order to perturb the host signaling networks required for immunity and to regulate their own activity and subcellular localization. © 2015 American Society of Plant Biologists. All Rights Reserved.
Todeschi, Maria R; El Backly, Rania M; Varghese, Oommen P; Hilborn, Jöns; Cancedda, Ranieri; Mastrogiacomo, Maddalena
2017-07-01
This study aimed to identify host cell recruitment patterns in a mouse model in response to rhBMP-2 releasing hyaluronic acid hydrogels and influence of added nano-hydroxyapatite particles on rhBMP-2 release and pattern of bone formation. Implanted gels were retrieved after implantation and cells were enzymatically dissociated for flow cytometric analysis. Percentages of macrophages, progenitor endothelial cells and putative mesenchymal stem cells were measured. Implants were evaluated for BMP-2 release by ELISA and by histology to monitor tissue formation. Hyaluronic acid+BMP-2 gels influenced the inflammatory response in the bone healing microenvironment. Host-derived putative mesenchymal stem cells were major contributors. Addition of hydroxyapatite nanoparticles modified the release pattern of rhBMP-2, resulting in enhanced bone formation.
Zhong, Zhisheng; Kazmierczak, Robert A; Dino, Alison; Khreis, Rula; Eisenstark, Abraham; Schatten, Heide
2007-10-01
Increasingly, genetically modified Salmonella are being explored as a novel treatment for cancer because Salmonella preferentially replicate within tumors and destroy cancer cells without causing the septic shock that is typically associated with wild-type S. typhimurium infections. However, the mechanisms by which genetically modified Salmonella strains preferentially invade cancer cells have not yet been addressed in cellular detail. Here we present data that show S. typhimurium strains VNP20009, LT2, and CRC1674 invasion of PC-3M prostate cancer cells. S. typhimurium-infected PC-3M human prostate cancer cells were analyzed with immunofluorescence microscopy and transmission electron microscopy (TEM) at various times after inoculation. We analyzed microfilaments, microtubules, and DNA with fluorescence and immunofluorescence microscopy. 3T3 Phi-Yellow-mitochondria mouse 3T3 cells were used to study the effects of Salmonella infestation on mitochondria distribution in live cells. Our TEM results show gradual destruction of mitochondria within the PC-3M prostate cancer cells with complete loss of cristae at 8 h after inoculation. The fluorescence intensity in YFP-mitochondria-transfected mouse 3T3 cells decreased, which indicates loss of mitochondria structure. Interestingly, the nucleus does not appear affected by Salmonella within 8 h. Our data demonstrate that genetically modified S. typhimurium destroy PC-3M prostate cancer cells, perhaps by preferential destruction of mitochondria.
Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis.
Martín-Hernández, Raquel; Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E; Meana, Aránzazu; Boonham, Neil
2017-01-01
Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host's cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite's survival within the cell.
Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome.
van der Meer-Janssen, Ynske P M; van Galen, Josse; Batenburg, Joseph J; Helms, J Bernd
2010-01-01
Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patarroyo, Manuel E., E-mail: mepatarr@mail.com; Universidad Nacional de Colombia, Bogota; Cifuentes, Gladys
Based on the 3D X-ray crystallographic structures of relevant proteins of the malaria parasite involved in invasion to host cells and 3D NMR structures of High Activity Binding Peptides (HABPs) and their respective analogues, it was found that HABPs are rendered into highly immunogenic and sterile immunity inducers in the Aotus experimental model by modifying those amino acids that establish H-bonds with other HABPs or binding to host's cells. This finding adds striking and novel physicochemical principles, at the atomic level, for a logical and rational vaccine development methodology against infectious disease, among them malaria.
Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis
Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E.; Meana, Aránzazu; Boonham, Neil
2017-01-01
Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell. PMID:28152065
Modulation of host cell biology by plant pathogenic microbes.
Le Fevre, Ruth; Evangelisti, Edouard; Rey, Thomas; Schornack, Sebastian
2015-01-01
Plant-pathogen interactions can result in dramatic visual changes in the host, such as galls, phyllody, pseudoflowers, and altered root-system architecture, indicating that the invading microbe has perturbed normal plant growth and development. These effects occur on a cellular level but range up to the organ scale, and they commonly involve attenuation of hormone homeostasis and deployment of effector proteins with varying activities to modify host cell processes. This review focuses on the cellular-reprogramming mechanisms of filamentous and bacterial plant pathogens that exhibit a biotrophic lifestyle for part, if not all, of their lifecycle in association with the host. We also highlight strategies for exploiting our growing knowledge of microbial host reprogramming to study plant processes other than immunity and to explore alternative strategies for durable plant resistance.
Durrani, Zeeshan; Pillai, Sreerekha S.; Baird, Margaret; Shiels, Brian R.
2013-01-01
Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFκB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. Fifty percent of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of chromatin modification and gene expression. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and largely irreversible manner. PMID:23840536
Talmadge, James E.; Gabrilovich, Dmitry I.
2015-01-01
Tumour-induced granulocytic hyperplasia is associated with tumour vasculogenesis and escape from immunity via T-cell suppression. Initially, these myeloid cells were identified as granulocytes or monocytes; however, recent studies revealed that this hyperplasia was associated with populations of multi-potent progenitor cells identified as myeloid-derived suppressor cells (MDSCs). The discovery and study of MDSCs have provided a wealth of information regarding tumour pathobiology, extended our understanding of neoplastic progression, and modified our approaches to immune adjuvant therapy. In this perspective, we discuss the history of MDSCs, their influence on tumour progression and metastasis, and the crosstalk between tumour cells, MDSCs, and the host macroenvironment. PMID:24060865
Genetic modification of stem cells for transplantation.
Phillips, M Ian; Tang, Yao Liang
2008-01-14
Gene modification of cells prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene-modified cell has to gain entrance inside the host's walls and survive and deliver its transgene products. Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non-viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene-modified stem cells in cardiovascular disease, diabetes, neurological diseases, (including Parkinson's, Alzheimer's and spinal cord injury repair), bone defects, hemophilia, and cancer.
Host cells and methods for producing 1-deoxyxylulose 5-phosphate (DXP) and/or a DXP derived compound
Kirby, James; Fortman, Jeffrey L.; Nishimoto, Minobu; Keasling, Jay D.
2017-05-02
The present invention provides for a genetically modified host cell capable of producing 1-deoxyxylulose 5-phosphate or 1-deoxy-D-xylulose 5-phosphate (DXP) (12), and optionally one or more DXP derived compounds, comprising: (a) a mutant RibB, or functional variant thereof, capable of catalyzing xylulose 5-phoshpate and/or ribulose 5-phospate to DXP, or (b) a YajO, or functional variant thereof, and a XylB, or functional variant thereof.
Host cells and methods for producing 1-deoxyxylulose 5-phosphate (DXP) and/or a DXP derived compound
Kirby, James; Fortman, Jeffrey L.; Nishimoto, Minobu; Keasling, Jay D.
2016-07-05
The present invention provides for a genetically modified host cell capable of producing 1-deoxyxylulose 5-phosphate or 1-deoxy-D-xylulose 5-phosphate (DXP) (12), and optionally one or more DXP derived compounds, comprising: (a) a mutant RibB, or functional variant thereof, capable of catalyzing xylulose 5-phosphate and/or ribulose 5-phosphate to DXP, or (b) a YajO, or functional variant thereof, and a XylB, or functional variant thereof.
Olsen, Stian; Popper, Zoë A; Krause, Kirsten
2016-01-01
The holoparasitic angiosperm Cuscuta develops haustoria that enable it to feed on other plants. Recent findings corroborate the long-standing theory that cell wall modifications are required in order for the parasite to successfully infect a host, and further suggest that changes to xyloglucan through the activity of xyloglucan endotransglucosylases/hydrolases (XTHs) are essential. On the other hand, XTH expression was also detected in resistant tomato upon an attack by Cuscuta, which suggests that both host and parasite use these enzymes in their "arms race." Here, we summarize existing data on the cell wall-modifying activities of XTHs during parasitization and present a model suggesting how XTHs might function to make the host's resources accessible to Cuscuta.
Lim, Shaun W.; Lance, Shea T.; Stedman, Kenneth M.; Abate, Adam R.
2017-01-01
Characterizing virus-host relationships is critical for understanding the impact of a virus on an ecosystem, but is challenging with existing techniques, particularly for uncultivable species. We present a general, cultivation-free approach for identifying phage-associated bacterial cells. Using PCR-activated cell sorting, we interrogate millions of individual bacteria for the presence of specific phage nucleic acids. If the nucleic acids are present, the bacteria are recovered via sorting and their genomes analyzed. This allows targeted recovery of all possible host species in a diverse population associated with a specific phage, and can be easily targeted to identify the hosts of different phages by modifying the PCR primers used for detection. Moreover, this technique allows quantification of free phage particles, as benchmarked against the “gold standard” of virus enumeration, the plaque assay. PMID:28042018
Lim, Shaun W; Lance, Shea T; Stedman, Kenneth M; Abate, Adam R
2017-04-01
Characterizing virus-host relationships is critical for understanding the impact of a virus on an ecosystem, but is challenging with existing techniques, particularly for uncultivable species. We present a general, cultivation-free approach for identifying phage-associated bacterial cells. Using PCR-activated cell sorting, we interrogate millions of individual bacteria for the presence of specific phage nucleic acids. If the nucleic acids are present, the bacteria are recovered via sorting and their genomes analyzed. This allows targeted recovery of all possible host species in a diverse population associated with a specific phage, and can be easily targeted to identify the hosts of different phages by modifying the PCR primers used for detection. Moreover, this technique allows quantification of free phage particles, as benchmarked against the "gold standard" of virus enumeration, the plaque assay. Copyright © 2017 Elsevier B.V. All rights reserved.
The MVMp P4 promoter is a host cell-type range determinant in vivo.
Meir, Chen; Mincberg, Michal; Rostovsky, Irina; Tal, Saar; Vollmers, Ellen M; Levi, Adi; Tattersall, Peter; Davis, Claytus
2017-06-01
The protoparvovirus early promoters, e.g. P4 of Minute Virus of Mice (MVM), play a critical role during infection. Initial P4 activity depends on the host transcription machinery only. Since this is cell-type dependent, it is hypothesized that P4 is a host cell-type range determinant. Yet host range determinants have mapped mostly to capsid, never P4. Here we test the hypothesis using the mouse embryo as a model system. Disruption of the CRE element of P4 drastically decreased infection levels without altering range. However, when we swapped promoter elements of MVM P4 with those from equivalent regions of the closely related H1 virus, we observed elimination of infection in fibroblasts and chondrocytes and the acquisition of infection in skeletal muscle. We conclude that P4 is a host range determinant and a target for modifying the productive infection potential of the virus - an important consideration in adapting these viruses for oncotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.
Viral Mimicry to Usurp Ubiquitin and SUMO Host Pathways
Wimmer, Peter; Schreiner, Sabrina
2015-01-01
Posttranslational modifications (PTMs) of proteins include enzymatic changes by covalent addition of cellular regulatory determinants such as ubiquitin (Ub) and small ubiquitin-like modifier (SUMO) moieties. These modifications are widely used by eukaryotic cells to control the functional repertoire of proteins. Over the last decade, it became apparent that the repertoire of ubiquitiylation and SUMOylation regulating various biological functions is not restricted to eukaryotic cells, but is also a feature of human virus families, used to extensively exploit complex host-cell networks and homeostasis. Intriguingly, besides binding to host SUMO/Ub control proteins and interfering with the respective enzymatic cascade, many viral proteins mimic key regulatory factors to usurp this host machinery and promote efficient viral outcomes. Advanced detection methods and functional studies of ubiquitiylation and SUMOylation during virus-host interplay have revealed that human viruses have evolved a large arsenal of strategies to exploit these specific PTM processes. In this review, we highlight the known viral analogs orchestrating ubiquitin and SUMO conjugation events to subvert and utilize basic enzymatic pathways. PMID:26343706
Bohne, Wolfgang; Böttcher, Karin; Gross, Uwe
2011-06-01
Microsporidia are obligate intracellular fungal pathogens of increasing importance in immunocompromised patients. They have developed a unique invasion mechanism, which is based on the explosive discharge of a hollow tubulus, the so-called polar tube. The infectious sporoplasm is subsequently extruded through this flexible tube and injected into the host cell. The model microsporidium Encephalitozoon cuniculi is a paradigm of a fungus with an extreme host cell dependency. This human pathogen possesses one of the smallest eukaryotic genomes (<3MB) identified so far and has reduced its own biosynthetic pathways to a minimum, thus depending on an efficient supply of metabolites from the host cell. E. cuniculi spends its entire intracellular life cycle inside a parasitophorous vacuole (PV), which is formed during invasion. We have provided here an overview of the biogenesis and characteristics of this important host cell-pathogen interface and suggest in this context a modified model for E. cuniculi invasion. According to the model, the host cell plasma membrane is not pierced by the polar tube, but is pushed at the contact site into the cell interior by the mechanical force of the expelled polar tube. This results in a channel-like invagination of the plasma membrane, from which finally the parasitophorous vacuole is pinched-off. Copyright © 2011 Elsevier GmbH. All rights reserved.
Yang, Qinghua; Li, Xiaoyang; Tu, Haitao; Pan, Shen Q.
2017-01-01
Agrobacterium tumefaciens causes crown gall tumors on various plants by delivering transferred DNA (T-DNA) and virulence proteins into host plant cells. Under laboratory conditions, the bacterium is widely used as a vector to genetically modify a wide range of organisms, including plants, yeasts, fungi, and algae. Various studies suggest that T-DNA is protected inside host cells by VirE2, one of the virulence proteins. However, it is not clear how Agrobacterium-delivered factors are trafficked through the cytoplasm. In this study, we monitored the movement of Agrobacterium-delivered VirE2 inside plant cells by using a split-GFP approach in real time. Agrobacterium-delivered VirE2 trafficked via the endoplasmic reticulum (ER) and F-actin network inside plant cells. During this process, VirE2 was aggregated as filamentous structures and was present on the cytosolic side of the ER. VirE2 movement was powered by myosin XI-K. Thus, exogenously produced and delivered VirE2 protein can use the endogenous host ER/actin network for movement inside host cells. The A. tumefaciens pathogen hijacks the conserved host infrastructure for virulence trafficking. Well-conserved infrastructure may be useful for Agrobacterium to target a wide range of recipient cells and achieve a high efficiency of transformation. PMID:28242680
Yan, Jinyong; Yan, Yunjun; Madzak, Catherine; Han, Bingnan
2017-02-01
Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.
Methods and compositions for controlling gene expression by RNA processing
Doudna, Jennifer A.; Qi, Lei S.; Haurwitz, Rachel E.; Arkin, Adam P.
2017-08-29
The present disclosure provides nucleic acids encoding an RNA recognition sequence positioned proximal to an insertion site for the insertion of a sequence of interest; and host cells genetically modified with the nucleic acids. The present disclosure also provides methods of modifying the activity of a target RNA, and kits and compositions for carrying out the methods.
Olsen, Stian; Popper, Zoë A.; Krause, Kirsten
2016-01-01
ABSTRACT The holoparasitic angiosperm Cuscuta develops haustoria that enable it to feed on other plants. Recent findings corroborate the long-standing theory that cell wall modifications are required in order for the parasite to successfully infect a host, and further suggest that changes to xyloglucan through the activity of xyloglucan endotransglucosylases/hydrolases (XTHs) are essential. On the other hand, XTH expression was also detected in resistant tomato upon an attack by Cuscuta, which suggests that both host and parasite use these enzymes in their “arms race.” Here, we summarize existing data on the cell wall-modifying activities of XTHs during parasitization and present a model suggesting how XTHs might function to make the host's resources accessible to Cuscuta. PMID:26852915
Wan, Jiangbo; Huang, Fang; Hao, Siguo; Hu, Weiwei; Liu, Chuanxu; Zhang, Wenhao; Deng, Xiaohui; Chen, Linjun; Ma, Liyuan; Tao, Rong
2017-01-01
Tr1 cells can induce peripheral tolerance to self- and foreign antigens, and have been developed as a therapeutic tool for the induction of tolerance to transplanted tissue. We explored the feasibility of generating Tr1 cells by using IL-10 gene-modified recipient DCs (DCLV-IL-10) to stimulate donor naive CD4+ T cells. We also investigated some biological properties of Tr1 cells. DCLV-IL-10 were generated through DCs transduced with a lentivirus vector carrying the IL-10 gene, and Tr1 cells were produced by using DCLV-IL-10 to stimulate naive CD4+ T cells. The effects of Tr1 cells on T-cell proliferation and the occurrence of graft versus host disease (GVHD) following allogeneic stem-cell transplantation (allo-HSCT) were investigated. The DCLV-IL-10-induced Tr1 cells co-expressed LAG-3 and CD49b. Moreover, they also expressed CD4, CD25, and IL-10, but not Foxp3, and secreted significantly higher levels of IL-10 (1,729.36 ± 185.79 pg/mL; P < 0.001) and INF-γ (1,524.48 ± 168.65 pg/mL; P < 0.01) than the control T cells upon the stimulation by allogeneic DCs. Tr1 cells markedly suppressed T-lymphocyte proliferation and the mixed lymphocytic response (MLR) in vitro. The mice used in the allo-HSCT model had longer survival times and lower clinical and pathological GVHD scores than the control mice. IL-10 gene-modified DC-induced Tr1 cells may be used as a potent cellular therapy for the prevention of GVHD after allo-HSCT. © 2017 The Author(s). Published by S. Karger AG, Basel.
The role of lipids in host microbe interactions.
Lang, Roland; Mattner, Jochen
2017-06-01
Lipids are one of the major subcellular constituents and serve as signal molecules, energy sources, metabolic precursors and structural membrane components in various organisms. The function of lipids can be modified by multiple biochemical processes such as (de-)phosphorylation or (de-)glycosylation, and the organization of fatty acids into distinct cellular pools and subcellular compartments plays a pivotal role for the morphology and function of various cell populations. Thus, lipids regulate, for example, phagosome formation and maturation within host cells and thus, are critical for the elimination of microbial pathogens. Vice versa, microbial pathogens can manipulate the lipid composition of phagosomal membranes in host cells, and thus avoid their delivery to phagolysosomes. Lipids of microbial origin belong also to the strongest and most versatile inducers of mammalian immune responses upon engagement of distinct receptors on myeloid and lymphoid cells. Furthermore, microbial lipid toxins can induce membrane injuries and cell death. Thus, we will review here selected examples for mutual host-microbe interactions within the broad and divergent universe of lipids in microbial defense, tissue injury and immune evasion.
Recombinant host cells and media for ethanol production
Wood, Brent E; Ingram, Lonnie O; Yomano, Lorraine P; York, Sean W
2014-02-18
Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.
Dendritic Cells: A Spot on Sialic Acid
Crespo, Hélio J.; Lau, Joseph T. Y.; Videira, Paula A.
2013-01-01
Glycans decorating cell surface and secreted proteins and lipids occupy the juncture where critical host–host and host-pathogen interactions occur. The role of glycan epitopes in cell–cell and cell-pathogen adhesive events is already well-established, and cell surface glycan structures change rapidly in response to stimulus and inflammatory cues. Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how glycans and their changes contribute to the overall immune response remains poorly defined. Sialic acids are unique sugars that usually occupy the terminal position of the glycan chains and may be modified by external factors, such as pathogens, or upon specific physiological cellular events. At cell surface, sialic acid-modified structures form the key fundamental determinants for a number of receptors with known involvement in cellular adhesiveness and cell trafficking, such as the Selectins and the Siglec families of carbohydrate recognizing receptors. Dendritic cells (DCs) preside over the transition from innate to the adaptive immune repertoires, and no other cell has such relevant role in antigen screening, uptake, and its presentation to lymphocytes, ultimately triggering the adaptive immune response. Interestingly, sialic acid-modified structures are involved in all DC functions, such as antigen uptake, DC migration, and capacity to prime T cell responses. Sialic acid content changes along DC differentiation and activation and, while, not yet fully understood, these changes have important implications in DC functions. This review focuses on the developmental regulation of DC surface sialic acids and how manipulation of DC surface sialic acids can affect immune-critical DC functions by altering antigen endocytosis, pathogen and tumor cell recognition, cell recruitment, and capacity for T cell priming. The existing evidence points to a potential of DC surface sialylation as a therapeutic target to improve and diversify DC-based therapies. PMID:24409183
Zhang, Yan-na; Duan, Xiao-gang; Zhang, Wen-hui; Wu, Ai-ling; Yang, Huan-Huan; Wu, Dong-ming; Wei, Yu-Quan; Chen, Xian-cheng
2016-01-01
Cancer stem cells (CSCs) are critical for tumor initiation/maintenance and recurrence or metastasis, so they may serve as a potential therapeutic target. However, CSC-established multitherapy resistance and immune tolerance render tumors resistant to current tumor-targeted strategies. To address this, renewable multiepitope-integrated spheroids based on placenta-derived mesenchymal stem cells (pMSCs) were X-ray-modified, at four different irradiation levels, including 80, 160, 240, and 320 Gy, as pluripotent biologics, to inoculate hosts bearing Lewis lung carcinoma (LL2) and compared with X-ray-modified common LL2 cells as control. We show that the vaccines at the 160/240 Gy irradiation levels could rapidly trigger tumor cells into the apoptosis loop and evidently prolong the tumor-bearing host’s survival cycle, in contrast to vaccines irradiated at other levels (P<0.05), with tumor-sustaining stromal cell-derived factor-1/CXCR4 pathway being selectively blockaded. Meanwhile, almost no or minimal toxicity was detected in the vaccinated hosts. Importantly, 160/240 Gy-irradiated vaccines could provoke significantly higher killing of CSCs and non-CSCs, which may provide an access to developing a novel biotherapy against lung carcinoma. PMID:27042111
Bacterial production of methyl ketones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beller, Harry R.; Goh, Ee-Been
The present invention relates to methods and compositions for increasing production of methyl ketones in a genetically modified host cell that overproduces .beta.-ketoacyl-CoAs through a re-engineered .beta.-oxidation pathway and overexpresses FadM.
Petit, Nicolas; Dorgham, Karim; Levacher, Béatrice; Burlion, Aude; Gorochov, Guy; Marodon, Gilles
2014-08-01
Numerous strategies targeting early and late steps of the HIV life cycle have been proposed for gene therapy. However, targeting viral and host determinants of HIV entry is the only strategy that would prevent viral DNA-mediated CD4(+) cell death while diminishing the possibility for the virus to escape. To this end, we devised a bicistronic lentiviral vector expressing the membrane-bound form of the T20 fusion inhibitor, referred to as the C46 peptide, and a CCR5 superagonist, modified to sequester CCR5 away from the cell surface, referred to as the P2-CCL5 intrakine. We tested the effects of the vector on HIV infection and replication, using the human CEMR5 cell line expressing CD4 and CCR5, and primary human T cells. Transduced cells expressed the C46 peptide, detected with the 2F5 monoclonal antibody by flow cytometry. Expression of the P2-CCL5 intrakine correlates with lower levels of cell surface CCR5. Complete protection against HIV infection could be observed in cells expressing the protective transgenes. Importantly, we show that the combination of the transgenes was more potent than either transgene alone, showing the interest of expressing two entry inhibitors to inhibit HIV infection. Last, genetically modified cells possessed a selective advantage over nonmodified cells on HIV challenge in vitro, showing that modified cells were protected from HIV-induced cell death. Our results demonstrate that lentiviral vectors coexpressing the T20 fusion inhibitor and the P2-CCL5 intrakine represent promising tools for HIV gene therapy.
p53 Is a Host Cell Regulator during Herpes Simplex Encephalitis.
Maruzuru, Yuhei; Koyanagi, Naoto; Takemura, Naoki; Uematsu, Satoshi; Matsubara, Daisuke; Suzuki, Yutaka; Arii, Jun; Kato, Akihisa; Kawaguchi, Yasushi
2016-08-01
p53 is a critical host cell factor in the cellular response to a broad range of stress factors. We recently reported that p53 is required for efficient herpes simplex virus 1 (HSV-1) replication in cell culture. However, a defined role for p53 in HSV-1 replication and pathogenesis in vivo remains elusive. In this study, we examined the effects of p53 on HSV-1 infection in vivo using p53-deficient mice. Following intracranial inoculation, p53 knockout reduced viral replication in the brains of mice and led to significantly reduced rates of mortality due to herpes simplex encephalitis. These results suggest that p53 is an important host cell regulator of HSV-1 replication and pathogenesis in the central nervous system (CNS). HSV-1 causes sporadic cases of encephalitis, which, even with antiviral therapy, can result in severe neurological defects and even death. Many host cell factors involved in the regulation of CNS HSV-1 infection have been investigated using genetically modified mice. However, most of these factors are immunological regulators and act via immunological pathways in order to restrict CNS HSV-1 infection. They therefore provide limited information on intrinsic host cell regulators that may be involved in the facilitation of CNS HSV-1 infection. Here we demonstrate that a host cell protein, p53, which has generally been considered a host cell restriction factor for various viral infections, is required for efficient HSV-1 replication and pathogenesis in the CNS of mice. This is the first report showing that p53 positively regulates viral replication and pathogenesis in vivo and provides insights into its molecular mechanism, which may suggest novel clinical treatment options for herpes simplex encephalitis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Ambient ozone and pulmonary innate immunity
Al-Hegelan, Mashael; Tighe, Robert M.; Castillo, Christian; Hollingsworth, John W.
2013-01-01
Ambient ozone is a criteria air pollutant that impacts both human morbidity and mortality. The effect of ozone inhalation includes both toxicity to lung tissue and alteration of the host immunologic response. The innate immune system facilitates immediate recognition of both foreign pathogens and tissue damage. Emerging evidence supports that ozone can modify the host innate immune response and that this response to inhaled ozone is dependent on genes of innate immunity. Improved understanding of the complex interaction between environmental ozone and host innate immunity will provide fundamental insight into the pathogenesis of inflammatory airways disease. We review the current evidence supporting that environmental ozone inhalation: (1) modifies cell types required for intact innate immunity, (2) is partially dependent on genes of innate immunity, (3) primes pulmonary innate immune responses to LPS, and (4) contributes to innate-adaptive immune system cross-talk. PMID:21132467
Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind.
Sherman, Irwin W; Eda, Shigetoshi; Winograd, Enrique
2003-08-01
Infected erythrocytes containing the more mature stages of the human malaria Plasmodium falciparum may adhere to endothelial cells and uninfected red cells. These phenomena, called sequestration and rosetting, respectively, are involved in both host pathogenesis and parasite survival. This review provides a critical summary of recent advances in the characterization of the molecules of the infected red blood cell involved in adhesion, i.e. parasite-encoded molecules (PfEMP1, MESA, rifins, stevor, clag 9, histidine-rich protein), a modified host membrane protein (band 3) and exofacial exposure of phosphatidylserine, as well as receptors on the endothelium, i.e. thrombospondin, CD36, ICAM-1 (intercellular adhesion molecule), and chondroitin sulfate.
Studies of the Interaction of Human Malaria Parasites with the Metabolism of the Host Red Cell.
1977-06-15
thalassemia trait have significantly lower levels of ATP per red cell than individuals who do not have thalassemia trait. We confirmed this in Sardinia and...it raises the interesting possibility that the protective effect of thalassemia may be due to a major genetic modifying influence on levels of ATP. C
Methods for increasing production of 3-methyl-2-butenol using fusion proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Howard; Keasling, Jay D.
The present invention relates to methods and compositions for increasing production of 3-methyl-2-butenol in a de novo synthetic pathway in a genetically modified host cell using isopentenyl disphosphate (IPP) as a substrate.
Rodent Plasmodium-infected red blood cells: imaging their fates and interactions within their hosts.
Claser, Carla; Malleret, Benoit; Peng, Kaitian; Bakocevic, Nadja; Gun, Sin Yee; Russell, Bruce; Ng, Lai Guan; Rénia, Laurent
2014-02-01
Malaria, a disease caused by the Plasmodium parasite, remains one of the most deadly infectious diseases known to mankind. The parasite has a complex life cycle, of which only the erythrocytic stage is responsible for the diverse pathologies induced during infection. To date, the disease mechanisms that underlie these pathologies are still poorly understood. In the case of infections caused by Plasmodium falciparum, the species responsible for most malaria related deaths, pathogenesis is thought to be due to the sequestration of infected red blood cells (IRBCs) in deep tissues. Other human and rodent malaria parasite species are also known to exhibit sequestration. Here, we review the different techniques that allow researchers to study how rodent malaria parasites modify their host cells, the distribution of IRBCs in vivo as well as the interactions between IRBCs and host tissues. © 2013. Published by Elsevier Ireland Ltd. All rights reserved.
Immune subversion by chromatin manipulation: a 'new face' of host-bacterial pathogen interaction.
Arbibe, Laurence
2008-08-01
Bacterial pathogens have evolved various strategies to avoid immune surveillance, depending of their in vivo'lifestyle'. The identification of few bacterial effectors capable to enter the nucleus and modifying chromatin structure in host raises the fascinating questions of how pathogens modulate chromatin structure and why. Chromatin is a dynamic structure that maintains the stability and accessibility of the host DNA genome to the transcription machinery. This review describes the various strategies used by pathogens to interface with host chromatin. In some cases, chromatin injury can be a strategy to take control of major cellular functions, such as the cell cycle. In other cases, manipulation of chromatin structure at specific genomic locations by modulating epigenetic information provides a way for the pathogen to impose its own transcriptional signature onto host cells. This emerging field should strongly influence our understanding of chromatin regulation at interphase nucleus and may provide invaluable openings to the control of immune gene expression in inflammatory and infectious diseases.
Morinaga, Takao; Nguyễn, Thảo Thi Thanh; Zhong, Boya; Hanazono, Michiko; Shingyoji, Masato; Sekine, Ikuo; Tada, Yuji; Tatsumi, Koichiro; Shimada, Hideaki; Hiroshima, Kenzo; Tagawa, Masatoshi
2017-11-10
Genetically modified adenoviruses (Ad) with preferential replications in tumor cells have been examined for a possible clinical applicability as an anti-cancer agent. A simple method to detect viral and cellular proteins is valuable to monitor the viral infections and to predict the Ad-mediated cytotoxicity. We used type 5 Ad in which the expression of E1A gene was activated by 5'-regulatory sequences of genes that were augmented in the expression in human tumors. The Ad were further modified to have the fiber-knob region replaced with that derived from type 35 Ad. We infected human mesothelioma cells with the fiber-replaced Ad, and sequentially examined cytotoxic processes together with an expression level of the viral E1A, hexon, and cellular cleaved caspase-3 with image cytometric and Western blot analyses. The replication-competent Ad produced cytotoxicity on mesothelioma cells. The infected cells expressed E1A and hexon 24 h after the infection and then showed cleavage of caspase-3, all of which were detected with image cytometry and Western blot analysis. Image cytometry furthermore demonstrated that increased Ad doses did not enhance an expression level of E1A and hexon in an individual cell and that caspase-3-cleaved cells were found more frequently in hexon-positive cells than in E1A-positive cells. Image cytometry thus detected these molecular changes in a sensitive manner and at a single cell level. We also showed that an image cytometric technique detected expression changes of other host cell proteins, cyclin-E and phosphorylated histone H3 at a single cell level. Image cytometry is a concise procedure to detect expression changes of Ad and host cell proteins at a single cell level, and is useful to analyze molecular events after the infection.
The Contribution of the Airway Epithelial Cell to Host Defense.
Stanke, Frauke
2015-01-01
In the context of cystic fibrosis, the epithelial cell has been characterized in terms of its ion transport capabilities. The ability of an epithelial cell to initiate CFTR-mediated chloride and bicarbonate transport has been recognized early as a means to regulate the thickness of the epithelial lining fluid and recently as a means to regulate the pH, thereby determining critically whether or not host defense proteins such as mucins are able to fold appropriately. This review describes how the epithelial cell senses the presence of pathogens and inflammatory conditions, which, in turn, facilitates the activation of CFTR and thus directly promotes pathogens clearance and innate immune defense on the surface of the epithelial cell. This paper summarizes functional data that describes the effect of cytokines, chemokines, infectious agents, and inflammatory conditions on the ion transport properties of the epithelial cell and relates these key properties to the molecular pathology of cystic fibrosis. Recent findings on the role of cystic fibrosis modifier genes that underscore the role of the epithelial ion transport in host defense and inflammation are discussed.
The Unexpected Tuners: Are LncRNAs Regulating Host Translation during Infections?
Knap, Primoz; Tebaldi, Toma; Di Leva, Francesca; Biagioli, Marta; Dalla Serra, Mauro; Viero, Gabriella
2017-01-01
Pathogenic bacteria produce powerful virulent factors, such as pore-forming toxins, that promote their survival and cause serious damage to the host. Host cells reply to membrane stresses and ionic imbalance by modifying gene expression at the epigenetic, transcriptional and translational level, to recover from the toxin attack. The fact that the majority of the human transcriptome encodes for non-coding RNAs (ncRNAs) raises the question: do host cells deploy non-coding transcripts to rapidly control the most energy-consuming process in cells—i.e., host translation—to counteract the infection? Here, we discuss the intriguing possibility that membrane-damaging toxins induce, in the host, the expression of toxin-specific long non-coding RNAs (lncRNAs), which act as sponges for other molecules, encoding small peptides or binding target mRNAs to depress their translation efficiency. Unravelling the function of host-produced lncRNAs upon bacterial infection or membrane damage requires an improved understanding of host lncRNA expression patterns, their association with polysomes and their function during this stress. This field of investigation holds a unique opportunity to reveal unpredicted scenarios and novel approaches to counteract antibiotic-resistant infections. PMID:29469820
RGDfK-Peptide Modified Alginate Scaffold for Cell Transplantation and Cardiac Neovascularization.
Sondermeijer, Hugo P; Witkowski, Piotr; Seki, Tetsunori; van der Laarse, Arnoud; Itescu, Silviu; Hardy, Mark A
2018-05-01
Cell implantation for tissue repair is a promising new therapeutic strategy. Although direct injection of cells into tissue is appealing, cell viability and retention are not very good. Cell engraftment and survival following implantation are dependent on a sufficient supply of oxygen and nutrients through functional microcirculation as well as a suitable local microenvironment for implanted cells. In this study, we describe the development of a porous, biocompatible, three-dimensional (3D) alginate scaffold covalently modified with the synthetic cyclic RGDfK (Arg-Gly-Asp-D-Phe-Lys) peptide. Cyclic RGDfK peptide is protease resistant, highly stable in aqueous solutions, and has high affinity for cellular integrins. Cyclic RGDfK-modified alginate scaffolds were generated using a novel silicone sheet sandwich technique in combination with freeze-gelation, resulting in highly porous nonimmunogenic scaffolds that promoted both human and rodent cell survival in vitro, and neoangiogenesis in vivo. Two months following implantation in abdominal rectus muscles in rats, cyclic RGDfK-modified scaffolds were fully populated by host cells, especially microvasculature without an overt immune response or fibrosis, whereas unmodified control scaffolds did not show cell ingrowth. Importantly, modified scaffolds that were seeded with human mesenchymal precursor cells and were patched to the epicardial surface of infarcted myocardium induced myocardial neoangiogenesis and significantly improved cardiac function. In summary, purified cyclic RGDfK peptide-modified 3D alginate scaffolds are biocompatible and nonimmunogenic, enhance cell viability, promote angiogenesis, and may be used as a means to deliver cells to myocardial infarct areas to improve neovascularization and cardiac function.
Advantages and applications of CAR-expressing natural killer cells
Glienke, Wolfgang; Esser, Ruth; Priesner, Christoph; Suerth, Julia D.; Schambach, Axel; Wels, Winfried S.; Grez, Manuel; Kloess, Stephan; Arseniev, Lubomir; Koehl, Ulrike
2015-01-01
In contrast to donor T cells, natural killer (NK) cells are known to mediate anti-cancer effects without the risk of inducing graft-versus-host disease (GvHD). In order to improve cytotoxicity against resistant cancer cells, auspicious efforts have been made with chimeric antigen receptor (CAR) expressing T- and NK cells. These CAR-modified cells express antigen receptors against tumor-associated surface antigens, thus redirecting the effector cells and enhancing tumor-specific immunosurveillance. However, many cancer antigens are also expressed on healthy tissues, potentially leading to off tumor/on target toxicity by CAR-engineered cells. In order to control such potentially severe side effects, the insertion of suicide genes into CAR-modified effectors can provide a means for efficient depletion of these cells. While CAR-expressing T cells have entered successfully clinical trials, experience with CAR-engineered NK cells is mainly restricted to pre-clinical investigations and predominantly to NK cell lines. In this review we summarize the data on CAR expressing NK cells focusing on the possible advantage using these short-lived effector cells and discuss the necessity of suicide switches. Furthermore, we address the compliance of such modified NK cells with regulatory requirements as a new field in cellular immunotherapy. PMID:25729364
An avian cell line designed for production of highly attenuated viruses.
Jordan, Ingo; Vos, Ad; Beilfuss, Stefanie; Neubert, Andreas; Breul, Sabine; Sandig, Volker
2009-01-29
Several viral vaccines, including highly promising vectors such as modified vaccinia Ankara (MVA), are produced on chicken embryo fibroblasts. Dependence on primary cells complicates production especially in large vaccination programs. With primary cells it is also not possible to create packaging lines for replication-deficient vectors that are adapted to proliferation in an avian host. To obviate requirement for primary cells permanent lines from specific tissues of muscovy duck were derived (AGE1.CR, CS, and CA) and further modified: we demonstrate that stable expression of the structural gene pIX from human adenovirus increases titers for unrelated poxvirus in the avian cells. This augmentation appears to be mediated via induction of heat shock and thus provides a novel cellular substrate that may allow further attenuation of vaccine strains.
2017-01-01
Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M. persicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. PMID:28100451
Production of foot-and-mouth disease virus capsid proteins by the TEV protease.
Puckette, Michael; Smith, Justin D; Gabbert, Lindsay; Schutta, Christopher; Barrera, José; Clark, Benjamin A; Neilan, John G; Rasmussen, Max
2018-06-10
Protective immunity to viral pathogens often includes production of neutralizing antibodies to virus capsid proteins. Many viruses produce capsid proteins by expressing a precursor polyprotein and related protease from a single open reading frame. The foot-and-mouth disease virus (FMDV) expresses a 3C protease (3Cpro) that cleaves a P1 polyprotein intermediate into individual capsid proteins, but the FMDV 3Cpro also degrades many host cell proteins and reduces the viability of host cells, including subunit vaccine production cells. To overcome the limitations of using the a wild-type 3Cpro in FMDV subunit vaccine expression systems, we altered the protease restriction sequences within a FMDV P1 polyprotein to enable production of FMDV capsid proteins by the Tobacco Etch Virus NIa protease (TEVpro). Separate TEVpro and modified FMDV P1 proteins were produced from a single open reading frame by an intervening FMDV 2A sequence. The modified FMDV P1 polyprotein was successfully processed by the TEVpro in both mammalian and bacterial cells. More broadly, this method of polyprotein production and processing may be adapted to other recombinant expression systems, especially plant-based expression. Published by Elsevier B.V.
Genetically modified T cells in cancer therapy: opportunities and challenges
Sharpe, Michaela; Mount, Natalie
2015-01-01
Tumours use many strategies to evade the host immune response, including downregulation or weak immunogenicity of target antigens and creation of an immune-suppressive tumour environment. T cells play a key role in cell-mediated immunity and, recently, strategies to genetically modify T cells either through altering the specificity of the T cell receptor (TCR) or through introducing antibody-like recognition in chimeric antigen receptors (CARs) have made substantial advances. The potential of these approaches has been demonstrated in particular by the successful use of genetically modified T cells to treat B cell haematological malignancies in clinical trials. This clinical success is reflected in the growing number of strategic partnerships in this area that have attracted a high level of investment and involve large pharmaceutical organisations. Although our understanding of the factors that influence the safety and efficacy of these therapies has increased, challenges for bringing genetically modified T-cell immunotherapy to many patients with different tumour types remain. These challenges range from the selection of antigen targets and dealing with regulatory and safety issues to successfully navigating the routes to commercial development. However, the encouraging clinical data, the progress in the scientific understanding of tumour immunology and the improvements in the manufacture of cell products are all advancing the clinical translation of these important cellular immunotherapies. PMID:26035842
Nocardia species: host-parasite relationships.
Beaman, B L; Beaman, L
1994-01-01
The nocardiae are bacteria belonging to the aerobic actinomycetes. They are an important part of the normal soil microflora worldwide. The type species, Nocardia asteroides, and N. brasiliensis, N. farcinica, N. otitidiscaviarum, N. nova, and N. transvalensis cause a variety of diseases in both normal and immunocompromised humans and animals. The mechanisms of pathogenesis are complex, not fully understood, and include the capacity to evade or neutralize the myriad microbicidal activities of the host. The relative virulence of N. asteroides correlates with the ability to inhibit phagosome-lysosome fusion in phagocytes; to neutralize phagosomal acidification; to detoxify the microbicidal products of oxidative metabolism; to modify phagocyte function; to grow within phagocytic cells; and to attach to, penetrate, and grow within host cells. Both activated macrophages and immunologically specific T lymphocytes constitute the major mechanisms for host resistance to nocardial infection, whereas B lymphocytes and humoral immunity do not appear to be as important in protecting the host. Thus, the nocardiae are facultative intracellular pathogens that can persist within the host, probably in a cryptic form (L-form), for life. Silent invasion of brain cells by some Nocardia strains can induce neurodegeneration in experimental animals; however, the role of nocardiae in neurodegenerative diseases in humans needs to be investigated. Images PMID:8055469
Greasy tactics in the plant-pathogen molecular arms race.
Boyle, Patrick C; Martin, Gregory B
2015-03-01
The modification of proteins by the attachment of fatty acids is a targeting tactic involved in mechanisms of both plant immunity and bacterial pathogenesis. The plant plasma membrane (PM) is a key battleground in the war against disease-causing microbes. This membrane is armed with an array of sensor proteins that function as a surveillance system to detect invading pathogens. Several of these sensor proteins are directed to the plasma membrane through the covalent addition of fatty acids, a process termed fatty acylation. Phytopathogens secrete effector proteins into the plant cell to subvert these surveillance mechanisms, rendering the host susceptible to infection. The targeting of effectors to specific locales within plant cells, particularly the internal face of the host PM, is critical for their virulence function. Several bacterial effectors hijack the host fatty acylation machinery to be modified and directed to this contested locale. To find and fight these fatty acylated effectors the plant leverages lipid-modified intracellular sensors. This review provides examples featuring how fatty acylation is a battle tactic used by both combatants in the molecular arms race between plants and pathogens. Also highlighted is the exploitation of a specific form of host-mediated fatty acid modification, which appears to be exclusively employed by phytopathogenic effector proteins. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Imaging enhancement of malignancy by cyclophosphamide: surprising chemotherapy opposite effects
NASA Astrophysics Data System (ADS)
Yamauchi, Kensuke; Yang, Meng; Hayashi, Katsuhiro; Jiang, Ping; Xu, Mingxu; Yamamoto, Norio; Tsuchiya, Hiroyuki; Tomita, Katsuro; Moossa, A. R.; Bouvet, Michael; Hoffman, Robert M.
2008-02-01
Although side effects of cancer chemotherapy are well known, "opposite effects" of chemotherapy which enhance the malignancy of the treated cancer are not well understood. We have observed a number of steps of malignancy that are enhanced by chemotherapy pre-treatment of mice before transplantation of human tumor cells. The induction of intravascular proliferation, extravasation, and colony formation by cancer cells, critical steps of metastasis was enhanced by pretreatment of host mice with the commonly-used chemotherapy drug cyclophosphamide. Cyclophosphamide appears to interfere with a host process that inhibits intravascular proliferation, extravasation, and extravascular colony formation by at least some tumor cells. Cyclophosphamide does not directly affect the cancer cells since cyclophosphamide has been cleared by the time the cancer cells were injected. Without cyclophosphamide pretreatment, human colon cancer cells died quickly after injection in the portal vein of nude mice. Extensive clasmocytosis (destruction of the cytoplasm) of the cancer cells occurred within 6 hours. The number of apoptotic cells rapidly increased within the portal vein within 12 hours of injection. However, when the host mice were pretreated with cyclophosphamide, the cancer cells survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the cancer cells. This review describes an important unexpected "opposite effects" of chemotherapy that enhances critical steps in malignancy rather than inhibiting them, suggesting that certain current approaches to cancer chemotherapy should be modified.
Immune Centroids Over-Sampling Method for Multi-Class Classification
2015-05-22
recognize to specific antigens . The response of a receptor to an antigen can activate its hosting B-cell. Activated B-cell then proliferates and...modifying N.K. Jerne’s theory. The theory states that in a pre-existing group of lympho- cytes ( specifically B cells), a specific antigen only...the clusters of each small class, which have high data density, called global immune centroids over-sampling (denoted as Global-IC). Specifically
Jacobi, Ashley M; Rettig, Garrett R; Turk, Rolf; Collingwood, Michael A; Zeiner, Sarah A; Quadros, Rolen M; Harms, Donald W; Bonthuis, Paul J; Gregg, Christopher; Ohtsuka, Masato; Gurumurthy, Channabasavaiah B; Behlke, Mark A
2017-05-15
Genome editing using the CRISPR/Cas9 system requires the presence of guide RNAs bound to the Cas9 endonuclease as a ribonucleoprotein (RNP) complex in cells, which cleaves the host cell genome at sites specified by the guide RNAs. New genetic material may be introduced during repair of the double-stranded break via homology dependent repair (HDR) if suitable DNA templates are delivered with the CRISPR components. Early methods used plasmid or viral vectors to make these components in the host cell, however newer approaches using recombinant Cas9 protein with synthetic guide RNAs introduced directly as an RNP complex into cells shows faster onset of action with fewer off-target effects. This approach also enables use of chemically modified synthetic guide RNAs that have improved nuclease stability and reduces the risk of triggering an innate immune response in the host cell. This article provides detailed methods for genome editing using the RNP approach with synthetic guide RNAs using lipofection or electroporation in mammalian cells or using microinjection in murine zygotes, with or without addition of a single-stranded HDR template DNA. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Suliman, Salwa; Sun, Yang; Pedersen, Torbjorn O; Xue, Ying; Nickel, Joachim; Waag, Thilo; Finne-Wistrand, Anna; Steinmüller-Nethl, Doris; Krueger, Anke; Costea, Daniela E; Mustafa, Kamal
2016-03-01
The aim is to evaluate the effect of modifying poly[(l-lactide)-co-(ε-caprolactone)] scaffolds (PLCL) with nanodiamonds (nDP) or with nDP+physisorbed BMP-2 (nDP+BMP-2) on in vivo host tissue response and degradation. The scaffolds are implanted subcutaneously in Balb/c mice and retrieved after 1, 8, and 27 weeks. Molecular weight analysis shows that modified scaffolds degrade faster than the unmodified. Gene analysis at week 1 shows highest expression of proinflammatory markers around nDP scaffolds; although the presence of inflammatory cells and foreign body giant cells is more prominent around the PLCL. Tissue regeneration markers are highly expressed in the nDP+BMP-2 scaffolds at week 8. A fibrous capsule is detectable by week 8, thinnest around nDP scaffolds and at week 27 thickest around PLCL scaffolds. mRNA levels of ALP, COL1α2, and ANGPT1 are significantly upregulating in the nDP+BMP-2 scaffolds at week 1 with ectopic bone seen at week 8. Even when almost 90% of the scaffold is degraded at week 27, nDP are observable at implantation areas without adverse effects. In conclusion, modifying PLCL scaffolds with nDP does not aggravate the host response and physisorbed BMP-2 delivery attenuates inflammation while lowering the dose of BMP-2 to a relatively safe and economical level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Production and first-in-man use of T cells engineered to express a HSVTK-CD34 sort-suicide gene.
Zhan, Hong; Gilmour, Kimberly; Chan, Lucas; Farzaneh, Farzin; McNicol, Anne Marie; Xu, Jin-Hua; Adams, Stuart; Fehse, Boris; Veys, Paul; Thrasher, Adrian; Gaspar, Hubert; Qasim, Waseem
2013-01-01
Suicide gene modified donor T cells can improve immune reconstitution after allogeneic haematopoietic stem cell transplantation (SCT), but can be eliminated in the event of graft versus host disease (GVHD) through the administration of prodrug. Here we report the production and first-in-man use of mismatched donor T cells modified with a gamma-retroviral vector expressing a herpes simplex thymidine kinase (HSVTK):truncated CD34 (tCD34) suicide gene/magnetic selection marker protein. A stable packaging cell line was established to produce clinical grade vector pseudotyped with the Gibbon Ape Leukaemia Virus (GALV). T cells were transduced in a closed bag system following activation with anti-CD3/CD28 beads, and enriched on the basis of CD34 expression. Engineered cells were administered in two escalating doses to three children receiving T-depleted, CD34 stem cell selected, mismatched allogeneic grafts. All patients had pre-existing viral infections and received chemotherapy conditioning without serotherapy. In all three subjects cell therapy was tolerated without acute toxicity or the development of acute GVHD. Circulating gene modified T cells were detectable by flow cytometry and by molecular tracking in all three subjects. There was resolution of virus infections, concordant with detectable antigen-specific T cell responses and gene modified cells persisted for over 12 months. These findings highlight the suitability of tCD34 as a GMP compliant selection marker and demonstrate the feasibility, safety and immunological potential of HSVTK-tCD34 suicide gene modified donor T cells. ClinicalTrials.gov NCT01204502
Development of Cell Models as a Basis for Bioreactor Design for Genetically Modified Bacteria
1986-10-30
of future behavior based on specifying the current state vector . Generally a total population greater than 10,000 is sufficient to allow treatment of...specifying the current state vector (essentially values for all variables in the model). Deterministic models become increasingly valid as the number of...host I A) and therein PARASItIS converts the host’s biomaterial or activities into its own + A and B are in physical contact. SYMBIOSIS (or perhaps Oi
Reconstruction of the temporal signaling network in Salmonella-infected human cells.
Budak, Gungor; Eren Ozsoy, Oyku; Aydin Son, Yesim; Can, Tolga; Tuncbag, Nurcan
2015-01-01
Salmonella enterica is a bacterial pathogen that usually infects its host through food sources. Translocation of the pathogen proteins into the host cells leads to changes in the signaling mechanism either by activating or inhibiting the host proteins. Given that the bacterial infection modifies the response network of the host, a more coherent view of the underlying biological processes and the signaling networks can be obtained by using a network modeling approach based on the reverse engineering principles. In this work, we have used a published temporal phosphoproteomic dataset of Salmonella-infected human cells and reconstructed the temporal signaling network of the human host by integrating the interactome and the phosphoproteomic dataset. We have combined two well-established network modeling frameworks, the Prize-collecting Steiner Forest (PCSF) approach and the Integer Linear Programming (ILP) based edge inference approach. The resulting network conserves the information on temporality, direction of interactions, while revealing hidden entities in the signaling, such as the SNARE binding, mTOR signaling, immune response, cytoskeleton organization, and apoptosis pathways. Targets of the Salmonella effectors in the host cells such as CDC42, RHOA, 14-3-3δ, Syntaxin family, Oxysterol-binding proteins were included in the reconstructed signaling network although they were not present in the initial phosphoproteomic data. We believe that integrated approaches, such as the one presented here, have a high potential for the identification of clinical targets in infectious diseases, especially in the Salmonella infections.
An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.
Rodriguez, Patricia A; Escudero-Martinez, Carmen; Bos, Jorunn I B
2017-03-01
Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M persicae -host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.
Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors.
De Jesus, Maria; Wurm, Florian M
2011-06-01
Mammalian cells in bioreactors as production host are the focus of this review. We wish to briefly describe today's technical status and to highlight emerging trends in the manufacture of recombinant therapeutic proteins, focusing on Chinese hamster ovary (CHO) cells. CHO cells are the manufacturing host system of choice for more than 70% of protein pharmaceuticals on the market [21]. The current global capacity to grow mammalian cells in bioreactors stands at about 0.5 million liters, whereby the largest vessels can have a working volume of about 20,000l. We are focusing in this article on the upstream part of protein manufacturing. Over the past 25 years, volumetric yields for recombinant cell lines have increased about 20-fold mainly as the result of improvements in media and bioprocess design. Future yield increases are expected to come from improved gene delivery methods, from improved, possibly genetically modified host systems, and from further improved bioprocesses in bioreactors. Other emerging trends in protein manufacturing that are discussed include the use of disposal bioreactors and transient gene expression. We specifically highlight here current research in our own laboratories. Copyright © 2011 Elsevier B.V. All rights reserved.
Andritschke, Daniel; Dilling, Sabrina; Emmenlauer, Mario; Welz, Tobias; Schmich, Fabian; Misselwitz, Benjamin; Rämö, Pauli; Rottner, Klemens; Kerkhoff, Eugen; Wada, Teiji; Penninger, Josef M.; Beerenwinkel, Niko; Horvath, Peter; Dehio, Christoph; Hardt, Wolf-Dietrich
2016-01-01
Salmonella Typhimurium (S. Tm) is a leading cause of diarrhea. The disease is triggered by pathogen invasion into the gut epithelium. Invasion is attributed to the SPI-1 type 3 secretion system (T1). T1 injects effector proteins into epithelial cells and thereby elicits rearrangements of the host cellular actin cytoskeleton and pathogen invasion. The T1 effector proteins SopE, SopB, SopE2 and SipA are contributing to this. However, the host cell factors contributing to invasion are still not completely understood. To address this question comprehensively, we used Hela tissue culture cells, a genome-wide siRNA library, a modified gentamicin protection assay and S. TmSipA, a sopBsopE2sopE mutant which strongly relies on the T1 effector protein SipA to invade host cells. We found that S. TmSipA invasion does not elicit membrane ruffles, nor promote the entry of non-invasive bacteria "in trans". However, SipA-mediated infection involved the SPIRE family of actin nucleators, besides well-established host cell factors (WRC, ARP2/3, RhoGTPases, COPI). Stage-specific follow-up assays and knockout fibroblasts indicated that SPIRE1 and SPIRE2 are involved in different steps of the S. Tm infection process. Whereas SPIRE1 interferes with bacterial binding, SPIRE2 influences intracellular replication of S. Tm. Hence, these two proteins might fulfill non-redundant functions in the pathogen-host interaction. The lack of co-localization hints to a short, direct interaction between S. Tm and SPIRE proteins or to an indirect effect. PMID:27627128
Asano, Kazunobu; Wu, Zhiliang; Srinontong, Piyarat; Ikeda, Takahide; Nagano, Isao; Morita, Hirokuyi
2016-01-01
Infectious microorganisms often modify host immunity to escape from immune elimination. Trichinella is a unique nematode of the helminth family, whose members parasitize the muscle cells inside the host without robust eliminative reactions. There are several species of Trichinella; some develop in muscle cells that become encapsulated (e.g., Trichinella spiralis) and others in cells that do not encapsulate (e.g., Trichinella pseudospiralis). It has already been established that Trichinella infection affects host immune responses in several experimental immune diseases in animal models; however, most of those studies were done using T. spiralis infection. As host immune responses to T. spiralis and T. pseudospiralis infections have been reported to be different, it is necessary to clarify how T. pseudospiralis infection influences the host immune responses. In this study, we investigated the influence on host humoral immunity in T. pseudospiralis-infected mice. We demonstrated that T. pseudospiralis infection decreased antigen-specific IgG2a and IgG2b antibody (Ab) production in mice immunized with a model antigen. This selective decrease in gamma interferon (IFN-γ)-dependent Ab production was not due to a decrease in IFN-γ production, and we instead found impaired follicular helper T (Tfh) cell differentiation. The affinity maturation of antigen-specific Ab tended to be delayed but was not significant in T. pseudospiralis-infected mice. We also observed that CD11b+ spleen cells in T. pseudospiralis-infected mice expressed CD206 and PD-L2, the phenotype of which was M2 macrophages with weak production of interleukin-6 (IL-6), possibly resulting in impaired Tfh differentiation. Taken together, our results indicate that nonencapsulated Trichinella infection induces selective dampening in humoral immunity with the suppression of Tfh differentiation. PMID:27736779
Gu, Haidong
2016-01-01
Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that establishes latent infection in ganglia neurons. Its unique life cycle requires a balanced “conquer and compromise” strategy to deal with the host anti-viral defenses. One of HSV-1 α (immediate early) gene products, infected cell protein 0 (ICP0), is a multifunctional protein that interacts with and modulates a wide range of cellular defensive pathways. These pathways may locate in different cell compartments, which then migrate or exchange factors upon stimulation, for the purpose of a concerted and effective defense. ICP0 is able to simultaneously attack multiple host pathways by either degrading key restrictive factors or modifying repressive complexes. This is a viral protein that contains an E3 ubiquitin ligase, translocates among different cell compartments and interacts with major defensive complexes. The multiple functional domains of ICP0 can work independently and at the same time coordinate with each other. Dissecting the functional domains of ICP0 and delineating the coordination of these domains will help us understand HSV-1 pathogenicity as well as host defense mechanisms. This article focuses on describing individual ICP0 domains, their biochemical properties and their implication in HSV-1 infection. By putting individual domain functions back into the picture of host anti-viral defense network, this review seeks to elaborate the complex interactions between HSV-1 and its host. PMID:26870669
Epidemiological studies demonstrate an association between increased levels of ambient air pollution particles and human morbidity and mortality. Production of oxidants, either directly by the air pollution particles or by the host response to the particles, appears to be fundame...
Nε-Fatty acylation of Rho GTPases by a MARTX toxin effector.
Zhou, Yan; Huang, Chunfeng; Yin, Li; Wan, Muyang; Wang, Xiaofei; Li, Lin; Liu, Yanhua; Wang, Zhao; Fu, Panhan; Zhang, Ni; Chen, She; Liu, Xiaoyun; Shao, Feng; Zhu, Yongqun
2017-10-27
The multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are a family of large toxins that are extensively distributed in bacterial pathogens. MARTX toxins are autocatalytically cleaved to multiple effector domains, which are released into host cells to modulate the host signaling pathways. The Rho guanosine triphosphatase (GTPase) inactivation domain (RID), a conserved effector domain of MARTX toxins, is implicated in cell rounding by disrupting the host actin cytoskeleton. We found that the RID is an N ε -fatty acyltransferase that covalently modifies the lysine residues in the C-terminal polybasic region of Rho GTPases. The resulting fatty acylation inhibited Rho GTPases and disrupted Rho GTPase-mediated signaling in the host. Thus, RID can mediate the lysine N ε -fatty acylation of mammalian proteins and represents a family of toxins that harbor N-fatty acyltransferase activities in bacterial pathogens. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Nogueira, Jeane de Souza; Canto, Fábio Barrozo do; Nunes, Caroline Fraga Cabral Gomes; Vianna, Pedro Henrique Oliveira; Paiva, Luciana de Souza; Nóbrega, Alberto; Bellio, Maria; Fucs, Rita
2016-02-01
CD4(+) Foxp3(+) regulatory T (Treg) cells are necessary for the maintenance of self-tolerance and T-cell homeostasis. This population is kept at stable frequencies in secondary lymphoid organs for the majority of the lifetime, despite permanent thymic emigration or in the face of thymic involution. Continuous competition is expected to occur between recently thymus-emigrated and resident Treg cells (either natural or post-thymically induced). In the present work, we analysed the renewal dynamics of Treg cells compared with CD4(+) Foxp3- conventional T cells (Tconv), using protocols of single or successive T-cell transfers into syngeneic euthymic or lymphopenic (nu/nu or RAG2(-/-)) mice, respectively. Our results show a higher turnover for Treg cells in the peripheral compartment, compared with Tconv cells, when B cell-sufficient euthymic or nude hosts are studied. This increased renewal within the Treg pool, shown by the greater replacement of resident Treg cells by donor counterparts, correlates with augmented rates of proliferation and is not modified following temporary environmental perturbations induced by inflammatory state or microbiota alterations. Notably, the preferential substitution of Treg lymphocytes was not observed in RAG2(-/-) hosts. We showed that limited B-cell replenishment in the RAG2(-/-) hosts decisively contributed to the altered peripheral T-cell homeostasis. Accordingly, weekly transfers of B cells to RAG2(-/-) hosts rescued the preferential substitution of Treg lymphocytes. Our study discloses a new aspect of T-cell homeostasis that depends on the presence of B lymphocytes to regulate the relative incorporation of recently arrived Treg and Tconv cells in the peripheral compartment. © 2015 John Wiley & Sons Ltd.
Ploegh, Hidde L.
2012-01-01
The influenza virus uses the hemagglutinin (HA) and neuraminidase (NA) glycoproteins to interact with and infect host cells. While biochemical and microscopic methods allow examination of the early steps in flu infection, the genesis of progeny virions has been more difficult to follow, mainly because of difficulties inherent in fluorescent labeling of flu proteins in a manner compatible with live cell imaging. We here apply sortagging as a chemoenzymatic approach to label genetically modified but infectious flu and track the flu glycoproteins during the course of infection. This method cleanly distinguishes influenza glycoproteins from host glycoproteins and so can be used to assess the behavior of HA or NA biochemically and to observe the flu glycoproteins directly by live cell imaging. PMID:22457626
Chiu, Mei-Wui; Shih, Hsiu-Ming; Yang, Tsung-Han; Yang, Yun-Liang
2007-05-01
Dengue viruses are mosquito-borne flaviviruses and may cause the life-threatening dengue hemorrhagic fever and dengue shock syndrome. Its envelope protein is responsible mainly for the virus attachment and entry to host cells. To identify the human cellular proteins interacting with the envelope protein of dengue virus serotype 2 inside host cells, we have performed a screening with the yeast-two-hybrid-based "Functional Yeast Array". Interestingly, the small ubiquitin-like modifier-1 conjugating enzyme 9 protein, modulating cellular processes such as those regulating signal transduction and cell growth, was one of the candidates interacting with the dengue virus envelope protein. With co-precipitation assay, we have demonstrated that it indeed could interact directly with the Ubc9 protein. Site-directed mutagenesis has demonstrated that Ubc9 might interact with the E protein via amino acid residues K51 and K241. Furthermore, immunofluorescence microscopy has shown that the DV2E-EGFP proteins tended to progress toward the nuclear membrane and co-localized with Flag-Ubc9 proteins around the nuclear membrane in the cytoplasmic side, and DV2E-EGFP also shifted the distribution of Flag-Ubc9 from evenly in the nucleus toward concentrating around the nuclear membrane in the nucleic side. In addition, over-expression of Ubc9 could reduce the plaque formation of the dengue virus in mammalian cells. This is the first report that DV envelope proteins can interact with the protein of sumoylation system and Ubc9 may involve in the host defense system to prevent virus propagation.
SUMO1 depletion prevents lipid droplet accumulation and HCV replication.
Akil, Abdellah; Wedeh, Ghaith; Zahid Mustafa, Mohammad; Gassama-Diagne, Ama
2016-01-01
Infection by hepatitis C virus (HCV) is a major public-health problem. Chronic infection often leads to cirrhosis, steatosis, and hepatocellular carcinoma. The life cycle of HCV depends on the host cell machinery and involves intimate interaction between viral and host proteins. However, the role of host proteins in the life cycle of HCV remains poorly understood. Here, we identify the small ubiquitin-related modifier (SUMO1) as a key host factor required for HCV replication. We performed a series of cell biology and biochemistry experiments using the HCV JFH-1 (Japanese fulminate hepatitis 1) genotype 2a strain, which produces infectious particles and recapitulates all the steps of the HCV life cycle. We observed that SUMO1 is upregulated in Huh7.5 infected cells. Reciprocally, SUMO1 was found to regulate the expression of viral core protein. Moreover, knockdown of SUMO1 using specific siRNA influenced the accumulation of lipid droplets and reduced HCV replication as measured by qRT-PCR. Thus, we identify SUMO1 as a key host factor required for HCV replication. To our knowledge, this is the first report showing that SUMO1 regulates lipid droplets in the context of viral infection. Our report provides a meaningful insight into how HCV replicates and interacts with host proteins and is of significant importance for the field of HCV and RNA viruses.
Purification and proteomics of pathogen-modified vacuoles and membranes
Herweg, Jo-Ana; Hansmeier, Nicole; Otto, Andreas; Geffken, Anna C.; Subbarayal, Prema; Prusty, Bhupesh K.; Becher, Dörte; Hensel, Michael; Schaible, Ulrich E.; Rudel, Thomas; Hilbi, Hubert
2015-01-01
Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation. PMID:26082896
A type III effector antagonizes death receptor signalling during bacterial gut infection.
Pearson, Jaclyn S; Giogha, Cristina; Ong, Sze Ying; Kennedy, Catherine L; Kelly, Michelle; Robinson, Keith S; Lung, Tania Wong Fok; Mansell, Ashley; Riedmaier, Patrice; Oates, Clare V L; Zaid, Ali; Mühlen, Sabrina; Crepin, Valerie F; Marches, Olivier; Ang, Ching-Seng; Williamson, Nicholas A; O'Reilly, Lorraine A; Bankovacki, Aleksandra; Nachbur, Ueli; Infusini, Giuseppe; Webb, Andrew I; Silke, John; Strasser, Andreas; Frankel, Gad; Hartland, Elizabeth L
2013-09-12
Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonize the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic (EPEC and EHEC, respectively) Escherichia coli use a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonization and interfere with antimicrobial host responses. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death-domain-containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death-inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death-receptor-induced apoptosis. This inhibition depended on the N-acetylglucosamine transferase activity of NleB1, which specifically modified Arg 117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.
Functional characterization of CLE peptides from a plant-parasitic nematode Globodera rostochiensis
USDA-ARS?s Scientific Manuscript database
Plant CLAVATA3/ESR (CLE) proteins are a large family of secreted peptide ligands that play important roles in plant growth and development. Recent evidence suggests that plant-parasitic cyst nematodes secrete ligand mimics of plant CLE peptides to modify selected host root cells into multinucleate f...
Fusion proteins useful for producing pinene
Peralta-Yahya, Pamela P.; Keasling, Jay D
2016-06-28
The present invention provides for a modified host cell comprising a heterologous pinene synthase (PS), or enzymatically active fragment or variant thereof, and optionally a geranyl pyrophosphate synthase (GPPS), or enzymatically active fragment or variant thereof, or a fusion protein comprising: (a) a PS and (b) a GPPS linked by a linker.
Goldman, David L; Vicencio, Alfin G
2012-01-01
Chitin, a polymer of N-acetylglucosamine, is an essential component of the fungal cell wall. Chitosan, a deacetylated form of chitin, is also important in maintaining cell wall integrity and is essential for Cryptococcus neoformans virulence. In their article, Gilbert et al. [N. M. Gilbert, L. G. Baker, C. A. Specht, and J. K. Lodge, mBio 3(1):e00007-12, 2012] demonstrate that the enzyme responsible for chitosan synthesis, chitin deacetylase (CDA), is differentially attached to the cell membrane and wall. Bioactivity is localized to the cell membrane, where it is covalently linked via a glycosylphosphatidylinositol (GPI) anchor. Findings from this study significantly enhance our understanding of cryptococcal cell wall biology. Besides the role of chitin in supporting structural stability, chitin and host enzymes with chitinase activity have an important role in host defense and modifying the inflammatory response. Thus, chitin appears to provide a link between the fungus and host that involves both innate and adaptive immune responses. Recently, there has been increased attention to the role of chitinases in the pathogenesis of allergic inflammation, especially asthma. We review these findings and explore the possible connection between fungal infections, the induction of chitinases, and asthma.
Genome-wide in vivo screen identifies novel host regulators of metastatic colonization.
van der Weyden, Louise; Arends, Mark J; Campbell, Andrew D; Bald, Tobias; Wardle-Jones, Hannah; Griggs, Nicola; Velasco-Herrera, Martin Del Castillo; Tüting, Thomas; Sansom, Owen J; Karp, Natasha A; Clare, Simon; Gleeson, Diane; Ryder, Edward; Galli, Antonella; Tuck, Elizabeth; Cambridge, Emma L; Voet, Thierry; Macaulay, Iain C; Wong, Kim; Spiegel, Sarah; Speak, Anneliese O; Adams, David J
2017-01-12
Metastasis is the leading cause of death for cancer patients. This multi-stage process requires tumour cells to survive in the circulation, extravasate at distant sites, then proliferate; it involves contributions from both the tumour cell and tumour microenvironment ('host', which includes stromal cells and the immune system). Studies suggest the early steps of the metastatic process are relatively efficient, with the post-extravasation regulation of tumour growth ('colonization') being critical in determining metastatic outcome. Here we show the results of screening 810 mutant mouse lines using an in vivo assay to identify microenvironmental regulators of metastatic colonization. We identify 23 genes that, when disrupted in mouse, modify the ability of tumour cells to establish metastatic foci, with 19 of these genes not previously demonstrated to play a role in host control of metastasis. The largest reduction in pulmonary metastasis was observed in sphingosine-1-phosphate (S1P) transporter spinster homologue 2 (Spns2)-deficient mice. We demonstrate a novel outcome of S1P-mediated regulation of lymphocyte trafficking, whereby deletion of Spns2, either globally or in a lymphatic endothelial-specific manner, creates a circulating lymphopenia and a higher percentage of effector T cells and natural killer (NK) cells present in the lung. This allows for potent tumour cell killing, and an overall decreased metastatic burden.
Altermann, Eric; Anderson, Rachel C.; McNabb, Warren C.; Moughan, Paul J.; Roy, Nicole C.
2013-01-01
Lactobacillus species can exert health promoting effects in the gastrointestinal tract (GIT) through many mechanisms, which include pathogen inhibition, maintenance of microbial balance, immunomodulation, and enhancement of the epithelial barrier function. Different species of the genus Lactobacillus can evoke different responses in the host, and not all strains of the same species can be considered beneficial. Strain variations may be related to diversity of the cell surface architecture of lactobacilli and the bacteria's ability to express certain surface components or secrete specific compounds in response to the host environment. Lactobacilli are known to modify their surface structures in response to stress factors such as bile and low pH, and these adaptations may help their survival in the face of harsh environmental conditions encountered in the GIT. In recent years, multiple cell surface-associated molecules have been implicated in the adherence of lactobacilli to the GIT lining, immunomodulation, and protective effects on intestinal epithelial barrier function. Identification of the relevant bacterial ligands and their host receptors is imperative for a better understanding of the mechanisms through which lactobacilli exert their beneficial effects on human health. PMID:23576850
Chloride-reinforced carbon nanofiber host as effective polysulfide traps in lithium-sulfur batteries
Fan, Lei; Zhuang, Houlong; Zhang, Kaihang; ...
2016-01-01
Lithium-sulfur (Li-S) battery is one of the most promising alternatives for the current state-of-art lithium-ion batteries (LIBs) due to its high theoretical energy density and lower production cost from the use of earth abundant element - sulfur. However, the commercialization of Li-S batteries has been so far limited to the cyclability and the retention of active sulfur materials. Using co-electrospinning and physical vapor deposition procedures, we created a class of chloride-carbon nanofiber composites, and studied their effectiveness on polysulfides sequestration. By trapping sulfur reduction products in the modified-cathode through both chemical and physical confinements in a conductive host, these chloride-coatedmore » cathodes are shown to remarkably suppress the polysulfide dissolution and shuttling between lithium and sulfur electrodes. We show that not only the binding energy but also the electronic conductivity of the host plays an important role on the reversibility of sulfur-based cathode upon repeated cycles. Electrochemical analysis of the chloride-modified cathodes over hundreds of cycles indicates that too strong binding of the sulfur species may lead to the decay of Coulombic efficiency. Cells containing indium chloride-modified carbon nanofiber outperform cells with other halogenated salt modifications, delivering an average specific capacity of above 1200mAh g-1 at 0.2C over 200 cycles. Once loaded with high S content, it shows stable capacity retention with only 0.019% decay per cycle from 5th to 650th cycle. It also shows stabilized cyclability and enhanced Coulombic efficiency in the absence of traditional anode stabilizer lithium nitrite.« less
Adenovirus receptors and their implications in gene delivery
Sharma, Anurag; Li, Xiaoxin; Bangari, Dinesh S.; Mittal, Suresh K.
2010-01-01
Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed. PMID:19647886
Chacon, Jessica Ann; Schutsky, Keith; Powell, Daniel J
2016-11-14
Genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers are used for the treatment of cancer due to their apoptotic effects on the aberrant cells. However, these therapies may also induce widespread changes within the immune system and cancer cells, which may enable tumors to avoid immune surveillance and escape from host anti-tumor immunity. Genomic destabilizers can induce immunogenic death of tumor cells, but also induce upregulation of immune inhibitory ligands on drug-resistant cells, resulting in tumor progression. While administration of immunomodulatory antibodies that block the interactions between inhibitory receptors on immune cells and their ligands on tumor cells can mediate cancer regression in a subset of treated patients, it is crucial to understand how genomic destabilizers alter the immune system and malignant cells, including which inhibitory molecules, receptors and/or ligands are upregulated in response to genotoxic stress. Knowledge gained in this area will aid in the rational design of trials that combine genomic destabilizers, epigenetic modifiers and immunotherapeutic agents that may be synergized to improve clinical responses and prevent tumor escape from the immune system. Our review article describes the impact genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers have on anti-tumor immunity and the tumor microenvironment. Although genomic destabilizers cause DNA damage on cancer cells, these therapies can also have diverse effects on the immune system, promote immunogenic cell death or survival and alter the cancer cell expression of immune inhibitor molecules.
CRISPR-Cas9 vectors for genome editing and host engineering in the baculovirus-insect cell system.
Mabashi-Asazuma, Hideaki; Jarvis, Donald L
2017-08-22
The baculovirus-insect cell system (BICS) has been widely used to produce many different recombinant proteins for basic research and is being used to produce several biologics approved for use in human or veterinary medicine. Early BICS were technically complex and constrained by the relatively primordial nature of insect cell protein glycosylation pathways. Since then, recombination has been used to modify baculovirus vectors-which has simplified the system-and transform insect cells, which has enhanced its protein glycosylation capabilities. Now, CRISPR-Cas9 tools for site-specific genome editing are needed to facilitate further improvements in the BICS. Thus, in this study, we used various insect U6 promoters to construct CRISPR-Cas9 vectors and assessed their utility for site-specific genome editing in two insect cell lines commonly used as hosts in the BICS. We demonstrate the use of CRISPR-Cas9 to edit an endogenous insect cell gene and alter protein glycosylation in the BICS.
NASA Astrophysics Data System (ADS)
Yang, Xiao Xi; Li, Chun Mei; Huang, Cheng Zhi
2016-01-01
Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition effect against respiratory syncytial virus (RSV) infection, giving a decrease of viral titers about two orders of magnitude at the concentration of cAgNPs under which no toxicity was found to the host cells. Mechanism investigations showed that cAgNPs could prevent RSV from infecting the host cells by inactivating the virus directly, indicating that cAgNPs are a novel promising efficient virucide for RSV.Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition effect against respiratory syncytial virus (RSV) infection, giving a decrease of viral titers about two orders of magnitude at the concentration of cAgNPs under which no toxicity was found to the host cells. Mechanism investigations showed that cAgNPs could prevent RSV from infecting the host cells by inactivating the virus directly, indicating that cAgNPs are a novel promising efficient virucide for RSV. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07918g
Núñez, José I; Molina, Nicolas; Baranowski, Eric; Domingo, Esteban; Clark, Stuart; Burman, Alison; Berryman, Stephen; Jackson, Terry; Sobrino, Francisco
2007-08-01
We report that adaptation to infect the guinea pig did not modify the capacity of foot-and-mouth disease virus (FMDV) to kill suckling mice and to cause an acute and transmissible disease in the pig, an important natural host for this pathogen. Adaptive amino acid replacements (I(248)-->T in 2C, Q(44)-->R in 3A, and L(147)-->P in VP1), selected upon serial passages of a type C FMDV isolated from swine (biological clone C-S8c1) in the guinea pig, were maintained after virus multiplication in swine and suckling mice. However, the adaptive replacement L(147)-->P, next to the integrin-binding RGD motif at the GH loop in VP1, abolished growth of the virus in different established cell lines and modified its antigenicity. In contrast, primary bovine thyroid cell cultures could be productively infected by viruses with replacement L(147)-->P, and this infection was inhibited by antibodies to alphavbeta6 and by an FMDV-derived RGD-containing peptide, suggesting that integrin alphavbeta6 may be used as a receptor for these mutants in the animal (porcine, guinea pig, and suckling mice) host. Substitution T(248)-->N in 2C was not detectable in C-S8c1 but was present in a low proportion of the guinea pig-adapted virus. This substitution became rapidly dominant in the viral population after the reintroduction of the guinea pig-adapted virus into pigs. These observations illustrate how the appearance of minority variant viruses in an unnatural host can result in the dominance of these viruses on reinfection of the original host species.
Dudczig, Stefanie; Currie, Peter D; Poggi, Lucia; Jusuf, Patricia R
2017-03-22
The genetic and technical strengths have made the zebrafish vertebrate a key model organism in which the consequences of gene manipulations can be traced in vivo throughout the rapid developmental period. Multiple processes can be studied including cell proliferation, gene expression, cell migration and morphogenesis. Importantly, the generation of chimeras through transplantations can be easily performed, allowing mosaic labeling and tracking of individual cells under the influence of the host environment. For example, by combining functional gene manipulations of the host embryo (e.g., through morpholino microinjection) and live imaging, the effects of extrinsic, cell nonautonomous signals (provided by the genetically modified environment) on individual transplanted donor cells can be assessed. Here we demonstrate how this approach is used to compare the onset of fluorescent transgene expression as a proxy for the timing of cell fate determination in different genetic host environments. In this article, we provide the protocol for microinjecting zebrafish embryos to mark donor cells and to cause gene knockdown in host embryos, a description of the transplantation technique used to generate chimeric embryos, and the protocol for preparing and running in vivo time-lapse confocal imaging of multiple embryos. In particular, performing multiposition imaging is crucial when comparing timing of events such as the onset of gene expression. This requires data collection from multiple control and experimental embryos processed simultaneously. Such an approach can easily be extended for studies of extrinsic influences in any organ or tissue of choice accessible to live imaging, provided that transplantations can be targeted easily according to established embryonic fate maps.
Cui, Jiajia; Qin, Lingfeng; Zhang, Junwei; Abrahimi, Parwiz; Li, Hong; Li, Guangxin; Tietjen, Gregory T; Tellides, George; Pober, Jordan S; Mark Saltzman, W
2017-08-04
Human endothelial cells are initiators and targets of the rejection response. Pre-operative modification of endothelial cells by small interfering RNA transfection could shape the nature of the host response post-transplantation. Ablation of endothelial cell class II major histocompatibility complex molecules by small interfering RNA targeting of class II transactivator can reduce the capacity of human endothelial cells to recruit and activate alloreactive T cells. Here, we report the development of small interfering RNA-releasing poly(amine-co-ester) nanoparticles, distinguished by their high content of a hydrophobic lactone. We show that a single transfection of small interfering RNA targeting class II transactivator attenuates major histocompatibility complex class II expression on endothelial cells for at least 4 to 6 weeks after transplantation into immunodeficient mouse hosts. Furthermore, silencing of major histocompatibility complex class II reduces allogeneic T-cell responses in vitro and in vivo. These data suggest that poly(amine-co-ester) nanoparticles, potentially administered during ex vivo normothermic machine perfusion of human organs, could be used to modify endothelial cells with a sustained effect after transplantation.The use of gene silencing techniques in the treatment of post-transplantation host rejection is not long lasting and can have systemic effects. Here, the authors utilize a nanocarrier for siRNA for treatment of arteries ex vivo prior to implantation subsequently attenuating immune reaction in vivo.
Chen, Wei-Hai; Lei, Qi; Luo, Guo-Feng; Jia, Hui-Zhen; Hong, Sheng; Liu, Yu-Xin; Cheng, Yin-Jia; Zhang, Xian-Zheng
2015-08-12
A versatile gold nanoparticle-based multifunctional nanocomposite AuNP@CD-AD-DOX/RGD was constructed flexibly via host-guest interaction for targeted cancer chemotherapy. The pH-sensitive anticancer prodrug AD-Hyd-DOX and the cancer-targeted peptide AD-PEG8-GRGDS were modified on the surface of AuNP@CD simultaneously, which endowed the resultant nanocomposite with the capability to selectively eliminate cancer cells. In vitro studies indicated that the AuNP@CD-AD-DOX/RGD nanocomposite was preferentially uptaken by cancer cells via receptor-mediated endocytosis. Subsequently, anticancer drug DOX was released rapidly upon the intracellular trigger of the acid microenvirenment of endo/lysosomes, inducing apoptosis in cancer cells. As the ideal drug nanocarrier, the multifunctional gold nanoparticles with the active targeting and controllable intracellular release ability hold the great potential in cancer therapy.
Immunomodulatory effects of exosomes produced by virus-infected cells.
Petrik, Juraj
2016-08-01
Viruses have developed a spectrum of ways to modify cellular pathways to hijack the cell machinery for the synthesis of their nucleic acid and proteins. Similarly, they use intracellular vesicular mechanisms of trafficking for their assembly and eventual release, with a number of viruses acquiring their envelope from internal or plasma cell membranes. There is an increasing number of reports on viral exploitation of cell secretome pathways to avoid recognition and stimulation of the immune response. Extracellular vesicles (EV) containing viral particles have been shown to shield viruses after exiting the host cell, in some cases challenging the boundaries between viral groups traditionally characterised as enveloped and non-enveloped. Apart from viral particles, EV can spread the virus also carrying viral genome and can modify the target cells through their cargo of virus-coded miRNAs and proteins as well as selectively packaged cellular mRNAs, miRNAs, proteins and lipids, differing in composition and quantities from the cell of origin. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Engineering microorganisms to increase ethanol production by metabolic redirection
Deng, Yu; Olson, Daniel G.; van Dijken, Johannes Pieter; Shaw, IV, Arthur J.; Argyros, Aaron; Barrett, Trisha; Caiazza, Nicky; Herring, Christopher D.; Rogers, Stephen R.; Agbogbo, Frank
2017-10-31
The present invention provides for the manipulation of carbon flux in a recombinant host cell to increase the formation of desirable products. The invention relates to cellulose-digesting organisms that have been genetically modified to allow the production of ethanol at a high yield by redirecting carbon flux at key steps of central metabolism.
Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions
Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E. S.; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S.; Lemay, Guy; Bisaillon, Martin
2016-01-01
Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection. PMID:27598998
Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions.
Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E S; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Lemay, Guy; Bisaillon, Martin
2016-01-01
Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection.
Cis-drivers and trans-drivers of bovine leukemia virus oncogenesis.
Safari, Roghaiyeh; Hamaidia, Malik; de Brogniez, Alix; Gillet, Nicolas; Willems, Luc
2017-10-01
The bovine leukemia virus (BLV) is a retrovirus inducing an asymptomatic and persistent infection in ruminants and leading in a minority of cases to the accumulation of B-lymphocytes (lymphocytosis, leukemia or lymphoma). Although the mechanisms of oncogenesis are still largely unknown, there is clear experimental evidence showing that BLV infection drastically modifies the pattern of gene expression of the host cell. This alteration of the transcriptome in infected B-lymphocytes results first, from a direct activity of viral proteins (i.e. transactivation of gene promoters, protein-protein interactions), second, from insertional mutagenesis by proviral integration (cis-activation) and third, from gene silencing by microRNAs. Expression of viral proteins stimulates a vigorous immune response that indirectly modifies gene transcription in other cell types (e.g. cytotoxic T-cells, auxiliary T-cells, macrophages). In principle, insertional mutagenesis and microRNA-associated RNA interference can modify the cell fate without inducing an antiviral immunity. Despite a tight control by the immune response, the permanent attempts of the virus to replicate ultimately induce mutations in the infected cell. Accumulation of these genomic lesions and Darwinian selection of tumor clones are predicted to lead to cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
A type III effector antagonises death receptor signalling during bacterial gut infection
Pearson, Jaclyn S; Giogha, Cristina; Ong, Sze Ying; Kennedy, Catherine L; Kelly, Michelle; Robinson, Keith S; Wong, Tania; Mansell, Ashley; Riedmaier, Patrice; Oates, Clare VL; Zaid, Ali; Mühlen, Sabrina; Crepin, Valerie F; Marches, Olivier; Ang, Ching-Seng; Williamson, Nicholas A; O’Reilly, Lorraine A; Bankovacki, Aleksandra; Nachbur, Ueli; Infusini, Giuseppe; Webb, Andrew I; Silke, John; Strasser, Andreas; Frankel, Gad; Hartland, Elizabeth L
2013-01-01
Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonise the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic E. coli (EPEC and EHEC), utilise a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonisation and interfere with antimicrobial host responses 1-3. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death domain containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death receptor induced apoptosis. This inhibition depended on the N-GlcNAc transferase activity of NleB1, which specifically modified Arg117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing (A/E) pathogens antagonise death receptor induced apoptosis of infected cells, thereby blocking a major antimicrobial host response. PMID:24025841
Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis.
Mistry, Pragnesh; Kaplan, Mariana J
2017-12-01
Nephritis is one of the most severe complications of systemic lupus erythematosus (SLE). One key characteristic of lupus nephritis (LN) is the deposition of immune complexes containing nucleic acids and/or proteins binding to nucleic acids and autoantibodies recognizing these molecules. A variety of cell death processes are implicated in the generation and externalization of modified nuclear autoantigens and in the development of LN. Among these processes, apoptosis, primary and secondary necrosis, NETosis, necroptosis, pyroptosis, and autophagy have been proposed to play roles in tissue damage and immune dysregulation. Cell death occurs in healthy individuals during conditions of homeostasis yet autoimmunity does not develop, at least in part, because of rapid clearance of dying cells. In SLE, accelerated cell death combined with a clearance deficiency may lead to the accumulation and externalization of nuclear autoantigens and to autoantibody production. In addition, specific types of cell death may modify autoantigens and alter their immunogenicity. These modified molecules may then become novel targets of the immune system and promote autoimmune responses in predisposed hosts. In this review, we examine various cell death pathways and discuss how enhanced cell death, impaired clearance, and post-translational modifications of proteins could contribute to the development of lupus nephritis. Published by Elsevier Inc.
SIALIC ACIDS AND AUTOIMMUNE DISEASE
Mahajan, Vinay S.; Pillai, Shiv
2016-01-01
summary An important underlying mechanism that contributes to autoimmunity is the loss of inhibitory signaling in the immune system. Sialic acid-recognizing Ig superfamily lectins or Siglecs are a family of cell surface proteins largely expressed in hematopoietic cells. The majority of Siglecs are inhibitory receptors expressed in immune cells that bind to sialic acid containing ligands and recruit SH2-domain containing tyrosine phosphatases to their cytoplasmic tails. They deliver inhibitory signals that can contribute to the constraining of immune cells and thus protect the host from autoimmunity. The inhibitory functions of CD22/Siglec-2 and Siglec-G and their contributions to tolerance and autoimmunity, primarily in the B lymphocyte context, are considered in some detail in this review. The relevance to autoimmunity and unregulated inflammation of modified sialic acids, enzymes that modify sialic acid, and other sialic acid binding proteins are also reviewed. PMID:26683151
History of myeloid-derived suppressor cells.
Talmadge, James E; Gabrilovich, Dmitry I
2013-10-01
Tumour-induced granulocytic hyperplasia is associated with tumour vasculogenesis and escape from immunity via T cell suppression. Initially, these myeloid cells were identified as granulocytes or monocytes; however, recent studies have revealed that this hyperplasia is associated with populations of multipotent progenitor cells that have been identified as myeloid-derived suppressor cells (MDSCs). The study of MDSCs has provided a wealth of information regarding tumour pathobiology, has extended our understanding of neoplastic progression and has modified our approaches to immune adjuvant therapy. In this Timeline article, we discuss the history of MDSCs, their influence on tumour progression and metastasis, and the crosstalk between tumour cells, MDSCs and the host macroenvironment.
Fournier, Joëlle; Imanishi, Leandro; Chabaud, Mireille; Abdou-Pavy, Iltaf; Genre, Andrea; Brichet, Lukas; Lascano, Hernán Ramiro; Muñoz, Nacira; Vayssières, Alice; Pirolles, Elodie; Brottier, Laurent; Gherbi, Hassen; Hocher, Valérie; Svistoonoff, Sergio; Barker, David G; Wall, Luis G
2018-05-23
Nitrogen-fixing filamentous Frankia colonize the root tissues of its actinorhizal host Discaria trinervis via an exclusively intercellular pathway. Here we present studies aimed at uncovering mechanisms associated with this little-researched mode of root entry, and in particular the extent to which the host plant is an active partner during this process. Detailed characterization of the expression patterns of infection-associated actinorhizal host genes has provided valuable tools to identify intercellular infection sites, thus allowing in vivo confocal microscopic studies of the early stages of Frankia colonization. The subtilisin-like serine protease gene Dt12, as well as its Casuarina glauca homolog Cg12, are specifically expressed at sites of Frankia intercellular colonization of D. trinervis outer root tissues. This is accompanied by nucleo-cytoplasmic reorganization in the adjacent host cells and major remodeling of the intercellular apoplastic compartment. These findings lead us to propose that the actinorhizal host plays a major role in modifying both the size and composition of the intercellular apoplast in order to accommodate the filamentous microsymbiont. The implications of these findings are discussed in the light of the analogies that can be made with the orchestrating role of host legumes during intracellular root hair colonization by nitrogen-fixing rhizobia. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
Pathogenesis of human papillomavirus-associated mucosal disease.
Groves, Ian J; Coleman, Nicholas
2015-03-01
Human papillomaviruses (HPVs) are a necessary cause of carcinoma of the cervix and other mucosal epithelia. Key events in high-risk HPV (HRHPV)-associated neoplastic progression include persistent infection, deregulated expression of virus early genes in basal epithelial cells and genomic instability causing secondary host genomic imbalances. There are multiple mechanisms by which deregulated virus early gene expression may be achieved. Integration of virus DNA into host chromosomes is observed in the majority of cervical squamous cell carcinomas (SCCs), although in ∼15% of cases the virus remains extrachromosomal (episomal). Interestingly, not all integration events provide a growth advantage to basal cervical epithelial cells or lead to increased levels of the virus oncogenes E6 and E7, when compared with episome-containing basal cells. The factors that provide a competitive advantage to some integrants, but not others, are complex and include virus and host contributions. Gene expression from integrated and episomal HRHPV is regulated through host epigenetic mechanisms affecting the virus long control region (LCR), which appear to be of functional importance. New approaches to treating HRHPV-associated mucosal neoplasia include knockout of integrated HRHPV DNA, depletion of virus transcripts and inhibition of virus early gene transcription through targeting or use of epigenetic modifiers. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Chacon, Jessica Ann; Schutsky, Keith; Powell, Daniel J.
2016-01-01
Genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers are used for the treatment of cancer due to their apoptotic effects on the aberrant cells. However, these therapies may also induce widespread changes within the immune system and cancer cells, which may enable tumors to avoid immune surveillance and escape from host anti-tumor immunity. Genomic destabilizers can induce immunogenic death of tumor cells, but also induce upregulation of immune inhibitory ligands on drug-resistant cells, resulting in tumor progression. While administration of immunomodulatory antibodies that block the interactions between inhibitory receptors on immune cells and their ligands on tumor cells can mediate cancer regression in a subset of treated patients, it is crucial to understand how genomic destabilizers alter the immune system and malignant cells, including which inhibitory molecules, receptors and/or ligands are upregulated in response to genotoxic stress. Knowledge gained in this area will aid in the rational design of trials that combine genomic destabilizers, epigenetic modifiers and immunotherapeutic agents that may be synergized to improve clinical responses and prevent tumor escape from the immune system. Our review article describes the impact genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers have on anti-tumor immunity and the tumor microenvironment. Although genomic destabilizers cause DNA damage on cancer cells, these therapies can also have diverse effects on the immune system, promote immunogenic cell death or survival and alter the cancer cell expression of immune inhibitor molecules. PMID:27854240
Asano, Kazunobu; Wu, Zhiliang; Srinontong, Piyarat; Ikeda, Takahide; Nagano, Isao; Morita, Hirokuyi; Maekawa, Yoichi
2016-12-01
Infectious microorganisms often modify host immunity to escape from immune elimination. Trichinella is a unique nematode of the helminth family, whose members parasitize the muscle cells inside the host without robust eliminative reactions. There are several species of Trichinella; some develop in muscle cells that become encapsulated (e.g., Trichinella spiralis) and others in cells that do not encapsulate (e.g., Trichinella pseudospiralis). It has already been established that Trichinella infection affects host immune responses in several experimental immune diseases in animal models; however, most of those studies were done using T. spiralis infection. As host immune responses to T. spiralis and T. pseudospiralis infections have been reported to be different, it is necessary to clarify how T. pseudospiralis infection influences the host immune responses. In this study, we investigated the influence on host humoral immunity in T. pseudospiralis-infected mice. We demonstrated that T. pseudospiralis infection decreased antigen-specific IgG2a and IgG2b antibody (Ab) production in mice immunized with a model antigen. This selective decrease in gamma interferon (IFN-γ)-dependent Ab production was not due to a decrease in IFN-γ production, and we instead found impaired follicular helper T (Tfh) cell differentiation. The affinity maturation of antigen-specific Ab tended to be delayed but was not significant in T. pseudospiralis-infected mice. We also observed that CD11b + spleen cells in T. pseudospiralis-infected mice expressed CD206 and PD-L2, the phenotype of which was M2 macrophages with weak production of interleukin-6 (IL-6), possibly resulting in impaired Tfh differentiation. Taken together, our results indicate that nonencapsulated Trichinella infection induces selective dampening in humoral immunity with the suppression of Tfh differentiation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Volz, A; Sutter, G
2017-01-01
Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology. © 2017 Elsevier Inc. All rights reserved.
Scavenger Receptors: Emerging Roles in Cancer Biology and Immunology
Yu, Xiaofei; Guo, Chunqing; Fisher, Paul B.; Subjeck, John R.; Wang, Xiang-Yang
2015-01-01
Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted. PMID:26216637
Hong, Jian; Wang, Wei-Bing; Zhou, Xue-Ping; Hu, Dong-Wei
2006-06-01
The alteration of ultrastructure in Pisum sativum and Vicia faba leaf cells infected with B935 isolate of BBWV 2 were investigated by electron microscopy, immunogold-labeling technique. The results showed that the membranous proliferation, virus-formed crystals and tubular structures were found in leaf cells of two hosts. At early stages of infection, the tubules containing virus-like particles associate with plasmodesmata in mesophyll cell. Immunogold particles anti-BBWV 2 were localized to the plasmodesmata modified by tubules passing through them. The membranous proliferation and virus-formed tubules were also found in the parenchyma cells, companion cells and transfer cells of vascular bundle. Some virus-like particles located within sieve tube can be labeled immunogold particles anti-BBWV 2. These suggest that BBWV 2, similar CPMV, produce tubules extending into the plasmodesmata. Virions assembled in the cytoplasm are escorted to the tubular structures through interactions with their MP and are then transported to the adjacent cell. Many 160 nm in diameter virus-formed tubules in the cytoplasm, as a special aggregate, not directly relate to cell-to-cell movement; Intact virions are long-distance sustemic transported possibly through sieve elements.
System and method for introduction and stabilization of genes in Thermus sp.
Kayser, Kevin J.; Park, Ho-Shin; Kilbane, II, John J.
2005-03-01
A method for introducing and stabilizing heterologous and recombinant genes in a thermophilic host in which a characteristic gene defining a detectable host characteristic is inactivated or deleted from the thermophilic host, resulting in a modified thermophilic host expressing an absence of the detectable host characteristic. A DNA fragment of interest is inserted into the modified thermophilic host together with an intact characteristic gene, whereby the detectable host characteristic is restored to the thermophilic host, thereby enabling detection and confirmation of successful transformation using plasmid vectors and integration of the DNA fragment into the chromosome of the thermophilic host.
Survival of Skin Graft between Transgenic Cloned Dogs and Non-Transgenic Cloned Dogs
Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Park, Jung Eun; Park, Eun Jung; Lim, Sang Hyun; Yoon, Byung Il; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun
2014-01-01
Whereas it has been assumed that genetically modified tissues or cells derived from somatic cell nuclear transfer (SCNT) should be accepted by a host of the same species, their immune compatibility has not been extensively explored. To identify acceptance of SCNT-derived cells or tissues, skin grafts were performed between cloned dogs that were identical except for their mitochondrial DNA (mtDNA) haplotypes and foreign gene. We showed here that differences in mtDNA haplotypes and genetic modification did not elicit immune responses in these dogs: 1) skin tissues from genetically-modified cloned dogs were successfully transplanted into genetically-modified cloned dogs with different mtDNA haplotype under three successive grafts over 63 days; and 2) non-transgenic cloned tissues were accepted into transgenic cloned syngeneic recipients with different mtDNA haplotypes and vice versa under two successive grafts over 63 days. In addition, expression of the inserted gene was maintained, being functional without eliciting graft rejection. In conclusion, these results show that transplanting genetically-modified tissues into normal, syngeneic or genetically-modified recipient dogs with different mtDNA haplotypes do not elicit skin graft rejection or affect expression of the inserted gene. Therefore, therapeutically valuable tissue derived from SCNT with genetic modification might be used safely in clinical applications for patients with diseased tissues. PMID:25372489
Quereda, Juan J; Meza-Torres, Jazmín; Cossart, Pascale; Pizarro-Cerdá, Javier
2017-07-04
Listeria monocytogenes is a Gram-positive food-borne pathogen that in humans may traverse the intestinal, placental and blood/brain barriers, causing gastroenteritis, abortions and meningitis. Crossing of these barriers is dependent on the bacterial ability to enter host cells, and several L. monocytogenes surface and secreted virulence factors are known to facilitate entry and the intracellular lifecycle. The study of L. monocytogenes strains associated to human listeriosis epidemics has revealed the presence of novel virulence factors. One such factor is Listeriolysin S, a thiazole/oxazole modified microcin that displays bactericidal activity and modifies the host microbiota during infection. Our recent results therefore highlight the interaction of L. monocytogenes with gut microbes as a crucial step in epidemic listeriosis. In this article, we will discuss novel implications for this family of toxins in the pathogenesis of diverse medically relevant microorganisms.
Quereda, Juan J.; Meza-Torres, Jazmín; Cossart, Pascale; Pizarro-Cerdá, Javier
2017-01-01
ABSTRACT Listeria monocytogenes is a Gram-positive food-borne pathogen that in humans may traverse the intestinal, placental and blood/brain barriers, causing gastroenteritis, abortions and meningitis. Crossing of these barriers is dependent on the bacterial ability to enter host cells, and several L. monocytogenes surface and secreted virulence factors are known to facilitate entry and the intracellular lifecycle. The study of L. monocytogenes strains associated to human listeriosis epidemics has revealed the presence of novel virulence factors. One such factor is Listeriolysin S, a thiazole/oxazole modified microcin that displays bactericidal activity and modifies the host microbiota during infection. Our recent results therefore highlight the interaction of L. monocytogenes with gut microbes as a crucial step in epidemic listeriosis. In this article, we will discuss novel implications for this family of toxins in the pathogenesis of diverse medically relevant microorganisms. PMID:28156183
Single-round selection yields a unique retroviral envelope utilizing GPR172A as its host receptor.
Mazari, Peter M; Linder-Basso, Daniela; Sarangi, Anindita; Chang, Yehchung; Roth, Monica J
2009-04-07
The recognition by a viral envelope of its cognate host-cell receptor is the initial critical step in defining the viral host-range and tissue specificity. This study combines a single-round of selection of a random envelope library with a parallel cDNA screen for receptor function to identify a distinct retroviral envelope/receptor pair. The 11-aa targeting domain of the modified feline leukemia virus envelope consists of a constrained peptide. Critical to the binding of the constrained peptide envelope to its cellular receptor are a pair of internal cysteines and an essential Trp required for maintenance of titers >10(5) lacZ staining units per milliliter. The receptor used for viral entry is the human GPR172A protein, a G-protein-coupled receptor isolated from osteosarcoma cells. The ability to generate unique envelopes capable of using tissue- or disease-specific receptors marks an advance in the development of efficient gene-therapy vectors.
Snellen, J E; Savage, D C
1978-01-01
A freeze-fracture study has provided new information about the filamentous, segmented microorganism known to live in the murine small bowel. The intracellular bodies produced by this microbe appear to arise by a modified sporogenesis so that they are enclosed in an envelopment membrane at least prior to release by the filament mother cell. At least some of the intracellular bodies divide while still within the mother cell, suggesting a reproductive role for these structures. The host epithelial membrane remains intact at the site of attachment, but does appear to have a reduced concentration of intramembrane particles. Changes in the host cytoplasm adjacent to the attachment site are documented and interpreted to be a sol-gel transformation which may stabilize the attachment socket. Images PMID:659364
Inactivation of Lactobacillus rhamnosus GG by fixation modifies its probiotic properties.
Markowicz, C; Kubiak, P; Grajek, W; Schmidt, M T
2016-01-01
Probiotics are microorganisms that have beneficial effects on the host and are safe for oral intake in a suitable dose. However, there are situations in which the administration of living microorganisms poses a risk for immunocompromised host. The objective of this study was to evaluate the influence of several fixation methods on selected biological properties of Lactobacillus rhamnosus GG that are relevant to its probiotic action. Fixation of the bacterial cells with ethanol, 2-propanol, glutaraldehyde, paraformaldehyde, and heat treatment resulted in a significant decrease of alkaline phosphatase, peroxidase, and β-galactosidase activities. Most of the fixation procedures reduced bacterial cell hydrophobicity and increased adhesion capacity. The fixation procedures resulted in a different perception of the bacterial cells by enterocytes, which was shown as changes in gene expression in enterocytes. The results show that some procedures of inactivation allow a fraction of the enzymatic activity to be maintained. The adhesion properties of the bacterial cells were enhanced, but the response of enterocytes to fixed cells was different than to live bacteria. Inactivation allows maintenance and modification of some of the properties of the bacterial cells.
Anti-tumor response with immunologically modified carbon nanotubes and phototherapy
NASA Astrophysics Data System (ADS)
Acquaviva, Joseph T.; Zhou, Feifan; Boarman, Ellen; Chen, Wei R.
2013-02-01
While successes of different cancer therapies have been achieved in various degrees a systemic immune response is needed to effectively treat late-stage, metastatic cancers, and to establish long-term tumor resistance in the patients. A novel method for combating metastatic cancers has been developed using immunologically modified carbon nanotubes in conjunction with phototherapy. Glycated chitosan (GC) is a potent immunological adjuvant capable of increasing host immune responses, including antigen presentation by activation of dendritic cells (DCs) and causing T cell proliferation. GC is also an effective surfactant for nanomaterials. By combining single-walled carbon nanotubes (SWNTs) and GC, immunologically modified carbon nanotubes (SWNT-GC) were constructed. The SWNT-GC suspension retains the enhanced light absorption properties in the near infrared (NIR) region and the ability to enter cells, which are characteristic of SWNTs. The SWNT-GC also retains the immunological properties of GC. Cellular SWNT-GC treatments increased macrophage activity, DC activation and T cell proliferation. When cellular SWNT-GC was irradiated with a laser of an appropriate wavelength, these immune activities could be enhanced. The combination of laser irradiation and SWNT-GC induced cellular toxicity in targeted tumor cells, leading to a systemic antitumor response. Immunologically modified carbon nanotubes in conjunction with phototherapy is a novel and promising method to produce a systemic immune response for the treatment of metastatic cancers.
R-Spondin1 expands Paneth cells and prevents dysbiosis induced by graft-versus-host disease
Hayase, Eiko; Nakamura, Kiminori; Noizat, Clara; Ogasawara, Reiki; Ohigashi, Hiroyuki; Sugimoto, Rina; Matsuoka, Satomi; Ara, Takahide; Yokoyama, Emi; Yamakawa, Tomohiro; Ebata, Ko; Kondo, Takeshi; Aizawa, Tomoyasu; Ogura, Yoshitoshi; Hayashi, Tetsuya; Mori, Hiroshi; Tomizuka, Kazuma; Ayabe, Tokiyoshi
2017-01-01
The intestinal microbial ecosystem is actively regulated by Paneth cell–derived antimicrobial peptides such as α-defensins. Various disorders, including graft-versus-host disease (GVHD), disrupt Paneth cell functions, resulting in unfavorably altered intestinal microbiota (dysbiosis), which further accelerates the underlying diseases. Current strategies to restore the gut ecosystem are bacteriotherapy such as fecal microbiota transplantation and probiotics, and no physiological approach has been developed so far. In this study, we demonstrate a novel approach to restore gut microbial ecology by Wnt agonist R-Spondin1 (R-Spo1) or recombinant α-defensin in mice. R-Spo1 stimulates intestinal stem cells to differentiate to Paneth cells and enhances luminal secretion of α-defensins. Administration of R-Spo1 or recombinant α-defensin prevents GVHD-mediated dysbiosis, thus representing a novel and physiological approach at modifying the gut ecosystem to restore intestinal homeostasis and host–microbiota cross talk toward therapeutic benefits. PMID:29066578
Ardourel, M; Demont, N; Debellé, F; Maillet, F; de Billy, F; Promé, J C; Dénarié, J; Truchet, G
1994-10-01
Rhizobium meliloti produces lipochitooligosaccharide nodulation NodRm factors that are required for nodulation of legume hosts. NodRm factors are O-acetylated and N-acylated by specific C16-unsaturated fatty acids. nodL mutants produce non-O-acetylated factors, and nodFE mutants produce factors with modified acyl substituents. Both mutants exhibited a significantly reduced capacity to elicit infection thread (IT) formation in alfalfa. However, once initiated, ITs developed and allowed the formation of nitrogen-fixing nodules. In contrast, double nodF/nodL mutants were unable to penetrate into legume hosts and to form ITs. Nevertheless, these mutants induced widespread cell wall tip growth in trichoblasts and other epidermal cells and were also able to elicit cortical cell activation at a distance. NodRm factor structural requirements are thus clearly more stringent for bacterial entry than for the elicitation of developmental plant responses.
The ectromelia virus SPI-2 protein causes lethal mousepox by preventing NK cell responses.
Melo-Silva, Carolina R; Tscharke, David C; Lobigs, Mario; Koskinen, Aulikki; Wong, Yik Chun; Buller, R Mark; Müllbacher, Arno; Regner, Matthias
2011-11-01
Ectromelia virus (ECTV) is a natural pathogen of mice that causes mousepox, and many of its genes have been implicated in the modulation of host immune responses. Serine protease inhibitor 2 (SPI-2) is one of these putative ECTV host response modifier proteins. SPI-2 is conserved across orthopoxviruses, but results defining its mechanism of action and in vivo function are lacking or contradictory. We studied the role of SPI-2 in mousepox by deleting the SPI-2 gene or its serine protease inhibitor reactive site. We found that SPI-2 does not affect viral replication or cell-intrinsic apoptosis pathways, since mutant viruses replicate in vitro as efficiently as wild-type virus. However, in the absence of SPI-2 protein, ECTV is attenuated in mousepox-susceptible mice, resulting in lower viral loads in the liver, decreased spleen pathology, and substantially improved host survival. This attenuation correlates with more effective immune responses in the absence of SPI-2, including an earlier serum gamma interferon (IFN-γ) response, raised serum interleukin 18 (IL-18), increased numbers of granzyme B(+) CD8(+) T cells, and, most notably, increased numbers and activation of NK cells. Both virus attenuation and the improved immune responses associated with SPI-2 deletion from ECTV are lost when mice are depleted of NK cells. Consequently, SPI-2 renders mousepox lethal in susceptible strains by preventing protective NK cell defenses.
Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication
Bakre, Abhijeet; Mitchell, Patricia; Coleman, Jonathan K.; Jones, Les P.; Saavedra, Geraldine; Teng, Michael; Tompkins, S. Mark
2012-01-01
Respiratory syncytial virus (RSV) causes substantial morbidity and life-threatening lower respiratory tract disease in infants, young children and the elderly. Understanding the host response to RSV infection is critical for developing disease-intervention approaches. The role of microRNAs (miRNAs) in post-transcriptional regulation of host genes responding to RSV infection is not well understood. In this study, it was shown that RSV infection of a human alveolar epithelial cell line (A549) induced five miRNAs (let-7f, miR-24, miR-337-3p, miR-26b and miR-520a-5p) and repressed two miRNAs (miR-198 and miR-595), and showed that RSV G protein triggered let-7f expression. Luciferase–untranslated region reporters and miRNA mimics and inhibitors validated the predicted targets, which included cell-cycle genes (CCND1, DYRK2 and ELF4), a chemokine gene (CCL7) and the suppressor of cytokine signalling 3 gene (SOCS3). Modulating let-7 family miRNA levels with miRNA mimics and inhibitors affected RSV replication, indicating that RSV modulates host miRNA expression to affect the outcome of the antiviral host response, and this was mediated in part through RSV G protein expression. PMID:22894925
Lee, Chris; Chronis, Demosthenis; Kenning, Charlotte; Peret, Benjamin; Hewezi, Tarek; Davis, Eric L; Baum, Thomas J; Hussey, Richard; Bennett, Malcolm; Mitchum, Melissa G
2011-02-01
Plant-parasitic cyst nematodes penetrate plant roots and transform cells near the vasculature into specialized feeding sites called syncytia. Syncytia form by incorporating neighboring cells into a single fused cell by cell wall dissolution. This process is initiated via injection of esophageal gland cell effector proteins from the nematode stylet into the host cell. Once inside the cell, these proteins may interact with host proteins that regulate the phytohormone auxin, as cellular concentrations of auxin increase in developing syncytia. Soybean cyst nematode (Heterodera glycines) Hg19C07 is a novel effector protein expressed specifically in the dorsal gland cell during nematode parasitism. Here, we describe its ortholog in the beet cyst nematode (Heterodera schachtii), Hs19C07. We demonstrate that Hs19C07 interacts with the Arabidopsis (Arabidopsis thaliana) auxin influx transporter LAX3. LAX3 is expressed in cells overlying lateral root primordia, providing auxin signaling that triggers the expression of cell wall-modifying enzymes, allowing lateral roots to emerge. We found that LAX3 and polygalacturonase, a LAX3-induced cell wall-modifying enzyme, are expressed in the developing syncytium and in cells to be incorporated into the syncytium. We observed no decrease in H. schachtii infectivity in aux1 and lax3 single mutants. However, a decrease was observed in both the aux1lax3 double mutant and the aux1lax1lax2lax3 quadruple mutant. In addition, ectopic expression of 19C07 was found to speed up lateral root emergence. We propose that Hs19C07 most likely increases LAX3-mediated auxin influx and may provide a mechanism for cyst nematodes to modulate auxin flow into root cells, stimulating cell wall hydrolysis for syncytium development.
Bacterial Associates Modify Growth Dynamics of the Dinoflagellate Gymnodinium catenatum
Bolch, Christopher J. S.; Bejoy, Thaila A.; Green, David H.
2017-01-01
Marine phytoplankton cells grow in close association with a complex microbial associate community known to affect the growth, behavior, and physiology of the algal host. The relative scale and importance these effects compared to other major factors governing algal cell growth remain unclear. Using algal-bacteria co-culture models based on the toxic dinoflagellate Gymnodinium catenatum, we tested the hypothesis that associate bacteria exert an independent effect on host algal cell growth. Batch co-cultures of G. catenatum were grown under identical environmental conditions with simplified bacterial communities composed of one-, two-, or three-bacterial associates. Modification of the associate community membership and complexity induced up to four-fold changes in dinoflagellate growth rate, equivalent to the effect of a 5°C change in temperature or an almost six-fold change in light intensity (20–115 moles photons PAR m-2 s-1). Almost three-fold changes in both stationary phase cell concentration and death rate were also observed. Co-culture with Roseobacter sp. DG874 reduced dinoflagellate exponential growth rate and led to a more rapid death rate compared with mixed associate community controls or co-culture with either Marinobacter sp. DG879, Alcanivorax sp. DG881. In contrast, associate bacteria concentration was positively correlated with dinoflagellate cell concentration during the exponential growth phase, indicating growth was limited by supply of dinoflagellate-derived carbon. Bacterial growth increased rapidly at the onset of declining and stationary phases due to either increasing availability of algal-derived carbon induced by nutrient stress and autolysis, or at mid-log phase in Roseobacter co-cultures potentially due to the onset of bacterial-mediated cell lysis. Co-cultures with the three bacterial associates resulted in dinoflagellate and bacterial growth dynamics very similar to more complex mixed bacterial community controls, suggesting that three-way co-cultures are sufficient to model interaction and growth dynamics of more complex communities. This study demonstrates that algal associate bacteria independently modify the growth of the host cell under non-limiting growth conditions and supports the concept that algal–bacterial interactions are an important structuring mechanism in phytoplankton communities. PMID:28469613
Núñez, José I.; Molina, Nicolas; Baranowski, Eric; Domingo, Esteban; Clark, Stuart; Burman, Alison; Berryman, Stephen; Jackson, Terry; Sobrino, Francisco
2007-01-01
We report that adaptation to infect the guinea pig did not modify the capacity of foot-and-mouth disease virus (FMDV) to kill suckling mice and to cause an acute and transmissible disease in the pig, an important natural host for this pathogen. Adaptive amino acid replacements (I248→T in 2C, Q44→R in 3A, and L147→P in VP1), selected upon serial passages of a type C FMDV isolated from swine (biological clone C-S8c1) in the guinea pig, were maintained after virus multiplication in swine and suckling mice. However, the adaptive replacement L147→P, next to the integrin-binding RGD motif at the GH loop in VP1, abolished growth of the virus in different established cell lines and modified its antigenicity. In contrast, primary bovine thyroid cell cultures could be productively infected by viruses with replacement L147→P, and this infection was inhibited by antibodies to αvβ6 and by an FMDV-derived RGD-containing peptide, suggesting that integrin αvβ6 may be used as a receptor for these mutants in the animal (porcine, guinea pig, and suckling mice) host. Substitution T248→N in 2C was not detectable in C-S8c1 but was present in a low proportion of the guinea pig-adapted virus. This substitution became rapidly dominant in the viral population after the reintroduction of the guinea pig-adapted virus into pigs. These observations illustrate how the appearance of minority variant viruses in an unnatural host can result in the dominance of these viruses on reinfection of the original host species. PMID:17522230
Shivakumara, Tagginahalli N; Chaudhary, Sonam; Kamaraju, Divya; Dutta, Tushar K; Papolu, Pradeep K; Banakar, Prakash; Sreevathsa, Rohini; Singh, Bhupinder; Manjaiah, K M; Rao, Uma
2017-01-01
The complex parasitic strategy of Meloidogyne incognita appears to involve simultaneous expression of its pharyngeal gland-specific effector genes in order to colonize the host plants. Research reports related to effector crosstalk in phytonematodes for successful parasitism of the host tissue is yet underexplored. In view of this, we have used in planta effector screening approach to understand the possible interaction of pioneer genes ( msp-18 and msp-20 , putatively involved in late and early stage of M. incognita parasitism, respectively) with other unrelated effectors such as cell-wall modifying enzymes (CWMEs) in M. incognita . Host-induced gene silencing (HIGS) strategy was used to generate the transgenic eggplants expressing msp-18 and msp-20 , independently. Putative transformants were characterized via qRT-PCR and Southern hybridization assay. SiRNAs specific to msp-18 and msp - 20 were also detected in the transformants via Northern hybridization assay. Transgenic expression of the RNAi constructs of msp-18 and msp-20 genes resulted in 43.64-69.68% and 41.74-67.30% reduction in M. incognita multiplication encompassing 6 and 10 events, respectively. Additionally, transcriptional oscillation of CWMEs documented in the penetrating and developing nematodes suggested the possible interaction among CWMEs and pioneer genes. The rapid assimilation of plant-derived carbon by invading nematodes was also demonstrated using 14 C isotope probing approach. Our data suggests that HIGS of msp-18 and msp-20 , improves nematode resistance in eggplant by affecting the steady-state transcription level of CWME genes in invading nematodes, and safeguard the plant against nematode invasion at very early stage because nematodes may become the recipient of bioactive RNA species during the process of penetration into the plant root.
Simões, Margarida; Martins, Carlos; Ferreira, Fernando
2015-12-02
Although African swine fever virus (ASFV) replicates in viral cytoplasmic factories, the presence of viral DNA within the host cell nucleus has been previously reported to be essential for productive infection. Herein, we described, for the first time, the intranuclear distribution patterns of viral DNA replication events, preceding those that occur in the cytoplasmic compartment. Using BrdU pulse-labelling experiments, newly synthesized ASFV genomes were exclusively detected inside the host cell nucleus at the early phase of infection, both in swine monocyte-derived macrophages (MDMs) and Vero cells. From 8hpi onwards, BrdU labelling was only observed in ASFV cytoplasmic factories. Our results also show that ASFV specifically activates the Ataxia Telangiectasia Mutated Rad-3 related (ATR) pathway in ASFV-infected swine MDMs from the early phase of infection, most probably because ASFV genome is recognized as foreign DNA. Morphological changes of promyelocytic leukaemia nuclear bodies (PML-NBs), nuclear speckles and Cajal bodies were also found in ASFV-infected swine MDMs, strongly suggesting the viral modulation of cellular antiviral responses and cellular transcription, respectively. As described for other viral infections, the nuclear reorganization that takes place during ASFV infection may also provide an environment that favours its intranuclear replication events. Altogether, our results contribute for a better understanding of ASFV replication strategies, starting with an essential intranuclear DNA replication phase which induces host nucleus changes towards a successful viral infection. Copyright © 2015 Elsevier B.V. All rights reserved.
Immunobiologic effects of cytokine gene transfer of the B16-BL6 melanoma.
Strome, S E; Krauss, J C; Cameron, M J; Forslund, K; Shu, S; Chang, A E
1993-12-01
The genetic modification of tumors offers an approach to modulate the host immune response to relatively weak native tumor antigens. We examined the immunobiologic effects of various cytokine genes transferred into the poorly immunogenic B16-BL6 murine melanoma. Retroviral expression vectors containing cDNAs for interleukin 2, interleukin 4, interferon gamma, or a neomycin-resistant control were electroporated into a B16-BL6 tumor clone. Selected transfected clones were examined for in vitro cytokine secretion and in vivo tumorigenicity. When cells from individual clones were injected intradermally into syngeneic mice, the interleukin 4-secreting clone grew significantly slower than did the neomycin-resistant transfected control, while the growth of the interleukin 2- and interferon gamma-expressing clones was not affected. Despite minimal cytokine secretion by interferon gamma-transfected cells, these cells expressed upregulated major histocompatibility class I antigen and were more susceptible to lysis by allosensitized cytotoxic T lymphocytes compared with parental or neomycin-resistant transfected tumor targets. We observed diverse immunobiologic effects associated with cytokine gene transfer into the B16-BL6 melanoma. Interleukin 4 transfection of tumor resulted in decreased in vivo tumorigenicity that may be related to a host immune response. Further studies to evaluate the host T-cell response to these gene-modified tumors are being investigated.
Guerra, Susana; López-Fernández, Luis A.; Conde, Raquel; Pascual-Montano, Alberto; Harshman, Keith; Esteban, Mariano
2004-01-01
The potential use of the modified vaccinia virus Ankara (MVA) strain as a live recombinant vector to deliver antigens and elicit protective immune responses against infectious diseases demands a comprehensive understanding of the effect of MVA infection on human host gene expression. We used microarrays containing more than 15,000 human cDNAs to identify gene expression changes in human HeLa cell cultures at 2, 6, and 16 h postinfection. Clustering of the 410 differentially regulated genes identified 11 discrete gene clusters with altered expression patterns after MVA infection. Clusters 1 and 2 (accounting for 16.59% [68 of 410] of the genes) contained 68 transcripts showing a robust induction pattern that was maintained during the course of infection. Changes in cellular gene transcription detected by microarrays after MVA infection were confirmed for selected genes by Northern blot analysis and by real-time reverse transcription-PCR. Upregulated transcripts in clusters 1 and 2 included 20 genes implicated in immune responses, including interleukin 1A (IL-1A), IL-6, IL-7, IL-8, and IL-15 genes. MVA infection also stimulated the expression of NF-κB and components of the NF-κB signal transduction pathway, including p50 and TRAF-interacting protein. A marked increase in the expression of histone family members was also induced during MVA infection. Expression of the Wiskott-Aldrich syndrome family members WAS, WASF1, and the small GTP-binding protein RAC-1, which are involved in actin cytoskeleton reorganization, was enhanced after MVA infection. This study demonstrates that MVA infection triggered the induction of groups of genes, some of which may be involved in host resistance and immune modulation during virus infection. PMID:15140980
Cell Wall and Secreted Proteins of Candida albicans: Identification, Function, and Expression
Chaffin, W. Lajean; López-Ribot, José Luis; Casanova, Manuel; Gozalbo, Daniel; Martínez, José P.
1998-01-01
The cell wall is essential to nearly every aspect of the biology and pathogenicity of Candida albicans. Although it was intially considered an almost inert cellular structure that protected the protoplast against osmotic offense, more recent studies have demonstrated that it is a dynamic organelle. The major components of the cell wall are glucan and chitin, which are associated with structural rigidity, and mannoproteins. The protein component, including both mannoprotein and nonmannoproteins, comprises some 40 or more moieties. Wall proteins may differ in their expression, secretion, or topological location within the wall structure. Proteins may be modified by glycosylation (primarily addition of mannose residues), phosphorylation, and ubiquitination. Among the secreted enzymes are those that are postulated to have substrates within the cell wall and those that find substrates in the extracellular environment. Cell wall proteins have been implicated in adhesion to host tissues and ligands. Fibrinogen, complement fragments, and several extracellular matrix components are among the host proteins bound by cell wall proteins. Proteins related to the hsp70 and hsp90 families of conserved stress proteins and some glycolytic enzyme proteins are also found in the cell wall, apparently as bona fide components. In addition, the expression of some proteins is associated with the morphological growth form of the fungus and may play a role in morphogenesis. Finally, surface mannoproteins are strong immunogens that trigger and modulate the host immune response during candidiasis. PMID:9529890
Pierson, Elizabeth A.
2010-01-01
Phenazines constitute a large group of nitrogen-containing heterocyclic compounds produced by a diverse range of bacteria. Both natural and synthetic phenazine derivatives are studied due their impacts on bacterial interactions and biotechnological processes. Phenazines serve as electron shuttles to alternate terminal acceptors, modify cellular redox states, act as cell signals that regulate patterns of gene expression, contribute to biofilm formation and architecture, and enhance bacterial survival. Phenazines have diverse effects on eukaryotic hosts and host tissues, including the modification of multiple host cellular responses. In plants, phenazines also may influence growth and elicit induced systemic resistance. Here, we discuss emerging evidence that phenazines play multiple roles for the producing organism and contribute to their behavior and ecological fitness. PMID:20352425
Heparin-binding growth factor 1 induces the formation of organoid neovascular structures in vivo.
Thompson, J A; Haudenschild, C C; Anderson, K D; DiPietro, J M; Anderson, W F; Maciag, T
1989-01-01
One of the promises of modern molecular biology has been the opportunity to use genetically modified human cells in a patient to permanently restore inborn errors of metabolism. Although it has been possible to introduce genes into mammalian cells and to control their expression, it has proven difficult to introduce mammalian cells as carriers of the modified genetic information into hosts. The successful implantation of selective cells cannot be achieved without adequate vascular support, an essential step toward integration and reconstitution of a new biological function. Although a partial solution to this problem has been found by inducing specific site-directed neovessel formation using heparin-binding growth factor 1 (HBGF-1) adsorbed to a collagen matrix, these implants function for only a short period (weeks). We now report the formation of organoid neovascular structures using polytetrafluoroethylene fibers coated with collagen and HBGF-1 implanted in the peritoneal cavity of the rat. The organoid structures contained readily visible vascular lumina and nonvascular structures that resemble nerve tissue. It was also possible to demonstrate that the vascular system on the implant is continuous with the vascular tree of the host. This feature was used to demonstrate that the organoid structures are capable of sustaining the biological function of implanted normal rat hepatocytes over long periods of time (months) in the homozygous Gunn rat, thereby facilitating future applications involving the delivery of new genetic information. Images PMID:2479012
Gammaherpesvirus Colonization of the Spleen Requires Lytic Replication in B Cells.
Lawler, Clara; de Miranda, Marta Pires; May, Janet; Wyer, Orry; Simas, J Pedro; Stevenson, Philip G
2018-04-01
Gammaherpesviruses infect lymphocytes and cause lymphocytic cancers. Murid herpesvirus-4 (MuHV-4), Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus all infect B cells. Latent infection can spread by B cell recirculation and proliferation, but whether this alone achieves systemic infection is unclear. To test the need of MuHV-4 for lytic infection in B cells, we flanked its essential ORF50 lytic transactivator with loxP sites and then infected mice expressing B cell-specific Cre (CD19-Cre). The floxed virus replicated normally in Cre - mice. In CD19-Cre mice, nasal and lymph node infections were maintained; but there was little splenomegaly, and splenic virus loads remained low. Cre-mediated removal of other essential lytic genes gave a similar phenotype. CD19-Cre spleen infection by intraperitoneal virus was also impaired. Therefore, MuHV-4 had to emerge lytically from B cells to colonize the spleen. An important role for B cell lytic infection in host colonization is consistent with the large CD8 + T cell responses made to gammaherpesvirus lytic antigens during infectious mononucleosis and suggests that vaccine-induced immunity capable of suppressing B cell lytic infection might reduce long-term virus loads. IMPORTANCE Gammaherpesviruses cause B cell cancers. Most models of host colonization derive from cell cultures with continuous, virus-driven B cell proliferation. However, vaccines based on these models have worked poorly. To test whether proliferating B cells suffice for host colonization, we inactivated the capacity of MuHV-4, a gammaherpesvirus of mice, to reemerge from B cells. The modified virus was able to colonize a first wave of B cells in lymph nodes but spread poorly to B cells in secondary sites such as the spleen. Consequently, viral loads remained low. These results were consistent with virus-driven B cell proliferation exploiting normal host pathways and thus having to transfer lytically to new B cells for new proliferation. We conclude that viral lytic infection is a potential target to reduce B cell proliferation. Copyright © 2018 American Society for Microbiology.
Human Hepatocyte Growth Factor (hHGF)-Modified Hepatic Oval Cells Improve Liver Transplant Survival
Li, Li; Ran, Jiang-Hua; Li, Xue-Hua; Liu, Zhi-Heng; Liu, Gui-Jie; Gao, Yan-Chao; Zhang, Xue-Li; Sun, Hiu-Dong
2012-01-01
Despite progress in the field of immunosuppression, acute rejection is still a common postoperative complication following liver transplantation. This study aims to investigate the capacity of the human hepatocyte growth factor (hHGF) in modifying hepatic oval cells (HOCs) administered simultaneously with orthotopic liver transplantation as a means of improving graft survival. HOCs were activated and isolated using a modified 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH) model in male Lewis rats. A HOC line stably expressing the HGF gene was established following stable transfection of the pBLAST2-hHGF plasmid. Our results demonstrated that hHGF-modified HOCs could efficiently differentiate into hepatocytes and bile duct epithelial cells in vitro. Administration of HOCs at the time of liver transplantation induced a wider distribution of SRY-positive donor cells in liver tissues. Administration of hHGF-HOC at the time of transplantation remarkably prolonged the median survival time and improved liver function for recipients compared to these parameters in the other treatment groups (P<0.05). Moreover, hHGF-HOC administration at the time of liver transplantation significantly suppressed elevation of interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) levels while increasing the production of IL-10 and TGF-β1 (P<0.05). HOC or hHGF-HOC administration promoted cell proliferation, reduced cell apoptosis, and decreased liver allograft rejection rates. Furthermore, hHGF-modified HOCs more efficiently reduced acute allograft rejection (P<0.05 versus HOC transplantation only). Our results indicate that the combination of hHGF-modified HOCs with liver transplantation decreased host anti-graft immune responses resulting in a reduction of allograft rejection rates and prolonging graft survival in recipient rats. This suggests that HOC-based cell transplantation therapies can be developed as a means of treating severe liver injuries. PMID:23028627
Role of protein phosphomannosylation in the Candida tropicalis-macrophage interaction.
Hernández-Chávez, Marco J; Franco, Bernardo; Clavijo-Giraldo, Diana M; Hernández, Nahúm V; Estrada-Mata, Eine; Mora-Montes, Héctor Manuel
2018-04-27
Candida tropicalis is an opportunistic fungal pathogen responsible for mucosal and systemic infections. The cell wall is the initial contact point between a fungal cell and the host immune system, and mannoproteins are important components that play key roles when interacting with host cells. In C. albicans, mannans are modified by mannosyl-phosphate moieties, named phosphomannans, which can work as molecular scaffolds to synthesize β1,2-mannooligosaccharides, and MNN4 is a positive regulator of the phosphomannosylation pathway. Here, we showed that C. tropicalis also displays phosphomannans on the cell surface, but the amount of this cell wall component varies depending on the fungal strain. We also identified a functional ortholog of CaMNN4 in C. tropicalis. Disruption of this gene caused depletion of phosphomannan content. The C. tropicalis mnn4Δ did not show defects in the ability to stimulate cytokine production by human mononuclear cells but displayed virulence attenuation in an insect model of candidiasis. When the mnn4Δ-macrophage interaction was analyzed, results showed that presence of cell wall phosphomannan was critical for C. tropicalis phagocytosis. Finally, our results strongly suggest a differential role for phosphomannans during phagocytosis of C. albicans and C. tropicalis.
Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes.
Nyholm, Spencer V; Stewart, Jennifer J; Ruby, Edward G; McFall-Ngai, Margaret J
2009-02-01
The light organ crypts of the squid Euprymna scolopes permit colonization exclusively by the luminous bacterium Vibrio fischeri. Because the crypt interior remains in contact with seawater, the squid must not only foster the specific symbiosis, but also continue to exclude other bacteria. Investigation of the role of the innate immune system in these processes revealed that macrophage-like haemocytes isolated from E. scolopes recognized and phagocytosed V. fischeri less than other closely related bacterial species common to the host's environment. Interestingly, phagocytes isolated from hosts that had been cured of their symbionts bound five times more V. fischeri cells than those from uncured hosts. No such change in the ability to bind other species of bacteria was observed, suggesting that the host adapts specifically to V. fischeri. Deletion of the gene encoding OmpU, the major outer membrane protein of V. fischeri, increased binding by haemocytes from uncured animals to the level observed for haemocytes from cured animals. Co-incubation with wild-type V. fischeri reduced this binding, suggesting that they produce a factor that complements the mutant's defect. Analyses of the phagocytosis of bound cells by fluorescence-activated cell sorting indicated that once binding to haemocytes had occurred, V. fischeri cells are phagocytosed as effectively as other bacteria. Thus, discrimination by this component of the squid immune system occurs at the level of haemocyte binding, and this response: (i) is modified by previous exposure to the symbiont and (ii) relies on outer membrane and/or secreted components of the symbionts. These data suggest that regulation of host haemocyte binding by the symbiont may be one of many factors that contribute to specificity in this association.
Queiroga, Fernando Ramos; Marques-Santos, Luis Fernando; Hégaret, Hélène; Sassi, Roberto; Farias, Natanael Dantas; Santana, Lucas Nunes; da Silva, Patricia Mirella
2017-06-01
Perkinsosis is a disease caused by protozoan parasites from the Perkinsus genus. In Brazil, two species, P. beihaiensis and P. marinus, are frequently found infecting native oysters (Crassostrea gasar and C. rhizophorae) from cultured and wild populations in several states of the Northeast region. The impacts of this disease in bivalves from Brazil, as well as the interactions with environmental factors, are poorly studied. In the present work, we evaluated the in vitro effects of the cyanobacteria Synechocystis spp. on trophozoites of P. marinus and haemocytes of C. gasar. Four cyanobacteria strains isolated from the Northeast Brazilian coast were used as whole cultures (WCs) and extracellular products (ECPs). Trophozoites of P. marinus were exposed for short (4h) and long (48h and 7days, the latter only for ECPs) periods, while haemocytes were exposed for a short period (4h). Cellular and immune parameters, i.e. cell viability, cell count, reactive oxygen species production (ROS) and phagocytosis of inert (latex beads) and biological particles (zymosan and trophozoites of P. marinus) were measured by flow cytometry. The viability of P. marinus trophozoites was improved in response to WCs of Synechocystis spp., which could be a beneficial effect of the cyanobacteria providing nutrients and reducing reactive oxygen species. Long-term exposure of trophozoites to ECPs of cyanobacteria did not modify in vitro cell proliferation nor viability. In contrast, C. gasar haemocytes showed a reduction in cell viability when exposed to WCs, but not to ECPs. However, ROS production was not altered. Haemocyte ability to engulf latex particles was reduced when exposed mainly to ECPs of cyanobacteria; while neither the WCs nor the ECPs modified phagocytosis of the biological particles, zymosan and P. marinus. Our results suggest a negative effect of cyanobacteria from the Synechocystis genus on host immune cells, in contrast to a more beneficial effect on the parasite cell, which could together disrupt the balance of the host-parasite interaction and make oysters more susceptible to P. marinus as well as opportunistic infections. Copyright © 2017 Elsevier B.V. All rights reserved.
Listeria arpJ gene modifies T helper type 2 subset differentiation.
Kanoh, Makoto; Maruyama, Saho; Shen, Hua; Matsumoto, Akira; Shinomiya, Hiroto; Przybilla, Karin; Gouin, Edith; Cossart, Pascale; Goebel, Werner; Asano, Yoshihiro
2015-07-15
Although the T-cell subset differentiation pathway has been characterized extensively from the view of host gene regulation, the effects of genes of the pathogen on T-cell subset differentiation during infection have yet to be elucidated. Especially, the bacterial genes that are responsible for this shift have not yet been determined. Utilizing a single-gene-mutation Listeria panel, we investigated genes involved in the host-pathogen interaction that are required for the initiation of T-cell subset differentiation in the early phase of pathogen infection. We demonstrate that the induction of T helper types 1 and 2 (Th1 and Th2) subsets are separate phenomena and are mediated by distinct Listeria genes. We identified several candidate Listeria genes that appear to be involved in the host-Listeria interaction. Among them, arpJ is the strongest candidate gene for inhibiting Th2 subset induction. Furthermore, the analysis utilizing arpJ-deficient Listeria monocytogenes (Lm) revealed that the tumor necrosis factor (TNF) superfamily (Tnfsf) 9-TNF receptor superfamily (Tnfrsf) 9 interaction inhibits the Th2 response during Lm infection. arpJ is the candidate gene for inhibiting Th2 T-cell subset induction. The arpJ gene product influences the expression of Tnfsf/Tnfrsf on antigen-presenting cells and inhibits the Th2 T-cell subset differentiation during Listeria infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Weinberg, Justin; Zhang, Shaojie; Kirkby, Allison; Shachar, Enosh; Carta, Giorgio; Przybycien, Todd
2018-04-20
We have proposed chemical modification of Protein A (ProA) chromatography ligands with polyethylene glycol (PEGylation) as a strategy to increase the resin selectivity and robustness by providing the ligand with a steric repulsion barrier against non-specific binding. Here, we report on robustness and selectivity benefits for Repligen CaptivA PriMAB resin with ligands modified with 5.2 kDa and 21.5 kDa PEG chains, respectively. PEGylation of ProA ligands allowed the resin to retain a higher percentage of static binding capacity relative to the unmodified resin upon digestion with chymotrypsin, a representative serine protease. The level of protection against digestion was independent of the PEG molecular weight or modification extent for the PEGylation chemistry used. Additionally, PEGylation of the ligands was found to decrease the level of non-specific binding of fluorescently labeled bovine serum albumin (BSA) aggregates to the surface of the resin particles as visualized via confocal laser scanning microscopy (CLSM). The level of aggregate binding decreased as the PEG molecular weight increased, but increasing the extent of modification with 5.2 kDa PEG chains had no effect. Further examination of resin particles via CLSM confirmed that the PEG chains on the modified ligands were capable of blocking the "hitchhiking" association of BSA, a mock contaminant, to an adsorbed mAb that is prone to BSA binding. Ligands modified with 21.5 kDa PEG chains were effective at blocking the association, while ligands modified with 5.2 kDa PEG chains were not. Finally, ligands with 21.5 kDa PEG chains increased the selectivity of the resin against host cell proteins (HCPs) produced by Chinese Hamster Ovary (CHO) cells by up to 37% during purification of a monoclonal antibody (mAb) from harvested cell culture fluid (HCCF) using a standard ProA chromatography protocol. The combined work suggests that PEGylating ProA chromatography media is a viable pathway for increasing both resin lifetime and host cell impurity clearance in downstream bioprocessing. Copyright © 2018 Elsevier B.V. All rights reserved.
2017-01-01
The parasitic vines of the genus Cuscuta form haustoria that grow into other plants and connect with their vascular system, thus allowing the parasite to feed on its host. A major obstacle that meets the infection organ as it penetrates the host tissue is the rigid plant cell wall. In the present study, we examined the activity of xyloglucan endotransglucosylases/hydrolases (XTHs) during the host-invasive growth of the haustorium. The level of xyloglucan endotransglucosylation (XET) activity was found to peak at the penetrating stage of Cuscuta reflexa on its host Pelargonium zonale. In vivo colocalization of XET activity and donor substrate demonstrated XET activity at the border between host and parasite. A test for secretion of XET-active enzymes from haustoria of C. reflexa corroborated this and further indicated that the xyloglucan-modifying enzymes originated from the parasite. A known inhibitor of XET, Coomassie Brilliant Blue R250, was shown to reduce the level of XET in penetrating haustoria of C. reflexa. Moreover, the coating of P. zonale petioles with the inhibitor compound lowered the number of successful haustorial invasions of this otherwise compatible host plant. The presented data indicate that the activity of Cuscuta XTHs at the host-parasite interface is essential to penetration of host plant tissue. PMID:28448560
Olsen, Stian; Krause, Kirsten
2017-01-01
The parasitic vines of the genus Cuscuta form haustoria that grow into other plants and connect with their vascular system, thus allowing the parasite to feed on its host. A major obstacle that meets the infection organ as it penetrates the host tissue is the rigid plant cell wall. In the present study, we examined the activity of xyloglucan endotransglucosylases/hydrolases (XTHs) during the host-invasive growth of the haustorium. The level of xyloglucan endotransglucosylation (XET) activity was found to peak at the penetrating stage of Cuscuta reflexa on its host Pelargonium zonale. In vivo colocalization of XET activity and donor substrate demonstrated XET activity at the border between host and parasite. A test for secretion of XET-active enzymes from haustoria of C. reflexa corroborated this and further indicated that the xyloglucan-modifying enzymes originated from the parasite. A known inhibitor of XET, Coomassie Brilliant Blue R250, was shown to reduce the level of XET in penetrating haustoria of C. reflexa. Moreover, the coating of P. zonale petioles with the inhibitor compound lowered the number of successful haustorial invasions of this otherwise compatible host plant. The presented data indicate that the activity of Cuscuta XTHs at the host-parasite interface is essential to penetration of host plant tissue.
Humanized mouse models: Application to human diseases.
Ito, Ryoji; Takahashi, Takeshi; Ito, Mamoru
2018-05-01
Humanized mice are superior to rodents for preclinical evaluation of the efficacy and safety of drug candidates using human cells or tissues. During the past decade, humanized mouse technology has been greatly advanced by the establishment of novel platforms of genetically modified immunodeficient mice. Several human diseases can be recapitulated using humanized mice due to the improved engraftment and differentiation capacity of human cells or tissues. In this review, we discuss current advanced humanized mouse models that recapitulate human diseases including cancer, allergy, and graft-versus-host disease. © 2017 Wiley Periodicals, Inc.
Host-finding behaviour and navigation capabilities of symbiotic zooxanthellae
NASA Astrophysics Data System (ADS)
Pasternak, Zohar; Blasius, Bernd; Abelson, Avigdor; Achituv, Yair
2006-05-01
Past studies have shown that the initiation of symbiosis between the Red-Sea soft coral Heteroxenia fuscescens and its symbiotic dinoflagellates occurs due to the chemical attraction of the motile algal cells to substances emanating from the coral polyps. However, the resulting swimming patterns of zooxanthellae have not been previously studied. This work examined algal swimming behaviour, host location and navigation capabilities under four conditions: (1) still water, (2) in still water with waterborne host attractants, (3) in flowing water, and (4) in flow with host attractants. Algae were capable of actively and effectively locating their host in still water as well as in flow. When in water containing host attractants, swimming became slower, motion patterns straighter and the direction of motion was mainly towards the host—even if this meant advancing upstream against flow velocities of up to 0.5 mm s-1. Coral-algae encounter probability decreased the further downstream of the host algae were located, probably due to diffusion of the chemical signal. The results show how the chemoreceptive zooxanthellae modify their swimming pattern, direction, velocity, circuity and turning rate to accommodate efficient navigation in changing environmental conditions.
Crystallographic Insights into the Autocatalytic Assembly Mechanism of a Bacteriophage Tail Spike
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Ye; Leiman, Petr G.; Li, Long
2010-02-03
The tailed bacteriophage phi29 has 12 'appendages' (gene product 12, gp12) attached to its neck region that participate in host cell recognition and entry. In the cell, monomeric gp12 undergoes proteolytic processing that releases the C-terminal domain during assembly into trimers. We report here crystal structures of the protein before and after catalytic processing and show that the C-terminal domain of gp12 is an 'autochaperone' that aids trimerization. We also show that autocleavage of the C-terminal domain is a posttrimerization event that is followed by a unique ATP-dependent release. The posttranslationally modified N-terminal part has three domains that function tomore » attach the appendages to the phage, digest the cell wall teichoic acids, and bind irreversibly to the host, respectively. Structural and sequence comparisons suggest that some eukaryotic and bacterial viruses as well as bacterial adhesins might have a similar maturation mechanism as is performed by phi29 gp12 for Bacillus subtilis.« less
HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis.
Kang, Yongsung; Jelenska, Joanna; Cecchini, Nicolas M; Li, Yujie; Lee, Min Woo; Kovar, David R; Greenberg, Jean T
2014-06-01
A central mechanism of virulence of extracellular bacterial pathogens is the injection into host cells of effector proteins that modify host cellular functions. HopW1 is an effector injected by the type III secretion system that increases the growth of the plant pathogen Pseudomonas syringae on the Columbia accession of Arabidopsis. When delivered by P. syringae into plant cells, HopW1 causes a reduction in the filamentous actin (F-actin) network and the inhibition of endocytosis, a known actin-dependent process. When directly produced in plants, HopW1 forms complexes with actin, disrupts the actin cytoskeleton and inhibits endocytosis as well as the trafficking of certain proteins to vacuoles. The C-terminal region of HopW1 can reduce the length of actin filaments and therefore solubilize F-actin in vitro. Thus, HopW1 acts by disrupting the actin cytoskeleton and the cell biological processes that depend on actin, which in turn are needed for restricting P. syringae growth in Arabidopsis.
2013-01-01
Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions. PMID:23302495
Protein SUMOylation is Involved in Cell-cycle Progression and Cell Morphology in Giardia lamblia.
Di Genova, Bruno M; da Silva, Richard C; da Cunha, Júlia P C; Gargantini, Pablo R; Mortara, Renato A; Tonelli, Renata R
2017-07-01
The unicellular protozoa Giardia lamblia is a food- and waterborne parasite that causes giardiasis. This illness is manifested as acute and self-limited diarrhea and can evolve to long-term complications. Successful establishment of infection by Giardia trophozoites requires adhesion to host cells and colonization of the small intestine, where parasites multiply by mitotic division. The tight binding of trophozoites to host cells occurs by means of the ventral adhesive disc, a spiral array of microtubules and associated proteins such as giardins. In this work we show that knock down of the Small Ubiquitin-like MOdifier (SUMO) results in less adhesive trophzoites, decreased cell proliferation and deep morphological alterations, including at the ventral disc. Consistent with the reduced proliferation, SUMO knocked-down trophozoites were arrested in G1 and in S phases of the cell cycle. Mass spectrometry analysis of anti-SUMO immunoprecipitates was performed to identify SUMO substrates possibly involved in these events. Among the identified SUMOylation targets, α-tubulin was further validated by Western blot and confirmed to be a SUMO target in Giardia trophozoites. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.
Recognition, survival and persistence of Staphylococcus aureus in the model host Tenebrio molitor.
Dorling, Jack; Moraes, Caroline; Rolff, Jens
2015-02-01
The degree of specificity of any given immune response to a parasite is governed by the complexity and variation of interactions between host and pathogen derived molecules. Here, we assess the extent to which recognition and immuno-resistance of cell wall mutants of the pathogen Staphylococcus aureus may contribute to establishment and maintenance of persistent infection in the model insect host, Tenebrio molitor. The cell surface of S. aureus is decorated with various molecules, including glycopolymers such as wall teichoic acid (WTA). WTA is covalently bound to peptidoglycan (PGN) and its absence has been associated with increased recognition of PGN by host receptors (PGRPs). WTA is also further modified by other molecules such as D-alanine (D-alanylation). Both the level of WTA expression and its D-alanylation were found to be important in the mediation of the host-parasite interaction in this model system. Specifically, WTA itself was seen to influence immune recognition, while D-alanylation of WTA was found to increase immuno-resistance and was associated with prolonged persistence of S. aureus in T. molitor. These results implicate WTA and its D-alanylation as important factors in the establishment and maintenance of persistent infection, affecting different critical junctions in the immune response; through potential evasion of recognition by PGRPs and resistance to humoral immune effectors during prolonged exposure to the immune system. This highlights a mechanism by which specificity in this host-parasite interaction may arise. Copyright © 2014 Elsevier Ltd. All rights reserved.
Graft versus host disease: what should the oculoplastic surgeon know?
Tung, Cynthia I
2017-09-01
To provide a concise review of the oculoplastic manifestations of ocular graft versus host disease (GVHD), and to discuss their management. Ocular GVHD occurs as a common immune-mediated complication of hematopoietic stem cell transplantation that presents as a Stevens-Johnson-like syndrome in the acute phase or a Sjögren-like syndrome in the chronic phase. Cicatricial conjunctivitis may be underreported in ocular GVHD. The spectrum of oculoplastic manifestations includes GVHD of the skin, cicatricial entropion, nasolacrimal duct obstruction, and lacrimal gland dysfunction. Surgical treatment is indicated for patients with significant corneal complications from entropion. Surgical approach to repair of nasolacrimal duct obstruction is presented in this review, including modified approaches for treating patients at risk for keratitis sicca. Management of the ocular graft versus host patient may require a multidisciplinary approach involving collaboration from the oculoplastic surgeon, the corneal specialist, and the stem cell transplant physician. Oculoplastic manifestations of ocular GVHD typically present as cicatricial changes in the eyelid and lacrimal system. Careful oculoplastic and corneal evaluation are necessary when considering surgical management for the ocular GVHD patient.
Brass, Abraham L; Huang, I-Chueh; Benita, Yair; John, Sinu P; Krishnan, Manoj N; Feeley, Eric M; Ryan, Bethany J; Weyer, Jessica L; van der Weyden, Louise; Fikrig, Erol; Adams, David J; Xavier, Ramnik J; Farzan, Michael; Elledge, Stephen J
2009-12-24
Influenza viruses exploit host cell machinery to replicate, resulting in epidemics of respiratory illness. In turn, the host expresses antiviral restriction factors to defend against infection. To find host cell modifiers of influenza A H1N1 viral infection, we used a functional genomic screen and identified over 120 influenza A virus-dependency factors with roles in endosomal acidification, vesicular trafficking, mitochondrial metabolism, and RNA splicing. We discovered that the interferon-inducible transmembrane proteins IFITM1, 2, and 3 restrict an early step in influenza A viral replication. The IFITM proteins confer basal resistance to influenza A virus but are also inducible by interferons type I and II and are critical for interferon's virustatic actions. Further characterization revealed that the IFITM proteins inhibit the early replication of flaviviruses, including dengue virus and West Nile virus. Collectively this work identifies a family of antiviral restriction factors that mediate cellular innate immunity to at least three major human pathogens. Copyright 2009 Elsevier Inc. All rights reserved.
Role for phospholipid acyl chains and cholesterol in pulmonary infections and inflammation
Shaikh, Saame Raza; Fessler, Michael B.
2016-01-01
Bacterial and viral respiratory tract infections result in millions of deaths worldwide and are currently the leading cause of death from infection. Acute inflammation is an essential element of host defense against infection, but can be damaging to the host when left unchecked. Effective host defense requires multiple lipid mediators, which collectively have proinflammatory and/or proresolving effects on the lung. During pulmonary infections, phospholipid acyl chains and cholesterol can be chemically and enzymatically oxidized, as well as truncated and modified, producing complex mixtures of bioactive lipids. We review recent evidence that phospholipids and cholesterol and their derivatives regulate pulmonary innate and adaptive immunity during infection. We first highlight data that oxidized phospholipids generated in the lung during infection stimulate pattern recognition receptors, such as TLRs and scavenger receptors, thereby amplifying the pulmonary inflammatory response. Next, we discuss evidence that oxidation of endogenous pools of cholesterol during pulmonary infections produces oxysterols that also modify the function of both innate and adaptive immune cells. Last, we conclude with data that n-3 polyunsaturated fatty acids, both in the form of phospholipid acyl chains and through enzymatic processing into endogenous proresolving lipid mediators, aid in the resolution of lung inflammation through distinct mechanisms. Unraveling the complex mechanisms of induction and function of distinct classes of bioactive lipids, both native and modified, may hold promise for developing new therapeutic strategies for improving pulmonary outcomes in response to infection. PMID:27286794
Allegra, Alessandro; Innao, Vanessa; Gerace, Demetrio; Vaddinelli, Doriana; Musolino, Caterina
2016-11-01
Hematological malignancies frequently express cancer-associated antigens that are shared with normal cells. Such tumor cells elude the host immune system because several T cells targeted against self-antigens are removed during thymic development, and those that persist are eliminated by a regulatory population of T cells. Chimeric antigen receptor-modified T cells (CAR-Ts) have emerged as a novel modality for tumor immunotherapy due to their powerful efficacy against tumor cells. These cells are created by transducing genes-coding fusion proteins of tumor antigen-recognition single-chain Fv connected to the intracellular signaling domains of T cell receptors, and are classed as first-, second- and third-generation, differing on the intracellular signaling domain number of T cell receptors. CAR-T treatment has emerged as a promising approach for patients with hematological malignancies, and there are several works reporting clinical trials of the use of CAR-modified T-cells in acute lymphoblastic leukemia, chronic lymphoblastic leukemia, multiple myeloma, lymphoma, and in acute myeloid leukemia by targeting different antigens. This review reports the history of adoptive immunotherapy using CAR-Ts, the CAR-T manufacturing process, and T cell therapies in development for hematological malignancies. Copyright © 2016 Elsevier Inc. All rights reserved.
Experimental evidence that parasites drive eco-evolutionary feedbacks.
Brunner, Franziska S; Anaya-Rojas, Jaime M; Matthews, Blake; Eizaguirre, Christophe
2017-04-04
Host resistance to parasites is a rapidly evolving trait that can influence how hosts modify ecosystems. Eco-evolutionary feedbacks may develop if the ecosystem effects of host resistance influence selection on subsequent host generations. In a mesocosm experiment, using a recently diverged (<100 generations) pair of lake and stream three-spined sticklebacks, we tested how experimental exposure to a common fish parasite ( Gyrodactylus spp.) affects interactions between hosts and their ecosystems in two environmental conditions (low and high nutrients). In both environments, we found that stream sticklebacks were more resistant to Gyrodactylus and had different gene expression profiles than lake sticklebacks. This differential infection led to contrasting effects of sticklebacks on a broad range of ecosystem properties, including zooplankton community structure and nutrient cycling. These ecosystem modifications affected the survival, body condition, and gene expression profiles of a subsequent fish generation. In particular, lake juvenile fish suffered increased mortality in ecosystems previously modified by lake adults, whereas stream fish showed decreased body condition in stream fish-modified ecosystems. Parasites reinforced selection against lake juveniles in lake fish-modified ecosystems, but only under oligotrophic conditions. Overall, our results highlight the overlapping timescales and the interplay of host-parasite and host-ecosystem interactions. We provide experimental evidence that parasites influence host-mediated effects on ecosystems and, thereby, change the likelihood and strength of eco-evolutionary feedbacks.
Construction of Escherichia Coli Cell Factories for Production of Organic Acids and Alcohols.
Liu, Pingping; Zhu, Xinna; Tan, Zaigao; Zhang, Xueli; Ma, Yanhe
2016-01-01
Production of bulk chemicals from renewable biomass has been proved to be sustainable and environmentally friendly. Escherichia coli is the most commonly used host strain for constructing cell factories for production of bulk chemicals since it has clear physiological and genetic characteristics, grows fast in minimal salts medium, uses a wide range of substrates, and can be genetically modified easily. With the development of metabolic engineering, systems biology, and synthetic biology, a technology platform has been established to construct E. coli cell factories for bulk chemicals production. In this chapter, we will introduce this technology platform, as well as E. coli cell factories successfully constructed for production of organic acids and alcohols.
Sampson, John H; Choi, Bryan D; Sanchez-Perez, Luis; Suryadevara, Carter M; Snyder, David J; Flores, Catherine T; Schmittling, Robert J; Nair, Smita K; Reap, Elizabeth A; Norberg, Pamela K; Herndon, James E; Kuan, Chien-Tsun; Morgan, Richard A; Rosenberg, Steven A; Johnson, Laura A
2014-02-15
Chimeric antigen receptor (CAR) transduced T cells represent a promising immune therapy that has been shown to successfully treat cancers in mice and humans. However, CARs targeting antigens expressed in both tumors and normal tissues have led to significant toxicity. Preclinical studies have been limited by the use of xenograft models that do not adequately recapitulate the immune system of a clinically relevant host. A constitutively activated mutant of the naturally occurring epidermal growth factor receptor (EGFRvIII) is antigenically identical in both human and mouse glioma, but is also completely absent from any normal tissues. We developed a third-generation, EGFRvIII-specific murine CAR (mCAR), and performed tests to determine its efficacy in a fully immunocompetent mouse model of malignant glioma. At elevated doses, infusion with EGFRvIII mCAR T cells led to cures in all mice with brain tumors. In addition, antitumor efficacy was found to be dependent on lymphodepletive host conditioning. Selective blockade with EGFRvIII soluble peptide significantly abrogated the activity of EGFRvIII mCAR T cells in vitro and in vivo, and may offer a novel strategy to enhance the safety profile for CAR-based therapy. Finally, mCAR-treated, cured mice were resistant to rechallenge with EGFRvIII(NEG) tumors, suggesting generation of host immunity against additional tumor antigens. All together, these data support that third-generation, EGFRvIII-specific mCARs are effective against gliomas in the brain and highlight the importance of syngeneic, immunocompetent models in the preclinical evaluation of tumor immunotherapies. ©2013 AACR
The Immune System in the Pathogenesis of Ovarian Cancer
Charbonneau, Bridget; Goode, Ellen L.; Kalli, Kimberly R.; Knutson, Keith L.; DeRycke, Melissa S.
2014-01-01
Clinical outcomes in ovarian cancer are heterogeneous even when considering common features such as stage, response to therapy, and grade. This disparity in outcomes warrants further exploration into tumor and host characteristics. One compelling host characteristic is the immune response to ovarian cancer. While several studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease, recent genetic and protein analyses also suggest a role in disease incidence. Recent studies also show that anti-tumor immunity is often negated by immune suppressive cells present in the tumor microenvironment. These suppressive immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathologic network. Thus, future research into immunotherapy targeting ovarian cancer will likely become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression or by disrupting critical cytokine networks. PMID:23582060
Helminth immunoregulation: The role of parasite secreted proteins in modulating host immunity
Hewitson, James P.; Grainger, John R.; Maizels, Rick M.
2009-01-01
Helminths are masterful immunoregulators. A characteristic feature of helminth infection is a Th2-dominated immune response, but stimulation of immunoregulatory cell populations, such as regulatory T cells and alternatively activated macrophages, is equally common. Typically, Th1/17 immunity is blocked and productive effector responses are muted, allowing survival of the parasite in a “modified Th2” environment. Drug treatment to clear the worms reverses the immunoregulatory effects, indicating that a state of active suppression is maintained by the parasite. Hence, research has focussed on “excretory–secretory” products released by live parasites, which can interfere with every aspect of host immunity from initial recognition to end-stage effector mechanisms. In this review, we survey our knowledge of helminth secreted molecules, and summarise current understanding of the growing number of individual helminth mediators that have been shown to target key receptors or pathways in the mammalian immune system. PMID:19406170
Wiewel, Maryse A; Scicluna, Brendon P; van Vught, Lonneke A; Hoogendijk, Arie J; Zwinderman, Aeilko H; Lutter, René; Horn, Janneke; Cremer, Olaf L; Bonten, Marc J; Schultz, Marcus J; van der Poll, Tom
2018-01-18
Statins can exert pleiotropic anti-inflammatory, vascular protective and anticoagulant effects, which in theory could improve the dysregulated host response during sepsis. We aimed to determine the association between prior statin use and host response characteristics in critically ill patients with sepsis. We performed a prospective observational study in 1060 patients admitted with sepsis to the mixed intensive care units (ICUs) of two hospitals in the Netherlands between January 2011 and July 2013. Of these, 351 patients (33%) were on statin therapy before admission. The host response was evaluated by measuring 23 biomarkers providing insight into key pathways implicated in sepsis pathogenesis and by analyzing whole-blood leukocyte transcriptomes in samples obtained within 24 h after ICU admission. To account for indication bias, a propensity score-matched cohort was created (N = 194 in both groups for protein biomarkers and N = 95 in both groups for gene expression analysis). Prior statin use was not associated with an altered mortality up to 90 days after admission (38.0 vs. 39.7% in the non-statin users in the propensity-matched analysis). Statin use did not modify systemic inflammatory responses, activation of the vascular endothelium or the coagulation system. The blood leukocyte genomic response, characterized by over-expression of genes involved in inflammatory and innate immune signaling pathways as well as under-expression of genes associated to T cell function, was not different between patients with and without prior statin use. Statin therapy is not associated with a modified host response in sepsis patients on admission to the ICU.
Bolton, Kirsty J.; McCaw, James M.; Brown, Lorena; Jackson, David; Kedzierska, Katherine; McVernon, Jodie
2015-01-01
Vaccines that trigger an influenza-specific cytotoxic T cell (CTL) response may aid pandemic control by limiting the transmission of novel influenza A viruses (IAV). We consider interventions with hypothetical CTL-inducing vaccines in a range of epidemiologically plausible pandemic scenarios. We estimate the achievable reduction in the attack rate, and, by adopting a model linking epidemic progression to the emergence of IAV variants, the opportunity for antigenic drift. We demonstrate that CTL-inducing vaccines have limited utility for modifying population-level outcomes if influenza-specific T cells found widely in adults already suppress transmission and prove difficult to enhance. Administration of CTL-inducing vaccines that are efficacious in "influenza-experienced" and "influenza-naive" hosts can likely slow transmission sufficiently to mitigate a moderate IAV pandemic. However if neutralising cross-reactive antibody to an emerging IAV are common in influenza-experienced hosts, as for the swine-variant H3N2v, boosting CTL immunity may be ineffective at reducing population spread, indicating that CTL-inducing vaccines are best used against novel subtypes such as H7N9. Unless vaccines cannot readily suppress transmission from infected hosts with naive T cell pools, targeting influenza-naive hosts is preferable. Such strategies are of enhanced benefit if naive hosts are typically intensively mixing children and when a subset of experienced hosts have pre-existing neutralising cross-reactive antibody. We show that CTL-inducing vaccination campaigns may have greater power to suppress antigenic drift than previously suggested, and targeting adults may be the optimal strategy to achieve this when the vaccination campaign does not have the power to curtail the attack rate. Our results highlight the need to design interventions based on pre-existing cellular immunity and knowledge of the host determinants of vaccine efficacy, and provide a framework for assessing the performance requirements of high-impact CTL-inducing vaccines. PMID:25811654
Bolton, Kirsty J; McCaw, James M; Brown, Lorena; Jackson, David; Kedzierska, Katherine; McVernon, Jodie
2015-01-01
Vaccines that trigger an influenza-specific cytotoxic T cell (CTL) response may aid pandemic control by limiting the transmission of novel influenza A viruses (IAV). We consider interventions with hypothetical CTL-inducing vaccines in a range of epidemiologically plausible pandemic scenarios. We estimate the achievable reduction in the attack rate, and, by adopting a model linking epidemic progression to the emergence of IAV variants, the opportunity for antigenic drift. We demonstrate that CTL-inducing vaccines have limited utility for modifying population-level outcomes if influenza-specific T cells found widely in adults already suppress transmission and prove difficult to enhance. Administration of CTL-inducing vaccines that are efficacious in "influenza-experienced" and "influenza-naive" hosts can likely slow transmission sufficiently to mitigate a moderate IAV pandemic. However if neutralising cross-reactive antibody to an emerging IAV are common in influenza-experienced hosts, as for the swine-variant H3N2v, boosting CTL immunity may be ineffective at reducing population spread, indicating that CTL-inducing vaccines are best used against novel subtypes such as H7N9. Unless vaccines cannot readily suppress transmission from infected hosts with naive T cell pools, targeting influenza-naive hosts is preferable. Such strategies are of enhanced benefit if naive hosts are typically intensively mixing children and when a subset of experienced hosts have pre-existing neutralising cross-reactive antibody. We show that CTL-inducing vaccination campaigns may have greater power to suppress antigenic drift than previously suggested, and targeting adults may be the optimal strategy to achieve this when the vaccination campaign does not have the power to curtail the attack rate. Our results highlight the need to design interventions based on pre-existing cellular immunity and knowledge of the host determinants of vaccine efficacy, and provide a framework for assessing the performance requirements of high-impact CTL-inducing vaccines.
Eisenthal, A; Ramakrishna, V; Skornick, Y; Shinitzky, M
1993-05-01
In the preceding paper we have demonstrated an increase in presentation of both major histocompatibility complex antigens (MHC) and a tumor-associated antigen of the weakly immunogenic B16 melanoma by a straight-forward technique. The method consists in modulating the tumor cell membrane by hydrostatic pressure and simultaneous chemical crosslinking of the cell-surface proteins. In B16-BL6 melanoma, the induced antigenic modulation was found to persist for over 48 h, which permitted the evaluation of the ability of modified B16-BL6 cells to induce immunity against unmodified B16-BL6 cells. In the present study, we have shown that a significant systemic immunity was induced only in mice that were immunized with modified B16-BL6 melanoma cells, whereas immunization with unmodified B16-BL6 cells had only a marginal effect when compared to the results in control sham-immunized mice. The induced immunity was specific since a single immunization affected the growth of B16-BL6 tumors but had no effect on MCA 106, an antigenically unrelated tumor. The addition of interleukin-2 to the immunization regimen had no effect on the antitumor responses induced by the modified B16-BL6 cells. The cell-mediated immunity conferred by immunization with treated B16-BL6 cells was confirmed in experiments in vitro where splenocytes from immunized mice could be sensitized to proliferate by the presence of B16-BL6 cells. In addition, the altered antigenicity of these melanoma cells appeared to correlate with their increased susceptibility to specific effectors. Thus, 51Cr-labeled B16-BL6 target cells, modified by pressure and crosslinking, in comparison to control labeled target cells, were lysed in much greater numbers by effectors such as lymphokine-activated killer cells and allogeneic cytotoxic lymphocytes (anti-H-2b), while such cells remained resistant to lysis by natural killer cells. Our findings indicate that the physical and chemical modifications of the tumor cells that are described here may be considered as a simple yet effective method for the preparation of tumor vaccines, which could be applied in tumor-bearing hosts.
An injectable spheroid system with genetic modification for cell transplantation therapy.
Uchida, Satoshi; Itaka, Keiji; Nomoto, Takahiro; Endo, Taisuke; Matsumoto, Yu; Ishii, Takehiko; Kataoka, Kazunori
2014-03-01
The new methodology to increase a therapeutic potential of cell transplantation was developed here by the use of three-dimensional spheroids of transplanting cells subsequent to the genetic modification with non-viral DNA vectors, polyplex nanomicelles. Particularly, spheroids in regulated size of 100-μm of primary hepatocytes transfected with luciferase gene were formed on the micropatterned culture plates coated with thermosensitive polymer, and were recovered in the form of injectable liquid suspension simply by cooling the plates. After subcutaneously transplanting these hepatocyte spheroids, efficient transgene expression was observed in host tissue for more than a month, whereas transplantation of a single-cell suspension from a monolayer culture resulted in an only transient expression. The spheroid system contributed to the preservation of innate functions of transplanted hepatocytes in the host tissue, such as albumin expression, thereby possessing high potential for expressing transgene. Intravital observation of transplanted cells showed that those from spheroid cultures had a tendency to localize in the vicinity of blood vessels, making a favorable microenvironment for preserving cell functionality. Furthermore, spheroids transfected with erythropoietin-expressing DNA showed a significantly higher hematopoietic effect than that of cell suspensions from monolayer cultures, demonstrating high potential of this genetically-modified spheroid transplantation system for therapeutic applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Decade-Long Safety and Function of Retroviral-Modified Chimeric Antigen Receptor T-cells
Scholler, John; Brady, Troy L.; Binder-Scholl, Gwendolyn; Hwang, Wei-Ting; Plesa, Gabriela; Hege, Kristen M.; Vogel, Ashley N.; Kalos, Michael; Riley, James L.; Deeks, Steven G.; Mitsuyasu, Ronald T.; Bernstein, Wendy B.; Aronson, Naomi E.; Levine, Bruce L.; Bushman, Frederic D.; June, Carl H.
2015-01-01
The success of adoptive T cell gene transfer for treatment of cancer and HIV is predicated on generating a response that is both durable and safe. Here we report long term results from three clinical trials to evaluate gammaretroviral vector engineered T-cells for HIV. The vector encoded a chimeric antigen receptor (CAR) comprised of CD4 linked to the CD3-ζ signaling chain (CD4ζ). CAR T-cells were detected in 98% of samples tested for at least 11 years post-infusion at frequencies that exceed average T cell levels after most vaccine approaches. The CD4ζ transgene retained expression and function. There was no evidence of vector-induced immortalization of cells as integration site distributions showed no evidence of persistent clonal expansion or enrichment for integration sites near genes implicated in growth control or transformation. The CD4ζ T cells have stable levels of engraftment, with decay half-lives that exceed 16 years, in marked contrast to previous trials testing engineered T cells. These findings indicate that host immunosuppression prior to T cell transfer is not required in order to achieve long term persistence of gene-modified T cells. Further, our results emphasize the safety of T cells modified by retroviral gene transfer in clinical application, as measured in >500 patient years of follow up. Thus, previous safety issues with integrating viral vectors are hematopoietic stem cell or transgene intrinsic, and not a general feature of retroviral vectors. Engineered T cells are a promising form of synthetic biology for long term delivery of protein based therapeutics. These results provide a framework to guide the therapy of a wide spectrum of human diseases. PMID:22553251
Robien, Kim; Bigler, Jeannette; Yasui, Yutaka; Potter, John D; Martin, Paul; Storb, Rainer; Ulrich, Cornelia M
2006-09-01
Methylenetetrahydrofolate reductase (MTHFR) and thymidylate synthase (TS) play key roles in intracellular folate metabolism. Polymorphisms in these enzymes have been shown to modify toxicity of methotrexate (MTX) after hematopoietic cell transplantation. In this study, we evaluated the risk of acute graft-versus-host disease (GVHD) associated with genetic variation in recipient and donor MTHFR and TS genotypes to assess whether genotype alters the efficacy of MTX in acute GVHD prophylaxis. Data on the transplantation course were abstracted from medical records for 304 adults who received allogeneic hematopoietic cell transplants. MTHFR (C677T and A1298C) and TS (enhancer-region 28-base pair repeat, TSER, and 1494del6) genotypes were determined using polymerase chain reaction/restriction fragment length polymorphism and TaqMan assays. Multivariable logistic regression was used to assess the associations between genotypes and risk of acute GVHD. Compared with recipients with the wild-type MTHFR 677CC genotype, those with the variant 677T allele showed a decreased risk of detectable acute GVHD (677CT: odds ratio, 0.8; 95% confidence interval, 0.4-1.6; 677TT: odds ratio, 0.4; 95% confidence interval, 0.2-0.8; P for trend = .01). The variant MTHFR 1298C allele in recipients was associated with an increased risk of acute GVHD compared with the wild-type MTHFR 1298AA genotype (1298AC: odds ratio, 2.0; 95% confidence interval, 1.1-3.9; 1298CC: odds ratio, 3.6; 95% confidence interval, 1.0-12.7; P for trend < .01). No association with risk of acute GVHD was observed for donor MTHFR genotypes or for recipient or donor TS genotypes, with the exception of an increase in acute GVHD among recipients whose donors had the TSER 3R/2R genotype (odds ratio, 3.0; 95% confidence interval, 1.3-7.2). These findings indicate that host, but not donor, MTHFR genotypes modify the risk of acute GVHD in recipients receiving MTX, in a manner consistent with our previously reported associations between MTHFR genotypes and MTX toxicity. A direct trade-off between drug toxicity and drug efficacy may play a role. Alternatively, the systemic folate environment, regulated by host tissues, might influence donor T-cell growth and activity.
Cheng, S Y; Huang, H J; Nagane, M; Ji, X D; Wang, D; Shih, C C; Arap, W; Huang, C M; Cavenee, W K
1996-01-01
The development of new capillary networks from the normal microvasculature of the host appears to be required for growth of solid tumors. Tumor cells influence this process by producing both inhibitors and positive effectors of angiogenesis. Among the latter, the vascular endothelial growth factor (VEGF) has assumed prime candidacy as a major positive physiological effector. Here, we have directly tested this hypothesis in the brain tumor, glioblastoma multiforme, one of the most highly vascularized human cancers. We introduced an antisense VEGF expression construct into glioblastoma cells and found that (i) VEGF mRNA and protein levels were markedly reduced, (ii) the modified cells did not secrete sufficient factors so as to be chemoattractive for primary human microvascular endothelial cells, (iii) the modified cells were not able to sustain tumor growth in immunodeficient animals, and (iv) the density of in vivo blood vessel formation was reduced in direct relation to the reduction of VEGF secretion and tumor formation. Moreover, revertant cells that recovered the ability to secrete VEGF regained each of these tumorigenic properties. These results suggest that VEGF plays a major angiogenic role in glioblastoma. Images Fig. 1 Fig. 4 PMID:8710899
Cardona, Maria E; Simonson, Oscar E; Oprea, Iulian I; Moreno, Pedro M D; Silva-Lara, Maria F; Mohamed, Abdalla J; Christensson, Birger; Gahrton, Gösta; Dilber, M Sirac; Smith, C I Edvard; Arteaga, H Jose
2016-01-01
The poor treatment response of acute myeloid leukemia (AML) overexpressing high-risk oncogenes such as EVI1, demands specific animal models for new treatment evaluations. Evi1 is a common site of activating integrations in murine leukemia virus (MLV)-induced AML and in retroviral and lentiviral gene-modified HCS. Still, a model of overt AML induced by Evi1 has not been generated. Cell lines from MLV-induced AML are growth factor-dependent and non-transplantable. Hence, for the leukemia maintenance in the infected animals, a growth factor source such as chronic immune response has been suggested. We have investigated whether these leukemias are transplantable if provided with growth factors. We show that the Evi1(+)DA-3 cells modified to express an intracellular form of GM-CSF, acquired growth factor independence and transplantability and caused an overt leukemia in syngeneic hosts, without increasing serum GM-CSF levels. We propose this as a general approach for modeling different forms of high-risk human AML using similar cell lines.
A novel Kalman filter based video image processing scheme for two-photon fluorescence microscopy
NASA Astrophysics Data System (ADS)
Sun, Wenqing; Huang, Xia; Li, Chunqiang; Xiao, Chuan; Qian, Wei
2016-03-01
Two-photon fluorescence microscopy (TPFM) is a perfect optical imaging equipment to monitor the interaction between fast moving viruses and hosts. However, due to strong unavoidable background noises from the culture, videos obtained by this technique are too noisy to elaborate this fast infection process without video image processing. In this study, we developed a novel scheme to eliminate background noises, recover background bacteria images and improve video qualities. In our scheme, we modified and implemented the following methods for both host and virus videos: correlation method, round identification method, tree-structured nonlinear filters, Kalman filters, and cell tracking method. After these procedures, most of noises were eliminated and host images were recovered with their moving directions and speed highlighted in the videos. From the analysis of the processed videos, 93% bacteria and 98% viruses were correctly detected in each frame on average.
Valyl-tRNA synthetase modification-dependent restriction of bacteriophage T4.
Olson, N J; Marchin, G L
1984-01-01
A strain of Escherichia coli, CP 790302, severely restricts the growth of wild-type bacteriophage T4. In broth culture, most infections of single cells are abortive, although a few infected cells exhibit reduced burst sizes. In contrast, bacteriophage T4 mutants impaired in the ability to modify valyl-tRNA synthetase develop normally on this strain. Biochemical evidence indicates that the phage-modified valyl-tRNA synthetase in CP 790302 is different from that previously described. Although the enzyme is able to support normal protein synthesis, a disproportionate amount of phage structural protein (serum blocking power) fails to mature into particles of the appropriate density. The results with host strain CP 790302 are consistent with either a gratuitous inhibition of phage assembly by faulty modification or abrogation of an unknown role that valyl-tRNA synthetase might normally play in viral assembly. PMID:6374167
Scandurra, Graziella; Antonella, Arena; Ciofi, Carmine; Saitta, Gaetano; Lanza, Maurizio
2014-01-01
A conducting composite prepared by dispersing multi-walled carbon nanotubes (MWCNTs) into a host matrix consisting of Nafion, electrochemically doped with copper, has been prepared, characterized and used to modify one of the gold electrodes of simply designed electrochemical cells having copier grade transparency sheets as substrates. Electrical measurements performed in deionized water show that the Au/Nafion/Au-MWCNTs–Nafion:Cu cells can be successfully used in order to detect the presence of p-aminophenol (PAP) in water, without the need for any supporting electrolyte. The intensity of the redox peaks arising when PAP is added to deionized water is found to be linearly related to the analyte in the range from 0.2 to 1.6 μM, with a detection limit of 90 nM and a sensitivity of 7 μA·(μM−1)·cm−2. PMID:24854357
Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair
Agarwal, Rachit; García, Andrés J.
2015-01-01
Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair. PMID:25861724
Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells
Kebriaei, Partow; Singh, Harjeet; Huls, M. Helen; Figliola, Matthew J.; Bassett, Roland; Olivares, Simon; Jena, Bipulendu; Dawson, Margaret J.; Kumaresan, Pappanaicken R.; Su, Shihuang; Maiti, Sourindra; Dai, Jianliang; Moriarity, Branden; Forget, Marie-Andrée; Senyukov, Vladimir; Orozco, Aaron; Liu, Tingting; McCarty, Jessica; Jackson, Rineka N.; Moyes, Judy S.; Rondon, Gabriela; Qazilbash, Muzaffar; Ciurea, Stefan; Alousi, Amin; Nieto, Yago; Rezvani, Katy; Marin, David; Popat, Uday; Hosing, Chitra; Shpall, Elizabeth J.; Kantarjian, Hagop; Keating, Michael; Wierda, William; Do, Kim Anh; Largaespada, David A.; Lee, Dean A.; Hackett, Perry B.; Champlin, Richard E.; Cooper, Laurence J.N.
2016-01-01
BACKGROUND. T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR. METHODS. T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19). RESULTS. SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients. CONCLUSIONS. CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach. TRIAL REGISTRATION. Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036. FUNDING. National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details. PMID:27482888
Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells.
Kebriaei, Partow; Singh, Harjeet; Huls, M Helen; Figliola, Matthew J; Bassett, Roland; Olivares, Simon; Jena, Bipulendu; Dawson, Margaret J; Kumaresan, Pappanaicken R; Su, Shihuang; Maiti, Sourindra; Dai, Jianliang; Moriarity, Branden; Forget, Marie-Andrée; Senyukov, Vladimir; Orozco, Aaron; Liu, Tingting; McCarty, Jessica; Jackson, Rineka N; Moyes, Judy S; Rondon, Gabriela; Qazilbash, Muzaffar; Ciurea, Stefan; Alousi, Amin; Nieto, Yago; Rezvani, Katy; Marin, David; Popat, Uday; Hosing, Chitra; Shpall, Elizabeth J; Kantarjian, Hagop; Keating, Michael; Wierda, William; Do, Kim Anh; Largaespada, David A; Lee, Dean A; Hackett, Perry B; Champlin, Richard E; Cooper, Laurence J N
2016-09-01
T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR. T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19). SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients. CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach. Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036. National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details.
Recognition between symbiotic Vibrio fischeri and the hemocytes of Euprymna scolopes
Nyholm, Spencer V.; Stewart, Jennifer J.; Ruby, Edward G.; McFall-Ngai, Margaret J.
2008-01-01
Summary The light-organ crypts of the squid Euprymna scolopes permit colonization exclusively by the luminous bacterium Vibrio fischeri. Because the crypt interior remains in contact with seawater, the squid must not only foster the specific symbiosis but also continue to exclude other bacteria. Investigation of the role of the innate immune system in these processes revealed that macrophage-like hemocytes isolated from E. scolopes recognized and phagocytosed V. fischeri less than other closely related bacterial species common to the host’s environment. Interestingly, phagocytes isolated from hosts that had been cured of their symbionts bound five-times more V. fischeri cells than those from uncured hosts. No such change in the ability to bind other species of bacteria was observed, suggesting that the host adapts specifically to V. fischeri. Deletion of the gene encoding OmpU, the major outer membrane protein of V. fischeri, increased binding by hemocytes from uncured animals to the level observed for hemocytes from cured animals. Co-incubation with wild-type V. fischeri reduced this binding, suggesting they produce a factor that complements the mutant’s defect. Analyses of the phagocytosis of bound cells by fluorescence-activated cell sorting (FACS) indicated that, once binding to hemocytes had occurred, V. fischeri cells are phagocytosed as effectively as other bacteria. Thus, discrimination by this component of the squid immune system occurs at the level of hemocyte binding, and this response: (i) is modified by previous exposure to the symbiont and, (ii) relies on outer membrane and/or secreted components of the symbionts. These data suggest that regulation of host hemocyte binding by the symbiont may be one of many factors that contribute to specificity in this association. PMID:19196278
A novel packaging system for the generation of helper-free oncolytic MVM vector stocks.
Brandenburger, A; Russell, S
1996-10-01
MVM-based autonomous parvoviral vectors have been shown to target the expression of heterologous genes in neoplastic cells and are therefore of interest for cancer gene therapy. The traditional method for production of parvoviral vectors requires the cotransfection of vector and helper plasmids into MVM-permissive cell lines, but recombination between the cotransfected plasmids invariably gives rise to vector stocks that are heavily contaminated with wild-type MVM. Therefore, to minimise recombination between the vector and helper genomes we have utilised a cell line in which the MVM helper functions are expressed inducibly from a modified MVM genome that is stably integrated into the host cell chromosome. Using this MVM packaging cell line, we could reproducibly generate MVM vector stocks that contained no detectable helper virus.
Therapeutic Strategies against Epstein-Barr Virus-Associated Cancers Using Proteasome Inhibitors
Hui, Kwai Fung; Tam, Kam Pui
2017-01-01
Epstein-Barr virus (EBV) is closely associated with several lymphomas (endemic Burkitt lymphoma, Hodgkin lymphoma and nasal NK/T-cell lymphoma) and epithelial cancers (nasopharyngeal carcinoma and gastric carcinoma). To maintain its persistence in the host cells, the virus manipulates the ubiquitin-proteasome system to regulate viral lytic reactivation, modify cell cycle checkpoints, prevent apoptosis and evade immune surveillance. In this review, we aim to provide an overview of the mechanisms by which the virus manipulates the ubiquitin-proteasome system in EBV-associated lymphoid and epithelial malignancies, to evaluate the efficacy of proteasome inhibitors on the treatment of these cancers and discuss potential novel viral-targeted treatment strategies against the EBV-associated cancers. PMID:29160853
Therapeutic Strategies against Epstein-Barr Virus-Associated Cancers Using Proteasome Inhibitors.
Hui, Kwai Fung; Tam, Kam Pui; Chiang, Alan Kwok Shing
2017-11-21
Epstein-Barr virus (EBV) is closely associated with several lymphomas (endemic Burkitt lymphoma, Hodgkin lymphoma and nasal NK/T-cell lymphoma) and epithelial cancers (nasopharyngeal carcinoma and gastric carcinoma). To maintain its persistence in the host cells, the virus manipulates the ubiquitin-proteasome system to regulate viral lytic reactivation, modify cell cycle checkpoints, prevent apoptosis and evade immune surveillance. In this review, we aim to provide an overview of the mechanisms by which the virus manipulates the ubiquitin-proteasome system in EBV-associated lymphoid and epithelial malignancies, to evaluate the efficacy of proteasome inhibitors on the treatment of these cancers and discuss potential novel viral-targeted treatment strategies against the EBV-associated cancers.
Oleskin, Alexander V; Shenderov, Boris A; Rogovsky, Vladimir S
2017-09-01
This work is concerned with the role of evolutionary conserved substances, neurotransmitters, and neurohormones, within the complex framework of the microbial consortium-immune system-nervous system axis in the human or animal organism. Although the operation of each of these systems per se is relatively well understood, their combined effects on the host organism still await further research. Drawing on recent research on host-produced and microbial low-molecular-weight neurochemicals such as biogenic amines, amino acids, and short-chain fatty acids (SCFAs), we suggest that these mediators form a part of a universal neurochemical "language." It mediates the whole gamut of harmonious and disharmonious interactions between (a) the intestinal microbial consortium, (b) local and systemic immune cells, and (c) the central and peripheral nervous system. Importantly, the ongoing microbiota-host interactivity is bidirectional. We present evidence that a large number of microbially produced low-molecular-weight compounds are identical or homologous to mediators that are synthesized by immune or nervous cells and, therefore, can bind to the corresponding host receptors. In addition, microbial cells specifically respond to host-produced neuromediators/neurohormones because they have adapted to them during the course of many millions of years of microbiota-host coevolution. We emphasize that the terms "microbiota" and "microbial consortium" are to be used in the broadest sense, so as to include, apart from bacteria, also eukaryotic microorganisms. These are exemplified by the mycobiota whose role in the microbial consortium-immune system-nervous system axis researchers are only beginning to elucidate. In light of the above, it is imperative to reform the current strategies of using probiotic microorganisms and their metabolites for treating and preventing dysbiosis-related diseases. The review demonstrates, in the example of novel probiotics (psychobiotics), that many target-oriented probiotic preparations produce important side effects on a wide variety of processes in the host organism. In particular, we should take into account probiotics' capacity to produce mediators that can considerably modify the operation of the microecological, immune, and nervous system of the human organism.
Sanchez-Guajardo, Vanesa; Borghans, José A M; Marquez, Maria-Elena; Garcia, Sylvie; Freitas, Antonio A
2005-02-01
The outcome of an immune response relies on the competitive capacities acquired through differentiation of CD4(+) T cells into Th1 or Th2 effector cells. Because Stat4 and Stat6 proteins are implicated in the Th1 vs Th2 generation and maintenance, respectively, we compare in this study the kinetics of Stat4(-/-) and Stat6(-/-) CD4(+) T cells during competitive bone marrow reconstitution and lymphopenia-driven proliferation. After bone marrow transplantation, both populations reconstitute the peripheral T cell pools equally well. After transfer into lymphopenic hosts, wild-type and Stat6(-/-) CD4(+) T cells show a proliferation advantage, which is early associated with the expression of an active phospho-Stat4 and the down-regulation of Stat6. Despite these differences, Stat4- and Stat6-deficient T cells reach similar steady state numbers. However, when both Stat4(-/-) and Stat6(-/-) CD4(+) T cells are coinjected into the same hosts, the Stat6(-/-) cells become dominant and out-compete Stat4(-/-) cells. These findings suggest that cell activation, through the Stat4 pathway and the down-regulation of Stat6, confers to pro-Th1 T cells a slight proliferation advantage that in a competitive situation has major late repercussions, because it modifies the final homeostatic equilibrium of the populations and favors the establishment of Th1 CD4(+) T cell dominance.
Development of a counterselectable seamless mutagenesis system in lactic acid bacteria.
Xin, Yongping; Guo, Tingting; Mu, Yingli; Kong, Jian
2017-07-05
Lactic acid bacteria (LAB) are receiving more attention to act as cell factories for the production of high-value metabolites. However, the molecular tools for genetic modifying these strains are mainly vector-based double-crossover strategies, which are laborious and inefficient. To address this problem, several counterselectable markers have been developed, while few of them could be used in the wild-type host cells without pretreatment. The pheS gene encoding phenylalanyl-tRNA synthetase alpha subunit was identified in Lactococcus lactis NZ9000 genome. When mutant pheS gene (pheS*) under the control of the Lc. lactis NZ9000 L-lactate dehydrogenase promoter (P ldh ) was expressed from a plasmid, the resulted PheS* with an A312G substitution rendered cells sensitive to the phenylalanine analog p-chloro-phenylalanine (p-Cl-Phe). This result suggested pheS* was suitable to be used as a counterselectable marker in Lc. lactis. However, the expression level of pheS* from a chromosomal copy was too low to confer p-Cl-Phe sensitivity. Therefore, a strategy of cascading promoters was attempted for strengthening the expression level of pheS*. Expectedly, a cassette 5Pldh-pheS* with five tandem repetitive promoters P ldh resulted in a sensitivity to 15 mM p-Cl-Phe. Subsequently, a counterselectable seamless mutagenesis system PheS*/pG + host9 based on a temperature-sensitive plasmid pG + host9 harboring a 5Pldh-pheS* cassette was developed in Lc. lactis. We also demonstrated the possibility of applying pheS* to be a counterselectable marker in Lactobacillus casei BL23. As reported in E. coli, pheS* as a counterselectable marker has been demonstrated to be functional in targeted gene(s) deletion in Lc. lactis as well as in L. casei. Moreover, the efficiency and timesaving counterselectable seamless mutagenesis system PheS*/pG + host9 could be used in the wild-type host cells without pretreatment.
Vaithilingam, Vijayaganapathy; Steinkjer, Bjørg; Ryan, Liv; Larsson, Rolf; Tuch, Bernard Edward; Oberholzer, Jose; Rokstad, Anne Mari
2017-09-15
Host reactivity to biocompatible immunoisolation devices is a major challenge for cellular therapies, and a human screening model would be of great value. We designed new types of surface modified barium alginate microspheres, and evaluated their inflammatory properties using human whole blood, and the intraperitoneal response after three weeks in Wistar rats. Microspheres were modified using proprietary polyallylamine (PAV) and coupled with macromolecular heparin conjugates (Corline Heparin Conjugate, CHC). The PAV-CHC strategy resulted in uniform and stable coatings with increased anti-clot activity and low cytotoxicity. In human whole blood, PAV coating at high dose (100 µg/ml) induced elevated complement, leukocyte CD11b and inflammatory mediators, and in Wistar rats increased fibrotic overgrowth. Coating of high dose PAV with CHC significantly reduced these responses. Low dose PAV (10 µg/ml) ± CHC and unmodified alginate microbeads showed low responses. That the human whole blood inflammatory reactions paralleled the host response shows a link between inflammatory potential and initial fibrotic response. CHC possessed anti-inflammatory activity, but failed to improve overall biocompatibility. We conclude that the human whole blood assay is an efficient first-phase screening model for inflammation, and a guiding tool in development of new generation microspheres for cell encapsulation therapy.
Von Seggern, Dan J.; Huang, Shuang; Fleck, Shonna Kaye; Stevenson, Susan C.; Nemerow, Glen R.
2000-01-01
While adenovirus (Ad) gene delivery vectors are useful in many gene therapy applications, their broad tropism means that they cannot be directed to a specific target cell. There are also a number of cell types involved in human disease which are not transducible with standard Ad vectors, such as Epstein-Barr virus (EBV)-transformed B lymphocytes. Adenovirus binds to host cells via the viral fiber protein, and Ad vectors have previously been retargeted by modifying the fiber gene on the viral chromosome. This requires that the modified fiber be able to bind to the cell in which the vector is grown, which prevents truly specific vector targeting. We previously reported a gene delivery system based on a fiber gene-deleted Ad type 5 (Ad5) vector (Ad5.βgal.ΔF) and packaging cells that express the viral fiber protein. Expression of different fibers in packaging cells will allow Ad retargeting without modifying the viral chromosome. Importantly, fiber proteins which can no longer bind to the producer cells can also be used. Using this approach, we generated for the first time pseudotyped Ad5.βgal.ΔF particles containing either the wild-type Ad5 fiber protein or a chimeric fiber with the receptor-binding knob domain of the Ad3 fiber. Particles equipped with the chimeric fiber bound to the Ad3 receptor rather than the coxsackievirus-adenovirus receptor protein used by Ad5. EBV-transformed B lymphocytes were infected efficiently by the Ad3-pseudotyped particles but poorly by virus containing the Ad5 fiber protein. The strategy described here represents a broadly applicable method for targeting gene delivery to specific cell types. PMID:10590124
A drive through cellular therapy for CLL in 2015: allogeneic cell transplantation and CARs.
Mato, Anthony; Porter, David L
2015-07-23
Over the past decade the development of safer reduced-intensity conditioning regimens, expanded donor pools, advances in supportive care, and prevention/management of graft-versus-host disease have expanded stem cell transplantation (SCT) availability for chronic lymphocytic leukemia (CLL) patients. However, there are now increasingly active treatment options available for CLL patients with favorable toxicity profiles and convenient administration schedules. This raises the critical issue of whether or not attainment of cure remains a necessary goal. It is now less clear that treatment with curative intention and with significant toxicity is required for long-term survival in CLL. In addition, the demonstrated safety and activity of genetically modified chimeric antigen receptor (CAR) T cells present the opportunity of harnessing the power of the immune system to kill CLL cells without the need for SCT. We attempt to define the role of SCT in the era of targeted therapies and discuss questions that remain to be answered. Furthermore, we highlight the potential for exciting new cellular therapy using genetically modified anti-CD19 CAR T cells and discuss its potential to alter treatment paradigms for CLL. © 2015 by The American Society of Hematology.
Oncolytic Viruses-Interaction of Virus and Tumor Cells in the Battle to Eliminate Cancer.
Howells, Anwen; Marelli, Giulia; Lemoine, Nicholas R; Wang, Yaohe
2017-01-01
Oncolytic viruses (OVs) are an emerging treatment option for many cancer types and have recently been the focus of extensive research aiming to develop their therapeutic potential. The ultimate aim is to design a virus which can effectively replicate within the host, specifically target and lyse tumor cells and induce robust, long lasting tumor-specific immunity. There are a number of viruses which are either naturally tumor-selective or can be modified to specifically target and eliminate tumor cells. This means they are able to infect only tumor cells and healthy tissue remains unharmed. This specificity is imperative in order to reduce the side effects of oncolytic virotherapy. These viruses can also be modified by various methods including insertion and deletion of specific genes with the aim of improving their efficacy and safety profiles. In this review, we have provided an overview of the various virus species currently being investigated for their oncolytic potential and the positive and negative effects of a multitude of modifications used to increase their infectivity, anti-tumor immunity, and treatment safety, in particular focusing on the interaction of tumor cells and OVs.
Host Specificity of Salmonella typhimurium Deoxyribonucleic Acid Restriction and Modification
Slocum, Harvey; Boyer, Herbert W.
1973-01-01
The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi− R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes. PMID:4570605
Zhou, Xiaoou; Di Stasi, Antonio; Tey, Siok-Keen; Krance, Robert A.; Martinez, Caridad; Leung, Kathryn S.; Durett, April G.; Wu, Meng-Fen; Liu, Hao; Leen, Ann M.; Savoldo, Barbara; Lin, Yu-Feng; Grilley, Bambi J.; Gee, Adrian P.; Spencer, David M.; Rooney, Cliona M.; Heslop, Helen E.; Brenner, Malcolm K.
2014-01-01
Adoptive transfer of donor-derived T lymphocytes expressing a safety switch may promote immune reconstitution in patients undergoing haploidentical hematopoietic stem cell transplant (haplo-HSCT) without the risk for uncontrolled graft versus host disease (GvHD). Thus, patients who develop GvHD after infusion of allodepleted donor-derived T cells expressing an inducible human caspase 9 (iC9) had their disease effectively controlled by a single administration of a small-molecule drug (AP1903) that dimerizes and activates the iC9 transgene. We now report the long-term follow-up of 10 patients infused with such safety switch-modified T cells. We find long-term persistence of iC9-modified (iC9-T) T cells in vivo in the absence of emerging oligoclonality and a robust immunologic benefit, mediated initially by the infused cells themselves and subsequently by an apparently accelerated reconstitution of endogenous naive T lymphocytes. As a consequence, these patients have immediate and sustained protection from major pathogens, including cytomegalovirus, adenovirus, BK virus, and Epstein-Barr virus in the absence of acute or chronic GvHD, supporting the beneficial effects of this approach to immune reconstitution after haplo-HSCT. This study was registered at www.clinicaltrials.gov as #NCT00710892. PMID:24753538
Water-seeking behavior in worm-infected crickets and reversibility of parasitic manipulation
Ponton, Fleur; Lefèvre, Thierry; Guerin, Patrick M.; Lebarbenchon, Camille; Duneau, David; Biron, David G.; Thomas, Frédéric
2011-01-01
One of the most fascinating examples of parasite-induced host manipulation is that of hairworms, first, because they induce a spectacular “suicide” water-seeking behavior in their terrestrial insect hosts and, second, because the emergence of the parasite is not lethal per se for the host that can live several months following parasite release. The mechanisms hairworms use to increase the encounter rate between their host and water remain, however, poorly understood. Considering the selective landscape in which nematomorph manipulation has evolved as well as previously obtained proteomics data, we predicted that crickets harboring mature hairworms would display a modified behavioral response to light. Since following parasite emergence in water, the cricket host and parasitic worm do not interact physiologically anymore, we also predicted that the host would recover from the modified behaviors. We examined the effect of hairworm infection on different behavioral responses of the host when stimulated by light to record responses from uninfected, infected, and ex-infected crickets. We showed that hairworm infection fundamentally modifies cricket behavior by inducing directed responses to light, a condition from which they mostly recover once the parasite is released. This study supports the idea that host manipulation by parasites is subtle, complex, and multidimensional. PMID:22476265
Chen, Shiyan; Lang, Ping; Chronis, Demosthenis; Zhang, Sheng; De Jong, Walter S.; Mitchum, Melissa G.
2015-01-01
Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have been identified in several cyst nematodes, including the potato cyst nematode (PCN); however, the mechanistic details of this cross-kingdom mimicry are poorly understood. Plant CLEs are posttranslationally modified and proteolytically processed to function as bioactive ligands critical to various aspects of plant development. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry analysis, we show that the in planta mature form of proGrCLE1, a multidomain CLE effector secreted by PCN during infection, is a 12-amino acid arabinosylated glycopeptide (named GrCLE1-1Hyp4,7g) with striking structural similarity to mature plant CLE peptides. This glycopeptide is more resistant to hydrolytic degradation and binds with higher affinity to a CLAVATA2-like receptor (StCLV2) from potato (Solanum tuberosum) than its nonglycosylated forms. We further show that StCLV2 is highly up-regulated at nematode infection sites and that transgenic potatoes with reduced StCLV2 expression are less susceptible to PCN infection, indicating that interference of the CLV2-mediated signaling pathway confers nematode resistance in crop plants. These results strongly suggest that phytonematodes have evolved to utilize host cellular posttranslational modification and processing machinery for the activation of CLE effectors following secretion into plant cells and highlight the significance of arabinosylation in regulating nematode CLE effector activity. Our finding also provides evidence that multidomain CLEs are modified and processed similarly to single-domain CLEs, adding new insight into CLE maturation in plants. PMID:25416475
Rajput, Nasir Ahmed; Zhang, Meixiang; Shen, Danyu; Liu, Tingli; Zhang, Qimeng; Ru, Yanyan; Sun, Peng; Dou, Daolong
2015-12-01
The Crinkler (CRN) effector family is produced by oomycete pathogens and may manipulate host physiological and biochemical events inside host cells. Here, PsCRN161 was identified from Phytophthora sojae based on its broad and strong cell death suppression activities. The effector protein contains two predicted nuclear localization signals and localized to nuclei of plant cells, indicating that it may target plant nuclei to modify host cell physiology and function. The chimeric gene GFP:PsCRN161 driven by the Cauliflower mosaic virus (CaMV) 35S promoter was introduced into Nicotiana benthamiana. The four independent PsCRN161-transgenic lines exhibited increased resistance to two oomycete pathogens (P. parasitica and P. capsici) and showed enhanced tolerance to salinity and drought stresses. Digital gene expression profiling analysis showed that defense-related genes, including ABC transporters, Cyt P450 and receptor-like kinases (RLKs), were significantly up-regulated in PsCRN161-transgenic plants compared with GFP (green fluorescent protein) lines, implying that PsCRN161 expression may protect plants from biotic and abiotic stresses by up-regulation of many defense-related genes. The results reveal previously unknown functions of the oomycete effectors, suggesting that the pathogen effectors could be directly used as functional genes for plant molecular breeding for enhancement of tolerance to biotic and abiotic stresses. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Stem cell potency and the ability to contribute to chimeric organisms.
Polejaeva, Irina; Mitalipov, Shoukhrat
2013-03-01
Mouse embryonic chimeras are a well-established tool for studying cell lineage commitment and pluripotency. Experimental chimeras were successfully produced by combining two or more preimplantation embryos or by introducing into host embryo cultured pluripotent embryonic stem cells (ESCs). Chimera production using genetically modified ESCs became the method of choice for the generation of knockout or knockin mice. Although the derivation of ESCs or ESC-like cells has been reported for other species, only mouse and rat pluripotent stem cells have been shown to contribute to germline-competent chimeras, which is the defining feature of ESCs. Herein, we describe different approaches employed for the generation of embryonic chimeras, define chimera-competent cell types, and describe cases of spontaneous chimerism in humans. We also review the current state of derivation of pluripotent stem cells in several species and discuss outcomes of various chimera studies when such cells are used.
Sehgal, Anuj; Rios, Daniel
2016-01-01
Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer’s patches is essential for the efficient spread of disease to the brain. To replicate within Peyer’s patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer’s patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer’s patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases. PMID:27973593
Donaldson, David S; Sehgal, Anuj; Rios, Daniel; Williams, Ifor R; Mabbott, Neil A
2016-12-01
Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer's patches is essential for the efficient spread of disease to the brain. To replicate within Peyer's patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer's patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer's patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases.
Pino-Ramos, Victor H.; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio
2017-01-01
Abstract A one-step method was implemented to graft N-vinylcaprolactam (NVCL) and 4-vinylpyridine (4VP) onto silicone rubber (SR) films using gamma radiation in order to endow the silicone surface with temperature- and pH-responsiveness, and give it the ability to host and release diclofenac in a controlled manner and thus prevent bacterial adhesion. The effects of radiation conditions (e.g., dose and monomers concentration) on the grafting percentage were evaluated, and the modified films were characterized by means of FTIR-ATR, Raman spectroscopy, calorimetry techniques (DSC and TGA) and contact angle measurements. The films responsiveness to stimuli was evaluated by recording the swelling degree of pristine and modified SR in buffer solutions (critical pH point) and as a function of changes in temperature (Upper Critical Solution Temperature, UCST). The graft copolymers of SR-g-(NVCL-co-4VP) showed good cytocompatibility against fibroblast cells for prolonged times, could host diclofenac and release it in a sustained manner for up to 24 h, and exhibited bacteriostatic activity when challenged against Escherichia coli. PMID:29491777
Phosphatidic Acid Produced by Phospholipase D Promotes RNA Replication of a Plant RNA Virus
Hyodo, Kiwamu; Taniguchi, Takako; Manabe, Yuki; Kaido, Masanori; Mise, Kazuyuki; Sugawara, Tatsuya; Taniguchi, Hisaaki; Okuno, Tetsuro
2015-01-01
Eukaryotic positive-strand RNA [(+)RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+)RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD) is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA), a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids), but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+)RNA virus, Red clover necrotic mosaic virus (RCNMV). We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate. PMID:26020241
Experimental evidence that parasites drive eco-evolutionary feedbacks
Brunner, Franziska S.; Anaya-Rojas, Jaime M.; Matthews, Blake; Eizaguirre, Christophe
2017-01-01
Host resistance to parasites is a rapidly evolving trait that can influence how hosts modify ecosystems. Eco-evolutionary feedbacks may develop if the ecosystem effects of host resistance influence selection on subsequent host generations. In a mesocosm experiment, using a recently diverged (<100 generations) pair of lake and stream three-spined sticklebacks, we tested how experimental exposure to a common fish parasite (Gyrodactylus spp.) affects interactions between hosts and their ecosystems in two environmental conditions (low and high nutrients). In both environments, we found that stream sticklebacks were more resistant to Gyrodactylus and had different gene expression profiles than lake sticklebacks. This differential infection led to contrasting effects of sticklebacks on a broad range of ecosystem properties, including zooplankton community structure and nutrient cycling. These ecosystem modifications affected the survival, body condition, and gene expression profiles of a subsequent fish generation. In particular, lake juvenile fish suffered increased mortality in ecosystems previously modified by lake adults, whereas stream fish showed decreased body condition in stream fish-modified ecosystems. Parasites reinforced selection against lake juveniles in lake fish-modified ecosystems, but only under oligotrophic conditions. Overall, our results highlight the overlapping timescales and the interplay of host–parasite and host–ecosystem interactions. We provide experimental evidence that parasites influence host-mediated effects on ecosystems and, thereby, change the likelihood and strength of eco-evolutionary feedbacks. PMID:28320947
Tsetsarkin, Konstantin A; Liu, Guangping; Kenney, Heather; Hermance, Meghan; Thangamani, Saravanan; Pletnev, Alexander G
2016-09-13
Tick-borne viruses include medically important zoonotic pathogens that can cause life-threatening diseases. Unlike mosquito-borne viruses, whose impact can be restrained via mosquito population control programs, for tick-borne viruses only vaccination remains the reliable means of disease prevention. For live vaccine viruses a concern exists, that spillovers from viremic vaccinees could result in introduction of genetically modified viruses into sustainable tick-vertebrate host transmission cycle in nature. To restrict tick-borne flavivirus (Langat virus, LGTV) vector tropism, we inserted target sequences for tick-specific microRNAs (mir-1, mir-275 and mir-279) individually or in combination into several distant regions of LGTV genome. This caused selective attenuation of viral replication in tick-derived cells. LGTV expressing combinations of target sequences for tick- and vertebrate CNS-specific miRNAs were developed. The resulting viruses replicated efficiently and remained stable in simian Vero cells, which do not express these miRNAs, however were severely restricted to replicate in tick-derived cells. In addition, simultaneous dual miRNA targeting led to silencing of virus replication in live Ixodes ricinus ticks and abolished virus neurotropism in highly permissive newborn mice. The concurrent restriction of adverse replication events in vertebrate and invertebrate hosts will, therefore, ensure the environmental safety of live tick-borne virus vaccine candidates.
Keeping Control: The Role of Senescence and Development in Plant Pathogenesis and Defense
Häffner, Eva; Konietzki, Sandra; Diederichsen, Elke
2015-01-01
Many plant pathogens show interactions with host development. Pathogens may modify plant development according to their nutritional demands. Conversely, plant development influences pathogen growth. Biotrophic pathogens often delay senescence to keep host cells alive, and resistance is achieved by senescence-like processes in the host. Necrotrophic pathogens promote senescence in the host, and preventing early senescence is a resistance strategy of plants. For hemibiotrophic pathogens both patterns may apply. Most signaling pathways are involved in both developmental and defense reactions. Increasing knowledge about the molecular components allows to distinguish signaling branches, cross-talk and regulatory nodes that may influence the outcome of an infection. In this review, recent reports on major molecular players and their role in senescence and in pathogen response are reviewed. Examples of pathosystems with strong developmental implications illustrate the molecular basis of selected control strategies. A study of gene expression in the interaction between the hemibiotrophic vascular pathogen Verticillium longisporum and its cruciferous hosts shows processes that are fine-tuned to counteract early senescence and to achieve resistance. The complexity of the processes involved reflects the complex genetic control of quantitative disease resistance, and understanding the relationship between disease, development and resistance will support resistance breeding. PMID:27135337
Genome-wide in vivo screen identifies novel host regulators of metastatic colonization
van der Weyden, Louise; Arends, Mark J.; Campbell, Andrew D.; Bald, Tobias; Wardle-Jones, Hannah; Griggs, Nicola; Velasco-Herrera, Martin Del Castillo; Tüting, Thomas; Sansom, Owen J.; Karp, Natasha A.; Clare, Simon; Gleeson, Diane; Ryder, Edward; Galli, Antonella; Tuck, Elizabeth; Cambridge, Emma L.; Voet, Thierry; Macaulay, Iain C.; Wong, Kim; Spiegel, Sarah; Speak, Anneliese O.; Adams, David J.
2017-01-01
Metastasis is the leading cause of death for cancer patients. This multi-stage process requires tumour cells to survive in the circulation, extravasate at distant sites, then proliferate; it involves contributions from both the tumour cell and tumour microenvironment (‘host’, which includes stromal cells and the immune system1). Studies suggest the early steps of the metastatic process are relatively efficient, with the post-extravasation regulation of tumour growth (‘colonization’) being critical in determining metastatic outcome2. Here we show the results of screening 810 mutant mouse lines using an in vivo assay to identify microenvironmental regulators of metastatic colonization. We identify 23 genes that, when disrupted in mouse, modify the ability of tumour cells to establish metastatic foci, with 19 of these genes not previously demonstrated to play a role in host control of metastasis. The largest reduction in pulmonary metastasis was observed in sphingosine-1-phosphate (S1P) transporter spinster homologue 2 (Spns2)-deficient mice. We demonstrate a novel outcome of S1P-mediated regulation of lymphocyte trafficking, whereby deletion of Spns2, either globally or in a lymphatic endothelial-specific manner, creates a circulating lymphopenia and a higher percentage of effector T cells and natural killer (NK) cells present in the lung. This allows for potent tumour cell killing, and an overall decreased metastatic burden. PMID:28052056
Identification of the cellular receptor for anthrax toxin
NASA Astrophysics Data System (ADS)
Bradley, Kenneth A.; Mogridge, Jeremy; Mourez, Michael; Collier, R. John; Young, John A. T.
2001-11-01
The tripartite toxin secreted by Bacillus anthracis, the causative agent of anthrax, helps the bacterium evade the immune system and can kill the host during a systemic infection. Two components of the toxin enzymatically modify substrates within the cytosol of mammalian cells: oedema factor (OF) is an adenylate cyclase that impairs host defences through a variety of mechanisms including inhibiting phagocytosis; lethal factor (LF) is a zinc-dependent protease that cleaves mitogen-activated protein kinase kinase and causes lysis of macrophages. Protective antigen (PA), the third component, binds to a cellular receptor and mediates delivery of the enzymatic components to the cytosol. Here we describe the cloning of the human PA receptor using a genetic complementation approach. The receptor, termed ATR (anthrax toxin receptor), is a type I membrane protein with an extracellular von Willebrand factor A domain that binds directly to PA. In addition, a soluble version of this domain can protect cells from the action of the toxin.
Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host
Timp, Winston; Feinberg, Andrew P.
2015-01-01
Although at the genetic level cancer is caused by diverse mutations, epigenetic modifications are characteristic of all cancers, from apparently normal precursor tissue to advanced metastatic disease, and these epigenetic modifications drive tumour cell heterogeneity. We propose a unifying model of cancer in which epigenetic dysregulation allows rapid selection for tumour cell survival at the expense of the host. Mechanisms involve both genetic mutations and epigenetic modifications that disrupt the function of genes that regulate the epigenome itself. Several exciting recent discoveries also point to a genome-scale disruption of the epigenome that involves large blocks of DNA hypomethylation, mutations of epigenetic modifier genes and alterations of heterochromatin in cancer (including large organized chromatin lysine modifications (LOCKs) and lamin-associated domains (LADs)), all of which increase epigenetic and gene expression plasticity. Our model suggests a new approach to cancer diagnosis and therapy that focuses on epigenetic dysregulation and has great potential for risk detection and chemoprevention. PMID:23760024
Bergvall, Monika; Melendy, Thomas; Archambault, Jacques
2013-01-01
E1, an ATP-dependent DNA helicase, is the only enzyme encoded by papillomaviruses (PVs). It is essential for replication and amplification of the viral episome in the nucleus of infected cells. To do so, E1 assembles into a double-hexamer at the viral origin, unwinds DNA at the origin and ahead of the replication fork and interacts with cellular DNA replication factors. Biochemical and structural studies have revealed the assembly pathway of E1 at the origin and how the enzyme unwinds DNA using a spiral escalator mechanism. E1 is tightly regulated in vivo, in particular by post-translational modifications that restrict its accumulation in the nucleus. Here we review how different functional domains of E1 orchestrate viral DNA replication, with an emphasis on their interactions with substrate DNA, host DNA replication factors and modifying enzymes. These studies have made E1 one of the best characterized helicases and provided unique insights on how PVs usurp different host-cell machineries to replicate and amplify their genome in a tightly controlled manner. PMID:24029589
Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis.
Redkar, Amey; Matei, Alexandra; Doehlemann, Gunther
2017-01-01
Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal-host interaction to suit the pathogen's needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis - maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.
Elements in the Development of a Production Process for Modified Vaccinia Virus Ankara
Jordan, Ingo; Lohr, Verena; Genzel, Yvonne; Reichl, Udo; Sandig, Volker
2013-01-01
The production of several viral vaccines depends on chicken embryo fibroblasts or embryonated chicken eggs. To replace this logistically demanding substrate, we created continuous anatine suspension cell lines (CR and CR.pIX), developed chemically-defined media, and established production processes for different vaccine viruses. One of the processes investigated in greater detail was developed for modified vaccinia virus Ankara (MVA). MVA is highly attenuated for human recipients and an efficient vector for reactogenic expression of foreign genes. Because direct cell-to-cell spread is one important mechanism for vaccinia virus replication, cultivation of MVA in bioreactors is facilitated if cell aggregates are induced after infection. This dependency may be the mechanism behind our observation that a novel viral genotype (MVA-CR) accumulates with serial passage in suspension cultures. Sequencing of a major part of the genomic DNA of the new strain revealed point mutations in three genes. We hypothesize that these changes confer an advantage because they may allow a greater fraction of MVA-CR viruses to escape the host cells for infection of distant targets. Production and purification of MVA-based vaccines may be simplified by this combination of designed avian cell line, chemically defined media and the novel virus strain. PMID:27694766
Elements in the Development of a Production Process for Modified Vaccinia Virus Ankara.
Jordan, Ingo; Lohr, Verena; Genzel, Yvonne; Reichl, Udo; Sandig, Volker
2013-11-01
The production of several viral vaccines depends on chicken embryo fibroblasts or embryonated chicken eggs. To replace this logistically demanding substrate, we created continuous anatine suspension cell lines (CR and CR.pIX), developed chemically-defined media, and established production processes for different vaccine viruses. One of the processes investigated in greater detail was developed for modified vaccinia virus Ankara (MVA). MVA is highly attenuated for human recipients and an efficient vector for reactogenic expression of foreign genes. Because direct cell-to-cell spread is one important mechanism for vaccinia virus replication, cultivation of MVA in bioreactors is facilitated if cell aggregates are induced after infection. This dependency may be the mechanism behind our observation that a novel viral genotype (MVA-CR) accumulates with serial passage in suspension cultures. Sequencing of a major part of the genomic DNA of the new strain revealed point mutations in three genes. We hypothesize that these changes confer an advantage because they may allow a greater fraction of MVA-CR viruses to escape the host cells for infection of distant targets. Production and purification of MVA-based vaccines may be simplified by this combination of designed avian cell line, chemically defined media and the novel virus strain.
Larkins-Ford, Jonah; McCormick, Craig; Gaglia, Marta M.
2016-01-01
Influenza A viruses (IAVs) inhibit host gene expression by a process known as host shutoff. Host shutoff limits host innate immune responses and may also redirect the translation apparatus to the production of viral proteins. Multiple IAV proteins regulate host shutoff, including PA-X, a ribonuclease that remains incompletely characterized. We report that PA-X selectively targets host RNA polymerase II (Pol II) transcribed mRNAs, while sparing products of Pol I and Pol III. Interestingly, we show that PA-X can also target Pol II-transcribed RNAs in the nucleus, including non-coding RNAs that are not destined to be translated, and reporter transcripts with RNA hairpin structures that block ribosome loading. Transcript degradation likely occurs in the nucleus, as PA-X is enriched in the nucleus and its nuclear localization correlates with reduction in target RNA levels. Complete degradation of host mRNAs following PA-X-mediated endonucleolytic cleavage is dependent on the host 5’->3’-exonuclease Xrn1. IAV mRNAs are structurally similar to host mRNAs, but are synthesized and modified at the 3’ end by the action of the viral RNA-dependent RNA polymerase complex. Infection of cells with wild-type IAV or a recombinant PA-X-deficient virus revealed that IAV mRNAs resist PA-X-mediated degradation during infection. At the same time, loss of PA-X resulted in changes in the synthesis of select viral mRNAs and a decrease in viral protein accumulation. Collectively, these results significantly advance our understanding of IAV host shutoff, and suggest that the PA-X causes selective degradation of host mRNAs by discriminating some aspect of Pol II-dependent RNA biogenesis in the nucleus. PMID:26849127
Producing primate embryonic stem cells by somatic cell nuclear transfer.
Byrne, J A; Pedersen, D A; Clepper, L L; Nelson, M; Sanger, W G; Gokhale, S; Wolf, D P; Mitalipov, S M
2007-11-22
Derivation of embryonic stem (ES) cells genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing concerns regarding rejection by the host immune system. However, the concept has only been achieved in the mouse, whereas inefficient reprogramming and poor embryonic development characterizes the results obtained in primates. Here, we used a modified SCNT approach to produce rhesus macaque blastocysts from adult skin fibroblasts, and successfully isolated two ES cell lines from these embryos. DNA analysis confirmed that nuclear DNA was identical to donor somatic cells and that mitochondrial DNA originated from oocytes. Both cell lines exhibited normal ES cell morphology, expressed key stem-cell markers, were transcriptionally similar to control ES cells and differentiated into multiple cell types in vitro and in vivo. Our results represent successful nuclear reprogramming of adult somatic cells into pluripotent ES cells and demonstrate proof-of-concept for therapeutic cloning in primates.
Hacke, Katrin; Falahati, Rustom; Flebbe-Rehwaldt, Linda; Kasahara, Noriyuki; Gaensler, Karin M. L.
2010-01-01
Current approaches for hematopoietic stem cell (HSC) and organ transplantation are limited by donor and host-mediated immune responses to allo-antigens. Application of these therapies is limited by the toxicity of preparative and post-transplant immunosuppressive regimens and a shortage of appropriate HLA-matched donors. We have been exploring two complementary approaches for genetically modifying donor cells that achieve long-term suppression of cellular proteins that elicit host immune responses to mismatched donor antigens, and provide a selective advantage to genetically engineered donor cells after transplantation. The first approach is based on recent advances that make feasible targeted down-regulation of HLA expression. Suppression of HLA expression could help to overcome limitations imposed by extensive HLA polymorphisms that restrict the availability of suitable donors. Accordingly, we have recently investigated whether knockdown of HLA by RNA interference (RNAi) enables allogeneic cells to evade immune recognition. For efficient and stable delivery of short hairpin-type RNAi constructs (shRNA), we employed lentivirus-based gene transfer vectors that integrate into genomic DNA, thereby permanently modifying transduced donor cells. Lentivirus-mediated delivery of shRNA targeting pan-Class I and allele-specific HLA achieved efficient and dose-dependent reduction in surface expression of HLA in human cells, and enhanced resistance to allo-reactive T lymphocyte-mediated cytotoxicity, while avoiding non-MHC restricted killing. Complementary strategies for genetic engineering of HSC that would provide a selective advantage for transplanted donor cells and enable successful engraftment with less toxic preparative and immunosuppressive regimens would increase the numbers of individuals to whom HLA suppression therapy could be offered. Our second strategy is to provide a mechanism for in vivo selection of genetically modified HSC and other donor cells. We have uniquely combined transplantation during the neonatal period, when tolerance may be more readily achieved, with a positive selection strategy for in vivo amplification of drug-resistant donor HSC. This model system enables the evaluation of mechanisms of tolerance induction to neo-antigens, and allogeneic stem cells during immune ontogeny. HSC are transduced ex vivo by lentivirus-mediated gene transfer of P140K-O6-methylguanine-methyltransferase (MGMTP140K). The MGMTP140K DNA repair enzyme confers resistance to benzylguanine, an inhibitor of endogenous MGMT, and to chloroethylating agents such as BCNU. In vivo chemoselection enables enrichment of donor cells at the stem cell level. Using complementary approaches of in vivo chemoselection and RNAi-induced silencing of HLA expression may enable the generation of histocompatibility-enhanced, and eventually, perhaps “universally” compatible cellular grafts. PMID:19048410
Yamamoto, Mitsuko L.; Maier, Irene; Dang, Angeline Tilly; Berry, David; Liu, Jared; Ruegger, Paul M.; Yang, Jiue-in; Soto, Phillip A.; Presley, Laura L.; Reliene, Ramune; Westbrook, Aya M.; Wei, Bo; Loy, Alexander; Chang, Christopher; Braun, Jonathan; Borneman, James; Schiestl, Robert H.
2013-01-01
Ataxia-telangiectasia (A-T) is a genetic disorder associated with high incidence of B cell lymphoma. Using an A-T mouse model, we compared lymphoma incidence in several isogenic mouse colonies harboring different bacterial communities, finding that intestinal microbiota are a major contributor to disease penetrance and latency, lifespan, molecular oxidative stress and systemic leucocyte genotoxicity. High throughput sequence analysis of rRNA genes identified mucosa-associated bacterial phylotypes that were colony-specific. Lactobacillus johnsonii, which was deficient in the more cancer-prone mouse colony, was causally tested for its capacity to confer reduced genotoxicity when restored by short-term oral transfer. This intervention decreased systemic genotoxicity, a response associated with reduced basal leucocytes and the cytokine-mediated inflammatory state, and mechanistically linked to the host cell biology of systemic genotoxicity. Our results suggest that intestinal microbiota are a potentially modifiable trait for translational intervention in individuals at risk for B cell lymphoma, or for other diseases that are driven by genotoxicity or the molecular response to oxidative stress. PMID:23860718
The plant cell wall in the feeding sites of cyst nematodes.
Bohlmann, Holger; Sobczak, Miroslaw
2014-01-01
Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.
Induction of iNOS in human monocytes infected with different Legionella species.
Neumeister, B; Bach, V; Faigle, M; Northoff, H
2001-08-07
The contribution of nitric oxide (NO) radicals to the suppression of intracellular replication of Legionella has been well established in rodents but remained questionable in humans. Considering the fact that human monocytes do not exhibit a high-output NO production, we used sensitive methods such as detection of inducible NO synthase (iNOS) mRNA by reverse transcription-PCR and demonstration of iNOS protein expression by means of flow cytometry and Western blot to compare the levels of iNOS induced by Legionella species which, in accordance to their human prevalence, show different multiplication rates within human monocytic cells. The expression of iNOS in Mono Mac 6 (MM6) cells showed an only moderate inverse correlation to the intracellular replication rate of a given Legionella species in the protein expression assays. However, stimulation of host cells with 1,25-dihydroxyvitamin D(3) to enhance NO production and inhibition of NO production by treatment of host cells with N(G)-methyl-L-arginine were not able to modify the intracellular multiplication of legionellae within MM6 cells. Therefore, NO production does not seem to play a crucial role for the restriction of intracellular replication of Legionella bacteria within human monocytic cells. Rodent models in investigations which are supposed to clarify the involvement of NO radicals in defense mechanisms against Legionella infections in humans are of doubtful significance.
Injectable MMP-sensitive alginate hydrogels as hMSC delivery systems.
Fonseca, Keila B; Gomes, David B; Lee, Kangwon; Santos, Susana G; Sousa, Aureliana; Silva, Eduardo A; Mooney, David J; Granja, Pedro L; Barrias, Cristina C
2014-01-13
Hydrogels with the potential to provide minimally invasive cell delivery represent a powerful tool for tissue-regeneration therapies. In this context, entrapped cells should be able to escape the matrix becoming more available to actively participate in the healing process. Here, we analyzed the performance of proteolytically degradable alginate hydrogels as vehicles for human mesenchymal stem cells (hMSC) transplantation. Alginate was modified with the matrix metalloproteinase (MMP)-sensitive peptide Pro-Val-Gly-Leu-Iso-Gly (PVGLIG), which did not promote dendritic cell maturation in vitro, neither free nor conjugated to alginate chains, indicating low immunogenicity. hMSC were entrapped within MMP-sensitive and MMP-insensitive alginate hydrogels, both containing cell-adhesion RGD peptides. Softer (2 wt % alginate) and stiffer (4 wt % alginate) matrices were tested. When embedded in a Matrigel layer, hMSC-laden MMP-sensitive alginate hydrogels promoted more extensive outward cell migration and invasion into the tissue mimic. In vivo, after 4 weeks of subcutaneous implantation in a xenograft mouse model, hMSC-laden MMP-sensitive alginate hydrogels showed higher degradation and host tissue invasion than their MMP-insensitive equivalents. In both cases, softer matrices degraded faster than stiffer ones. The transplanted hMSC were able to produce their own collagenous extracellular matrix, and were located not only inside the hydrogels, but also outside, integrated in the host tissue. In summary, injectable MMP-sensitive alginate hydrogels can act as localized depots of cells and confer protection to transplanted cells while facilitating tissue regeneration.
Chen, Changlong; Chen, Yongpan; Jian, Heng; Yang, Dan; Dai, Yiran; Pan, Lingling; Shi, Fengwei; Yang, Shanshan; Liu, Qian
2018-01-01
Heterodera avenae is one of the most important plant pathogens and causes vast losses in cereal crops. As a sedentary endoparasitic nematode, H. avenae secretes effectors that modify plant defenses and promote its biotrophic infection of its hosts. However, the number of effectors involved in the interaction between H. avenae and host defenses remains unclear. Here, we report the identification of putative effectors in H. avenae that regulate plant defenses on a large scale. Our results showed that 78 of the 95 putative effectors suppressed programmed cell death (PCD) triggered by BAX and that 7 of the putative effectors themselves caused cell death in Nicotiana benthamiana. Among the cell-death-inducing effectors, three were found to be dependent on their specific domains to trigger cell death and to be expressed in esophageal gland cells by in situ hybridization. Ten candidate effectors that suppressed BAX-triggered PCD also suppressed PCD triggered by the elicitor PsojNIP and at least one R-protein/cognate effector pair, suggesting that they are active in suppressing both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Notably, with the exception of isotig16060, these putative effectors could also suppress PCD triggered by cell-death-inducing effectors from H. avenae, indicating that those effectors may cooperate to promote nematode parasitism. Collectively, our results indicate that the majority of the tested effectors of H. avenae may play important roles in suppressing cell death induced by different elicitors in N. benthamiana. PMID:29379510
The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation.
Zaiss, Mario M; Rapin, Alexis; Lebon, Luc; Dubey, Lalit Kumar; Mosconi, Ilaria; Sarter, Kerstin; Piersigilli, Alessandra; Menin, Laure; Walker, Alan W; Rougemont, Jacques; Paerewijck, Oonagh; Geldhof, Peter; McCoy, Kathleen D; Macpherson, Andrew J; Croese, John; Giacomin, Paul R; Loukas, Alex; Junt, Tobias; Marsland, Benjamin J; Harris, Nicola L
2015-11-17
Intestinal helminths are potent regulators of their host's immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Bacterial pathogens inject type III secreted effector (T3SE) proteins into their hosts where they display dual roles depending on the host genotype. T3SEs promote bacterial virulence in susceptible hosts, and elicit immunity in resistant hosts. T3SEs are typically recognized when they modify a host ...
Zhou, Xiaoou; Di Stasi, Antonio; Tey, Siok-Keen; Krance, Robert A; Martinez, Caridad; Leung, Kathryn S; Durett, April G; Wu, Meng-Fen; Liu, Hao; Leen, Ann M; Savoldo, Barbara; Lin, Yu-Feng; Grilley, Bambi J; Gee, Adrian P; Spencer, David M; Rooney, Cliona M; Heslop, Helen E; Brenner, Malcolm K; Dotti, Gianpietro
2014-06-19
Adoptive transfer of donor-derived T lymphocytes expressing a safety switch may promote immune reconstitution in patients undergoing haploidentical hematopoietic stem cell transplant (haplo-HSCT) without the risk for uncontrolled graft versus host disease (GvHD). Thus, patients who develop GvHD after infusion of allodepleted donor-derived T cells expressing an inducible human caspase 9 (iC9) had their disease effectively controlled by a single administration of a small-molecule drug (AP1903) that dimerizes and activates the iC9 transgene. We now report the long-term follow-up of 10 patients infused with such safety switch-modified T cells. We find long-term persistence of iC9-modified (iC9-T) T cells in vivo in the absence of emerging oligoclonality and a robust immunologic benefit, mediated initially by the infused cells themselves and subsequently by an apparently accelerated reconstitution of endogenous naive T lymphocytes. As a consequence, these patients have immediate and sustained protection from major pathogens, including cytomegalovirus, adenovirus, BK virus, and Epstein-Barr virus in the absence of acute or chronic GvHD, supporting the beneficial effects of this approach to immune reconstitution after haplo-HSCT. This study was registered at www.clinicaltrials.gov as #NCT00710892. © 2014 by The American Society of Hematology.
Lam, P-L; Kok, S H-L; Bian, Z-X; Lam, K-H; Tang, J C-O; Lee, K K-H; Gambari, R; Chui, C-H
2014-05-01
Gelatin/Collagen-based matrix and reservoir nanoparticles require crosslinkers to stabilize the formed nanosuspensions, considering that physical instability is the main challenge of nanoparticulate systems. The use of crosslinkers improves the physical integrity of nanoformulations under the-host environment. Aldehyde-based fixatives, such as formaldehyde and glutaraldehyde, have been widely applied to the crosslinking process of polymeric nanoparticles. However, their potential toxicity towards human beings has been demonstrated in many previous studies. In order to tackle this problem, D-glucose was used during nanoparticle formation to stabilize the gelatin/collagen-based matrix wall and reservoir wall for the deliveries of Calendula officinalis powder and oil, respectively. In addition, therapeutic selectivity between malignant and normal cells could be observed. The C. officinalis powder loaded nanoparticles significantly strengthened the anti-cancer effect towards human breast adenocarcinoma MCF7 cells and human hepatoma SKHep1 cells when compared with the free powder. On the contrary, the nanoparticles did not show significant cytotoxicity towards normal esophageal epithelial NE3 cells and human skin keratinocyte HaCaT cells. On the basis of these evidences, D-glucose modified gelatin/collagen matrix nanoparticles containing C. officinalis powder might be proposed as a safer alternative vehicle for anti-cancer treatments. Copyright © 2014 Elsevier B.V. All rights reserved.
Serafini, Fausta; Turroni, Francesca; Ruas-Madiedo, Patricia; Lugli, Gabriele Andrea; Milani, Christian; Duranti, Sabrina; Zamboni, Nicole; Bottacini, Francesca; van Sinderen, Douwe; Margolles, Abelardo; Ventura, Marco
2014-05-16
Bifidobacteria constitute one of the dominant groups of microorganisms colonizing the human gut of infants. Their ability to utilize various host-derived glycans as well as dietary carbohydrates has received considerable scientific attention. However, very little is known about the role of fermented foods, such as kefir, or their constituent glycans, such as kefiran, as substrates for bifidobacterial growth and for the modulation of the expression of bifidobacterial host-effector molecules. Here, we show that Bifidobacterium bifidum PRL2010 exhibits high growth performance among the bifidobacterial strains tested when cultivated on kefir and/or kefiran polymer. Furthermore, a 16S rRNA metagenomic approach revealed that the microbiota of kefir is modified upon the addition of PRL2010 cells to the kefir matrix. Finally, our results show that kefir and kefiran are able to influence the transcriptome of B. bifidum PRL2010 causing increased transcription of genes involved in the metabolism of dietary glycans as well as genes that act as host-microbe effector molecules such as pili. Altogether, these data support the use of kefir as a valuable means for the delivery of effective microbial cells in probiotic therapy. Copyright © 2014 Elsevier B.V. All rights reserved.
Eichenberger, Ramon M; Ramakrishnan, Chandra; Russo, Giancarlo; Deplazes, Peter; Hehl, Adrian B
2017-06-13
Infections of dogs with virulent strains of Babesia canis are characterized by rapid onset and high mortality, comparable to complicated human malaria. As in other apicomplexan parasites, most Babesia virulence factors responsible for survival and pathogenicity are secreted to the host cell surface and beyond where they remodel and biochemically modify the infected cell interacting with host proteins in a very specific manner. Here, we investigated factors secreted by B. canis during acute infections in dogs and report on in silico predictions and experimental analysis of the parasite's exportome. As a backdrop, we generated a fully annotated B. canis genome sequence of a virulent Hungarian field isolate (strain BcH-CHIPZ) underpinned by extensive genome-wide RNA-seq analysis. We find evidence for conserved factors in apicomplexan hemoparasites involved in immune-evasion (e.g. VESA-protein family), proteins secreted across the iRBC membrane into the host bloodstream (e.g. SA- and Bc28 protein families), potential moonlighting proteins (e.g. profilin and histones), and uncharacterized antigens present during acute crisis in dogs. The combined data provides a first predicted and partially validated set of potential virulence factors exported during fatal infections, which can be exploited for urgently needed innovative intervention strategies aimed at facilitating diagnosis and management of canine babesiosis.
Apoplastic Sugar Extraction and Quantification from Wheat Leaves Infected with Biotrophic Fungi.
Roman-Reyna, Veronica; Rathjen, John P
2017-01-01
Biotrophic fungi such as rusts modify the nutrient status of their hosts by extracting sugars. Hemibiotrophic and biotrophic fungi obtain nutrients from the cytoplasm of host cells and/or the apoplastic spaces. Uptake of nutrients from the cytoplasm is via intracellular hyphae or more complex structures such as haustoria. Apoplastic nutrients are taken up by intercellular hyphae. Overall the infection creates a sink causing remobilization of nutrients from local and distal tissues. The main mobile sugar in plants is sucrose which is absorbed via plant or fungal transporters once unloaded into the cytoplasm or the apoplast. Infection by fungal pathogens alters the apoplastic sugar contents and stimulates the influx of nutrients towards the site of infection as the host tissue transitions to sink. Quantification of solutes in the apoplast can help to understand the allocation of nutrients during infection. However, separation of apoplastic fluids from whole tissue is not straightforward and leakage from damaged cells can alter the results of the extraction. Here, we describe how variation in cytoplasmic contamination and infiltrated leaf volumes must be controlled when extracting apoplastic fluids from healthy and rust-infected wheat leaves. We show the importance of correcting the data for these parameters to measure sugar concentrations accurately.
Caddigan, Sara C; Pfenning, Alaina C; Sparkes, Timothy C
2017-01-01
The acanthocephalan Acanthocephalus dirus is a trophically transmitted parasite that modifies both the physiology and behavior of its intermediate host (isopod) prior to transmission to its definitive host (fish). Infected isopods often contain multiple A. dirus individuals and we examined the relationships between host sharing, body size, energy content, and host modification to determine if host sharing was costly and if these costs could influence the modification of host behavior (mating behavior). Using field-based measures of parasite energy content (glycogen, lipid) and parasite body size (volume), we showed that host sharing was costly in terms of energy content but not in terms of body size. Analysis of the predictors of host behavior revealed that energy content, and body size, were not predictors of host behavior. Of the variables examined, parasite intensity was the only predictor of host behavior. Hosts that contained more parasites were less likely to be modified (i.e., less likely to undergo mating suppression). We suggest that intraspecific competition influenced parasite energy content and that the costs associated with competition are likely to shape the strategy of growth and energy allocation adopted by the parasites. These costs did not appear to have a direct effect on the modification of host mating behavior.
NASA Astrophysics Data System (ADS)
Pollard, Peter C.; Young, Loretta M.
2010-01-01
Globally, cyanobacterial blooms are increasing along with observations of the controlling influence of viruses. Our aim here was to test whether viruses from an Australian freshwater lake could lyse the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju. C. raciborskii was selectively isolated from Lake Samsonvale southeast Queensland Australia using a Modified Jaworski Medium (without any form of inorganic nitrogen). Microscopy confirmed the resulting culture of a single cyanobacterial species. Natural viral-like particles (VLPs) were incubated with C. raciborskii cells, the host abundance decreased by 86% in 5 days, while the number of VLPs increased stepwise. As a cell lysed, the filaments of cells split into smaller, but viable, fragments. This process may help disperse the cyanobacterium in the wild. Hence the use of this virus to control blooms may inadvertently encourage the dispersal of toxic filamentous cyanobacteria. The cyanophage (virus infecting cyanobacteria) replication time was 21 h, with an average burst size of 64 viruses cell -1. Transmission Electron Microscopy showed this cyanophage for C. raciborskii, with its long, non-contractile tail and a capsid diameter of 70 nm, belongs to the Siphoviridae family of viruses. This cyanophage can affect the abundance and distribution of the cyanobacterium C. raciborskii in this Australian freshwater lake.
A large scale Plasmodium vivax- Saimiri boliviensis trophozoite-schizont transition proteome
Lapp, Stacey A.; Barnwell, John W.; Galinski, Mary R.
2017-01-01
Plasmodium vivax is a complex protozoan parasite with over 6,500 genes and stage-specific differential expression. Much of the unique biology of this pathogen remains unknown, including how it modifies and restructures the host reticulocyte. Using a recently published P. vivax reference genome, we report the proteome from two biological replicates of infected Saimiri boliviensis host reticulocytes undergoing transition from the late trophozoite to early schizont stages. Using five database search engines, we identified a total of 2000 P. vivax and 3487 S. boliviensis proteins, making this the most comprehensive P. vivax proteome to date. PlasmoDB GO-term enrichment analysis of proteins identified at least twice by a search engine highlighted core metabolic processes and molecular functions such as glycolysis, translation and protein folding, cell components such as ribosomes, proteasomes and the Golgi apparatus, and a number of vesicle and trafficking related clusters. Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8 enriched functional annotation clusters of S. boliviensis proteins highlighted vesicle and trafficking-related clusters, elements of the cytoskeleton, oxidative processes and response to oxidative stress, macromolecular complexes such as the proteasome and ribosome, metabolism, translation, and cell death. Host and parasite proteins potentially involved in cell adhesion were also identified. Over 25% of the P. vivax proteins have no functional annotation; this group includes 45 VIR members of the large PIR family. A number of host and pathogen proteins contained highly oxidized or nitrated residues, extending prior trophozoite-enriched stage observations from S. boliviensis infections, and supporting the possibility of oxidative stress in relation to the disease. This proteome significantly expands the size and complexity of the known P. vivax and Saimiri host iRBC proteomes, and provides in-depth data that will be valuable for ongoing research on this parasite’s biology and pathogenesis. PMID:28829774
A physical/psychological and biological stress combine to enhance endoplasmic reticulum stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, Tapan Kumar; Emeny, Rebecca T.; Gao, Donghong
The generation of an immune response against infectious and other foreign agents is substantially modified by allostatic load, which is increased with chemical, physical and/or psychological stressors. The physical/psychological stress from cold-restraint (CR) inhibits host defense against Listeria monocytogenes (LM), due to early effects of the catecholamine norepinephrine (NE) from sympathetic nerves on β1-adrenoceptors (β1AR) of immune cells. Although CR activates innate immunity within 2 h, host defenses against bacterial growth are suppressed 2–3 days after infection (Cao and Lawrence 2002). CR enhances inducible nitric oxide synthase (iNOS) expression and NO production. The early innate activation leads to cellular reduction-oxidationmore » (redox) changes of immune cells. Lymphocytes from CR-treated mice express fewer surface thiols. Splenic and hepatic immune cells also have fewer proteins with free thiols after CR and/or LM, and macrophages have less glutathione after the in vivo CR exposure or exposure to NE in vitro. The early induction of CR-induced oxidative stress elevates endoplasmic reticulum (ER) stress, which could interfere with keeping phagocytized LM within the phagosome or re-encapsuling LM by autophagy once they escape from the phagosome. ER stress-related proteins, such as glucose-regulated protein 78 (GRP78), have elevated expression with CR and LM. The results indicate that CR enhances the unfolded protein response (UPR), which interferes with host defenses against LM. Thus, it is postulated that increased stress, as exists with living conditions at low socioeconomic conditions, can lower host defenses against pathogens because of oxidative and ER stress processes. - Highlights: • Cold-restraint (physical/psychological stress) induces early oxidative stress. • The oxidative stress relates to catecholamine signaling beta-adrenoceptors. • Physical/psychological stress combines infection enhancing inflammation. • Endoplasmic reticulum stress interferes with host defenses and autophagy.« less
Lentiviral vectors in cancer immunotherapy.
Oldham, Robyn Aa; Berinstein, Elliot M; Medin, Jeffrey A
2015-01-01
Basic science advances in cancer immunotherapy have resulted in various treatments that have recently shown success in the clinic. Many of these therapies require the insertion of genes into cells to directly kill them or to redirect the host's cells to induce potent immune responses. Other analogous therapies work by modifying effector cells for improved targeting and enhanced killing of tumor cells. Initial studies done using γ-retroviruses were promising, but safety concerns centered on the potential for insertional mutagenesis have highlighted the desire to develop other options for gene delivery. Lentiviral vectors (LVs) have been identified as potentially more effective and safer alternative delivery vehicles. LVs are now in use in clinical trials for many different types of inherited and acquired disorders, including cancer. This review will discuss current knowledge of LVs and the applications of this viral vector-based delivery vehicle to cancer immunotherapy.
Dufresne, Karine; Saulnier-Bellemare, Julie; Daigle, France
2018-01-01
The human-specific pathogen Salmonella enterica serovar Typhi causes typhoid, a major public health issue in developing countries. Several aspects of its pathogenesis are still poorly understood. S . Typhi possesses 14 fimbrial gene clusters including 12 chaperone-usher fimbriae ( stg, sth, bcf , fim, saf , sef , sta, stb, stc, std, ste , and tcf ). These fimbriae are weakly expressed in laboratory conditions and only a few are actually characterized. In this study, expression of all S . Typhi chaperone-usher fimbriae and their potential roles in pathogenesis such as interaction with host cells, motility, or biofilm formation were assessed. All S . Typhi fimbriae were better expressed in minimal broth. Each system was overexpressed and only the fimbrial gene clusters without pseudogenes demonstrated a putative major subunits of about 17 kDa on SDS-PAGE. Six of these (Fim, Saf, Sta, Stb, Std, and Tcf) also show extracellular structure by electron microscopy. The impact of fimbrial deletion in a wild-type strain or addition of each individual fimbrial system to an S . Typhi afimbrial strain were tested for interactions with host cells, biofilm formation and motility. Several fimbriae modified bacterial interactions with human cells (THP-1 and INT-407) and biofilm formation. However, only Fim fimbriae had a deleterious effect on motility when overexpressed. Overall, chaperone-usher fimbriae seem to be an important part of the balance between the different steps (motility, adhesion, host invasion and persistence) of S . Typhi pathogenesis.
Cell Cycle-Dependent Phosphorylation of Theileria annulata Schizont Surface Proteins
von Schubert, Conrad; Wastling, Jonathan M.; Heussler, Volker T.; Woods, Kerry L.
2014-01-01
The invasion of Theileria sporozoites into bovine leukocytes is rapidly followed by the destruction of the surrounding host cell membrane, allowing the parasite to establish its niche within the host cell cytoplasm. Theileria infection induces host cell transformation, characterised by increased host cell proliferation and invasiveness, and the activation of anti-apoptotic genes. This process is strictly dependent on the presence of a viable parasite. Several host cell kinases, including PI3-K, JNK, CK2 and Src-family kinases, are constitutively activated in Theileria-infected cells and contribute to the transformed phenotype. Although a number of host cell molecules, including IkB kinase and polo-like kinase 1 (Plk1), are recruited to the schizont surface, very little is known about the schizont molecules involved in host-parasite interactions. In this study we used immunofluorescence to detect phosphorylated threonine (p-Thr), serine (p-Ser) and threonine-proline (p-Thr-Pro) epitopes on the schizont during host cell cycle progression, revealing extensive schizont phosphorylation during host cell interphase. Furthermore, we established a quick protocol to isolate schizonts from infected macrophages following synchronisation in S-phase or mitosis, and used mass spectrometry to detect phosphorylated schizont proteins. In total, 65 phosphorylated Theileria proteins were detected, 15 of which are potentially secreted or expressed on the surface of the schizont and thus may be targets for host cell kinases. In particular, we describe the cell cycle-dependent phosphorylation of two T. annulata surface proteins, TaSP and p104, both of which are highly phosphorylated during host cell S-phase. TaSP and p104 are involved in mediating interactions between the parasite and the host cell cytoskeleton, which is crucial for the persistence of the parasite within the dividing host cell and the maintenance of the transformed state. PMID:25077614
Salazar-Iribe, Alexis; Zúñiga-Sánchez, Esther; Mejía, Emma Zavaleta; Gamboa-deBuen, Alicia
2017-01-01
The root-knot nematode Meloidogyne incognita infects a variety of plants, including Arabidopsis thaliana. During migration, root-knot nematodes secrete different proteins to modify cell walls, which include pectolytic enzymes. However, the contribution of host cell wall proteins has not been described during this process. The function of two DUF642 cell wall proteins, BIIDXI (BDX, At4g32460) and TEEBE (TEB, At2g41800), in plant development could be related to the regulation of pectin methyl esterification status in the cell walls of different tissues. Accordingly, the expression of these two genes is up-regulated by auxin. BDX and TEB were highly induced during early M. incognita inoculation. Moreover, cell wall localization of the proteins was also induced. The cell wall localization of BDX and TEB DUF642 proteins during M. incognita early inoculation suggested that these two proteins could be involved in the regulation of the degree of pectin methylation during cell separation. PMID:29238286
Proteomic Analysis of Virus-Host Interactions in an Infectious Context Using Recombinant Viruses*
Komarova, Anastassia V.; Combredet, Chantal; Meyniel-Schicklin, Laurène; Chapelle, Manuel; Caignard, Grégory; Camadro, Jean-Michel; Lotteau, Vincent; Vidalain, Pierre-Olivier; Tangy, Frédéric
2011-01-01
RNA viruses exhibit small-sized genomes encoding few proteins, but still establish complex networks of interactions with host cell components to achieve replication and spreading. Ideally, these virus-host protein interactions should be mapped directly in infected cell culture, but such a high standard is often difficult to reach when using conventional approaches. We thus developed a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect physical binding partners during infection. As a proof of concept, we engineered a recombinant measles virus (MV) expressing one of its virulence factors, the MV-V protein, with a One-STrEP amino-terminal tag. This allowed virus-host protein complex analysis directly from infected cells by combining modified tandem affinity chromatography and mass spectrometry analysis. Using this approach, we established a prosperous list of 245 cellular proteins interacting either directly or indirectly with MV-V, and including four of the nine already known partners of this viral factor. These interactions were highly specific of MV-V because they were not recovered when the nucleoprotein MV-N, instead of MV-V, was tagged. Besides key components of the antiviral response, cellular proteins from mitochondria, ribosomes, endoplasmic reticulum, protein phosphatase 2A, and histone deacetylase complex were identified for the first time as prominent targets of MV-V and the critical role of the later protein family in MV replication was addressed. Most interestingly, MV-V showed some preferential attachment to essential proteins in the human interactome network, as assessed by centrality and interconnectivity measures. Furthermore, the list of MV-V interactors also showed a massive enrichment for well-known targets of other viruses. Altogether, this clearly supports our approach based on reverse genetics of viruses combined with high-throughput proteomics to probe the interaction network that viruses establish in infected cells. PMID:21911578
Encapsulated Islet Transplantation: Where Do We Stand?
Vaithilingam, Vijayaganapathy; Bal, Sumeet; Tuch, Bernard E
2017-01-01
Transplantation of pancreatic islets encapsulated within immuno-protective microcapsules is a strategy that has the potential to overcome graft rejection without the need for toxic immunosuppressive medication. However, despite promising preclinical studies, clinical trials using encapsulated islets have lacked long-term efficacy, and although generally considered clinically safe, have not been encouraging overall. One of the major factors limiting the long-term function of encapsulated islets is the host's immunological reaction to the transplanted graft which is often manifested as pericapsular fibrotic overgrowth (PFO). PFO forms a barrier on the capsule surface that prevents the ingress of oxygen and nutrients leading to islet cell starvation, hypoxia and death. The mechanism of PFO formation is still not elucidated fully and studies using a pig model have tried to understand the host immune response to empty alginate microcapsules. In this review, the varied strategies to overcome or reduce PFO are discussed, including alginate purification, altering microcapsule geometry, modifying alginate chemical composition, co-encapsulation with immunomodulatory cells, administration of pharmacological agents, and alternative transplantation sites. Nanoencapsulation technologies, such as conformal and layer-by-layer coating technologies, as well as nanofiber, thin-film nanoporous devices, and silicone based NanoGland devices are also addressed. Finally, this review outlines recent progress in imaging technologies to track encapsulated cells, as well as promising perspectives concerning the production of insulin-producing cells from stem cells for encapsulation.
Garetto, Stefano; Sardi, Claudia; Martini, Elisa; Roselli, Giuliana; Morone, Diego; Angioni, Roberta; Cianciotti, Beatrice Claudia; Trovato, Anna Elisa; Franchina, Davide Giuseppe; Castino, Giovanni Francesco; Vignali, Debora; Erreni, Marco; Marchesi, Federica; Rumio, Cristiano; Kallikourdis, Marinos
2016-07-12
In recent years, tumor Adoptive Cell Therapy (ACT), using administration of ex vivo-enhanced T cells from the cancer patient, has become a promising therapeutic strategy. However, efficient homing of the anti-tumoral T cells to the tumor or metastatic site still remains a substantial hurdle. Yet the tumor site itself attracts both tumor-promoting and anti-tumoral immune cell populations through the secretion of chemokines. We attempted to identify these chemokines in a model of spontaneous metastasis, in order to "hijack" their function by expressing matching chemokine receptors on the cytotoxic T cells used in ACT, thus allowing us to enhance the recruitment of these therapeutic cells. Here we show that this enabled the modified T cells to preferentially home into spontaneous lymph node metastases in the TRAMP model, as well as in an inducible tumor model, E.G7-OVA. Due to the improved homing, the modified CD8+ T cells displayed an enhanced in vivo protective effect, as seen by a significant delay in E.G7-OVA tumor growth. These results offer a proof of principle for the tailored application of chemokine receptor modification as a means of improving T cell homing to the target tumor, thus enhancing ACT efficacy. Surprisingly, we also uncover that the formation of the peri-tumoral fibrotic capsule, which has been shown to impede T cell access to tumor, is partially dependent on host T cell presence. This finding, which would be impossible to observe in immunodeficient model studies, highlights possible conflicting roles that T cells may play in a therapeutic context.
2013-01-01
The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells. PMID:23413889
Biomimetic design in microparticulate vaccines.
Keegan, Mark E; Whittum-Hudson, Judith A; Mark Saltzman, W
2003-11-01
Current efforts to improve the effectiveness of microparticle vaccines include incorporating biomimetic features into the particles. Many pathogens use surface molecules to target specific cell types in the gut for host invasion. This observation has inspired efforts to chemically conjugate cell-type targeting ligands to the surfaces of microparticles in order to increase the efficiency of uptake, and therefore the effectiveness, of orally administered microparticles. Bio-mimicry is not limited to the exterior surface of the microparticles. Anti-idiotypic antibodies, cytokines or other biological modifiers can be encapsulated for delivery to sites of interest as vaccines or other therapeutics. Direct mucosal delivery of microparticle vaccines or immunomodulatory agents may profoundly enhance mucosal and systemic immune responses compared to other delivery routes.
Advancement of knowledge of Brucella over the past 50 years.
Olsen, S C; Palmer, M V
2014-11-01
Fifty years ago, bacteria in the genus Brucella were known to cause infertility and reproductive losses. At that time, the genus was considered to contain only 3 species: Brucella abortus, Brucella melitensis, and Brucella suis. Since the early 1960s, at least 7 new species have been identified as belonging to the Brucella genus (Brucella canis, Brucella ceti, Brucella inopinata, Brucella microti, Brucella neotomae, Brucella ovis, and Brucella pinnipedialis) with several additional new species under consideration for inclusion. Although molecular studies have found such high homology that some authors have proposed that all Brucella are actually 1 species, the epidemiologic and diagnostic benefits for separating the genus based on phenotypic characteristics are more compelling. Although pathogenic Brucella spp have preferred reservoir hosts, their ability to infect numerous mammalian hosts has been increasingly documented. The maintenance of infection in new reservoir hosts, such as wildlife, has become an issue for both public health and animal health regulatory personnel. Since the 1960s, new information on how Brucella enters host cells and modifies their intracellular environment has been gained. Although the pathogenesis and histologic lesions of B. abortus, B. melitensis, and B. suis in their preferred hosts have not changed, additional knowledge on the pathology of these brucellae in new hosts, or of new species of Brucella in their preferred hosts, has been obtained. To this day, brucellosis remains a significant human zoonosis that is emerging or reemerging in many parts of the world. © The Author(s) 2014.
Development of hyper osmotic resistant CHO host cells for enhanced antibody production.
Kamachi, Yasuharu; Omasa, Takeshi
2018-04-01
Cell culture platform processes are generally employed to shorten the duration of new product development. A fed-batch process with continuous feeding is a conventional platform process for monoclonal antibody production using Chinese hamster ovary (CHO) cells. To establish a simplified platform process, the feeding method can be changed from continuous feed to bolus feed. However, this change induces a rapid increase of osmolality by the bolus addition of nutrients. The increased osmolality suppresses cell culture growth, and the final product concentration is decreased. In this study, osmotic resistant CHO host cells were developed to attain a high product concentration. To establish hyper osmotic resistant CHO host cells, CHO-S host cells were passaged long-term in a hyper osmotic basal medium. There were marked differences in cell growth of the original and established host cells under iso- (328 mOsm/kg) or hyper-osmolality (over 450 mOsm/kg) conditions. Cell growth of the original CHO host cells was markedly decreased by the induction of osmotic stress, whereas cell growth of the hyper osmotic resistant CHO host cells was not affected. The maximum viable cell concentration of hyper osmotic resistant CHO host cells was 132% of CHO-S host cells after the induction of osmotic stress. Moreover, the hyper osmotic resistant characteristic of established CHO host cells was maintained even after seven passages in iso-osmolality basal medium. The use of hyper osmotic resistance CHO host cells to create a monoclonal antibody production cell line might be a new approach to increase final antibody concentrations with a fed-batch process. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Stress and death of cnidarian host cells play a role in cnidarian bleaching.
Paxton, Camille W; Davy, Simon K; Weis, Virginia M
2013-08-01
Coral bleaching occurs when there is a breakdown of the symbiosis between cnidarian hosts and resident Symbiodinium spp. Multiple mechanisms for the bleaching process have been identified, including apoptosis and autophagy, and most previous work has focused on the Symbiodinium cell as the initiator of the bleaching cascade. In this work we show that it is possible for host cells to initiate apoptosis that can contribute to death of the Symbiodinium cell. First we found that colchicine, which results in apoptosis in other animals, causes cell death in the model anemone Aiptasia sp. but not in cultured Symbiodinium CCMP-830 cells or in cells freshly isolated from host Aiptasia (at least within the time frame of our study). In contrast, when symbiotic Aiptasia were incubated in colchicine, cell death in the resident Symbiodinium cells was observed, suggesting a host effect on symbiont mortality. Using live-cell confocal imaging of macerated symbiotic host cell isolates, we identified a pattern where the initiation of host cell death was followed by mortality of the resident Symbiodinium cells. This same pattern was observed in symbiotic host cells that were subjected to temperature stress. This research suggests that mortality of symbionts during temperature-induced bleaching can be initiated in part by host cell apoptosis.
Kasimsetty, Sashi G; Shigeoka, Alana A; Scheinok, Andrew A; Gavin, Amanda L; Ulevitch, Richard J; McKay, Dianne B
2017-08-01
Nucleotide-binding oligomerization domain (Nod)-containing proteins Nod1 and Nod2 play important roles in the innate immune response to pathogenic microbes, but mounting data suggest these pattern recognition receptors might also play key roles in adaptive immune responses. Targeting Nod1 and Nod2 signaling pathways in T cells is likely to provide a new strategy to modify inflammation in a variety of disease states, particularly those that depend on Ag-induced T cell activation. To better understand how Nod1 and Nod2 proteins contribute to adaptive immunity, this study investigated their role in alloantigen-induced T cell activation and asked whether their absence might impact in vivo alloresponses using a severe acute graft versus host disease model. The study provided several important observations. We found that the simultaneous absence of Nod1 and Nod2 primed T cells for activation-induced cell death. T cells from Nod1 × 2 -/- mice rapidly underwent cell death upon exposure to alloantigen. The Nod1 × 2 -/- T cells had sustained p53 expression that was associated with downregulation of its negative regulator MDM2. In vivo, mice transplanted with an inoculum containing Nod1 × 2 -/- T cells were protected from severe graft versus host disease. The results show that the simultaneous absence of Nod1 and Nod2 is associated with accelerated T cell death upon alloantigen encounter, suggesting these proteins might provide new targets to ameliorate T cell responses in a variety of inflammatory states, including those associated with bone marrow or solid organ transplantation. Copyright © 2017 by The American Association of Immunologists, Inc.
Hexagonal-shaped chondroitin sulfate self-assemblies have exalted anti-HSV-2 activity.
Galus, Aurélia; Mallet, Jean-Maurice; Lembo, David; Cagno, Valeria; Djabourov, Madeleine; Lortat-Jacob, Hugues; Bouchemal, Kawthar
2016-01-20
The initial step in mucosal infection by the herpes simplex virus type 2 (HSV-2) requires its binding to certain glycosaminoglycans naturally present on host cell membranes. We took advantage of this interaction to design biomimetic supramolecular hexagonal-shaped nanoassemblies composed of chondroitin sulfate having exalted anti-HSV-2 activity in comparison with native chondroitin sulfate. Nanoassemblies were formed by mixing hydrophobically-modified chondroitin sulfate with α-cyclodextrin in water. Optimization of alkyl chain length grafted on chondroitin sulfate and the ratio between hydrophobically-modified chondroitin sulfate and α-cyclodextrin showed that more cohesive and well-structured nanoassemblies were obtained using higher α-cyclodextrin concentration and longer alkyl chain lengths. A structure-activity relationship was found between anti-HSV-2 activity and the amphiphilic nature of hydrophobically-modified chondroitin sulfate. Also, antiviral activity of hexagonal nanoassemblies against HSV-2 was further improved in comparison with hydrophobically-modified chondroitin sulfate. This work suggests a new biomimetic formulation approach that can be extended to other heparan-sulfate-dependent viruses. Copyright © 2015 Elsevier Ltd. All rights reserved.
Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi.
Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu
2017-11-18
Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan.
Kolb, Hans-Jochem; Guenther, Wolfgang; Gyurkocza, Boglarka; Hoetzl, Florian; Simoes, Belinda; Falk, Christine; Schleuning, Michael; Ledderose, Georg
2003-05-15
Stem-cell transplantation from human leukocyte antigen (HLA)-haploidentical family members carries a high risk of rejection and graft-versus-host disease (GVHD) if donor and recipient differ by more than one HLA antigen. The authors have developed treatment protocols from studies in dog leukocyte antigen-haploidentical dogs that prevent rejection and modify GVHD to the extent that patients with aggressive hematologic neoplasia can be treated with success. Principal improvements have been achieved in the use of cyclophosphamide and total-body irradiation for conditioning and T-cell depletion for prevention of GVHD. More recently, the combination of marrow and CD6-depleted mobilized donor blood cells (MDBC) has been introduced for HLA-haploidentical transplantation on the basis that CD6-depleted MDBC contain immunoregulatory cells besides stem cells and natural killer cells. Clinical results are reported on 36 patients with high-risk hematologic neoplasia. The results encourage the use of HLA-haploidentical stem-cell transplantation at an earlier stage of the disease. This method could also be of use for tolerance induction in organ transplantation.
The Toxoplasma Parasitophorous Vacuole: An Evolving Host-Parasite Frontier.
Clough, Barbara; Frickel, Eva-Maria
2017-06-01
The parasitophorous vacuole is a unique replicative niche for apicomplexan parasites, including Toxoplasma gondii. Derived from host plasma membrane, the vacuole is rendered nonfusogenic with the host endolysosomal system. Toxoplasma secretes numerous proteins to modify the forming vacuole, enable nutrient uptake, and set up mechanisms of host subversion. Here we describe the pathways of host-parasite interaction at the parasitophorous vacuole employed by Toxoplasma and host, leading to the intricate balance of host defence versus parasite survival. Copyright © 2017 Elsevier Ltd. All rights reserved.
Targeted Immune Therapy of Ovarian Cancer
Knutson, Keith L.; Karyampudi, Lavakumar; Lamichhane, Purushottam; Preston, Claudia
2014-01-01
Clinical outcomes, such as recurrence free survival and overall survival, in ovarian cancer are quite variable, independent of common characteristics such as stage, response to therapy and grade. This disparity in outcomes warrants further exploration and therapeutic targeting into the interaction between the tumor and host. One compelling host characteristic that contributes both to the initiation and progression of ovarian cancer is the immune system. Hundreds of studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease. Recent studies also show that anti-tumor immunity is often negated by immune regulatory cells present in the tumor microenvironment. Regulatory immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathologic network. Thus, in the future, research into immunotherapy targeting ovarian cancer will probably become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression. In this article, we summarize important immunological targets that influence ovarian cancer outcome as well as include an update on newer immunotherapeutic strategies. PMID:25544369
Enhancement of healing in osteochondral defects by collagen sponge implants.
Speer, D P; Chvapil, M; Volz, R G; Holmes, M D
1979-10-01
Implants of porous, highly cross-linked collagen sponge (CS) were tested for their capacity to enhance the healing of osteochondral defects in rabbits. Comparison was made to the healing of similar defects with polyvinyl alcohol sponge (PVAS) implants and with no implants (CONT). Evaluation was carried out up to 44 weeks following implantation and included observation of host cellular response, biodegradability of implant, gross appearance of restored joint surface, collagenous architecture of repair tissue, and properties of the junctions of implants and host articular cartilage, subchondral bone, and medullary bone. Collagen sponge proved most effective in promoting healing of osteochondral defects with fibrous and fibrocartilaginous tissue over restored subchondral bone. Collagen sponge showed many desirable properties as a potential material for biologic resurfacing of damaged joints. These properties included porosity, biodegradability, biocompatability, ability to mechanically protect cells and matrix while directing cell ingrowth, and an available chemical technology for modifying its biomechanical and biological properties. Comparative analysis of results of healing of CS, PVAS, and CONT osteochondral defects suggest rational design criteria for implant materials to improve their effectiveness in restoration of articular surfaces.
Viruses and the nucleolus: the fatal attraction.
Salvetti, Anna; Greco, Anna
2014-06-01
Viruses are small obligatory parasites and as a consequence, they have developed sophisticated strategies to exploit the host cell's functions to create an environment that favors their own replication. A common feature of most - if not all - families of human and non-human viruses concerns their interaction with the nucleolus. The nucleolus is a multifunctional nuclear domain, which, in addition to its well-known role in ribosome biogenesis, plays several crucial other functions. Viral infection induces important nucleolar alterations. Indeed, during viral infection numerous viral components localize in nucleoli, while various host nucleolar proteins are redistributed in other cell compartments or are modified, and non-nucleolar cellular proteins reach the nucleolus. This review highlights the interactions reported between the nucleolus and some human or animal viral families able to establish a latent or productive infection, selected on the basis of their known interactions with the nucleolus and the nucleolar activities, and their links with virus replication and/or pathogenesis. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. Copyright © 2014 Elsevier B.V. All rights reserved.
Step-By-Step In Vitro Mutagenesis: Lessons From Fucose-Binding Lectin PA-IIL.
Mrázková, Jana; Malinovská, Lenka; Wimmerová, Michaela
2017-01-01
Site-directed mutagenesis is a powerful technique which is used to understand the basis of interactions between proteins and their binding partners, as well as to modify these interactions. Methods of rational design that are based on detailed knowledge of the structure of a protein of interest are often used for preliminary investigations of the possible outcomes which can result from the practical application of site-directed mutagenesis. Also, random mutagenesis can be used in tandem with site-directed mutagenesis for an examination of amino acid "hotspots."Lectins are sugar-binding proteins which, among other functions, mediate the recognition of host cells by a pathogen and its adhesion to the host cell surface. Hence, lectins and their binding properties are studied and engineered using site-directed mutagenesis.In this chapter, we describe a site-directed mutagenesis method used for investigating the sugar binding pattern of the PA-IIL lectin from the pathogenic bacterium Pseudomonas aeruginosa. Moreover, procedures for the production and purification of PA-IIL mutants are described, and several basic methods for characterizing the mutants are discussed.
Chen, Shiyan; Lang, Ping; Chronis, Demosthenis; Zhang, Sheng; De Jong, Walter S; Mitchum, Melissa G; Wang, Xiaohong
2015-01-01
Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have been identified in several cyst nematodes, including the potato cyst nematode (PCN); however, the mechanistic details of this cross-kingdom mimicry are poorly understood. Plant CLEs are posttranslationally modified and proteolytically processed to function as bioactive ligands critical to various aspects of plant development. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry analysis, we show that the in planta mature form of proGrCLE1, a multidomain CLE effector secreted by PCN during infection, is a 12-amino acid arabinosylated glycopeptide (named GrCLE1-1Hyp4,7g) with striking structural similarity to mature plant CLE peptides. This glycopeptide is more resistant to hydrolytic degradation and binds with higher affinity to a CLAVATA2-like receptor (StCLV2) from potato (Solanum tuberosum) than its nonglycosylated forms. We further show that StCLV2 is highly up-regulated at nematode infection sites and that transgenic potatoes with reduced StCLV2 expression are less susceptible to PCN infection, indicating that interference of the CLV2-mediated signaling pathway confers nematode resistance in crop plants. These results strongly suggest that phytonematodes have evolved to utilize host cellular posttranslational modification and processing machinery for the activation of CLE effectors following secretion into plant cells and highlight the significance of arabinosylation in regulating nematode CLE effector activity. Our finding also provides evidence that multidomain CLEs are modified and processed similarly to single-domain CLEs, adding new insight into CLE maturation in plants. © 2015 American Society of Plant Biologists. All Rights Reserved.
DNA modification and functional delivery into human cells using Escherichia coli DH10B
Narayanan, Kumaran; Warburton, Peter E.
2003-01-01
The availability of almost the complete human genome as cloned BAC libraries represents a valuable resource for functional genomic analysis, which, however, has been somewhat limited by the ability to modify and transfer this DNA into mammalian cells intact. Here we report a novel comprehensive Escherichia coli-based vector system for the modification, propagation and delivery of large human genomic BAC clones into mammalian cells. The GET recombination inducible homologous recombination system was used in the BAC host strain E.coli DH10B to precisely insert an EGFPneo cassette into the vector portion of a ∼200 kb human BAC clone, providing a relatively simple method to directly convert available BAC clones into suitable vectors for mammalian cells. GET recombination was also used for the targeted deletion of the asd gene from the E.coli chromosome, resulting in defective cell wall synthesis and diaminopimelic acid auxotrophy. Transfer of the Yersinia pseudotuberculosis invasin gene into E.coli DH10B asd– rendered it competent to invade HeLa cells and deliver DNA, as judged by transient expression of green fluorescent protein and stable neomycin-resistant colonies. The efficiency of DNA transfer and survival of HeLa cells has been optimized for incubation time and multiplicity of infection of invasive E.coli with HeLa cells. This combination of E.coli-based homologous recombination and invasion technologies using BAC host strain E.coli DH10B will greatly improve the utility of the available BAC libraries from the human and other genomes for gene expression and functional genomic studies. PMID:12711696
Cord-Landwehr, Stefan; Melcher, Rebecca L J; Kolkenbrock, Stephan; Moerschbacher, Bruno M
2016-11-30
To successfully survive in plants, endophytes need strategies to avoid being detected by the plant immune system, as the cell walls of endophytes contain easily detectible chitin. It is possible that endophytes "hide" this chitin from the plant immune system by modifying it, or oligomers derived from it, using chitin deacetylases (CDA). To explore this hypothesis, we identified and expressed a CDA from Pestalotiopsis sp. (PesCDA), an endophytic fungus, in E. coli and characterized this enzyme and its chitosan oligomer products. We found that when PesCDA modifies chitin oligomers, the products are partially deacetylated chitosan oligomers with a specific acetylation pattern: GlcNAc-GlcNAc-(GlcN) n -GlcNAc (n ≥ 1). Then, in a bioactivity assay where suspension-cultured rice cells were incubated with the PesCDA products (processed chitin hexamers), we found that, unlike the substrate hexamers, chitosan oligomer products no longer elicited the plant immune system. Thus, this endophytic enzyme can prevent the endophyte from being recognized by the plant immune system; this might represent a more general hypothesis for how certain fungi are able to live in or on their hosts.
Cord-Landwehr, Stefan; Melcher, Rebecca L. J.; Kolkenbrock, Stephan; Moerschbacher, Bruno M.
2016-01-01
To successfully survive in plants, endophytes need strategies to avoid being detected by the plant immune system, as the cell walls of endophytes contain easily detectible chitin. It is possible that endophytes “hide” this chitin from the plant immune system by modifying it, or oligomers derived from it, using chitin deacetylases (CDA). To explore this hypothesis, we identified and expressed a CDA from Pestalotiopsis sp. (PesCDA), an endophytic fungus, in E. coli and characterized this enzyme and its chitosan oligomer products. We found that when PesCDA modifies chitin oligomers, the products are partially deacetylated chitosan oligomers with a specific acetylation pattern: GlcNAc-GlcNAc-(GlcN)n-GlcNAc (n ≥ 1). Then, in a bioactivity assay where suspension-cultured rice cells were incubated with the PesCDA products (processed chitin hexamers), we found that, unlike the substrate hexamers, chitosan oligomer products no longer elicited the plant immune system. Thus, this endophytic enzyme can prevent the endophyte from being recognized by the plant immune system; this might represent a more general hypothesis for how certain fungi are able to live in or on their hosts. PMID:27901067
Kawakami, Tomoya; Koike, Atsushi; Amano, Fumio
2017-08-01
The role of activated macrophages in the host defense against pathogens or tumor cells has been investigated extensively. Many researchers have been using various culture media in in vitro experiments using macrophages. We previously reported that J774.1/JA-4 macrophage-like cells showed great differences in their activated macrophage phenotypes, such as production of reactive oxygen, nitric oxide (NO) or cytokines depending on the culture medium used, either F-12 (Ham's F-12 nutrient mixture) or Dulbecco modified Eagle's medium (DMEM). To examine whether a difference in the culture medium would influence the functions of primary macrophages, we used BALB/c mouse peritoneal macrophages in this study. Among the activated macrophage phenotypes, the expression of inducible NO synthase in LPS- and/or IFN-γ-treated peritoneal macrophages showed the most remarkable differences between F-12 and DMEM; i.e., NO production by LPS- and/or IFN-γ-treated cells was far lower in DMEM than in F-12. Similar results were obtained with C57BL mouse peritoneal macrophages. Besides, dilution of F-12 medium with saline resulted in a slight decrease in NO production, whereas that of DMEM with saline resulted in a significant increase, suggesting the possibility that DMEM contained some inhibitory factor(s) for NO production. However, such a difference in NO production was not observed when macrophage-like cell lines were examined. These results suggest that phenotypes of primary macrophages could be changed significantly with respect to host inflammatory responses by the surrounding environment including nutritional factors and that these altered macrophage phenotypes might influence the biological host defense.
Littler, Dene R.; Ang, Sheng Y.; Moriel, Danilo G.; Kocan, Martina; Kleifeld, Oded; Johnson, Matthew D.; Tran, Mai T.; Paton, Adrienne W.; Paton, James C.; Summers, Roger J.; Schembri, Mark A.; Rossjohn, Jamie; Beddoe, Travis
2017-01-01
Pertussis-like toxins are secreted by several bacterial pathogens during infection. They belong to the AB5 virulence factors, which bind to glycans on host cell membranes for internalization. Host cell recognition and internalization are mediated by toxin B subunits sharing a unique pentameric ring-like assembly. Although the role of pertussis toxin in whooping cough is well-established, pertussis-like toxins produced by other bacteria are less studied, and their mechanisms of action are unclear. Here, we report that some extra-intestinal Escherichia coli pathogens (i.e. those that reside in the gut but can spread to other bodily locations) encode a pertussis-like toxin that inhibits mammalian cell growth in vitro. We found that this protein, EcPlt, is related to toxins produced by both nontyphoidal and typhoidal Salmonella serovars. Pertussis-like toxins are secreted as disulfide-bonded heterohexamers in which the catalytic ADP-ribosyltransferase subunit is activated when exposed to the reducing environment in mammalian cells. We found here that the reduced EcPlt exhibits large structural rearrangements associated with its activation. We noted that inhibitory residues tethered within the NAD+-binding site by an intramolecular disulfide in the oxidized state dissociate upon the reduction and enable loop restructuring to form the nucleotide-binding site. Surprisingly, although pertussis toxin targets a cysteine residue within the α subunit of inhibitory trimeric G-proteins, we observed that activated EcPlt toxin modifies a proximal lysine/asparagine residue instead. In conclusion, our results reveal the molecular mechanism underpinning activation of pertussis-like toxins, and we also identified differences in host target specificity. PMID:28663369
Metabolic host responses to infection by intracellular bacterial pathogens
Eisenreich, Wolfgang; Heesemann, Jürgen; Rudel, Thomas; Goebel, Werner
2013-01-01
The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defense answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies. PMID:23847769
Cabezas-Cruz, Alejandro; Espinosa, Pedro J; Obregón, Dasiel A; Alberdi, Pilar; de la Fuente, José
2017-01-01
The obligate intracellular pathogen, Anaplasma phagocytophilum , is the causative agent of life-threatening diseases in humans and animals. A. phagocytophilum is an emerging tick-borne pathogen in the United States, Europe, Africa and Asia, with increasing numbers of infected people and animals every year. It is increasingly recognized that intracellular pathogens modify host cell metabolic pathways to increase infection and transmission in both vertebrate and invertebrate hosts. Recent reports have shown that amino acids are central to the host-pathogen metabolic interaction. In this study, a genome-wide search for components of amino acid metabolic pathways was performed in Ixodes scapularis , the main tick vector of A. phagocytophilum in the United States, for which the genome was recently published. The enzymes involved in the synthesis and degradation pathways of the twenty amino acids were identified. Then, the available transcriptomics and proteomics data was used to characterize the mRNA and protein levels of I. scapularis amino acid metabolic pathway components in response to A. phagocytophilum infection of tick tissues and ISE6 tick cells. Our analysis was focused on the interplay between carbohydrate and amino acid metabolism during A. phagocytophilum infection in ISE6 cells. The results showed that tick cells increase the synthesis of phosphoenolpyruvate (PEP) from tyrosine to control A. phagocytophilum infection. Metabolic pathway analysis suggested that this is achieved by (i) increasing the transcript and protein levels of mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M), (ii) shunting tyrosine into the tricarboxylic acid (TCA) cycle to increase fumarate and oxaloacetate which will be converted into PEP by PEPCK-M, and (iii) blocking all the pathways that use PEP downstream gluconeogenesis (i.e., de novo serine synthesis pathway (SSP), glyceroneogenesis and gluconeogenesis). While sequestering host PEP may be critical for this bacterium because it cannot actively carry out glycolysis to produce PEP, excess of this metabolite may be toxic for A. phagocytophilum . The present work provides a more comprehensive view of the major amino acid metabolic pathways involved in the response to pathogen infection in ticks, and provides the basis for further studies to develop novel strategies for the control of granulocytic anaplasmosis.
Enforcing host cell polarity: an apicomplexan parasite strategy towards dissemination.
Baumgartner, Martin
2011-08-01
The propagation of apicomplexan parasites through transmitting vectors is dependent on effective dissemination of parasites inside the mammalian host. Intracellular Toxoplasma and Theileria parasites face the challenge that their spread inside the host depends in part on the motile capacities of their host cells. In response, these parasites influence the efficiency of dissemination by altering adhesive and/or motile properties of their host cells. Theileria parasites do so by targeting signalling pathways that control host cell actin dynamics. The resulting enforced polar host cell morphology facilitates motility and invasiveness, by establishing focal adhesion and invasion structures at the leading edge of the infected cell. This parasite strategy highlights mechanisms of motility regulation that are also likely relevant for immune or cancer cell motility. Copyright © 2011 Elsevier Ltd. All rights reserved.
Charnaud, Sarah C.; Dixon, Matthew W. A.; Nie, Catherine Q.; Chappell, Lia; Sanders, Paul R.; Nebl, Thomas; Hanssen, Eric; Berriman, Matthew; Chan, Jo-Anne; Blanch, Adam J.; Beeson, James G.; Rayner, Julian C.; Przyborski, Jude M.; Tilley, Leann; Crabb, Brendan S.
2017-01-01
Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE) in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a large number of deaths each year and is a consequence of exported parasite proteins, some of which modify the erythrocyte cytoskeleton while others such as PfEMP1 project onto the erythrocyte surface where they bind to endothelial cells. Here we investigate the effects of knocking out an exported Hsp70-type chaperone termed Hsp70-x that is present in P. falciparum but not P. vivax. Although the growth of Δhsp70-x parasites was unaffected, the export of PfEMP1 cytoadherence proteins was delayed and Δhsp70-x IE had reduced adhesion. The Δhsp70-x IE were also more rigid than wild-type controls indicating changes in the way the parasites modified their host erythrocyte. To investigate the cause of this, transcriptional and translational changes in exported and chaperone proteins were monitored and some changes were observed. We propose that PfHsp70-x is not essential for survival in vitro, but may be required for the efficient export and functioning of some P. falciparum exported proteins. PMID:28732045
Chlamydia trachomatis Cellular Exit Alters Interactions with Host Dendritic Cells
Sherrid, Ashley M.
2017-01-01
ABSTRACT The strategies utilized by pathogens to exit host cells are an area of pathogenesis which has received surprisingly little attention, considering the necessity of this step for infections to propagate. Even less is known about how exit through these pathways affects downstream host-pathogen interactions and the generation of an immune response. Chlamydia trachomatis exits host epithelial cells through two equally active mechanisms: lysis and extrusion. Studies have characterized the outcome of interactions between host innate immune cells, such as dendritic cells and macrophages, and free, extracellular Chlamydia bacteria, such as those resulting from lysis. Exit via extrusion generates a distinct, host-membrane-bound compartment of Chlamydia separate from the original infected cell. In this study, we assessed the effect of containment within extrusions upon the interaction between Chlamydia and host dendritic cells. Extrusion dramatically affected the outcome of Chlamydia-dendritic cell interactions for both the bacterium and the host cell. Dendritic cells rapidly underwent apoptosis in response to engulfment of an extrusion, while uptake of an equivalent dose of free Chlamydia had no such effect. Containment within an extrusion also prolonged bacterial survival within dendritic cells and altered the initial innate immune signaling by the dendritic cell. PMID:28223346
NASA Astrophysics Data System (ADS)
Armstrong, James P. K.; Shakur, Rameen; Horne, Joseph P.; Dickinson, Sally C.; Armstrong, Craig T.; Lau, Katherine; Kadiwala, Juned; Lowe, Robert; Seddon, Annela; Mann, Stephen; Anderson, J. L. Ross; Perriman, Adam W.; Hollander, Anthony P.
2015-06-01
Restricted oxygen diffusion can result in central cell necrosis in engineered tissue, a problem that is exacerbated when engineering large tissue constructs for clinical application. Here we show that pre-treating human mesenchymal stem cells (hMSCs) with synthetic membrane-active myoglobin-polymer-surfactant complexes can provide a reservoir of oxygen capable of alleviating necrosis at the centre of hyaline cartilage. This is achieved through the development of a new cell functionalization methodology based on polymer-surfactant conjugation, which allows the delivery of functional proteins to the hMSC membrane. This new approach circumvents the need for cell surface engineering using protein chimerization or genetic transfection, and we demonstrate that the surface-modified hMSCs retain their ability to proliferate and to undergo multilineage differentiation. The functionalization technology is facile, versatile and non-disruptive, and in addition to tissue oxygenation, it should have far-reaching application in a host of tissue engineering and cell-based therapies.
Bray, Mike; Geisbert, Thomas W
2005-08-01
Ebola hemorrhagic fever is a severe viral infection characterized by fever, shock and coagulation defects. Recent studies in macaques show that major features of illness are caused by effects of viral replication on macrophages and dendritic cells. Infected macrophages produce proinflammatory cytokines, chemokines and tissue factor, attracting additional target cells and inducing vasodilatation, increased vascular permeability and disseminated intravascular coagulation. However, they cannot restrict viral replication, possibly because of suppression of interferon responses. Infected dendritic cells also secrete proinflammatory mediators, but cannot initiate antigen-specific responses. In consequence, virus disseminates to these and other cell types throughout the body, causing multifocal necrosis and a syndrome resembling septic shock. Massive "bystander" apoptosis of natural killer and T cells further impairs immunity. These findings suggest that modifying host responses would be an effective therapeutic strategy, and treatment of infected macaques with a tissue-factor inhibitor reduced both inflammation and viral replication and improved survival.
Boldrin, Luisa; Neal, Alice; Zammit, Peter S; Muntoni, Francesco; Morgan, Jennifer E
2012-01-01
Stem cell transplantation is already in clinical practice for certain genetic diseases and is a promising therapy for dystrophic muscle. We used the mdx mouse model of Duchenne muscular dystrophy to investigate the effect of the host satellite cell niche on the contribution of donor muscle stem cells (satellite cells) to muscle regeneration. We found that incapacitation of the host satellite cells and preservation of the muscle niche promote donor satellite cell contribution to muscle regeneration and functional reconstitution of the satellite cell compartment. But, if the host niche is not promptly refilled, or is filled by competent host satellite cells, it becomes nonfunctional and donor engraftment is negligible. Application of this regimen to aged host muscles also promotes efficient regeneration from aged donor satellite cells. In contrast, if the niche is destroyed, yet host satellite cells remain proliferation-competent, donor-derived engraftment is trivial. Thus preservation of the satellite cell niche, concomitant with functional impairment of the majority of satellite cells within dystrophic human muscles, may improve the efficiency of stem cell therapy. Stem Cells2012;30:1971–1984 PMID:22730231
Veenendaal, Andreas K J; Hodgkinson, Julie L; Schwarzer, Lynn; Stabat, David; Zenk, Sebastian F; Blocker, Ariel J
2007-03-01
Type III secretion systems (T3SSs) are essential virulence determinants of many Gram-negative bacterial pathogens. The Shigella T3SS consists of a cytoplasmic bulb, a transmembrane region and a hollow 'needle' protruding from the bacterial surface. Physical contact with host cells initiates secretion and leads to assembly of a pore, formed by IpaB and IpaC, in the host cell membrane, through which proteins that facilitate host cell invasion are translocated. As the needle is implicated in host cell sensing and secretion regulation, its tip should contain components that initiate host cell contact. Through biochemical and immunological studies of wild-type and mutant Shigella T3SS needles, we reveal tip complexes of differing compositions and functional states, which appear to represent the molecular events surrounding host cell sensing and pore formation. Our studies indicate that the interaction between IpaB and IpaD at needle tips is key to host cell sensing, orchestration of IpaC secretion and its subsequent assembly at needle tips. This allows insertion into the host cell membrane of a translocation pore that is continuous with the needle.
Turning self-destructing Salmonella into a universal DNA vaccine delivery platform.
Kong, Wei; Brovold, Matthew; Koeneman, Brian A; Clark-Curtiss, Josephine; Curtiss, Roy
2012-11-20
We previously developed a biological containment system using recombinant Salmonella Typhimurium strains that are attenuated yet capable of synthesizing protective antigens. The regulated delayed attenuation and programmed self-destructing features designed into these S. Typhimurium strains enable them to efficiently colonize host tissues and allow release of the bacterial cell contents after lysis. To turn such a recombinant attenuated Salmonella vaccine (RASV) strain into a universal DNA vaccine-delivery vehicle, our approach was to genetically modify RASV strains to display a hyperinvasive phenotype to maximize Salmonella host entry and host cell internalization, to enable Salmonella endosomal escape to release a DNA vaccine into the cytosol, and to decrease Salmonella-induced pyroptosis/apoptosis that allows the DNA vaccine time to traffic to the nucleus for efficient synthesis of encoded protective antigens. A DNA vaccine vector that encodes a domain that contributes to the arabinose-regulated lysis phenotype but has a eukaryotic promoter was constructed. The vector was then improved by insertion of multiple DNA nuclear-targeting sequences for efficient nuclear trafficking and gene expression, and by increasing nuclease resistance to protect the plasmid from host degradation. A DNA vaccine encoding influenza WSN virus HA antigen delivered by the RASV strain with the best genetic attributes induced complete protection to mice against a lethal influenza virus challenge. Adoption of these technological improvements will revolutionize means for effective delivery of DNA vaccines to stimulate mucosal, systemic, and cellular protective immunities, and lead to a paradigm shift in cost-effective control and prevention of a diversity of diseases.
Turning self-destructing Salmonella into a universal DNA vaccine delivery platform
Kong, Wei; Brovold, Matthew; Koeneman, Brian A.; Clark-Curtiss, Josephine; Curtiss, Roy
2012-01-01
We previously developed a biological containment system using recombinant Salmonella Typhimurium strains that are attenuated yet capable of synthesizing protective antigens. The regulated delayed attenuation and programmed self-destructing features designed into these S. Typhimurium strains enable them to efficiently colonize host tissues and allow release of the bacterial cell contents after lysis. To turn such a recombinant attenuated Salmonella vaccine (RASV) strain into a universal DNA vaccine-delivery vehicle, our approach was to genetically modify RASV strains to display a hyperinvasive phenotype to maximize Salmonella host entry and host cell internalization, to enable Salmonella endosomal escape to release a DNA vaccine into the cytosol, and to decrease Salmonella-induced pyroptosis/apoptosis that allows the DNA vaccine time to traffic to the nucleus for efficient synthesis of encoded protective antigens. A DNA vaccine vector that encodes a domain that contributes to the arabinose-regulated lysis phenotype but has a eukaryotic promoter was constructed. The vector was then improved by insertion of multiple DNA nuclear-targeting sequences for efficient nuclear trafficking and gene expression, and by increasing nuclease resistance to protect the plasmid from host degradation. A DNA vaccine encoding influenza WSN virus HA antigen delivered by the RASV strain with the best genetic attributes induced complete protection to mice against a lethal influenza virus challenge. Adoption of these technological improvements will revolutionize means for effective delivery of DNA vaccines to stimulate mucosal, systemic, and cellular protective immunities, and lead to a paradigm shift in cost-effective control and prevention of a diversity of diseases. PMID:23129620
Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis.
Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg
2016-08-18
Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection.
Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis
Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg
2016-01-01
Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection. PMID:27537523
Leigh, Nicholas D; O'Neill, Rachel E; Du, Wei; Chen, Chuan; Qiu, Jingxin; Ashwell, Jonathan D; McCarthy, Philip L; Chen, George L; Cao, Xuefang
2017-07-01
Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for hematologic and immunologic diseases. However, graft-versus-host disease (GVHD) may develop when donor-derived T cells recognize and damage genetically distinct normal host tissues. In addition to TCR signaling, costimulatory pathways are involved in T cell activation. CD27 is a TNFR family member expressed on T cells, and its ligand, CD70, is expressed on APCs. The CD27/CD70 costimulatory pathway was shown to be critical for T cell function and survival in viral infection models. However, the role of this pathway in allo-HCT is previously unknown. In this study, we have examined its contribution in GVHD pathogenesis. Surprisingly, Ab blockade of CD70 after allo-HCT significantly increases GVHD. Interestingly, whereas donor T cell- or bone marrow-derived CD70 plays no role in GVHD, host-derived CD70 inhibits GVHD as CD70 -/- hosts show significantly increased GVHD. This is evidenced by reduced survival, more severe weight loss, and increased histopathologic damage compared with wild-type hosts. In addition, CD70 -/- hosts have higher levels of proinflammatory cytokines TNF-α, IFN-γ, IL-2, and IL-17. Moreover, accumulation of donor CD4 + and CD8 + effector T cells is increased in CD70 -/- versus wild-type hosts. Mechanistic analyses suggest that CD70 expressed by host hematopoietic cells is involved in the control of alloreactive T cell apoptosis and expansion. Together, our findings demonstrate that host CD70 serves as a unique negative regulator of allogeneic T cell response by contributing to donor T cell apoptosis and inhibiting expansion of donor effector T cells. Copyright © 2017 by The American Association of Immunologists, Inc.
Attenuated activation of macrophage TLR9 by DNA from virulent mycobacteria.
Kiemer, Alexandra K; Senaratne, Ryan H; Hoppstädter, Jessica; Diesel, Britta; Riley, Lee W; Tabeta, Koichi; Bauer, Stefan; Beutler, Bruce; Zuraw, Bruce L
2009-01-01
Alveolar macrophages are the first line of host defence against mycobacteria, but an insufficient host response allows survival of bacteria within macrophages. We aimed to investigate the role of Toll-like receptor 9 (TLR9) activation in macrophage defence against mycobacteria. Human in vitro differentiated macrophages as well as human and mouse alveolar macrophages showed TLR9 mRNA and protein expression. The cells were markedly activated by DNA isolated from attenuated mycobacterial strains (H37Ra and Mycobacterium bovis BCG) as assessed by measuring cytokine expression by real-time PCR, whereas synthetic phosphorothioate-modified oligonucleotides had a much lower potency to activate human macrophages. Intracellular replication of H37Ra was higher in macrophages isolated from TLR9-deficient mice than in macrophages from wild-type mice, whereas H37Rv showed equal survival in cells from wild-type or mutant mice. Increased bacterial survival in mouse macrophages was accompanied by altered cytokine production as determined by Luminex bead assays. In vivo infection experiments also showed differential cytokine production in TLR9-deficient mice compared to wild-type animals. Both human monocyte-derived macrophages as well as human alveolar macrophages showed reduced activation upon treatment with DNA isolated from bacteria from virulent (M. bovis and H37Rv) compared to attenuated mycobacteria. We suggest attenuated TLR9 activation contributes to the insufficient host response against virulent mycobacteria. Copyright 2008 S. Karger AG, Basel.
Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Dolata, Courtney E; Chen, Xian-Ming
2018-03-01
To counteract host immunity, Cryptosporidium parvum has evolved multiple strategies to suppress host antimicrobial defense. One such strategy is to reduce the production of the antimicrobial peptide beta-defensin 1 (DEFB1) by host epithelial cells but the underlying mechanisms remain unclear. Recent studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected host cells and may modulate host gene transcription. Using in vitro models of intestinal cryptosporidiosis, in this study, we analyzed the expression profile of host beta-defensin genes in host cells following infection. We found that C. parvum infection caused a significant downregulation of the DEFB1 gene. Interestingly, downregulation of DEFB1 gene was associated with host delivery of Cdg7_FLc_1000 RNA transcript, a C. parvum RNA that has previously demonstrated to be delivered into the nuclei of infected host cells. Knockdown of Cdg7_FLc_1000 in host cells could attenuate the trans-suppression of host DEFB1 gene and decreased the parasite burden. Therefore, our data suggest that trans-suppression of DEFB1 gene in intestinal epithelial cells following C. parvum infection involves host delivery of parasite Cdg7_FLc_1000 RNA, a process that may be relevant to the epithelial defense evasion by C. parvum at the early stage of infection.
Leighton, Philip A; Schusser, Benjamin; Yi, Henry; Glanville, Jacob; Harriman, William
2015-01-01
Chicken immune responses to human proteins are often more robust than rodent responses because of the phylogenetic relationship between the different species. For discovery of a diverse panel of unique therapeutic antibody candidates, chickens therefore represent an attractive host for human-derived targets. Recent advances in monoclonal antibody technology, specifically new methods for the molecular cloning of antibody genes directly from primary B cells, has ushered in a new era of generating monoclonal antibodies from non-traditional host animals that were previously inaccessible through hybridoma technology. However, such monoclonals still require post-discovery humanization in order to be developed as therapeutics. To obviate the need for humanization, a modified strain of chickens could be engineered to express a human-sequence immunoglobulin variable region repertoire. Here, human variable genes introduced into the chicken immunoglobulin loci through gene targeting were evaluated for their ability to be recognized and diversified by the native chicken recombination machinery that is present in the B-lineage cell line DT40. After expansion in culture the DT40 population accumulated genetic mutants that were detected via deep sequencing. Bioinformatic analysis revealed that the human targeted constructs are performing as expected in the cell culture system, and provide a measure of confidence that they will be functional in transgenic animals.
Injectable polypeptide hydrogels via methionine modification for neural stem cell delivery.
Wollenberg, A L; O'Shea, T M; Kim, J H; Czechanski, A; Reinholdt, L G; Sofroniew, M V; Deming, T J
2018-04-05
Injectable hydrogels with tunable physiochemical and biological properties are potential tools for improving neural stem/progenitor cell (NSPC) transplantation to treat central nervous system (CNS) injury and disease. Here, we developed injectable diblock copolypeptide hydrogels (DCH) for NSPC transplantation that contain hydrophilic segments of modified l-methionine (Met). Multiple Met-based DCH were fabricated by post-polymerization modification of Met to various functional derivatives, and incorporation of different amino acid comonomers into hydrophilic segments. Met-based DCH assembled into self-healing hydrogels with concentration and composition dependent mechanical properties. Mechanical properties of non-ionic Met-sulfoxide formulations (DCH MO ) were stable across diverse aqueous media while cationic formulations showed salt ion dependent stiffness reduction. Murine NSPC survival in DCH MO was equivalent to that of standard culture conditions, and sulfoxide functionality imparted cell non-fouling character. Within serum rich environments in vitro, DCH MO was superior at preserving NSPC stemness and multipotency compared to cell adhesive materials. NSPC in DCH MO injected into uninjured forebrain remained local and, after 4 weeks, exhibited an immature astroglial phenotype that integrated with host neural tissue and acted as cellular substrates that supported growth of host-derived axons. These findings demonstrate that Met-based DCH are suitable vehicles for further study of NSPC transplantation in CNS injury and disease models. Copyright © 2018 Elsevier Ltd. All rights reserved.
Boeri, D; Almus, F E; Maiello, M; Cagliero, E; Rao, L V; Lorenzi, M
1989-02-01
Because diabetic vascular disease is accompanied by a state of hypercoagulability, manifested by increased thrombin activity and foci of intravascular coagulation, we investigated whether a specific procoagulant property of the endothelium--production and surface expression of tissue factor--is modified by elevated glucose concentrations. In unperturbed human vascular endothelial cells, tissue factor mRNA and expression of the functional protein were undetectable and were not induced by 10-12 days of exposure to 30 mM glucose. In thrombin-stimulated cultures, tissue-factor expression was related inversely to cellular density, with confluent cultures producing (per 10(5) cells) half the amount of tissue factor measured in sparse cultures. Cells exposed to high glucose and studied when cell number and thymidine incorporation were identical to control cells manifested increased tissue-factor mRNA level and functional protein production in response to thrombin (P = .002). This effect was not attributable to hypertonicity and was not observed after short exposure to high glucose. In contrast, the tissue-factor response to interleukin 1, a modulator of endothelial function in the context of host defense, was decreased in cells cultured in high glucose (P = .04). These findings indicate that exposure to high glucose can alter tissue-factor gene expression in perturbed vascular endothelium. The reciprocal effects of high glucose on the tissue-factor response to thrombin and interleukin 1 points to different pathways of tissue-factor stimulation by the two agents and suggests functional consequences pertinent to the increased thrombin activity and compromised host-defense mechanisms observed in diabetes.
Noninvasive Imaging Technologies Reveal Edema Toxin as a Key Virulence Factor in Anthrax
Dumetz, Fabien; Jouvion, Grégory; Khun, Huot; Glomski, Ian Justin; Corre, Jean-Philippe; Rougeaux, Clémence; Tang, Wei-Jen; Mock, Michèle; Huerre, Michel; Goossens, Pierre Louis
2011-01-01
Powerful noninvasive imaging technologies enable real-time tracking of pathogen-host interactions in vivo, giving access to previously elusive events. We visualized the interactions between wild-type Bacillus anthracis and its host during a spore infection through bioluminescence imaging coupled with histology. We show that edema toxin plays a central role in virulence in guinea pigs and during inhalational infection in mice. Edema toxin (ET), but not lethal toxin (LT), markedly modified the patterns of bacterial dissemination leading, to apparent direct dissemination to the spleen and provoking apoptosis of lymphoid cells. Each toxin alone provoked particular histological lesions in the spleen. When ET and LT are produced together during infection, a specific temporal pattern of lesion developed, with early lesions typical of LT, followed at a later stage by lesions typical of ET. Our study provides new insights into the complex spatial and temporal effects of B. anthracis toxins in the infected host, suggesting a greater role than previously suspected for ET in anthrax and suggesting that therapeutic targeting of ET contributes to protection. PMID:21641378
Counihan, Natalie A; Chisholm, Scott A; Bullen, Hayley E; Srivastava, Anubhav; Sanders, Paul R; Jonsdottir, Thorey K; Weiss, Greta E; Ghosh, Sreejoyee; Crabb, Brendan S; Creek, Darren J; Gilson, Paul R; de Koning-Ward, Tania F
2017-01-01
Plasmodium falciparum parasites, the causative agents of malaria, modify their host erythrocyte to render them permeable to supplementary nutrient uptake from the plasma and for removal of toxic waste. Here we investigate the contribution of the rhoptry protein RhopH2, in the formation of new permeability pathways (NPPs) in Plasmodium-infected erythrocytes. We show RhopH2 interacts with RhopH1, RhopH3, the erythrocyte cytoskeleton and exported proteins involved in host cell remodeling. Knockdown of RhopH2 expression in cycle one leads to a depletion of essential vitamins and cofactors and decreased de novo synthesis of pyrimidines in cycle two. There is also a significant impact on parasite growth, replication and transition into cycle three. The uptake of solutes that use NPPs to enter erythrocytes is also reduced upon RhopH2 knockdown. These findings provide direct genetic support for the contribution of the RhopH complex in NPP activity and highlight the importance of NPPs to parasite survival. DOI: http://dx.doi.org/10.7554/eLife.23217.001 PMID:28252383
Guo, Yanan; Sim, Andre D.; Kabir, M. Shahjahan; Chettri, Pranav; Ozturk, Ibrahim K.; Hunziker, Lukas; Ganley, Rebecca J.; Cox, Murray P.
2015-01-01
Summary We present genome‐wide gene expression patterns as a time series through the infection cycle of the fungal pine needle blight pathogen, Dothistroma septosporum, as it invades its gymnosperm host, Pinus radiata. We determined the molecular changes at three stages of the disease cycle: epiphytic/biotrophic (early), initial necrosis (mid) and mature sporulating lesion (late). Over 1.7 billion combined plant and fungal reads were sequenced to obtain 3.2 million fungal‐specific reads, which comprised as little as 0.1% of the sample reads early in infection. This enriched dataset shows that the initial biotrophic stage is characterized by the up‐regulation of genes encoding fungal cell wall‐modifying enzymes and signalling proteins. Later necrotrophic stages show the up‐regulation of genes for secondary metabolism, putative effectors, oxidoreductases, transporters and starch degradation. This in‐depth through‐time transcriptomic study provides our first snapshot of the gene expression dynamics that characterize infection by this fungal pathogen in its gymnosperm host. PMID:25919703
Shan, Jinyu; Clokie, Martha
2009-01-01
Bacteriophages manipulate bacterial gene expression in order to express their own genes or influence bacterial metabolism. Gene expression can be studied using real-time PCR or microarrays. Either technique requires the prior isolation of high quality RNA uncontaminated by the presence of genomic DNA. We outline the considerations necessary when working with bacteriophage infected bacterial cells. We also give an example of a protocol for extraction and quantification of high quality RNA from infected bacterial cells, using the marine cyanobacterium WH7803 and the phage S-PM2 as a case study. This protocol can be modified to extract RNA from the host/bacteriophage of interest.
Townsend, Leigh; Williams, Richard L.; Anuforom, Olachi; Berwick, Matthew R.; Halstead, Fenella; Hughes, Erik; Stamboulis, Artemis; Oppenheim, Beryl; Gough, Julie; Grover, Liam; Scott, Robert A. H.; Webber, Mark; Peacock, Anna F. A.; Belli, Antonio; Logan, Ann
2017-01-01
The interface between implanted devices and their host tissue is complex and is often optimized for maximal integration and cell adhesion. However, this also gives a surface suitable for bacterial colonization. We have developed a novel method of modifying the surface at the material–tissue interface with an antimicrobial peptide (AMP) coating to allow cell attachment while inhibiting bacterial colonization. The technology reported here is a dual AMP coating. The dual coating consists of AMPs covalently bonded to the hydroxyapatite surface, followed by deposition of electrostatically bound AMPs. The dual approach gives an efficacious coating which is stable for over 12 months and can prevent colonization of the surface by both Gram-positive and Gram-negative bacteria. PMID:28077764
Genetic modification of lymphocytes by retrovirus-based vectors.
Suerth, Julia D; Schambach, Axel; Baum, Christopher
2012-10-01
The genetic modification of lymphocytes is an important topic in the emerging field of gene therapy. Many clinical trials targeting immunodeficiency syndromes or cancer have shown therapeutic benefit; further applications address inflammatory and infectious disorders. Retroviral vector development requires a detailed understanding of the interactions with the host. Most researchers have used simple gammaretroviral vectors to modify lymphocytes, either directly or via hematopoietic stem and progenitor cells. Lentiviral, spumaviral (foamyviral) and alpharetroviral vectors were designed to reduce the necessity for cell stimulation and to utilize potentially safer integration properties. Novel surface modifications (pseudotyping) and transgenes, built using synthetic components, expand the retroviral toolbox, altogether promising increased specificity and potency. Product consistency will be an important criterion for routine clinical use. Copyright © 2012. Published by Elsevier Ltd.
Modulation of host cell function by Legionella pneumophila type IV effectors.
Hubber, Andree; Roy, Craig R
2010-01-01
Macrophages and protozoa ingest bacteria by phagocytosis and destroy these microbes using a conserved pathway that mediates fusion of the phagosome with lysosomes. To survive within phagocytic host cells, bacterial pathogens have evolved a variety of strategies to avoid fusion with lysosomes. A virulence strategy used by the intracellular pathogen Legionella pneumophila is to manipulate host cellular processes using bacterial proteins that are delivered into the cytosolic compartment of the host cell by a specialized secretion system called Dot/Icm. The proteins delivered by the Dot/Icm system target host factors that play evolutionarily conserved roles in controlling membrane transport in eukaryotic cells, which enables L. pneumophila to create an endoplasmic reticulum-like vacuole that supports intracellular replication in both protozoan and mammalian host cells. This review focuses on intracellular trafficking of L. pneumophila and describes how bacterial proteins contribute to modulation of host processes required for survival within host cells.
Apparatus and method for transforming living cells
Okandan, Murat; Galambos, Paul C.
2003-11-11
An apparatus and method are disclosed for in vitro transformation of living cells. The apparatus, which is formed as a microelectromechanical device by surface micromachining, can be used to temporarily disrupt the cell walls or membrane of host cells one at a time so that a particular substance (e.g. a molecular tag, nucleic acid, bacteria, virus etc.) can be introduced into the cell. Disruption of the integrity of the host cells (i.e. poration) can be performed mechanically or electrically, or by both while the host cells are contained within a flow channel. Mechanical poration is possible using a moveable member which has a pointed or serrated edge and which is driven by an electrostatic actuator to abrade, impact or penetrate the host cell. Electroporation is produced by generating a relatively high electric field across the host cell when the host cell is located in the flow channel between a pair of electrodes having a voltage applied therebetween.
Bartonella quintana Deploys Host and Vector Temperature-Specific Transcriptomes
Previte, Domenic; Yoon, Kyong S.; Clark, J. Marshall; DeRisi, Joseph L.; Koehler, Jane E.
2013-01-01
The bacterial pathogen Bartonella quintana is passed between humans by body lice. B. quintana has adapted to both the human host and body louse vector niches, producing persistent infection with high titer bacterial loads in both the host (up to 105 colony-forming units [CFU]/ml) and vector (more than 108 CFU/ml). Using a novel custom microarray platform, we analyzed bacterial transcription at temperatures corresponding to the host (37°C) and vector (28°C), to probe for temperature-specific and growth phase-specific transcriptomes. We observed that transcription of 7% (93 genes) of the B. quintana genome is modified in response to change in growth phase, and that 5% (68 genes) of the genome is temperature-responsive. Among these transcriptional changes in response to temperature shift and growth phase was the induction of known B. quintana virulence genes and several previously unannotated genes. Hemin binding proteins, secretion systems, response regulators, and genes for invasion and cell attachment were prominent among the differentially-regulated B. quintana genes. This study represents the first analysis of global transcriptional responses by B. quintana. In addition, the in vivo experiments provide novel insight into the B. quintana transcriptional program within the body louse environment. These data and approaches will facilitate study of the adaptation mechanisms employed by Bartonella during the transition between human host and arthropod vector. PMID:23554923
Femtosecond-laser assisted cell reprogramming
NASA Astrophysics Data System (ADS)
Breunig, Hans Georg; Uchugonova, Aisada; Batista, Ana; König, Karsten
2017-02-01
Femtosecond-laser pulses can assist to transfect cells by creating transient holes in the cell membrane, thus making them temporarily permeable for extraneous genetic material. This procedure offers the advantage of being completely "virus free" since no viruses are used for the delivery and integration of gene factors into the host genome and, thereby, avoiding serious side effects which so far prevent clinical application. Unfortunately, focusing of the laser radiation onto individual cell membranes is quite elaborate and time consuming. Regarding these obstacles, we briefly review two optical setups for fast, efficient and high throughput laser-assisted cell transfection based on femtosecond laser pulse excitation. The first setup aims at assisting the transfection of adherent cells. It comprises of a modified laser-scanning microscope with beamshaping optics as well as home-made software to automate the detection, targeting and laser-irradiation process. The second setup aims at laser-assisted transfection of non-adherent cells in suspension which move in a continuous flow through the laser focus region. The setup allows to address a large number of cells, however, with much lower transfection efficiency than the individual-cell targeting approach.
Forestier, Claire-Lise; Machu, Christophe; Loussert, Celine; Pescher, Pascale; Späth, Gerald F
2011-04-21
Leishmania donovani causes human visceral leishmaniasis. The parasite infectious cycle comprises extracellular flagellated promastigotes that proliferate inside the insect vector, and intracellular nonmotile amastigotes that multiply within infected host cells. Using primary macrophages infected with virulent metacyclic promastigotes and high spatiotemporal resolution microscopy, we dissect the dynamics of the early infection process. We find that motile promastigotes enter macrophages in a polarized manner through their flagellar tip and are engulfed into host lysosomal compartments. Persistent intracellular flagellar activity leads to reorientation of the parasite flagellum toward the host cell periphery and results in oscillatory parasite movement. The latter is associated with local lysosomal exocytosis and host cell plasma membrane wounding. These findings implicate lysosome recruitment followed by lysosome exocytosis, consistent with parasite-driven host cell injury, as key cellular events in Leishmania host cell infection. This work highlights the role of promastigote polarity and motility during parasite entry. Copyright © 2011 Elsevier Inc. All rights reserved.
Host cell processes that influence the intracellular survival of Legionella pneumophila.
Shin, Sunny; Roy, Craig R
2008-06-01
Key to the pathogenesis of intracellular pathogens is their ability to manipulate host cell processes, permitting the establishment of an intracellular replicative niche. In turn, the host cell deploys defence mechanisms that limit intracellular infection. The bacterial pathogen Legionella pneumophila, the aetiological agent of Legionnaire's Disease, has evolved virulence mechanisms that allow it to replicate within protozoa, its natural host. Many of these tactics also enable L. pneumophila's survival and replication inside macrophages within a membrane-bound compartment known as the Legionella-containing vacuole. One of the virulence factors indispensable for L. pneumophila's intracellular survival is a type IV secretion system, which translocates a large repertoire of bacterial effectors into the host cell. These effectors modulate multiple host cell processes and in particular, redirect trafficking of the L. pneumophila phagosome and mediate its conversion into an ER-derived organelle competent for intracellular bacterial replication. In this review, we discuss how L. pneumophila manipulates host cells, as well as host cell processes that either facilitate or impede its intracellular survival.
Unique physiology of host-parasite interactions in microsporidia infections.
Williams, Bryony A P
2009-11-01
Microsporidia are intracellular parasites of all major animal lineages and have a described diversity of over 1200 species and an actual diversity that is estimated to be much higher. They are important pathogens of mammals, and are now one of the most common infections among immunocompromised humans. Although related to fungi, microsporidia are atypical in genomic biology, cell structure and infection mechanism. Host cell infection involves the rapid expulsion of a polar tube from a dormant spore to pierce the host cell membrane and allow the direct transfer of the spore contents into the host cell cytoplasm. This intimate relationship between parasite and host is unique. It allows the microsporidia to be highly exploitative of the host cell environment and cause such diverse effects as the induction of hypertrophied cells to harbour prolific spore development, host sex ratio distortion and host cell organelle and microtubule reorganization. Genome sequencing has revealed that microsporidia have achieved this high level of parasite sophistication with radically reduced proteomes and with many typical eukaryotic pathways pared-down to what appear to be minimal functional units. These traits make microsporidia intriguing model systems for understanding the extremes of reductive parasite evolution and host cell manipulation.
Kodama, Yuuki; Fujishima, Masahiro
2013-09-01
Paramecium bursaria harbor several hundred symbiotic Chlorella spp. Each alga is enclosed in a perialgal vacuole membrane, which can attach to the host cell cortex. How the perialgal vacuole attaches beneath the host cell cortex remains unknown. High-speed centrifugation (> 1000×g) for 1min induces rapid detachment of the algae from the host cell cortex and concentrates the algae to the posterior half of the host cell. Simultaneously, most of the host acidosomes and lysosomes accumulate in the anterior half of the host cell. Both the detached algae and the dislocated acidic vesicles recover their original positions by host cyclosis within 10min after centrifugation. These recoveries were inhibited if the host cytoplasmic streaming was arrested by nocodazole. Endosymbiotic algae during the early reinfection process also show the capability of desorption after centrifugation. These results demonstrate that adhesion of the perialgal vacuole beneath the host cell cortex is repeatedly inducible, and that host cytoplasmic streaming facilitates recovery of the algal attachment. This study is the first report to illuminate the mechanism of the induction to desorb for symbiotic algae and acidic vesicles, and will contribute to the understanding of the mechanism of algal and organelle arrangements in Paramecium. Copyright © 2013 Elsevier GmbH. All rights reserved.
2013-01-01
Background The intestinal mucus layer plays a key role in the maintenance of host-microbiota homeostasis. To document the crosstalk between the host and microbiota, we used gnotobiotic models to study the influence of two major commensal bacteria, Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii, on this intestinal mucus layer. B. thetaiotaomicron is known to use polysaccharides from mucus, but its effect on goblet cells has not been addressed so far. F. prausnitzii is of particular physiological importance because it can be considered as a sensor and a marker of human health. We determined whether B. thetaiotaomicron affected goblet cell differentiation, mucin synthesis and glycosylation in the colonic epithelium. We then investigated how F. prausnitzii influenced the colonic epithelial responses to B. thetaiotaomicron. Results B. thetaiotaomicron, an acetate producer, increased goblet cell differentiation, expression of mucus-related genes and the ratio of sialylated to sulfated mucins in mono-associated rats. B. thetaiotaomicron, therefore, stimulates the secretory lineage, favoring mucus production. When B. thetaiotaomicron was associated with F. prausnitzii, an acetate consumer and a butyrate producer, the effects on goblet cells and mucin glycosylation were diminished. F. prausnitzii, by attenuating the effects of B. thetaiotaomicron on mucus, may help the epithelium to maintain appropriate proportions of different cell types of the secretory lineage. Using a mucus-producing cell line, we showed that acetate up-regulated KLF4, a transcription factor involved in goblet cell differentiation. Conclusions B. thetaiotaomicron and F. prausnitzii, which are metabolically complementary, modulate, in vivo, the intestinal mucus barrier by modifying goblet cells and mucin glycosylation. Our study reveals the importance of the balance between two main commensal bacteria in maintaining colonic epithelial homeostasis via their respective effects on mucus. PMID:23692866
Coordinate Intracellular Expression of Salmonella Genes Induced during Infection
Heithoff, Douglas M.; Conner, Christopher P.; Hentschel, Ute; Govantes, Fernando; Hanna, Philip C.; Mahan, Michael J.
1999-01-01
Salmonella typhimurium in vivo-induced (ivi) genes were grouped by their coordinate behavior in response to a wide variety of environmental and genetic signals, including pH, Mg2+, Fe2+, and PhoPQ. All of the seven ivi fusions that are induced by both low pH and low Mg2+ (e.g., iviVI-A) are activated by the PhoPQ regulatory system. Iron-responsive ivi fusions include those induced under iron limitation (e.g., entF) as well as one induced by iron excess but only in the absence of PhoP (pdu). Intracellular expression studies showed that each of the pH- and Mg2+-responsive fusions is induced upon entry into and growth within three distinct mammalian cell lines: RAW 264.7 murine macrophages and two cultured human epithelial cell lines: HEp-2 and Henle-407. Each ivi fusion has a characteristic level of induction consistent within all three cell types, suggesting that this class of coordinately expressed ivi genes responds to general intracellular signals that are present both in initial and in progressive stages of infection and may reflect their responses to similar vacuolar microenvironments in these cell types. Investigation of ivi expression patterns reveals not only the inherent versatility of pathogens to express a given gene(s) at various host sites but also the ability to modify their expression within the context of different animal hosts, tissues, cell types, or subcellular compartments. PMID:9922242
Bayoumi, R A
1987-03-01
It is proposed that the in vivo mechanism of protection against falciparum malaria in individuals of the Hb AS genotype is not due solely to the adverse influence of Hb AS erythrocytes on the intraerythrocytic growth and development of P. falciparum. Instead, the simple physiological effect of Hb S on parasite growth appears to trigger an in vivo process of enhancement of the intensity and/or specificity of the host immune response, leading to acquired protective immunity, in a process simulating vaccination. Testing the hypothesis may lead to the identification of plasmodial antigens that induce protective responses in the human host and distinguish them from non-protective, immunosuppressive or decoy antigens that promote parasite survival. This may ultimately help in the selection of candidate antigens for a malaria blood-stage vaccine.
Golomb, Benjamin L.; Hirao, Lauren A.; Dandekar, Satya; Marco, Maria L.
2016-01-01
Chronic HIV infection results in impairment of gut-associated lymphoid tissue leading to systemic immune activation. We previously showed that in early SIV-infected rhesus macaques intestinal dysfunction is initiated with the induction of the IL-1β pathway in the small intestine and reversed by treatment with an exogenous Lactobacillus plantarum strain. Here, we provide evidence that the transcriptomes of L. plantarum and ileal microbiota are not altered shortly after SIV infection. L. plantarum adapts to the small intestine by expressing genes required for tolerating oxidative stress, modifying cell surface composition, and consumption of host glycans. The ileal microbiota of L. plantarum-containing healthy and SIV+ rhesus macaques also transcribed genes for host glycan metabolism as well as for cobalamin biosynthesis. Expression of these pathways by bacteria were proposed but not previously demonstrated in the mammalian small intestine. PMID:27102350
The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation
Zaiss, Mario M.; Rapin, Alexis; Lebon, Luc; Dubey, Lalit Kumar; Mosconi, Ilaria; Sarter, Kerstin; Piersigilli, Alessandra; Menin, Laure; Walker, Alan W.; Rougemont, Jacques; Paerewijck, Oonagh; Geldhof, Peter; McCoy, Kathleen D.; Macpherson, Andrew J.; Croese, John; Giacomin, Paul R.; Loukas, Alex; Junt, Tobias; Marsland, Benjamin J.; Harris, Nicola L.
2015-01-01
Summary Intestinal helminths are potent regulators of their host’s immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions. PMID:26522986
Sakurai, Yasuteru
2015-01-01
Ebola virus is an enveloped virus with filamentous structure and causes a severe hemorrhagic fever in human and nonhuman primates. Host cell entry is the first essential step in the viral life cycle, which has been extensively studied as one of the therapeutic targets. A virus factor of cell entry is a surface glycoprotein (GP), which is an only essential viral protein in the step, as well as the unique particle structure. The virus also interacts with a lot of host factors to successfully enter host cells. Ebola virus at first binds to cell surface proteins and internalizes into cells, followed by trafficking through endosomal vesicles to intracellular acidic compartments. There, host proteases process GPs, which can interact with an intracellular receptor. Then, under an appropriate circumstance, viral and endosomal membranes are fused, which is enhanced by major structural changes of GPs, to complete host cell entry. Recently the basic research of Ebola virus infection mechanism has markedly progressed, largely contributed by identification of host factors and detailed structural analyses of GPs. This article highlights the mechanism of Ebola virus host cell entry, including recent findings.
O'Mary, Hannah L; Aldayel, Abdulaziz M; Valdes, Solange A; Naguib, Youssef W; Li, Xu; Salvady, Karun; Cui, Zhengrong
2017-06-05
Inflammation is implicated in a host of chronic illnesses. Within these inflamed tissues, the pH of the microenvironment is decreased and immune cells, particularly macrophages, infiltrate the area. Additionally, the vascular integrity of these sites is altered with increased fenestrations between endothelial cells. These distinctive properties may be exploited to enhance targeted delivery of anti-inflammatory therapies. Using a mouse model of chronic inflammation, we previously showed that acid-sensitive sheddable PEGylation increases the distribution and retention of nanoparticles in chronic inflammation sites. Here we demonstrated that surface modification of the acid-sensitive sheddable PEGylated nanoparticles with mannose, a ligand to mannose receptors present in chronic inflammation sites, significantly increases the targeted delivery of the nanoparticles to these areas. Furthermore, we showed that the acid-sensitive sheddable PEGylated, mannose-modified nanoparticles are able to significantly increase the delivery of betamethasone-21-acetate (BA), a model anti-inflammatory compound, to chronic inflammation sites as compared to free BA. These results highlight the ability to engineer formulations to target chronic inflammation sites by exploiting the microenvironment of these regions.
Chiang, Shen-Shih; Liu, Chin-Feng; Ku, Ting-Wei; Mau, Jeng-Leun; Lin, Hsin-Tang; Pan, Tzu-Ming
2011-04-27
By introducing aprN into Lactococcus lactis NZ9000, the genetically modified L. lactis NZ9000/pNZPNK successfully expressed the nattokinase. The safety assessment of this novel strain was based on allergenicity of pepsin digestion stability and murine model serologic identity. Subjecting to the GM strain and host to pepsin digestion, the soluble fractions and cell debris were fast degraded completely. Feeding with ovalbumin resulted in significantly higher production of IgG1 and IgE as compared to that of L. lactis NZ9000/pNZPNK or L. lactis NZ9000. Further, the serum IgG2a level increased dose-dependently at week 2 and induced immune reaction toward Th1 pathway. Secretion of cytokines IL-4 and IL-10 fed with lactococci was significantly lower than that of the OVA group. L. lactis NZ9000/pNZPNK did not increase the proliferation of type 2 helper T cells in spleen or induce allergenicity in BALB/c mice. On the basis of the results, the new GM lactic acid bacterium is regarded as safe to use.
Predicting bacteriophage proteins located in host cell with feature selection technique.
Ding, Hui; Liang, Zhi-Yong; Guo, Feng-Biao; Huang, Jian; Chen, Wei; Lin, Hao
2016-04-01
A bacteriophage is a virus that can infect a bacterium. The fate of an infected bacterium is determined by the bacteriophage proteins located in the host cell. Thus, reliably identifying bacteriophage proteins located in the host cell is extremely important to understand their functions and discover potential anti-bacterial drugs. Thus, in this paper, a computational method was developed to recognize bacteriophage proteins located in host cells based only on their amino acid sequences. The analysis of variance (ANOVA) combined with incremental feature selection (IFS) was proposed to optimize the feature set. Using a jackknife cross-validation, our method can discriminate between bacteriophage proteins located in a host cell and the bacteriophage proteins not located in a host cell with a maximum overall accuracy of 84.2%, and can further classify bacteriophage proteins located in host cell cytoplasm and in host cell membranes with a maximum overall accuracy of 92.4%. To enhance the value of the practical applications of the method, we built a web server called PHPred (〈http://lin.uestc.edu.cn/server/PHPred〉). We believe that the PHPred will become a powerful tool to study bacteriophage proteins located in host cells and to guide related drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xin, Xiu; Wang, Hailong; Han, Lingling; Wang, Mingzhen; Fang, Hui; Hao, Yao; Li, Jiadai; Zhang, Hu; Zheng, Congyi; Shen, Chao
2018-05-01
Viral infection and replication are affected by host cell heterogeneity, but the mechanisms underlying the effects remain unclear. Using single-cell analysis, we investigated the effects of host cell heterogeneity, including cell size, inclusion, and cell cycle, on foot-and-mouth disease virus (FMDV) infection (acute and persistent infections) and replication. We detected various viral genome replication levels in FMDV-infected cells. Large cells and cells with a high number of inclusions generated more viral RNA copies and viral protein and a higher proportion of infectious cells than other cells. Additionally, we found that the viral titer was 10- to 100-fold higher in cells in G 2 /M than those in other cell cycle phases and identified a strong correlation between cell size, inclusion, and cell cycle heterogeneity, which all affected the infection and replication of FMDV. Furthermore, we demonstrated that host cell heterogeneity influenced the adsorption of FMDV due to differences in the levels of FMDV integrin receptors expression. Collectively, these results further our understanding of the evolution of a virus in a single host cell. IMPORTANCE It is important to understand how host cell heterogeneity affects viral infection and replication. Using single-cell analysis, we found that viral genome replication levels exhibited dramatic variability in foot-and-mouth disease virus (FMDV)-infected cells. We also found a strong correlation between heterogeneity in cell size, inclusion number, and cell cycle status and that all of these characteristics affect the infection and replication of FMDV. Moreover, we found that host cell heterogeneity influenced the viral adsorption as differences in the levels of FMDV integrin receptors' expression. This study provided new ideas for the studies of correlation between FMDV infection mechanisms and host cells. Copyright © 2018 American Society for Microbiology.
Hu, Zhilan; Guo, Donglin; Yip, Shirley S M; Zhan, Dejin; Misaghi, Shahram; Joly, John C; Snedecor, Bradley R; Shen, Amy Y
2013-01-01
Therapeutic monoclonal antibodies (mAb) are often produced in Chinese hamster ovary (CHO) cells. Three commonly used CHO host cells for generating stable cell lines to produce therapeutic proteins are dihydrofolate reductase (DHFR) positive CHOK1, DHFR-deficient DG44, and DUXB11-based DHFR deficient CHO. Current Genentech commercial full-length antibody products have all been produced in the DUXB11-derived DHFR-deficient CHO host. However, it has been challenging to develop stable cell lines producing an appreciable amount of antibody proteins in the DUXB11-derived DHFR-deficient CHO host for some antibody molecules and the CHOK1 host has been explored as an alternative approach. In this work, stable cell lines were developed for three antibody molecules in both DUXB11-based and CHOK1 hosts. Results have shown that the best CHOK1 clones produce about 1 g/l for an antibody mAb1 and about 4 g/l for an antibody mAb2 in 14-day fed batch cultures in shake flasks. In contrast, the DUXB11-based host produced ∼0.1 g/l for both antibodies in the same 14-day fed batch shake flask production experiments. For an antibody mAb3, both CHOK1 and DUXB11 host cells can generate stable cell lines with the best clone in each host producing ∼2.5 g/l. Additionally, studies have shown that the CHOK1 host cell has a larger endoplasmic reticulum and higher mitochondrial mass. © 2013 American Institute of Chemical Engineers.
Interactions between human mesenchymal stem cells and natural killer cells.
Sotiropoulou, Panagiota A; Perez, Sonia A; Gritzapis, Angelos D; Baxevanis, Constantin N; Papamichail, Michael
2006-01-01
Mesenchymal stem cells (MSCs) are multipotent progenitor cells representing an attractive therapeutic tool for regenerative medicine. They possess unique immunomodulatory properties, being capable of suppressing T-cell responses and modifying dendritic cell differentiation, maturation, and function, whereas they are not inherently immunogenic, failing to induce alloreactivity to T cells and freshly isolated natural killer (NK) cells. To clarify the generation of host immune responses to implanted MSCs in tissue engineering and their potential use as immunosuppressive elements, the effect of MSCs on NK cells was investigated. We demonstrate that at low NK-to-MSC ratios, MSCs alter the phenotype of NK cells and suppress proliferation, cytokine secretion, and cyto-toxicity against HLA-class I- expressing targets. Some of these effects require cell-to-cell contact, whereas others are mediated by soluble factors, including transforming growth factor-beta1 and prostaglandin E2, suggesting the existence of diverse mechanisms for MSC-mediated NK-cell suppression. On the other hand, MSCs are susceptible to lysis by activated NK cells. Overall, these data improve our knowledge of interactions between MSCs and NK cells and consequently of their effect on innate immune responses and their contribution to the regulation of adaptive immunity, graft rejection, and cancer immunotherapy.
ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieira da Silva, Claudio; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Sao Paulo, Rua Botucatu, 862, 6o andar, 04023-062 Sao Paulo, SP; Alves da Silva, Erika
2009-01-16
Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RHmore » strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP{sub 2} and PIP{sub 3} to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.« less
Boyle, Jon P; Radke, Jay R
2009-07-01
This review is a historical look at work carried out over the past 50 years examining interactions of Toxoplasma with the host cell and attempts to focus on some of the seminal experiments in the field. This early work formed the foundation for more recent studies aimed at identifying the host and parasite factors mediating key Toxoplasma-host cell interactions. We focus especially on those studies that were performed in vitro and provide discussions of the following general areas: (i) establishment of the parasitophorous vacuole, (ii) the requirement of specific host cell molecules for parasite replication, (iii) the scenarios under which the host cell can resist parasite replication and/or persistence, (iv) host species-specific and host strain-specific responses to Toxoplasma infection, and (v) Toxoplasma-induced immune modulation.
Lesion-induced increase in survival and migration of human neural progenitor cells releasing GDNF
Behrstock, Soshana; Ebert, Allison D.; Klein, Sandra; Schmitt, Melanie; Moore, Jeannette M.; Svendsen, Clive N.
2009-01-01
The use of human neural progenitor cells (hNPC) has been proposed to provide neuronal replacement or astrocytes delivering growth factors for brain disorders such as Parkinson’s and Huntington’s disease. Success in such studies likely requires migration from the site of transplantation and integration into host tissue in the face of ongoing damage. In the current study, hNPC modified to release glial cell line derived neurotrophic factor (hNPCGDNF) were transplanted into either intact or lesioned animals. GDNF release itself had no effect on the survival, migration or differentiation of the cells. The most robust migration and survival was found using a direct lesion of striatum (Huntington’s model) with indirect lesions of the dopamine system (Parkinson’s model) or intact animals showing successively less migration and survival. No lesion affected differentiation patterns. We conclude that the type of brain injury dictates migration and integration of hNPC which has important consequences when considering transplantation of these cells as a therapy for neurodegenerative diseases. PMID:19044202
Rossi, John J; June, Carl H; Kohn, Donald B
2015-01-01
Highly active antiretroviral therapy prolongs the life of HIV-infected individuals, but it requires lifelong treatment and results in cumulative toxicities and viral-escape mutants. Gene therapy offers the promise of preventing progressive HIV infection by sustained interference with viral replication in the absence of chronic chemotherapy. Gene-targeting strategies are being developed with RNA-based agents, such as ribozymes, antisense, RNA aptamers and small interfering RNA, and protein-based agents, such as the mutant HIV Rev protein M10, fusion inhibitors and zinc-finger nucleases. Recent advances in T-cell–based strategies include gene-modified HIV-resistant T cells, lentiviral gene delivery, CD8+ T cells, T bodies and engineered T-cell receptors. HIV-resistant hematopoietic stem cells have the potential to protect all cell types susceptible to HIV infection. The emergence of viral resistance can be addressed by therapies that use combinations of genetic agents and that inhibit both viral and host targets. Many of these strategies are being tested in ongoing and planned clinical trials. PMID:18066041
Audio steganography by amplitude or phase modification
NASA Astrophysics Data System (ADS)
Gopalan, Kaliappan; Wenndt, Stanley J.; Adams, Scott F.; Haddad, Darren M.
2003-06-01
This paper presents the results of embedding short covert message utterances on a host, or cover, utterance by modifying the phase or amplitude of perceptually masked or significant regions of the host. In the first method, the absolute phase at selected, perceptually masked frequency indices was changed to fixed, covert data-dependent values. Embedded bits were retrieved at the receiver from the phase at the selected frequency indices. Tests on embedding a GSM-coded covert utterance on clean and noisy host utterances showed no noticeable difference in the stego compared to the hosts in speech quality or spectrogram. A bit error rate of 2 out of 2800 was observed for a clean host utterance while no error occurred for a noisy host. In the second method, the absolute phase of 10 or fewer perceptually significant points in the host was set in accordance with covert data. This resulted in a stego with successful data retrieval and a slightly noticeable degradation in speech quality. Modifying the amplitude of perceptually significant points caused perceptible differences in the stego even with small changes of amplitude made at five points per frame. Finally, the stego obtained by altering the amplitude at perceptually masked points showed barely noticeable differences and excellent data recovery.
Navazio, Lorella; Moscatiello, Roberto; Genre, Andrea; Novero, Mara; Baldan, Barbara; Bonfante, Paola; Mariani, Paola
2007-01-01
The implication of calcium as intracellular messenger in the arbuscular mycorrhizal (AM) symbiosis has not yet been directly demonstrated, although often envisaged. We used soybean (Glycine max) cell cultures stably expressing the bioluminescent Ca2+ indicator aequorin to detect intracellular Ca2+ changes in response to the culture medium of spores of Gigaspora margarita germinating in the absence of the plant partner. Rapid and transient elevations in cytosolic free Ca2+ were recorded, indicating that diffusible molecules released by the mycorrhizal fungus are perceived by host plant cells through a Ca2+-mediated signaling. Similar responses were also triggered by two Glomus isolates. The fungal molecules active in generating the Ca2+ transient were constitutively released in the medium, and the induced Ca2+ signature was not modified by the coculture of germinating spores with plant cells. Even ungerminated spores were able to generate the signaling molecules, as proven when the germination was blocked by a low temperature. The fungal molecules were found to be stable to heat treatment, of small molecular mass (<3 kD), and, on the basis of extraction with an organic solvent, partially lipophilic. Evidence for the specificity of such an early fungal signal to the AM symbiosis is suggested by the lack of a Ca2+ response in cultured cells of the nonhost plant Arabidopsis (Arabidopsis thaliana) and by the up-regulation in soybean cells of genes related to Medicago truncatula DMI1, DMI2, and DMI3 and considered essential for the establishment of the AM symbiosis. PMID:17142489
Guan, Su Hua; Belsham, Graham J
2017-04-01
Foot-and-mouth disease virus is a picornavirus and its RNA genome encodes a large polyprotein. The N-terminal part of this polyprotein is the leader protein, a cysteine protease, termed Lpro. The virus causes the rapid inhibition of host cell cap-dependent protein synthesis within infected cells. This results from the Lpro-dependent cleavage of the cellular translation initiation factor eIF4G. Lpro also releases itself from the virus capsid precursor by cleaving the L/P1 junction. Using site-directed mutagenesis of the Lpro coding sequence, we have investigated the role of 51 separate amino acid residues in the functions of this protein. These selected residues either are highly conserved or are charged and exposed on the protein surface. Using transient expression assays, within BHK-21 cells, it was found that residues around the active site (W52, L53 and A149) of Lpro and others located elsewhere (K38, K39, R44, H138 and W159) are involved in the induction of eIF4G cleavage but not in the processing of the L/P1 junction. Modified viruses, encoding such amino acid substitutions within Lpro, can replicate in BHK-21 cells but did not grow well in primary bovine thyroid cells. This study characterizes mutant viruses that are deficient in blocking host cell responses to infection (e.g. interferon induction) and can assist in the rational design of antiviral agents targeting this process and in the production of attenuated viruses.
Myers, Samuel A.; Daou, Salima; Affar, El Bachir; Burlingame, AL
2014-01-01
The development of electron-based, unimolecular dissociation mass spectrometric methods, i.e. electron capture and electron transfer dissociation (ECD and ETD, respectively), has greatly increased the speed and reliability of labile post-translational modification (PTM) site assignment. The field of intracellular O-GlcNAc (O-linked N-acetylglucosamine) signaling has especially advanced with the advent of ETD mass spectrometry. Only within the last five years have proteomic-scale experiments utilizing ETD allowed the assignment of hundreds of O-GlcNAc sites within cells and subcellular structures. Our ability to identify and unambiguously assign the site of O-GlcNAc modifications using ETD is rapidly increasing our understanding of this regulatory glycosylation and its potential interaction with other PTMs. Here, we discuss the advantages of using ETD, complimented with collisional-activation mass spectrometry (CID/CAD), in a study of O-GlcNAc modified peptides of the extensively O-GlcNAcylated protein Host Cell Factor C1 (HCF-1). HCF-1 is a transcriptional co-regulator, forms a stable complex with O-GlcNAc transferase and is involved in control of cell cycle progression. ETD, along with higher energy collisional dissociation (HCD) mass spectrometry, was employed to assign the PTMs of the HCF-1 protein isolated from HEK293T cells. These include nineteen sites of O-GlcNAcylation, two sites of phosphorylation and two sites bearing dimethylarginine, and showcase the residue-specific, PTM complexity of this regulator of cell proliferation. PMID:23335398
Mikheev, V N
2011-01-01
Adaptive host manipulation hypothesis is usually supported by case studies on trophically transmitted heteroxenous endoparasites. Trematodes and cestodes are among efficient manipulators of fish, their common intermediate hosts. In this review paper, new data on modifications of host fish behavior caused by monoxenous ectoparasitic crustaceans are provided together with a review of effects caused by heteroxenous parasites. Differences in modifications of host behavior caused by heteroxenous and monoxenous parasites are discussed. Manipulation by heteroxenous parasites enhances availability of infected fish to predators--definitive hosts of the parasites. Fine-tuned synchronization of modified anti-predator behavior with a certain phase of the trematode Diplostomum spathaceum development in the eyes of fish, their second intermediate host, was shown. Modifications of behavior are habitat specific. When juvenile salmonids are in the open water, parasites impair their cooperative anti-predator behavior; in territorial bottom-dwelling salmonids, individual defense behavior such as sheltering is the main target of manipulation. It was shown that monoxenous ectoparasitic crustaceans Argulus spp. decreased motor activity, aggressiveness and increased shoal cohesiveness of infected fish. Such a behavior facilitates host and mate searching in these parasites, which often change their hosts, especially during reproduction. Reviewed experimental data suggest that heteroxenous parasites manipulate their host mainly through impaired defense behavior, e.g. impairing shoaling in fish. Alternatively, monoxenous parasites facilitate shoaling that is profitable for both parasites and hosts. Coordination of modified host behavior with the parasite life cycle, both temporal and spatial, is the most convincing criterion of the adaptive value of host manipulation.
Lu, Peng-Wei; Li, Lin; Wang, Fang; Gu, Yuan-Ting
2018-06-01
The study intends to investigate the effects of long non-coding RNA HOST2 (lncRNA HOST2) on cell migration and invasion by regulating microRNA let-7b (let-7b) in breast cancer. Breast cancer and adjacent normal tissues were collected from 98 patients with breast cancer. Breast cancer MCF-7 cells were divided into the blank, negative control (NC), pcDNA3-Mock, siHOST2, let-7b inhibitor, pcDNA3-HOST2, let-7b mimic, pcDNA3-HOST2 + let-7b mimic, and siHOST2 + let-7b inhibitor groups. RT-qPCR was used to detect the mRNA expressions of HOST2, let-7b, and c-Myc. Western blotting was conducted to measure the c-Myc expression. Scratch test and Transwell assay were applied to detect the cell motility, migration, and invasion. Xenograft tumor in nude mice was performed to evaluate the effect of different transfection on the tumor growth. Compared with adjacent normal tissues, HOST2 expression was higher but let-7b expression lower in breast cancer tissues. HOST2 expression in breast cancer cells was remarkably increased compared with that in the normal breast epithelial MCF-10A cells. In MCF-7 cells, in comparison with the blank and NC groups, expressions of HOST2 and c-Myc were reduced, but let-7b expression was remarkably elevated in the siHOST2 and let-7b mimic groups; the let-7b inhibitor group exhibited higher expressions of HOST2 and c-Myc but lower let-7b expression. Overexpression of HOST2 could promote cell motility, migration and invasion, thus enhancing the growth of breast cancer tumor. By inhibiting HOST2, opposite trends were found. LncRNA HOST2 promotes cell migration and invasion by inhibiting let-7b in breast cancer patients. © 2017 Wiley Periodicals, Inc.
Bougdour, Alexandre; Durandau, Eric; Brenier-Pinchart, Marie-Pierre; Ortet, Philippe; Barakat, Mohamed; Kieffer, Sylvie; Curt-Varesano, Aurélie; Curt-Bertini, Rose-Laurence; Bastien, Olivier; Coute, Yohann; Pelloux, Hervé; Hakimi, Mohamed-Ali
2013-04-17
After invading host cells, Toxoplasma gondii multiplies within a parasitophorous vacuole (PV) that is maintained by parasite proteins secreted from organelles called dense granules. Most dense granule proteins remain within the PV, and few are known to access the host cell cytosol. We identify GRA16 as a dense granule protein that is exported through the PV membrane and reaches the host cell nucleus, where it positively modulates genes involved in cell-cycle progression and the p53 tumor suppressor pathway. GRA16 binds two host enzymes, the deubiquitinase HAUSP and PP2A phosphatase, which exert several functions, including regulation of p53 and the cell cycle. GRA16 alters p53 levels in a HAUSP-dependent manner and induces nuclear translocation of the PP2A holoenzyme. Additionally, certain GRA16-deficient strains exhibit attenuated virulence, indicating the importance of these host alterations in pathogenesis. Therefore, GRA16 represents a potentially emerging subfamily of exported dense granule proteins that modulate host function. Copyright © 2013 Elsevier Inc. All rights reserved.
Recombinant glucose uptake system
Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico
1997-01-01
Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.
siRNAmod: A database of experimentally validated chemically modified siRNAs.
Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj
2016-01-28
Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod.
Wang, Jiangyun; Schultz, Peter G.
2013-03-12
The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetase that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel sythetases molecules, methods for identifying and making the novel synthetases, methods for producing containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lapidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.
Wang, Jiangyun; Schultz, Peter G.
2010-09-07
The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.
Wang, Jiangyun; Schultz, Peter G.
2012-07-10
The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.
2010-07-28
expression is plotted on Y -axis after normalization to mock-treated samples. Results plotted to compare calculated fold change in expression of each gene ...RESEARCH Open Access Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions Abdulnaser...suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes
Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi
Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu
2017-01-01
Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan. PMID:29371579
NASA Astrophysics Data System (ADS)
Meng, Qingyang; Man, Zhentao; Dai, Linghui; Huang, Hongjie; Zhang, Xin; Hu, Xiaoqing; Shao, Zhenxing; Zhu, Jingxian; Zhang, Jiying; Fu, Xin; Duan, Xiaoning; Ao, Yingfang
2015-12-01
Articular cartilage injury is still a significant challenge because of the poor intrinsic healing potential of cartilage. Stem cell-based tissue engineering is a promising technique for cartilage repair. As cartilage defects are usually irregular in clinical settings, scaffolds with moldability that can fill any shape of cartilage defects and closely integrate with the host cartilage are desirable. In this study, we constructed a composite scaffold combining mesenchymal stem cells (MSCs) E7 affinity peptide-modified demineralized bone matrix (DBM) particles and chitosan (CS) hydrogel for cartilage engineering. This solid-supported composite scaffold exhibited appropriate porosity, which provided a 3D microenvironment that supports cell adhesion and proliferation. Cell proliferation and DNA content analysis indicated that the DBM-E7/CS scaffold promoted better rat bone marrow-derived MSCs (BMMSCs) survival than the CS or DBM/CS groups. Meanwhile, the DBM-E7/CS scaffold increased matrix production and improved chondrogenic differentiation ability of BMMSCs in vitro. Furthermore, after implantation in vivo for four weeks, compared to those in control groups, the regenerated issue in the DBM-E7/CS group exhibited translucent and superior cartilage-like structures, as indicated by gross observation, histological examination, and assessment of matrix staining. Overall, the functional composite scaffold of DBM-E7/CS is a promising option for repairing irregularly shaped cartilage defects.
The specific localization of advanced glycation end-products (AGEs) in rat pancreatic islets.
Morioka, Yuta; Teshigawara, Kiyoshi; Tomono, Yasuko; Wang, Dengli; Izushi, Yasuhisa; Wake, Hidenori; Liu, Keyue; Takahashi, Hideo Kohka; Mori, Shuji; Nishibori, Masahiro
2017-08-01
Advanced glycation end-products (AGEs) are produced by non-enzymatic glycation between protein and reducing sugar such as glucose. Although glyceraldehyde-derived AGEs (Glycer-AGEs), one of the AGEs subspecies, have been reported to be involved in the pathogenesis of various age-relating diseases such as diabetes mellitus or arteriosclerosis, little is known about the pathological and physiological mechanism of AGEs in vivo. In present study, we produced 4 kinds of polyclonal antibodies against AGEs subspecies and investigated the localization of AGEs-modified proteins in rat peripheral tissues, making use of these antibodies. We found that Glycer-AGEs and methylglyoxal-derived AGEs (MGO-AGEs) were present in pancreatic islets of healthy rats, distinguished clearly into the pancreatic α and β cells, respectively. Although streptozotocin-induced diabetic rats suffered from remarkable impairment of pancreatic islets, the localization and deposit levels of the Glycer- and MGO-AGEs were not altered in the remaining α and β cells. Remarkably, the MGO-AGEs in pancreatic β cells were localized into the insulin-secretory granules. These results suggest that the cell-specific localization of AGEs-modified proteins are presence generally in healthy peripheral tissues, involved in physiological intracellular roles, such as a post-translational modulator contributing to the secretory and/or maturational functions of insulin. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Host cell capable of producing enzymes useful for degradation of lignocellulosic material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schoonneveld-Bergmans, Margot Elisabeth Francoise
The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.
Creating genetic resistance to HIV.
Burnett, John C; Zaia, John A; Rossi, John J
2012-10-01
HIV/AIDS remains a chronic and incurable disease, in spite of the notable successes of combination antiretroviral therapy. Gene therapy offers the prospect of creating genetic resistance to HIV that supplants the need for antiviral drugs. In sight of this goal, a variety of anti-HIV genes have reached clinical testing, including gene-editing enzymes, protein-based inhibitors, and RNA-based therapeutics. Combinations of therapeutic genes against viral and host targets are designed to improve the overall antiviral potency and reduce the likelihood of viral resistance. In cell-based therapies, therapeutic genes are expressed in gene modified T lymphocytes or in hematopoietic stem cells that generate an HIV-resistant immune system. Such strategies must promote the selective proliferation of the transplanted cells and the prolonged expression of therapeutic genes. This review focuses on the current advances and limitations in genetic therapies against HIV, including the status of several recent and ongoing clinical studies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Jansen, Michelle A E; van den Heuvel, Diana; Jaddoe, Vincent W V; Moll, Henriette A; van Zelm, Menno C
2017-03-15
Persistent infections with cytomegalovirus (CMV) differentially affect the host immune phenotype in middle-aged males and females. Because CMV already impacts on T-cell memory at a young age, we studied whether these effects were modified by sex in 1,079 children with an average age of 6 years. Sex and CMV independently impacted on multiple B-cell and T-cell subsets. However, there was no significant effect of their interaction. Importantly, the effects of sex and CMV were in part explained by age and infection with other herpesviruses. Thus, immune aging is likely to be more complex, with involvement of hormonal changes with age, socioeconomic status, birth characteristics, and pathogen exposure. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Less is more: strategies to remove marker genes from transgenic plants
2013-01-01
Selectable marker genes (SMGs) and selection agents are useful tools in the production of transgenic plants by selecting transformed cells from a matrix consisting of mostly untransformed cells. Most SMGs express protein products that confer antibiotic- or herbicide resistance traits, and typically reside in the end product of genetically-modified (GM) plants. The presence of these genes in GM plants, and subsequently in food, feed and the environment, are of concern and subject to special government regulation in many countries. The presence of SMGs in GM plants might also, in some cases, result in a metabolic burden for the host plants. Their use also prevents the re-use of the same SMG when a second transformation scheme is needed to be performed on the transgenic host. In recent years, several strategies have been developed to remove SMGs from GM products while retaining the transgenes of interest. This review describes the existing strategies for SMG removal, including the implementation of site specific recombination systems, TALENs and ZFNs. This review discusses the advantages and disadvantages of existing SMG-removal strategies and explores possible future research directions for SMG removal including emerging technologies for increased precision for genome modification. PMID:23617583
NASA Astrophysics Data System (ADS)
Kiani, Armin; Dastafkan, Kamran; Obeydavi, Ali; Rahimi, Mohammad
2017-12-01
Nanocrystalline solid solutions consisting of un-doped and gadolinium doped zinc oxide nanorods were fabricated by a modified sol-gel process utilizing combined ultrasonic-microwave irradiations. Polyvinylpyrrolidone, diethylene glycol, and triethylenetetramine respectively as capping, structure directing, and complexing agents were used under ultrasound dynamic aging and microwave heating to obtain crystalline nanorods. Crystalline phase monitoring, lattice parameters and variation, morphology and shape, elemental analysis, functional groups, reducibility, and the oxidation state of emerged species were examined by PXRD, FESEM, TEM, EDX, FTIR, micro Raman, H2-TPR, and EPR techniques. Results have verified that irradiation mechanism of gelation and crystallization reduces the reaction time, augments the crystal quality, and formation of hexagonal close pack structure of Wurtzite morphology. Besides, dissolution of gadolinium within host lattice involves lattice deformation, unit cell distortion, and angular position variation. Structure related shape and growth along with compositional purity were observed through microscopic and spectroscopic surveys. Furthermore, TPR and EPR studies elucidated more detailed behavior upon exposure to the exerted irradiations and subsequent air-annealing including the formed oxidation states and electron trapping centers, presence of gadolinium, zinc, and oxygen disarrays and defects, as well as alteration in the host unit cell via gadolinium addition.
Protein palmitoylation plays an important role in Trichomonas vaginalis adherence.
Nievas, Yesica R; Vashisht, Ajay A; Corvi, Maria M; Metz, Sebastian; Johnson, Patricia J; Wohlschlegel, James A; de Miguel, Natalia
2018-02-14
The flagellated protozoan parasite Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common non-viral sexually transmitted infection worldwide. As an obligate extracellular pathogen, adherence to epithelial cells is critical for parasite survival within the human host and a better understanding of this process is a prerequisite for the development of therapies to combat infection. In this sense, recent work has shown S-acylation as a key modification that regulates pathogenesis in different protozoan parasites. However, there are no reports indicating whether this post-translational modification is a mechanism operating in T. vaginalis. In order to study the extent and function of S-acylation in T. vaginalis biology, we undertook a proteomic study to profile the full scope of S-acylated proteins in this parasite and reported the identification of 363 proteins involved in a variety of biological processes such as protein transport, pathogenesis related and signaling, among others. Importantly, treatment of parasites with the palmitoylation inhibitor 2-bromopalmitate causes a significant decrease in parasite: parasite aggregation as well as adherence to host cells suggesting that palmitoylation could be modifying proteins that are key regulators of Trichomonas vaginalis pathogenesis. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Intravenous injections of soluble drag-reducing polymers reduce foreign body reaction to implants.
Marascalco, Philip J; Blair, Harry C; Nieponice, Alejandro; Robinson, Lisa J; Kameneva, Marina V
2009-01-01
We tested whether soluble viscoelastic drag-reducing polymers (DRPs), which modify blood flow in the macro- and microcirculation, affect host response to implanted biomaterials and control biodegradation and tissue ingrowth processes. Porous poly(L-lactate) (PLLA) implants, which are naturally hydrolyzed by foreign body giant cells, were used to evaluate differences in host response. Intravenous DRPs, high-molecular weight poly(ethylene oxide) (PEO) or poly(mannose) (PMNN), were given biweekly at 0.3-0.4 nM in saline (equivalent volumes of saline in controls) to rats with subcutaneous PLLA implants. After 7 weeks, there was no difference in weight gain or behavior between control and DRP-injected groups. Implanted PLLA scaffolds in controls were almost totally degraded and replaced by giant cell granulomas. On the contrary, PEO- or PMNN-treated animals retained a significant part of the implanted scaffold (p < 0.0001 vs. controls). The foreign body reaction was markedly decreased, and there was an increase in well-oriented collagen deposition within the implanted scaffold area in the animals treated with DRPs. The DRP-mediated effects observed in this study potentially reflect alteration in inflammatory events in response to implanted bioengineered materials, and, thus, warrant further investigation.
Less is more: strategies to remove marker genes from transgenic plants.
Yau, Yuan-Yeu; Stewart, C Neal
2013-04-23
Selectable marker genes (SMGs) and selection agents are useful tools in the production of transgenic plants by selecting transformed cells from a matrix consisting of mostly untransformed cells. Most SMGs express protein products that confer antibiotic- or herbicide resistance traits, and typically reside in the end product of genetically-modified (GM) plants. The presence of these genes in GM plants, and subsequently in food, feed and the environment, are of concern and subject to special government regulation in many countries. The presence of SMGs in GM plants might also, in some cases, result in a metabolic burden for the host plants. Their use also prevents the re-use of the same SMG when a second transformation scheme is needed to be performed on the transgenic host. In recent years, several strategies have been developed to remove SMGs from GM products while retaining the transgenes of interest. This review describes the existing strategies for SMG removal, including the implementation of site specific recombination systems, TALENs and ZFNs. This review discusses the advantages and disadvantages of existing SMG-removal strategies and explores possible future research directions for SMG removal including emerging technologies for increased precision for genome modification.
Balancing Immune Protection and Immune Pathology by CD8+ T-Cell Responses to Influenza Infection
Duan, Susu; Thomas, Paul G.
2016-01-01
Influenza A virus (IAV) is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity contributes to the clearance of virus-infected cells, and CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, its cytotoxicity, and the effects of produced proinflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL antiviral immunity from those necessary to restrain CTL-mediated non-specific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity. PMID:26904022
Mandl, Judith N; Akondy, Rama; Lawson, Benton; Kozyr, Natalia; Staprans, Silvija I; Ahmed, Rafi; Feinberg, Mark B
2011-06-01
Why cross-species transmissions of zoonotic viral infections to humans are frequently associated with severe disease when viruses responsible for many zoonotic diseases appear to cause only benign infections in their reservoir hosts is unclear. Sooty mangabeys (SMs), a reservoir host for SIV, do not develop disease following SIV infection, unlike nonnatural HIV-infected human or SIV-infected rhesus macaque (RM) hosts. SIV infections of SMs are characterized by an absence of chronic immune activation, in association with significantly reduced IFN-α production by plasmacytoid dendritic cells (pDCs) following exposure to SIV or other defined TLR7 or TLR9 ligands. In this study, we demonstrate that SM pDCs produce significantly less IFN-α following ex vivo exposure to the live attenuated yellow fever virus 17D strain vaccine, a virus that we show is also recognized by TLR7, than do RM or human pDCs. Furthermore, in contrast to RMs, SMs mount limited activation of innate immune responses and adaptive T cell proliferative responses, along with only transient antiviral Ab responses, following infection with yellow fever vaccine 17D strain. However, SMs do raise significant and durable cellular and humoral immune responses comparable to those seen in RMs when infected with modified vaccinia Ankara, a virus whose immunogenicity does not require TLR7/9 recognition. Hence, differences in the pattern of TLR7 signaling and type I IFN production by pDCs between primate species play an important role in determining their ability to mount and maintain innate and adaptive immune responses to specific viruses, and they may also contribute to determining whether disease follows infection.
Fan, Lei; Zhuang, Houlong L; Zhang, Kaihang; Cooper, Valentino R; Li, Qi; Lu, Yingying
2016-12-01
Lithium-sulfur (Li-S) battery is one of the most promising alternatives for the current state-of-the-art lithium-ion batteries due to its high theoretical energy density and low production cost from the use of sulfur. However, the commercialization of Li-S batteries has been so far limited to the cyclability and the retention of active sulfur materials. Using co-electrospinning and physical vapor deposition procedures, we created a class of chloride-carbon nanofiber composites, and studied their effectiveness on polysulfides sequestration. By trapping sulfur reduction products in the modified cathode through both chemical and physical confinements, these chloride-coated cathodes are shown to remarkably suppress the polysulfide dissolution and shuttling between lithium and sulfur electrodes. From adsorption experiments and theoretical calculations, it is shown that not only the sulfide-adsorption effect but also the diffusivity in the vicinity of these chlorides materials plays an important role on the reversibility of sulfur-based cathode upon repeated cycles. Balancing the adsorption and diffusion effects of these nonconductive materials could lead to the enhanced cycling performance of an Li-S cell. Electrochemical analyses over hundreds of cycles indicate that cells containing indium chloride-modified carbon nanofiber outperform cells with other halogenated salts, delivering an average specific capacity of above 1200 mAh g -1 at 0.2 C.
Xiang, Jun; Sun, Jianguo; Hong, Jiaxu; Wang, Wentao; Wei, Anji; Le, Qihua; Xu, Jianjiang
2015-05-01
Corneal disease is a common cause of blindness, and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents a novel T-style design of a keratoprosthesis and its preparation methods, in which a mechanically and structurally effective artificial cornea is made based on a poly(2-hydroxyethyl methacrylate) hydrogel. The porous skirt was modified with hyaluronic acid and cationized gelatin, and the bottom of the optical column was coated with poly(ethylene glycol). The physical properties of the T-style Kpro were analyzed using ultraviolet and visible spectrophotometry and electron scanning microscopy. The surface chemical properties were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface modification in the spongy skirt promoted cell adhesion and produced a firm bond between the corneal tissue and the implant device, while the surface modification in the optic column resisted cell adhesion and prevented retroprosthetic membrane formation. Through improved surgical techniques, the novel T-style keratoprosthesis provides enough mechanical stability to facilitate long-term biointegration with the host environment. In vivo implantation experiments showed that the T-style keratoprosthesis is a promising cornea alternative for patients with severe limbal stem cell deficiency and corneal opacity. Copyright © 2015 Elsevier B.V. All rights reserved.
Catta-Preta, Carolina Moura Costa; Dos Santos Pascoalino, Bruno; de Souza, Wanderley; Mottram, Jeremy C; Motta, Maria Cristina M; Schenkman, Sergio
2016-11-01
In the last two decades, RNA interference pathways have been employed as a useful tool for reverse genetics in trypanosomatids. Angomonas deanei is a nonpathogenic trypanosomatid that maintains an obligatory endosymbiosis with a bacterium related to the Alcaligenaceae family. Studies of this symbiosis can help us to understand the origin of eukaryotic organelles. The recent elucidation of both the A. deanei and the bacterium symbiont genomes revealed that the host protozoan codes for the enzymes necessary for RNAi activity in trypanosomatids. Here, we tested the functionality of the RNAi machinery by transfecting cells with dsRNA to a reporter gene (green fluorescent protein), which had been previously expressed in the parasite and to α-tubulin, an endogenous gene. In both cases, protein expression was reduced by the presence of specific dsRNA, inducing, respectively, a decreased GFP fluorescence and the formation of enlarged cells with modified arrangement of subpellicular microtubules. Furthermore, symbiont division was impaired. These results indicate that the RNAi system is active in A. deanei and can be used to further explore gene function in symbiont-containing trypanosomatids and to clarify important aspects of symbiosis and cell evolution. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.
Tiberghien, P; Ferrand, C; Lioure, B; Milpied, N; Angonin, R; Deconinck, E; Certoux, J M; Robinet, E; Saas, P; Petracca, B; Juttner, C; Reynolds, C W; Longo, D L; Hervé, P; Cahn, J Y
2001-01-01
Administration of donor T cells expressing the herpes simplex-thymidine kinase (HS-tk) with a hematopoietic stem cell (HSC) transplantation could allow, if graft-versus-host disease (GVHD) was to occur, a selective in vivo depletion of these T cells by the use of ganciclovir (GCV). The study evaluates the feasibility of such an approach. Escalating numbers of donor HS-tk-expressing CD3(+) gene-modified cells (GMCs) are infused with a T-cell-depleted bone marrow transplantation (BMT). Twelve patients with hematological malignancies received 2 x 10(5) (n = 5), 6 x 10(5) (n = 5), or 20 x 10(5) (n = 2) donor CD3(+) GMCs/kg with a BMT from a human leukocyte antigen (HLA)-identical sibling. No acute toxicity was associated with GMC administration. An early increase of circulating GMCs followed by a progressive decrease and long-lasting circulation of GMCs was documented. GCV treatment resulted in significant rapid decrease in circulating GMCs. Three patients developed acute GVHD, with a grade of at least II, while one patient developed chronic GVHD. Treatment with GCV alone was associated with a complete remission (CR) in 2 patients with acute GVHD, while the addition of glucocorticoids was necessary to achieve a CR in the last case. Long-lasting CR occurred with GCV treatment in the patient with chronic GVHD. Unfortunately, Epstein-Barr virus-lymphoproliferative disease occurred in 3 patients. Overall, the administration of low numbers of HS-tk-expressing T cells early following an HLA-identical BMT is associated with no acute toxicity, persistent circulation of the GMCs, and GCV-sensitive GVHD. Such findings open the way to the infusion of higher numbers of gene-modified donor T cells to enhance post-BMT immune competence while preserving GCV-sensitive alloreactivity.
Townsend, Leigh; Williams, Richard L; Anuforom, Olachi; Berwick, Matthew R; Halstead, Fenella; Hughes, Erik; Stamboulis, Artemis; Oppenheim, Beryl; Gough, Julie; Grover, Liam; Scott, Robert A H; Webber, Mark; Peacock, Anna F A; Belli, Antonio; Logan, Ann; de Cogan, Felicity
2017-01-01
The interface between implanted devices and their host tissue is complex and is often optimized for maximal integration and cell adhesion. However, this also gives a surface suitable for bacterial colonization. We have developed a novel method of modifying the surface at the material-tissue interface with an antimicrobial peptide (AMP) coating to allow cell attachment while inhibiting bacterial colonization. The technology reported here is a dual AMP coating. The dual coating consists of AMPs covalently bonded to the hydroxyapatite surface, followed by deposition of electrostatically bound AMPs. The dual approach gives an efficacious coating which is stable for over 12 months and can prevent colonization of the surface by both Gram-positive and Gram-negative bacteria. © 2017 The Author(s).
Regulation of the Host Antiviral State by Intercellular Communications
Assil, Sonia; Webster, Brian; Dreux, Marlène
2015-01-01
Viruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins) and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these “broadcasting” functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic. PMID:26295405
Targeted Immunomodulation Using Antigen-Conjugated Nanoparticles
McCarthy, Derrick P.; Hunter, Zoe N.; Chackerian, Bryce; Shea, Lonnie D.; Miller, Stephen D.
2014-01-01
The growing prevalence of nanotechnology in the fields of biology, medicine and the pharmaceutical industry is confounded by the relatively small amount of data on the impact of these materials on the immune system. In addition to concerns surrounding the potential toxicity of nanoparticle (NP)-based delivery systems, there is also a demand for a better understanding of the mechanisms governing interactions of NPs with the immune system. Nanoparticles can be tailored to suppress, enhance, or subvert recognition by the immune system. This “targeted immunomodulation” can be achieved by delivery of unmodified particles, or by modifying particles to deliver drugs, proteins/peptides or genes to a specific site. In order to elicit the desired, beneficial immune response, considerations should be made at every step of the design process: the NP platform itself, ligands and other modifiers, the delivery route, and the immune cells that will encounter the conjugated NPs can all impact host immune responses. PMID:24616452
Polysaccharide-based Noncovalent Assembly for Targeted Delivery of Taxol
NASA Astrophysics Data System (ADS)
Yang, Yang; Zhang, Ying-Ming; Chen, Yong; Chen, Jia-Tong; Liu, Yu
2016-01-01
The construction of synthetic straightforward, biocompatible and biodegradable targeted drug delivery system with fluorescent tracking abilities, high anticancer activities and low side effects is still a challenge in the field of biochemistry and material chemistry. In this work, we constructed targeted paclitaxel (Taxol) delivery nanoparticles composed of permethyl-β-cyclodextrin modified hyaluronic acid (HApCD) and porphyrin modified paclitaxel prodrug (PorTaxol), through host-guest and amphiphilic interactions. The obtained nanoparticles (HATXP) were biocompatible and enzymatic biodegradable due to their hydrophilic hyaluronic acid (HA) shell and hydrophobic Taxol core, and exhibited specific targeting internalization into cancer cells via HA receptor mediated endocytosis effects. The cytotoxicity experiments showed that the HATXP exhibited similar anticancer activities to, but much lower side effects than commercial anticancer drug Taxol. The present work would provide a platform for targeted paclitaxel drug delivery and a general protocol for the design of advanced multifunctional nanoscale biomaterials for targeted drug/gene delivery.
Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection*
Kulej, Katarzyna; Avgousti, Daphne C.; Sidoli, Simone; Herrmann, Christin; Della Fera, Ashley N.; Kim, Eui Tae; Garcia, Benjamin A.; Weitzman, Matthew D.
2017-01-01
Herpes simplex virus (HSV-1) lytic infection results in global changes to the host cell proteome and the proteins associated with host chromatin. We present a system level characterization of proteome dynamics during infection by performing a multi-dimensional analysis during HSV-1 lytic infection of human foreskin fibroblast (HFF) cells. Our study includes identification and quantification of the host and viral proteomes, phosphoproteomes, chromatin bound proteomes and post-translational modifications (PTMs) on cellular histones during infection. We analyzed proteomes across six time points of virus infection (0, 3, 6, 9, 12 and 15 h post-infection) and clustered trends in abundance using fuzzy c-means. Globally, we accurately quantified more than 4000 proteins, 200 differently modified histone peptides and 9000 phosphorylation sites on cellular proteins. In addition, we identified 67 viral proteins and quantified 571 phosphorylation events (465 with high confidence site localization) on viral proteins, which is currently the most comprehensive map of HSV-1 phosphoproteome. We investigated chromatin bound proteins by proteomic analysis of the high-salt chromatin fraction and identified 510 proteins that were significantly different in abundance during infection. We found 53 histone marks significantly regulated during virus infection, including a steady increase of histone H3 acetylation (H3K9ac and H3K14ac). Our data provide a resource of unprecedented depth for human and viral proteome dynamics during infection. Collectively, our results indicate that the proteome composition of the chromatin of HFF cells is highly affected during HSV-1 infection, and that phosphorylation events are abundant on viral proteins. We propose that our epi-proteomics approach will prove to be important in the characterization of other model infectious systems that involve changes to chromatin composition. PMID:28179408
Deshmukh, Hitesh S; Liu, Yuhong; Menkiti, Ogechukwu R; Mei, Junjie; Dai, Ning; O'Leary, Claire E; Oliver, Paula M; Kolls, Jay K; Weiser, Jeffrey N; Worthen, G Scott
2014-05-01
Neonatal colonization by microbes, which begins immediately after birth, is influenced by gestational age and the mother's microbiota and is modified by exposure to antibiotics. In neonates, prolonged duration of antibiotic therapy is associated with increased risk of late-onset sepsis (LOS), a disorder controlled by neutrophils. A role for the microbiota in regulating neutrophil development and susceptibility to sepsis in the neonate remains unclear. We exposed pregnant mouse dams to antibiotics in drinking water to limit transfer of maternal microbes to the neonates. Antibiotic exposure of dams decreased the total number and composition of microbes in the intestine of the neonates. This was associated with decreased numbers of circulating and bone marrow neutrophils and granulocyte/macrophage-restricted progenitor cells in the bone marrow of antibiotic-treated and germ-free neonates. Antibiotic exposure of dams reduced the number of interleukin-17 (IL-17)-producing cells in the intestine and production of granulocyte colony-stimulating factor (G-CSF). Granulocytopenia was associated with impaired host defense and increased susceptibility to Escherichia coli K1 and Klebsiella pneumoniae sepsis in antibiotic-treated neonates, which could be partially reversed by administration of G-CSF. Transfer of a normal microbiota into antibiotic-treated neonates induced IL-17 production by group 3 innate lymphoid cells (ILCs) in the intestine, increasing plasma G-CSF levels and neutrophil numbers in a Toll-like receptor 4 (TLR4)- and myeloid differentiation factor 88 (MyD88)-dependent manner and restored IL-17-dependent resistance to sepsis. Specific depletion of ILCs prevented IL-17- and G-CSF-dependent granulocytosis and resistance to sepsis. These data support a role for the intestinal microbiota in regulation of granulocytosis, neutrophil homeostasis and host resistance to sepsis in neonates.
Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains.
Li, Shan; Zhang, Li; Yao, Qing; Li, Lin; Dong, Na; Rong, Jie; Gao, Wenqing; Ding, Xiaojun; Sun, Liming; Chen, Xing; Chen, She; Shao, Feng
2013-09-12
The tumour necrosis factor (TNF) family is crucial for immune homeostasis, cell death and inflammation. These cytokines are recognized by members of the TNF receptor (TNFR) family of death receptors, including TNFR1 and TNFR2, and FAS and TNF-related apoptosis-inducing ligand (TRAIL) receptors. Death receptor signalling requires death-domain-mediated homotypic/heterotypic interactions between the receptor and its downstream adaptors, including TNFR1-associated death domain protein (TRADD) and FAS-associated death domain protein (FADD). Here we discover that death domains in several proteins, including TRADD, FADD, RIPK1 and TNFR1, were directly inactivated by NleB, an enteropathogenic Escherichia coli (EPEC) type III secretion system effector known to inhibit host nuclear factor-κB (NF-κB) signalling. NleB contained an unprecedented N-acetylglucosamine (GlcNAc) transferase activity that specifically modified a conserved arginine in these death domains (Arg 235 in the TRADD death domain). NleB GlcNAcylation (the addition of GlcNAc onto a protein side chain) of death domains blocked homotypic/heterotypic death domain interactions and assembly of the oligomeric TNFR1 complex, thereby disrupting TNF signalling in EPEC-infected cells, including NF-κB signalling, apoptosis and necroptosis. Type-III-delivered NleB also blocked FAS ligand and TRAIL-induced cell death by preventing formation of a FADD-mediated death-inducing signalling complex (DISC). The arginine GlcNAc transferase activity of NleB was required for bacterial colonization in the mouse model of EPEC infection. The mechanism of action of NleB represents a new model by which bacteria counteract host defences, and also a previously unappreciated post-translational modification.
Bougdour, Alexandre; Tardieux, Isabelle; Hakimi, Mohamed-Ali
2014-03-01
Toxoplasma gondii is the most widespread apicomplexan parasite and occupies a large spectrum of niches by infecting virtually any warm-blooded animals. As an obligate intracellular parasite, Toxoplasma has evolved a repertoire of strategies to fine-tune the cellular environment in an optimal way to promote growth and persistence in host tissues hence increasing the chance to be transmitted to new hosts. Short and long-term intracellular survival is associated with Toxoplasma ability to both evade the host deleterious immune defences and to stimulate a beneficial immune balance by governing host cell gene expression. It is only recently that parasite proteins responsible for driving these transcriptional changes have been identified. While proteins contained in the apical secretory Rhoptry organelle have already been identified as bona fide secreted effectors that divert host signalling pathways, recent findings revealed that dense granule proteins should be added to the growing list of effectors as they reach the host cell cytoplasm and nucleus and target various host cell pathways in the course of cell infection. Herein, we emphasize on a novel subfamily of dense granule residentproteins, exemplified with the GRA16 and GRA24 members we recently discovered as both are exported beyond the vacuole-containing parasites and reach the host cell nucleus to reshape the host genome expression. © 2013 John Wiley & Sons Ltd.
Decrease of Staphylococcus aureus Virulence by Helcococcus kunzii in a Caenorhabditis elegans Model.
Ngba Essebe, Christelle; Visvikis, Orane; Fines-Guyon, Marguerite; Vergne, Anne; Cattoir, Vincent; Lecoustumier, Alain; Lemichez, Emmanuel; Sotto, Albert; Lavigne, Jean-Philippe; Dunyach-Remy, Catherine
2017-01-01
Social bacterial interactions are considered essential in numerous infectious diseases, particularly in wounds. Foot ulcers are a common complication in diabetic patients and these ulcers become frequently infected. This infection is usually polymicrobial promoting cell-to-cell communications. Staphylococcus aureus is the most prevalent pathogen isolated. Its association with Helcococcus kunzii , commensal Gram-positive cocci, is frequently described. The aim of this study was to assess the impact of co-infection on virulence of both H. kunzii and S. aureus strains in a Caenorhabditis elegans model. To study the host response, qRT-PCRs targeting host defense genes were performed. We observed that H. kunzii strains harbored a very low (LT50: 5.7 days ± 0.4) or an absence of virulence (LT50: 6.9 days ± 0.5). In contrast, S. aureus strains (LT50: 2.9 days ± 0.4) were significantly more virulent than all H. kunzii ( P < 0.001). When H. kunzii and S. aureus strains were associated, H. kunzii significantly reduced the virulence of the S. aureus strain in nematodes (LT50 between 4.4 and 5.2 days; P < 0.001). To evaluate the impact of these strains on host response, transcriptomic analysis showed that the ingestion of S. aureus led to a strong induction of defense genes ( lys-5, sodh-1 , and cyp-37B1 ) while H. kunzii did not. No statistical difference of host response genes expression was observed when C. elegans were infected with either S. aureus alone or with S. aureus + H. kunzii . Moreover, two well-characterized virulence factors ( hla and agr ) present in S. aureus were down-regulated when S. aureus were co-infected with H. kunzii . This study showed that H. kunzii decreased the virulence of S. aureus without modifying directly the host defense response. Factor(s) produced by this bacterium modulating the staphylococci virulence must be investigated.
Decrease of Staphylococcus aureus Virulence by Helcococcus kunzii in a Caenorhabditis elegans Model
Ngba Essebe, Christelle; Visvikis, Orane; Fines-Guyon, Marguerite; Vergne, Anne; Cattoir, Vincent; Lecoustumier, Alain; Lemichez, Emmanuel; Sotto, Albert; Lavigne, Jean-Philippe; Dunyach-Remy, Catherine
2017-01-01
Social bacterial interactions are considered essential in numerous infectious diseases, particularly in wounds. Foot ulcers are a common complication in diabetic patients and these ulcers become frequently infected. This infection is usually polymicrobial promoting cell-to-cell communications. Staphylococcus aureus is the most prevalent pathogen isolated. Its association with Helcococcus kunzii, commensal Gram-positive cocci, is frequently described. The aim of this study was to assess the impact of co-infection on virulence of both H. kunzii and S. aureus strains in a Caenorhabditis elegans model. To study the host response, qRT-PCRs targeting host defense genes were performed. We observed that H. kunzii strains harbored a very low (LT50: 5.7 days ± 0.4) or an absence of virulence (LT50: 6.9 days ± 0.5). In contrast, S. aureus strains (LT50: 2.9 days ± 0.4) were significantly more virulent than all H. kunzii (P < 0.001). When H. kunzii and S. aureus strains were associated, H. kunzii significantly reduced the virulence of the S. aureus strain in nematodes (LT50 between 4.4 and 5.2 days; P < 0.001). To evaluate the impact of these strains on host response, transcriptomic analysis showed that the ingestion of S. aureus led to a strong induction of defense genes (lys-5, sodh-1, and cyp-37B1) while H. kunzii did not. No statistical difference of host response genes expression was observed when C. elegans were infected with either S. aureus alone or with S. aureus + H. kunzii. Moreover, two well-characterized virulence factors (hla and agr) present in S. aureus were down-regulated when S. aureus were co-infected with H. kunzii. This study showed that H. kunzii decreased the virulence of S. aureus without modifying directly the host defense response. Factor(s) produced by this bacterium modulating the staphylococci virulence must be investigated. PMID:28361041
Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Li, Yao; Pang, Jing; Dong, Stephanie; Strauss-Soukup, Juliane K; Chen, Xian-Ming
2018-05-01
Intestinal infection by Cryptosporidium parvum causes significant alterations in the gene expression profile in host epithelial cells. Previous studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected host cells and may modulate host gene transcription. Using in vitro models of human intestinal cryptosporidiosis, we report here that trans-suppression of the cadherin 3 (CDH3) and lysyl oxidase like 4 (LOXL4) genes in human intestinal epithelial cells following C. parvum infection involves host delivery of the Cdg7_FLc_1000 RNA, a C. parvum RNA that has been previously demonstrated to be delivered into the nuclei of infected host cells. Downregulation of CDH3 and LOXL4 genes was detected in host epithelial cells following C. parvum infection or in cells expressing the parasite Cdg7_FLc_1000 RNA. Knockdown of Cdg7_FLc_1000 attenuated the trans-suppression of CDH3 and LOXL4 genes in host cells induced by infection. Interestingly, Cdg7_FLc_1000 was detected to be recruited to the promoter regions of both CDH3 and LOXL4 gene loci in host cells following C. parvum infection. Host delivery of Cdg7_FLc_1000 promoted the PH domain zinc finger protein 1 (PRDM1)-mediated H3K9 methylation associated with trans-suppression in the CDH3 gene locus, but not the LOXL4 gene. Therefore, our data suggest that host delivery of Cdg7_FLc_1000 causes CDH3 trans-suppression in human intestinal epithelial cells following C. parvum infection through PRDM1-mediated H3K9 methylation in the CDH3 gene locus, whereas Cdg7_FLc_1000 induces trans-suppression of the host LOXL4 gene through H3K9/H3K27 methylation-independent mechanisms. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Czajka, Jeffrey; Wang, Qinhong; Wang, Yechun; Tang, Yinjie J
2017-10-01
Genetically modified microbes have had much industrial success producing protein-based products (such as antibodies and enzymes). However, engineering microbial workhorses for biomanufacturing of commodity compounds remains challenging. First, microbes cannot afford burdens with both overexpression of multiple enzymes and metabolite drainage for product synthesis. Second, synthetic circuits and introduced heterologous pathways are not yet as "robust and reliable" as native pathways due to hosts' innate regulations, especially under suboptimal fermentation conditions. Third, engineered enzymes may lack channeling capabilities for cascade-like transport of metabolites to overcome diffusion barriers or to avoid intermediate toxicity in the cytoplasmic environment. Fourth, moving engineered hosts from laboratory to industry is unreliable because genetic mutations and non-genetic cell-to-cell variations impair the large-scale fermentation outcomes. Therefore, synthetic biology strains often have unsatisfactory industrial performance (titer/yield/productivity). To overcome these problems, many different species are being explored for their metabolic strengths that can be leveraged to synthesize specific compounds. Here, we provide examples of non-conventional and genetically amenable species for industrial manufacturing, including the following: Corynebacterium glutamicum for its TCA cycle-derived biosynthesis, Yarrowia lipolytica for its biosynthesis of fatty acids and carotenoids, cyanobacteria for photosynthetic production from its sugar phosphate pathways, and Rhodococcus for its ability to biotransform recalcitrant feedstock. Finally, we discuss emerging technologies (e.g., genome-to-phenome mapping, single cell methods, and knowledge engineering) that may facilitate the development of novel cell factories.
Bacterial effectors target the plant cell nucleus to subvert host transcription.
Canonne, Joanne; Rivas, Susana
2012-02-01
In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells.
Perturbation of host-cell membrane is a primary mechanism of HIV cytopathology.
Cloyd, M W; Lynn, W S
1991-04-01
Cytopathic viruses injure cells by a number of different mechanisms. The mechanism by which HIV-1 injures T cells was studied by temporally examining host-cell macromolecular syntheses, stages of the cell cycle, and membrane permeability following acute infection. T cells cytopathically infected at an m.o.i. of 1-5 grew normally for 24-72 hr, depending on the cell line, followed by the first manifestation of cell injury, slowing of cell division. At that time significant amounts of unintegrated HIV DNA and p24 core protein became detectable, and acridine orange flow cytometric cell cycle studies demonstrated the presence of fewer cells in the G2/M stage of the cell cycle. There was no change in the frequency of cells in the S-stage, and metabolic pulsing with radioactive precursors demonstrated that host-cell DNA, RNA, and protein syntheses were normal at that time and normal up to the time cells started to die (approximately 24 hr later), when all three decreased. Cellular lipid synthesis, however, was perturbed when cell multiplication slowed, with phospholipid synthesis reduced and neutral lipid synthesis enhanced. Permeability of the host-cell membrane to small molecules, such as Ca2+ and sucrose, was slightly enhanced early postinfection, and by the time of slowing of cell division, host membrane permeability was greatly increased to both Ca2+ and sucrose (Stokes radius 5.2 A) but not to inulin (Stokes radium 20 A). These changes in host-cell membrane permeability and phospholipid synthesis were not observed in acutely infected H9 cells, which are not susceptible to HIV cytopathology. Thus, HIV-1 appeared to predominantly injure T cells by perturbing host-cell membrane permeability and lipid synthesis, which is similar to the cytopathic mechanisms of paramyxoviruses.
Genetically Engineered Natural Killer Cells as a Means for Adoptive Tumor Immunotherapy.
Michen, Susanne; Temme, Achim
2016-01-01
Natural killer (NK) cells are lymphoid cells of the innate immune system; they stand at the first defense line against viruses and transformed cells. NK cells use an array of germline-encoded activating and inhibitory receptors that sense virus-infected cells or malignant cells displaying altered surface expression of activating and inhibitory NK cell ligands. They exert potent cytotoxic responses to cellular targets and thus are candidate effector cells for immunotherapy of cancer. In particular, the genetic engineering of NK cells with chimeric antigen receptors (CARs) against surface-expressed tumor-associated antigens (TAAs) seems promising. In the allogeneic context, gene-modified NK cells compared to T cells may be superior because they are short-lived effector cells and do not cause graft-versus-host disease. Furthermore, their anti-tumoral activity can be augmented by combinatorial use with therapeutic antibodies, chemotherapeutics, and radiation. Today, efforts are being undertaken for large-scale NK-cell expansion and their genetic engineering for adoptive cell transfer. With the recent advances in understanding the complex biological interactions that regulate NK cells, it is expected that the genetic engineering of NK cells and a combinatorial blockade of immune evasion mechanisms are required to exploit the full potential of NK-cell-based immunotherapies.
Eosinophils in mucosal immune responses
Travers, J; Rothenberg, M E
2015-01-01
Eosinophils, multifunctional cells that contribute to both innate and adaptive immunity, are involved in the initiation, propagation and resolution of immune responses, including tissue repair. They achieve this multifunctionality by expression of a diverse set of activation receptors, including those that directly recognize pathogens and opsonized targets, and by their ability to store and release preformed cytotoxic mediators that participate in host defense, to produce a variety of de novo pleotropic mediators and cytokines and to interact directly and indirectly with diverse cell types, including adaptive and innate immunocytes and structural cells. Herein, we review the basic biology of eosinophils and then focus on new emerging concepts about their role in mucosal immune homeostasis, particularly maintenance of intestinal IgA. We review emerging data about their development and regulation and describe new concepts concerning mucosal eosinophilic diseases. We describe recently developed therapeutic strategies to modify eosinophil levels and function and provide collective insight about the beneficial and detrimental functions of these enigmatic cells. PMID:25807184
Cellular Aspects of Shigella Pathogenesis: Focus on the Manipulation of Host Cell Processes.
Killackey, Samuel A; Sorbara, Matthew T; Girardin, Stephen E
2016-01-01
Shigella is a Gram-negative bacterium that is responsible for shigellosis. Over the years, the study of Shigella has provided a greater understanding of how the host responds to bacterial infection, and how bacteria have evolved to effectively counter the host defenses. In this review, we provide an update on some of the most recent advances in our understanding of pivotal processes associated with Shigella infection, including the invasion into host cells, the metabolic changes that occur within the bacterium and the infected cell, cell-to-cell spread mechanisms, autophagy and membrane trafficking, inflammatory signaling and cell death. This recent progress sheds a new light into the mechanisms underlying Shigella pathogenesis, and also more generally provides deeper understanding of the complex interplay between host cells and bacterial pathogens in general.
Beck, Markus H.; Zhang, Shu; Bitra, Kavita; Burke, Gaelen R.; Strand, Michael R.
2011-01-01
Polydnaviruses (PDVs) are symbionts of parasitoid wasps that function as gene delivery vehicles in the insects (hosts) that the wasps parasitize. PDVs persist in wasps as integrated proviruses but are packaged as circularized and segmented double-stranded DNAs into the virions that wasps inject into hosts. In contrast, little is known about how PDV genomic DNAs persist in host cells. Microplitis demolitor carries Microplitis demolitor bracovirus (MdBV) and parasitizes the host Pseudoplusia includens. MdBV infects primarily host hemocytes and also infects a hemocyte-derived cell line from P. includens called CiE1 cells. Here we report that all 15 genomic segments of the MdBV encapsidated genome exhibited long-term persistence in CiE1 cells. Most MdBV genes expressed in hemocytes were persistently expressed in CiE1 cells, including members of the glc gene family whose products transformed CiE1 cells into a suspension culture. PCR-based integration assays combined with cloning and sequencing of host-virus junctions confirmed that genomic segments J and C persisted in CiE1 cells by integration. These genomic DNAs also rapidly integrated into parasitized P. includens. Sequence analysis of wasp-viral junction clones showed that the integration of proviral segments in M. demolitor was associated with a wasp excision/integration motif (WIM) known from other bracoviruses. However, integration into host cells occurred in association with a previously unknown domain that we named the host integration motif (HIM). The presence of HIMs in most MdBV genomic DNAs suggests that the integration of each genomic segment into host cells occurs through a shared mechanism. PMID:21880747
Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil
2016-01-01
Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle. PMID:27180572
Herbert, Kristina M.; Nag, Anita
2016-01-01
Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage. PMID:27271653
Harker-Murray, Paul; Porter, Stephen B.; Merkel, Sarah C.; Londer, Aryel; Taylor, Dawn K.; Bina, Megan; Panoskaltsis-Mortari, Angela; Rubinstein, Pablo; Van Rooijen, Nico; Golovina, Tatiana N.; Suhoski, Megan M.; Miller, Jeffrey S.; Wagner, John E.; June, Carl H.; Riley, James L.
2008-01-01
Previously, we showed that human umbilical cord blood (UCB) regulatory T cells (Tregs) could be expanded approximately 100-fold using anti-CD3/28 monoclonal antibody (mAb)–coated beads to provide T-cell receptor and costimulatory signals. Because Treg numbers from a single UCB unit are limited, we explored the use of cell-based artificial antigen-presenting cells (aAPCs) preloaded with anti-CD3/28 mAbs to achieve higher levels of Treg expansion. Compared with beads, aAPCs had similar expansion properties while significantly increasing transforming growth factor β (TGF-β) secretion and the potency of Treg suppressor function. aAPCs modified to coexpress OX40L or 4-1BBL expanded UCB Tregs to a significantly greater extent than bead- or nonmodified aAPC cultures, reaching mean expansion levels exceeding 1250-fold. Despite the high expansion and in contrast to studies using other Treg sources, neither OX40 nor 4-1BB signaling of UCB Tregs reduced in vitro suppression. UCB Tregs expanded with 4-1BBL expressing aAPCs had decreased levels of proapoptotic bim. UCB Tregs expanded with nonmodified or modified aAPCs versus beads resulted in higher survival associated with increased Treg persistence in a xeno-geneic graft-versus-host disease lethality model. These data offer a novel approach for UCB Treg expansion using aAPCs, including those coexpressing OX40L or 4-1BBL. PMID:18645038
Disrupting the Networks of Cancer
Camacho, Daniel F.; Pienta, Kenneth J.
2014-01-01
Ecosystems are interactive systems involving communities of species and their abiotic environment. Tumors are ecosystems in which cancer cells act as invasive species interacting with native host cell species in an established microenvironment within the larger host biosphere. At its heart, to study ecology is to study interconnectedness. In ecologic science, an ecologic network is a representation of the biotic interactions in an ecosystem in which species (nodes) are connected by pairwise interactions (links). Ecologic networks and signaling network models have been used to describe and compare the structures of ecosystems. It has been shown that disruption of ecologic networks through the loss of species or disruption of interactions between them can lead to the destruction of the ecosystem. Often, the destruction of a single node or link is not enough to disrupt the entire ecosystem. The more complex the network and its interactions, the more difficult it is to cause the extinction of a species, especially without leveraging other aspects of the ecosystem. Similarly, successful treatment of cancer with a single agent is rarely enough to cure a patient without strategically modifying the support systems conducive to survival of cancer. Cancer cells and the ecologic systems they reside in can be viewed as a series of nested networks. The most effective new paradigms for treatment will be developed through application of scaled network disruption. PMID:22442061
Disrupting the networks of cancer.
Camacho, Daniel F; Pienta, Kenneth J
2012-05-15
Ecosystems are interactive systems involving communities of species and their abiotic environment. Tumors are ecosystems in which cancer cells act as invasive species interacting with native host cell species in an established microenvironment within the larger host biosphere. At its heart, to study ecology is to study interconnectedness. In ecologic science, an ecologic network is a representation of the biotic interactions in an ecosystem in which species (nodes) are connected by pairwise interactions (links). Ecologic networks and signaling network models have been used to describe and compare the structures of ecosystems. It has been shown that disruption of ecologic networks through the loss of species or disruption of interactions between them can lead to the destruction of the ecosystem. Often, the destruction of a single node or link is not enough to disrupt the entire ecosystem. The more complex the network and its interactions, the more difficult it is to cause the extinction of a species, especially without leveraging other aspects of the ecosystem. Similarly, successful treatment of cancer with a single agent is rarely enough to cure a patient without strategically modifying the support systems conducive to survival of cancer. Cancer cells and the ecologic systems they reside in can be viewed as a series of nested networks. The most effective new paradigms for treatment will be developed through application of scaled network disruption. ©2012 AACR.
How pathogens use linear motifs to perturb host cell networks.
Via, Allegra; Uyar, Bora; Brun, Christine; Zanzoni, Andreas
2015-01-01
Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.
The potential management of oral candidiasis using anti-biofilm therapies.
Chanda, Warren; Joseph, Thomson P; Wang, Wendong; Padhiar, Arshad A; Zhong, Mintao
2017-09-01
Candida albicans is a minor component of the oral microbiota and an opportunistic pathogen that takes advantage of the immunocompromised host and causes oral mucositis and oral candidiasis. This organism is able to undergo phenotypic modification from a yeast to hyphae growth phase, one of the key arsenals for immune cell evasion, tissue invasion and biofilm formation. The latter property coupled with overgrowth and immune compromising factors such as HIV/AIDS, cancer treatments, organ transplantation, diabetes, corticosteroid use, dentures, and broad-spectrum antibiotic use have modified the fungus from a normal component of the microflora to a foe of an oral cavity and resulting in reduced sensitivity towards commonly utilised antifungal agents. Hence, the need for alternative therapy to curb this plight is of importance. Making use of biomolecules produced by Streptococcus mutans, application of lactoferrin which is a nonspecific host defense factor found in saliva with metal chelating and broader antimicrobial properties, use of probiotics which have the capacity to boost the host immunity through eliciting Immunoglobulin A synthesis, and perturbing the pathogen's environment via competition of space and food, and application of photodynamic therapy can help to manage the burden of oral candidiasis. Copyright © 2017 Elsevier Ltd. All rights reserved.
YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity
2016-01-01
SUMMARY Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted “effector” proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed. PMID:27784797
Molina, Patricia E.; Amedee, Angela M.; Winsauer, Peter; Nelson, Steve; Bagby, Gregory; Simon, Liz
2015-01-01
HIV-associated mortality has been significantly reduced with antiretroviral therapy (ART), and HIV infection has become a chronic disease that frequently coexists with many disorders, including substance abuse (Azar et al. 2010; Phillips et al. 2001). Alcohol and drugs of abuse may modify host-pathogen interactions at various levels including behavioral, metabolic, and immune consequences of HIV infection, as well as the ability of the virus to integrate into the genome and replicate in host cells. Identifying mechanisms responsible for these interactions is complicated by many factors, such as the tissue specific responses to viral infection, multiple cellular mechanisms involved in inflammatory responses, neuroendocrine and localized responses to infection, and kinetics of viral replication. An integrated physiological analysis of the biomedical consequences of chronic alcohol and drug use or abuse on disease progression is possible using rhesus macaques infected with simian immunodeficiency virus (SIV), a relevant model of HIV infection. This review will provide an overview of the data gathered using this model to show that chronic administration of two of the most commonly abused substances, alcohol and cannabinoids (Δ9-Tetrahydrocannabinol; THC), affect host-pathogen interactions. PMID:25795088
Noninvasive imaging technologies reveal edema toxin as a key virulence factor in anthrax.
Dumetz, Fabien; Jouvion, Grégory; Khun, Huot; Glomski, Ian Justin; Corre, Jean-Philippe; Rougeaux, Clémence; Tang, Wei-Jen; Mock, Michèle; Huerre, Michel; Goossens, Pierre Louis
2011-06-01
Powerful noninvasive imaging technologies enable real-time tracking of pathogen-host interactions in vivo, giving access to previously elusive events. We visualized the interactions between wild-type Bacillus anthracis and its host during a spore infection through bioluminescence imaging coupled with histology. We show that edema toxin plays a central role in virulence in guinea pigs and during inhalational infection in mice. Edema toxin (ET), but not lethal toxin (LT), markedly modified the patterns of bacterial dissemination leading, to apparent direct dissemination to the spleen and provoking apoptosis of lymphoid cells. Each toxin alone provoked particular histological lesions in the spleen. When ET and LT are produced together during infection, a specific temporal pattern of lesion developed, with early lesions typical of LT, followed at a later stage by lesions typical of ET. Our study provides new insights into the complex spatial and temporal effects of B. anthracis toxins in the infected host, suggesting a greater role than previously suspected for ET in anthrax and suggesting that therapeutic targeting of ET contributes to protection. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Liu, Jun; Elmore, James Mitch; Lin, Zuh-Jyh Daniel; Coaker, Gitta
2011-02-17
Plants have evolved sophisticated surveillance systems to recognize pathogen effectors delivered into host cells. RPM1 is an NB-LRR immune receptor that recognizes the Pseudomonas syringae effectors AvrB and AvrRpm1. Both effectors associate with and affect the phosphorylation of RIN4, an immune regulator. Although the kinase and the specific mechanisms involved are unclear, it has been hypothesized that RPM1 recognizes phosphorylated RIN4. Here, we identify RIPK as a RIN4-interacting receptor-like protein kinase that phosphorylates RIN4. In response to bacterial effectors, RIPK phosphorylates RIN4 at amino acid residues T21, S160, and T166. RIN4 phosphomimetic mutants display constitutive activation of RPM1-mediated defense responses and RIN4 phosphorylation is induced by AvrB and AvrRpm1 during P. syringae infection. RIPK knockout lines exhibit reduced RIN4 phosphorylation and blunted RPM1-mediated defense responses. Taken together, our results demonstrate that the RIPK kinase associates with and modifies an effector-targeted protein complex to initiate host immunity. Copyright © 2011 Elsevier Inc. All rights reserved.
Messinger, Joshua E.; Nelton, Emmalin; Feeney, Colleen; Gondek, David C.
2015-01-01
Chlamydiae, obligate intracellular bacteria, cause significant human and veterinary associated diseases. Having emerged an estimated 700-million years ago, these bacteria have twice adapted to humans as a host species, causing sexually transmitted infection (C. trachomatis) and respiratory associated disease (C. pneumoniae). The principle mechanism of host cell defense against these intracellular bacteria is the induction of cell death via apoptosis. However, in the “arms race” of co-evolution, Chlamydiae have developed mechanisms to promote cell viability and inhibit cell death. Herein we examine the impact of Chlamydiae infection across multiple host species on transcription of anti-apoptotic genes. We found mostly distinct patterns of gene expression (Mcl1 and cIAPs) elicited by each pathogen-host pair indicating Chlamydiae infection across host species boundaries does not induce a universally shared host response. Understanding species specific host-pathogen interactions is paramount to deciphering how potential pathogens become emerging diseases. PMID:26779446
Evaluation of nanoparticles as endocytic tracers in cellular microbiology
NASA Astrophysics Data System (ADS)
Zhang, Yuying; Hensel, Michael
2013-09-01
The study of pathogen interactions with eukaryotic host cells requires the introduction of fluorescent probes to visualize processes such as endocytosis, intracellular transport or host cell manipulation by the pathogen. Here, three types of fluorescent nanoparticles (NPs), i.e. Rhodamine-labeled polymethacrylate (PMA) NPs, silica NPs and gold NPs, were employed to label the host cellular endolysosomal system and monitor manipulations by the pathogen Salmonella enterica. Using live cell imaging, we investigated the performance of NPs in cellular uptake, labeling of endocytic vesicles and lysosomes, as well as interaction with the pathogen. We show that fluorescent gold and silica, but not PMA NPs appropriately label host cell structures and efficiently track rearrangements of the host endosomal system by the activities of intracellular Salmonella. Silica NPs slightly aggregated and located in Salmonella-induced compartments as isolated dots, while gold NPs distributed uniformly inside such structures. Both silica and gold NPs exhibited no adverse impact on either host cells or pathogens, and are versatile tools for infection biology.The study of pathogen interactions with eukaryotic host cells requires the introduction of fluorescent probes to visualize processes such as endocytosis, intracellular transport or host cell manipulation by the pathogen. Here, three types of fluorescent nanoparticles (NPs), i.e. Rhodamine-labeled polymethacrylate (PMA) NPs, silica NPs and gold NPs, were employed to label the host cellular endolysosomal system and monitor manipulations by the pathogen Salmonella enterica. Using live cell imaging, we investigated the performance of NPs in cellular uptake, labeling of endocytic vesicles and lysosomes, as well as interaction with the pathogen. We show that fluorescent gold and silica, but not PMA NPs appropriately label host cell structures and efficiently track rearrangements of the host endosomal system by the activities of intracellular Salmonella. Silica NPs slightly aggregated and located in Salmonella-induced compartments as isolated dots, while gold NPs distributed uniformly inside such structures. Both silica and gold NPs exhibited no adverse impact on either host cells or pathogens, and are versatile tools for infection biology. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01550e
Host-associated microbiota modifies the toxicokinetics of environmental chemicals
Host-associated microbiota are known to biotransform drugs and some environmental chemicals like arsenic and polycyclic aromatic hydrocarbons. However, the metabolic capacity of microbiota treated with anti-microbial agents has not been assessed. Here, we exposed zebrafish with a...
Interactions of Cryptococcus with Dendritic Cells
Wozniak, Karen L.
2018-01-01
The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis. PMID:29543719
Interactions of Cryptococcus with Dendritic Cells.
Wozniak, Karen L
2018-03-15
The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis.
Host cell proteins in biotechnology-derived products: A risk assessment framework.
de Zafra, Christina L Zuch; Quarmby, Valerie; Francissen, Kathleen; Vanderlaan, Martin; Zhu-Shimoni, Judith
2015-11-01
To manufacture biotechnology products, mammalian or bacterial cells are engineered for the production of recombinant therapeutic human proteins including monoclonal antibodies. Host cells synthesize an entire repertoire of proteins which are essential for their own function and survival. Biotechnology manufacturing processes are designed to produce recombinant therapeutics with a very high degree of purity. While there is typically a low residual level of host cell protein in the final drug product, under some circumstances a host cell protein(s) may copurify with the therapeutic protein and, if it is not detected and removed, it may become an unintended component of the final product. The purpose of this article is to enumerate and discuss factors to be considered in an assessment of risk of residual host cell protein(s) detected and identified in the drug product. The consideration of these factors and their relative ranking will lead to an overall risk assessment that informs decision-making around how to control the levels of host cell proteins. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Mims, C. W.; Celio, Gail J.; Richardson, Elizabeth A.
2003-12-01
This article reports on the use of high pressure freezing followed by freeze substitution (HPF/FS) to study ultrastructural details of host pathogen interactions in fungal diseases of plants. The specific host pathogen systems discussed here include a powdery mildew infection of poinsettia and rust infections of daylily and Indian strawberry. The three pathogens considered here all attack the leaves of their hosts and produce specialized hyphal branches known as haustoria that invade individual host cells without killing them. We found that HPF/FS provided excellent preservation of both haustoria and host cells for all three host pathogen systems. Preservation of fungal and host cell membranes was particularly good and greatly facilitated the detailed study of host pathogen interfaces. In some instances, HPF/FS provided information that was not available in samples prepared for study using conventional chemical fixation. On the other hand, we did encounter various problems associated with the use of HPF/FS. Examples included freeze damage of samples, inconsistency of fixation in different samples, separation of plant cell cytoplasm from cell walls, breakage of cell walls and membranes, and splitting of thin sections. However, we believe that the outstanding preservation of ultrastructural details afforded by HPF/FS significantly outweighs these problems and we highly recommend the use of this fixation protocol for future studies of fungal host-plant interactions.
In vivo Host Environment Alters Pseudomonas aeruginosa Susceptibility to Aminoglycoside Antibiotics
Pan, Xiaolei; Dong, Yuanyuan; Fan, Zheng; Liu, Chang; Xia, Bin; Shi, Jing; Bai, Fang; Jin, Yongxin; Cheng, Zhihui; Jin, Shouguang; Wu, Weihui
2017-01-01
During host infection, Pseudomonas aeruginosa coordinately regulates the expression of numerous genes to adapt to the host environment while counteracting host clearance mechanisms. As infected patients take antibiotics, the invading bacteria encounter antibiotics in the host milieu. P. aeruginosa is highly resistant to antibiotics due to multiple chromosomally encoded resistant determinants. And numerous in vitro studies have demonstrated the regulatory mechanisms of antibiotic resistance related genes in response to antibiotics. However, it is not well-known how host environment affects bacterial response to antibiotics. In this study, we found that P. aeruginosa cells directly isolated from mice lungs displayed higher susceptibility to tobramycin than in vitro cultured bacteria. In vitro experiments demonstrated that incubation with A549 and differentiated HL60 (dHL60) cells sensitized P. aeruginosa to tobramycin. Further studies revealed that reactive oxygen species produced by the host cells contributed to the increased bacterial susceptibility. At the same concentration of tobramycin, presence of A549 and dHL60 cells resulted in higher expression of heat shock proteins, which are known inducible by tobramycin. Further analyses revealed decreased membrane potential upon incubation with the host cells and modification of lipopolysaccharide, which contributed to the increased susceptibility to tobramycin. Therefore, our results demonstrate that contact with host cells increased bacterial susceptibility to tobramycin. PMID:28352614
Wippler, Juliane; Kleiner, Manuel; Lott, Christian; ...
2016-11-21
The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. We generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, mostmore » likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm’s symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. In addition, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins.We also show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. These results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wippler, Juliane; Kleiner, Manuel; Lott, Christian
The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. We generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, mostmore » likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm’s symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. In addition, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins.We also show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. These results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations.« less
Wippler, Juliane; Kleiner, Manuel; Lott, Christian; Gruhl, Alexander; Abraham, Paul E; Giannone, Richard J; Young, Jacque C; Hettich, Robert L; Dubilier, Nicole
2016-11-21
The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. Here, we generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, most likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm's symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. Additionally, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins. We show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. Our results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations.
Kerr, Jennifer E; Abramian, Jared R; Dao, Doan-Hieu V; Rigney, Todd W; Fritz, Jamie; Pham, Tan; Gay, Isabel; Parthasarathy, Kavitha; Wang, Bing-yan; Zhang, Wenjian; Tribble, Gena D
2014-01-01
Porphyromonas gingivalis is a gram-negative anaerobic bacterium, a member of the human oral microbiome, and a proposed "keystone" pathogen in the development of chronic periodontitis, an inflammatory disease of the gingiva. P. gingivalis is a genetically diverse species, and is able to exchange chromosomal DNA between strains by natural competence and conjugation. In this study, we investigate the role of horizontal DNA transfer as an adaptive process to modify behavior, using the major fimbriae as our model system, due to their critical role in mediating interactions with the host environment. We show that P. gingivalis is able to exchange fimbrial allele types I and IV into four distinct strain backgrounds via natural competence. In all recombinants, we detected a complete exchange of the entire fimA allele, and the rate of exchange varies between the different strain backgrounds. In addition, gene exchange within other regions of the fimbrial genetic locus was identified. To measure the biological implications of these allele swaps we compared three genotypes of fimA in an isogenic background, strain ATCC 33277. We demonstrate that exchange of fimbrial allele type results in profound phenotypic changes, including the quantity of fimbriae elaborated, membrane blebbing, auto-aggregation and other virulence-associated phenotypes. Replacement of the type I allele with either the type III or IV allele resulted in increased invasion of gingival fibroblast cells relative to the isogenic parent strain. While genetic variability is known to impact host-microbiome interactions, this is the first study to quantitatively assess the adaptive effect of exchanging genes within the pan genome cloud. This is significant as it presents a potential mechanism by which opportunistic pathogens may acquire the traits necessary to modify host-microbial interactions.
Wunsch, Christopher M; Lewis, Janina P
2015-12-17
Anaerobic bacteria far outnumber aerobes in many human niches such as the gut, mouth, and vagina. Furthermore, anaerobic infections are common and frequently of indigenous origin. The ability of some anaerobic pathogens to invade human cells gives them adaptive measures to escape innate immunity as well as to modulate host cell behavior. However, ensuring that the anaerobic bacteria are live during experimental investigation of the events may pose challenges. Porphyromonas gingivalis, a Gram-negative anaerobe, is capable of invading a variety of eukaryotic non-phagocytic cells. This article outlines how to successfully culture and assess the ability of P. gingivalis to invade human umbilical vein endothelial cells (HUVECs). Two protocols were developed: one to measure bacteria that can successfully invade and survive within the host, and the other to visualize bacteria interacting with host cells. These techniques necessitate the use of an anaerobic chamber to supply P. gingivalis with an anaerobic environment for optimal growth. The first protocol is based on the antibiotic protection assay, which is largely used to study the invasion of host cells by bacteria. However, the antibiotic protection assay is limited; only intracellular bacteria that are culturable following antibiotic treatment and host cell lysis are measured. To assess all bacteria interacting with host cells, both live and dead, we developed a protocol that uses fluorescent microscopy to examine host-pathogen interaction. Bacteria are fluorescently labeled with 2',7'-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and used to infect eukaryotic cells under anaerobic conditions. Following fixing with paraformaldehyde and permeabilization with 0.2% Triton X-100, host cells are labeled with TRITC phalloidin and DAPI to label the cell cytoskeleton and nucleus, respectively. Multiple images taken at different focal points (Z-stack) are obtained for temporal-spatial visualization of bacteria. Methods used in this study can be applied to any cultivable anaerobe and any eukaryotic cell type.
Wunsch, Christopher M.; Lewis, Janina P.
2015-01-01
Anaerobic bacteria far outnumber aerobes in many human niches such as the gut, mouth, and vagina. Furthermore, anaerobic infections are common and frequently of indigenous origin. The ability of some anaerobic pathogens to invade human cells gives them adaptive measures to escape innate immunity as well as to modulate host cell behavior. However, ensuring that the anaerobic bacteria are live during experimental investigation of the events may pose challenges. Porphyromonas gingivalis, a Gram-negative anaerobe, is capable of invading a variety of eukaryotic non-phagocytic cells. This article outlines how to successfully culture and assess the ability of P. gingivalis to invade human umbilical vein endothelial cells (HUVECs). Two protocols were developed: one to measure bacteria that can successfully invade and survive within the host, and the other to visualize bacteria interacting with host cells. These techniques necessitate the use of an anaerobic chamber to supply P. gingivalis with an anaerobic environment for optimal growth. The first protocol is based on the antibiotic protection assay, which is largely used to study the invasion of host cells by bacteria. However, the antibiotic protection assay is limited; only intracellular bacteria that are culturable following antibiotic treatment and host cell lysis are measured. To assess all bacteria interacting with host cells, both live and dead, we developed a protocol that uses fluorescent microscopy to examine host-pathogen interaction. Bacteria are fluorescently labeled with 2',7'-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and used to infect eukaryotic cells under anaerobic conditions. Following fixing with paraformaldehyde and permeabilization with 0.2% Triton X-100, host cells are labeled with TRITC phalloidin and DAPI to label the cell cytoskeleton and nucleus, respectively. Multiple images taken at different focal points (Z-stack) are obtained for temporal-spatial visualization of bacteria. Methods used in this study can be applied to any cultivable anaerobe and any eukaryotic cell type. PMID:26709454
Prangishvili, David; Vestergaard, Gisle; Häring, Monika; Aramayo, Ricardo; Basta, Tamara; Rachel, Reinhard; Garrett, Roger A
2006-06-23
A novel virus, ATV, of the hyperthermophilic archaeal genus Acidianus has the unique property of undergoing a major morphological development outside of, and independently of, the host cell. Virions are extruded from host cells as lemon-shaped tail-less particles, after which they develop long tails at each pointed end, at temperatures close to that of the natural habitat, 85 degrees C. The extracellularly developed tails constitute tubes, which terminate in an anchor-like structure that is not observed in the tail-less particles. A thin filament is located within the tube, which exhibits a periodic structure. Tail development produces a one half reduction in the volume of the virion, concurrent with a slight expansion of the virion surface. The circular, double-stranded DNA genome contains 62,730 bp and is exceptional for a crenarchaeal virus in that it carries four putative transposable elements as well as genes, which previously have been associated only with archaeal self-transmissable plasmids. In total, it encodes 72 predicted proteins, including 11 structural proteins with molecular masses in the range of 12 to 90 kDa. Several of the larger proteins are rich in coiled coil and/or low complexity sequence domains, which are unusual for archaea. One protein, in particular P800, resembles an intermediate filament protein in its structural properties. It is modified in the two-tailed, but not in the tail-less, virion particles and it may contribute to viral tail development. Exceptionally for a crenarchaeal virus, infection with ATV results either in viral replication and subsequent cell lysis or in conversion of the infected cell to a lysogen. The lysogenic cycle involves integration of the viral genome into the host chromosome, probably facilitated by the virus-encoded integrase and this process can be interrupted by different stress factors.
Cellular Aspects of Shigella Pathogenesis: Focus on the Manipulation of Host Cell Processes
Killackey, Samuel A.; Sorbara, Matthew T.; Girardin, Stephen E.
2016-01-01
Shigella is a Gram-negative bacterium that is responsible for shigellosis. Over the years, the study of Shigella has provided a greater understanding of how the host responds to bacterial infection, and how bacteria have evolved to effectively counter the host defenses. In this review, we provide an update on some of the most recent advances in our understanding of pivotal processes associated with Shigella infection, including the invasion into host cells, the metabolic changes that occur within the bacterium and the infected cell, cell-to-cell spread mechanisms, autophagy and membrane trafficking, inflammatory signaling and cell death. This recent progress sheds a new light into the mechanisms underlying Shigella pathogenesis, and also more generally provides deeper understanding of the complex interplay between host cells and bacterial pathogens in general. PMID:27066460
Khan, Naeem; Bruton, Rachel; Taylor, Graham S.; Cobbold, Mark; Jones, Thomas R.; Rickinson, Alan B.; Moss, Paul A. H.
2005-01-01
Cytomegalovirus (CMV) elicits a potent T-cell response in humans that appears to protect the host from virus-associated disease. Despite facing strong host defense mechanisms, CMV remains as a lifelong infection that may reactivate and cause life-threatening disease in immunocompromised individuals. This persistence is probably assisted by expression of immune subversion proteins of the virus encoded by genes belonging to the US gene family. These proteins modulate major histocompatibility complex expression in infected cells and bias in vitro experiments toward the detection of only certain specificities. We have combined the use of recombinant CMV, lacking the US2 to US11 region genes, and cytoplasmic gamma interferon staining to define a more accurate assessment of CMV-specific responses in vivo. Recombinant CMV stimulation reveals a CD8 response much larger than that of parental virus in all donors tested. In some cases, this represented up to 10-fold increases in the number of cells detected. Responses were directed mainly against pp65, IE-1, and pp50 in the majority of donors. In addition, previously unreported IE-2-specific T-cell responses could be detected in a minority of cases. Furthermore, we observed a less marked increase in the response to mutant CMV by CD4 T cells in some donors. This suggests that a much broader T-cell response to CMV exists in vivo than is revealed by restimulation with wild-type virus and adds to the evidence that the efficacy of immune evasion strategies may not be as absolute as previously believed. PMID:15709006
Majlessi, Laleh; Brodin, Priscille; Brosch, Roland; Rojas, Marie-Jésus; Khun, Huot; Huerre, Michel; Cole, Stewart T; Leclerc, Claude
2005-03-15
The chromosomal locus encoding the early secreted antigenic target, 6 kDa (ESAT-6) secretion system 1 of Mycobacterium tuberculosis, also referred to as "region of difference 1 (RD1)," is absent from Mycobacterium bovis bacillus Calmette-Guerin (BCG). In this study, using low-dose aerosol infection in mice, we demonstrate that BCG complemented with RD1 (BCG::RD1) displays markedly increased virulence which albeit does not attain that of M. tuberculosis H37Rv. Nevertheless, phenotypic and functional analyses of immune cells at the site of infection show that the capacity of BCG::RD1 to initiate recruitment/activation of immune cells is comparable to that of fully virulent H37Rv. Indeed, in contrast to the parental BCG, BCG::RD1 mimics H37Rv and induces substantial influx of activated (CD44highCD45RB(-)CD62L(-)) or effector (CD45RB(-)CD27(-)) T cells and of activated CD11c(+)CD11bhigh cells to the lungs of aerosol-infected mice. For the first time, using in vivo analysis of transcriptome of inflammatory cytokines and chemokines of lung interstitial CD11c+ cells, we show that in a low-dose aerosol infection model, BCG::RD1 triggered an activation/inflammation program comparable to that induced by H37Rv while parental BCG, due to its overattenuation, did not initiate the activation program in lung interstitial CD11c+ cells. Thus, products encoded by the ESAT-6 secretion system 1 of M. tuberculosis profoundly modify the interaction between mycobacteria and the host innate and adaptive immune system. These modifications can explain the previously described improved protective capacity of BCG::RD1 vaccine candidate against M. tuberculosis challenge.
Apicomplexans pulling the strings: manipulation of the host cell cytoskeleton dynamics.
Cardoso, Rita; Soares, Helena; Hemphill, Andrew; Leitão, Alexandre
2016-07-01
Invasive stages of apicomplexan parasites require a host cell to survive, proliferate and advance to the next life cycle stage. Once invasion is achieved, apicomplexans interact closely with the host cell cytoskeleton, but in many cases the different species have evolved distinct mechanisms and pathways to modulate the structural organization of cytoskeletal filaments. The host cell cytoskeleton is a complex network, largely, but not exclusively, composed of microtubules, actin microfilaments and intermediate filaments, all of which are modulated by associated proteins, and it is involved in diverse functions including maintenance of cell morphology and mechanical support, migration, signal transduction, nutrient uptake, membrane and organelle trafficking and cell division. The ability of apicomplexans to modulate the cytoskeleton to their own advantage is clearly beneficial. We here review different aspects of the interactions of apicomplexans with the three main cytoskeletal filament types, provide information on the currently known parasite effector proteins and respective host cell targets involved, and how these interactions modulate the host cell physiology. Some of these findings could provide novel targets that could be exploited for the development of preventive and/or therapeutic strategies.
At the Frontier; RXLR Effectors Crossing the Phytophthora-Host Interface.
Bouwmeester, Klaas; Meijer, Harold J G; Govers, Francine
2011-01-01
Plants are constantly beset by pathogenic organisms. To successfully infect their hosts, plant pathogens secrete effector proteins, many of which are translocated to the inside of the host cell where they manipulate normal physiological processes and undermine host defense. The way by which effectors cross the frontier to reach the inside of the host cell varies among different classes of pathogens. For oomycete plant pathogens - like the potato late blight pathogen Phytophthora infestans - it has been shown that effector translocation to the host cell cytoplasm is dependent on conserved amino acid motifs that are present in the N-terminal part of effector proteins. One of these motifs, known as the RXLR motif, has a strong resemblance with a host translocation motif found in effectors secreted by Plasmodium species. These malaria parasites, that reside inside specialized vacuoles in red blood cells, make use of a specific protein translocation complex to export effectors from the vacuole into the red blood cell. Whether or not also oomycete RXLR effectors require a translocation complex to cross the frontier is still under investigation. For one P. infestans RXLR effector named IPI-O we have found a potential host target that could play a role in establishing the first contact between this effector and the host cell. This membrane spanning lectin receptor kinase, LecRK-I.9, interacts with IPI-O via the tripeptide RGD that overlaps with the RXLR motif. In animals, RGD is a well-known cell adhesion motif; it binds to integrins, which are membrane receptors that regulate many cellular processes and which can be hijacked by pathogens for either effector translocation or pathogen entry into host cells.
Khan, Mohd M; Ernst, Orna; Sun, Jing; Fraser, Iain D C; Ernst, Robert K; Goodlett, David R; Nita-Lazar, Aleksandra
2018-06-24
One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4 (TLR4)/myeloid differentiation factor-2 (MD2) complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress, and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry (MS)-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, MS-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications (PTMs). Copyright © 2018. Published by Elsevier Ltd.
O’Mary, Hannah L.; Aldayel, Abdulaziz M.; Valdes, Solange A.; Naguib, Youssef W.; Li, Xu; Salvady, Karun; Cui, Zhengrong
2017-01-01
Inflammation is implicated in a host of chronic illnesses. Within these inflamed tissues, the pH of the microenvironment is decreased and immune cells, particularly macrophages, infiltrate the area. Additionally, the vascular integrity of these sites is altered with increased fenestrations between endothelial cells. These distinctive properties may be exploited to enhance targeted delivery of anti-inflammatory therapies. Using a mouse model of chronic inflammation, we previously showed that acid-sensitive sheddable PEGylation increases the distribution and retention of nanoparticles in chronic inflammation sites. Here we demonstrated that surface modification of the acid-sensitive sheddable PEGylated nanoparticles with mannose, a ligand to mannose receptors present in chronic inflammation sites, significantly increases the targeted delivery of the nanoparticles to these areas. Furthermore, we showed that the acid-sensitive sheddable PEGylated, mannose-modified nanoparticles are able to significantly increase the delivery of betamethasone-21-acetate (BA), a model anti-inflammatory compound, to chronic inflammation sites as compared to free BA. These results highlight the ability to engineer formulations to target chronic inflammation sites by exploiting the microenvironment of these regions. PMID:28463518
Kim, JiHyun; Fukuto, Hana S; Brown, Deborah A; Bliska, James B; London, Erwin
2018-01-26
Yersinia pseudotuberculosis is a foodborne pathogenic bacterium that causes acute gastrointestinal illness, but its mechanisms of infection are incompletely described. We examined how host cell sterol composition affected Y. pseudotuberculosis uptake. To do this, we depleted or substituted cholesterol in human MDA-MB-231 epithelial cells with various alternative sterols. Decreasing host cell cholesterol significantly reduced pathogen internalization. When host cell cholesterol was substituted with various sterols, only desmosterol and 7-dehydrocholesterol supported internalization. This specificity was not due to sterol dependence of bacterial attachment to host cells, which was similar with all sterols studied. Because a key step in Y. pseudotuberculosis internalization is interaction of the bacterial adhesins invasin and YadA with host cell β1 integrin, we compared the sterol dependence of wildtype Y. pseudotuberculosis internalization with that of Δ inv , Δ yadA , and Δ inv Δ yadA mutant strains. YadA deletion decreased bacterial adherence to host cells, whereas invasin deletion had no effect. Nevertheless, host cell sterol substitution had a similar effect on internalization of these bacterial deletion strains as on the wildtype bacteria. The Δ inv Δ yadA double mutant adhered least to cells and so was not significantly internalized. The sterol structure dependence of Y. pseudotuberculosis internalization differed from that of endocytosis, as monitored using antibody-clustered β1 integrin and previous studies on other proteins, which had a more permissive sterol dependence. This study suggests that agents could be designed to interfere with internalization of Yersinia without disturbing endocytosis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Pearson, R. A.; Gonzalez-Cordero, A.; West, E. L.; Ribeiro, J. R.; Aghaizu, N.; Goh, D.; Sampson, R. D.; Georgiadis, A.; Waldron, P. V.; Duran, Y.; Naeem, A.; Kloc, M.; Cristante, E.; Kruczek, K.; Warre-Cornish, K.; Sowden, J. C.; Smith, A. J.; Ali, R. R.
2016-01-01
Photoreceptor replacement by transplantation is proposed as a treatment for blindness. Transplantation of healthy photoreceptor precursor cells into diseased murine eyes leads to the presence of functional photoreceptors within host retinae that express an array of donor-specific proteins. The resulting improvement in visual function was understood to be due to donor cells integrating within host retinae. Here, however, we show that while integration occurs the majority of donor-reporter-labelled cells in the host arises as a result of material transfer between donor and host photoreceptors. Material transfer does not involve permanent donor–host nuclear or cell–cell fusion, or the uptake of free protein or nucleic acid from the extracellular environment. Instead, RNA and/or protein are exchanged between donor and host cells in vivo. These data require a re-evaluation of the mechanisms underlying rescue by photoreceptor transplantation and raise the possibility of material transfer as a strategy for the treatment of retinal disorders. PMID:27701378
microRNA-Based Immunotherapy for Control of Early Stage Lung Cancer
2016-09-01
in NSG hosts via subcutaneously injection. A549-Luc developed tumors successfully in NSG hosts and mice bearing A549-Luc tumors were the subject...activation of NK cells from whole blood. Next we evaluated NK cells and host interaction by transferring NK cells into A549-tumor bearing NSG host via...that did not receive NK cells. 4 At day 28, we harvested tumors, blood and tissues from tumor- bearing mice to analyze for NK presence in the
Accommodation of powdery mildew fungi in intact plant cells.
Eichmann, Ruth; Hückelhoven, Ralph
2008-01-01
Parasitic powdery mildew fungi have to overcome basic resistance and manipulate host cells to establish a haustorium as a functional feeding organ in a host epidermal cell. Currently, it is of central interest how plant factors negatively regulate basal defense or whether they even support fungal development in compatible interactions. Additionally, creation of a metabolic sink in infected cells may involve host activity. Here, we review the current progress in understanding potential fungal targets for host reprogramming and nutrient acquisition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise
The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.
Li, Hua; Li, Fei; Zhang, Biaobiao; Zhou, Xu; Yu, Fengshou; Sun, Licheng
2015-04-08
A highly active supramolecular system for visible light-driven water oxidation was developed with cyclodextrin-modified ruthenium complex as the photosensitizer, phenyl-modified ruthenium complexes as the catalysts, and sodium persulfate as the sacrificial electron acceptor. The catalysts were found to form 1:1 host-guest adducts with the photosensitizer. Stopped-flow measurement revealed the host-guest interaction is essential to facilitate the electron transfer from catalyst to sensitizer. As a result, a remarkable quantum efficiency of 84% was determined under visible light irradiation in neutral aqueous phosphate buffer. This value is nearly 1 order of magnitude higher than that of noninteraction system, indicating that the noncovalent incorporation of sensitizer and catalyst is an appealing approach for efficient conversion of solar energy into fuels.
Li, Hui; Zhu, Qing-Feng; Peng, Xuan-Xian; Peng, Bo
2017-01-03
The occurrence of infectious diseases is related to heterogeneous protein interactions between a host and a microbe. Therefore, elucidating the host-pathogen interplay is essential. We previously revealed the protein interactome between Edwardsiella piscicida and fish gill cells, and the present study identified the protein interactome between E. piscicida and E. drummondhayi liver cells. E. drummondhayi liver cells and bacterial pull-down approaches were used to identify E. piscicida outer membrane proteins that bind to liver cells and fish liver cell proteins that interact with bacterial cells, respectively. Eight bacterial proteins and 11 fish proteins were characterized. Heterogeneous protein-protein interactions between these bacterial cells and fish liver cells were investigated through far-Western blotting and co-immunoprecipitation. A network was constructed based on 42 heterogeneous protein-protein interactions between seven bacterial proteins and 10 fish proteins. A comparison of the new interactome with the previously reported interactome showed that four bacterial proteins overlapped, whereas all of the identified fish proteins were new, suggesting a difference between bacterial tricks for evading host immunity and the host strategy for combating bacterial infection. Furthermore, these bacterial proteins were found to regulate the expression of host innate immune-related proteins. These findings indicate that the interactome contributes to bacterial infection and host immunity.
Bermudez, Adriana; Alba, Martha P.; Vanegas, Magnolia; Patarroyo, Manuel A.; Patarroyo, Manuel E.
2018-01-01
The 3D structural analysis of 62 peptides derived from highly pathogenic Plasmodium falciparum malaria parasite proteins involved in host cell invasion led to finding a striking association between particular β-turn types located in the N-terminal peripheral flanking residue region (preceding the polyproline II left-handed structures fitting into the HLA-DRβ* allele family) and modified immune protection-inducing protein structure induced long-lasting protective immunity. This is the first time association between two different secondary structures associated with a specific immunological function has been described: full, long-lasting protective immunity. PMID:29682500
Bermudez, Adriana; Alba, Martha P; Vanegas, Magnolia; Patarroyo, Manuel A; Patarroyo, Manuel E
2018-01-01
The 3D structural analysis of 62 peptides derived from highly pathogenic Plasmodium falciparum malaria parasite proteins involved in host cell invasion led to finding a striking association between particular β-turn types located in the N-terminal peripheral flanking residue region (preceding the polyproline II left-handed structures fitting into the HLA-DRβ * allele family) and modified i mmune protection-inducing protein structure induced long-lasting protective immunity. This is the first time association between two different secondary structures associated with a specific immunological function has been described: full, long-lasting protective immunity.
[Toll-like receptor in lung response to pathogens].
Rivas-Santiago, Bruno; Juárez, Esmeralda
2007-01-01
Innate immunity plays a central role in antimicrobial defense. Advances in the understanding of pathogen recognition systems of innate cells have yielded the identification of Toll like receptors (TLR) as key elements of the lung defense mechanisms which is heavily exposed to a variety of stimuli. TLR recognition of several microbial compounds induces proinflammatory cytokines production whose contribution to the host may be either protective or detrimental. Human immune response diversity may explain the differences observed between patients facing bacterial, viral and fungal lung infections. New strategies designs that modify innate immune response may be useful to limit detrimental consequences of inflammatory processes in the lung.
NASA Astrophysics Data System (ADS)
Bermudez, Adriana; Alba, Martha P.; Vanegas, Magnolia; Patarroyo, Manuel A.; Patarroyo, Manuel E.
2018-04-01
The 3D structural analysis of 62 peptides derived from highly pathogenic Plasmodium falciparum malaria parasite proteins involved in host cell invasion led to finding a striking association between particular β-turn types located in the N-terminal peripheral flanking residue region (preceding the polyproline II left-handed structures fitting into the HLA-DRβ* allele family) and modified immune protection-inducing protein structure induced long-lasting protective immunity. This is the first time association between two different secondary structures associated with a specific immunological function has been described: full, long-lasting protective immunity.
Patel, Jasmine D; Ebert, Michael; Stokes, Ken; Ward, Robert; Anderson, James M
2003-01-01
Biomaterial-centered infections, initiated by bacterial adhesion, persist due to a compromised host immune response. Altering implant materials with surface modifying endgroups (SMEs) may enhance their biocompatibility by reducing bacterial and inflammatory cell adhesion. A rotating disc model, which generates shear stress within physiological ranges, was used to characterize adhesion of leukocytes and Staphylococcus epidermidis on polycarbonate-urethanes and polyetherurethanes modified with SMEs (polyethylene oxide, fluorocarbon and dimethylsiloxane) under dynamic flow conditions. Bacterial adhesion in the absence of serum was found to be mediated by shear stress and surface chemistry, with reduced adhesion exhibited on materials modified with polydimethylsiloxane and polyethylene oxide SMEs. In contrast, bacterial adhesion was enhanced on materials modified with fluorocarbon SMEs. In the presence of serum, bacterial adhesion was primarily neither material nor shear dependent. However, bacterial adhesion in serum was significantly reduced to < or = 10% compared to adhesion in serum-free media. Leukocyte adhesion in serum exhibited a shear dependency with increased adhesion occurring in regions exposed to lower shear-stress levels of < or = 7 dyne/cm2. Additionally, polydimethylsiloxane and polyethylene oxide SMEs reduced leukocyte adhesion on polyether-urethanes. In conclusion, these results suggest that surface chemistry and shear stress can mediate bacterial and cellular adhesion. Furthermore, materials modified with polyethylene oxide SMEs are capable of inhibiting bacterial adhesion, consequently minimizing the probability of biomaterial-centered infections.
Catta-Preta, Carolina M. C.; Brum, Felipe L.; da Silva, Camila C.; Zuma, Aline A.; Elias, Maria C.; de Souza, Wanderley; Schenkman, Sergio; Motta, Maria Cristina M.
2015-01-01
Mutualism is defined as a beneficial relationship for the associated partners and usually assumes that the symbiont number is controlled. Some trypanosomatid protozoa co-evolve with a bacterial symbiont that divides in coordination with the host in a way that results in its equal distribution between daughter cells. The mechanism that controls this synchrony is largely unknown, and its comprehension might provide clues to understand how eukaryotic cells evolved when acquiring symbionts that later became organelles. Here, we approached this question by studying the effects of inhibitors that affect the host exclusively in two symbiont-bearing trypanosomatids, Strigomonas culicis and Angomonas deanei. We found that inhibiting host protein synthesis using cycloheximide or host DNA replication using aphidicolin did not affect the duplication of bacterial DNA. Although the bacteria had autonomy to duplicate their DNA when host protein synthesis was blocked by cycloheximide, they could not complete cytokinesis. Aphidicolin promoted the inhibition of the trypanosomatid cell cycle in the G1/S phase, leading to symbiont filamentation in S. culicis but not in A. deanei. Treatment with camptothecin blocked the host protozoa cell cycle in the G2 phase and induced the formation of filamentous symbionts in both species. Oryzalin, which affects host microtubule polymerization, blocked trypanosomatid mitosis and abrogated symbiont division. Our results indicate that host factors produced during the cell division cycle are essential for symbiont segregation and may control the bacterial cell number. PMID:26082757
Mertz, Stuart M.; Arntzen, Charles J.
1978-01-01
The transmembrane electrical potential of root cells of Zea mays L. cv. W64A in a modified 1× Higinbotham solution was partially depolarized by semipurified toxin obtained from Bipolaris (Helminthosporium) maydis race T. At a given toxin concentration depolarization of Texas cytoplasm cells was much greater than for normal cytoplasm cells. This observation correlated directly to the differential host susceptibility to the fungus. The time course and magnitude of depolarization were dependent on toxin concentration; at high concentration the electropotential difference change was rapid. Cortex cells depolarized more slowly than epidermal cells indicating that the toxin slowly permeated intercellular regions. Toxin concentrations which affected electropotential difference were of the same magnitude as those required to inhibit root growth, ion uptake, and mitochondrial processes. Azide, cyanide, and cold temperature (5 C) gave the same partial depolarization as did the toxin. Dodecyl succinic acid caused complete depolarization. These and other data indicate that one of the primary actions of the toxin is to inhibit electrogenic ion pumps in the plasmalemma. PMID:16660605
Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F.; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A.; Kaveri, Srini V.; Kwon-Chung, Kyung J.
2014-01-01
In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface. PMID:24818666
Beiting, Daniel P; Hidano, Shinya; Baggs, Julie E; Geskes, Jeanne M; Fang, Qun; Wherry, E John; Hunter, Christopher A; Roos, David S; Cherry, Sara
2015-07-01
The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ)-induced signal transducer and activator of transcription 1 (STAT1) activity. We exploited this well-defined host-pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such "modifiers."
Luo, Guo-Feng; Xu, Xiao-Ding; Zhang, Jing; Yang, Juan; Gong, Yu-Hui; Lei, Qi; Jia, Hui-Zhen; Li, Cao; Zhuo, Ren-Xi; Zhang, Xian-Zheng
2012-10-24
Supramolecular microcapsules (SMCs) with the drug-loaded wall layers for pH-controlled drug delivery were designed and prepared. By using layer-by-layer (LbL) technique, the SMCs were constructed based on the self-assembly between polyaldenhyde dextran-graft-adamantane (PAD-g-AD) and carboxymethyl dextran-graft-β-CD (CMD-g-β-CD) on CaCO(3) particles via host-guest interaction. Simultaneously, adamantine-modified doxorubicin (AD-Dox) was also loaded on the LbL wall via host-guest interaction. The in vitro drug release study was carried out at different pHs. Because the AD groups were linked with PAD (PAD-g-AD) or Dox (AD-Dox) by pH-cleavable hydrazone bonds, AD moieties can be removed under the weak acidic condition, leading to destruction of SMCs and release of Dox. The pH-controlled drug release can enhance the uptake by tumor cells and thus achieve improved cancer therapy efficiency.
Quentin, Michaëel; Abad, Pierre; Favery, Bruno
2013-01-01
Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells (FCs). Effectors synthesized in the esophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized FCs requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defense responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalized within FC nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesized roles in the unique feeding behavior of these pests.
Zlotkin-Rivkin, Efrat; Rund, David; Melamed-Book, Naomi; Zahavi, Eitan Erez; Perlson, Eran; Mercone, Silvana; Golosovsky, Michael; Davidov, Dan; Aroeti, Benjamin
2013-01-01
Enteropathogenic Escherichia coli (EPEC) is an important, generally non-invasive, bacterial pathogen that causes diarrhea in humans. The microbe infects mainly the enterocytes of the small intestine. Here we have applied our newly developed infrared surface plasmon resonance (IR-SPR) spectroscopy approach to study how EPEC infection affects epithelial host cells. The IR-SPR experiments showed that EPEC infection results in a robust reduction in the refractive index of the infected cells. Assisted by confocal and total internal reflection microscopy, we discovered that the microbe dilates the intercellular gaps and induces the appearance of fluid-phase-filled pinocytic vesicles in the lower basolateral regions of the host epithelial cells. Partial cell detachment from the underlying substratum was also observed. Finally, the waveguide mode observed by our IR-SPR analyses showed that EPEC infection decreases the host cell's height to some extent. Together, these observations reveal novel impacts of the pathogen on the host cell architecture and endocytic functions. We suggest that these changes may induce the infiltration of a watery environment into the host cell, and potentially lead to failure of the epithelium barrier functions. Our findings also indicate the great potential of the label-free IR-SPR approach to study the dynamics of host-pathogen interactions with high spatiotemporal sensitivity. PMID:24194932
Asrat, Seblewongel; Dugan, Aisling S.; Isberg, Ralph R.
2014-01-01
Many pathogens, particularly those that require their host for survival, have devised mechanisms to subvert the host immune response in order to survive and replicate intracellularly. Legionella pneumophila, the causative agent of Legionnaires' disease, promotes intracellular growth by translocating proteins into its host cytosol through its type IV protein secretion machinery. At least 5 of the bacterial translocated effectors interfere with the function of host cell elongation factors, blocking translation and causing the induction of a unique host cell transcriptional profile. In addition, L. pneumophila also interferes with translation initiation, by preventing cap-dependent translation in host cells. We demonstrate here that protein translation inhibition by L. pneumophila leads to a frustrated host MAP kinase response, where genes involved in the pathway are transcribed but fail to be translated due to the bacterium-induced protein synthesis inhibition. Surprisingly, few pro-inflammatory cytokines, such as IL-1α and IL-1β, bypass this inhibition and get synthesized in the presence of Legionella effectors. We show that the selective synthesis of these genes requires MyD88 signaling and takes place in both infected cells that harbor bacteria and neighboring bystander cells. Our findings offer a perspective of how host cells are able to cope with pathogen-encoded activities that disrupt normal cellular process and initiate a successful inflammatory response. PMID:25058342
Bacterial Serine/Threonine Protein Kinases in Host-Pathogen Interactions*
Canova, Marc J.; Molle, Virginie
2014-01-01
In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection. PMID:24554701
Bacterial serine/threonine protein kinases in host-pathogen interactions.
Canova, Marc J; Molle, Virginie
2014-04-04
In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.
Leishmania Hijacks Myeloid Cells for Immune Escape
Martínez-López, María; Soto, Manuel; Iborra, Salvador; Sancho, David
2018-01-01
Protozoan parasites of the Leishmania genus are the causative agents of leishmaniasis, a group of neglected tropical diseases whose clinical manifestations vary depending on the infectious Leishmania species but also on host factors. Recognition of the parasite by host myeloid immune cells is a key to trigger an effective Leishmania-specific immunity. However, the parasite is able to persist in host myeloid cells by evading, delaying and manipulating host immunity in order to escape host resistance and ensure its transmission. Neutrophils are first in infiltrating infection sites and could act either favoring or protecting against infection, depending on factors such as the genetic background of the host or the parasite species. Macrophages are the main host cells where the parasites grow and divide. However, macrophages are also the main effector population involved in parasite clearance. Parasite elimination by macrophages requires the priming and development of an effector Th1 adaptive immunity driven by specific subtypes of dendritic cells. Herein, we will provide a comprehensive outline of how myeloid cells regulate innate and adaptive immunity against Leishmania, and the mechanisms used by the parasites to promote their evasion and sabotage. Understanding the interactions between Leishmania and the host myeloid cells may lead to the development of new therapeutic approaches and improved vaccination to leishmaniases, an important worldwide health problem in which current therapeutic or preventive approaches are limited. PMID:29867798
Munson-McGee, Jacob H; Peng, Shengyun; Dewerff, Samantha; Stepanauskas, Ramunas; Whitaker, Rachel J; Weitz, Joshua S; Young, Mark J
2018-06-01
The application of viral and cellular metagenomics to natural environments has expanded our understanding of the structure, functioning, and diversity of microbial and viral communities. The high diversity of many communities, e.g., soils, surface ocean waters, and animal-associated microbiomes, make it difficult to establish virus-host associations at the single cell (rather than population) level, assign cellular hosts, or determine the extent of viral host range from metagenomics studies alone. Here, we combine single-cell sequencing with environmental metagenomics to characterize the structure of virus-host associations in a Yellowstone National Park (YNP) hot spring microbial community. Leveraging the relatively low diversity of the YNP environment, we are able to overlay evidence at the single-cell level with contextualized viral and cellular community structure. Combining evidence from hexanucelotide analysis, single cell read mapping, network-based analytics, and CRISPR-based inference, we conservatively estimate that >60% of cells contain at least one virus type and a majority of these cells contain two or more virus types. Of the detected virus types, nearly 50% were found in more than 2 cellular clades, indicative of a broad host range. The new lens provided by the combination of metaviromics and single-cell genomics reveals a network of virus-host interactions in extreme environments, provides evidence that extensive virus-host associations are common, and further expands the unseen impact of viruses on cellular life.
NASA Astrophysics Data System (ADS)
Liew, Oi Wah; Asundi, Anand K.; Chen, Jun-Wei; Chew, Yiwen; Yu, Shangjuan; Yeo, Gare H.
2001-05-01
In this paper, fiber optic spectroscopy is developed to detect and quantify recombinant green (EGFP) and red (DsRED) fluorescent proteins in vitro and in vivo. The bacterial expression vectors carrying the coding regions of EGFP and DsRED were introduced into Escherichia coli host cells and fluorescent proteins were produced following induction with IPTG. Soluble EGFP and DsRED proteins were isolated from lysed bacterial cells and serially diluted for quantitative analysis by fiber optic spectroscopy. Fluorescence at the appropriate emission wavelengths could be detected up to 64X dilution for EGFP and 40X dilution for DsRED. To determine the capability of spectroscopy detection in vivo, transgenic potato hairy roots expressing EGFP and DsRED were regenerated. This was achieved by cloning the EGFP and DsRED genes into the plant binary vector, pTMV35S, to create the recombinant vectors pGLOWGreen and pGLOWRed. These latter binary vectors were introduced into Agrobacterium rhizogenes strain A4T. Infection of potato cells with transformed agrobacteria was used to insert the fluorescent protein genes into the potato genome. Genetically modified potato cells were then regenerated into hairy roots. A panel of transformed hairy roots expressing varying levels of fluorescent proteins was selected by fluorescence microscopy. We are now assessing the capability of spectroscopic detection system for in vivo quantification of green and red fluorescence levels in transformed roots.
Scislowska-Czarnecka, Anna; Szmigiel, Dariusz; Genet, Michel; Dupont-Gillain, Christine; Pamula, Elzbieta; Kolaczkowska, Elzbieta
2015-12-01
Here, we report on modification of one of the model biomedical polymers, poly L-lactide-co-glycolide (PLGA; 85:15), by reactive ion etching (RIE) oxygen plasma treatment. PLGA's major disadvantage is high hydrophobicity which restrains binding of cell-adhesive proteins and host cells. In the current approach, we aimed to answer two questions: (1) will only short (10 s) and moderate (20-200 mTorr, 45-90 W) RIE oxygen plasma treatment, leading to decrease of water contact angle by only up to 10°, sufficiently improve PLGA adherence to cells, and (2) how will this affect osteoblasts and activation of the immune system? All obtained modified PLGAs had improved hydrophilicity but unaltered roughness (as revealed by water contact angle measurements, X-ray photoelectron spectroscopy, and atomic force microscopy) resulting in significantly improved adhesion of osteoblasts (MG-63) and their low activation. Importantly, macrophages (RAW 264.7), one of the key cells initiating inflammation and bone resorption, responded significantly less vigorously to the modified polymers, expressing/releasing lower amounts of nitric oxide, matrix metalloproteinases (MMP-9), and pro-inflammatory cytokines (TNF-α, IL-6, IL-12p70, IFN-γ, IL-10). We conclude that already slight RIE oxygen plasma modification of PLGA is sufficient to improve its surface properties, and enhance cytocompatibility. Most importantly, this type of modification prevents excessive immune response. © 2015 Wiley Periodicals, Inc.
Woods, Kerry L.; Theiler, Romina; Mühlemann, Marcus; Segiser, Adrian; Huber, Sandra; Ansari, Hifzur R.; Pain, Arnab; Dobbelaere, Dirk A. E.
2013-01-01
The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton. PMID:23675298
HLA Class I Depleted hESC as a Source of Hypoimmunogenic Cells for Tissue Engineering Applications.
Karabekian, Zaruhi; Ding, Hao; Stybayeva, Gulnaz; Ivanova, Irina; Muselimyan, Narine; Haque, Amranul; Toma, Ian; Posnack, Nikki G; Revzin, Alexander; Leitenberg, David; Laflamme, Michael A; Sarvazyan, Narine
2015-10-01
Rapidly improving protocols for the derivation of autologous cells from stem cell sources is a welcome development. However, there are many circumstances when off-the-shelf universally immunocompatible cells may be needed. Embryonic stem cells (ESCs) provide a unique opportunity to modify the original source of differentiated cells to minimize their rejection by nonautologous hosts. Immune rejection of nonautologous human embryonic stem cell (hESC) derivatives can be reduced by downregulating human leukocyte antigen (HLA) class I molecules, without affecting the ability of these cells to differentiate into specific lineages. Beta-2-microglobulin (B2M) expression was decreased by lentiviral transduction using human anti-HLA class I light-chain B2M short hairpin RNA. mRNA levels of B2M were decreased by 90% in a RUES2-modified hESC line, as determined by quantitative real time-polymerase chain reaction analysis. The transduced cells were selected under puromycin pressure and maintained in an undifferentiated state. The latter was confirmed by Oct4 and Nanog expression, and by the formation of characteristic round-shaped colonies. B2M downregulation led to diminished HLA-I expression on the cell surface, as determined by flow cytometry. When used as target cells in a mixed lymphocyte reaction assay, transduced hESCs and their differentiated derivatives did not stimulate allogeneic T-cell proliferation. Using a cardiac differentiation protocol, transduced hESCs formed a confluent layer of cardiac myocytes and maintained a low level of B2M expression. Transduced hESCs were also successfully differentiated into a hepatic lineage, validating their capacity to differentiate into multiple lineages. HLA-I depletion does not preclude hESC differentiation into cardiac or hepatic lineages. This methodology can be used to engineer tissue from nonautologous hESC sources with improved immunocompatibility.
HLA Class I Depleted hESC as a Source of Hypoimmunogenic Cells for Tissue Engineering Applications
Karabekian, Zaruhi; Ding, Hao; Stybayeva, Gulnaz; Ivanova, Irina; Muselimyan, Narine; Haque, Amranul; Toma, Ian; Posnack, Nikki G.; Revzin, Alexander; Leitenberg, David; Laflamme, Michael A.
2015-01-01
Background: Rapidly improving protocols for the derivation of autologous cells from stem cell sources is a welcome development. However, there are many circumstances when off-the-shelf universally immunocompatible cells may be needed. Embryonic stem cells (ESCs) provide a unique opportunity to modify the original source of differentiated cells to minimize their rejection by nonautologous hosts. Hypothesis: Immune rejection of nonautologous human embryonic stem cell (hESC) derivatives can be reduced by downregulating human leukocyte antigen (HLA) class I molecules, without affecting the ability of these cells to differentiate into specific lineages. Methods and Results: Beta-2-microglobulin (B2M) expression was decreased by lentiviral transduction using human anti-HLA class I light-chain B2M short hairpin RNA. mRNA levels of B2M were decreased by 90% in a RUES2-modified hESC line, as determined by quantitative real time-polymerase chain reaction analysis. The transduced cells were selected under puromycin pressure and maintained in an undifferentiated state. The latter was confirmed by Oct4 and Nanog expression, and by the formation of characteristic round-shaped colonies. B2M downregulation led to diminished HLA-I expression on the cell surface, as determined by flow cytometry. When used as target cells in a mixed lymphocyte reaction assay, transduced hESCs and their differentiated derivatives did not stimulate allogeneic T-cell proliferation. Using a cardiac differentiation protocol, transduced hESCs formed a confluent layer of cardiac myocytes and maintained a low level of B2M expression. Transduced hESCs were also successfully differentiated into a hepatic lineage, validating their capacity to differentiate into multiple lineages. Conclusions: HLA-I depletion does not preclude hESC differentiation into cardiac or hepatic lineages. This methodology can be used to engineer tissue from nonautologous hESC sources with improved immunocompatibility. PMID:26218149
Duperthuy, Marylise; Schmitt, Paulina; Garzón, Edwin; Caro, Audrey; Rosa, Rafael D.; Le Roux, Frédérique; Lautrédou-Audouy, Nicole; Got, Patrice; Romestand, Bernard; de Lorgeril, Julien; Kieffer-Jaquinod, Sylvie; Bachère, Evelyne; Destoumieux-Garzón, Delphine
2011-01-01
OmpU porins are increasingly recognized as key determinants of pathogenic host Vibrio interactions. Although mechanisms remain incompletely understood, various species, including the human pathogen Vibrio cholera, require OmpU for host colonization and virulence. We have shown previously that OmpU is essential for virulence in the oyster pathogen Vibrio splendidus LGP32. Here, we showed that V. splendidus LGP32 invades the oyster immune cells, the hemocytes, through subversion of host-cell actin cytoskeleton. In this process, OmpU serves as an adhesin/invasin required for β-integrin recognition and host cell invasion. Furthermore, the major protein of oyster plasma, the extracellular superoxide dismutase Cg-EcSOD, is used as an opsonin mediating the OmpU-promoted phagocytosis through its RGD sequence. Finally, the endocytosed bacteria were found to survive intracellularly, evading the host defense by preventing acidic vacuole formation and limiting reactive oxygen species production. We conclude that (i) V. splendidus is a facultative intracellular pathogen that manipulates host defense mechanisms to enter and survive in host immune cells, and (ii) that OmpU is a major determinant of host cell invasion in Vibrio species, used by V. splendidus LGP32 to attach and invade oyster hemocytes through opsonisation by the oyster plasma Cg-EcSOD. PMID:21282662
Fernandes, Maria Cecilia; Cortez, Mauro; Flannery, Andrew R.; Tam, Christina; Mortara, Renato A.
2011-01-01
Upon host cell contact, the protozoan parasite Trypanosoma cruzi triggers cytosolic Ca2+ transients that induce exocytosis of lysosomes, a process required for cell invasion. However, the exact mechanism by which lysosomal exocytosis mediates T. cruzi internalization remains unclear. We show that host cell entry by T. cruzi mimics a process of plasma membrane injury and repair that involves Ca2+-dependent exocytosis of lysosomes, delivery of acid sphingomyelinase (ASM) to the outer leaflet of the plasma membrane, and a rapid form of endocytosis that internalizes membrane lesions. Host cells incubated with T. cruzi trypomastigotes are transiently wounded, show increased levels of endocytosis, and become more susceptible to infection when injured with pore-forming toxins. Inhibition or depletion of lysosomal ASM, which blocks plasma membrane repair, markedly reduces the susceptibility of host cells to T. cruzi invasion. Notably, extracellular addition of sphingomyelinase stimulates host cell endocytosis, enhances T. cruzi invasion, and restores normal invasion levels in ASM-depleted cells. Ceramide, the product of sphingomyelin hydrolysis, is detected in newly formed parasitophorous vacuoles containing trypomastigotes but not in the few parasite-containing vacuoles formed in ASM-depleted cells. Thus, T. cruzi subverts the ASM-dependent ceramide-enriched endosomes that function in plasma membrane repair to infect host cells. PMID:21536739
Mind Control: How Parasites Manipulate Cognitive Functions in Their Insect Hosts
Libersat, Frederic; Kaiser, Maayan; Emanuel, Stav
2018-01-01
Neuro-parasitology is an emerging branch of science that deals with parasites that can control the nervous system of the host. It offers the possibility of discovering how one species (the parasite) modifies a particular neural network, and thus particular behaviors, of another species (the host). Such parasite–host interactions, developed over millions of years of evolution, provide unique tools by which one can determine how neuromodulation up-or-down regulates specific behaviors. In some of the most fascinating manipulations, the parasite taps into the host brain neuronal circuities to manipulate hosts cognitive functions. To name just a few examples, some worms induce crickets and other terrestrial insects to commit suicide in water, enabling the exit of the parasite into an aquatic environment favorable to its reproduction. In another example of behavioral manipulation, ants that consumed the secretions of a caterpillar containing dopamine are less likely to move away from the caterpillar and more likely to be aggressive. This benefits the caterpillar for without its ant bodyguards, it is more likely to be predated upon or attacked by parasitic insects that would lay eggs inside its body. Another example is the parasitic wasp, which induces a guarding behavior in its ladybug host in collaboration with a viral mutualist. To exert long-term behavioral manipulation of the host, parasite must secrete compounds that act through secondary messengers and/or directly on genes often modifying gene expression to produce long-lasting effects. PMID:29765342
Mind Control: How Parasites Manipulate Cognitive Functions in Their Insect Hosts.
Libersat, Frederic; Kaiser, Maayan; Emanuel, Stav
2018-01-01
Neuro-parasitology is an emerging branch of science that deals with parasites that can control the nervous system of the host. It offers the possibility of discovering how one species (the parasite) modifies a particular neural network, and thus particular behaviors, of another species (the host). Such parasite-host interactions, developed over millions of years of evolution, provide unique tools by which one can determine how neuromodulation up-or-down regulates specific behaviors. In some of the most fascinating manipulations, the parasite taps into the host brain neuronal circuities to manipulate hosts cognitive functions. To name just a few examples, some worms induce crickets and other terrestrial insects to commit suicide in water, enabling the exit of the parasite into an aquatic environment favorable to its reproduction. In another example of behavioral manipulation, ants that consumed the secretions of a caterpillar containing dopamine are less likely to move away from the caterpillar and more likely to be aggressive. This benefits the caterpillar for without its ant bodyguards, it is more likely to be predated upon or attacked by parasitic insects that would lay eggs inside its body. Another example is the parasitic wasp, which induces a guarding behavior in its ladybug host in collaboration with a viral mutualist. To exert long-term behavioral manipulation of the host, parasite must secrete compounds that act through secondary messengers and/or directly on genes often modifying gene expression to produce long-lasting effects.
Yu, Qian; Xiong, Youhua; Gao, Hang; Liu, Jianliang; Chen, Zhiqiang; Wang, Qin; Wen, Dongling
2015-08-04
Increasing evidence sugggest that in addition of balculovirus controling insect host, host cells also responds to balculovirus infection. However, compared to existing knowledge on virus gene, host cell responses are relatively poorly understood. In this study, Spodoptera frugiperda (Sf9) cells were infected with Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The protein composition and protein changes of Spodoptera frugiperda (Sf9) cells of different infection stages were analysed by isobaric tag for relative and absolute quantification (iTRAQ) techniques. A total of 4004 Sf9 proteins were identified by iTRAQ and 413 proteins were found as more than 1.5-fold changes in abundance. The 413 proteins were categorised according to GO classification for insects and were categorised into: biological process, molecular function and cellular component. The determination of the protein changes in infected Sf9 cells would help to better understanding of host cell responses and facilitate better design of this virus-host cell interaction in pest insect control and other related fields.
Martins, Flaviano S.; Dalmasso, Guillaume; Arantes, Rosa M. E.; Doye, Anne; Lemichez, Emmanuel; Lagadec, Patricia; Imbert, Veronique; Peyron, Jean-François; Rampal, Patrick; Nicoli, Jacques R.; Czerucka, Dorota
2010-01-01
Background Salmonella pathogenesis engages host cells in two-way biochemical interactions: phagocytosis of bacteria by recruitment of cellular small GTP-binding proteins induced by the bacteria, and by triggering a pro-inflammatory response through activation of MAPKs and nuclear translocation of NF-κB. Worldwide interest in the use of functional foods containing probiotic bacteria for health promotion and disease prevention has increased significantly. Saccharomyces boulardii is a non-pathogenic yeast used as a probiotic in infectious diarrhea. Methodology/Principal Findings In this study, we reported that S. boulardii (Sb) protected mice from Salmonella enterica serovar Typhimurium (ST)-induced death and prevented bacterial translocation to the liver. At a molecular level, using T84 human colorectal cancer cells, we demonstrate that incubation with Sb before infection totally abolished Salmonella invasion. This correlates with a decrease of activation of Rac1. Sb preserved T84 barrier function and decreased ST-induced IL-8 synthesis. This anti-inflammatory effect was correlated with an inhibitory effect of Sb on ST-induced activation of the MAPKs ERK1/2, p38 and JNK as well as on activation of NF-κB. Electron and confocal microscopy experiments showed an adhesion of bacteria to yeast cells, which could represent one of the mechanisms by which Sb exerts its protective effects. Conclusions Sb shows modulating effects on permeability, inflammation, and signal transduction pathway in T84 cells infected by ST and an in vivo protective effect against ST infection. The present results also demonstrate that Sb modifies invasive properties of Salmonella. PMID:20111723
LAMP-2 absence interferes with plasma membrane repair and decreases T. cruzi host cell invasion.
Couto, Natália Fernanda; Pedersane, Dina; Rezende, Luisa; Dias, Patrícia P; Corbani, Tayanne L; Bentini, Lívia C; Oliveira, Anny C S; Kelles, Ludmila F; Castro-Gomes, Thiago; Andrade, Luciana O
2017-06-01
Trypanosoma cruzi enters host cells by subverting the mechanism of cell membrane repair. In this process, the parasite induces small injuries in the host cell membrane leading to calcium entry and lysosomal exocytosis, which are followed by compensatory endocytosis events that drive parasites into host cells. We have previously shown that absence of both LAMP-1 and 2, major components of lysosomal membranes, decreases invasion of T. cruzi into host cells, but the mechanism by which they interfere with parasite invasion has not been described. Here we investigated the role of these proteins in parasitophorous vacuole morphology, host cell lysosomal exocytosis, and membrane repair ability. First, we showed that cells lacking only LAMP-2 present the same invasion phenotype as LAMP1/2-/- cells, indicating that LAMP-2 is an important player during T. cruzi invasion process. Second, neither vacuole morphology nor lysosomal exocytosis was altered in LAMP-2 lacking cells (LAMP2-/- and LAMP1/2-/- cells). We then investigated the ability of LAMP-2 deficient cells to perform compensatory endocytosis upon lysosomal secretion, the mechanism by which cells repair their membrane and T. cruzi ultimately enters cells. We observed that these cells perform less endocytosis upon injury when compared to WT cells. This was a consequence of impaired cholesterol traffic in cells lacking LAMP-2 and its influence in the distribution of caveolin-1 at the cell plasma membrane, which is crucial for plasma membrane repair. The results presented here show the major role of LAMP-2 in caveolin traffic and membrane repair and consequently in T. cruzi invasion.
LAMP-2 absence interferes with plasma membrane repair and decreases T. cruzi host cell invasion
Rezende, Luisa; Bentini, Lívia C.; Oliveira, Anny C. S.
2017-01-01
Trypanosoma cruzi enters host cells by subverting the mechanism of cell membrane repair. In this process, the parasite induces small injuries in the host cell membrane leading to calcium entry and lysosomal exocytosis, which are followed by compensatory endocytosis events that drive parasites into host cells. We have previously shown that absence of both LAMP-1 and 2, major components of lysosomal membranes, decreases invasion of T. cruzi into host cells, but the mechanism by which they interfere with parasite invasion has not been described. Here we investigated the role of these proteins in parasitophorous vacuole morphology, host cell lysosomal exocytosis, and membrane repair ability. First, we showed that cells lacking only LAMP-2 present the same invasion phenotype as LAMP1/2-/- cells, indicating that LAMP-2 is an important player during T. cruzi invasion process. Second, neither vacuole morphology nor lysosomal exocytosis was altered in LAMP-2 lacking cells (LAMP2-/- and LAMP1/2-/- cells). We then investigated the ability of LAMP-2 deficient cells to perform compensatory endocytosis upon lysosomal secretion, the mechanism by which cells repair their membrane and T. cruzi ultimately enters cells. We observed that these cells perform less endocytosis upon injury when compared to WT cells. This was a consequence of impaired cholesterol traffic in cells lacking LAMP-2 and its influence in the distribution of caveolin-1 at the cell plasma membrane, which is crucial for plasma membrane repair. The results presented here show the major role of LAMP-2 in caveolin traffic and membrane repair and consequently in T. cruzi invasion. PMID:28586379
Treecode with a Special-Purpose Processor
NASA Astrophysics Data System (ADS)
Makino, Junichiro
1991-08-01
We describe an implementation of the modified Barnes-Hut tree algorithm for a gravitational N-body calculation on a GRAPE (GRAvity PipE) backend processor. GRAPE is a special-purpose computer for N-body calculations. It receives the positions and masses of particles from a host computer and then calculates the gravitational force at each coordinate specified by the host. To use this GRAPE processor with the hierarchical tree algorithm, the host computer must maintain a list of all nodes that exert force on a particle. If we create this list for each particle of the system at each timestep, the number of floating-point operations on the host and that on GRAPE would become comparable, and the increased speed obtained by using GRAPE would be small. In our modified algorithm, we create a list of nodes for many particles. Thus, the amount of the work required of the host is significantly reduced. This algorithm was originally developed by Barnes in order to vectorize the force calculation on a Cyber 205. With this algorithm, the computing time of the force calculation becomes comparable to that of the tree construction, if the GRAPE backend processor is sufficiently fast. The obtained speed-up factor is 30 to 50 for a RISC-based host computer and GRAPE-1A with a peak speed of 240 Mflops.
Takahashi, Toshiyuki
2016-08-17
Endosymbioses are driving forces underlying cell evolution. The endosymbiosis exhibited by Paramecium bursaria is an excellent model with which to study symbiosis. A single-cell microscopic analysis of P. bursaria reveals that endosymbiont numbers double when the host is in the division phase. Consequently, endosymbionts must arrange their cell cycle schedule if the culture-condition-dependent change delays the generation time of P. bursaria. However, it remains poorly understood whether endosymbionts keep pace with the culture-condition-dependent behaviors of P. bursaria, or not. Using microscopy and flow cytometry, this study investigated the life cycle behaviors occurring between endosymbionts and the host. To establish a connection between the host cell cycle and endosymbionts comprehensively, multivariate analysis was applied. The multivariate analysis revealed important information related to regulation between the host and endosymbionts. Results show that dividing endosymbionts underwent transition smoothly from the division phase to interphase, when the host was in the logarithmic phase. In contrast, endosymbiont division stagnated when the host was in the stationary phase. This paper explains that endosymbionts fine-tune their cell cycle pace with their host and that a synchronous life cycle between the endosymbionts and the host is guaranteed in the symbiosis of P. bursaria.
Takahashi, Toshiyuki
2016-01-01
Endosymbioses are driving forces underlying cell evolution. The endosymbiosis exhibited by Paramecium bursaria is an excellent model with which to study symbiosis. A single-cell microscopic analysis of P. bursaria reveals that endosymbiont numbers double when the host is in the division phase. Consequently, endosymbionts must arrange their cell cycle schedule if the culture-condition-dependent change delays the generation time of P. bursaria. However, it remains poorly understood whether endosymbionts keep pace with the culture-condition-dependent behaviors of P. bursaria, or not. Using microscopy and flow cytometry, this study investigated the life cycle behaviors occurring between endosymbionts and the host. To establish a connection between the host cell cycle and endosymbionts comprehensively, multivariate analysis was applied. The multivariate analysis revealed important information related to regulation between the host and endosymbionts. Results show that dividing endosymbionts underwent transition smoothly from the division phase to interphase, when the host was in the logarithmic phase. In contrast, endosymbiont division stagnated when the host was in the stationary phase. This paper explains that endosymbionts fine-tune their cell cycle pace with their host and that a synchronous life cycle between the endosymbionts and the host is guaranteed in the symbiosis of P. bursaria. PMID:27531180
Methods for production of proteins in host cells
Donnelly, Mark; Joachimiak, Andrzej
2004-01-13
The present invention provides methods for the production of proteins, particularly toxic proteins, in host cells. The invention provides methods which use a fusion protein comprising a chaperonin binding domain in host cells induced or regulated to have increased levels of chaperonin which binds the chaperonin binding domain.
Cloning and sequencing of pyruvate decarboxylase (PDC) genes from bacteria and uses therefor
Maupin-Furlow, Julie A [Gainesville, FL; Talarico, Lee Ann [Gainesville, FL; Raj, Krishnan Chandra [Tamil Nadu, IN; Ingram, Lonnie O [Gainesville, FL
2008-02-05
The invention provides isolated nucleic acids molecules which encode pyruvate decarboxylase enzymes having improved decarboxylase activity, substrate affinity, thermostability, and activity at different pH. The nucleic acids of the invention also have a codon usage which allows for high expression in a variety of host cells. Accordingly, the invention provides recombinant expression vectors containing such nucleic acid molecules, recombinant host cells comprising the expression vectors, host cells further comprising other ethanologenic enzymes, and methods for producing useful substances, e.g., acetaldehyde and ethanol, using such host cells.
Potential Sabotage of Host Cell Physiology by Apicomplexan Parasites for Their Survival Benefits
Chakraborty, Shalini; Roy, Sonti; Mistry, Hiral Uday; Murthy, Shweta; George, Neena; Bhandari, Vasundhra; Sharma, Paresh
2017-01-01
Plasmodium, Toxoplasma, Cryptosporidium, Babesia, and Theileria are the major apicomplexan parasites affecting humans or animals worldwide. These pathogens represent an excellent example of host manipulators who can overturn host signaling pathways for their survival. They infect different types of host cells and take charge of the host machinery to gain nutrients and prevent itself from host attack. The mechanisms by which these pathogens modulate the host signaling pathways are well studied for Plasmodium, Toxoplasma, Cryptosporidium, and Theileria, except for limited studies on Babesia. Theileria is a unique pathogen taking into account the way it modulates host cell transformation, resulting in its clonal expansion. These parasites majorly modulate similar host signaling pathways, however, the disease outcome and effect is different among them. In this review, we discuss the approaches of these apicomplexan to manipulate the host–parasite clearance pathways during infection, invasion, survival, and egress. PMID:29081773
The Impact of Prophage on the Equilibria and Stability of Phage and Host
NASA Astrophysics Data System (ADS)
Yu, Pei; Nadeem, Alina; Wahl, Lindi M.
2017-06-01
In this paper, we present a bacteriophage model that includes prophage, that is, phage genomes that are incorporated into the host cell genome. The general model is described by an 18-dimensional system of ordinary differential equations. This study focuses on asymptotic behaviour of the model, and thus the system is reduced to a simple six-dimensional model, involving uninfected host cells, infected host cells and phage. We use dynamical system theory to explore the dynamic behaviour of the model, studying in particular the impact of prophage on the equilibria and stability of phage and host. We employ bifurcation and stability theory, centre manifold and normal form theory to show that the system has multiple equilibrium solutions which undergo a series of bifurcations, finally leading to oscillating motions. Numerical simulations are presented to illustrate and confirm the analytical predictions. The results of this study indicate that in some parameter regimes, the host cell population may drive the phage to extinction through diversification, that is, if multiple types of host emerge; this prediction holds even if the phage population is likewise diverse. This parameter regime is restricted, however, if infecting phage are able to recombine with prophage sequences in the host cell genome.
Legionella phospholipases implicated in virulence.
Kuhle, Katja; Flieger, Antje
2013-01-01
Phospholipases are diverse enzymes produced in eukaryotic hosts and their bacterial pathogens. Several pathogen phospholipases have been identified as major virulence factors acting mainly in two different modes: on the one hand, they have the capability to destroy host membranes and on the other hand they are able to manipulate host signaling pathways. Reaction products of bacterial phospholipases may act as secondary messengers within the host and therefore influence inflammatory cascades and cellular processes, such as proliferation, migration, cytoskeletal changes as well as membrane traffic. The lung pathogen and intracellularly replicating bacterium Legionella pneumophila expresses a variety of phospholipases potentially involved in disease-promoting processes. So far, genes encoding 15 phospholipases A, three phospholipases C, and one phospholipase D have been identified. These cell-associated or secreted phospholipases may contribute to intracellular establishment, to egress of the pathogen from the host cell, and to the observed lung pathology. Due to the importance of phospholipase activities for host cell processes, it is conceivable that the pathogen enzymes may mimic or substitute host cell phospholipases to drive processes for the pathogen's benefit. The following chapter summarizes the current knowledge on the L. pneumophila phospholipases, especially their substrate specificity, localization, mode of secretion, and impact on host cells.
GVHD; Bone marrow transplant - graft-versus-host disease; Stem cell transplant - graft-versus-host disease; Allogeneic transplant - ... GVHD may occur after a bone marrow, or stem cell, transplant in which someone receives bone marrow ...
Esher, Shannon K; Ost, Kyla S; Kohlbrenner, Maria A; Pianalto, Kaila M; Telzrow, Calla L; Campuzano, Althea; Nichols, Connie B; Munro, Carol; Wormley, Floyd L; Alspaugh, J Andrew
2018-06-01
The human fungal pathogen, Cryptococcus neoformans, dramatically alters its cell wall, both in size and composition, upon entering the host. This cell wall remodeling is essential for host immune avoidance by this pathogen. In a genetic screen for mutants with changes in their cell wall, we identified a novel protein, Mar1, that controls cell wall organization and immune evasion. Through phenotypic studies of a loss-of-function strain, we have demonstrated that the mar1Δ mutant has an aberrant cell surface and a defect in polysaccharide capsule attachment, resulting in attenuated virulence. Furthermore, the mar1Δ mutant displays increased staining for exposed cell wall chitin and chitosan when the cells are grown in host-like tissue culture conditions. However, HPLC analysis of whole cell walls and RT-PCR analysis of cell wall synthase genes demonstrated that this increased chitin exposure is likely due to decreased levels of glucans and mannans in the outer cell wall layers. We observed that the Mar1 protein differentially localizes to cellular membranes in a condition dependent manner, and we have further shown that the mar1Δ mutant displays defects in intracellular trafficking, resulting in a mislocalization of the β-glucan synthase catalytic subunit, Fks1. These cell surface changes influence the host-pathogen interaction, resulting in increased macrophage activation to microbial challenge in vitro. We established that several host innate immune signaling proteins are required for the observed macrophage activation, including the Card9 and MyD88 adaptor proteins, as well as the Dectin-1 and TLR2 pattern recognition receptors. These studies explore novel mechanisms by which a microbial pathogen regulates its cell surface in response to the host, as well as how dysregulation of this adaptive response leads to defective immune avoidance.
Modeling invasion of metastasizing cancer cells to bone marrow utilizing ecological principles.
Chen, Kun-Wan; Pienta, Kenneth J
2011-10-03
The invasion of a new species into an established ecosystem can be directly compared to the steps involved in cancer metastasis. Cancer must grow in a primary site, extravasate and survive in the circulation to then intravasate into target organ (invasive species survival in transport). Cancer cells often lay dormant at their metastatic site for a long period of time (lag period for invasive species) before proliferating (invasive spread). Proliferation in the new site has an impact on the target organ microenvironment (ecological impact) and eventually the human host (biosphere impact). Tilman has described mathematical equations for the competition between invasive species in a structured habitat. These equations were adapted to study the invasion of cancer cells into the bone marrow microenvironment as a structured habitat. A large proportion of solid tumor metastases are bone metastases, known to usurp hematopoietic stem cells (HSC) homing pathways to establish footholds in the bone marrow. This required accounting for the fact that this is the natural home of hematopoietic stem cells and that they already occupy this structured space. The adapted Tilman model of invasion dynamics is especially valuable for modeling the lag period or dormancy of cancer cells. The Tilman equations for modeling the invasion of two species into a defined space have been modified to study the invasion of cancer cells into the bone marrow microenvironment. These modified equations allow a more flexible way to model the space competition between the two cell species. The ability to model initial density, metastatic seeding into the bone marrow and growth once the cells are present, and movement of cells out of the bone marrow niche and apoptosis of cells are all aspects of the adapted equations. These equations are currently being applied to clinical data sets for verification and further refinement of the models.
Romano, Julia D.; de Beaumont, Catherine; Carrasco, Jose A.; Ehrenman, Karen; Bavoil, Patrik M.
2013-01-01
The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are coinfected by C. trachomatis and T. gondii. We previously reported that the two pathogens compete for the same nutrient pools in coinfected cells and that Toxoplasma holds a significant competitive advantage over Chlamydia. Here we have expanded our coinfection studies by examining the respective abilities of Chlamydia and Toxoplasma to co-opt the host cytoskeleton and recruit organelles. We demonstrate that the two pathogen-containing vacuoles migrate independently to the host perinuclear region and rearrange the host microtubular network around each vacuole. However, Toxoplasma outcompetes Chlamydia to the host microtubule-organizing center to the detriment of the bacterium, which then shifts to a stress-induced persistent state. Solely in cells preinfected with Chlamydia, the centrosomes become associated with the chlamydial inclusion, while the Toxoplasma parasitophorous vacuole displays growth defects. Both pathogens fragment the host Golgi apparatus and recruit Golgi elements to retrieve sphingolipids. This study demonstrates that the productive infection by both Chlamydia and Toxoplasma depends on the capability of each pathogen to successfully adhere to a finely tuned developmental program that aims to remodel the host cell for the pathogen's benefit. In particular, this investigation emphasizes the essentiality of host organelle interception by intravacuolar pathogens to facilitate access to nutrients. PMID:23243063
Romano, Julia D; de Beaumont, Catherine; Carrasco, Jose A; Ehrenman, Karen; Bavoil, Patrik M; Coppens, Isabelle
2013-02-01
The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are coinfected by C. trachomatis and T. gondii. We previously reported that the two pathogens compete for the same nutrient pools in coinfected cells and that Toxoplasma holds a significant competitive advantage over Chlamydia. Here we have expanded our coinfection studies by examining the respective abilities of Chlamydia and Toxoplasma to co-opt the host cytoskeleton and recruit organelles. We demonstrate that the two pathogen-containing vacuoles migrate independently to the host perinuclear region and rearrange the host microtubular network around each vacuole. However, Toxoplasma outcompetes Chlamydia to the host microtubule-organizing center to the detriment of the bacterium, which then shifts to a stress-induced persistent state. Solely in cells preinfected with Chlamydia, the centrosomes become associated with the chlamydial inclusion, while the Toxoplasma parasitophorous vacuole displays growth defects. Both pathogens fragment the host Golgi apparatus and recruit Golgi elements to retrieve sphingolipids. This study demonstrates that the productive infection by both Chlamydia and Toxoplasma depends on the capability of each pathogen to successfully adhere to a finely tuned developmental program that aims to remodel the host cell for the pathogen's benefit. In particular, this investigation emphasizes the essentiality of host organelle interception by intravacuolar pathogens to facilitate access to nutrients.
Immune responses of the domestic fowl to Dermanyssus gallinae under laboratory conditions.
Harrington, David W J; Robinson, Karen; Sparagano, Olivier A E
2010-05-01
There appear to be few reports in the literature regarding the host-poultry red mite (Dermanyssus gallinae) immunological relationship, despite the negative impact D. gallinae can have on both bird welfare and egg production, as well as its potential to act as a reservoir of zoonotic infections. The current study investigated the effect of either continuous infestation (CI) for 22 days or repeated infestation (RI) for four 24-h periods 7 days apart with D. gallinae on humoral immunity (IgM and IgY) and Th1/Th2 cytokine mRNA expression in peripheral blood mononuclear cells (PBMC) compared to non-infested controls. Serum IgY levels and IgM concentration were significantly higher in CI than RI and control birds although Th1 and Th2 mRNA expression in PBMC did not differ significantly between groups. D. gallinae appeared to modify reproductive behaviour and progeny survival following successive feeding events. In the RI group, the proportion of eggs/mite was significantly higher (P < 0.05) after first infestation than later infestations while larval/nymphal mortality was significantly higher (P < 0.05) after the first two infestations than later infestations. These data suggest that D. gallinae might adopt a feeding strategy of minimal host interference while D. gallinae could determine host immune status via nymphal/larval survival rates. Further research is required to better understand the host immunomodulation or avoidance strategy of D. gallinae as well as whether the mite is able to determine host immunocompetence perhaps using progeny survival.
The feeding tube of cyst nematodes: characterisation of protein exclusion.
Eves-van den Akker, Sebastian; Lilley, Catherine J; Ault, James R; Ashcroft, Alison E; Jones, John T; Urwin, Peter E
2014-01-01
Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry--mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins.
The Feeding Tube of Cyst Nematodes: Characterisation of Protein Exclusion
Eves-van den Akker, Sebastian; Lilley, Catherine J.; Ault, James R.; Ashcroft, Alison E.; Jones, John T.; Urwin, Peter E.
2014-01-01
Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry – mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins. PMID:24489891
Hydrogels for precision meniscus tissue engineering: a comprehensive review.
Rey-Rico, Ana; Cucchiarini, Magali; Madry, Henning
The meniscus plays a pivotal role to preserve the knee joint homeostasis. Lesions to the meniscus are frequent, have a reduced ability to heal, and may induce tibiofemoral osteoarthritis. Current reconstructive therapeutic options mainly focus on the treatment of lesions in the peripheral vascularized region. In contrast, few approaches are capable of stimulating repair of damaged meniscal tissue in the central, avascular portion. Tissue engineering approaches are of high interest to repair or replace damaged meniscus tissue in this area. Hydrogel-based biomaterials are of special interest for meniscus repair as its inner part contains relatively high proportions of proteoglycans which are responsible for the viscoelastic compressive properties and hydration grade. Hydrogels exhibiting high water content and providing a specific three-dimensional (3D) microenvironment may be engineered to precisely resemble this topographical composition of the meniscal tissue. Different polymers of both natural and synthetic origins have been manipulated to produce hydrogels hosting relevant cell populations for meniscus regeneration and provide platforms for meniscus tissue replacement. So far, these compounds have been employed to design controlled delivery systems of bioactive molecules involved in meniscal reparative processes or to host genetically modified cells as a means to enhance meniscus repair. This review describes the most recent advances on the use of hydrogels as platforms for precision meniscus tissue engineering.
SUMO Modification Stabilizes Enterovirus 71 Polymerase 3D To Facilitate Viral Replication
Liu, Yan; Shu, Bo; Meng, Jin; Zhang, Yuan; Zheng, Caishang; Ke, Xianliang; Gong, Peng; Hu, Qinxue; Wang, Hanzhong
2016-01-01
ABSTRACT Accumulating evidence suggests that viruses hijack cellular proteins to circumvent the host immune system. Ubiquitination and SUMOylation are extensively studied posttranslational modifications (PTMs) that play critical roles in diverse biological processes. Cross talk between ubiquitination and SUMOylation of both host and viral proteins has been reported to result in distinct functional consequences. Enterovirus 71 (EV71), an RNA virus belonging to the family Picornaviridae, is a common cause of hand, foot, and mouth disease. Little is known concerning how host PTM systems interact with enteroviruses. Here, we demonstrate that the 3D protein, an RNA-dependent RNA polymerase (RdRp) of EV71, is modified by small ubiquitin-like modifier 1 (SUMO-1) both during infection and in vitro. Residues K159 and L150/D151/L152 were responsible for 3D SUMOylation as determined by bioinformatics prediction combined with site-directed mutagenesis. Also, primer-dependent polymerase assays indicated that mutation of SUMOylation sites impaired 3D polymerase activity and virus replication. Moreover, 3D is ubiquitinated in a SUMO-dependent manner, and SUMOylation is crucial for 3D stability, which may be due to the interplay between the two PTMs. Importantly, increasing the level of SUMO-1 in EV71-infected cells augmented the SUMOylation and ubiquitination levels of 3D, leading to enhanced replication of EV71. These results together suggested that SUMO and ubiquitin cooperatively regulated EV71 infection, either by SUMO-ubiquitin hybrid chains or by ubiquitin conjugating to the exposed lysine residue through SUMOylation. Our study provides new insight into how a virus utilizes cellular pathways to facilitate its replication. IMPORTANCE Infection with enterovirus 71 (EV71) often causes neurological diseases in children, and EV71 is responsible for the majority of fatalities. Based on a better understanding of interplay between virus and host cell, antiviral drugs against enteroviruses may be developed. As a dynamic cellular process of posttranslational modification, SUMOylation regulates global cellular protein localization, interaction, stability, and enzymatic activity. However, little is known concerning how SUMOylation directly influences virus replication by targeting viral polymerase. Here, we found that EV71 polymerase 3D was SUMOylated during EV71 infection and in vitro. Moreover, the SUMOylation sites were determined, and in vitro polymerase assays indicated that mutations at SUMOylation sites could impair polymerase synthesis. Importantly, 3D is ubiquitinated in a SUMOylation-dependent manner that enhances the stability of the viral polymerase. Our findings indicate that the two modifications likely cooperatively enhance virus replication. Our study may offer a new therapeutic strategy against virus replication. PMID:27630238
Calcium Signaling throughout the Toxoplasma gondii Lytic Cycle
Borges-Pereira, Lucas; Budu, Alexandre; McKnight, Ciara A.; Moore, Christina A.; Vella, Stephen A.; Hortua Triana, Miryam A.; Liu, Jing; Garcia, Celia R. S.; Pace, Douglas A.; Moreno, Silvia N. J.
2015-01-01
Toxoplasma gondii is an obligate intracellular parasite that invades host cells, creating a parasitophorous vacuole where it communicates with the host cell cytosol through the parasitophorous vacuole membrane. The lytic cycle of the parasite starts with its exit from the host cell followed by gliding motility, conoid extrusion, attachment, and invasion of another host cell. Here, we report that Ca2+ oscillations occur in the cytosol of the parasite during egress, gliding, and invasion, which are critical steps of the lytic cycle. Extracellular Ca2+ enhances each one of these processes. We used tachyzoite clonal lines expressing genetically encoded calcium indicators combined with host cells expressing transiently expressed calcium indicators of different colors, and we measured Ca2+ changes in both parasites and host simultaneously during egress. We demonstrated a link between cytosolic Ca2+ oscillations in the host and in the parasite. Our approach also allowed us to measure two new features of motile parasites, which were enhanced by Ca2+ influx. This is the first study showing, in real time, Ca2+ signals preceding egress and their direct link with motility, an essential virulence trait. PMID:26374900
Zhang, Jifeng; Barefoot, Brice E.; Mo, Wenjian; Deoliveira, Divino; Son, Jessica; Cui, Xiuyu; Ramsburg, Elizabeth
2012-01-01
A major challenge in allogeneic hematopoietic cell transplantation is how to transfer T-cell immunity without causing graft-versus-host disease (GVHD). Effector memory T cells (CD62L−) are a cell subset that can potentially address this challenge because they do not induce GVHD. Here, we investigated how CD62L− T cells contributed to phenotypic and functional T-cell reconstitution after transplantation. On transfer into allogeneic recipients, CD62L− T cells were activated and expressed multiple cytokines and cytotoxic molecules. CD62L− T cells were able to deplete host radioresistant T cells and facilitate hematopoietic engraftment, resulting in enhanced de novo T-cell regeneration. Enhanced functional immune reconstitution was demonstrated in CD62L− T-cell recipients using a tumor and an influenza virus challenge model. Even though CD62L− T cells are able to respond to alloantigens and deplete host radioresistant immune cells in GVHD recipients, alloreactive CD62L− T cells lost the reactivity over time and were eventually tolerant to alloantigens as a result of prolonged antigen exposure, suggesting a mechanism by which CD62L− T cells were able to eliminate host resistance without causing GVHD. These data further highlight the unique characteristics of CD62L− T cells and their potential applications in clinical hematopoietic cell transplantation. PMID:22596261
Neri-Bazán, Rocío M; García-Machorro, Jazmín; Méndez-Luna, David; Tolentino-López, Luis E; Martínez-Ramos, Federico; Padilla-Martínez, Itzia I; Aguilar-Faisal, Leopoldo; Soriano-Ursúa, Marvin A; Trujillo-Ferrara, José G; Fragoso-Vázquez, M Jonathan; Barrón, Blanca L; Correa-Basurto, José
2017-03-10
Since the neuraminidase (NA) enzyme of the influenza A virus plays a key role in the process of release of new viral particles from a host cell, it is often a target for new drug design. The emergence of NA mutations, such as H275Y, has led to great resistance against neuraminidase inhibitors, including oseltamivir and zanamivir. Hence, we herein designed a set of derivatives by modifying the amine and/or carboxylic groups of oseltamivir. After being screened for their physicochemical (Lipinski's rule) and toxicological properties, the remaining compounds were submitted to molecular and theoretical studies. The docking simulations provided insights into NA recognition patterns, demonstrating that oseltamivir modified at the carboxylic moiety and coupled with anilines had higher affinity and a better binding pose for NA than the derivatives modified at the amine group. Based on these theoretical studies, the new oseltamivir derivatives may have higher affinity to mutant variants and possibly to other viral subtypes. Accordingly, two compounds were selected for synthesis, which together with their respective intermediates were evaluated for their cytotoxicity and antiviral activities. Their biological activity was then tested in cells infected with the A/Puerto Rico/916/34 (H1N1) influenza virus, and virus yield reduction assays were performed. Additionally, by measuring neuraminidase activity with the neuraminidase assay kit it was found that the compounds produced inhibitory activity on this enzyme. Finally, the infected cells were analysed with atomic force microscopy (AFM), observing morphological changes strongly suggesting that these compounds interfered with cellular release of viral particles. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Das, Sanjib; Browning, Jim; Gu, Gong; ...
2015-07-16
Advances in materials design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) to their conventional counterparts, in addition to the well-known better ambient stability. Despite the significant progress, however, it has so far been unclear how the morphologies of the photoactive layer and its interface with the cathode modifying layer impact device performance. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with the well-established bulk-heterojunction, PTB7:PC 71BM as the active layer and poly-[(9,9-bis(3 -( N,N-dimethylamino)propyl)-2,7-fluorene)- alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surfacemore » modifying layer. We have also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using a variety of characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the smearing (diffusion) of electron-accepting PC 71BM into the PFN layer, resulting in improved electron transport. The PC 71BM diffusion occurs after spin-casting the active layer onto the PFN layer, when residual solvent molecules act as a plasticizer. Furthermore, the DIO additive, with a higher boiling point than the host solvent, has a longer residence time in the spin-cast active layer, resulting in more PC 71BM smearing and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering.« less
Tajiri, Naoki; Kaneko, Yuji; Shinozuka, Kazutaka; Ishikawa, Hiroto; Yankee, Ernest; McGrogan, Michael; Case, Casey; Borlongan, Cesar V
2013-01-01
Here, we report that a unique mechanism of action exerted by stem cells in the repair of the traumatically injured brain involves their ability to harness a biobridge between neurogenic niche and injured brain site. This biobridge, visualized immunohistochemically and laser captured, corresponded to an area between the neurogenic subventricular zone and the injured cortex. That the biobridge expressed high levels of extracellular matrix metalloproteinases characterized initially by a stream of transplanted stem cells, but subsequently contained only few to non-detectable grafts and overgrown by newly formed host cells, implicates a novel property of stem cells. The transplanted stem cells manifest themselves as pathways for trafficking the migration of host neurogenic cells, but once this biobridge is formed between the neurogenic site and the injured brain site, the grafted cells disappear and relinquish their task to the host neurogenic cells. Our findings reveal that long-distance migration of host cells from the neurogenic niche to the injured brain site can be achieved through transplanted stem cells serving as biobridges for initiation of endogenous repair mechanisms. This is the first report of a stem cell-paved "biobridge". Indeed, to date the two major schools of discipline in stem cell repair mechanism primarily support the concept of "cell replacement" and bystander effects of "trophic factor secretion". The present novel observations of a stem cell seducing a host cell to engage in brain repair advances basic science concepts on stem cell biology and extracellular matrix, as well as provokes translational research on propagating this stem cell-paved biobridge beyond cell replacement and trophic factor secretion for the treatment of traumatic brain injury and other neurological disorders.
McEvoy, K; Hayes, J; Kealey, C; Brady, D
2016-09-01
Antimicrobial resistance poses a significant global healthcare predicament. An attractive approach to the dilemma of drug-resistant bacteria is the development and use of agents that interfere with the ability of pathogens to adhere to human tissue. The influence of sweet whey protein concentrate (SWPC), and selected hydrolysates of this material, on host-pathogen interactions of Cronobacter sakazakii (ATCC 29544) was investigated. CaCo-2 cell line was selected as a suitable model for the human intestinal epithelium. Cronobacter sakazakiiATCC 29544 was identified as the strain with the highest adhesion efficiency. SWPC reduced its association by 80% (P < 0·01), invasion 35% (P < 0·01), and translocation >95% (P < 0·001). SWPC enzymatically modified with lipase, trypsin and pepsin had variable effects on these behaviours with the most significant effect exhibited with the lipase treatment. SWPC produced an almost total inhibition of translocation of C. sakazakii across a CaCo-2 cell monolayer. Lipase and pepsin treated SWPC also reduced translocation by 75% and 90% respectively. However, trypsin treatment nullified the effect SWPC had on translocation. The presence of viable bacterial cells and SWPC both increased expression of IL-8 following Cronobacter invasion into CaCo-2 cells. Factors governing adherence, invasion and translocation of Cronobacter spp. to human intestinal cells are multi-factorial and digested milk products exhibit varying effects dependant on their enzyme modification and protein lipid content. These findings contribute to our, as yet, incomplete understanding of Cronobacter pathogenesis, and suggest that SWPC in whole and enzymatically hydrolysed forms, may provide a cost-effective source of bioactive materials with inhibitory effects on bacterial virulence. © 2016 The Society for Applied Microbiology.
Proximate mechanism of behavioral manipulation of an orb-weaver spider host by a parasitoid wasp
Gonzaga, Marcelo Oliveira; de Oliveira, Leandro Licursi; Sperber, Carlos Frankl
2017-01-01
Some ichneumonid wasps induce modifications in the web building behavior of their spider hosts to produce resistant “cocoon” webs. These structures hold and protect the wasp’s cocoon during pupa development. The mechanism responsible for host manipulation probably involves the inoculation of psychotropic chemicals by the parasitoid larva during a specific developmental period. Recent studies indicate that some spiders build cocoon webs similar to those normally built immediately before ecdysis, suggesting that this substance might be a molting hormone or a precursor chemical of this hormone. Here, we report that Cyclosa spider species exhibiting modified behavior presented higher 20-OH-ecdysone levels than parasitized spiders acting normally or unparasitized individuals. We suggest that the lack of control that spiders have when constructing modified webs can be triggered by anachronic activation of ecdysis. PMID:28158280
Wesolowski, Jordan; Weber, Mary M.; Nawrotek, Agata; Dooley, Cheryl A.; Calderon, Mike; St. Croix, Claudette M.; Hackstadt, Ted; Cherfils, Jacqueline
2017-01-01
ABSTRACT The intracellular bacterium Chlamydia trachomatis develops in a parasitic compartment called the inclusion. Posttranslationally modified microtubules encase the inclusion, controlling the positioning of Golgi complex fragments around the inclusion. The molecular mechanisms by which Chlamydia coopts the host cytoskeleton and the Golgi complex to sustain its infectious compartment are unknown. Here, using a genetically modified Chlamydia strain, we discovered that both posttranslationally modified microtubules and Golgi complex positioning around the inclusion are controlled by the chlamydial inclusion protein CT813/CTL0184/InaC and host ARF GTPases. CT813 recruits ARF1 and ARF4 to the inclusion membrane, where they induce posttranslationally modified microtubules. Similarly, both ARF isoforms are required for the repositioning of Golgi complex fragments around the inclusion. We demonstrate that CT813 directly recruits ARF GTPases on the inclusion membrane and plays a pivotal role in their activation. Together, these results reveal that Chlamydia uses CT813 to hijack ARF GTPases to couple posttranslationally modified microtubules and Golgi complex repositioning at the inclusion. PMID:28465429
Gamradt, Pia; Xu, Yun; Gratz, Nina; Duncan, Kellyanne; Kobzik, Lester; Högler, Sandra; Decker, Thomas
2016-01-01
Pathogen clearance and host resilience/tolerance to infection are both important factors in surviving an infection. Cells of the myeloid lineage play important roles in both of these processes. Neutrophils, monocytes, macrophages, and dendritic cells all have important roles in initiation of the immune response and clearance of bacterial pathogens. If these cells are not properly regulated they can result in excessive inflammation and immunopathology leading to decreased host resilience. Programmed cell death (PCD) is one possible mechanism that myeloid cells may use to prevent excessive inflammation. Myeloid cell subsets play roles in tissue repair, immune response resolution, and maintenance of homeostasis, so excessive PCD may also influence host resilience in this way. In addition, myeloid cell death is one mechanism used to control pathogen replication and dissemination. Many of these functions for PCD have been well defined in vitro, but the role in vivo is less well understood. We created a mouse that constitutively expresses the pro-survival B-cell lymphoma (bcl)-2 protein in myeloid cells (CD68(bcl2tg), thus decreasing PCD specifically in myeloid cells. Using this mouse model we explored the impact that decreased cell death of these cells has on infection with two different bacterial pathogens, Legionella pneumophila and Streptococcus pyogenes. Both of these pathogens target multiple cell death pathways in myeloid cells, and the expression of bcl2 resulted in decreased PCD after infection. We examined both pathogen clearance and host resilience and found that myeloid cell death was crucial for host resilience. Surprisingly, the decreased myeloid PCD had minimal impact on pathogen clearance. These data indicate that the most important role of PCD during infection with these bacteria is to minimize inflammation and increase host resilience, not to aid in the clearance or prevent the spread of the pathogen. PMID:27973535
Host manipulation by cancer cells: Expectations, facts, and therapeutic implications.
Tissot, Tazzio; Arnal, Audrey; Jacqueline, Camille; Poulin, Robert; Lefèvre, Thierry; Mery, Frédéric; Renaud, François; Roche, Benjamin; Massol, François; Salzet, Michel; Ewald, Paul; Tasiemski, Aurélie; Ujvari, Beata; Thomas, Frédéric
2016-03-01
Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research. © 2016 WILEY Periodicals, Inc.
Antonio, D B; El-Matbouli, M; Hedrick, R P
1999-11-01
The myxosporean and actinosporean spores of Myxobolus cerebralis develop through many stages in their respective hosts, salmonid fishes and a tubificid oligochaete. Using a modified, non-radioactive in situ hybridization protocol, the parasite, which exhibits radically different structural forms during its development in each host, could be specifically detected in paraffin-embedded tissues of both fish and oligochaetes. Our study aims to demonstrate the application of the technique for detection of early stages of M. cerebralis in both hosts.
Asmat, Tauseef M; Tenenbaum, Tobias; Jonsson, Ann-Beth; Schwerk, Christian; Schroten, Horst
2014-01-01
The pili and outer membrane proteins of Neisseria meningitidis (meningococci) facilitate bacterial adhesion and invasion into host cells. In this context expression of meningococcal PilC1 protein has been reported to play a crucial role. Intracellular calcium mobilization has been implicated as an important signaling event during internalization of several bacterial pathogens. Here we employed time lapse calcium-imaging and demonstrated that PilC1 of meningococci triggered a significant increase in cytoplasmic calcium in human brain microvascular endothelial cells, whereas PilC1-deficient meningococci could not initiate this signaling process. The increase in cytosolic calcium in response to PilC1-expressing meningococci was due to efflux of calcium from host intracellular stores as demonstrated by using 2-APB, which inhibits the release of calcium from the endoplasmic reticulum. Moreover, pre-treatment of host cells with U73122 (phospholipase C inhibitor) abolished the cytosolic calcium increase caused by PilC1-expressing meningococci demonstrating that active phospholipase C (PLC) is required to induce calcium transients in host cells. Furthermore, the role of cytosolic calcium on meningococcal adherence and internalization was documented by gentamicin protection assay and double immunofluorescence (DIF) staining. Results indicated that chelation of intracellular calcium by using BAPTA-AM significantly impaired PilC1-mediated meningococcal adherence to and invasion into host endothelial cells. However, buffering of extracellular calcium by BAPTA or EGTA demonstrated no significant effect on meningococcal adherence to and invasion into host cells. Taken together, these results indicate that meningococci induce calcium release from intracellular stores of host endothelial cells via PilC1 and cytoplasmic calcium concentrations play a critical role during PilC1 mediated meningococcal adherence to and subsequent invasion into host endothelial cells.
Qin, Shiwen; Ji, Chunyan; Li, Yunfeng; Wang, Zhenzhong
2017-01-01
The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the “Gros Michel” banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity. PMID:28468818
Qin, Shiwen; Ji, Chunyan; Li, Yunfeng; Wang, Zhenzhong
2017-07-05
The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the "Gros Michel" banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity. Copyright © 2017 Qin et al.
Replication-Competent Foamy Virus Vaccine Vectors as Novel Epitope Scaffolds for Immunotherapy
Lei, Janet; Osen, Wolfram; Gardyan, Adriane; Hotz-Wagenblatt, Agnes; Wei, Guochao; Gissmann, Lutz; Eichmüller, Stefan; Löchelt, Martin
2015-01-01
The use of whole viruses as antigen scaffolds is a recent development in vaccination that improves immunogenicity without the need for additional adjuvants. Previous studies highlighted the potential of foamy viruses (FVs) in prophylactic vaccination and gene therapy. Replication-competent FVs can trigger immune signaling and integrate into the host genome, resulting in persistent antigen expression and a robust immune response. Here, we explored feline foamy virus (FFV) proteins as scaffolds for therapeutic B and T cell epitope delivery in vitro. Infection- and cancer-related B and T cell epitopes were grafted into FFV Gag, Env, or Bet by residue replacement, either at sites of high local sequence homology between the epitope and the host protein or in regions known to tolerate sequence alterations. Modified proviruses were evaluated in vitro for protein steady state levels, particle release, and virus titer in permissive cells. Modification of Gag and Env was mostly detrimental to their function. As anticipated, modification of Bet had no impact on virion release and affected virus titers of only some recombinants. Further evaluation of Bet as an epitope carrier was performed using T cell epitopes from the model antigen chicken ovalbumin (OVA), human tyrosinase-related protein 2 (TRP-2), and oncoprotein E7 of human papillomavirus type 16 (HPV16E7). Transfection of murine cells with constructs encoding Bet-epitope chimeric proteins led to efficient MHC-I-restricted epitope presentation as confirmed by interferon-gamma enzyme-linked immunospot assays using epitope-specific cytotoxic T lymphocyte (CTL) lines. FFV infection-mediated transduction of cells with epitope-carrying Bet also induced T-cell responses, albeit with reduced efficacy, in a process independent from the presence of free peptides. We show that primate FV Bet is also a promising T cell epitope carrier for clinical translation. The data demonstrate the utility of replication-competent and -attenuated FVs as antigen carriers in immunotherapy. PMID:26397953
Interaction of Human Tumor Viruses with Host Cell Surface Receptors and Cell Entry
Schäfer, Georgia; Blumenthal, Melissa J.; Katz, Arieh A.
2015-01-01
Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection. PMID:26008702
Weinberg, E D
1996-02-01
Numerous laboratory and clinical investigations over the past few decades have observed that one of the dangers of iron is its ability to favour neoplastic cell growth. The metal is carcinogenic due to its catalytic effect on the formation of hydroxyl radicals, suppression of the activity of host defence cells and promotion of cancer cell multiplication. In both animals and humans, primary neoplasms develop at body sites of excessive iron deposits. The invaded host attempts to withhold iron from the cancer cells via sequestration of the metal in newly formed ferritin. The host also endeavours to withdraw the metal from cancer cells via macrophage synthesis of nitric oxide. Quantitative evaluation of body iron and of iron-withholding proteins has prognostic value in cancer patients. Procedures associated with lowering host iron intake and inducing host cell iron efflux can assist in prevention and management of neoplastic diseases. Pharmaceutical methods for depriving neoplastic cells of iron are being developed in experimental and clinical protocols.
Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K.; McCormick, Frank; Graeber, Thomas G.; Christofk, Heather R.
2014-01-01
SUMMARY Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. While recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. PMID:24703700
Hadis, Mohammed; Alderwick, Luke
2017-01-01
Outer membrane vesicles are nano-sized microvesicles shed from the outer membrane of Gram-negative bacteria and play important roles in immune priming and disease pathogenesis. However, our current mechanistic understanding of vesicle-host cell interactions is limited by a lack of methods to study the rapid kinetics of vesicle entry and cargo delivery to host cells. Here, we describe a highly sensitive method to study the kinetics of vesicle entry into host cells in real-time using a genetically encoded, vesicle-targeted probe. We found that the route of vesicular uptake, and thus entry kinetics and efficiency, are shaped by bacterial cell wall composition. The presence of lipopolysaccharide O antigen enables vesicles to bypass clathrin-mediated endocytosis, which enhances both their entry rate and efficiency into host cells. Collectively, our findings highlight the composition of the bacterial cell wall as a major determinant of secretion-independent delivery of virulence factors during Gram-negative infections. PMID:29186191
Host cells and methods for production of isobutanol
Anthony, Larry Cameron; He, Hongxian; Huang, Lixuan Lisa; Okeefe, Daniel P.; Kruckeberg, Arthur Leo; Li, Yougen; Maggio-Hall, Lori; McElvain, Jessica; Nelson, Mark J.; Patnaik, Ranjan; Rothman, Steven Cary
2017-10-17
Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.
Host cells and methods for production of isobutanol
Anthony, Larry Cameron; He, Hongxian; Huang, Lixuan Lisa; Okeefe, Daniel P.; Kruckeberg, Arthur Leo; Li, Yougen; Maggio-Hall, Lori Ann; McElvain, Jessica; Nelson, Mark J.; Patnaik, Ranjan; Rothman, Steven Cary
2016-08-23
Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.
Selvan, Ramakrishnan Kalai; Zhu, Pei; Yan, Chaoi; Zhu, Jiadeng; Dirican, Mahmut; Shanmugavani, A; Lee, Yun Sung; Zhang, Xiangwu
2018-03-01
Biomass-derived porous carbon has been considered as a promising sulfur host material for lithium-sulfur batteries because of its high conductive nature and large porosity. The present study explored biomass-derived porous carbon as polysulfide reservoir to modify the surface of glass fiber (GF) separator. Two different carbons were prepared from Oak Tree fruit shells by carbonization with and without KOH activation. The KOH activated porous carbon (AC) provides a much higher surface area (796 m 2 g -1 ) than pyrolized carbon (PC) (334 m 2 g -1 ). The R factor value, calculated from the X-ray diffraction pattern, revealed that the activated porous carbon contains more single-layer sheets with a lower degree of graphitization. Raman spectra also confirmed the presence of sp 3 -hybridized carbon in the activated carbon structure. The COH functional group was identified through X-ray photoelectron spectroscopy for the polysulfide capture. Simple and straightforward coating of biomass-derived porous carbon onto the GF separator led to an improved electrochemical performance in Li-S cells. The Li-S cell assembled with porous carbon modified GF separator (ACGF) demonstrated an initial capacity of 1324 mAh g -1 at 0.2 C, which was 875 mAh g -1 for uncoated GF separator (calculated based on the 2nd cycle). Charge transfer resistance (R ct ) values further confirmed the high ionic conductivity nature of porous carbon modified separators. Overall, the biomass-derived activated porous carbon can be considered as a promising alternative material for the polysulfide inhibition in Li-S batteries. Copyright © 2017 Elsevier Inc. All rights reserved.
Amino acid signature enables proteins to recognize modified tRNA.
Spears, Jessica L; Xiao, Xingqing; Hall, Carol K; Agris, Paul F
2014-02-25
Human tRNA(Lys3)UUU is the primer for HIV replication. The HIV-1 nucleocapsid protein, NCp7, facilitates htRNA(Lys3)UUU recruitment from the host cell by binding to and remodeling the tRNA structure. Human tRNA(Lys3)UUU is post-transcriptionally modified, but until recently, the importance of those modifications in tRNA recognition by NCp7 was unknown. Modifications such as the 5-methoxycarbonylmethyl-2-thiouridine at anticodon wobble position-34 and 2-methylthio-N(6)-threonylcarbamoyladenosine, adjacent to the anticodon at position-37, are important to the recognition of htRNA(Lys3)UUU by NCp7. Several short peptides selected from phage display libraries were found to also preferentially recognize these modifications. Evolutionary algorithms (Monte Carlo and self-consistent mean field) and assisted model building with energy refinement were used to optimize the peptide sequence in silico, while fluorescence assays were developed and conducted to verify the in silico results and elucidate a 15-amino acid signature sequence (R-W-Q/N-H-X2-F-Pho-X-G/A-W-R-X2-G, where X can be most amino acids, and Pho is hydrophobic) that recognized the tRNA's fully modified anticodon stem and loop domain, hASL(Lys3)UUU. Peptides of this sequence specifically recognized and bound modified htRNA(Lys3)UUU with an affinity 10-fold higher than that of the starting sequence. Thus, this approach provides an effective means of predicting sequences of RNA binding peptides that have better binding properties. Such peptides can be used in cell and molecular biology as well as biochemistry to explore RNA binding proteins and to inhibit those protein functions.
Coakley, Gillian; Buck, Amy H; Maizels, Rick M
2016-07-01
Helminths are metazoan organisms many of which have evolved parasitic life styles dependent on sophisticated manipulation of the host environment. Most notably, they down-regulate host immune responses to ensure their own survival, by exporting a range of immuno-modulatory mediators that interact with host cells and tissues. While a number of secreted immunoregulatory parasite proteins have been defined, new work also points to the release of extracellular vesicles, or exosomes, that interact with and manipulate host gene expression. These recent results are discussed in the overall context of how helminths communicate effectively with the host organism. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Xin, Qi-Lin; Deng, Cheng-Lin; Chen, Xi; Wang, Jun; Wang, Shao-Bo; Wang, Wei; Deng, Fei; Zhang, Bo; Xiao, Gengfu; Zhang, Lei-Ke
2017-06-15
Zika virus (ZIKV) is an emerging arbovirus belonging to the genus Flavivirus of the family Flaviviridae During replication processes, flavivirus manipulates host cell systems to facilitate its replication, while the host cells activate antiviral responses. Identification of host proteins involved in the flavivirus replication process may lead to the discovery of antiviral targets. The mosquitoes Aedes aegypti and Aedes albopictus are epidemiologically important vectors for ZIKV, and effective restrictions of ZIKV replication in mosquitoes will be vital in controlling the spread of virus. In this study, an iTRAQ-based quantitative proteomic analysis of ZIKV-infected Aedes albopictus C6/36 cells was performed to investigate host proteins involved in the ZIKV infection process. A total of 3,544 host proteins were quantified, with 200 being differentially regulated, among which CHCHD2 can be upregulated by ZIKV infection in both mosquito C6/36 and human HeLa cells. Our further study indicated that CHCHD2 can promote ZIKV replication and inhibit beta interferon (IFN-β) production in HeLa cells, suggesting that ZIKV infection may upregulate CHCHD2 to inhibit IFN-I production and thus promote virus replication. Bioinformatics analysis of regulated host proteins highlighted several ZIKV infection-regulated biological processes. Further study indicated that the ubiquitin proteasome system (UPS) plays roles in the ZIKV entry process and that an FDA-approved inhibitor of the 20S proteasome, bortezomib, can inhibit ZIKV infection in vivo Our study illustrated how host cells respond to ZIKV infection and also provided a candidate drug for the control of ZIKV infection in mosquitoes and treatment of ZIKV infection in patients. IMPORTANCE ZIKV infection poses great threats to human health, and there is no FDA-approved drug available for the treatment of ZIKV infection. During replication, ZIKV manipulates host cell systems to facilitate its replication, while host cells activate antiviral responses. Identification of host proteins involved in the ZIKV replication process may lead to the discovery of antiviral targets. In this study, the first quantitative proteomic analysis of ZIKV-infected cells was performed to investigate host proteins involved in the ZIKV replication process. Bioinformatics analysis highlighted several ZIKV infection-regulated biological processes. Further study indicated that the ubiquitin proteasome system (UPS) plays roles in the ZIKV entry process and that an FDA-approved inhibitor of the UPS, bortezomib, can inhibit ZIKV infection in vivo Our study not only illustrated how host cells respond to ZIKV infection but also provided a candidate drug for the control of ZIKV infection in mosquitoes and treatment of ZIKV infection in patients. Copyright © 2017 American Society for Microbiology.
Yagur-Kroll, Sharon; Belkin, Shimshon
2014-01-01
Microbial whole-cell bioreporters are genetically modified microorganisms that produce a quantifiable output in response to the presence of toxic chemicals or other stress factors. These bioreporters harbor a genetic fusion between a sensing element (usually a gene regulatory element responsive to the target) and a reporter element, the product of which may be quantitatively monitored either by its presence or by its activity. In this chapter we review genetic manipulations undertaken in order to improve bioluminescent bioreporter performance by increasing luminescent output, lowering the limit of detection, and shortening the response time. We describe molecular manipulations applied to all aspects of whole-cell bioreporters: the host strain, the expression system, the sensing element, and the reporter element. The molecular construction of whole-cell luminescent bioreporters, harboring fusions of gene promoter elements to reporter genes, has been around for over three decades; in most cases, these two genetic elements are combined "as is." This chapter outlines diverse molecular manipulations for enhancing the performance of such sensors.
Paucity of CD4+CCR5+ T cells is a typical feature of natural SIV hosts
Pandrea, Ivona; Apetrei, Cristian; Gordon, Shari; Barbercheck, Joseph; Dufour, Jason; Bohm, Rudolf; Sumpter, Beth; Roques, Pierre; Marx, Preston A.; Hirsch, Vanessa M.; Kaur, Amitinder; Lackner, Andrew A.; Veazey, Ronald S.; Silvestri, Guido
2007-01-01
In contrast to lentiviral infections of humans and macaques, simian immunodeficiency virus (SIV) infection of natural hosts is nonpathogenic despite high levels of viral replication. However, the mechanisms underlying this absence of disease are unknown. Here we report that natural hosts for SIV infection express remarkably low levels of CCR5 on CD4+ T cells isolated from blood, lymph nodes, and mucosal tissues. Given that this immunologic feature is found in 5 different species of natural SIV hosts (sooty mangabeys, African green monkeys, mandrills, sun-tailed monkeys, and chimpanzees) but is absent in 5 nonnatural/recent hosts (humans, rhesus, pigtail, cynomolgus macaques, and baboons), it may represent a key feature of the coevolution between the virus and its natural hosts that led to a nonpathogenic infection. Beneficial effects of low CCR5 expression on CD4+ T cells may include the reduction of target cells for viral replication and a decreased homing of activated CD4+ T cells to inflamed tissue. PMID:17003371
Jiang, Bo; Wu, Xuan; Li, Xi-Ning; Yang, Xi; Zhou, Yulai; Yan, Haowei; Wei, An-Hui; Yan, Weiqun
2014-07-01
NK cells hold promise for protecting hosts from cancer and pathogen infection through direct killing and expressing immune-regulatory cytokines. In our study, a genetically modified K562 cell line with surface expression of 4-1BBL and MICA was constructed to expand functional NK cells in vitro for further adoptive immunotherapy against cancer. After a long-term up to 21 day co-culture with newly isolated peripheral blood mononuclear cells (PBMCs) in the presence of soluble IL-21 (sIL-21), notable increase in proportion of expanded NK cells was observed, especially the CD56(bright)CD16(+) subset. Apparent up-regulation of activating receptors CD38, CD69 and NKG2D was detected on expanded NK cells, so did inhibitory receptor CD94; the cytotoxicity of expanded NK cells against target tumor cells exceeded that of NK cells within fresh PBMCs. The intracellular staining showed expanded NK cells produced immune-regulatory IFN-γ. Taken together, we expanded NK cells with significant up-regulation of activating NKG2D and moderate enhancement of cytotoxicity, with IFN-γ producing ability and a more heterogeneous population of NK cells. These findings provide a novel perspective on expanding NK cells in vitro for further biology study and adoptive immunotherapy of NK cells against cancer. Copyright © 2014 Elsevier Inc. All rights reserved.
Delisle, Jean-Sébastien; Gaboury, Louis; Bélanger, Marie-Pier; Tassé, Eliane; Yagita, Hideo; Perreault, Claude
2008-09-01
The immunopathologic condition known as graft-versus-host disease (GVHD) results from a type I T-cell process. However, a prototypical type I cytokine, interferon-gamma (IFN-gamma), can protect against several manifestations of GVHD in recipients of major histocompatibility complex (MHC)-mismatched hematopoietic cells. We transplanted hematopoietic cells from C3H.SW donors in wild-type (wt) and IFN-gamma-receptor-deficient (IFN-gammaRKO) MHC-matched C57BL/6 recipients. In IFN-gammaRKO recipients, host cells were unresponsive to IFN-gamma, whereas wt donor cells were exposed to exceptionally high levels of IFN-gamma. From an IFN-gamma perspective, we could therefore evaluate the impact of a loss-of-function on host cells and gain-of-function on donor cells. We found that lack of IFN-gammaR prevented up-regulation of MHC proteins on host cells but did not mitigate damage to most target organs. Two salient phenotypes in IFN-gammaRKO recipients involved donor cells: lymphoid hypoplasia and hematopoietic failure. Lymphopenia was due to FasL-induced apoptosis and decreased cell proliferation. Bone marrow aplasia resulted from a decreased proliferation of hematopoietic stem/progenitor cells that was associated with down-regulation of 2 genes negatively regulated by IFN-gamma: Ccnd1 and Myc. We conclude that IFN-gamma produced by alloreactive T cells may entail a severe graft-versus-graft reaction and could be responsible for cytopenias that are frequently observed in subjects with GVHD.
A Viral Pilot for HCMV Navigation?
Adler, Barbara
2015-07-15
gH/gL virion envelope glycoprotein complexes of herpesviruses serve as entry complexes and mediate viral cell tropism. By binding additional viral proteins, gH/gL forms multimeric complexes which bind to specific host cell receptors. Both Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) express alternative multimeric gH/gL complexes. Relative amounts of these alternative complexes in the viral envelope determine which host cells are preferentially infected. Host cells of EBV can modulate the gH/gL complex complement of progeny viruses by cell type-dependent degradation of one of the associating proteins. Host cells of HCMV modulate the tropism of their virus progenies by releasing or not releasing virus populations with a specific gH/gL complex complement out of a heterogeneous pool of virions. The group of Jeremy Kamil has recently shown that the HCMV ER-resident protein UL148 controls integration of one of the HCMV gH/gL complexes into virions and thus creates a pool of virions which can be routed by different host cells. This first mechanistic insight into regulation of the gH/gL complex complement of HCMV progenies presents UL148 as a pilot candidate for HCMV navigation in its infected host.
Perruche, Sylvain; Kleinclauss, François; Tiberghien, Pierre; Saas, Philippe
2005-02-15
To date, B cell responses have retained less attention than T, natural killer or dendritic cell responses in the alloreactive conflict after allogeneic hematopoietic cell transplantation (HCT). Here, we discuss recent clinical and experimental data supporting a role of allogeneic B cell responses in graft-host interactions after HCT. We report results in a murine model of reduced intensity conditioning transplantation (RICT) showing that host B cells can be involved in chronic graft-versus-host disease occurrence. We also describe the control of antidonor alloresponses by intravenous simultaneous infusion of apoptotic cells with allogeneic hematopoietic grafts.
Liu, Dongfang; Tian, Shuo; Zhang, Kai; Xiong, Wei; Lubaki, Ndongala Michel; Chen, Zhiying; Han, Weidong
2017-12-01
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells contribute to the body's immune defenses. Current chimeric antigen receptor (CAR)-modified T cell immunotherapy shows strong promise for treating various cancers and infectious diseases. Although CAR-modified NK cell immunotherapy is rapidly gaining attention, its clinical applications are mainly focused on preclinical investigations using the NK92 cell line. Despite recent advances in CAR-modified T cell immunotherapy, cost and severe toxicity have hindered its widespread use. To alleviate these disadvantages of CAR-modified T cell immunotherapy, additional cytotoxic cell-mediated immunotherapies are urgently needed. The unique biology of NK cells allows them to serve as a safe, effective, alternative immunotherapeutic strategy to CAR-modified T cells in the clinic. While the fundamental mechanisms underlying the cytotoxicity and side effects of CAR-modified T and NK cell immunotherapies remain poorly understood, the formation of the immunological synapse (IS) between CAR-modified T or NK cells and their susceptible target cells is known to be essential. The role of the IS in CAR T and NK cell immunotherapies will allow scientists to harness the power of CAR-modified T and NK cells to treat cancer and infectious diseases. In this review, we highlight the potential applications of CAR-modified NK cells to treat cancer and human immunodeficiency virus (HIV), and discuss the challenges and possible future directions of CAR-modified NK cell immunotherapy, as well as the importance of understanding the molecular mechanisms of CAR-modified T cell- or NK cell-mediated cytotoxicity and side effects, with a focus on the CAR-modified NK cell IS.
Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis.
Bevins, Charles L; Salzman, Nita H
2011-05-01
Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.
Boenzli, Eva; Robert-Tissot, Céline; Sabatino, Giuseppina; Cattori, Valentino; Meli, Marina Luisa; Gutte, Bernd; Rovero, Paolo; Flynn, Norman; Hofmann-Lehmann, Regina; Lutz, Hans
2011-01-01
The feline leukaemia virus (FeLV) is a gammaretrovirus commonly affecting cats. Infection with this virus often leads to fatal outcomes and, so far, no cure is available for this disease. Synthetic peptides with structures mimicking the transmembrane protein of the viral surface proteins hold the potential to effectively interfere with viral entry by hampering the fusion of viral and host cell membranes and constitute a novel approach for the treatment of infections with retroviruses. We identified and synthetically produced 11 FeLV peptides and evaluated their potential to block FeLV infection in vitro. Cell cultures were exposed to FeLV subgroup A prior to the addition of the peptides. The inhibitory effect of the peptides was assessed by measuring FeLV gag protein in the supernatant of peptide versus mock-treated cell cultures using an ELISA. A peptide (EPK364) of 37 amino acids in length, with sequence homology to the HIV fusion inhibitor T-20, significantly suppressed viral replication by 88%, whereas no effects were found for shorter peptides. Two structurally modified variants of EPK364 also inhibited viral replication by up to 58% (EPK397) and 27% (EPK398). Our data support the identification of synthetic FeLV peptides that have the potential for a curative short-term therapy of viraemic cats. In addition, these peptides might become an important tool in xenotransplantation, where endogenous gammaretroviruses of the donor species might be able to infect the host. © 2011 International Medical Press
Striberny, Bernd; Krause, Kirsten
2015-01-01
The process of host plant penetration by parasitic dodder (genus Cuscuta) is accompanied by molecular and structural changes at the host/parasite interface. Recently, changes in pectin methyl esterification levels in the host cell walls abutting parasitic cells in established infection sites were reported. In addition to that, we show here that the composition of cell wall glycoproteins in Cuscuta-infected Pelargonium zonale undergoes substantial changes. While several arabinogalactan protein epitopes exhibit decreased abundances in the vicinity of the Cuscuta reflexa haustorium, extensins tend to increase in the infected areas. PMID:26367804
Striberny, Bernd; Krause, Kirsten
2015-01-01
The process of host plant penetration by parasitic dodder (genus Cuscuta) is accompanied by molecular and structural changes at the host/parasite interface. Recently, changes in pectin methyl esterification levels in the host cell walls abutting parasitic cells in established infection sites were reported. In addition to that, we show here that the composition of cell wall glycoproteins in Cuscuta-infected Pelargonium zonale undergoes substantial changes. While several arabinogalactan protein epitopes exhibit decreased abundances in the vicinity of the Cuscuta reflexa haustorium, extensins tend to increase in the infected areas.
Changes in Reactivity In Vitro of CD4+CD25+ and CD4+CD25− T Cell Subsets in Transplant Tolerance
Hall, Bruce M.; Robinson, Catherine M.; Plain, Karren M.; Verma, Nirupama D.; Tran, Giang T.; Nomura, Masaru; Carter, Nicole; Boyd, Rochelle; Hodgkinson, Suzanne J.
2017-01-01
Transplant tolerance induced in adult animals is mediated by alloantigen-specific CD4+CD25+ T cells, yet in many models, proliferation of CD4+ T cells from hosts tolerant to specific-alloantigen in vitro is not impaired. To identify changes that may diagnose tolerance, changes in the patterns of proliferation of CD4+, CD4+CD25+, and CD4+CD25− T cells from DA rats tolerant to Piebald Virol Glaxo rat strain (PVG) cardiac allografts and from naïve DA rats were examined. Proliferation of CD4+ T cells from both naïve and tolerant hosts was similar to both PVG and Lewis stimulator cells. In mixed lymphocyte culture to PVG, proliferation of naïve CD4+CD25− T cells was greater than naïve CD4+ T cells. In contrast, proliferation of CD4+CD25− T cells from tolerant hosts to specific-donor PVG was not greater than CD4+ T cells, whereas their response to Lewis and self-DA was greater than CD4+ T cells. Paradoxically, CD4+CD25+ T cells from tolerant hosts did not proliferate to PVG, but did to Lewis, whereas naïve CD4+CD25+ T cells proliferate to both PVG and Lewis but not to self-DA. CD4+CD25+ T cells from tolerant, but not naïve hosts, expressed receptors for interferon (IFN)-γ and IL-5 and these cytokines promoted their proliferation to specific-alloantigen PVG but not to Lewis or self-DA. We identified several differences in the patterns of proliferation to specific-donor alloantigen between cells from tolerant and naïve hosts. Most relevant is that CD4+CD25+ T cells from tolerant hosts failed to proliferate or suppress to specific donor in the absence of either IFN-γ or IL-5. The proliferation to third-party and self of each cell population from tolerant and naïve hosts was similar and not affected by IFN-γ or IL-5. Our findings suggest CD4+CD25+ T cells that mediate transplant tolerance depend on IFN−γ or IL-5 from alloactivated Th1 and Th2 cells. PMID:28878770
The activation and suppression of plant innate immunity by parasitic nematodes.
Goverse, Aska; Smant, Geert
2014-01-01
Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions released by infective juvenile nematodes are thought to be crucial for host invasion, for nematode migration inside plants, and for feeding on host cells. In the past, much of the research focused on the manipulation of developmental pathways in host plants by plant-parasitic nematodes. However, recent findings demonstrate that plant-parasitic nematodes also deliver effectors into the apoplast and cytoplasm of host cells to suppress plant defense responses. In this review, we describe the current insights in the molecular and cellular mechanisms underlying the activation and suppression of host innate immunity by plant-parasitic nematodes along seven critical evolutionary and developmental transitions in plant parasitism.
Wetzel, Katherine S; Elliott, Sarah T C; Collman, Ronald G
2018-01-01
Pathogenic HIV-1 infection of humans and SIVmac infection of macaques are the result of zoonotic transfer of primate immunodeficiency viruses from their natural hosts into non-natural host species. Natural host infections do not result in pathogenesis despite high levels of virus replication, and evidence suggests that differences in anatomical location and specific subsets of CD4+ T cells infected may underlie distinct outcomes from infection. The coreceptor CCR5 has long been considered the sole pathway for SIV entry and the key determinant of CD4+ cell targeting, but it has also been known that natural hosts express exceedingly low levels of CCR5 despite maintaining high levels of virus replication. This review details emerging data indicating that in multiple natural host species, CCR5 is dispensable for SIV infection ex vivo and/or in vivo and, contrary to the established dogma, alternative coreceptors, particularly CXCR6, play a central role in infection and cell targeting. Infections of non-natural hosts, however, are characterized by CCR5-exclusive entry. These findings suggest that alternative coreceptor-mediated cell targeting in natural hosts, combined with low CCR5 expression, may direct the virus to distinct populations of cells that are dispensable for immune homeostasis, particularly extralymphoid and more differentiated CD4+ T cells. In contrast, CCR5-mediated entry in non-natural hosts results in targeting of CD4+ T cells that are located in lymphoid tissues, critical for immune homeostasis, or necessary for gut barrier integrity. Thus, fundamental differences in viral entry coreceptor use may be central determinants of infection outcome. These findings redefine the normal SIV/host relationship in natural host species, shed new light on key features linked to zoonotic immunodeficiency virus transfer, and highlight important questions regarding how and why this coreceptor bottleneck occurs and the coevolutionary equilibrium is lost following cross-species transfer that results in AIDS. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Protein kinase antagonists inhibit invasion of mammalian cells by Fonsecaea pedrosoi.
Limongi, Cristiana L; De Souza, Wanderley; Rozental, Sonia
2003-03-01
The phosphorylation process is an important mechanism of cell signalling and regulation. It has been implicated recently in defence strategies against a variety of pathogens that alter host signalling pathways in order to facilitate their invasion and survival within host cells. In this study, the involvement of protein kinases (PKs) has been investigated in attachment and invasion by the pathogenic fungus Fonsecaea pedrosoi within epithelial cells and macrophages. The use of the PK inhibitors staurosporine, genistein and calphostin C prior to infection provided significant information about the role played by PKs in the F. pedrosoi-host cell interaction. All three PK inhibitors could reduce cell invasion by F. pedrosoi significantly. Pre-treatment of macrophages, epithelial cells or conidia with PK inhibitors decreased fungus invasion, and this effect could be overcome by okadaic acid, a phosphatase inhibitor. Immunofluorescence assays showed that tyrosine residues were phosphorylated in the first step of the interaction, while serine residues were phosphorylated in the subsequent step of entry of the parasite into the host cell. These results suggest that both host-cell and conidium PK activities are important in the interaction process, playing a significant role in cell invasion.
Hansen, Camilla H F; Metzdorff, Stine B; Hansen, Axel K
2013-01-01
We recently investigated how post-natal microbial gut colonization is important for the development of the immune system, especially in the systemic compartments. This addendum presents additional data which in accordance with our previous findings show that early life microbial colonization is critical for a fine-tuned immune homeostasis to develop also in the intestinal environment. A generalized reduction in the expression of immune signaling related genes in the small intestine may explain previously shown increased systemic adaptive immune reactivity, if the regulatory cross-talk between intra- and extra-intestinal immune cells is immature following a neonatal germ-free period. These findings are furthermore discussed in the context of recently published results on how lack of microbial exposure in the neonatal life modifies disease expression in rodents used as models mimicking human inflammatory diseases. In particular, with a focus on how these interesting findings could be used to optimize the use of rodent models.
Siciliano, Giulia; Alano, Pietro
2015-01-01
The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.
Kinetic and Structural Insights into the Mechanism of AMPylation by VopS Fic Domain*
Luong, Phi; Kinch, Lisa N.; Brautigam, Chad A.; Grishin, Nick V.; Tomchick, Diana R.; Orth, Kim
2010-01-01
The bacterial pathogen Vibrio parahemeolyticus manipulates host signaling pathways during infections by injecting type III effectors into the cytoplasm of the target cell. One of these effectors, VopS, blocks actin assembly by AMPylation of a conserved threonine residue in the switch 1 region of Rho GTPases. The modified GTPases are no longer able to interact with downstream effectors due to steric hindrance by the covalently linked AMP moiety. Herein we analyze the structure of VopS and its evolutionarily conserved catalytic residues. Steady-state analysis of VopS mutants provides kinetic understanding on the functional role of each residue for AMPylation activity by the Fic domain. Further mechanistic analysis of VopS with its two substrates, ATP and Cdc42, demonstrates that VopS utilizes a sequential mechanism to AMPylate Rho GTPases. Discovery of a ternary reaction mechanism along with structural insight provides critical groundwork for future studies for the family of AMPylators that modify hydroxyl-containing residues with AMP. PMID:20410310
Stone, Melani C.; Borman, Jon; Ferreira, Gisela
2017-01-01
Flowthrough anion exchange chromatography is commonly used as a polishing step in downstream processing of monoclonal antibodies and other therapeutic proteins to remove process‐related impurities and contaminants such as host cell DNA, host cell proteins, endotoxin, and viruses. DNA with a wide range of molecular weight distributions derived from Chinese Hamster Ovary cells was used to advance the understanding of DNA binding behavior in selected anion exchange media using the resin (Toyopearl SuperQ‐650M) and membranes (Mustang® Q and Sartobind® Q) through DNA spiking studies. The impacts of the process parameters pH (6–8), conductivity (2–15 mS/cm), and the potential binding competition between host cell proteins and host cell DNA were studied. Studies were conducted at the least and most favorable experimental conditions for DNA binding based on the anticipated electrostatic interactions between the host cell DNA and the resin ligand. The resin showed 50% higher DNA binding capacity compared to the membrane media. Spiking host cell proteins in the load material showed no impact on the DNA clearance capability of the anion exchange media. DNA size distributions were characterized based on a “size exclusion qPCR assay.” Results showed preferential binding of larger DNA fragments (>409 base pairs). © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:141–149, 2018 PMID:28884511
Andani, Rafiq; Robertson, Ivan; Macdonald, Kelli P A; Durrant, Simon; Hill, Geoffrey R; Khosrotehrani, Kiarash
2014-01-01
Chronic graft-versus-host disease (cGVHD) is a common complication following allogeneic stem-cell transplantation (SCT). Past studies have implicated the persistence of host antigen-presenting cells (APCs) in GVHD. Our objective was to determine the frequency of host Langerhans cells (LCs) in normal skin post-SCT and ask if their persistence could predict cGVHD. Biopsies of normal skin from 124 sex-mismatched T-cell-replete allogenic SCT recipients were taken 100 days post-transplant. Patients with acute GVHD and those with <9 months of follow-up were excluded and prospective follow-up information was collected from remaining 22 patients. CD1a staining and X and Y chromosome in-situ hybridization were performed to label LCs and to identify their host or donor origin. At 3 months, 59 ± 5% of LCs were host derived. The density of LCs and the proportion of host-derived LCs were similar between patients that did or did not develop cGVHD. Most LCs in the skin remained of host origin 3 months after SCT regardless of cGVHD status. This finding is in line with the redundant role of LCs in acute GVHD initiation uncovered in recent experimental models. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Poch, H L Cabrera; López, R H Manzanilla; Kanyuka, K
2006-07-01
The expression of host genomes is modified locally by root endoparasitic nematode secretions to induce the development of complex cellular structures referred as feeding sites. In compatible interactions, the feeding sites provide the environment and nutrients for the completion of the nematode's life cycle, whereas in an incompatible (resistant) interaction, the host immune system triggers a plant cell death programme, often in the form of a hypersensitive reaction, which restricts nematode reproduction. These processes have been studied in great detail in organ tissues normally infected by these nematodes: the roots. Here we show that host leaves can support a similar set of programmed developmental events in the potato cyst nematode Globodera rostochiensis life cycle that are typical of the root-invading nematodes. We also show that a gene-for-gene type specific disease resistance that is effective against potato cyst nematodes (PCN) in roots also operates in leaves: the expression of the resistance (R) gene Hero and members of its gene family in leaves correlates with the elicitation of a hypersensitive response only during the incompatible interaction. These findings, and the ability to isolate RNA from relevant parasitic stages of the nematode, may have significant implications for the identification of nematode factors involved in incompatible interactions.
YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity.
Ma, Ka-Wai; Ma, Wenbo
2016-12-01
Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted "effector" proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Zhang, Mingfeng; Racine, Jeremy J.; Lin, Qing; Liu, Yuqing; Tang, Shanshan; Qin, Qi; Qi, Tong; Riggs, Arthur D.; Zeng, Defu
2018-01-01
Autoimmune type 1 diabetes (T1D) and other autoimmune diseases are associated with particular MHC haplotypes and expansion of autoreactive T cells. Induction of MHC-mismatched but not -matched mixed chimerism by hematopoietic cell transplantation effectively reverses autoimmunity in diabetic nonobese diabetic (NOD) mice, even those with established diabetes. As expected, MHC-mismatched mixed chimerism mediates deletion in the thymus of host-type autoreactive T cells that have T-cell receptor (TCR) recognizing (cross-reacting with) donor-type antigen presenting cells (APCs), which have come to reside in the thymus. However, how MHC-mismatched mixed chimerism tolerizes host autoreactive T cells that recognize only self-MHC–peptide complexes remains unknown. Here, using NOD.Rag1−/−.BDC2.5 or NOD.Rag1−/−.BDC12-4.1 mice that have only noncross-reactive transgenic autoreactive T cells, we show that induction of MHC-mismatched but not -matched mixed chimerism restores immune tolerance of peripheral noncross-reactive autoreactive T cells. MHC-mismatched mixed chimerism results in increased percentages of both donor- and host-type Foxp3+ Treg cells and up-regulated expression of programmed death-ligand 1 (PD-L1) by host-type plasmacytoid dendritic cells (pDCs). Furthermore, adoptive transfer experiments showed that engraftment of donor-type dendritic cells (DCs) and expansion of donor-type Treg cells are required for tolerizing the noncross-reactive autoreactive T cells in the periphery, which are in association with up-regulation of host-type DC expression of PD-L1 and increased percentage of host-type Treg cells. Thus, induction of MHC-mismatched mixed chimerism may establish a peripheral tolerogenic DC and Treg network that actively tolerizes autoreactive T cells, even those with no TCR recognition of the donor APCs. PMID:29463744
Genetic reprogramming of host cells by bacterial pathogens.
Tran Van Nhieu, Guy; Arbibe, Laurence
2009-10-29
During the course of infection, pathogens often induce changes in gene expression in host cells and these changes can be long lasting and global or transient and of limited amplitude. Defining how, when, and why bacterial pathogens reprogram host cells represents an exciting challenge that opens up the opportunity to grasp the essence of pathogenesis and its molecular details.
Understanding Microbial Sensing in Inflammatory Bowel Disease Using Click Chemistry
2017-10-01
pathogens and commensals. However, the technology available to track these molecules in host cells and tissues remains primitive. To address this...live, luminal bacteria into specific host intestinal immune cells and their subsequent degradation in host phagocytes. Notably, this approach also...click-chemistry, bacterial cell wall, bacterial outer membrane, peptidoglycan, lipopolysaccharide, endotoxin, capsular polysaccharide, inflammatory
Understanding Microbial Sensing in Inflammatory Bowel Disease Using Click Chemistry
2017-10-01
both pathogens and commensals. However, the technology available to track these molecules in host cells and tissues remains primitive. To address this...from live, luminal bacteria into specific host intestinal immune cells and their subsequent degradation in host phagocytes. Notably, this approach...Bioorthogonal click-chemistry, bacterial cell wall, bacterial outer membrane, peptidoglycan, lipopolysaccharide, endotoxin, capsular polysaccharide
Carro, Lorena; Pujic, Petar; Alloisio, Nicole; Fournier, Pascale; Boubakri, Hasna; Hay, Anne E; Poly, Franck; François, Philippe; Hocher, Valerie; Mergaert, Peter; Balmand, Severine; Rey, Marjolaine; Heddi, Abdelaziz; Normand, Philippe
2015-08-01
Actinorhizal plant growth in pioneer ecosystems depends on the symbiosis with the nitrogen-fixing actinobacterium Frankia cells that are housed in special root organs called nodules. Nitrogen fixation occurs in differentiated Frankia cells known as vesicles. Vesicles lack a pathway for assimilating ammonia beyond the glutamine stage and are supposed to transfer reduced nitrogen to the plant host cells. However, a mechanism for the transfer of nitrogen-fixation products to the plant cells remains elusive. Here, new elements for this metabolic exchange are described. We show that Alnus glutinosa nodules express defensin-like peptides, and one of these, Ag5, was found to target Frankia vesicles. In vitro and in vivo analyses showed that Ag5 induces drastic physiological changes in Frankia, including an increased permeability of vesicle membranes. A significant release of nitrogen-containing metabolites, mainly glutamine and glutamate, was found in N2-fixing cultures treated with Ag5. This work demonstrates that the Ag5 peptide is central for Frankia physiology in nodules and uncovers a novel cellular function for this large and widespread defensin peptide family.
Shi, Xiangyang; Wang, Su He; Lee, Inhan; Shen, Mingwu; Baker, James R
2009-11-01
Dendrimer-based nanotechnology significantly advances the area of targeted cancer imaging and therapy. Herein, we compared the difference of surface acetylated fluorescein isocyanate (FI) and folic acid (FA) modified generation 5 (G5) poly(amidoamine) dendrimers (G5.NHAc-FI-FA), and dendrimer-entrapped gold nanoparticles with similar modifications ([(Au(0))(51.2)-G5.NHAc-FI-FA]) in terms of their specific internalization to FA receptor (FAR)-overexpressing cancer cells. Confocal microscopic studies show that both G5.NHAc-FI-FA and [(Au(0))(51.2-)G5.NHAc-FI-FA] exhibit similar internalization kinetics regardless of the existence of Au nanoparticles (NPs). Molecular dynamics simulation of the two different nanostructures reveals that the surface area and the FA moiety distribution from the center of the geometry are slightly different. This slight difference may not be recognized by the FARs on the cell membrane, consequently leading to similar internalization kinetics. This study underlines the fact that metal or inorganic NPs entrapped within dendrimers interact with cells in a similar way to that of dendrimers lacking host NPs. 2009 Wiley Periodicals, Inc.
Kochenderfer, James N; Dudley, Mark E; Carpenter, Robert O; Kassim, Sadik H; Rose, Jeremy J; Telford, William G; Hakim, Frances T; Halverson, David C; Fowler, Daniel H; Hardy, Nancy M; Mato, Anthony R; Hickstein, Dennis D; Gea-Banacloche, Juan C; Pavletic, Steven Z; Sportes, Claude; Maric, Irina; Feldman, Steven A; Hansen, Brenna G; Wilder, Jennifer S; Blacklock-Schuver, Bazetta; Jena, Bipulendu; Bishop, Michael R; Gress, Ronald E; Rosenberg, Steven A
2013-12-12
New treatments are needed for B-cell malignancies persisting after allogeneic hematopoietic stem cell transplantation (alloHSCT). We conducted a clinical trial of allogeneic T cells genetically modified to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. T cells for genetic modification were obtained from each patient's alloHSCT donor. All patients had malignancy that persisted after alloHSCT and standard donor lymphocyte infusions (DLIs). Patients did not receive chemotherapy prior to the CAR T-cell infusions and were not lymphocyte depleted at the time of the infusions. The 10 treated patients received a single infusion of allogeneic anti-CD19-CAR T cells. Three patients had regressions of their malignancies. One patient with chronic lymphocytic leukemia (CLL) obtained an ongoing complete remission after treatment with allogeneic anti-CD19-CAR T cells, another CLL patient had tumor lysis syndrome as his leukemia dramatically regressed, and a patient with mantle cell lymphoma obtained an ongoing partial remission. None of the 10 patients developed graft-versus-host disease (GVHD). Toxicities included transient hypotension and fever. We detected cells containing the anti-CD19-CAR gene in the blood of 8 of 10 patients. These results show for the first time that donor-derived allogeneic anti-CD19-CAR T cells can cause regression of B-cell malignancies resistant to standard DLIs without causing GVHD.
Tripathi, S; Batra, J; Cao, W; Sharma, K; Patel, J R; Ranjan, P; Kumar, A; Katz, J M; Cox, N J; Lal, R B; Sambhara, S; Lal, S K
2013-01-01
Apoptosis induction is an antiviral host response, however, influenza A virus (IAV) infection promotes host cell death. The nucleoprotein (NP) of IAV is known to contribute to viral pathogenesis, but its role in virus-induced host cell death was hitherto unknown. We observed that NP contributes to IAV infection induced cell death and heterologous expression of NP alone can induce apoptosis in human airway epithelial cells. The apoptotic effect of IAV NP was significant when compared with other known proapoptotic proteins of IAV. The cell death induced by IAV NP was executed through the intrinsic apoptosis pathway. We screened host cellular factors for those that may be targeted by NP for inducing apoptosis and identified human antiapoptotic protein Clusterin (CLU) as a novel interacting partner. The interaction between IAV NP and CLU was highly conserved and mediated through β-chain of the CLU protein. Also CLU was found to interact specifically with IAV NP and not with any other known apoptosis modulatory protein of IAV. CLU prevents induction of the intrinsic apoptosis pathway by binding to Bax and inhibiting its movement into the mitochondria. We found that the expression of IAV NP reduced the association between CLU and Bax in mammalian cells. Further, we observed that CLU overexpression attenuated NP-induced cell death and had a negative effect on IAV replication. Collectively, these findings indicate a new function for IAV NP in inducing host cell death and suggest a role for the host antiapoptotic protein CLU in this process. PMID:23538443
Liu, Qing; Gao, Wen-Wei; Elsheikha, Hany M; He, Jun-Jun; Li, Fa-Cai; Yang, Wen-Bin; Zhu, Xing-Quan
2018-06-19
Growth and replication of the protozoan parasite Toxoplasma gondii within host cell entail the production of several effector proteins, which the parasite exploits for counteracting the host's immune response. Despite considerable research to define the host signaling pathways manipulated by T. gondii and their effectors, there has been limited progress into understanding how individual members of the dense granule proteins (GRAs) modulate gene expression within host cells. The aim of this study was to evaluate whether T. gondii GRA15 protein plays any role in regulating host gene expression. Baby hamster kidney cells (BHK-21) were transfected with plasmids encoding GRA15 genes of either type I GT1 strain (GRA15 I ) or type II PRU strain (GRA15 II ). Gene expression patterns of transfected and nontransfected BHK-21 cells were investigated using RNA-sequencing analysis. GRA15 I and GRA15 II induced both known and novel transcriptional changes in the transfected BHK-21 cells compared with nontransfected cells. Pathway analysis revealed that GRA15 II was mainly involved in the regulation of tumor necrosis factor (TNF), NF-κB, HTLV-I infection, and NOD-like receptor signaling pathways. GRA15 I preferentially influenced the synthesis of unsaturated fatty acids in host cells. Our findings support the hypothesis that certain functions of GRA15 protein are strain dependent and that GRA15 modulates the expression of signaling pathways and genes with important roles in T. gondii pathophysiology. A greater understanding of host signaling pathways influenced by T. gondii effectors would allow the development of more efficient anti-T. gondii therapeutic schemes, capitalizing on disrupting parasite virulence factors to advance the treatment of toxoplasmosis.
Supramolecularly Engineered Circular Bivalent Aptamer for Enhanced Functional Protein Delivery.
Jiang, Ying; Pan, Xiaoshu; Chang, Jin; Niu, Weijia; Hou, Weijia; Kuai, Hailan; Zhao, Zilong; Liu, Ji; Wang, Ming; Tan, Weihong
2018-06-06
Circular bivalent aptamers (cb-apt) comprise an emerging class of chemically engineered aptamers with substantially improved stability and molecular recognition ability. Its therapeutic application, however, is challenged by the lack of functional modules to control the interactions of cb-apt with therapeutics. We present the design of a β-cyclodextrin-modified cb-apt (cb-apt-βCD) and its supramolecular interaction with molecular therapeutics via host-guest chemistry for targeted intracellular delivery. The supramolecular ensemble exhibits high serum stability and enhanced intracellular delivery efficiency compared to a monomeric aptamer. The cb-apt-βCD ensemble delivers green fluorescent protein into targeted cells with efficiency as high as 80%, or cytotoxic saporin to efficiently inhibit tumor cell growth. The strategy of conjugating βCD to cb-apt, and subsequently modulating the supramolecular chemistry of cb-apt-βCD, provides a general platform to expand and diversify the function of aptamers, enabling new biological and therapeutic applications.
Clostridium difficile binary toxin CDT
Gerding, Dale N; Johnson, Stuart; Rupnik, Maja; Aktories, Klaus
2014-01-01
Binary toxin (CDT) is frequently observed in Clostridium difficile strains associated with increased severity of C. difficile infection (CDI). CDT belongs to the family of binary ADP-ribosylating toxins consisting of two separate toxin components: CDTa, the enzymatic ADP-ribosyltransferase which modifies actin, and CDTb which binds to host cells and translocates CDTa into the cytosol. CDTb is activated by serine proteases and binds to lipolysis stimulated lipoprotein receptor. ADP-ribosylation induces depolymerization of the actin cytoskeleton. Toxin-induced actin depolymerization also produces microtubule-based membrane protrusions which form a network on epithelial cells and increase bacterial adherence. Multiple clinical studies indicate an association between binary toxin genes in C. difficile and increased 30-d CDI mortality independent of PCR ribotype. Further studies including measures of binary toxin in stool, analyses of CDI mortality caused by CDT-producing strains, and examination of the relationship of CDT expression to TcdA and TcdB toxin variants and PCR ribotypes are needed. PMID:24253566