NASA Astrophysics Data System (ADS)
Chen, H. C.; Lai, S. K.
1992-03-01
The role of the Percus-Yevick hard-sphere bridge function in the modified hypernetted-chain integral equation is examined within the context of Lado's criterion [F. Lado, S. M. Foiles, and N. W. Ashcroft, Phys. Rev. A 28, 2374 (1983)]. It is found that the commonly used Lado's criterion, which takes advantage of the analytical simplicity of the Percus-Yevick hard-sphere bridge function, is inadequate for determining an accurate static pair-correlation function. Following Rosenfeld [Y. Rosenfeld, Phys. Rev. A 29, 2877 (1984)], we reconsider Lado's criterion in the so-called variational modified hypernetted-chain theory. The main idea is to construct a free-energy functional satisfying the virial-energy thermodynamic self-consistency. It turns out that the widely used Gibbs-Bogoliubov inequality is equivalent to this integral approach of Lado's criterion. Detailed comparison between the presently obtained structural and thermodynamic quantities for liquid alkali metals and those calculated also in the modified hypernetted-chain theory but with the one-component-plasma reference system leads us to a better understanding of the universality property of the bridge function.
NASA Astrophysics Data System (ADS)
Perrot, F.
1991-12-01
We report results of Helmholtz-free-energy and internal-energy calculations using the modified hypernetted-chain (MHNC) equation method, in the formulation of Lado, Foiles, and Ashcroft [Phys. Rev. A 28, 2374 (1983)], for a model plasma of ions linearly screened by electrons. The results are compared with HNC calculations (no Bridge term), with variational calculations using a hard-spheres reference system, and with a numerical fit of Monte Carlo simulations.
Modified-hypernetted-chain determination of the phase diagram of rigid C60 molecules
NASA Astrophysics Data System (ADS)
Caccamo, C.
1995-02-01
The modified-hypernetted-chain theory is applied to the determination of the phase diagram of the Lennard-Jones (LJ) fluid, and of a model of C60 previously investigated [Phys. Rev. Lett. 71, 1200 (1993)] through molecular-dynamics (MD) simulation and a different theoretical approach. In the LJ case the agreement with available MD data is quantitative and superior to other theories. For C60, the phase diagram obtained is in quite good agreement with previous MD results: in particular, the theory confirms the existence of a liquid phase between 1600 and 1920 K, the estimated triple point and critical temperature, respectively.
Comments on the variational modified-hypernetted-chain theory for simple fluids
NASA Astrophysics Data System (ADS)
Rosenfeld, Yaakov
1986-02-01
The variational modified-hypernetted-chain (VMHNC) theory, based on the approximation of universality of the bridge functions, is reformulated. The new formulation includes recent calculations by Lado and by Lado, Foiles, and Ashcroft, as two stages in a systematic approach which is analyzed. A variational iterative procedure for solving the exact (diagrammatic) equations for the fluid structure which is formally identical to the VMHNC is described, featuring the theory of simple classical fluids as a one-iteration theory. An accurate method for calculating the pair structure for a given potential and for inverting structure factor data in order to obtain the potential and the thermodynamic functions, follows from our analysis.
Ionic structures and transport properties of hot dense W and U plasmas
NASA Astrophysics Data System (ADS)
Hou, Yong; Yuan, Jianmin
2016-10-01
We have combined the average-atom model with the hyper-netted chain approximation (AAHNC) to describe the electronic and ionic structure of uranium and tungsten in the hot dense matter regime. When the electronic structure is described within the average-atom model, the effects of others ions on the electronic structure are considered by the correlation functions. And the ionic structure is calculated though using the hyper-netted chain (HNC) approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the electronic density distribution in the temperature-depended density functional theory. And electronic and ionic structures are determined self-consistently. On the basis of the ion-ion pair potential, we perform the classical (CMD) and Langevin (LMD) molecular dynamics to simulate the ionic transport properties, such as ionic self-diffusion and shear viscosity coefficients, through the ionic velocity correlation functions. Due that the free electrons become more and more with increasing the plasma temperature, the influence of the electron-ion collisions on the transport properties become more and more important.
Periodic box Fermi hypernetted chain calculations of neutron star crustal matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bassan, Nicola; Fantoni, Stefano; Schmidt, Kevin E.
2011-09-15
Neutron star crustal matter, whose properties are relevant in many models aimed at explaining observed astrophysical phenomena, has so far always been studied using a mean-field approach. To check the results obtained in this way, a sensible next step is to make use of a realistic nuclear potential. The present paper extends the periodic box Fermi hypernetted chain method to include longitudinal-isospin dependence of the correlations, making feasible a study of asymmetric crustal matter. Results are presented for the symmetry energy, the low-density neutron star equation of state, and the single-particle neutron and proton energies.
Generalized recursive solutions to Ornstein-Zernike integral equations
NASA Astrophysics Data System (ADS)
Rossky, Peter J.; Dale, William D. T.
1980-09-01
Recursive procedures for the solution of a class of integral equations based on the Ornstein-Zernike equation are developed; the hypernetted chain and Percus-Yevick equations are two special cases of the class considered. It is shown that certain variants of the new procedures developed here are formally equivalent to those recently developed by Dale and Friedman, if the new recursive expressions are initialized in the same way as theirs. However, the computational solution of the new equations is significantly more efficient. Further, the present analysis leads to the identification of various graphical quantities arising in the earlier study with more familiar quantities related to pair correlation functions. The analysis is greatly facilitated by the use of several identities relating simple chain sums whose graphical elements can be written as a sum of two or more parts. In particular, the use of these identities permits renormalization of the equivalent series solution to the integral equation to be directly incorporated into the recursive solution in a straightforward manner. Formulas appropriate to renormalization with respect to long and short range parts of the pair potential, as well as more general components of the direct correlation function, are obtained. To further illustrate the utility of this approach, we show that a simple generalization of the hypernetted chain closure relation for the direct correlation function leads directly to the reference hypernetted chain (RHNC) equation due to Lado. The form of the correlation function used in the exponential approximation of Andersen and Chandler is then seen to be equivalent to the first estimate obtained from a renormalized RHNC equation.
NASA Astrophysics Data System (ADS)
Polyakov, Evgeny A.; Vorontsov-Velyaminov, Pavel N.
2014-08-01
Properties of ferrofluid bilayer (modeled as a system of two planar layers separated by a distance h and each layer carrying a soft sphere dipolar liquid) are calculated in the framework of inhomogeneous Ornstein-Zernike equations with reference hypernetted chain closure (RHNC). The bridge functions are taken from a soft sphere (1/r12) reference system in the pressure-consistent closure approximation. In order to make the RHNC problem tractable, the angular dependence of the correlation functions is expanded into special orthogonal polynomials according to Lado. The resulting equations are solved using the Newton-GRMES algorithm as implemented in the public-domain solver NITSOL. Orientational densities and pair distribution functions of dipoles are compared with Monte Carlo simulation results. A numerical algorithm for the Fourier-Hankel transform of any positive integer order on a uniform grid is presented.
NASA Astrophysics Data System (ADS)
Miyata, Tatsuhiko; Tange, Kentaro
2018-05-01
The performance of Kobryn-Gusarov-Kovalenko (KGK) closure was examined in terms of the thermodynamics for one-component Lennard-Jones fluids. The result was compared to molecular dynamics simulation as well as to hypernetted chain, Kovalenko-Hirata (KH), Percus-Yevick and Verlet-modified closures. As the density increases, the error of KGK closure shows a turnover, regarding the excess internal energy, pressure and isothermal compressibility. On the other hand, it was numerically confirmed that the energy and the virial equations are consistent under both KH and KGK closures. The accuracies of density-derivative and temperature-derivative of the radial distribution function are also discussed.
Camargo, Manuel; Téllez, Gabriel
2008-04-07
The renormalized charge of a simple two-dimensional model of colloidal suspension was determined by solving the hypernetted chain approximation and Ornstein-Zernike equations. At the infinite dilution limit, the asymptotic behavior of the correlation functions is used to define the effective interactions between the components of the system and these effective interactions were compared to those derived from the Poisson-Boltzmann theory. The results we obtained show that, in contrast to the mean-field theory, the renormalized charge does not saturate, but exhibits a maximum value and then decays monotonically as the bare charge increases. The results also suggest that beyond the counterion layer near to the macroion surface, the ionic cloud is not a diffuse layer which can be handled by means of the linearized theory, as the two-state model claims, but a more complex structure is settled by the correlations between microions.
Tanaka, Shigenori
2016-12-07
Correlational and thermodynamic properties of homogeneous electron liquids at finite temperatures are theoretically analyzed in terms of dielectric response formalism with the hypernetted-chain (HNC) approximation and its modified version. The static structure factor and the local-field correction to describe the strong Coulomb-coupling effects beyond the random-phase approximation are self-consistently calculated through solution to integral equations in the paramagnetic (spin unpolarized) and ferromagnetic (spin polarized) states. In the ground state with the normalized temperature θ=0, the present HNC scheme well reproduces the exchange-correlation energies obtained by quantum Monte Carlo (QMC) simulations over the whole fluid phase (the coupling constant r s ≤100), i.e., within 1% and 2% deviations from putative best QMC values in the paramagnetic and ferromagnetic states, respectively. As compared with earlier studies based on the Singwi-Tosi-Land-Sjölander and modified convolution approximations, some improvements on the correlation energies and the correlation functions including the compressibility sum rule are found in the intermediate to strong coupling regimes. When applied to the electron fluids at intermediate Fermi degeneracies (θ≈1), the static structure factors calculated in the HNC scheme show good agreements with the results obtained by the path integral Monte Carlo (PIMC) simulation, while a small negative region in the radial distribution function is observed near the origin, which may be associated with a slight overestimation for the exchange-correlation hole in the HNC approximation. The interaction energies are calculated for various combinations of density and temperature parameters ranging from strong to weak degeneracy and from weak to strong coupling, and the HNC values are then parametrized as functions of r s and θ. The HNC exchange-correlation free energies obtained through the coupling-constant integration show reasonable agreements with earlier results including the PIMC-based fitting over the whole fluid region at finite degeneracies in the paramagnetic state. In contrast, a systematic difference between the HNC and PIMC results is observed in the ferromagnetic state, which suggests a necessity of further studies on the exchange-correlation free energies from both aspects of analytical theory and simulation.
Santos, Andrés; Manzano, Gema
2010-04-14
As is well known, approximate integral equations for liquids, such as the hypernetted chain (HNC) and Percus-Yevick (PY) theories, are in general thermodynamically inconsistent in the sense that the macroscopic properties obtained from the spatial correlation functions depend on the route followed. In particular, the values of the fourth virial coefficient B(4) predicted by the HNC and PY approximations via the virial route differ from those obtained via the compressibility route. Despite this, it is shown in this paper that the value of B(4) obtained from the virial route in the HNC theory is exactly three halves the value obtained from the compressibility route in the PY theory, irrespective of the interaction potential (whether isotropic or not), the number of components, and the dimensionality of the system. This simple relationship is confirmed in one-component systems by analytical results for the one-dimensional penetrable-square-well model and the three-dimensional penetrable-sphere model, as well as by numerical results for the one-dimensional Lennard-Jones model, the one-dimensional Gaussian core model, and the three-dimensional square-well model.
Optimized Hypernetted-Chain Solutions for Helium -4 Surfaces and Metal Surfaces
NASA Astrophysics Data System (ADS)
Qian, Guo-Xin
This thesis is a study of inhomogeneous Bose systems such as liquid ('4)He slabs and inhomogeneous Fermi systems such as the electron gas in metal films, at zero temperature. Using a Jastrow-type many-body wavefunction, the ground state energy is expressed by means of Bogoliubov-Born-Green-Kirkwood -Yvon and Hypernetted-Chain techniques. For Bose systems, Euler-Lagrange equations are derived for the one- and two -body functions and systematic approximation methods are physically motivated. It is shown that the optimized variational method includes a self-consistent summation of ladder- and ring-diagrams of conventional many-body theory. For Fermi systems, a linear potential model is adopted to generate the optimized Hartree-Fock basis. Euler-Lagrange equations are derived for the two-body correlations which serve to screen the strong bare Coulomb interaction. The optimization of the pair correlation leads to an expression of correlation energy in which the state averaged RPA part is separated. Numerical applications are presented for the density profile and pair distribution function for both ('4)He surfaces and metal surfaces. Both the bulk and surface energies are calculated in good agreement with experiments.
NASA Astrophysics Data System (ADS)
Mo, Chao-jie; Qin, Li-zi; Yang, Li-jun
2017-10-01
We have derived a hypernetted-chain-like (HNC-like) approximate closure of the Ornstein-Zernike equation for multibody dissipative particle dynamics (MDPD) system in which the classic closures are not directly practicable. We first point out that the Percus's method is applicable to MDPD system in which particles interact with a density-dependent potential. And then an HNC-like closure is derived using Percus's idea and the saddle-point approximation of particle free energy. This HNC-like closure is compared with results of previous researchers, and in many cases, it demonstrates better agreement with computer simulation results. The HNC-like closure is used to predict the cluster crystallization in MDPD. We determine whether the cluster crystallization will happen in a system utilizing the widely applicable Hansen-Verlet freezing criterion and by observing the radial distribution function. The conclusions drawn from the results of the HNC-like closure are in agreement with computer simulation results. We evaluate different weight functions to determine whether they are prone to cluster crystallization. A new effective density-dependent pairwise potential is also proposed to help to explain the tendency to cluster crystallization of MDPD systems.
Theory of the interface between a classical plasma and a hard wall
NASA Astrophysics Data System (ADS)
Ballone, P.; Pastore, G.; Tosi, M. P.
1983-09-01
The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody selfconsistently into the theory a contact theorem, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. The interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.
Theory of the interface between a classical plasma and a hard wall
NASA Astrophysics Data System (ADS)
Ballone, P.; Pastore, G.; Tosi, M. P.
1984-12-01
The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody self-consistently into the theory a “contact theorem”, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. It is also shown that the interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.
NASA Astrophysics Data System (ADS)
Rosenfeld, Yaakov
1984-05-01
Featuring the modified hypernetted-chain (MHNC) scheme as a variational fitting procedure, we demonstrate that the accuracy of the variational perturbation theory (VPT) and of the method based on additivity of equations of state is determined by the excess entropy dependence of the bridge-function parameters [i.e., η(s) when the Percus-Yevick hard-sphere bridge functions are employed]. It is found that η(s) is nearly universal for all soft (i.e., "physical") potentials while it is distinctly different for the hard spheres, providing a graphical display of the "jump" in pair-potential space (with respect to accuracy of VPT) from "hard" to "soft" behavior. The universality of η(s) provides a local criterion for the MHNC scheme that should be useful for inverting structure-factor data in order to obtain the potential. An alternative local MHNC criterion due to Lado is rederived and extended, and it is also analyzed in light of the plot of η(s).
Amokrane, S; Ayadim, A; Malherbe, J G
2005-11-01
A simple modification of the reference hypernetted chain (RHNC) closure of the multicomponent Ornstein-Zernike equations with bridge functions taken from Rosenfeld's hard-sphere bridge functional is proposed. Its main effect is to remedy the major limitation of the RHNC closure in the case of highly asymmetric mixtures--the wide domain of packing fractions in which it has no solution. The modified closure is also much faster, while being of similar complexity. This is achieved with a limited loss of accuracy, mainly for the contact value of the big sphere correlation functions. Comparison with simulation shows that inside the RHNC no-solution domain, it provides a good description of the structure, while being clearly superior to all the other closures used so far to study highly asymmetric mixtures. The generic nature of this closure and its good accuracy combined with a reduced no-solution domain open up the possibility to study the phase diagram of complex fluids beyond the hard-sphere model.
Test of simple fluid theories for the Lennard-Jones system
NASA Astrophysics Data System (ADS)
Malijevský, A.; Labik, S.
1988-03-01
A test is made of a new version of the reference-hypernetted chain approximation (RHNC) with minimized free energy proposed by Lado, Foiles and Ashcroft. An accurate relationship is used for the bridge function of the reference hard spheres. The calculated values of the compressibility factor and the internal energy are compared with simulation data, with results of the exponential approximation of Andersen et al., and with results of the Madden-Fitts approximation. The RHNC provides the most reliable results over wide ranges of reduced temperatures and densities.
Theory of adsorption in a polydisperse templated porous material: Hard sphere systems
NASA Astrophysics Data System (ADS)
RŻysko, Wojciech; Sokołowski, Stefan; Pizio, Orest
2002-03-01
A theoretical description of adsorption in a templated porous material, formed by an equilibrium quench of a polydisperse fluid composed of matrix and template particles and subsequent removal of the template particles is presented. The approach is based on the solution of the replica Ornstein-Zernike equations with Percus-Yevick and hypernetted chain closures. The method of solution uses expansions of size-dependent correlation functions into Fourier series, as described by Lado [J. Chem. Phys. 108, 6441 (1998)]. Specific calculations have been carried out for model systems, composed of hard spheres.
Free-energy functional of the Debye-Hückel model of simple fluids
NASA Astrophysics Data System (ADS)
Piron, R.; Blenski, T.
2016-12-01
The Debye-Hückel approximation to the free energy of a simple fluid is written as a functional of the pair correlation function. This functional can be seen as the Debye-Hückel equivalent to the functional derived in the hypernetted chain framework by Morita and Hiroike, as well as by Lado. It allows one to obtain the Debye-Hückel integral equation through a minimization with respect to the pair correlation function, leads to the correct form of the internal energy, and fulfills the virial theorem.
Effective Mass Calculations for Two-dimensional Gas of Dipolar Fermions
NASA Astrophysics Data System (ADS)
Seydi, I.; Abedinpour, S. H.; Tanatar, B.
2017-06-01
We consider a two-dimensional system of ultracold dipolar fermions with dipole moments aligned in the perpendicular direction. We use the static structure factor information from Fermi-Hypernetted-Chain calculations to obtain the effective many-body dipole-dipole interaction and calculate the many-body effective mass of the system within the G0W approximation to the self-energy. A large cancellation between different contributions to the self-energy results in a weak dependence of the effective mass on the interaction strength over a large range of coupling constants.
Generalized Jastrow variational method for liquid3He-4He mixtures at T=0 K
NASA Astrophysics Data System (ADS)
Mirabbaszadeh, K.
1989-07-01
The ground state energy of a dilute solution of mass-3 fermions in liquid4He is analyzed by a variational procedure based on the Jastrow many body theory. The antisymmetry of the wave function for fermions is incorporated following the procedure given by Lado, Inguva, and Smith. A set of coupled integrodifferential equations is solved in the hypernetted chain approximation yielding expressions for the binding energy of3He-4He mixtures; the radial distribution function is given together with the total energy for various values of density and the interparticle separation r s.
Nonlocal screening in metal surfaces
NASA Technical Reports Server (NTRS)
Krotscheck, E.; Kohn, W.
1986-01-01
Due to the effect of the nonuniform environment on the static screening of the Coulomb potential, the local-density approximation for the particle-hole interaction is found to be inadequate to determine the surface energy of simple metals. Use of the same set of single-particle states, and thus the same one-body density and the same work function, has eliminated the single-electron states in favor of the structure of the short-ranged correlations as the basis of this effect. A posteriori simplifications of the Fermi hypernetted-chain theory may be found to allow the same calculational accuracy with simpler computational tools.
Mkanya, Anele; Pellicane, Giuseppe; Pini, Davide; Caccamo, Carlo
2017-09-13
We report extensive calculations, based on the modified hypernetted chain (MHNC) theory, on the hierarchical reference theory (HRT), and on Monte Carlo simulations, of thermodynamical, structural and phase coexistence properties of symmetric binary hard-core Yukawa mixtures (HCYM) with attractive interactions at equal species concentration. The obtained results are throughout compared with those available in the literature for the same systems. It turns out that the MHNC predictions for thermodynamic and structural quantities are quite accurate in comparison with the MC data. The HRT is equally accurate for thermodynamics, and slightly less accurate for structure. Liquid-vapor (LV) and liquid-liquid (LL) consolute coexistence conditions as emerging from simulations, are also highly satisfactorily reproduced by both the MHNC and HRT for relatively long ranged potentials. When the potential range reduces, the MHNC faces problems in determining the LV binodal line; however, the LL consolute line and the critical end point (CEP) temperature and density turn out to be still satisfactorily predicted within this theory. The HRT also predicts with good accuracy the CEP position. The possibility of employing liquid state theories HCYM for the purpose of reliably determining phase equilibria in multicomponent colloidal fluids of current technological interest, is discussed.
NASA Astrophysics Data System (ADS)
Mkanya, Anele; Pellicane, Giuseppe; Pini, Davide; Caccamo, Carlo
2017-09-01
We report extensive calculations, based on the modified hypernetted chain (MHNC) theory, on the hierarchical reference theory (HRT), and on Monte Carlo simulations, of thermodynamical, structural and phase coexistence properties of symmetric binary hard-core Yukawa mixtures (HCYM) with attractive interactions at equal species concentration. The obtained results are throughout compared with those available in the literature for the same systems. It turns out that the MHNC predictions for thermodynamic and structural quantities are quite accurate in comparison with the MC data. The HRT is equally accurate for thermodynamics, and slightly less accurate for structure. Liquid-vapor (LV) and liquid-liquid (LL) consolute coexistence conditions as emerging from simulations, are also highly satisfactorily reproduced by both the MHNC and HRT for relatively long ranged potentials. When the potential range reduces, the MHNC faces problems in determining the LV binodal line; however, the LL consolute line and the critical end point (CEP) temperature and density turn out to be still satisfactorily predicted within this theory. The HRT also predicts with good accuracy the CEP position. The possibility of employing liquid state theories HCYM for the purpose of reliably determining phase equilibria in multicomponent colloidal fluids of current technological interest, is discussed.
Theory and simulation of electrolyte mixtures
NASA Astrophysics Data System (ADS)
Lee, B. Hribar; Vlachy, V.; Bhuiyan, L. B.; Outhwaite, C. W.; Molero, M.
Monte Carlo simulation and theoretical results on some aspects of thermodynamics of mixtures of electrolytes with a common species are presented. Both charge symmetric mixtures, where ions differ only in size, and charge asymmetric but size symmetric mixtures at ionic strength ranging generally from I = 10-4 to 1.0 M, and in a few cases up to I = M, are examined. The theoretical methods explored are: (i) the symmetric Poisson-Boltzmann theory, (ii) the modified Poisson-Boltzmann theory and (iii) the hypernetted-chain integral equation. The first two electrolyte mixing coefficients w0 and w1 of the various mixtures are calculated from an accurate determination of their osmotic pressure data. The theories are seen to be consistent among themselves, and with certain limiting laws in the literature, in predicting the trends of the mixing coefficients with respect to ionic strength. Some selected relevant experimental data have been analysed and compared with the theoretical and simulation trends. In addition the mean activity coefficients for a model mimicking the mixture of KCl and KF electrolytes are calculated and hence the Harned coefficients obtained for this system. These calculations are compared with the experimental data and Monte Carlo results available in the literature. The theoretically predicted Harned coefficients are in good agreement with the simulation results for the model KCl-KF mixture.
NASA Astrophysics Data System (ADS)
Lekala, M. L.; Chakrabarti, B.; Das, T. K.; Rampho, G. J.; Sofianos, S. A.; Adam, R. M.; Haldar, S. K.
2017-05-01
We study the ground-state and the low-lying excitations of a trapped Bose gas in an isotropic harmonic potential for very small (˜ 3) to very large (˜ 10^7) particle numbers. We use the two-body correlated basis functions and the shape-dependent van der Waals interaction in our many-body calculations. We present an exhaustive study of the effect of inter-atomic correlations and the accuracy of the mean-field equations considering a wide range of particle numbers. We calculate the ground-state energy and the one-body density for different values of the van der Waals parameter C6. We compare our results with those of the modified Gross-Pitaevskii results, the correlated Hartree hypernetted-chain equations (which also utilize the two-body correlated basis functions), as well as of the diffusion Monte Carlo for hard sphere interactions. We observe the effect of the attractive tail of the van der Waals potential in the calculations of the one-body density over the truly repulsive zero-range potential as used in the Gross-Pitaevskii equation and discuss the finite-size effects. We also present the low-lying collective excitations which are well described by a hydrodynamic model in the large particle limit.
Theory of inhomogeneous quantum systems. III. Variational wave functions for Fermi fluids
NASA Astrophysics Data System (ADS)
Krotscheck, E.
1985-04-01
We develop a general variational theory for inhomogeneous Fermi systems such as the electron gas in a metal surface, the surface of liquid 3He, or simple models of heavy nuclei. The ground-state wave function is expressed in terms of two-body correlations, a one-body attenuation factor, and a model-system Slater determinant. Massive partial summations of cluster expansions are performed by means of Born-Green-Yvon and hypernetted-chain techniques. An optimal single-particle basis is generated by a generalized Hartree-Fock equation in which the two-body correlations screen the bare interparticle interaction. The optimization of the pair correlations leads to a state-averaged random-phase-approximation equation and a strictly microscopic determination of the particle-hole interaction.
Theoretical study of interactions of BSA protein in a NaCl aqueous solution
NASA Astrophysics Data System (ADS)
Pellicane, Giuseppe; Cavero, Miguel
2013-03-01
Bovine Serum Albumine (BSA) aqueous solutions in the presence of NaCl are investigated for different protein concentrations and low to intermediate ionic strengths. Protein interactions are modeled via a charge-screened colloidal model, in which the range of the potential is determined by the Debye-Hückel constant. We use Monte Carlo computer simulations to calculate the structure factor, and assume an oblate ellipsoidal form factor for BSA. The theoretical scattered intensities are found in good agreement with the experimental small angle X-ray scattering intensities available in the literature. The performance of well-known integral equation closures to the Ornstein-Zernike equation, namely the mean spherical approximation, the Percus-Yevick, and the hypernetted chain equations, is also assessed with respect to computer simulation.
Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Koga, Kenichiro
2016-06-14
In the conventional classical density functional theory (DFT) for simple fluids, an ideal gas is usually chosen as the reference system because there is a one-to-one correspondence between the external field and the density distribution function, and the exact intrinsic free-energy functional is available for the ideal gas. In this case, the second-order density functional Taylor series expansion of the excess intrinsic free-energy functional provides the hypernetted-chain (HNC) approximation. Recently, it has been shown that the HNC approximation significantly overestimates the solvation free energy (SFE) for an infinitely dilute Lennard-Jones (LJ) solution, especially when the solute particles are several times larger than the solvent particles [T. Miyata and J. Thapa, Chem. Phys. Lett. 604, 122 (2014)]. In the present study, we propose a reference-modified density functional theory as a systematic approach to improve the SFE functional as well as the pair distribution functions. The second-order density functional Taylor series expansion for the excess part of the intrinsic free-energy functional in which a hard-sphere fluid is introduced as the reference system instead of an ideal gas is applied to the LJ pure and infinitely dilute solution systems and is proved to remarkably improve the drawbacks of the HNC approximation. Furthermore, the third-order density functional expansion approximation in which a factorization approximation is applied to the triplet direct correlation function is examined for the LJ systems. We also show that the third-order contribution can yield further refinements for both the pair distribution function and the excess chemical potential for the pure LJ liquids.
Theoretical study on the sound absorption of electrolytic solutions. I. Theoretical formulation.
Yamaguchi, T; Matsuoka, T; Koda, S
2007-04-14
A theory is formulated that describes the sound absorption of electrolytic solutions due to the relative motion of ions, including the formation of ion pairs. The theory is based on the Kubo-Green formula for the bulk viscosity. The time correlation function of the pressure is projected onto the bilinear product of the density modes of ions. The time development of the product of density modes is described by the diffusive limit of the generalized Langevin equation, and approximate expressions for the three- and four-body correlation functions required are given with the hypernetted-chain integral equation theory. Calculations on the aqueous solutions of model electrolytes are performed. It is demonstrated that the theory describes both the activated barrier crossing between contact and solvent-separated ion pairs and the Coulombic correlation between ions.
Theoretical study on the sound absorption of electrolytic solutions. I. Theoretical formulation
NASA Astrophysics Data System (ADS)
Yamaguchi, T.; Matsuoka, T.; Koda, S.
2007-04-01
A theory is formulated that describes the sound absorption of electrolytic solutions due to the relative motion of ions, including the formation of ion pairs. The theory is based on the Kubo-Green formula for the bulk viscosity. The time correlation function of the pressure is projected onto the bilinear product of the density modes of ions. The time development of the product of density modes is described by the diffusive limit of the generalized Langevin equation, and approximate expressions for the three- and four-body correlation functions required are given with the hypernetted-chain integral equation theory. Calculations on the aqueous solutions of model electrolytes are performed. It is demonstrated that the theory describes both the activated barrier crossing between contact and solvent-separated ion pairs and the Coulombic correlation between ions.
Cooling without contact in bilayer dipolar Fermi gases
NASA Astrophysics Data System (ADS)
Tanatar, Bilal; Renklioglu, Basak; Oktel, M. Ozgur
2016-05-01
We consider two parallel layers of dipolar ultracold Fermi gases at different temperatures and calculate the heat transfer between them. The effective interactions describing screening and correlation effects between the dipoles in a single layer are modelled within the Euler-Lagrange Fermi-hypernetted chain approximation. The random-phase approximation is employed for the interactions across the layers. We investigate the amount of transferred power between the layers as a function of the temperature difference. Energy transfer proceeds via the long-range dipole-dipole interactions. A simple thermal model is developed to investigate the feasibility of using the contactless sympathetic cooling of the ultracold polar atoms/molecules. Our calculations indicate that dipolar heat transfer is effective for typical polar molecule experiments and may be utilized as a cooling process. Supported by TUBA and TUBITAK (112T974).
NASA Astrophysics Data System (ADS)
Hou, Yong; Fu, Yongsheng; Bredow, Richard; Kang, Dongdong; Redmer, Ronald; Yuan, Jianmin
2017-03-01
The average-atom model combined with the hyper-netted chain approximation is an efficient tool for electronic and ionic structure calculations for warm dense matter. Here we generalize this method in order to describe non-equilibrium states with different electron and ion temperature as produced in laser-matter interactions on ultra-short time scales. In particular, the electron-ion and ion-ion correlation effects are considered when calculating the electron structure. We derive an effective ion-ion pair-potential using the electron densities in the framework of temperature-depended density functional theory. Using this ion-ion potential we perform molecular dynamics simulations in order to determine the ionic transport properties such as the ionic diffusion coefficient and the shear viscosity through the ionic velocity autocorrelation functions.
Demixing in simple dipolar mixtures: Integral equation versus density functional results
NASA Astrophysics Data System (ADS)
Range, Gabriel M.; Klapp, Sabine H. L.
2004-09-01
Using reference hypernetted chain (RHNC) integral equations and density functional theory in the modified mean-field (MMF) approximation we investigate the phase behavior of binary mixtures of dipolar hard spheres. The two species ( A and B ) differ only in their dipole moments mA and mB , and the central question investigated is under which conditions these asymmetric mixtures can exhibit demixing phase transitions in the fluid phase regime. Results from our two theoretical approaches turn out to strongly differ. Within the RHNC (which we apply to the isotropic high-temperature phase) demixing does indeed occur for dense systems with small interaction parameters Γ=mB2/mA2 . This result generalizes previously reported observations on demixing in mixtures of dipolar and neutral hard spheres (Γ=0) to the case of true dipolar hard sphere mixtures. The RHNC approach also indicates that these demixed fluid phases are isotropic at temperatures accessible by the theory, whereas isotropic-to-ferroelectric transitions occur only at larger Γ . The MMF theory, on the other hand, yields a different picture in which demixing occurs in combination with spontaneous ferroelectricity at all Γ considered. This discrepancy underlines the relevance of correlational effects for the existence of demixing transitions in dipolar systems without dispersive interactions. Indeed, supplementing the dipolar interactions by small, asymmetric amounts of van der Waals-like interactions (and thereby supporting the systems tendency to demix) one finally reaches good agreement between MMF and RHNC results.
Spin-dependent analysis of two-dimensional electron liquids
NASA Astrophysics Data System (ADS)
Bulutay, C.; Tanatar, B.
2002-05-01
Two-dimensional electron liquid (2D EL) at full Fermi degeneracy is revisited, giving special attention to the spin-polarization effects. First, we extend the recently proposed classical-map hypernetted-chain (CHNC) technique to the 2D EL, while preserving the simplicity of the original proposal. An efficient implementation of CHNC is given utilizing Lado's quadrature expressions for the isotropic Fourier transforms. Our results indicate that the paramagnetic phase stays to be the ground state until the Wigner crystallization density, even though the energy separation with the ferromagnetic and other partially polarized states become minute. We analyze compressibility and spin stiffness variations with respect to density and spin polarization, the latter being overlooked until now. Spin-dependent static structure factor and pair-distribution functions are computed; agreement with the available quantum Monte Carlo data persists even in the strong-coupling regime of the 2D EL.
The force distribution probability function for simple fluids by density functional theory.
Rickayzen, G; Heyes, D M
2013-02-28
Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.
Harbour, L; Dharma-Wardana, M W C; Klug, D D; Lewis, L J
2016-11-01
Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.
Coarse-Grained Models for Automated Fragmentation and Parametrization of Molecular Databases.
Fraaije, Johannes G E M; van Male, Jan; Becherer, Paul; Serral Gracià, Rubèn
2016-12-27
We calibrate coarse-grained interaction potentials suitable for screening large data sets in top-down fashion. Three new algorithms are introduced: (i) automated decomposition of molecules into coarse-grained units (fragmentation); (ii) Coarse-Grained Reference Interaction Site Model-Hypernetted Chain (CG RISM-HNC) as an intermediate proxy for dissipative particle dynamics (DPD); and (iii) a simple top-down coarse-grained interaction potential/model based on activity coefficient theories from engineering (using COSMO-RS). We find that the fragment distribution follows Zipf and Heaps scaling laws. The accuracy in Gibbs energy of mixing calculations is a few tenths of a kilocalorie per mole. As a final proof of principle, we use full coarse-grained sampling through DPD thermodynamics integration to calculate log P OW for 4627 compounds with an average error of 0.84 log unit. The computational speeds per calculation are a few seconds for CG RISM-HNC and a few minutes for DPD thermodynamic integration.
Forsberg, Björn; Ulander, Johan; Kjellander, Roland
2005-02-08
The effects of ionic size asymmetry on long-range electrostatic interactions in electrolyte solutions are investigated within the primitive model. Using the formalism of dressed ion theory we analyze correlation functions from Monte Carlo simulations and the hypernetted chain approximation for size asymmetric 1:1 electrolytes. We obtain decay lengths of the screened Coulomb potential, effective charges of ions, and effective permittivity of the solution. It is found that the variation of these quantities with the degree of size asymmetry depends in a quite intricate manner on the interplay between the electrostatic coupling and excluded volume effects. In most cases the magnitude of the effective charge of the small ion species is larger than that of the large species; the difference increases with increasing size asymmetry. The effective charges of both species are larger (in absolute value) than the bare ionic charge, except for high asymmetry where the effective charge of the large ions can become smaller than the bare charge.
Coulomb Logarithm in Nonideal and Degenerate Plasmas
NASA Astrophysics Data System (ADS)
Filippov, A. V.; Starostin, A. N.; Gryaznov, V. K.
2018-03-01
Various methods for determining the Coulomb logarithm in the kinetic theory of transport and various variants of the choice of the plasma screening constant, taking into account and disregarding the contribution of the ion component and the boundary value of the electron wavevector are considered. The correlation of ions is taken into account using the Ornstein-Zernike integral equation in the hypernetted-chain approximation. It is found that the effect of ion correlation in a nondegenerate plasma is weak, while in a degenerate plasma, this effect must be taken into account when screening is determined by the electron component alone. The calculated values of the electrical conductivity of a hydrogen plasma are compared with the values determined experimentally in the megabar pressure range. It is shown that the values of the Coulomb logarithm can indeed be smaller than unity. Special experiments are proposed for a more exact determination of the Coulomb logarithm in a magnetic field for extremely high pressures, for which electron scattering by ions prevails.
Optimized theory for simple and molecular fluids.
Marucho, M; Montgomery Pettitt, B
2007-03-28
An optimized closure approximation for both simple and molecular fluids is presented. A smooth interpolation between Perkus-Yevick and hypernetted chain closures is optimized by minimizing the free energy self-consistently with respect to the interpolation parameter(s). The molecular version is derived from a refinement of the method for simple fluids. In doing so, a method is proposed which appropriately couples an optimized closure with the variant of the diagrammatically proper integral equation recently introduced by this laboratory [K. M. Dyer et al., J. Chem. Phys. 123, 204512 (2005)]. The simplicity of the expressions involved in this proposed theory has allowed the authors to obtain an analytic expression for the approximate excess chemical potential. This is shown to be an efficient tool to estimate, from first principles, the numerical value of the interpolation parameters defining the aforementioned closure. As a preliminary test, representative models for simple fluids and homonuclear diatomic Lennard-Jones fluids were analyzed, obtaining site-site correlation functions in excellent agreement with simulation data.
Stability of the iterative solutions of integral equations as one phase freezing criterion.
Fantoni, R; Pastore, G
2003-10-01
A recently proposed connection between the threshold for the stability of the iterative solution of integral equations for the pair correlation functions of a classical fluid and the structural instability of the corresponding real fluid is carefully analyzed. Direct calculation of the Lyapunov exponent of the standard iterative solution of hypernetted chain and Percus-Yevick integral equations for the one-dimensional (1D) hard rods fluid shows the same behavior observed in 3D systems. Since no phase transition is allowed in such 1D system, our analysis shows that the proposed one phase criterion, at least in this case, fails. We argue that the observed proximity between the numerical and the structural instability in 3D originates from the enhanced structure present in the fluid but, in view of the arbitrary dependence on the iteration scheme, it seems uneasy to relate the numerical stability analysis to a robust one-phase criterion for predicting a thermodynamic phase transition.
Heat Transfer Through Dipolar Coupling: Sympathetic cooling without contact
NASA Astrophysics Data System (ADS)
Oktel, Mehmet; Renklioglu, Basak; Tanatar, Bilal
We consider two parallel layers of dipolar ultracold gases at different temperatures and calculate the heat transfer through dipolar coupling. As the simplest model we consider a system in which both of the layers contain two-dimensional spin-polarized Fermi gases. The effective interactions describing the correlation effects and screening between the dipoles are obtained by the Euler-Lagrange Fermi-hypernetted-chain approximation in a single layer. We use the random-phase approximation (RPA) for the interactions across the layers. We find that heat transfer through dipolar coupling becomes efficient when the layer separation is comparable to dipolar interaction length scale. We characterize the heat transfer by calculating the time constant for temperature equilibration between the layers and find that for the typical experimental parameter regime of dipolar molecules this is on the order of milliseconds. We generalize the initial model to Boson-Boson and Fermion-Boson layers and suggest that contactless sympathetic cooling may be used for ultracold dipolar molecules. Supported by TUBITAK 1002-116F030.
Models of the elastic x-ray scattering feature for warm dense aluminum
Starrett, Charles Edward; Saumon, Didier
2015-09-03
The elastic feature of x-ray scattering from warm dense aluminum has recently been measured by Fletcher et al. [Nature Photonics 9, 274 (2015)] with much higher accuracy than had hitherto been possible. This measurement is a direct test of the ionic structure predicted by models of warm dense matter. We use the method of pseudoatom molecular dynamics to predict this elastic feature for warm dense aluminum with temperatures of 1–100 eV and densities of 2.7–8.1g/cm 3. We compare these predictions to experiments, finding good agreement with Fletcher et al. and corroborating the discrepancy found in analyses of an earlier experimentmore » of Ma et al. [Phys. Rev. Lett. 110, 065001 (2013)]. Lastly, we also evaluate the validity of the Thomas-Fermi model of the electrons and of the hypernetted chain approximation in computing the elastic feature and find them both wanting in the regime currently probed by experiments.« less
Optimum free energy in the reference functional approach for the integral equations theory
NASA Astrophysics Data System (ADS)
Ayadim, A.; Oettel, M.; Amokrane, S.
2009-03-01
We investigate the question of determining the bulk properties of liquids, required as input for practical applications of the density functional theory of inhomogeneous systems, using density functional theory itself. By considering the reference functional approach in the test particle limit, we derive an expression of the bulk free energy that is consistent with the closure of the Ornstein-Zernike equations in which the bridge functions are obtained from the reference system bridge functional. By examining the connection between the free energy functional and the formally exact bulk free energy, we obtain an improved expression of the corresponding non-local term in the standard reference hypernetted chain theory derived by Lado. In this way, we also clarify the meaning of the recently proposed criterion for determining the optimum hard-sphere diameter in the reference system. This leads to a theory in which the sole input is the reference system bridge functional both for the homogeneous system and the inhomogeneous one. The accuracy of this method is illustrated with the standard case of the Lennard-Jones fluid and with a Yukawa fluid with very short range attraction.
Penetrable square-well fluids: exact results in one dimension.
Santos, Andrés; Fantoni, Riccardo; Giacometti, Achille
2008-05-01
We introduce a model of attractive penetrable spheres by adding a short-range attractive square well outside a penetrable core, and we provide a detailed analysis of structural and thermodynamical properties in one dimension using the exact impenetrable counterpart as a starting point. The model is expected to describe star polymers in regimes of good and moderate solvent under dilute conditions. We derive the exact coefficients of a low-density expansion up to second order for the radial distribution function and up to fourth order in the virial expansion. These exact results are used as a benchmark to test the reliability of approximate theories (Percus-Yevick and hypernetted chain). Notwithstanding the lack of an exact solution for arbitrary densities, our results are expected to be rather precise within a wide range of temperatures and densities. A detailed analysis of some limiting cases is carried out. In particular, we provide a complete solution of the sticky penetrable-sphere model in one dimension up to the same order in density. The issue of Ruelle's thermodynamics stability is analyzed and the region of a well-defined thermodynamic limit is identified.
Thermodynamic Theory of Spherically Trapped Coulomb Clusters
NASA Astrophysics Data System (ADS)
Wrighton, Jeffrey; Dufty, James; Bonitz, Michael; K"{A}Hlert, Hanno
2009-11-01
The radial density profile of a finite number of identical charged particles confined in a harmonic trap is computed over a wide ranges of temperatures (Coulomb coupling) and particle numbers. At low temperatures these systems form a Coulomb crystal with spherical shell structure which has been observed in ultracold trapped ions and in dusty plasmas. The shell structure is readily reproduced in simulations. However, analytical theories which used a mean field approachfootnotetext[1]C. Henning et al., Phys. Rev. E 74, 056403 (2006) or a local density approximationfootnotetext[2]C. Henning et al., Phys. Rev. E 76, 036404 (2007) have, so far, only been able to reproduce the average density profile. Here we present an approach to Coulomb correlations based on the hypernetted chain approximation with additional bridge diagrams. It is demonstrated that this model reproduces the correct shell structure within a few percent and provides the basis for a thermodynamic theory of Coulomb clusters in the strongly coupled fluid state.footnotetext[3]J. Wrighton, J.W. Dufty, H. K"ahlert and M. Bonitz, J. Phys. A 42, 214052 (2009) and Phys. Rev. E (2009) (to be submitted)
Algorithms for the computation of solutions of the Ornstein-Zernike equation.
Peplow, A T; Beardmore, R E; Bresme, F
2006-10-01
We introduce a robust and efficient methodology to solve the Ornstein-Zernike integral equation using the pseudoarc length (PAL) continuation method that reformulates the integral equation in an equivalent but nonstandard form. This enables the computation of solutions in regions where the compressibility experiences large changes or where the existence of multiple solutions and so-called branch points prevents Newton's method from converging. We illustrate the use of the algorithm with a difficult problem that arises in the numerical solution of integral equations, namely the evaluation of the so-called no-solution line of the Ornstein-Zernike hypernetted chain (HNC) integral equation for the Lennard-Jones potential. We are able to use the PAL algorithm to solve the integral equation along this line and to connect physical and nonphysical solution branches (both isotherms and isochores) where appropriate. We also show that PAL continuation can compute solutions within the no-solution region that cannot be computed when Newton and Picard methods are applied directly to the integral equation. While many solutions that we find are new, some correspond to states with negative compressibility and consequently are not physical.
Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas
NASA Astrophysics Data System (ADS)
Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.
2017-10-01
We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.
Generalized Jastrow Variational Method for Liquid HELIUM-3-HELIUM-4 Mixtures at T = 0 K.
NASA Astrophysics Data System (ADS)
Mirabbaszadeh, Kavoos
Microscopic theory of dilute liquid { ^3 He}-{^4 He} mixtures is of great interest, because it provides a physical realization of a nearly degenerate weakly interacting Fermion system. An understanding of properties of the mixtures has received considerable attention both theoretically and experimentally over the past thirty years. We present here a variational procedure based on the Jastrow function for the ground state of {^3 He}- {^4 He} mixtures by minimizing the total energy of the mixture using the hypernetted-chain (HNC) approximation and the Percus-Yevick (PY) approximation for the two body correlation functions. Our goal is to compute from first principles the internal energy of the system and the various two body correlation functions at various densities and compare the results with experiment. The Jastrow variational method for the ground state energy of liquid {^4 He} consists of the following ansatz for the wave function Psi_alpha {rm(vec r_{1 alpha},} {vec r_{2alpha},} dots, {vec r_{N _alpha})} = prod _{rm i < j} {rm f_ {alphaalpha}(r_{ij}). } For a {^3 He } system the corresponding ansatz is Psi_beta {rm( vec r_{1beta},} {vec r_{2beta },} dots, {vec r_{N_beta})} = {[prod _{i < j} f_{betabeta }(r_{ij})]} Phi {rm( vec r_{1beta},} {vec r_{2beta },} dots, {vec r_{Nbeta}),} where Phi is a Slater determinant of plane waves for the ground state of the Fermion system. The total energy per particle can be written in the form: E = x_sp{alpha}{2} E_{alphaalpha} + x_sp{beta}{2 }E_{betabeta } + 2x_{alpha} x_{beta}E _{alphabeta}, where E_{alphaalpha} , E_{betabeta} , E_{alphabeta} are unknown parameters to be determined from a microscopic theory. Using the Jastrow wave function Psi for the mixture, a general expression is given for the ground state energy in terms of the two body potential and two and three body correlation functions. The Kirkwood Super-position Approximation (KSA) is used for the three-body correlation functions. The antisymmetry of the wave function for Fermions is incorporated following the procedure given earlier by Lado, Inguva and Smith. This procedure for treating the antisymmetry of the wave function simplifies the equations for the two-body correlation functions considerably. The equations for the correlation functions are solved in the hypernetted-chain approximation. Once the two-particle correlation functions for the mixture ( ^3He-^4He) have been obtained, the energy is minimized with respect to the variational parameters involved in the Jastrow wave function. The binding energy and the optimal correlation functions are then obtained as a function of the concentration of ^3He atoms in the mixture. (Abstract shortened with permission of author.).
Efficient molecular density functional theory using generalized spherical harmonics expansions.
Ding, Lu; Levesque, Maximilien; Borgis, Daniel; Belloni, Luc
2017-09-07
We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density ρ(r,Ω) around the solute is a function of the position r≡(x,y,z) and of the three Euler angles Ω≡(θ,ϕ,ψ) describing the solvent orientation. The standard density functional, equivalent to the hypernetted-chain closure for the solute-solvent correlations in the liquid theory, is minimized with respect to ρ(r,Ω). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexities in water.
The LOCV asymmetric nuclear matter two-body density distributions versus those of FHNC
NASA Astrophysics Data System (ADS)
Tafrihi, Azar
2018-05-01
The theoretical computations of the electron-nucleus scattering can be improved, by employing the asymmetric nuclear matter (ASM) two-body density distributions (TBDD) . But, due to the sophistications of the calculations, the TBDD with arbitrary isospin asymmetry have not yet been computed in the Fermi Hypernetted Chain (FHNC) or the Monte Carlo (MC) approaches. So, in the present work, we intend to find the ASM TBDD, in the states with isospin T, spin S and spin projection Sz, in the Lowest Order Constrained Variational (LOCV) method. It is demonstrated that, at small relative distances, independent of the proton to neutron ratio β, the state-dependent TBDD have a universal shape. Expectedly, it is observed that, at low (high) β values, the nucleons prefer to make a pair in the T = 1(0) states. In addition, the strength of the tensor-dependent correlations is investigated, using the ratio of the TBDD in the TSSz = 010 state with θ = π / 2 and that of θ = 0. The mentioned ratios peak at r ∼ 0 . 9 fm, considering different β values. It is hoped that, the present results could help a better reproduction of the experimental data of the electron-nucleus scattering.
Electron and Nuclear Pressures in Electron-Nucleus Mixtures
NASA Astrophysics Data System (ADS)
Chihara, J.; Yamagiwa, M.
2007-12-01
For a solid metal with frozen nuclei, the density-functional theory provides a unique definition of the electron pressure in an electron-nucleus mixture, and the total pressure of this mixture is represented as the sum of the electron and nuclear pressures. This fact leads to definitions of the electron and nuclear pressures on the basis of the virial theorem in terms of the wall potentials confining the electrons and nuclei. These definitions take a general form applicable without use of the adiabatic approximation. In this situation, we show that Janak's definition of the electron pressure in terms of the nuclear virial term is inappropriate; a similar statement holds for the definition of the stress tensor in this mixture. It is also demonstrated that both the electron and nuclear pressures become zero individually for a metal in vacuum, in contrast to the conventional understanding, according to which zero pressure is realized as a result of a cancellation of the elect ron and nuclear pressures. On the basis of these facts, a simple equation of state for liquid metals is derived, and it is examined numerically for the case of liquid alkaline metals by use of the quantum hypernetted chain equation and the Ashcroft model potential.
Theoretical study of solvent effects on the coil-globule transition
NASA Astrophysics Data System (ADS)
Polson, James M.; Opps, Sheldon B.; Abou Risk, Nicholas
2009-06-01
The coil-globule transition of a polymer in a solvent has been studied using Monte Carlo simulations of a single chain subject to intramolecular interactions as well as a solvent-mediated effective potential. This solvation potential was calculated using several different theoretical approaches for two simple polymer/solvent models, each employing hard-sphere chains and hard-sphere solvent particles as well as attractive square-well potentials between some interaction sites. For each model, collapse is driven by variation in a parameter which changes the energy mismatch between monomers and solvent particles. The solvation potentials were calculated using two fundamentally different methodologies, each designed to predict the conformational behavior of polymers in solution: (1) the polymer reference interaction site model (PRISM) theory and (2) a many-body solvation potential (MBSP) based on scaled particle theory introduced by Grayce [J. Chem. Phys. 106, 5171 (1997)]. For the PRISM calculations, two well-studied solvation monomer-monomer pair potentials were employed, each distinguished by the closure relation used in its derivation: (i) a hypernetted-chain (HNC)-type potential and (ii) a Percus-Yevick (PY)-type potential. The theoretical predictions were each compared to results obtained from explicit-solvent discontinuous molecular dynamics simulations on the same polymer/solvent model systems [J. Chem. Phys. 125, 194904 (2006)]. In each case, the variation in the coil-globule transition properties with solvent density is mostly qualitatively correct, though the quantitative agreement between the theory and prediction is typically poor. The HNC-type potential yields results that are more qualitatively consistent with simulation. The conformational behavior of the polymer upon collapse predicted by the MBSP approach is quantitatively correct for low and moderate solvent densities but is increasingly less accurate for higher densities. At high solvent densities, the PRISM-HNC and MBSP approaches tend to overestimate, while the PRISM-PY approach underestimates the tendency of the solvent to drive polymer collapse.
Fluids Density Functional Theory of Salt-Doped Block Copolymers
NASA Astrophysics Data System (ADS)
Brown, Jonathan R.; Hall, Lisa M.
Block copolymers have attracted a great deal of recent interest as potential non-flammable, solid-state, electrolyte materials for batteries or other charge carrying applications. The microphase separation in block copolymers combines the properties of a conductive (though mechanically soft) polymer with a mechanically robust (though non-conductive) polymer. We use fluids density functional theory (fDFT) to study the phase behavior of salt-doped block copolymers. Because the salt prefers to preferentially solvate into the conductive phase, salt doping effectively enhances the segregation strength between the two polymer types. We consider the effects of this preferential solvation and of charge correlations by separately modeling the ion-rich phase, without bonding, using the Ornstein-Zernike equation and the hypernetted-chain closure. We use the correlations from this subsystem in the inhomogeneous fDFT calculations. Initial addition of salt increases the domain spacing and sharpens the interfacial region, but for high salt loadings the interface can broaden. Addition of salt can also drive a system with a low copolymer segregation strength to order by first passing through a two phase regime with a salt-rich ordered phase and a salt-poor disordered phase. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0014209.
Elementary diagrams in nuclear and neutron matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiringa, R.B.
1995-08-01
Variational calculations of nuclear and neutron matter are currently performed using a diagrammatic cluster expansion with the aid of nonlinear integral equations for evaluating expectation values. These are the Fermi hypernetted chain (FHNC) and single-operator chain (SOC) equations, which are a way of doing partial diagram summations to infinite order. A more complete summation can be made by adding elementary diagrams to the procedure. The simplest elementary diagrams appear at the four-body cluster level; there is one such E{sub 4} diagram in Bose systems, but 35 diagrams in Fermi systems, which gives a level of approximation called FHNC/4. We developedmore » a novel technique for evaluating these diagrams, by computing and storing 6 three-point functions, S{sub xyz}(r{sub 12}, r{sub 13}, r{sub 23}), where xyz (= ccd, cce, ddd, dde, dee, or eee) denotes the exchange character at the vertices 1, 2, and 3. All 35 Fermi E{sub 4} diagrams can be constructed from these 6 functions and other two-point functions that are already calculated. The elementary diagrams are known to be important in some systems like liquid {sup 3}He. We expect them to be small in nuclear matter at normal density, but they might become significant at higher densities appropriate for neutron star calculations. This year we programmed the FHNC/4 contributions to the energy and tested them in a number of simple model cases, including liquid {sup 3}He and Bethe`s homework problem. We get reasonable, but not exact agreement with earlier published work. In nuclear and neutron matter with the Argonne v{sub 14} interaction these contributions are indeed small corrections at normal density and grow to only 5-10 MeV/nucleon at 5 times normal density.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacometti, Achille, E-mail: achille.giacometti@unive.it; Gögelein, Christoph, E-mail: christoph.goegelein@ds.mpg.de; Lado, Fred, E-mail: lado@ncsu.edu
2014-03-07
Building upon past work on the phase diagram of Janus fluids [F. Sciortino, A. Giacometti, and G. Pastore, Phys. Rev. Lett. 103, 237801 (2009)], we perform a detailed study of integral equation theory of the Kern-Frenkel potential with coverage that is tuned from the isotropic square-well fluid to the Janus limit. An improved algorithm for the reference hypernetted-chain (RHNC) equation for this problem is implemented that significantly extends the range of applicability of RHNC. Results for both structure and thermodynamics are presented and compared with numerical simulations. Unlike previous attempts, this algorithm is shown to be stable down to themore » Janus limit, thus paving the way for analyzing the frustration mechanism characteristic of the gas-liquid transition in the Janus system. The results are also compared with Barker-Henderson thermodynamic perturbation theory on the same model. We then discuss the pros and cons of both approaches within a unified treatment. On balance, RHNC integral equation theory, even with an isotropic hard-sphere reference system, is found to be a good compromise between accuracy of the results, computational effort, and uniform quality to tackle self-assembly processes in patchy colloids of complex nature. Further improvement in RHNC however clearly requires an anisotropic reference bridge function.« less
Comparative study of the LOCV and the FHNC approaches for the nucleonic matter problem
NASA Astrophysics Data System (ADS)
Tafrihi, Azar; Modarres, Majid
2016-03-01
The nucleonic matter problem is investigated by comparing the lowest order constrained variational (LOCV) method with the Fermi hypernetted chain (FHNC) theory, emphasizing the role of the LOCV correlation functions. In this way, the central correlation functions are used in the LOCV formalism, for the Bethe homework problem. It is shown that the LOCV computations reasonably agree with those of FHNC. Moreover, the FHNC calculations are performed with the LOCV correlation functions. It is found that, assuming the LOCV or the parametrized correlation functions, the FHNC computations do not change significantly. So, one may conclude that the mentioned consistencies refer to the choice of the LOCV correlation functions. Because, the contribution of the many-body cluster terms can be ignored, if the LOCV correlation functions satisfy the normalization constraint. Then, using the AV 18 interaction, the operator-dependent (OD) correlation functions are employed in the LOCV calculations. Note that the LOCV OD correlation functions are obtained by averaging over the states. It turns out that the overall behaviour of the LOCV OD correlation functions are similar to those of FHNC. Although, due to the many-body effects which are considered in the FHNC calculations, the LOCV results fairly differ from those of FHNC. Finally, it is worth mentioning that, unlike the recent FHNC calculations, the spin-orbit-dependent correlation functions are included in the LOCV approach.
Thomson scattering from a three-component plasma.
Johnson, W R; Nilsen, J
2014-02-01
A model for a three-component plasma consisting of two distinct ionic species and electrons is developed and applied to study x-ray Thomson scattering. Ions of a specific type are assumed to be identical and are treated in the average-atom approximation. Given the plasma temperature and density, the model predicts mass densities, effective ionic charges, and cell volumes for each ionic type, together with the plasma chemical potential and free-electron density. Additionally, the average-atom treatment of individual ions provides a quantum-mechanical description of bound and continuum electrons. The model is used to obtain parameters needed to determine the dynamic structure factors for x-ray Thomson scattering from a three-component plasma. The contribution from inelastic scattering by free electrons is evaluated in the random-phase approximation. The contribution from inelastic scattering by bound electrons is evaluated using the bound-state and scattering wave functions obtained from the average-atom calculations. Finally, the partial static structure factors for elastic scattering by ions are evaluated using a two-component version of the Ornstein-Zernike equations with hypernetted chain closure, in which electron-ion interactions are accounted for using screened ion-ion interaction potentials. The model is used to predict the x-ray Thomson scattering spectrum from a CH plasma and the resulting spectrum is compared with experimental results obtained by Feltcher et al. [Phys. Plasmas 20, 056316 (2013)].
Spin polarization of two-dimensional electron system in parabolic potential
NASA Astrophysics Data System (ADS)
Miyake, Takashi; Totsuji, Chieko; Nakanishi, Kenta; Tsuruta, Kenji; Totsuji, Hiroo
2008-09-01
We analyze the ground state of the two-dimensional quantum system of electrons confined in a parabolic potential with the system size around 100 at 0 K. We map the system onto a classical system on the basis of the classical-map hypernetted-chain (CHNC) method which has been proven to work in the integral-equation-based analyses of uniform systems and apply classical Monte Carlo and molecular dynamics simulations. We find that, when we decrease the strength of confinement keeping the number of confined electrons fixed, the energy of the spin-polarized state with somewhat lower average density becomes smaller than that of the spin-unpolarized state with somewhat higher average density. This system thus undergoes the transition from the spin-unpolarized state to the spin polarized state and the corresponding critical value of r estimated from the average density is as low as r∼0.4 which is much smaller than the r value for the Wigner lattice formation. When we compare the energies of spin-unpolarized and spin-polarized states for given average density, our data give the critical r value for the transition between unpolarized and polarized states around 10 which is close to but still smaller than the known possibility of polarization at r∼27. The advantage of our method is a direct applicability to geometrically complex systems which are difficult to analyze by integral equations and this is an example.
28. MODIFIED CHAIN SAW FOR CUTTING ROCK CORES; BRUNTON COMPASS ...
28. MODIFIED CHAIN SAW FOR CUTTING ROCK CORES; BRUNTON COMPASS STAND FOR DETERMINING CORE'S FIELD ORIENTATION; INSECTICIDE DISPENSER MODIFIED TO LUBRICATE CORE DRILLING PROCESS. - U.S. Geological Survey, Rock Magnetics Laboratory, 345 Middlefield Road, Menlo Park, San Mateo County, CA
Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki
2016-12-21
Transparent TiO 2 /PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO 2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO 2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO 2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO 2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO 2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO 2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO 2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO 2 content and could be increased up to 1.566 for 6.3 vol % TiO 2 content (1.492 for pristine PMMA).
Liu, Chao; Liu, Weixiao; Ye, Yihong; Li, Wei
2017-01-01
Ubiquitination of a subset of proteins by ubiquitin chain elongation factors (E4), represented by Ufd2p in Saccharomyces cerevisiae, is a pivotal regulator for many biological processes. However, the mechanism of Ufd2p-mediated ubiquitination is largely unclear. Here, we show that Ufd2p catalyses K48-linked multi-monoubiquitination on K29-linked ubiquitin chains assembled by the ubiquitin ligase (Ufd4p), resulting in branched ubiquitin chains. This reaction depends on the interaction of K29-linked ubiquitin chains with two N-terminal loops of Ufd2p. Only following the addition of K48-linked ubiquitin to substrates modified with K29-linked ubiquitin chains, can the substrates be escorted to the proteasome for degradation. We demonstrate that this ubiquitin chain linkage switching reaction is essential for ERAD, oleic acid and acid pH resistance in yeast. Thus, our results suggest that Ufd2p functions by switching ubiquitin chain linkages to allow the degradation of proteins modified with a ubiquitin linkage, which is normally not targeted to the proteasome. PMID:28165462
Optimization of the Synthesis of Structured Phosphatidylcholine with Medium Chain Fatty Acid.
Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Vernon-Carter, Eduardo J; García, Hugo S
2017-11-01
Structured phosphatidylcholine was successfully produced by acidolysis between phosphatidylcholine and free medium chain fatty acid, using phospholipase A 1 immobilized on Duolite A568. Response surface methodology was applied to optimize the reaction system using three process parameters: molar ratio of substrates (phosphatidylcholine to free medium chain fatty acid), enzyme loading, and reaction temperature. All parameters evaluated showed linear and quadratic significant effects on the production of modified phosphatidylcholine; molar ratio of substrates contributed positively, but temperature influenced negatively. Increased enzyme loading also led to increased production of modified phosphatidylcholine but only during the first 9 hours of the acidolysis reaction. Optimal conditions obtained from the model were a ratio of phosphatidylcholine to free medium chain fatty acid of 1:15, an enzyme loading of 12%, and a temperature of 45°C. Under these conditions a production of modified phosphatidylcholine of 52.98 % were obtained after 24 h of reaction. The prediction was confirmed from the verification experiments; the production of modified phosphatidylcholine was 53.02%, the total yield of phosphatidylcholine 64.28% and the molar incorporation of medium chain fatty acid was 42.31%. The acidolysis reaction was scaled-up in a batch reactor with a similar production of modified phosphatidylcholine, total yield of phosphatidylcholine and molar incorporation of medium chain fatty acid. Purification by column chromatography of the structured phosphatidylcholine yielded 62.53% of phosphatidylcholine enriched with 42.52% of medium chain fatty acid.
Likos, Christos N; Mladek, Bianca M; Gottwald, Dieter; Kahl, Gerhard
2007-06-14
We demonstrate the accuracy of the hypernetted chain closure and of the mean-field approximation for the calculation of the fluid-state properties of systems interacting by means of bounded and positive pair potentials with oscillating Fourier transforms. Subsequently, we prove the validity of a bilinear, random-phase density functional for arbitrary inhomogeneous phases of the same systems. On the basis of this functional, we calculate analytically the freezing parameters of the latter. We demonstrate explicitly that the stable crystals feature a lattice constant that is independent of density and whose value is dictated by the position of the negative minimum of the Fourier transform of the pair potential. This property is equivalent with the existence of clusters, whose population scales proportionally to the density. We establish that regardless of the form of the interaction potential and of the location on the freezing line, all cluster crystals have a universal Lindemann ratio Lf=0.189 at freezing. We further make an explicit link between the aforementioned density functional and the harmonic theory of crystals. This allows us to establish an equivalence between the emergence of clusters and the existence of negative Fourier components of the interaction potential. Finally, we make a connection between the class of models at hand and the system of infinite-dimensional hard spheres, when the limits of interaction steepness and space dimension are both taken to infinity in a particularly described fashion.
Advances in visual representation of molecular potentials.
Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen
2010-06-01
The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.
Solute-solvent cavity and bridge functions. I. Varying size of the solute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyalov, I., E-mail: ivan.vyalov@iit.it; Chuev, G., E-mail: genchuev@rambler.ru; Georgi, N., E-mail: georgi@mis.mpg.de
2014-08-21
In this work we present the results of the extensive molecular simulations of solute-solvent cavity and bridge functions. The mixtures of Lennard-Jones solvent with Lennard-Jones solute at infinite dilution are considered for different solute-solvent size ratios—up to 4:1. The Percus-Yevick and hypernetted chain closures deviate substantially from simulation results in the investigated temperature and density ranges. We also find that the behavior of the indirect and cavity correlation functions is non-monotonous within the hard-core region, but the latter can be successfully approximated by mean-field theory if the solute-solvent interaction energy is divided into repulsive and attractive contribution, according to Weeks-Chandler-Andersenmore » theory. Furthermore, in spite of the non-monotonous behavior of logarithm of the cavity function and the indirect correlation function, their difference, i.e., the bridge function remains constant within the hard-core region. Such behavior of the bridge and indirect correlation functions at small distances and for small values of indirect correlation function is well known from the Duh-Haymet plots, where the non-unique relationship results in loops of the bridge function vs. indirect correlation function graphs. We show that the same pathological behavior appears also when distance is small and indirect correlation function is large. We further show that the unique functional behavior of the bridge function can be established when bridge is represented as a function of the renormalized, repulsive indirect correlation function.« less
Overcharging and charge reversal in the electrical double layer around the point of zero charge.
Guerrero-García, G Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Lozada-Cassou, Marcelo
2010-02-07
The ionic adsorption around a weakly charged spherical colloid, immersed in size-asymmetric 1:1 and 2:2 salts, is studied. We use the primitive model (PM) of an electrolyte to perform Monte Carlo simulations as well as theoretical calculations by means of the hypernetted chain/mean spherical approximation (HNC/MSA) and the unequal-radius modified Gouy-Chapman (URMGC) integral equations. Structural quantities such as the radial distribution functions, the integrated charge, and the mean electrostatic potential are reported. Our Monte Carlo "experiments" evidence that near the point of zero charge, the smallest ionic species is preferentially adsorbed onto the macroparticle, independently of the sign of the charge carried by this tiniest electrolytic component, giving rise to the appearance of the phenomena of charge reversal (CR) and overcharging (OC). Accordingly, colloidal CR, due to an excessive attachment of counterions, is observed when the macroion is slightly charged and the coions are larger than the counterions. In the opposite situation, i.e., if the counterions are larger than the coions, the central macroion acquires additional like-charge (coions) and hence becomes "overcharged," a feature theoretically predicted in the past [F. Jiménez-Angeles and M. Lozada-Cassou, J. Phys. Chem. B 108, 7286 (2004)]. In other words, here we present the first simulation data on OC in the PM electrical double layer, showing that close to the point of zero charge, this novel effect surges as a consequence of the ionic size asymmetry. We also find that the HNC/MSA theory captures well the CR and OC phenomena exhibited by the computer experiments, especially as the macroion's charge increases. On the contrary, even if URMGC also displays CR and OC, its predictions do not compare favorably with the Monte Carlo data, evidencing that the inclusion of hard-core correlations in Monte Carlo and HNC/MSA enhances and extends those effects. We explain our findings in terms of the energy-entropy balance. In the field of electrophoresis, it has been generally agreed that the charge of a colloid in motion is partially decreased by counterion adsorption. Depending on the location of the macroion's slipping surface, the OC results of this paper could imply an increase in the expected electrophoretic mobility. These observations aware about the interpretation of electrokinetic measurements using the standard Poisson-Boltzmann approximation beyond its validity region.
Zhang, Hao; Zhou, Xing; He, Jian; Wang, Tao; Luo, Xiaohu; Wang, Li; Wang, Ren; Chen, Zhengxing
2017-04-01
Recombinant amylosucrase from Neisseria polysaccharea was utilized to modify native and acid-thinned starches. The molecular structures and physicochemical properties of modified starches were investigated. Acid-thinned starch displayed much lower viscosity after gelatinization than did the native starch. However, the enzyme exhibited similar catalytic efficiency for both forms of starch. The modified starches had higher proportions of long (DP>33) and intermediate chains (DP 13-33), and X-ray diffraction showed a B-type crystalline structure for all modified starches. With increasing reaction time, the relative crystallinity and endothermic enthalpy of the modified starches gradually decreased, whereas the melting peak temperatures and resistant starch contents increased. Slight differences were observed in thermal parameters, relative crystallinity, and branch chain length distribution between the modified native and acid-thinned starches. Moreover, the digestibility of the modified starches was not affected by acid hydrolysis pretreatment, but was affected by the percentage of intermediate and long chains. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srienc, Friedrich; Jackson, John K.; Somers, David A.
A genetically engineered Pseudomonas oleovorans phaC1 polyhydroxyalkanoate (PHA) polymerase having tailored substrate specificity is provided. The modified PHA polymerase is preferably a "bispecific" PHA polymerase capable of copolymerizing a short chain length monomer and a medium chain length monomer is provided. Methods for making the modified PHA polymerase and for making nucleic acids encoding the modified PHA polymerase are also disclosed, as are methods of producing PHA using the modified PHA polymerase. The invention further includes methods to assay for altered substrate specificity.
Synthesis and analgesic activity of some side-chain modified anpirtoline derivatives.
Rádl, S; Hezky, P; Proska, J; Hejnová, L; Krejcí, I
2000-05-01
New derivatives of anpirtoline and deazaanpirtoline modified in the side chain have been synthesized. The series includes compounds 3 with side-chains containing piperidine or pyrrolidine rings, compounds 4 containing 8-azabicyclo[3.2.1]octane moiety, and compounds 5 having piperazine ring in their side-chains. Their receptor binding profiles (5-HT1A, 5-HT1B) and analgesic activity (hot plate, acetic acid induced writhing) have been studied. Optimized structures (PM3-MOPAC, Alchemy 2000, Tripos Inc.) of the synthesized compounds 3-5 were compared with that of anpirtoline.
On adaptive modified projective synchronization of a supply chain management system
NASA Astrophysics Data System (ADS)
Tirandaz, Hamed
2017-12-01
In this paper, the synchronization problem of a chaotic supply chain management system is studied. A novel adaptive modified projective synchronization method is introduced to control the behaviour of the leader supply chain system by a follower chaotic system and to adjust the leader system parameters until the measurable errors of the system parameters converge to zero. The stability evaluation and convergence analysis are carried out by the Lyapanov stability theorem. The proposed synchronization and antisynchronization techniques are studied for identical supply chain chaotic systems. Finally, some numerical simulations are presented to verify the effectiveness of the theoretical discussions.
Joung, In Suk; Luchko, Tyler; Case, David A.
2013-01-01
Using the dielectrically consistent reference interaction site model (DRISM) of molecular solvation, we have calculated structural and thermodynamic information of alkali-halide salts in aqueous solution, as a function of salt concentration. The impact of varying the closure relation used with DRISM is investigated using the partial series expansion of order-n (PSE-n) family of closures, which includes the commonly used hypernetted-chain equation (HNC) and Kovalenko-Hirata closures. Results are compared to explicit molecular dynamics (MD) simulations, using the same force fields, and to experiment. The mean activity coefficients of ions predicted by DRISM agree well with experimental values at concentrations below 0.5 m, especially when using the HNC closure. As individual ion activities (and the corresponding solvation free energies) are not known from experiment, only DRISM and MD results are directly compared and found to have reasonably good agreement. The activity of water directly estimated from DRISM is nearly consistent with values derived from the DRISM ion activities and the Gibbs-Duhem equation, but the changes in the computed pressure as a function of salt concentration dominate these comparisons. Good agreement with experiment is obtained if these pressure changes are ignored. Radial distribution functions of NaCl solution at three concentrations were compared between DRISM and MD simulations. DRISM shows comparable water distribution around the cation, but water structures around the anion deviate from the MD results; this may also be related to the high pressure of the system. Despite some problems, DRISM-PSE-n is an effective tool for investigating thermodynamic properties of simple electrolytes. PMID:23387564
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebato, Yuki; Miyata, Tatsuhiko, E-mail: miyata.tatsuhiko.mf@ehime-u.ac.jp
Ornstein-Zernike (OZ) integral equation theory is known to overestimate the excess internal energy, U{sup ex}, pressure through the virial route, P{sub v}, and excess chemical potential, μ{sup ex}, for one-component Lennard-Jones (LJ) fluids under hypernetted chain (HNC) and Kovalenko-Hirata (KH) approximatons. As one of the bridge correction methods to improve the precision of these thermodynamic quantities, it was shown in our previous paper that the method to apparently adjust σ parameter in the LJ potential is effective [T. Miyata and Y. Ebato, J. Molec. Liquids. 217, 75 (2016)]. In our previous paper, we evaluated the actual variation in the σmore » parameter by using a fitting procedure to molecular dynamics (MD) results. In this article, we propose an alternative method to determine the actual variation in the σ parameter. The proposed method utilizes a condition that the virial and compressibility pressures coincide with each other. This method can correct OZ theory without a fitting procedure to MD results, and possesses characteristics of keeping a form of HNC and/or KH closure. We calculate the radial distribution function, pressure, excess internal energy, and excess chemical potential for one-component LJ fluids to check the performance of our proposed bridge function. We discuss the precision of these thermodynamic quantities by comparing with MD results. In addition, we also calculate a corrected gas-liquid coexistence curve based on a corrected KH-type closure and compare it with MD results.« less
Direct Connection between the RII Chain and the Nonautonomous Discrete Modified KdV Lattice
NASA Astrophysics Data System (ADS)
Maeda, Kazuki; Tsujimoto, Satoshi
2013-11-01
The spectral transformation technique for symmetric RII polynomials is developed. Use of this technique reveals that the nonautonomous discrete modified KdV (nd-mKdV) lattice is directly connected with the RII chain. Hankel determinant solutions to the semi-infinite nd-mKdV lattice are also presented.
Alcohol's Effects on Lipid Bilayer Properties
Ingólfsson, Helgi I.; Andersen, Olaf S.
2011-01-01
Alcohols are known modulators of lipid bilayer properties. Their biological effects have long been attributed to their bilayer-modifying effects, but alcohols can also alter protein function through direct protein interactions. This raises the question: Do alcohol's biological actions result predominantly from direct protein-alcohol interactions or from general changes in the membrane properties? The efficacy of alcohols of various chain lengths tends to exhibit a so-called cutoff effect (i.e., increasing potency with increased chain length, which that eventually levels off). The cutoff varies depending on the assay, and numerous mechanisms have been proposed such as: limited size of the alcohol-protein interaction site, limited alcohol solubility, and a chain-length-dependent lipid bilayer-alcohol interaction. To address these issues, we determined the bilayer-modifying potency of 27 aliphatic alcohols using a gramicidin-based fluorescence assay. All of the alcohols tested (with chain lengths of 1–16 carbons) alter the bilayer properties, as sensed by a bilayer-spanning channel. The bilayer-modifying potency of the short-chain alcohols scales linearly with their bilayer partitioning; the potency tapers off at higher chain lengths, and eventually changes sign for the longest-chain alcohols, demonstrating an alcohol cutoff effect in a system that has no alcohol-binding pocket. PMID:21843475
NASA Astrophysics Data System (ADS)
Thees, Michael; Roth, Connie
How the glass transition and physical aging in thin films change with confinement is nontrival, with studies in the literature showing that these effects can be modified by various factors including chain adsorption to substrate interfaces and addition of diluents. Some studies indicate that addition of plasticizer appears to eliminate confinement effects such as Tg gradients and possibly impacts chain adsorption to substrates. In contrast, how plasticizer affects physical aging in glassy polymers has been largely unexplored experimentally, despite various theoretical and simulation efforts. Previously we have shown that for neat polystyrene (PS) films, with molecular weights MW < 3000 kg/mol, physical aging rates in thin films decrease with decreasing film thickness consistent with expectations from local Tg gradients. However, we have recently found that for very high molecular weights, MW > 7000 kg/mol, the physical aging rate in thin films was more bulk like, suggesting a diminished gradient in dynamics related to chain connectivity and possibly chain adsorption to the substrate interface. Here, we explore how the addition of dioctyl phthalate (DOP) plasticizer to PS can alter the physical aging rate of thin films and possibly modify the adsorbed layer.
Tuning the thermal conductivity of solar cell polymers through side chain engineering.
Guo, Zhi; Lee, Doyun; Liu, Yi; Sun, Fangyuan; Sliwinski, Anna; Gao, Haifeng; Burns, Peter C; Huang, Libai; Luo, Tengfei
2014-05-07
Thermal transport is critical to the performance and reliability of polymer-based energy devices, ranging from solar cells to thermoelectrics. This work shows that the thermal conductivity of a low band gap conjugated polymer, poly(4,8-bis-alkyloxybenzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-(alkylthieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl) (PBDTTT), for photovoltaic applications can be actively tuned through side chain engineering. Compared to the original polymer modified with short branched side chains, the engineered polymer using all linear and long side chains shows a 160% increase in thermal conductivity. The thermal conductivity of the polymer exhibits a good correlation with the side chain lengths as well as the crystallinity of the polymer characterized using small-angle X-ray scattering (SAXS) experiments. Molecular dynamics simulations and atomic force microscopy are used to further probe the molecular level local order of different polymers. It is found that the linear side chain modified polymer can facilitate the formation of more ordered structures, as compared to the branched side chain modified ones. The effective medium theory modelling also reveals that the long linear side chain enables a larger heat carrier propagation length and the crystalline phase in the bulk polymer increases the overall thermal conductivity. It is concluded that both the length of the side chains and the induced polymer crystallization are important for thermal transport. These results offer important guidance for actively tuning the thermal conductivity of conjugated polymers through molecular level design.
Ubiquitin Chains Modified by the Bacterial Ligase SdeA Are Protected from Deubiquitinase Hydrolysis.
Puvar, Kedar; Zhou, Yiyang; Qiu, Jiazhang; Luo, Zhao-Qing; Wirth, Mary J; Das, Chittaranjan
2017-09-12
The SidE family of Legionella pneumophila effectors is a unique group of ubiquitin-modifying enzymes. Along with catalyzing NAD + -dependent ubiquitination of certain host proteins independent of the canonical E1/E2/E3 pathway, they have also been shown to produce phosphoribosylated free ubiquitin. This modified ubiquitin product is incompatible with conventional E1/E2/E3 ubiquitination processes, with the potential to lock down various cellular functions that are dependent on ubiquitin signaling. Here, we show that in addition to free ubiquitin, Lys63-, Lys48-, Lys11-, and Met1-linked diubiquitin chains are also modified by SdeA in a similar fashion. Both the proximal and distal ubiquitin moieties are targeted in the phosphoribosylation reaction. Furthermore, this renders the ubiquitin chains unable to be processed by a variety of deubiquitinating enzymes. These observations broaden the scope of SdeA's modulatory functions during Legionella infection.
Detection of Genetically Modified Food: Has Your Food Been Genetically Modified?
ERIC Educational Resources Information Center
Brandner, Diana L.
2002-01-01
Explains the benefits and risks of genetically-modified foods and describes methods for genetically modifying food. Presents a laboratory experiment using a polymerase chain reaction (PCR) test to detect foreign DNA in genetically-modified food. (Contains 18 references.) (YDS)
Jan, Yih-Dean; Lee, Bor-Shiunn; Lin, Chun-Pin; Tseng, Wan-Yu
2014-04-01
Polymerization shrinkage is one of the main causes of dental restoration failure. This study tried to conjugate two diisocyanate side chains to dimethacrylate resins in order to reduce polymerization shrinkage and increase the hardness of composite resins. Diisocyanate, 2-hydroxyethyl methacrylate, and bisphenol A dimethacrylate were reacted in different ratios to form urethane-modified new resin matrices, and then mixed with 50 wt.% silica fillers. The viscosities of matrices, polymerization shrinkage, surface hardness, and degrees of conversion of experimental composite resins were then evaluated and compared with a non-modified control group. The viscosities of resin matrices increased with increasing diisocyanate side chain density. Polymerization shrinkage and degree of conversion, however, decreased with increasing diisocyanate side chain density. The surface hardness of all diisocyanate-modified groups was equal to or significantly higher than that of the control group. Conjugation of diisocyanate side chains to dimethacrylate represents an effective means of reducing polymerization shrinkage and increasing the surface hardness of dental composite resins. Copyright © 2012. Published by Elsevier B.V.
Toledo-Jaldin, Helen Paola; Blanco-Flores, Alien; Sánchez-Mendieta, Víctor; Martín-Hernández, Osnieski
2017-08-30
Removal potentials of a surfactant modified zeolite (SMZ) and clay (SMC) for atrazine adsorption were evaluated. Materials were modified with hexadecyl trimethyl ammonium bromide (HDTMA-Br) and benzyl octadecyl dimethyl ammonium (BODA) chloride considering the critical micellar concentration (CMC) of each one (0.94 and 0.041 meq/L, respectively). The influence of the surfactant was analyzed in detail, particularly the formation of surfactant layers (complete or partial) connected with the length of the surfactant tail (16 and 18 methyl groups or number of carbons in the chain). Raw materials were characterized by XRD and Fourier transform infrared spectroscopy (FTIR), SMZ and SMC were analyzed by FTIR. Results obtained from kinetic adsorption experiments shown that equilibrium time is less for materials modified with HDTMA (8 h) than materials with BODA (10 and 12 h). Materials modified with the largest chain surfactant (BODA) showed more resistance to atrazine masse transference. The chemisorption was presented in the adsorption mechanisms of atrazine and adsorbent materials. Based on the results of adsorption isotherms Langmuir isotherms showed the better correlation coefficients value. The q max is greater for materials modified with BODA (0.9232 and 4.2448 mg/g) than for materials modified with HDTMA (0.6731 and 3.9121 mg/g). Therefore, SMZ and SMC modified with the largest chain surfactant has more affinity for the pesticide. The removal process at high concentration of atrazine depends of the partition process but at lower concentration, it occurs not only by this process but also by absorption process.
Tomanov, Konstantin; Nehlin, Lilian; Ziba, Ionida
2018-01-01
The small ubiquitin-related modifier (SUMO) conjugation apparatus usually attaches single SUMO moieties to its substrates, but SUMO chains have also been identified. To better define the biochemical requirements and characteristics of SUMO chain formation, mutations in surface-exposed Lys residues of Arabidopsis SUMO-conjugating enzyme (SCE) were tested for in vitro activity. Lys-to-Arg changes in the amino-terminal region of SCE allowed SUMO acceptance from SUMO-activating enzyme and supported substrate mono-sumoylation, but these mutations had significant effects on SUMO chain assembly. We found no indication that SUMO modification of SCE promotes chain formation. A substrate was identified that is modified by SUMO chain addition, showing that SCE can distinguish substrates for either mono-sumoylation or SUMO chain attachment. It is also shown that SCE with active site Cys mutated to Ser can accept SUMO to form an oxyester, but cannot transfer this SUMO moiety onto substrates, explaining a previously known dominant negative effect of this mutation. PMID:29133528
NASA Astrophysics Data System (ADS)
Fischer, R.; Richardi, J.; Fries, P. H.; Krienke, H.
2002-11-01
Structural properties and energies of solvation are simulated for alkali and halide ions. The solvation structure is discussed in terms of various site-site distribution functions, of solvation numbers, and of orientational correlation functions of the solvent molecules around the ions. The solvent polarizability has notable effects which cannot be intuitively predicted. In particular, it is necessary to reproduce the experimental solvation numbers of small ions. The changes of solvation properties are investigated along the alkali and halide series. By comparing the solvation of ions in acetone to that in acetonitrile, it is shown that the spatial correlations among the solvent molecules around an ion result in a strong screening of the ion-solvent direct intermolecular potential and are essential to understand the changes in the solvation structures and energies between different solvents. The solvation properties derived from the simulations are compared to earlier predictions of the hypernetted chain (HNC) approximation of the molecular Ornstein-Zernike (MOZ) theory [J. Richardi, P. H. Fries, and H. Krienke, J. Chem. Phys. 108, 4079 (1998)]. The MOZ(HNC) formalism gives an overall qualitatively correct picture of the solvation and its various unexpected findings are corroborated. For the larger ions, its predictions become quantitative. The MOZ approach allows to calculate solvent-solvent and ion-solvent potentials of mean force, which shed light on the 3D labile molecular and ionic architectures in the solution. These potentials of mean force convey a unique information which is necessary to fully interpret the angle-averaged structural functions computed from the simulations. Finally, simulations of solutions at finite concentrations show that the solvent-solvent and ion-solvent spatial correlations at infinite dilution are marginally altered by the introduction of fair amounts of ions.
Slavnov and Gaudin-Korepin formulas for models without U (1) symmetry: the XXX chain on the segment
NASA Astrophysics Data System (ADS)
Belliard, S.; Pimenta, R. A.
2016-04-01
We consider the isotropic spin -\\frac{1}{2} Heisenberg chain with the most general integrable boundaries. The scalar product between the on-shell Bethe vector and its off-shell dual, obtained by means of the modified algebraic Bethe ansatz, is given by a modified Slavnov formula. The corresponding Gaudin-Korepin formula, i.e., the square of the norm, is also obtained.
Hydrogen-peroxide-modified egg albumen for transparent and flexible resistive switching memory
NASA Astrophysics Data System (ADS)
Zhou, Guangdong; Yao, Yanqing; Lu, Zhisong; Yang, Xiude; Han, Juanjuan; Wang, Gang; Rao, Xi; Li, Ping; Liu, Qian; Song, Qunliang
2017-10-01
Egg albumen is modified by hydrogen peroxide with concentrations of 5%, 10%, 15% and 30% at room temperature. Compared with devices without modification, a memory cell of Ag/10% H2O2-egg albumen/indium tin oxide exhibits obviously enhanced resistive switching memory behavior with a resistance ratio of 104, self-healing switching endurance for 900 cycles and a prolonged retention time for a 104 s @ 200 mV reading voltage after being bent 103 times. The breakage of massive protein chains occurs followed by the recombination of new protein chain networks due to the oxidation of amidogen and the synthesis of disulfide during the hydrogen peroxide modifying egg albumen. Ions such as Fe3+, Na+, K+, which are surrounded by protein chains, are exposed to the outside of protein chains to generate a series of traps during the egg albumen degeneration process. According to the fitting results of the double logarithm I-V curves and the current-sensing atomic force microscopy (CS-AFM) images of the ON and OFF states, the charge transfer from one trap center to its neighboring trap center is responsible for the resistive switching memory phenomena. The results of our work indicate that hydrogen- peroxide-modified egg albumen could open up a new avenue of biomaterial application in nanoelectronic systems.
A Langevin dynamics simulation study of the tribology of polymer loop brushes.
Yin, Fang; Bedrov, Dmitry; Smith, Grant D; Kilbey, S Michael
2007-08-28
The tribology of surfaces modified with doubly bound polymer chains (loops) has been investigated in good solvent conditions using Langevin dynamics simulations. The density profiles, brush interpenetration, chain inclination, normal forces, and shear forces for two flat substrates modified by doubly bound bead-necklace polymers and equivalent singly bound polymers (twice as many polymer chains of 12 the molecular weight of the loop chains) were determined and compared as a function of surface separation, grafting density, and shear velocity. The doubly bound polymer layers showed less interpenetration with decreasing separation than the equivalent singly bound layers. Surprisingly, this difference in interpenetration between doubly bound polymer and singly bound polymer did not result in decreased friction at high shear velocity possibly due to the decreased ability of the doubly bound chains to deform in response to the applied shear. However, at lower shear velocity, where deformation of the chains in the flow direction is less pronounced and the difference in interpenetration is greater between the doubly bound and singly bound chains, some reduction in friction was observed.
Li, Yingchun; Jia, Shuai; Du, Shuanli; Wang, Yafei; Lv, Lida; Zhang, Jianbin
2018-06-01
An approach originated from preparing long chain branched polypropylene (PP) was applied to modify the properties of recycled PP that involved reactive extrusion to introduce a branched chain structure onto recycled PP under the assistance of chemical reaction between maleic anhydride (MAH) monomer and glycidyl methacrylate (GMA) grafts. The results from Fourier transformed infrared spectroscopy (FTIR) indicated the reaction took place during melt mixing, and the intensity of ester increased with increasing amount of MAH. Several rheological plots including complex viscosity, storage modulus, loss modulus, loss tangent and Cole-Cole plot were used to investigate the rheological properties of recycled PP and modified PP with MAH, which indicated an additional longer relaxation time that was not shown in recycled PP. The effects of branched structure on melting and crystallization behaviors were also investigated, demonstrating the branched chains acted as nucleating agent. Moreover, the branched structure of modified samples gave rise to enhance mechanical properties, especially, the higher impact strength compared with recycled PP. Copyright © 2018 Elsevier Ltd. All rights reserved.
Perlin, Pesach; Gharakhanian, Eric G; Deming, Timothy J
2018-06-12
Homoallylglycine N-carboxyanhydride, Hag NCA, monomers were synthesized and used to prepare polypeptides containing Hag segments with controllable lengths of up to 245 repeats. Poly(l-homoallylglycine), GHA, was found to adopt an α-helical conformation, which provided good solubility in organic solvents and allowed high yield functionalization of its alkene side-chains via radical promoted addition of thiols. The conformations of these derivatives were shown to be switchable between α-helical and disordered states in aqueous media using thioether alkylation or oxidation reactions. Incorporation of GHA segments into block copolymers with poly(l-methionine), M, segments provided a means to orthogonally modify thioether side-chains different ways in separate copolypeptide domains. This approach allows preparation of functional polypeptides containing discrete domains of oxidized and alkylated thioether containing residues, where chain conformation and functionality of each domain can be independently modified.
Preparation and mechanical properties of modified nanocellulose/PLA composites from cassava residue
NASA Astrophysics Data System (ADS)
Huang, Lijie; Zhang, Xiaoxiao; Xu, Mingzi; Chen, Jie; Shi, Yinghan; Huang, Chongxing; Wang, Shuangfei; An, Shuxiang; Li, Chunying
2018-02-01
Nanocellulose was prepared by a mechanochemical method using cassava residue as a raw material and phosphoric acid as the auxiliary agent. The prepared nanocellulose was hydrophobically modified with stearic acid to improve its dispersibility. This modified nanocellulose was added to polylactic acid (PLA) film-forming liquids at concentrations of 0%, 0.5%, 1.0%, 1.5% and 2.0%, and the effect of modified nanocellulose on the mechanical properties of polylactic acid (PLA) films were investigated. When at least 0.5% modified nanocellulose is added, more active groups of modified nanocellulose are adsorbed onto the PLA molecular chain. Although the tensile strength of the film is only improved by 13.59%, the flexibility of the film decreases, and the elastic modulus decreases by 28.91%. When 1% modified nanocellulose is added, the modified nanocellulose and PLA are tangled together through molecular chains and they co-crystallize to form a stable network structure. The tensile strength of the nanocomposite films is enhanced by 40.03%, the elastic modulus is enhanced by 55.65%, and the flexibility of the film decreases.
Verifying the Hanging Chain Model
ERIC Educational Resources Information Center
Karls, Michael A.
2013-01-01
The wave equation with variable tension is a classic partial differential equation that can be used to describe the horizontal displacements of a vertical hanging chain with one end fixed and the other end free to move. Using a web camera and TRACKER software to record displacement data from a vibrating hanging chain, we verify a modified version…
Li, Wei-Shi; Saeki, Akinori; Yamamoto, Yohei; Fukushima, Takanori; Seki, Shu; Ishii, Noriyuki; Kato, Kenichi; Takata, Masaki; Aida, Takuzo
2010-07-05
To tailor organic p/n heterojunctions with molecular-level precision, a rational design strategy using side-chain incompatibility of a covalently connected donor-acceptor (D-A) dyad has been successfully carried out. An oligothiophene-perylenediimide dyad, when modified with triethylene glycol side chains at one terminus and dodecyl side chains at the other (2(Amphi)), self-assembles into nanofibers with a long-range D/A heterojunction. In contrast, when the dyad is modified with dodecyl side chains at both termini (2(Lipo)), ill-defined microfibers result. In steady-state measurements using microgap electrodes, a cast film of the nanofiber of 2(Amphi) displays far better photoconducting properties than that of the microfiber of 2(Lipo). Flash-photolysis time-resolved microwave conductivity measurements, in conjunction with transient absorption spectroscopy, clearly indicate that the nanofiber of 2(Amphi) intrinsically allows for better carrier generation and transport properties than the microfibrous assembly of 2(Lipo).
Padala, Prasanth; Soudah, Nadine; Giladi, Moshe; Haitin, Yoni; Isupov, Michail N; Wiener, Reuven
2017-12-08
The ability of ubiquitin to function in a wide range of cellular processes is ascribed to its capacity to cause a diverse spectrum of modifications. While a target protein can be modified with monoubiquitin, it can also be modified with ubiquitin chains. The latter include seven types of homotypic chains as well as mixed ubiquitin chains. In a mixed chain, not all the isopeptide bonds are restricted to a specific lysine of ubiquitin, resulting in a chain possessing more than one type of linkage. While structural characterization of homotypic chains has been well elucidated, less is known about mixed chains. Here we present the crystal structure of a mixed tri-ubiquitin chain at 3.1-Å resolution. In the structure, the proximal ubiquitin is connected to the middle ubiquitin via K48 and these two ubiquitins adopt a compact structure as observed in K48 di-ubiquitin. The middle ubiquitin links to the distal ubiquitin via its K63 and these ubiquitins adopt two conformations, suggesting a flexible structure. Using small-angle X-ray scattering, we unexpectedly found differences between the conformational ensembles of the above tri-ubiquitin chains and chains possessing the same linkages but in the reverse order. In addition, cleavage of the K48 linkage by DUB is faster if this linkage is at the distal end. Taken together, our results suggest that in mixed chains, not only the type of the linkages but also their sequence determine the structural and functional properties of the chain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Exploring ways to control the properties of polymer thin films
NASA Astrophysics Data System (ADS)
Clough, Andrew R.
Understanding the causes of deviations from bulk-like properties observed in polymer thin films is of interest both from a fundamental standpoint and in order to tailor the properties of polymer thin films used by industry as coatings and in the production of microelectronic devices. As thicknesses are decreased below 100 nm, interfacial effects start to become important. In addition, a confinement effect occurs when the film thickness becomes comparable to the unperturbed size of the polymer chain. In this thesis, we modify polymer films in a controllable way in order to study how some of these properties may be related and potentially adjusted. One of these properties is the glass transition temperature, which is seen to vary with the film thickness for films thinner than 100 nm. While there appears to be a consensus that the variation is attributable to the interactions the polymer has with the film interfaces, important questions concerning how the observed changes may affect the onset of large scale, liquid-like motions in the films have been seldom investigated. We modify the substrate interface with grafted polymer chains, which is known to instill interfacial slippage, to investigate the relation, if any, between the glass transition temperature and large scale chain motions in the films. As another part of the effort to find ways to control the properties of polymer films, we study the effect of swelling films with solvents of different qualities. Studies have shown that modifying the solvent quality used when preparing films by spin-coating, in which solvent from a polymer solution is rapidly removed to form thin uniform films, can affect some properties by modifying the degree of inter-chain entanglement in the film. As it is often difficult to spin-coat films when the solvent is poor, we investigate whether solvent swelling can also be used to modify this entanglement. We find that solvent swelling is able to modify the degree of entanglement in the films. Most importantly, swelling with a poor solvent allows us to reduce the degree of inter-chain entanglement, bringing the film further from equilibrium.
Primary structure of the hemoglobin beta-chain of rose-ringed parakeet (Psittacula krameri).
Islam, A; Persson, B; Zaidi, Z H; Jörnvall, H
1989-08-01
The primary structure of Rose-ringed Parakeet hemoglobin beta-chain was established, completing the analysis of this hemoglobin. Comparison with other avian beta-chains show variations smaller than those for the corresponding alpha-chains. There are 11 amino acid exchanges in relationship to the only other characterized psittaciform beta-chain, and a total of 35 positions are affected by differences among all avian beta-chains analyzed (versus 61 for the alpha-chains). At three positions, the Psittacula beta-chain has residues unique to this species. Three alpha 1 beta 1 contacts are modified, by substitutions at positions beta 51, beta 116, and beta 125.
USDA-ARS?s Scientific Manuscript database
Corn starch was modified with cyclodextrin glycosyltransferase (CGTase) below the gelatinization temperature. The porous, partially hydrolyzed, granules with or without CGTase hydrolysis products, cyclodextrins (CDs) and short chain maltodextrins, may be used as an alternative to modified corn starc...
Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain
NASA Astrophysics Data System (ADS)
Belliard, Samuel; Pimenta, Rodrigo A.
2015-12-01
We consider the XXX spin-1/2 Heisenberg chain on the circle with an arbitrary twist. We characterize its spectral problem using the modified algebraic Bethe anstaz and study the scalar product between the Bethe vector and its dual. We obtain modified Slavnov and Gaudin-Korepin formulas for the model. Thus we provide a first example of such formulas for quantum integrable models without U(1) symmetry characterized by an inhomogenous Baxter T-Q equation.
Lytras, Theodore; Georgakopoulou, Theano; Tsiodras, Sotirios
2018-01-01
Greece is currently experiencing a large measles outbreak, in the context of multiple similar outbreaks across Europe. We devised and applied a modified chain-binomial epidemic model, requiring very simple data, to estimate the transmission parameters of this outbreak. Model results indicate sustained measles transmission among the Greek Roma population, necessitating a targeted mass vaccination campaign to halt further spread of the epidemic. Our model may be useful for other countries facing similar measles outbreaks. PMID:29717695
Lytras, Theodore; Georgakopoulou, Theano; Tsiodras, Sotirios
2018-04-01
Greece is currently experiencing a large measles outbreak, in the context of multiple similar outbreaks across Europe. We devised and applied a modified chain-binomial epidemic model, requiring very simple data, to estimate the transmission parameters of this outbreak. Model results indicate sustained measles transmission among the Greek Roma population, necessitating a targeted mass vaccination campaign to halt further spread of the epidemic. Our model may be useful for other countries facing similar measles outbreaks.
CHANGES IN FERRITIN H- AND L-CHAINS IN CANINE LENSES WITH AGE-RELATED NUCLEAR CATARACT
Goralska, Małgorzata; Nagar, Steven; Colitz, Carmen M.H.; Fleisher, Lloyd N.; McGahan, M. Christine
2014-01-01
PURPOSE To determine potential differences in the characteristics of the iron storage protein, ferritin and its heavy (H) and light (L) subunits in fiber cells from cataractous and normal lenses of older dogs. METHODS Lens fiber cell homogenates were analyzed by SDS-PAGE and ferritin chains were immunodetected with ferritin chain-specific antibodies. Ferritin concentration was measured by ELISA. Immunohistochemistry was used to localize ferritin chains in lens sections. RESULTS The concentration of assembled ferritin was comparable in normal and cataractous lenses of similarly aged dogs. The ferritin L-chain detected in both lens types was modified and was about 11 kDa larger (30 kDa) than standard L-chain (19 kDa) purified from canine liver. The H-chain identified in cataractous fiber cells (29 kDa) differed from 21 kDa standard canine H-chain and from 12 kDa modified H-chain present in fiber cells of normal lenses. Histologic analysis revealed that the H-chain was distributed differently throughout cataractous lenses when compared to normal lenses. There was also a difference in subunit makeup of assembled ferritin between the two lens types. Ferritin from cataractous lenses contained more H-chain and bound 11-fold more iron than ferritin from normal lenses. CONCLUSIONS There are significant differences in the characteristics of ferritin H-chain and its distribution in canine cataractous lenses as compared to normal lenses. The higher content of H-chain in assembled ferritin allows this molecule to sequester more iron. In addition the accumulation of H-chain in deeper fiber layers of the lens may be part of a defense mechanism by which the cataractous lens limits iron-catalyzed oxidative damage. PMID:18708625
ERIC Educational Resources Information Center
Ross, Michael D.; Denegar, Craig R.; Winzenried, Jay A.
2001-01-01
Reviews the effects of open kinetic chain (OKC) and closed kinetic chain (CKC) exercise on anterior cruciate ligament (ACL) strain and patellofemoral joint stress, suggesting a combination of the two for quadriceps strengthening after ACL reconstruction. Both OKC and CKC exercises may be modified and implemented for quadriceps strengthening after…
Influence of ester-modified lipids on bilayer structure.
Villanueva, Diana Y; Lim, Joseph B; Klauda, Jeffery B
2013-11-19
Lipid membranes function as barriers for cells to prevent unwanted chemicals from entering the cell and wanted chemicals from leaving. Because of their hydrophobic interior, membranes do not allow water to penetrate beyond the headgroup region. We performed molecular simulations to examine the effects of ester-modified lipids, which contain ester groups along their hydrocarbon chains, on bilayer structure. We chose two lipids from those presented in Menger et al. [J. Am. Chem. Soc. 2006, 128, 14034] with ester groups in (1) the upper half of the lipid chain (MEPC) and (2) the middle and end of the lipid chain (MGPC). MGPC (30%)/POPC bilayers formed stable water pores of diameter 5-7 Å, but MGPC (22%)/POPC and MEPC (30%)/POPC bilayers did not form these defects. These pores were similar to those formed during electroporation; i.e., the head groups lined the pore and allowed water and ions to transport across the bilayer. However, we found that lateral organization of the MGPC lipids into clusters, instead of an electric field or charge disparity as in electroporation, was essential for pore formation. On the basis of this, we propose an overall mechanism for pore formation. The similarities between the ester-modified lipids and byproducts of lipid peroxidation with multiple hydrophilic groups in the middle of the chain suggest that free radical reactions with unsaturated lipids and sterols result in fundamental changes that may be similar to what is seen in bilayers with ester-modified lipids.
NASA Astrophysics Data System (ADS)
Dufal, Simon; Lafitte, Thomas; Haslam, Andrew J.; Galindo, Amparo; Clark, Gary N. I.; Vega, Carlos; Jackson, George
2015-05-01
An accurate representation of molecular association is a vital ingredient of advanced equations of state (EOSs), providing a description of thermodynamic properties of complex fluids where hydrogen bonding plays an important role. The combination of the first-order thermodynamic perturbation theory (TPT1) of Wertheim for associating systems with an accurate description of the structural and thermodynamic properties of the monomer fluid forms the basis of the statistical associating fluid theory (SAFT) family of EOSs. The contribution of association to the free energy in SAFT and related EOSs is very sensitive to the nature of intermolecular potential used to describe the monomers and, crucially, to the accuracy of the representation of the thermodynamic and structural properties. Here we develop an accurate description of the association contribution for use within the recently developed SAFT-VR Mie framework for chain molecules formed from segments interacting through a Mie potential [T. Lafitte, A. Apostolakou, C. Avendaño, A, Galindo, C. S. Adjiman, E. A. Müller, and G. Jackson, J. Chem. Phys. 139, 154504 (2013)]. As the Mie interaction represents a soft-core potential model, a method similar to that adopted for the Lennard-Jones potential [E. A. Müller and K. E. Gubbins, Ind. Eng. Chem. Res. 34, 3662 (1995)] is employed to describe the association contribution to the Helmholtz free energy. The radial distribution function (RDF) of the Mie fluid (which is required for the evaluation of the integral at the heart of the association term) is determined for a broad range of thermodynamic conditions (temperatures and densities) using the reference hyper-netted chain (RHNC) integral-equation theory. The numerical data for the association kernel of Mie fluids with different association geometries are then correlated for a range of thermodynamic states to obtain a general expression for the association contribution which can be applied for varying values of the Mie repulsive exponent. The resulting SAFT-VR Mie EOS allows for a much improved description of the vapour-liquid equilibria and single-phase properties of associating fluids such as water, methanol, ammonia, hydrogen sulphide, and their mixtures. A comparison is also made between the theoretical predictions of the degree of association for water and the extent of hydrogen bonding obtained from molecular simulations of the SPC/E and TIP4P/2005 atomistic models.
Fernández-Vega, Iván; García-Suárez, Olivia; García, Beatriz; Crespo, Ainara; Astudillo, Aurora; Quirós, Luis M
2015-10-20
Heparan sulfate proteoglycans (HSPGs) are complex molecules involved in the growth, invasion and metastatic properties of cancerous cells. This study analyses the alterations in the expression patterns of these molecules in right sided colorectal cancer (CRC), both metastatic and non-metastatic. Twenty right sided CRCs were studied. A transcriptomic approach was used, employing qPCR to analyze both the expression of the enzymes involved in heparan sulfate (HS) chains biosynthesis, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate (CS) chains, we include the study of the genes involved in the biosynthesis of these glycosaminoglycans. Immunohistochemical techniques were also used to analyze tissue expression of particular genes showing significant expression differences, of potential interest. Changes in proteoglycan core proteins differ depending on their location; those located intracellularly or in the extracellular matrix show very similar alteration patterns, while those located on the cell surface vary greatly depending on the nature of the tumor: glypicans 1, 3, 6 and betaglycan are affected in the non-metastatic tumors, whereas in the metastatic, only glypican-1 and syndecan-1 are modified, the latter showing opposing alterations in levels of RNA and of protein, suggesting post-transcriptional regulation in these tumors. Furthermore, in non-metastatic tumors, polymerization of glycosaminoglycan chains is modified, particularly affecting the synthesis of the tetrasaccharide linker and the initiation and elongation of CS chains, HS chains being less affected. Regarding the enzymes responsible for the modificaton of the HS chains, alterations were only found in non-metastatic tumors, affecting N-sulfation and the isoforms HS6ST1, HS3ST3B and HS3ST5. In contrast, synthesis of the CS chains suggests changes in epimerization and sulfation of the C4 and C2 in both types of tumor. Right sided CRCs show alterations in the expression of HSPGs, including the expression of the cell surface core proteins, many glycosiltransferases and some enzymes that modify the HS chains depending on the metastatic nature of the tumor, resulting more affected in non-metastatic ones. However, matrix proteoglycans and enzymes involved in CS fine structure synthesis are extensively modified independetly of the presence of lymph node metastasis.
NASA Astrophysics Data System (ADS)
Belyaev, Alexander; Sukhanov, Alexander; Tsvetkov, Alexander
2016-03-01
This article addresses the problem in which a chain falls from a glass from some height. This phenomenon demonstrates a paradoxical rise of the chain over the glass. To explain this effect, an initial hypothesis and an appropriate theory are proposed for calculating the steady fall parameters of the chain. For this purpose, the modified Cayley's problem of falling chain given its rise due to the centrifugal force of upward inertia is solved. Results show that the lift caused by an increase in linear density at the part of chain where it is being bent (the upper part) is due to the convergence of the chain balls to one another. The experiments confirm the obtained estimates of the lifting chain.
NASA Astrophysics Data System (ADS)
Khezri, Khezrollah; Fazli, Yousef
2017-10-01
Hydrophilic silica aerogel nanoparticles surface was modified with hexamethyldisilazane. Then, the resultant modified nanoparticles were used in random copolymerization of styrene and butyl acrylate via activators generated by electron transfer for atom transfer radical polymerization. Conversion and molecular weight determinations were performed using gas and size exclusion chromatography respectively. Addition of modified nanoparticles by 3 wt% results in a decrease of conversion from 68 to 46 %. Molecular weight of copolymer chains decreases from 12,500 to 7,500 g.mol-1 by addition of 3 wt% modified nanoparticles; however, PDI values increase from 1.1 to 1.4. Proton nuclear magnetic resonance spectroscopy results indicate that the molar ratio of each monomer in the copolymer chains is approximately similar to the initial selected mole ratio of them. Increasing thermal stability of the nanocomposites is demonstrated by thermal gravimetric analysis. Differential scanning calorimetry also shows a decrease in glass transition temperature by increasing modified silica aerogel nanoparticles.
USDA-ARS?s Scientific Manuscript database
Octenylsuccinic anhydride (OSA)-modified starches with degree of substitution of 0.018 (OS-S-L) and 0.092 (OS-S-H) were prepared from granular native waxy maize starch in an aqueous slurry system. The substitution distribution of OS groups was investigated by enzyme hydrolysis followed by chromatogr...
Fan, Jun-Bao; Arimoto, Kei-lchiro; Motamedchaboki, Khatereh; Yan, Ming; Wolf, Dieter A.; Zhang, Dong-Er
2015-01-01
As a ubiquitin-like modifier, ISG15 is conjugated to many cellular proteins in a process termed protein ISGylation. However, the crosstalk between protein ISGylation and the ubiquitin proteasome system is not fully understood. Here, we report that cellular ubiquitin is a substrate of ISG15 and Lys 29 on ubiquitin is the major ISG15 acceptor site. Using a model substrate, we demonstrate that ISG15 can modify ubiquitin, which is immobilized on its substrate, to form ISG15-ubiquitin mixed chains. Furthermore, our results indicate that ISG15-ubiquitin mixed chains do not serve as degradation signals for a ubiquitin fusion degradation substrate. Accordingly, an ISG15-ubiquitin fusion protein, which mimics an ISG15-ubiquitin mixed chain, negatively regulates cellular turnover of ubiquitylated proteins. In addition, ISG15-ubiquitin mixed chains, which are detectable on endogenously ubiquitylated proteins, dampen cellular turnover of these proteins. Thus, our studies unveil an unanticipated interplay between two protein modification systems and highlight its role in coordinating protein homeostasis. PMID:26226047
Peetla, Chiranjeevi; Labhasetwar, Vinod
2009-01-01
The aim of this study was to test the hypothesis that the molecular structure of cationic surfactants at the nanoparticle (NP)-interface influences the biophysical interactions of NPs with a model membrane and cellular uptake of NPs. Polystyrene NPs (surfactant free, 130 nm) were modified with cationic surfactants. These surfactants were of either dichained (didodecyldimethylammonium bromide [DMAB]) or single chained (cetyltrimethylammonium bromide [CTAB] and dodecyltrimethylammonium bromide [DTAB]) forms, the latter two with different hydrophobic chain lengths. Biophysical interactions of these surfactant-modified NPs with an endothelial cell model membrane (EMM) were studied using a Langmuir film balance. Changes in surface pressure (SP) of EMM as a function of time following interaction with NPs and in the compression isotherm (π - A) of the lipid mixture of EMM in the presence of NPs were analyzed. Langmuir-Schaeffer (LS) films, which are EMMs that have been transferred onto a suitable substrate, were imaged by atomic force microscopy (AFM), and the images were analyzed to determine the mechanisms of the NP-EMM interaction. DMAB-modified NPs showed a greater increase in SP and a shift towards higher mean molecular area (mmA) than CTAB- and DTAB-modified NPs, indicating stronger interactions of DMAB-modified NPs with the EMM. However, analysis of the AFM phase and height images of the LS films revealed that both DMAB- and CTAB-modified NPs interacted with the EMM but via different mechanisms: DMAB-modified NPs penetrated the EMM, thus explaining the increase in SP, whereas CTAB-modified NPs anchored onto the EMM's condensed lipid domains, and hence did not cause any significant change in SP. Human umbilical vein endothelial cells showed greater uptake of DMAB- and CTAB-modified NPs than of DTAB-modified or unmodified NPs. We conclude that (i) the dichained and single-chained cationic surfactants on NPs have different mechanisms of interaction with the model membrane and (ii) NPs that demonstrate greater biophysical interactions with the membrane also show greater cellular uptake. Biophysical interactions of NPs with a model membrane thus could be effectively used for developing nanocarriers with optimized surface properties for drug delivery and imaging applications. PMID:19161268
USDA-ARS?s Scientific Manuscript database
Pectins extracted from a variety of sources and modified with heat and/or pH have previously been shown to exhibit activity towards several cancer cell lines. However, the structural basis for the anti-cancer activity of modified pectin requires clarification. Sugar beet and citrus pectin extracts h...
Yang, Siwei; Sun, Jing; Zhu, Chong; He, Peng; Peng, Zheng; Ding, Guqiao
2016-02-07
The graphene quantum dot based fluorescent probe community needs unambiguous evidence about the control on the ion selectivity. In this paper, polyethylene glycol modified N-doped graphene quantum dots (PN-GQDs) were synthesized by alkylation reaction between graphene quantum dots and organic halides. We demonstrate the tunable selectivity and sensitivity by controlling the supramolecular recognition through the length and the end group size of the polyether chain on PN-GQDs. The relationship formulae between the selectivity/detection limit and polyether chains are experimentally deduced. The polyether chain length determines the interaction between the PN-GQDs and ions with different ratios of charge to radius, which in turn leads to a good selectivity control. Meanwhile the detection limit shows an exponential growth with the size of end groups of the polyether chain. The PN-GQDs can be used as ultrasensitive and selective fluorescent probes for Li(+), Na(+), K(+), Mg(2+), Ca(2+) and Sr(2+), respectively.
Hollins, P J; Nathan, M M
1979-01-01
Insulins of differing species, together with chemically modified insulins, were used in cross-reactivity experiments employing selected antisera raised to ox insulin in the Harley guinea-pig. The immunogen had been administered as a water-in-oil emulsion, using H. pertussis vaccine as adjuvant. Antibody was generated by determinants in the C-terminus of the B chain plus the adjacent N-terminus of the A chain, in the central core of the A chain (A8-A14 region) and in its anti-parallel N-terminus of the B chain. From this antibody pool chemically modified ox insulin selected antibody to unaltered determinants. The immunochemical data were compatible with monomeric ox insulin being immunogenic, the immunogen perhaps being recognized by the immune system in the form of the Molecule-II rather than the Molecule-I of the dimer pair (as originally suggested by X-ray crystallographic data). PMID:93526
Weinberg, Justin; Zhang, Shaojie; Kirkby, Allison; Shachar, Enosh; Carta, Giorgio; Przybycien, Todd
2018-04-20
We have proposed chemical modification of Protein A (ProA) chromatography ligands with polyethylene glycol (PEGylation) as a strategy to increase the resin selectivity and robustness by providing the ligand with a steric repulsion barrier against non-specific binding. Here, we report on robustness and selectivity benefits for Repligen CaptivA PriMAB resin with ligands modified with 5.2 kDa and 21.5 kDa PEG chains, respectively. PEGylation of ProA ligands allowed the resin to retain a higher percentage of static binding capacity relative to the unmodified resin upon digestion with chymotrypsin, a representative serine protease. The level of protection against digestion was independent of the PEG molecular weight or modification extent for the PEGylation chemistry used. Additionally, PEGylation of the ligands was found to decrease the level of non-specific binding of fluorescently labeled bovine serum albumin (BSA) aggregates to the surface of the resin particles as visualized via confocal laser scanning microscopy (CLSM). The level of aggregate binding decreased as the PEG molecular weight increased, but increasing the extent of modification with 5.2 kDa PEG chains had no effect. Further examination of resin particles via CLSM confirmed that the PEG chains on the modified ligands were capable of blocking the "hitchhiking" association of BSA, a mock contaminant, to an adsorbed mAb that is prone to BSA binding. Ligands modified with 21.5 kDa PEG chains were effective at blocking the association, while ligands modified with 5.2 kDa PEG chains were not. Finally, ligands with 21.5 kDa PEG chains increased the selectivity of the resin against host cell proteins (HCPs) produced by Chinese Hamster Ovary (CHO) cells by up to 37% during purification of a monoclonal antibody (mAb) from harvested cell culture fluid (HCCF) using a standard ProA chromatography protocol. The combined work suggests that PEGylating ProA chromatography media is a viable pathway for increasing both resin lifetime and host cell impurity clearance in downstream bioprocessing. Copyright © 2018 Elsevier B.V. All rights reserved.
Kniss, Andreas; Schuetz, Denise; Kazemi, Sina; Pluska, Lukas; Spindler, Philipp E; Rogov, Vladimir V; Husnjak, Koraljka; Dikic, Ivan; Güntert, Peter; Sommer, Thomas; Prisner, Thomas F; Dötsch, Volker
2018-02-06
Ubiquitination is the most versatile posttranslational modification. The information is encoded by linkage type as well as chain length, which are translated by ubiquitin binding domains into specific signaling events. Chain topology determines the conformational space of a ubiquitin chain and adds an additional regulatory layer to this ubiquitin code. In particular, processes that modify chain length will be affected by chain conformations as they require access to the elongation or cleavage sites. We investigated conformational distributions in the context of chain elongation and disassembly using pulsed electron-electron double resonance spectroscopy in combination with molecular modeling. Analysis of the conformational space of diubiquitin revealed conformational selection or remodeling as mechanisms for chain recognition during elongation or hydrolysis, respectively. Chain elongation to tetraubiquitin increases the sampled conformational space, suggesting that a high intrinsic flexibility of K48-linked chains may contribute to efficient proteasomal degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Liwei; Yu, Guangtao; Chen, Wei; Tu, Chunyun; Zhao, Xingang; Huang, Xuri
2014-06-14
Using density functional theory computations, employing the concept of a mixed π-conjugated bridge can effectively improve the first hyperpolarizability (β0) of Möbius cyclacene (MC)-based systems with a D-π-A framework. This mixed π-conjugated bridge is constructed by applying a -(CH=CH)x-NH2 or -(CH=CH)x-NO2 chain to modify [8]MC, which can lead to a considerable β0 value (e.g. [8]MC-(CH=CH)12-NO2 (9.87 × 10(5) au) with only a certain chain length), much larger than the sole [8]MC (261 au) and the corresponding NH2/NO2-modified polyethylene chain with the same π-conjugated length. It is revealed that the substituent sites and the chain length can play a crucial role in improving β0 values of these MC-chain systems, where the β0 value can monotonically increase with increasing -(CH=CH)x- length, and the substituent electron-withdrawing -(CH=CH)x-NO2 chain is superior to the parallel electron-donating -(CH=CH)x-NH2. These appealing findings can provide valuable insights into the design of novel NLO materials based on MC.
The study of poly(L-lactide) grafted silica nanoparticles on the film blowing of poly(L-lactide)
NASA Astrophysics Data System (ADS)
Wu, Feng; Liu, Zhengying; Yang, Mingbo
2015-05-01
PLA nanocomposites are prepared by us, and to better develop the function of silica nanoparticle, the surface of silica nanoparticles are modified by introducing PLA chains via "grafting to" method in our research. According to the results of 1H NMR and TGA, it shows that the PLA grafted Silica nanoparticles are successfully synthesized by controlling the reaction condition, and the molecular weight of the grafted PLA chains is relatively as high as 22 400 g/mol. PLA Nanocomposites with modified nanoparticles are prepared using a convenient melt blending method to guarantee well-distribution of the particles. The well-dispersion state of silica nanospheres is confirmed by Scan Electrical Micrograph (SEM) technology. From the dynamic shear rheology tests, the strain and time sweep both reveal that stability networks are formed in these nanocomposites. And the frequency sweep shows that the nanoparticles with long grafted chains dramatically enhanced the storage and viscosity of the pure PLA. The rheology testing suggests that strong particle-matrix interactions between molecularly/nano-level dispersed grafted silica and PLA chains formed; and the elongational viscosity of PLA has been markedly improved with the addition of the nanoparticle. The effect of modified nanoparticles on the thermal properties of PLA has also been studied by us using Differential Scanning Calorimetry (DSC). It reveals that the crystallization rate of PLA has been improved as the long grafted chains play as the nucleation sites for PLA. Finally based on these rheology and crystallization researches, the nanocomposites are used to prepare PLA blowing films. Compared to pure PLA and PLA/unmodified silica nanocomposites, the results show that the stability of the film blowing has been greatly improved and the blow-up ratio has been increased with the addition of PLA grafted nanoparticles. The modified nanoparticles hold significant candidates to improve the thermal stability and the processability of pure PLA, especially used as special processing agent in the field of PLA stretch shaping process.
Hsiung, H M; Sung, W L; Brousseau, R; Wu, R; Narang, S A
1980-01-01
A method for phosphorylating a protected deoxyribooligonucleotide containing phosphotriester linkages is described. The modified phosphotriester method of chemical synthesis is further refined in terms of (i) better final deblocking conditions and (ii) new chromatography solvent systems containing acetone-water-ethyl acetate to yield pure oligomers. The effectiveness of these improvements has been demonstrated in the rapid and efficient synthesis of seventeen fragments constituting the sequence of human insulin C-chain DNA. Images PMID:7008029
Dispersion relations for circular single and double dusty plasma chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tkachenko, D. V.; Misko, V. R.; Sheridan, T. E.
2011-10-15
We derive dispersion relations for a system of identical particles confined in a two-dimensional annular harmonic well and which interact through a Yukawa potential, e.g., a dusty plasma ring. When the particles are in a single chain (i.e., a one-dimensional ring), we find a longitudinal acoustic mode and a transverse optical mode which show approximate agreement with the dispersion relation for a straight configuration for large radii of the ring. When the radius decreases, the dispersion relations modify: there appears an anticrossing of the modes near the crossing point resulting in a frequency gap between the lower and upper branchesmore » of the modified dispersion relations. For the double chain (i.e., a two-dimensional zigzag configuration), the dispersion relation has four branches: longitudinal acoustic and optical and transverse acoustic and optical.« less
Dispersion relations for circular single and double dusty plasma chains
NASA Astrophysics Data System (ADS)
Tkachenko, D. V.; Sheridan, T. E.; Misko, V. R.
2011-10-01
We derive dispersion relations for a system of identical particles confined in a two-dimensional annular harmonic well and which interact through a Yukawa potential, e.g., a dusty plasma ring. When the particles are in a single chain (i.e., a one-dimensional ring), we find a longitudinal acoustic mode and a transverse optical mode which show approximate agreement with the dispersion relation for a straight configuration for large radii of the ring. When the radius decreases, the dispersion relations modify: there appears an anticrossing of the modes near the crossing point resulting in a frequency gap between the lower and upper branches of the modified dispersion relations. For the double chain (i.e., a two-dimensional zigzag configuration), the dispersion relation has four branches: longitudinal acoustic and optical and transverse acoustic and optical.
ERIC Educational Resources Information Center
Cargille, Brian; Branvold, Dwight
2000-01-01
Explains how Hewlett-Packard creates supply chain management innovations and effectively diffuses new technologies. Outlines how performance technologists help accelerate the diffusion and adoption of innovations by modifying innovations, define the client adoption path, create resources to lead clients through adoption, and improve the diffusion…
NASA Astrophysics Data System (ADS)
Hayashi, Tomohiko; Oshima, Hiraku; Harano, Yuichi; Kinoshita, Masahiro
2016-09-01
For neutral hard-sphere solutes, we compare the reduced density profile of water around a solute g(r), solvation free energy μ, energy U, and entropy S under the isochoric condition predicted by the two theories: dielectrically consistent reference interaction site model (DRISM) and angle-dependent integral equation (ADIE) theories. A molecular model for water pertinent to each theory is adopted. The hypernetted-chain (HNC) closure is employed in the ADIE theory, and the HNC and Kovalenko-Hirata (K-H) closures are tested in the DRISM theory. We also calculate g(r), U, S, and μ of the same solute in a hard-sphere solvent whose molecular diameter and number density are set at those of water, in which case the radial-symmetric integral equation (RSIE) theory is employed. The dependences of μ, U, and S on the excluded volume and solvent-accessible surface area are analyzed using the morphometric approach (MA). The results from the ADIE theory are in by far better agreement with those from computer simulations available for g(r), U, and μ. For the DRISM theory, g(r) in the vicinity of the solute is quite high and becomes progressively higher as the solute diameter d U increases. By contrast, for the ADIE theory, it is much lower and becomes further lower as d U increases. Due to unphysically positive U and significantly larger |S|, μ from the DRISM theory becomes too high. It is interesting that μ, U, and S from the K-H closure are worse than those from the HNC closure. Overall, the results from the DRISM theory with a molecular model for water are quite similar to those from the RSIE theory with the hard-sphere solvent. Based on the results of the MA analysis, we comparatively discuss the different theoretical methods for cases where they are applied to studies on the solvation of a protein.
Sexual Harassment DEOCS 4.1 Construct Validity Summary
2017-08-01
These items were modified to provide additional clarity regarding chain of command actions and response in the final survey . ** These items were...modified to provide additional clarity regarding indivduals from the respondent’s workplace in the final survey . 4 Conclusion The revised sexual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrabarti, Rajarshi; Bhowmick, Debajit; Bhargava, Varsha
2013-09-20
Highlights: •Nuclear pool of PIP5K is SUMOylated. •Enhancement of SUMOylated nuclear PIP5K during apoptosis. •Nuclear PIP5K is modified by polySUMO-1 during apoptosis. •Nuclear PIP5K is modified by polySUMO-2 chain during apoptosis. -- Abstract: Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool ofmore » PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis.« less
Interactions between Therapeutic Proteins and Acrylic Acid Leachable.
Liu, Dengfeng; Nashed-Samuel, Yasser; Bondarenko, Pavel V; Brems, David N; Ren, Da
2012-01-01
Leachables are chemical compounds that migrate from manufacturing equipment, primary containers and closure systems, and packaging components into biopharmaceutical and pharmaceutical products. Acrylic acid (at concentration around 5 μg/mL) was detected as leachable in syringes from one of the potential vendors (X syringes). In order to evaluate the potential impact of acrylic acid on therapeutic proteins, an IgG 2 molecule was filled into a sterilized X syringe and then incubated at 45 °C for 45 days in a pH 5 acetate buffer. We discovered that acrylic acid can interact with proteins at three different sites: (1) the lysine side chain, (2) the N-terminus, and (3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed. Even thought a small amount (from 0.02% to 0.3%) of protein was found to be modified by acrylic acid, the modified protein can potentially be harmful due to the toxicity of acrylic acid. After being modified by acrylic acid, the properties of the therapeutic protein may change due to charge and hydrophobicity variations. Acrylic acid was detected to migrate from syringes (Vendor X) into a therapeutic protein solution (at a concentration around 5 μg/mL). In this study, we discovered that acrylic acid can modify proteins at three different sites: (1) the lysine side chain, 2) the N-terminus, and 3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed.
Brodmann, Peter D; Ilg, Evelyn C; Berthoud, Hélène; Herrmann, Andre
2002-01-01
Quantitative detection methods are needed for enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients. This labeling threshold, which is set to 1% in the European Union and Switzerland, must be applied to all approved GMOs. Four different varieties of maize are approved in the European Union: the insect-resistant Bt176 maize (Maximizer), Btl 1 maize, Mon810 (YieldGard) maize, and the herbicide-tolerant T25 (Liberty Link) maize. Because the labeling must be considered individually for each ingredient, a quantitation system for the endogenous maize content is needed in addition to the GMO-specific detection systems. Quantitative real-time polymerase chain reaction detection methods were developed for the 4 approved genetically modified maize varieties and for an endogenous maize (invertase) gene system.
Sequence determination of synthesized chondroitin sulfate dodecasaccharides.
Shioiri, Tatsumasa; Tsuchimoto, Jun; Watanabe, Hideto; Sugiura, Nobuo
2016-06-01
Chondroitin sulfate (CS) is a linear acidic polysaccharide composed of repeating disaccharide units of glucuronic acid and N-acetyl-d-galactosamine. The polysaccharide is modified with sulfate groups at different positions by a variety of sulfotransferases. CS chains exhibit various biological and pathological functions by interacting with cytokines and growth factors and regulating their signal transduction. The fine structure of the CS chain defines its specific biological roles. However, structural analysis of CS has been restricted to disaccharide analysis, hampering the understanding of the structure-function relationship of CS chains. Here, we chemo-enzymatically synthesized CS dodecasaccharides having various sulfate modifications using a bioreactor system of bacterial chondroitin polymerase mutants and various CS sulfotransferases. We developed a sequencing method for CS chains using the CS dodecasaccharides. The method consists of (i) labeling a reducing end with 2-aminopyridine (PA), (ii) partial digestion of CS with testicular hyaluronidase, followed by separation of PA-conjugated oligosaccharides with different chain lengths, (iii) limited digestion of these oligosaccharides with chondroitin lyase AC II into disaccharides, followed by labeling with 2-aminobenzamide, (iv) CS disaccharide analysis using a dual-fluorescence HPLC system (reversed-phase ion-pair and ion-exchange chromatography), and (v) estimation of the composition by calculating individual disaccharide ratios. This CS chain sequencing allows characterization of CS-modifying enzymes and provides a useful tool toward understanding the structure-function relationship of CS chains. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Stochastic thermodynamics for Ising chain and symmetric exclusion process.
Toral, R; Van den Broeck, C; Escaff, D; Lindenberg, Katja
2017-03-01
We verify the finite-time fluctuation theorem for a linear Ising chain in contact with heat reservoirs at its ends. Analytic results are derived for a chain consisting of two spins. The system can be mapped onto a model for particle transport, namely, the symmetric exclusion process in contact with thermal and particle reservoirs. We modify the symmetric exclusion process to represent a thermal engine and reproduce universal features of the efficiency at maximum power.
Molecular Basis and Genetic Modifiers of Thalassemia.
Mettananda, Sachith; Higgs, Douglas R
2018-04-01
Thalassemia is a disorder of hemoglobin characterized by reduced or absent production of one of the globin chains in human red blood cells with relative excess of the other. Impaired synthesis of β-globin results in β-thalassemia, whereas defective synthesis of α-globin leads to α-thalassemia. Despite being a monogenic disorder, thalassemia exhibits remarkable clinical heterogeneity that is directly related to the intracellular imbalance between α- and β-like globin chains. Novel insights into the genetic modifiers have contributed to the understanding of the correlation between genotype and phenotype and are being explored as therapeutic pathways to cure this life-limiting disease. Copyright © 2017 Elsevier Inc. All rights reserved.
The effect of elastomer chain length on properties of silicone-modified polyimide adhesives
NASA Technical Reports Server (NTRS)
St.clair, A. K.; St.clair, T. L.; Ezzell, S.
1981-01-01
A series of polyimides containing silicone elastomers was synthesized in order to study the effects of the elastomer chain length on polymer properties. The elastomer with repeat units varying from n=10 to 105 was chemically reacted into the backbone of an addition polyimide oligomer via reactive aromatic amine groups. Glass transition temperatures of the elastomer and polyimide phases were observed by torsional braid analysis. The elastomer-modified polyimides were tested as adhesives for bonding titanium in order to determine their potential for aerospace applications. Adhesive lap shear tests were performed before and after aging bonded specimens at elevated temperatures.
Furnival, Ariadne Chloë; Pinheiro, Sônia Maria
2008-01-01
At a time when genetically modified (GM) crops are entering the Brazilian food chain, we present the findings of a study that makes use of a qualitative technique involving focal groups to look into the public's interpretation of the information available about this biotechnological innovation. This methodology produced results that revealed the interconnections drawn by the research subjects between this form of biotechnology, changes to the environment, and food production in general. The mistrust expressed about GM crops was particularly attributed by the participants to the non-availability of comprehensible information in the mass media or on product labels.
Jiang, Huan; Miao, Ming; Ye, Fan; Jiang, Bo; Zhang, Tao
2014-04-01
In this study, partial 4-α-glucanotransferase (4αGT) treatment was used to modulate the fine structure responsible for the slow digestion and resistant property of starch. Normal corn starch modified using 4αGT for 4h showed an increase of slowly digestible starch from 9.40% to 20.92%, and resistant starch from 10.52 to 17.63%, respectively. The 4αGT treatment decreased the content of amylose from 32.6% to 26.8%. The molecular weight distribution and chain length distribution of 4αGT-treated starch showed a reduction of molecular weight and a great number of short (DP<13) and long (DP>30) chains through cleaving and reorganization of starch molecules. Both the short and long chain fractions of modified amylopectin were attributed to the low in vitro digestibility. The viscosity was inversely related to the digestibility of the 4αGT-treated starch. These results suggested that the 4αGT modified starch synthesized the novel amylopectin clusters with slow digestible and resistant character. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Safe and efficient pH sensitive tumor targeting modified liposomes with minimal cytotoxicity.
Wang, Lilin; Geng, Di; Su, Haijia
2014-11-01
Incorporating the pH-sensitivity of octylamine grafted poly aspartic acid (PASP) with the biocompatibility of liposomes, a novel pH sensitive drug delivery system, octylamine-graft-PASP (PASP-g-C8) modified liposomes (OPLPs), was obtained. Since hydrophobic chains have been grafted into PASP backbones, the octylamine chain could act as the "anchor" to implant onto liposomes. The structure of PASP-g-C8, involving long-chain and hydrophobic anchors can significantly enhance the stability of the drug carrier. The shortcoming of single PASP chain modified liposomes (PLPs), that cannot sustain a slow and controlled release especially in a physiological pH solution (resembling normal tissues of pH 7.4) is thus overcome. Drug release experiments were carried out and the result showed that OPLPs sustained a slow and steady release in comparison with PLPs in the physiological pH 7.4 environment. However, OPLPs can provide a fast release in subacid environment (pH 5.0 of resembled tumor tissues). The results of diameter analysis and zeta potential demonstrated that OPLPs presented a larger diameter and higher electronegativity. Furthermore, in the "chain-anchor" structure of PASP-g-C8, the degree of substitution (DS) of the "anchor" is a remarkable factor to alter the pH-sensitivity of OPLPs. The in vitro tumor inhibition and cell toxicity studies revealed that tumor cells treated with OPLPs survived only 35.0% after 48 h whereas normal cells survived 100% in the same condition. The pH sensitive OPLPs are promising tumor targeting drug delivery with high tumor inhibition and insignificant cytotoxicity. Copyright © 2014. Published by Elsevier B.V.
Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4
Xu, Yingqi; Plechanovová, Anna; Simpson, Peter; Marchant, Jan; Leidecker, Orsolya; Kraatz, Sebastian; Hay, Ronald T.; Matthews, Steve J.
2014-01-01
The small ubiquitin-like modifier (SUMO) can form polymeric chains that are important signals in cellular processes such as meiosis, genome maintenance and stress response. The SUMO-targeted ubiquitin ligase RNF4 engages with SUMO chains on linked substrates and catalyses their ubiquitination, which targets substrates for proteasomal degradation. Here we use a segmental labelling approach combined with solution nuclear magnetic resonance (NMR) spectroscopy and biochemical characterization to reveal how RNF4 manipulates the conformation of the SUMO chain, thereby facilitating optimal delivery of the distal SUMO domain for ubiquitin transfer. PMID:24969970
Olafson, Katy N; Nguyen, Tam Q; Vekilov, Peter G; Rimer, Jeffrey D
2017-10-04
A versatile approach to control crystallization involves the use of modifiers, which are additives that interact with crystal surfaces and alter their growth rates. Elucidating a modifier's binding specificity to anisotropic crystal surfaces is a ubiquitous challenge that is critical to their design. In this study, we select hematin, a byproduct of malaria parasites, as a model system to examine the complementarity of modifiers (i.e., antimalarial drugs) to β-hematin crystal surfaces. We divide two antimalarials, chloroquine and amodiaquine, into segments consisting of a quinoline base, common to both drugs, and side chains that differentiate their modes of action. Using a combination of scanning probe microscopy, bulk crystallization, and analytical techniques, we show that the base and side chain work synergistically to reduce the rate of hematin crystallization. In contrast to general observations that modifiers retain their function upon segmentation, we show that the constituents do not act as modifiers. A systematic study of quinoline isomers and analogues shows how subtle rearrangement and removal of functional moieties can create effective constituents from previously ineffective modifiers, along with tuning their inhibitory modes of action. These findings highlight the importance of specific functional moieties in drug compounds, leading to an improved understanding of modifier-crystal interactions that could prove to be applicable to the design of new antimalarials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pontikis, R; Benhida, R; Aubertin, A M; Grierson, D S; Monneret, C
1997-06-06
A series of 33 N-1 side chain-modified analogs of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (1, HEPT) were synthesized and evaluated for their anti-HIV-1 activity. In particular, the influence of substitution of the terminal hydroxy group of the acyclic structure of HEPT and the structural rigidity of this side chain were investigated. Halo (7, 8), azido (9), and amino (10-15) derivatives were synthesized from HEPT via the p-tosylate derivative 6. Acylation of the primary amine 15 afforded the amido analogs 16-20. The diaryl derivatives 26-29 were prepared by reaction of HEPT, or of the 6-(2-pyridylthio) analog 23, with diaryl disulfides in the presence of tri-n-butylphosphine. Compounds 39-41, in which the N-1 side chain is rigidified by incorporation of an E-configured double bond, were obtained by palladium(0)-catalyzed coupling of several different 6-(arylthio)uracil derivatives (37, 38) with allyl acetates 33. Compounds 13, 40a,c,d,f, and 41, incorporating an aromatic ring at the end of the acyclic side chain, were found to be more potent than the known diphenyl-substituted HEPT analog BPT (2), two of them, 40c,d, being 10-fold more active.
Foley, Kendra C; Spear, Timothy T; Murray, David C; Nagato, Kaoru; Garrett-Mayer, Elizabeth; Nishimura, Michael I
2017-06-16
T cell receptor (TCR)-gene-modified T cells for adoptive cell transfer can mediate objective clinical responses in melanoma and other malignancies. When introducing a second TCR, mispairing between the endogenous and introduced α and β TCR chains limits expression of the introduced TCR, which can result in impaired efficacy or off-target reactivity and autoimmunity. One approach to promote proper TCR chain pairing involves modifications of the introduced TCR genes: introducing a disulfide bridge, substituting murine for human constant regions, codon optimization, TCR chain leucine zipper fusions, and a single-chain TCR. We have introduced these modifications into our hepatitis C virus (HCV) reactive TCR and utilize a marker gene, CD34t, which allows us to directly compare transduction efficiency with TCR expression and T cell function. Our results reveal that of the TCRs tested, T cells expressing the murine Cβ2 TCR or leucine zipper TCR have the highest levels of expression and the highest percentage of lytic and interferon-γ (IFN-γ)-producing T cells. Our studies give us a better understanding of how TCR modifications impact TCR expression and T cell function that may allow for optimization of TCR-modified T cells for adoptive cell transfer to treat patients with malignancies.
Research on the chemical mechanism in the polyacrylate latex modified cement system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Min; Wang, Rumin, E-mail: wangmin19@mail.nwpu.edu.cn; Zheng, Shuirong
2015-10-15
In this paper, the chemical mechanism in the polyacrylate latex modified cement system was investigated by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC) and compact pH meter. All results have shown that the chemical reactions in the polyacrylate modified system can be divided into three stages. The hydration reactions of cement can produce large amounts of Ca(OH){sub 2} (calcium hydroxide) and lead the whole system to be alkali-rich and exothermic at the first stage. Subsequently, this environment can do great contributions to the hydrolysis of ester groups in the polyacrylate chains, resulting in themore » formation of carboxyl groups at the second stage. At the third stage, the final crosslinked network structure of the product was obtained by the reaction between the carboxyl groups in the polyacrylate latex chains and Ca(OH){sub 2}.« less
Takabatake, Reona; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi
2013-01-01
A novel real-time polymerase chain reaction (PCR)-based quantitative screening method was developed for three genetically modified soybeans: RRS, A2704-12, and MON89788. The 35S promoter (P35S) of cauliflower mosaic virus is introduced into RRS and A2704-12 but not MON89788. We then designed a screening method comprised of the combination of the quantification of P35S and the event-specific quantification of MON89788. The conversion factor (Cf) required to convert the amount of a genetically modified organism (GMO) from a copy number ratio to a weight ratio was determined experimentally. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDR), respectively. The determined RSDR values for the method were less than 25% for both targets. We consider that the developed method would be suitable for the simple detection and approximate quantification of GMO.
Li, Xiaolei; Fu, Jingchao; Wang, Yujuan; Ma, Fumin; Li, Dan
2017-09-01
Tigernut starch is an underutilized food resource. In this study, pullulanase (PUL) hydrolysis was used to change its physiochemical properties for different food applications. The content of low digestible fractions, resistant starch and slow digestible starch, in PUL modified tigernut starch significantly increased from 2.03% to 25.08% (P<0.05) using 100U/g starch of PUL in the debranching reaction. The paste or dispersion of PUL modified tigernut starch had a significantly decreased viscoelasticity (P<0.05), but the paste still exhibited a typical property of pseudoplasticity. Molecular weight, amylopectin A B2 and B3 chain of PUL modified starch were lower, while amylose content, amylopectin B1 chain were higher than those of natural tigernut starch. The low digestible and viscous tigernut starch is highly valued as a component in some functional foods. Copyright © 2017 Elsevier B.V. All rights reserved.
Novel Humanized mice to test Therapeutics for Human Type 1 Diabetes
2014-01-06
performed in non- obese diabetic (NOD) mice, the closest animal model for human T1D, have identified different immune cells involved in pancreatic β-cell...periphery. Each MHC class II chain contributes to the formation of a groove where the peptide is embedded (78). 17 The polygenetic factor underlying...diabetes mellitus in non- obese diabetic mice by transgenes encoding modified I-A beta-chain or normal I-E alpha-chain. Nature 345:727-9 63. Marek
NASA Astrophysics Data System (ADS)
Fu, Yao-Tsung
The experimental analysis of nanometer-scale separation processes and mechanical properties at buried interfaces in nanocomposites has remained difficult. We have employed molecular dynamics simulation in relation to available experimental data to alleviate such limitations and gain insight into the dispersion and mechanical stability of organically modified layered silicates in hydrophobic polymer matrices. We analyzed cleavage energies of various organically modified silicates as a function of the cation exchange capacity, surfactant head group chemistry, and chain length using MD simulations with the PCFF-PHYLLOSILICATE force field. The range of the cleavage energy is between 25 and 210 mJ/m2 upon the molecular structures and packing of surfactants. As a function of chain length, the cleavage energy indicates local minima for interlayer structures comprised of loosely packed layers of alkyl chains and local maxima for interlayer structures comprised of densely packed layers of alkyl chains between the layers. In addition, the distribution of cationic head groups between the layers in the equilibrium state determines whether large increases in cleavage energy due to Coulomb attraction. We have also examined mechanical bending and failure mechanisms of layered silicates on the nanometer scale using molecular dynamics simulation in comparison to a library of TEM data of polymer nanocomposites. We investigated the energy of single clay lamellae as a function of bending radius and different cation density. The layer energy increases particularly for bending radii below 20 nm and is largely independent of cation exchange capacity. The analysis of TEM images of agglomerated and exfoliated aluminosilicates of different CEC in polymer matrices at small volume fractions showed bending radii in excess of 100 nm due to free volumes in the polymer matrix. At a volume fraction >5%, however, bent clay layers were found with bending radii <20 nm and kinks as a failure mechanism in good agreement with simulation results. We have examined thermal conductivity of organically modified layered silicates using molecular dynamics simulation in comparison to experimental results by laser measurement. The thermal conductivity slightly increased from 0.08 to 0.14 Wm-1K-1 with increasing chain length, related to the gallery spacing and interlayer density of the organic material.
Unger, Florian; Wittmar, Matthias; Morell, Frank; Kissel, Thomas
2008-05-01
Branched polyesters of the general structure poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide) have shown potential for nano- and micro-scale drug delivery systems. Here the in vitro degradation behaviour with a special emphasis on elucidating structure-property relationships is reported. Effects of type and degree of amine substitution as well as PLGA side chain length were considered. In a first set of experiment, the weight loss of solvent cast films of defined size from 19 polymers was measured as a function of incubation in phosphate buffer (pH 7.4) at 37 degrees C over a time of 21 days. A second study was initiated focusing on three selected polymers in a similar set up, but with additional observation of pH influences (pH 2 and pH 9) and determination of water uptake (swelling) and molecular weights during degradation. Scanning electron micrographs have been recorded at selected time points to characterize film specimens morphologically after degradation. Our investigations revealed the potential to influence the degradation of this polymer class by the degree of amine substitution, higher degrees leading to faster erosion. The erosion rate could further be influenced by the type of amine functionality, DEAPA-modified polyesters degrading as fast as or slightly faster than DMAPA-modified polyesters and these degrading faster than DEAEA-PVA-g-PLGA. As a third option the degradation rate could be modified by the PLGA side chain length, shorter side chains leading to faster erosion. As compared to linear PLGA, remarkably shorter degradation times could be achieved by grafting short PLGA side chains onto amine-modified PVA backbones. Erosion times from less than 5 days to more than 4 weeks could be realized by selecting the type of amine functionality, the degree of amine substitution and the PLGA side chain length at the time of synthesis. In addition, the pathway of hydrolytic degradation can be tuned to be either mainly bulk or surface erosion.
Hexagonal-shaped chondroitin sulfate self-assemblies have exalted anti-HSV-2 activity.
Galus, Aurélia; Mallet, Jean-Maurice; Lembo, David; Cagno, Valeria; Djabourov, Madeleine; Lortat-Jacob, Hugues; Bouchemal, Kawthar
2016-01-20
The initial step in mucosal infection by the herpes simplex virus type 2 (HSV-2) requires its binding to certain glycosaminoglycans naturally present on host cell membranes. We took advantage of this interaction to design biomimetic supramolecular hexagonal-shaped nanoassemblies composed of chondroitin sulfate having exalted anti-HSV-2 activity in comparison with native chondroitin sulfate. Nanoassemblies were formed by mixing hydrophobically-modified chondroitin sulfate with α-cyclodextrin in water. Optimization of alkyl chain length grafted on chondroitin sulfate and the ratio between hydrophobically-modified chondroitin sulfate and α-cyclodextrin showed that more cohesive and well-structured nanoassemblies were obtained using higher α-cyclodextrin concentration and longer alkyl chain lengths. A structure-activity relationship was found between anti-HSV-2 activity and the amphiphilic nature of hydrophobically-modified chondroitin sulfate. Also, antiviral activity of hexagonal nanoassemblies against HSV-2 was further improved in comparison with hydrophobically-modified chondroitin sulfate. This work suggests a new biomimetic formulation approach that can be extended to other heparan-sulfate-dependent viruses. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vergeade, Aurelia; Bertram, Clinton C.; Bikineyeva, Alfiya T.; Zackert, William E.; Zinkel, Sandra S.; May, James M.; Dikalov, Sergey I.; Roberts, L. Jackson; Boutaud, Olivier
2016-01-01
Modifications of cardiolipin (CL) levels or compositions are associated with changes in mitochondrial function in a wide range of pathologies. We have made the discovery that acetaminophen remodels CL fatty acids composition from tetralinoleoyl to linoleoyltrioleoyl-CL, a remodeling that is associated with decreased mitochondrial respiration. Our data show that CL remodeling causes a shift in electron entry from complex II to the β-oxidation electron transfer flavoprotein quinone oxidoreductase (ETF/QOR) pathway. These data demonstrate that electron entry in the respiratory chain is regulated by CL fatty acid composition and provide proof-of-concept that pharmacological intervention can be used to modify CL composition. PMID:27085476
A modified Lotka-Volterra model for the evolution of coordinate symbiosis in energy enterprise
NASA Astrophysics Data System (ADS)
Zhou, Li; Wang, Teng; Lyu, Xiaohuan; Yu, Jing
2018-02-01
Recent developments in energy markets make the operating industries more dynamic and complex, and energy enterprises cooperate more closely in the industrial chain and symbiosis. In order to further discuss the evolution of coordinate symbiosis in energy enterprises, a modified Lotka-Volterra equation is introduced to develop a symbiosis analysis model of energy groups. According to the equilibrium and stability analysis, a conclusion is obtained that if the upstream energy group and the downstream energy group are in symbiotic state, the growth of their utility will be greater than their independent value. Energy enterprises can get mutual benefits and positive promotions in industrial chain by their cooperation.
The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation
Preston, G. Michael; Brodsky, Jeffrey L.
2017-01-01
The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research. PMID:28159894
The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation.
Preston, G Michael; Brodsky, Jeffrey L
2017-02-15
The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
ERIC Educational Resources Information Center
de Jong, Corina; Kikkert, Hedwig K.; Fidler, Vaclav; Hadders-Algra, Mijna
2012-01-01
Aim: Long-chain polyunsaturated fatty acid (LCPUFA) supplementation of infant formula may have a beneficial effect on cognitive development. This study aimed to investigate the effect of LCPUFA formula supplementation primarily on cognition and secondarily on behaviour at age 9 years. Special attention was paid to the potentially modifying effect…
USDA-ARS?s Scientific Manuscript database
A new group of phenolic branched-chain fatty acids (n-PBC-FA), hybrid molecules of natural monophenols (i.e., thymol, carvacrol and creosote) and mixed fatty acid (i.e., derived from soybean and safflower oils), were efficiently produced through a process known as arylation. The reaction involves a...
2012-02-24
Three key items – iceberg lettuce, romaine lettuce, and broccoli crowns – were tested in the Pacific Region Guam supply chain. Due to longer total...7 2.1.1 Extra Apio Broccoli for Test Shipments 2 and 3 ................................................8 2.2 Test...49 3.3 Broccoli Crowns .............................................................................................................49 3.3.1
Yottha Srithep; Alireza Javadi; Srikanth Pilla; Lih-Sheng Turng; Shaoqin Gong; Craig Clemons; Jun Peng
2011-01-01
Poly(ethylene terephthalate) (PET) resin is one of the most widely used thermoplastics, especially in packaging. Because thermal and hydrolytic degradations, recycled PET (RPET) exhibits poor mechanical properties and lacks moldability. The effects of adding elastomeric modifiers, chain extenders (CE), and poly(butylenes adipate-co-terephthalate), PBAT, as a toughener...
Cahoon, Edgar B.; Shanklin, John; Lindqvist, Ylva; Schneider, Gunter
1999-03-30
Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.
Cahoon, Edgar B.; Shanklin, John; Lindgvist, Ylva; Schneider, Gunter
1998-01-06
Disclosed is a methods for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.
Dong, Chang-Zhi; Tian, Shaomin; Choi, Won-Tak; Kumar, Santhosh; Liu, Dongxiang; Xu, Yan; Han, Xiaofeng; Huang, Ziwei; An, Jing
2012-07-31
The replication of human immunodeficiency virus type 1 (HIV-1) can be profoundly inhibited by the natural ligands of two major HIV-1 coreceptors, CXCR4 and CCR5. Stromal cell-derived factor-1α (SDF-1α) is a natural ligand of CXCR4. We have recently developed a synthetic biology approach of using synthetically and modularly modified (SMM)-chemokines to dissect various aspects of the structure-function relationship of chemokines and their receptors. Here, we used this approach to design novel SMM-SDF-1α analogues containing unnatural N-methylated residues in the amino terminus to investigate whether the polypeptide main chain amide bonds in the N-terminus of SDF-1α play a role in SDF-1α signaling via CXCR4 and/or receptor internalization. The results show that SDF-1α analogues with a modified N-methylated main chain at position 2, 3, or 5 retain significant CXCR4 binding and yet completely lose signaling activities. Furthermore, a representative N-methylated analogue has been shown to be incapable of causing CXCR4 internalization. These results suggest that the ability of SDF-1α to activate CXCR4 signaling and internalization is dependent upon the main chain amide bonds in the N-terminus of SDF-1α. This study demonstrates the feasibility and value of applying a synthetic biology approach to chemically engineer natural proteins and peptide ligands as probes of important biological functions that are not addressed by other biological techniques.
Protein oxidation and peroxidation
Davies, Michael J.
2016-01-01
Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established. PMID:27026395
Joseph, C G; Sorensen, N B; Wood, M S; Xiang, Z; Moore, M C; Haskell-Luevano, C
2005-11-01
The Ac-His-dPhe-Arg-Trp-NH2 tetrapeptide is a nonselective melanocortin agonist and replacement of Arg in the tetrapeptide with acidic, basic or neutral amino acids results in reduced potency at the melanocortin receptor (MCR) isoforms (MC1R and MC3-5R). To determine the importance of the positive charge and the guanidine moiety for melanocortin activity, a series of urea- and thiourea-substituted tetrapeptides were designed. Replacement of Arg with Lys or ornithine reduced agonist activity at the mouse mMC1 and mMC3-5 receptors, thus supporting the hypothesis that the guanidine moiety is important for receptor potency, particularly at the MC3-5 receptors. The Arg side chain-modified tetrapeptides examined in this study include substituted phenyl, naphthyl, and aliphatic urea and thiourea residues using a Lys side-chain template. These ligands elicit full-agonist pharmacology at the mouse MCRs examined in this study.
Associative polymers bridging between layers of multilamellar vesicles.
NASA Astrophysics Data System (ADS)
Choi, Seo; Bhatia, Surita
2006-03-01
Multilamellar vesicles can be found in a variety of pharmaceutical formulations, personal care products, and home care products. Hydrophobically modified associative polymers are often used to stabilize the vesicles or to control the rheological properties of these formulations. The hydrophobic groups are expected to insert themselves into the vesicle bilayers. Recent experimental work shows that hydrophobically modified polymers may from bridges between vesicles or may bridge between layers of a single vesicle. The latter configuration forces an interlayer spacing roughly equal to the radius of gyration of the backbone between associative groups. We have performed simple mean-field calculations on ideal telechelic associative polymers between concentric spherical surfaces. We find that the free energy per chain has an attractive minimum when the layer spacing is approximately N^1/2l, which is consistent with experimental results. The depth of the minimum depends on both chain length and curvature, and as expected when the curvature becomes small, the result for telechelic chains between flat surfaces is recovered.
Bebarta, Biranchi; M, Jhansi; Kotasthane, Pranitha; Sunkireddy, Yella Reddy
2013-01-15
Medium chain (MC) and behenic fatty acids were incorporated into kokum, sal and mango fats using 1,3-specific lipase catalysed acidolysis. The incorporation of fatty acids increased with increase in concentration of fatty acids and duration of reaction. The order of incorporation of fatty acids was C22:0>C10:0>C8:0, to the extent of 53%, 42.5%, 35.8%, respectively, after 16 h, using kokum as substrate. The same trend was observed with sal or mango fats as substrates though the percentages incorporated were different. The modified products with higher contents of MC were liquids with no solid fats, even at 0°C, and which showed low cloud point due to an increase in triacylglycerols containing lower chain fatty acids. The modified products after incorporating both MC and C22:0 showed long melting ranges and were suitable for use in bakery, confectionery, etc. as vanaspati substitutes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Neirinck, Bram; Soccol, Dimitri; Fransaer, Jan; Van der Biest, Omer; Vleugels, Jef
2010-08-15
The effect of short chained organic acids and bases on the surface energy and wetting properties of submicrometer alumina powder was assessed. The surface chemistry of treated powders was determined by means of Diffuse Reflectance Infrared Fourier Transform spectroscopy and compared to untreated powder. The wetting of powders was measured using a modified Washburn method, based on the use of precompacted powder samples. The geometric factor needed to calculate the contact angle was derived from measurements of the porous properties of the powder compacts. Contact angle measurements with several probe liquids before and after modification allowed a theoretical estimation of the surface energy based on the surface tension component theory. Trends in the surface energy components were linked to observations in infrared spectra. The results showed that the hydrophobic character of the precompacted powder depends on both the chain length and polar group of the modifying agent. Copyright 2010 Elsevier Inc. All rights reserved.
Yesiltas, Betül; Sørensen, Ann-Dorit Moltke; García-Moreno, Pedro J; Anankanbil, Sampson; Guo, Zheng; Jacobsen, Charlotte
2018-07-30
Sodium caseinate (CAS) and commercial sodium alginate (CA), long chain modified alginate (LCMA) or short chain modified alginate (SCMA) were used in combination for emulsifying and stabilizing high fat (50-70%) fish oil-in-water emulsions. Physical (creaming, droplet size, viscosity and protein determination) and oxidative (primary and secondary oxidation products) stabilities of the emulsions were studied during 12 days of storage. Creaming stability was higher for emulsions produced with alginates and CAS compared to emulsions prepared with only CAS. Combined use of CAS + LCMA performed better in terms of physical stability compared to emulsions produced with only CAS. However, the oxidative stability of this emulsion was inferior probably due to the presence of an unsaturated carbon chain in LCMA structure. CAS + SCMA emulsions not only showed better physical stability such as smaller droplet size, lower creaming and higher viscosity, but also had an improved oxidative stability than emulsions produced with only CAS. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lipases as biocatalysts for the synthesis of structured lipids.
Jala, Ram Chandra Reddy; Hu, Peng; Yang, Tiankui; Jiang, Yuanrong; Zheng, Yan; Xu, Xuebing
2012-01-01
Structured lipids (SL) are broadly referred to as modified or synthetic oils and fats or lipids with functional or pharmaceutical applications. Some structured lipids, such as triglycerides that contain both long-chain (mainly essential) fatty acids and medium- or short-chain fatty acids and also artificial products that mimic the structure of natural materials, namely human milk fat substitutes and cocoa butter equivalents, have been discussed. Further, other modified or synthetic lipids, such as structured phospholipids and synthetic phenolic lipids are also included in this chapter. For all the products described in this chapter, enzymatic production in industry has been already conducted in one way or another. Cocoa butter equivalents, healthy oil containing medium-chain fatty acids, phosphatidyl serine, and phenol lipids from enzyme technology have been reported for commercial operation. As the demand for better quality functional lipids is increasing, the production of structured lipids becomes an interesting area. Thus, in this chapter we have discussed latest developments as well as present industrial situation of all commercially important structured lipids.
Testing for Genetically Modified Foods Using PCR
ERIC Educational Resources Information Center
Taylor, Ann; Sajan, Samin
2005-01-01
The polymerase chain reaction (PCR) is a Nobel Prize-winning technique that amplifies a specific segment of DNA and is commonly used to test for the presence of genetic modifications. Students use PCR to test corn meal and corn-muffin mixes for the presence of a promoter commonly used in genetically modified foods, the cauliflower mosaic virus 35S…
USDA-ARS?s Scientific Manuscript database
Nanomaterials have been widely reported to affect the polymerase chain reaction (PCR). However, many studies in which these effects were observed were not comprehensive, and many of the proposed mechanisms have been primarily speculative. In this work, we used amino-modified silica-coated magnetic n...
USDA-ARS?s Scientific Manuscript database
Color and texture are among the key quality attributes for small fruit. Postharvest approaches such as modified atmosphere packaging (MAP) along with cold chain management have been shown to support retention of fruit quality during handling and distribution. The objective of this study was to inves...
The electrical and thermal transport properties of hybrid zigzag graphene-BN nanoribbons
NASA Astrophysics Data System (ADS)
Gao, Song; Lu, Wei; Zheng, Guo-Hui; Jia, Yalei; Ke, San-Huang
2017-06-01
The electron and phonon transport in hybrid graphene-BN zigzag nanoribbons are investigated by the nonequilibrium Green’s function method combined with density functional theory calculations. A 100% spin-polarized electron transport in a large energy window around the Fermi level is found and this behavior is independent of the ribbon width as long as there contain 3 zigzag carbon chains. The phonon transport calculations show that the ratio of C-chain number to BN-chain number will modify the thermal conductance of the hybrid nanoribbon in a complicated manner.
Yoshiba, Kazuto; Dobashi, Toshiaki; Ulset, Ann-Sissel T; Christensen, Bjørn E
2018-06-18
Carboxylated schizophyllan ("sclerox") is a chemically modified polysaccharide obtained by partial periodate oxidation and subsequent chlorite oxidation of schizophyllan, a water-soluble neutral polysaccharide having a β-1,3-linked glucan backbone and a β-1,6-linked d-glucose residue side chain at every third residue of the main chain. The triple helix of schizophyllan in water has a cooperative order-disorder transition associated with the side chains. The transition is strongly affected by the presence (mole fraction) of dimethylsulfoxide (DMSO). In the present study, the solvent effects on the order-disorder transition of sclerox with different degrees of carboxylation (DS) in water-DMSO mixtures were investigated with differential scanning calorimetry and optical rotation. The transition temperature ( T r ) and transition enthalpy (Δ H r ) strongly depended on the mole fraction of DMSO ( x D ). Data were further analyzed with the statistical theory for the linear cooperative transition, taking into account the solvent effect, where DMSO molecules are selectively associated with the unmodified side chains. The modified side chain does not contribute to the transition; hence, Δ H r decreases with increasing DS. The dependence of T r on the DMSO content becomes weaker than that for unmodified schizophyllan. The theoretical analyses indicated that the number of sites binding with the DMSO molecule and the successive ordered sequence of the ordered unit of the triple helix are changed by carboxylation.
Tsunoda, Hirosuke; Kudo, Tomomi; Masaki, Yoshiaki; Ohkubo, Akihiro; Seio, Kohji; Sekine, Mitsuo
2011-01-01
To clarify the biochemical behavior of 2′-deoxyribonucleoside 5′-triphosphates and oligodeoxyribonucleotides (ODNs) containing cytosine N-oxide (Co) and adenine N-oxide (Ao), we examined their base recognition ability in DNA duplex formation using melting temperature (Tm) experiments and their substrate specificity in DNA polymerase-mediated replication. As the result, it was found that the Tm values of modified DNA–DNA duplexes incorporating 2′-deoxyribonucleoside N-oxide derivatives significantly decreased compared with those of the unmodified duplexes. However, single insertion reactions by DNA polymerases of Klenow fragment (KF) (exo−) and Vent (exo−) suggested that Co and Ao selectively recognized G and T, respectively. Meanwhile, the kinetic study showed that the incorporation efficiencies of the modified bases were lower than those of natural bases. Ab initio calculations suggest that these modified bases can form the stable base pairs with the original complementary bases. These results indicate that the modified bases usually recognize the original bases as partners for base pairing, except for misrecognition of dATP by the action of KF (exo−) toward Ao on the template, and the primers could be extended on the template DNA. When they misrecognized wrong bases, the chain could not be elongated so that the modified base served as the chain terminator. PMID:21300642
Tsunoda, Hirosuke; Kudo, Tomomi; Masaki, Yoshiaki; Ohkubo, Akihiro; Seio, Kohji; Sekine, Mitsuo
2011-04-01
To clarify the biochemical behavior of 2'-deoxyribonucleoside 5'-triphosphates and oligodeoxyribonucleotides (ODNs) containing cytosine N-oxide (C(o)) and adenine N-oxide (A(o)), we examined their base recognition ability in DNA duplex formation using melting temperature (T(m)) experiments and their substrate specificity in DNA polymerase-mediated replication. As the result, it was found that the T(m) values of modified DNA-DNA duplexes incorporating 2'-deoxyribonucleoside N-oxide derivatives significantly decreased compared with those of the unmodified duplexes. However, single insertion reactions by DNA polymerases of Klenow fragment (KF) (exo(-)) and Vent (exo(-)) suggested that C(o) and A(o) selectively recognized G and T, respectively. Meanwhile, the kinetic study showed that the incorporation efficiencies of the modified bases were lower than those of natural bases. Ab initio calculations suggest that these modified bases can form the stable base pairs with the original complementary bases. These results indicate that the modified bases usually recognize the original bases as partners for base pairing, except for misrecognition of dATP by the action of KF (exo(-)) toward A(o) on the template, and the primers could be extended on the template DNA. When they misrecognized wrong bases, the chain could not be elongated so that the modified base served as the chain terminator.
Galactose-depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis.
Kong, Yingzhen; Peña, Maria J; Renna, Luciana; Avci, Utku; Pattathil, Sivakumar; Tuomivaara, Sami T; Li, Xuemei; Reiter, Wolf-Dieter; Brandizzi, Federica; Hahn, Michael G; Darvill, Alan G; York, William S; O'Neill, Malcolm A
2015-04-01
Xyloglucan is a polysaccharide that has important roles in the formation and function of the walls that surround growing land plant cells. Many of these plants synthesize xyloglucan that contains galactose in two different side chains (L and F), which exist in distinct molecular environments. However, little is known about the contribution of these side chains to xyloglucan function. Here, we show that Arabidopsis (Arabidopsis thaliana) mutants devoid of the F side chain galactosyltransferase MURUS3 (MUR3) form xyloglucan that lacks F side chains and contains much less galactosylated xylose than its wild-type counterpart. The galactose-depleted xyloglucan is dysfunctional, as it leads to mutants that are dwarfed with curled rosette leaves, short petioles, and short inflorescence stems. Moreover, cell wall matrix polysaccharides, including xyloglucan and pectin, are not properly secreted and instead accumulate within intracellular aggregates. Near-normal growth is restored by generating mur3 mutants that produce no detectable amounts of xyloglucan. Thus, cellular processes are affected more by the presence of the dysfunctional xyloglucan than by eliminating xyloglucan altogether. To identify structural features responsible for xyloglucan dysfunction, xyloglucan structure was modified in situ by generating mur3 mutants that lack specific xyloglucan xylosyltransferases (XXTs) or that overexpress the XYLOGLUCAN L-SIDE CHAIN GALACTOSYLTRANSFERASE2 (XLT2) gene. Normal growth was restored in the mur3-3 mutant overexpressing XLT2 and in mur3-3 xxt double mutants when the dysfunctional xyloglucan was modified by doubling the amounts of galactosylated side chains. Our study assigns a role for galactosylation in normal xyloglucan function and demonstrates that altering xyloglucan side chain structure disturbs diverse cellular and physiological processes. © 2015 American Society of Plant Biologists. All Rights Reserved.
Cahoon, E.B.; Shanklin, J.; Lindgvist, Y.; Schneider, G.
1998-01-06
Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 1 fig.
Cahoon, E.B.; Shanklin, J.; Lindqvist, Y.; Schneider, G.
1999-03-30
Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 2 figs.
Detection and traceability of genetically modified organisms in the food production chain.
Miraglia, M; Berdal, K G; Brera, C; Corbisier, P; Holst-Jensen, A; Kok, E J; Marvin, H J P; Schimmel, H; Rentsch, J; van Rie, J P P F; Zagon, J
2004-07-01
Both labelling and traceability of genetically modified organisms are current issues that are considered in trade and regulation. Currently, labelling of genetically modified foods containing detectable transgenic material is required by EU legislation. A proposed package of legislation would extend this labelling to foods without any traces of transgenics. These new legislations would also impose labelling and a traceability system based on documentation throughout the food and feed manufacture system. The regulatory issues of risk analysis and labelling are currently harmonised by Codex Alimentarius. The implementation and maintenance of the regulations necessitates sampling protocols and analytical methodologies that allow for accurate determination of the content of genetically modified organisms within a food and feed sample. Current methodologies for the analysis of genetically modified organisms are focused on either one of two targets, the transgenic DNA inserted- or the novel protein(s) expressed- in a genetically modified product. For most DNA-based detection methods, the polymerase chain reaction is employed. Items that need consideration in the use of DNA-based detection methods include the specificity, sensitivity, matrix effects, internal reference DNA, availability of external reference materials, hemizygosity versus homozygosity, extrachromosomal DNA, and international harmonisation. For most protein-based methods, enzyme-linked immunosorbent assays with antibodies binding the novel protein are employed. Consideration should be given to the selection of the antigen bound by the antibody, accuracy, validation, and matrix effects. Currently, validation of detection methods for analysis of genetically modified organisms is taking place. In addition, new methodologies are developed, including the use of microarrays, mass spectrometry, and surface plasmon resonance. Challenges for GMO detection include the detection of transgenic material in materials with varying chromosome numbers. The existing and proposed regulatory EU requirements for traceability of genetically modified products fit within a broader tendency towards traceability of foods in general and, commercially, towards products that can be distinguished from each other. Traceability systems document the history of a product and may serve the purpose of both marketing and health protection. In this framework, segregation and identity preservation systems allow for the separation of genetically modified and non-modified products from "farm to fork". Implementation of these systems comes with specific technical requirements for each particular step of the food processing chain. In addition, the feasibility of traceability systems depends on a number of factors, including unique identifiers for each genetically modified product, detection methods, permissible levels of contamination, and financial costs. In conclusion, progress has been achieved in the field of sampling, detection, and traceability of genetically modified products, while some issues remain to be solved. For success, much will depend on the threshold level for adventitious contamination set by legislation. Copryright 2004 Elsevier Ltd.
USDA-ARS?s Scientific Manuscript database
The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 PUFA is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and dependent on cholesterol status. To further elucidate the mechanism(...
Characterization of topological phases of dimerized Kitaev chain via edge correlation functions
NASA Astrophysics Data System (ADS)
Wang, Yucheng; Miao, Jian-Jian; Jin, Hui-Ke; Chen, Shu
2017-11-01
We study analytically topological properties of a noninteracting modified dimerized Kitaev chain and an exactly solvable interacting dimerized Kitaev chain under open boundary conditions by analyzing two introduced edge correlation functions. The interacting dimerized Kitaev chain at the symmetry point Δ =t and the chemical potential μ =0 can be exactly solved by applying two Jordan-Wigner transformations and a spin rotation, which permits us to calculate the edge correlation functions analytically. We demonstrate that the two edge correlation functions can be used to characterize the trivial, Su-Schrieffer-Heeger-like topological and topological superconductor phases of both the noninteracting and interacting systems and give their phase diagrams.
Shimizu, Eri; Kato, Hisashi; Nakagawa, Yuki; Kodama, Takashi; Futo, Satoshi; Minegishi, Yasutaka; Watanabe, Takahiro; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi
2008-07-23
A novel type of quantitative competitive polymerase chain reaction (QC-PCR) system for the detection and quantification of the Roundup Ready soybean (RRS) was developed. This system was designed based on the advantage of a fully validated real-time PCR method used for the quantification of RRS in Japan. A plasmid was constructed as a competitor plasmid for the detection and quantification of genetically modified soy, RRS. The plasmid contained the construct-specific sequence of RRS and the taxon-specific sequence of lectin1 (Le1), and both had 21 bp oligonucleotide insertion in the sequences. The plasmid DNA was used as a reference molecule instead of ground seeds, which enabled us to precisely and stably adjust the copy number of targets. The present study demonstrated that the novel plasmid-based QC-PCR method could be a simple and feasible alternative to the real-time PCR method used for the quantification of genetically modified organism contents.
Plastic Organic Scintillator Chemistry
NASA Astrophysics Data System (ADS)
Brightwell, C. R.; Temanson, E. S.; Febbraro, M. T.
2017-09-01
Due to their high light output, quick decay time, affordability, durability and ability to be molded, plastic organic scintillators are increasingly becoming a more viable method of particle detection. Since the plastic is composed entirely of single molecular chains with repeating units, scintillating properties remain stable despite changes in experimental conditions. Different scintillating plastics can be modified and tailored to suit specific experiments depending on a variety of requirements such as light output, scintillating wavelength, and PMT compatibility. The synthesis chemistry of a recent but well-known scintillating polyester, polyethylene naphthalate (PEN) will be presented to demonstrate how plastic organic scintillators can be modified for different particle detection experiments. PEN has been successfully synthesized at ORNL, and procedures are currently being investigated to modify PEN using different reactants and catalysts. The goal is to achieve a transparent scintillating plastic with an incorporated wavelength shifter in the chain that scintillates with a wavelength around 440 nm. The status of this project will be presented. This research is supported by the U. S. Department of Energy Office of Science.
Mirmohseni, Abdolreza; Olad, Ali
2010-01-01
A polystyrene coated quartz crystal nanobalance (QCN) sensor was developed for use in the determination of a number of linear short-chain aliphatic aldehyde and ketone vapors contained in air. The quartz crystal was modified by a thin-layer coating of a commercial grade general purpose polystyrene (GPPS) from Tabriz petrochemical company using a solution casting method. Determination was based on frequency shifts of the modified quartz crystal due to the adsorption of analytes at the surface of modified electrode in exposure to various concentrations of analytes. The frequency shift was found to have a linear relation to the concentration of analytes. Linear calibration curves were obtained for 7-70 mg l(-1) of analytes with correlation coefficients in the range of 0.9935-0.9989 and sensitivity factors in the range of 2.07-6.74 Hz/mg l(-1). A storage period of over three months showed no loss in the sensitivity and performance of the sensor.
Controlling surface property of K2SiF6:Mn4+ for improvement of lighting-emitting diode reliability
NASA Astrophysics Data System (ADS)
Kim, Juseong; Jang, Inseok; Song, Gwang Yeom; Kim, Wan-Ho; Jeon, Sie-Wook; Kim, Jae-Pil
2018-05-01
The surface property of moisture-sensitive K2SiF6:Mn4+ (KSF) as a red-emitting phosphor was controlled through dry-type surface modification in order to improve the photo-performance and reliability of lighting-emitting diode (LED). The phosphor surface was modified with silane coupling agents having different carbon chain length by plasma-assisted method. Comparing between as-prepared and modified KSF, water-resistance and photo-emission efficiency were enhanced due to the formation of hydrophobic shell and the elimination of surface quenching sites. Moreover, the dispersibility of phosphor was increased as increasing the carbon chain length of silane because the interfacial affinity between phosphor and encapsulant was improved. After fabricating LED device, the enhancement of photo-performance and long-term reliability could be successfully achieved in LED device with modified phosphor. It is attributed to that the degradation of phosphor efficiency by moisture was suppressed and heat dissipation in LED PKG was improved through the surface modification.
Grasso, Giuseppe; Axelsen, Paul H
2017-01-01
When lipid membranes containing ω-6 polyunsaturated fatty acyl chains are subjected to oxidative stress, one of the reaction products is 4-hydroxy-2-nonenal (HNE)-a chemically reactive short chain alkenal that can covalently modify proteins. The ubiquitin proteasome system is involved in the clearing of proteins modified by oxidation products such as HNE, but the chemical structure, stability and function of ubiquitin may be impaired by HNE modification. To evaluate this possibility, the susceptibility of ubiquitin to modification by HNE has been characterized over a range of concentrations where ubiquitin forms non-covalent oligomers. Results indicate that HNE modifies ubiquitin at only two of the many possible sites, and that HNE modification at these two sites alters the ubiquitin oligomerization equilibrium. These results suggest that any role ubiquitin may have in clearing proteins damaged by oxidative stress may itself be impaired by oxidative lipid degradation products. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Lambda light chain revision in the human intestinal IgA response.
Su, Wen; Gordon, John N; Barone, Francesca; Boursier, Laurent; Turnbull, Wayne; Mendis, Surangi; Dunn-Walters, Deborah K; Spencer, Jo
2008-07-15
Revision of Ab L chains by secondary rearrangement in mature B cells has the potential to change the specific target of the immune response. In this study, we show for the first time that L chain revision is normal and widespread in the largest Ab producing population in man: intestinal IgA plasma cells (PC). Biases in the productive and non-productive repertoire of lambda L chains, identification of the circular products of rearrangement that have the characteristic biases of revision, and identification of RAG genes and protein all reflect revision during normal intestinal IgA PC development. We saw no evidence of IgH revision, probably due to inappropriately orientated recombination signal sequences, and little evidence of kappa-chain revision, probably due to locus inactivation by the kappa-deleting element. We propose that the lambda L chain locus is available and a principal modifier and diversifier of Ab specificity in intestinal IgA PCs.
Gelatin-Modified Polyurethanes for Soft Tissue Scaffold
Kucińska-Lipka, Justyna; Janik, Helena
2013-01-01
Recently, in the field of biomaterials for soft tissue scaffolds, the interest of their modification with natural polymersis growing. Synthetic polymers are often tough, and many of them do not possess fine biocompatibility. On the other hand, natural polymers are biocompatible but weak when used alone. The combination of natural and synthetic polymers gives the suitable properties for tissue engineering requirements. In our study, we modified gelatin synthetic polyurethanes prepared from polyester poly(ethylene-butylene adipate) (PEBA), aliphatic 1,6-hexamethylene diisocyanate (HDI), and two different chain extenders 1,4-butanediol (BDO) or 1-ethoxy-2-(2-hydroxyethoxy)ethanol (EHEE). From a chemical point of view, we replaced expensive components for building PU, such as 2,6-diisocyanato methyl caproate (LDI) and 1,4-diisocyanatobutane (BDI), with cost-effective HDI. The gelatin was added in situ (in the first step of synthesis) to polyurethane to increase biocompatibility and biodegradability of the obtained material. It appeared that the obtained gelatin-modified PU foams, in which chain extender was BDO, had enhanced interactions with media and their hydrolytic degradation profile was also improved for tissue engineering application. Furthermore, the gelatin introduction had positive impact on gelatin-modified PU foams by increasing their hemocompatibility. PMID:24363617
Regulation of Hemoglobin β-Chain Synthesis in Bone Marrow Erythroid Cells by α Chains
Wolf, Jeffrey L.; Mason, R. George; Honig, George R.
1973-01-01
Synthesis of α and β chains of hemoglobin was studied in vitro in intact reticulocytes and bone marrow cells. The cells were from rabbits having a variant form of hemoglobin in which L-isoleucine is in the α but not in the β chains. This characteristic permitted a selective inhibition of α-chain synthesis to be produced by addition to the incubation medium of L-O-methylthreonine, an inhibitor of protein synthesis that is a specific antagonist of L-isoleucine. In studies with reticulocytes, 25 mM L-O-methylthreonine produced a 60-70% inhibition of α-chain synthesis, but β-chain synthesis was unaffected even after incubation times for 4 hr. Because reticulocytes contain a pool of uncombined α chains which might have obscured the demonstration of an α chain-dependent mechanism for β-chain synthesis, subsequent studies were done with bone marrow cells. The latter had little or no detectable α-chain pool. A substantial inhibition of α-chain synthesis by the bone marrow cells was produced by the isoleucine antagonist but was also accompanied by a significantly decreased rate of β-chain synthesis. These findings suggest that the coordinated synthesis of the complementary α- and β-globin chains of hemoglobin may reflect in part a modifying effect of α-chain synthesis on the synthesis of β chains. PMID:4519634
New synthesis of maleic anhydride modified polyolefins and their applications
NASA Astrophysics Data System (ADS)
Lu, Bing
Maleic anhydride (MA) modified polyolefins are the most useful commercial functional polyolefins. The current technology of producing MA modified polyolefins, mainly free radical modification, usually results in low MA graft contents, extensive side reactions, and poor control of graft structures. In this thesis, we show a new synthetic route for preparing MA modified polyolefins with excellent control of polymer structures and MA concentrations. The synthesis is based on the "reactive" polyolefin copolymers, i.e. polyolefins containing p-methylstyrene or alkylborane groups. The p-methylstyrene copolymers lead to selectively grafting reactions on the p-methyl groups, greatly reducing the side reactions on the polyolefin backbone. The MA graft content was proportional to the concentration of p-methylstyrene. In the borane approach, under controlled selective oxidation, the alkylborane containing PP polymers formed the "stable" polymeric radical in situ which initiated the graft-from reaction. By varying the monomer concentrations of MA and styrene, reaction time and temperature, a broad range of MA modified PP polymers were prepared from a single MA terminated or grafted PP to a very long SMA segment blocked or grafted PP, and there is no detectable side reaction on the PP backbone. MA modified polyolefins were investigated in the applications of glass fiber reinforced PP, elastomer toughened Nylon, and polyolefin/Nylon blends. The MA modified polyolefin compatibilizers showed the significant improved mechanical properties and morphology of the blends. The effectiveness of compatibilization depends on the MA concentration, molecular weight of the polyolefin segments, the structure of the compatibilizers, and the composition of the blend. By amidation or imidation reaction of MA modified PP with amine terminated PP, long chain branched PP polymers were also prepared. The results of IR, GPC, intrinsic viscosity and DSC studies clearly indicate the formation of long chain branched PP.
Hellstrand, S; Sonestedt, E; Ericson, U; Gullberg, B; Wirfält, E; Hedblad, B; Orho-Melander, M
2012-06-01
Polymorphisms of the FA desaturase (FADS) gene cluster have been associated with LDL, HDL, and triglyceride concentrations. Because FADS converts α-linolenic acid (ALA) and linoleic acid into PUFAs, we investigated the interaction between different PUFA intakes and the FADS polymorphism rs174547 (T>C) on fasting blood lipid and lipoprotein concentrations. We included 4,635 individuals (60% females, 45-68 years) from the Swedish population-based Malmö Diet and Cancer cohort. Dietary intakes were assessed by a modified diet history method including 7-day registration of cooked meals. The C-allele of rs174547 was associated with lower LDL concentration (P = 0.03). We observed significant interaction between rs174547 and long-chain ω-3 PUFA intakes on LDL (P = 0.01); the C-allele was only associated with lower LDL among individuals in the lowest tertile of long-chain ω-3 PUFA intakes (P < 0.001). In addition, significant interaction was observed between rs174547 and the ratio of ALA and linoleic FA intakes on HDL (P = 0.03). However, no significant associations between the C-allele and HDL were detected within the intake tertiles of the ratio. Our findings suggest that dietary intake levels of different PUFAs modify the associated effect of genetic variation in FADS on LDL and HDL.
Menaa, Bouzid; Herrero, Mar; Rives, Vicente; Lavrenko, Mayya; Eggers, Daryl K.
2008-01-01
Organically-modified siloxanes were used as host materials to examine the influence of surface chemistry on protein conformation in a crowded environment. The sol-gel materials were prepared from tetramethoxysilane and a series of monosubstituted alkoxysilanes, RSi(OR′)3, featuring alkyl groups of increasing chain length in the R-position. Using circular dichroism spectroscopy in the far-UV region, apomyoglobin was found to transit from an unfolded state to a native-like helical state as the content of the hydrophobic precursor increased from 0–15%. At a fixed molar content of 5% RSi(OR’)3, the helical structure of apomyoglobin increased with the chain length of the R-group, i.e. methyl < ethyl < n-propyl < n-butyl < n-hexyl. This trend also was observed for the tertiary structure of ribonuclease A, suggesting that protein folding and biological activity are sensitive to the hydrophilic/hydrophobic balance of neighboring surfaces. The observed changes in protein structure did not correlate with total surface area or the average pore size of the modified glasses, but scanning electron microscopy images revealed an interesting relationship between surface morphology and alkyl chain length. The unexpected benefit of incorporating a low content of hydrophobic groups into a hydrophilic surface may lead to materials with improved biocompatibility for use in biosensors and implanted devices. PMID:18359512
Ren, Xiaomei; El-Sagheer, Afaf H.; Brown, Tom
2016-01-01
A sterically undemanding azide analogue of dTTP (AHP dUTP) with an alkyl chain and ethynyl attachment to the nucleobase was designed and incorporated into DNA by primer extension, reverse transcription and polymerase chain reaction (PCR). An azide-modified 523 bp PCR amplicon with all 335 thymidines replaced by AHP dU was shown to be a perfect copy of the template from which it was amplified. Replacement of thymidine with AHP dU increases duplex stability, accounting in part for the high incorporation efficiency of the azide-modified triphosphate. Single-stranded azide-labelled DNA was conveniently prepared from PCR products by λ-exonuclease digestion and streptavidin magnetic bead isolation. Efficient fluorescent labelling of single and double-stranded DNA was carried out using dyes functionalized with bicyclo[6.1.0]non-4-yne (BCN) via the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. This revealed that the degree of labelling must be carefully controlled to achieve optimum fluorescence and avoid fluorescence quenching. Dual-coloured probes were obtained in a single tube fluorescent labelling reaction; and varying the ratios of the two dyes provides a simple method to prepare DNA probes with unique fluorescent signatures. AHP dUTP is a versatile clickable nucleotide with potentially wide applications in biology and nanotechnology including single molecule studies and synthesis of modified aptamer libraries via SELEX. PMID:26819406
Singh, Rajesh K.; Zerath, Sylvia; Kleifeld, Oded; Scheffner, Martin; Glickman, Michael H.; Fushman, David
2012-01-01
Of all ubiquitin-like proteins, Rub1 (Nedd8 in mammals) is the closest kin of ubiquitin. We show via NMR that structurally, Rub1 and ubiquitin are fundamentally similar as well. Despite these profound similarities, the prevalence of Rub1/Nedd8 and of ubiquitin as modifiers of the proteome is starkly different, and their attachments to specific substrates perform different functions. Recently, some proteins, including p53, p73, EGFR, caspase-7, and Parkin, have been shown to be modified by both Rub1/Nedd8 and ubiquitin within cells. To understand whether and how it might be possible to distinguish among the same target protein modified by Rub1 or ubiquitin or both, we examined whether ubiquitin receptors can differentiate between Rub1 and ubiquitin. Surprisingly, Rub1 interacts with proteasome ubiquitin-shuttle proteins comparably to ubiquitin but binds more weakly to a proteasomal ubiquitin receptor Rpn10. We identified Rub1-ubiquitin heteromers in yeast and Nedd8-Ub heteromers in human cells. We validate that in human cells and in vitro, human Rub1 (Nedd8) forms chains with ubiquitin where it acts as a chain terminator. Interestingly, enzymatically assembled K48-linked Rub1-ubiquitin heterodimers are recognized by various proteasomal ubiquitin shuttles and receptors comparably to K48-linked ubiquitin homodimers. Furthermore, these heterologous chains are cleaved by COP9 signalosome or 26S proteasome. A derubylation function of the proteasome expands the repertoire of its enzymatic activities. In contrast, Rub1 conjugates may be somewhat resilient to the actions of other canonical deubiquitinating enzymes. Taken together, these findings suggest that once Rub1/Nedd8 is channeled into ubiquitin pathways, it is recognized essentially like ubiquitin. PMID:23105008
Ji, Chen-Hao; Xue, Shuang-Mei; Xu, Zhen-Liang
2016-10-12
A novel carbohydrate chain cross-linking method of sodium alginate (SA) is proposed in which glycogen with the branched-chain structure is utilized to cross-link with SA matrix by the bridging of glutaraldehyde (GA). The active layer of SA composite ceramic membrane modified by glycogen and GA for pervaporation (PV) demonstrates great advantages. The branched structure increases the chain density of the active layer, which compresses the free volume between the carbohydrate chains of SA. Large amounts of hydroxyl groups are consumed during the reaction with GA, which reduces the hydrogen bond formation between water molecules and the polysaccharide matrix. The two factors benefit the active layer with great improvement in swelling resistance, promoting the potential of the active layer for the dehydration of an ethanol-water solution containing high water content. Meanwhile, the modified active layer is loaded on the rigid α-Al 2 O 3 ceramic membrane by dip-coating method with the enhancement of anti-deformation and controllable thickness of the active layer. Characterization techniques such as SEM, AFM, XRD, FTIR, XPS, and water contact angle are utilized to observe the composite structure and surface morphology of the composite membrane, to probe the free volume variation, and to determine the chemical composition and hydrophilicity difference of the active layer caused by the different glycogen additive amounts. The membrane containing 3% glycogen in the selective layer demonstrates the flux at 1250 g m -2 h -1 coupled with the separation factor of 187 in the 25 wt % water content feed solution at the operating temperature of 75 °C, reflecting superior pervaporation processing capacity compared with the general organic PV membranes in the same condition.
Han, Lingyu; Ratcliffe, I; Williams, P A
2017-12-15
A series of inulin derivatives were synthesized in aqueous solution using acyl chlorides with varying alkyl chain length (C10-C16). They were characterised using a number of techniques including MALDI TOF-MS, 1 H NMR and FTIR and their degree of substitution determined. The solution properties of the hydrophobically modified inulins were investigated using dye solubilisation and surface tension and it was confirmed that the molecules aggregated in solution above a critical concentration (critical aggregation concentration, CAC). The value of the CAC was found to be reasonably consistent between the different techniques and was shown to decrease with increasing hydrophobe chain length. It was found that the C10, C12 and C14 derivatives formed stable oil-in-water emulsions and the emulsion droplet size decreased with increasing alkyl chain length. The C16 derivative was not able to produce stable oil-in-water emulsions; however, it was able to form stable water-in-oil emulsions. The fact that the derivatives are able to form micellar-like aggregates and stabilise emulsions makes them suitable candidates for the encapsulation and delivery of active compounds with potential application in food, cosmetic, personal care and pharmaceutical formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zengin, Adem; Caykara, Tuncer
2017-05-01
Herein, we have designed a novel multilayer system composed of poly(methyl methacrylate) [poly(MMA)] brush, biotin, streptavidin and protein-A on a silicon substrate to attach onanti-immunoglobulin G (anti-IgG). poly(MMA) brush with vinyl end-group was first synthesized by the interface-mediated catalytic chain transfer polymerization. The brush was then modified with cysteamine molecules to generate the polymer chains with amine end-group via a thiol-ene click chemistry. The amine end-groups of poly(MMA) chains were also modified with biotin units to ensure selective connection points for streptavidin molecules. Finally, a multilayer system on the silicon substrate was formed by using streptavidin and protein-A molecules, respectively. This multilayer system was employed to attach anti-IgG molecules in a highly oriented manner and provide anti-IgG molecular functional configuration on the multilayer. High reproducibility of the amount of anti-IgG adsorption and homogeneous anti-IgG adsorption layer on the silicon surface could be provided by this multilayer system. The multilayer system with protein A may be opened the door for designing an efficient immunoassay protein chip. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Garrett, Rachael D.; Rueda, Ximena; Lambin, Eric F.
2013-12-01
The land use impacts of globalization and of increasing global food and fuel demand depend on the trade relationships that emerge between consuming and producing countries. In the case of soybean production, increasing trade between South American farmers and consumers in Asia and Europe has facilitated soybean expansion in the Amazon, Chaco, and Cerrado biomes. While these telecouplings have been well documented, there is little understanding of how quality preferences influence trade patterns and supply chains, incentivizing or discouraging particular land use practices. In this study we provide empirical evidence that Brazil’s continued production of non-genetically modified (GM) soybeans has increased its competitive advantage in European countries with preferences against GM foods. Brazil’s strong trade relationship with European consumers has facilitated an upgrading of the soybean supply chain. Upgraded soybean supply chains create new conservation opportunities by allowing farmers to differentiate their products based on environmental quality in order to access premiums in niche markets in Europe. These interactions between GM preferences, trade flows, and supply chain structure help to explain why Brazilian soybean farmers have adopted environmental certification programs on a larger scale than Argentinian, Bolivian, Paraguayan, and Uruguayan soybean producers.
Flemer, Stevenson; Wurthmann, Alexander; Mamai, Ahmed; Madalengoitia, José S
2008-10-03
A strategy for the solid-phase diversification of PPII mimic scaffolds through guanidinylation is presented. The approach involves the synthesis N-Pmc-N'-alkyl thioureas as diversification reagents. Analogues of Fmoc-Orn(Mtt)-OH can be incorporated into a growing peptide chain on Wang resin. Side chain deprotection with 1% TFA/CH2Cl2 followed by EDCI-mediated reaction of N-Pmc-N'-alkyl thioureas with the side chain amine affords arginine analogues with modified guanidine head groups. The scope, limitations, and incidental chemistry are discussed.
Surface Treatment on Physical Properties and Biocompatibility of Orthodontic Power Chains
Cheng, H. C.; Chen, M. S.; Peng, B. Y.; Lin, W. T.; Wang, Y. H.
2017-01-01
The conventional orthodontic power chain, often composed of polymer materials, has drawbacks such as a reduction of elasticity owing to water absorption as well as surface discoloration and staining resulting from food or beverages consumed by the patient. The goal of this study was to develop a surface treatment (nanoimprinting) for orthodontic power chains and to alleviate their shortcomings. A concave template (anodic alumina) was manufactured by anodization process using pure aluminum substrate by employing the nanoimprinting process. Convex nanopillars were fabricated on the surface of orthodontic power chains, resulting in surface treatment. Distinct parameters of the nanoimprinting process (e.g., imprinting temperature, imprinting pressure, imprinting time, and demolding temperature) were used to fabricate nanopillars on the surface of orthodontic power chains. The results of this study showed that the contact angle of the power chains became larger after surface treatment. In addition, the power chains changed from hydrophilic to hydrophobic. The power chain before surface treatment without water absorption had a water absorption rate of approximately 4%, whereas a modified chain had a water absorption rate of approximately 2%–4%. Furthermore, the color adhesion of the orthodontic power chains after surface modification was less than that before surface modification. PMID:28540299
Chattoraj, Joyjit; Knappe, Marisa; Heuer, Andreas
2015-06-04
It is known from experiments that in the polymer electrolyte system, which contains poly(ethylene oxide) chains (PEO), lithium-cations (Li(+)), and bis(trifluoromethanesulfonyl)imide-anions (TFSI(-)), the cation and the anion diffusion and the ionic conductivity exhibit a similar chain-length dependence: with increasing chain length, they start dropping steadily, and later, they saturate to constant values. These results are surprising because Li-cations are strongly correlated with the polymer chains, whereas TFSI-anions do not have such bonding. To understand this phenomenon, we perform molecular dynamics simulations of this system for four different polymer chain lengths. The diffusion results obtained from our simulations display excellent agreement with the experimental data. The cation transport model based on the Rouse dynamics can successfully quantify the Li-diffusion results, which correlates Li diffusion with the polymer center-of-mass motion and the polymer segmental motion. The ionic conductivity as a function of the chain length is then estimated based on the chain-length-dependent ion diffusion, which shows a temperature-dependent deviation for short chain lengths. We argue that in the first regime, counterion correlations modify the conductivity, whereas for the long chains, the system behaves as a strong electrolyte.
In silico molecular engineering for a targeted replacement in a tumor-homing peptide
Zanuy, David; Flores-Ortega, Alejandra; Jiménez, Ana I.; Calaza, M. Isabel; Cativiela, Carlos; Nussinov, Ruth; Ruoslahti, Erkki; Alemán, Carlos
2009-01-01
A new amino acid has been designed as a replacement for arginine (Arg, R) to protect the tumor-homing pentapeptide CREKA from proteases. This amino acid, denoted (Pro)hArg, is characterized by a proline skeleton bearing a specifically oriented guanidinium side chain. This residue combines the ability of Pro to induce turn-like conformations with the Arg side-chain functionality. The conformational profile of the CREKA analogue incorporating this Arg substitute has been investigated by a combination of simulated annealing and Molecular Dynamics. Comparison of the results with those previously obtained for the natural CREKA shows that (Pro)hArg significantly reduces the conformational flexibility of the peptide. Although some changes are observed in the backbone···backbone and side chain···side chain interactions, the modified peptide exhibits a strong tendency to accommodate turn conformations centered at the (Pro)hArg residue and the overall shape of the molecule in the lowest energy conformations characterized for the natural and the modified peptide exhibit a high degree of similarity. In particular, the turn orients the backbone such that the Arg, Glu and Lys side chains face the same side of the molecule, which is considered essential for bioactivity. These results suggest that replacement of Arg by (Pro)hArg in CREKA may be useful in providing resistance against proteolytic enzymes while retaining conformational features which are essential for tumor-homing activity. PMID:19432404
Silica nanoparticles carrying boron-containing polymer brushes
NASA Astrophysics Data System (ADS)
Brozek, Eric M.; Mollard, Alexis H.; Zharov, Ilya
2014-05-01
A new class of surface-modified silica nanoparticles has been developed for potential applications in boron neutron capture therapy. Sub-50 nm silica particles were synthesized using a modified Stöber method and used in surface-initiated atom transfer radical polymerization of two biocompatible polymers, poly(2-(hydroxyethyl)methacrylate) and poly(2-(methacryloyloxy)ethyl succinate). The carboxylic acid and hydroxyl functionalities of the polymeric side chains were functionalized with carboranyl clusters in high yields. The resulting particles were characterized using DLS, TEM, solution 1H NMR, solid state 11B NMR and thermogravimetric analysis. The particles contain between 13 and 18 % of boron atoms by weight, which would provide a high amount of 10B nuclides for BNCT, while the polymer chains are suitable for further modification with cell targeting ligands.
Wong, Kwong-Kwok
2000-01-01
The present invention is an improved method of making a partially modified PCR product from a DNA fragment with a polymerase chain reaction (PCR). In a standard PCR process, the DNA fragment is combined with starting deoxynucleoside triphosphates, a primer, a buffer and a DNA polymerase in a PCR mixture. The PCR mixture is then reacted in the PCR producing copies of the DNA fragment. The improvement of the present invention is adding an amount of a modifier at any step prior to completion of the PCR process thereby randomly and partially modifying the copies of the DNA fragment as a partially modified PCR product. The partially modified PCR product may then be digested with an enzyme that cuts the partially modified PCR product at unmodified sites thereby producing an array of DNA restriction fragments.
Holness, Howard K; Jamal, Adeel; Mebel, Alexander; Almirall, José R
2012-11-01
A new mechanism is proposed that describes the gas-phase separation of chiral molecules found in amphetamine-type substances (ATS) by the use of high-resolution ion mobility spectrometry (IMS). Straight-chain achiral alcohols of increasing carbon chain length, from methanol to n-octanol, are used as drift gas modifiers in IMS to highlight the mechanism proposed for gas-phase separations of these chiral molecules. The results suggest the possibility of using these achiral modifiers to separate the chiral molecules (R,S) and (S,R)-ephedrine and (S,S) and (R,R)-pseudoephedrine which contain an internal hydroxyl group at the first chiral center and an amino group at the other chiral center. Ionization was achieved with an electrospray source, the ions were introduced into an IMS with a resolving power of 80, and the resulting ion clusters were characterized with a coupled quadrupole mass spectrometer detector. A complementary computational study conducted at the density functional B3LYP/6-31g level of theory for the electronic structure of the analyte-modifier clusters was also performed, and showed either "bridged" or "independent" binding. The combined experimental and simulation data support the proposed mechanism for gas-phase chiral separations using achiral modifiers in the gas phase, thus enhancing the potential to conduct fast chiral separations with relative ease and efficiency.
NASA Astrophysics Data System (ADS)
Carnal, Fabrice; Stoll, Serge
2011-01-01
Monte Carlo simulations have been used to study two different models of a weak linear polyelectrolyte surrounded by explicit counterions and salt particles: (i) a rigid rod and (ii) a flexible chain. We focused on the influence of the pH, chain stiffness, salt concentration, and valency on the polyelectrolyte titration process and conformational properties. It is shown that chain acid-base properties and conformational properties are strongly modified when multivalent salt concentration variation ranges below the charge equivalence. Increasing chain stiffness allows to minimize intramolecular electrostatic monomer interactions hence improving the deprotonation process. The presence of di and trivalent salt cations clearly promotes the chain degree of ionization but has only a limited effect at very low salt concentration ranges. Moreover, folded structures of fully charged chains are only observed when multivalent salt at a concentration equal or above charge equivalence is considered. Long-range electrostatic potential is found to influence the distribution of charges along and around the polyelectrolyte backbones hence resulting in a higher degree of ionization and a lower attraction of counterions and salt particles at the chain extremities.
Carnal, Fabrice; Stoll, Serge
2011-01-28
Monte Carlo simulations have been used to study two different models of a weak linear polyelectrolyte surrounded by explicit counterions and salt particles: (i) a rigid rod and (ii) a flexible chain. We focused on the influence of the pH, chain stiffness, salt concentration, and valency on the polyelectrolyte titration process and conformational properties. It is shown that chain acid-base properties and conformational properties are strongly modified when multivalent salt concentration variation ranges below the charge equivalence. Increasing chain stiffness allows to minimize intramolecular electrostatic monomer interactions hence improving the deprotonation process. The presence of di and trivalent salt cations clearly promotes the chain degree of ionization but has only a limited effect at very low salt concentration ranges. Moreover, folded structures of fully charged chains are only observed when multivalent salt at a concentration equal or above charge equivalence is considered. Long-range electrostatic potential is found to influence the distribution of charges along and around the polyelectrolyte backbones hence resulting in a higher degree of ionization and a lower attraction of counterions and salt particles at the chain extremities.
Proteasome-independent polyubiquitin linkage regulates synapse scaffolding, efficacy, and plasticity
Ma, Qi; Ruan, Hongyu; Peng, Lisheng; Zhang, Mingjie; Gack, Michaela U.
2017-01-01
Ubiquitination-directed proteasomal degradation of synaptic proteins, presumably mediated by lysine 48 (K48) of ubiquitin, is a key mechanism in synapse and neural circuit remodeling. However, more than half of polyubiquitin (polyUb) species in the mammalian brain are estimated to be non-K48; among them, the most abundant is Lys 63 (K63)-linked polyUb chains that do not tag substrates for degradation but rather modify their properties and activity. Virtually nothing is known about the role of these nonproteolytic polyUb chains at the synapse. Here we report that K63-polyUb chains play a significant role in postsynaptic protein scaffolding and synaptic strength and plasticity. We found that the postsynaptic scaffold PSD-95 (postsynaptic density protein 95) undergoes K63 polyubiquitination, which markedly modifies PSD-95’s scaffolding potentials, enables its synaptic targeting, and promotes synapse maturation and efficacy. TNF receptor-associated factor 6 (TRAF6) is identified as a direct E3 ligase for PSD-95, which, together with the E2 complex Ubc13/Uev1a, assembles K63-chains on PSD-95. In contrast, CYLD (cylindromatosis tumor-suppressor protein), a K63-specific deubiquitinase enriched in postsynaptic densities, cleaves K63-chains from PSD-95. We found that neuronal activity exerts potent control of global and synaptic K63-polyUb levels and, through NMDA receptors, drives rapid, CYLD-mediated PSD-95 deubiquitination, mobilizing and depleting PSD-95 from synapses. Silencing CYLD in hippocampal neurons abolishes NMDA-induced chemical long-term depression. Our results unveil a previously unsuspected role for nonproteolytic polyUb chains in the synapse and illustrate a mechanism by which a PSD-associated K63-linkage–specific ubiquitin machinery acts on a major postsynaptic scaffold to regulate synapse organization, function, and plasticity. PMID:28973854
LPTF frequency synthesis chain: Results and improvement for the near future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touahri, D.; Zondy, J.J.; Acef, O.
1994-12-31
We have measured the frequency of the He-Ne/12 laser starting from the Cs referenced CO{sub 2}/OsO{sub 4} laboratory standard. As the laser diode stabilized on the two-photon transition in Rb seems to be a suitable reference for spectroscopic studies. (H, He ... ) and a promising standard, we are modifying our chain in order to measure frequencies around 780 nm and specially the Rb one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, S.; Grasty, K; Hernandez-Cuebas, L
2009-01-01
The covalent attachment of different types of poly-ubiquitin chains signal different outcomes for the proteins so targeted. For example, a protein modified with Lys-48-linked poly-ubiquitin chains is targeted for proteasomal degradation, whereas Lys-63-linked chains encode nondegradative signals. The structural features that enable these different types of chains to encode different signals have not yet been fully elucidated. We report here the X-ray crystal structures of Lys-63-linked tri- and di-ubiquitin at resolutions of 2.3 and 1.9 {angstrom}, respectively. The tri- and di-ubiquitin species adopt essentially identical structures. In both instances, the ubiquitin chain assumes a highly extended conformation with a left-handedmore » helical twist; the helical chain contains four ubiquitin monomers per turn and has a repeat length of {approx}110 {angstrom}. Interestingly, Lys-48 ubiquitin chains also adopt a left-handed helical structure with a similar repeat length. However, the Lys-63 architecture is much more open than that of Lys-48 chains and exposes much more of the ubiquitin surface for potential recognition events. These new crystal structures are consistent with the results of solution studies of Lys-63 chain conformation, and reveal the structural basis for differential recognition of Lys-63 versus Lys-48 chains.« less
Structure and thermodynamics of a simple fluid
NASA Astrophysics Data System (ADS)
Stell, G.; Weis, J. J.
1980-02-01
Monte Carlo results are found for a simple fluid with a pair potential consisting of a hard-sphere core and a Lennard-Jones attractive tail. They are compared with several of the most promising recent theoretical treatments of simple fluids, all of which involve the decomposition of the pair potential into a hard-sphere-core term and an attractive-tail term. This direct comparison avoids the use of a second perturbation scheme associated with softening the core, which would introduce an ambiguity in the significance of the differences found between the theoretical and Monte Carlo results. The study includes the optimized random-phase approximation (ORPA) and exponential (EXP) approximations of Andersen and Chandler, an extension of the latter approximation to nodal order three (the N3 approximation), the linear-plus-square (LIN + SQ) approximation of Høye and Stell, the renormalized hypernetted chain (RHNC) approximation of Lado, and the quadratic (QUAD) approximation suggested by second-order self-consistent Γ ordering, the lowest order of which is identical to the ORPA. As anticipated on the basis of earlier studies, it is found that the EXP approximation yields radial distribution functions and structure factors of excellent overall accuracy in the liquid state, where the RHNC results are also excellent and the EXP, QUAD, and LIN + SQ results prove to be virtually indistinguishable from one another. For all the approximations, however, the thermodynamics from the compressibility relation are poor and the virial-theorem results are not uniformly reliable. Somewhat more surprisingly, it is found that the EXP results yield a negative structure factor S(k) for very small k in the liquid state and poor radial distribution functions at low densities. The RHNC results are nowhere worse than the EXP results and in some states (e.g., at low densities) much better. In contrast, the N3 results are better in some respects than the EXP results but worse in others. The authors briefly comment on the RHNC and EXP approximations applied to the full Lennard-Jones potential, for which the EXP approximation appears somewhat improved in the liquid state as a result of the softening of the potential core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Mozuelos, P.
This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact descriptionmore » of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short-ranged association of microions to the microgels. The behavior of these effective charges as a function of the amount of added salt and the macroion charge, size, and concentration reveals the interplay among all these system parameters.« less
Li, Zhao; Zheng, Zhen; Su, Shan; Yu, Lin; Wang, Xinling
2016-09-14
The threading mechanism of the hydroxypropyl-cyclodextrin (Hy-CD)/tetrahedron-like poly(ethylene glycol) (tetra-PEG) based host-guest complex and the relationship between Hy-CD and poly(ethylene oxide) (PEO) in the three-dimensional modified polyrotaxane (PR) formed by the complex were revealed through the comparison between Hy-β-CD/tetra-PEG and Hy-α-CD/tetra-PEG based systems from the macroscopic material view to the microscopic molecular view. The complexation between Hy-CD and tetra-PEG in water experiences a threading-dethreading-rethreading process which is controlled by the intermolecular interaction intensity or molecular hindrance depending on the feed ratio of Hy-CD to tetra-PEG. In the 3D modified PR, the methyl group of the Hy part on one Hy-CD can insert into the cavity of the adjacent Hy-CD and interacts with both the interior surface of the cavity and the PEO segment within the cavity if the cavity of Hy-CD is large enough. The threaded Hy-CD in the PR straightens the chain of PEO and suppresses the segment motion of the PEO. With the decrease of the cavity size of Hy-CD, the degree of suppression on the segment motion of PEO increases. Hy-CD threaded on the PEO chain can also deform when the 3D modified PR is compressed, and the degree of deformation increases with the increase of the cavity size of Hy-CD. These results of the modified CD/PEG based complex system set it apart from the unmodified CD/PEG based one, and reveal the structure-property relationship of this new type of Hy-CD/tetra-PEG based 3D modified PR material.
NASA Astrophysics Data System (ADS)
Khorasani, Sasan Torabzadeh; Almasifard, Maryam
2017-11-01
This paper presents a dual-objective facility programming model for a green supply chain network. The main objectives of the presented model are minimizing overall expenditure and negative environmental impacts of the supply chain. This study contributes to the existing literature by incorporating uncertainty in customer demand, suppliers, production, and casting capacity. An industrial case study is also analyzed to reveal the feasibility of the proposed model and its application. A fuzzy approach which is known as TH is used to solve the suggested dual-objective model. TH approach is integration of a max-min method (LH) and modified version of Werners' approach (MW). The outcome of this study reveals that the presented model can support green supply chain network in different levels of uncertainty. In presented model, cost and negative environmental impacts derived from the supply chain network will increase of higher levels of uncertainty.
Santos, Cherry S; Baldelli, Steven
2009-01-29
The gas-liquid interface of halide-free 1,3-dialkylimidazolium alkyl sulfates [RMIM][R-OSO(3)] with R chain length from C(1)-C(4) and C(8) has been studied systematically using the surface-specific sum frequency generation (SFG) vibrational spectroscopy and surface tension measurements. From the SFG spectra, vibrational modes from the methyl group of both cation and anion are observed for all ionic liquid samples considered in the present study. These results suggest the presence of both ions at the gas-liquid interface, which is further supported by surface tension measurements. Surface tension data show a decreasing trend as the alkyl chain in the imidazolium cation is varied from methyl to butyl chain, with a specific anion. A similar trend is observed when the alkyl chain of the anion is modified and the cation is fixed.
Verification of Concurrent Programs. Part II. Temporal Proof Principles.
1981-09-01
not modify any of the shared program variables. In order to ensure the correct synchronization between the processes we use three semaphore variables...direct, simple, and intuitive rides for the establishment of these properties. rhey usually replace long but repetitively similar chains of primitive ...modify the variables on which Q actually depends. A typical case is that of semaphores . We have the following property: The Semaphore Variable Rule
NASA Astrophysics Data System (ADS)
Yang, Zhao-Ping; Xin, Chun-Ling; Guo, Ya-Feng; Luo, Yi-Wei; He, Ya-Dong
2016-05-01
Improving the melt viscoelasticity of poly(ethylene terephthalate) (PET) is a well-known method to obtain foamable PET. The aim of this study is to prepare high melt strength PET and evaluate the influence of rheological properties of PET on the foaming behavior. For this purpose, pyromelliticdianhydride was used as the chain extender to modify a linear PET through melt reactive processing. The rheological properties of the unmodified and modified PETs were measured by a dynamic rheometer. Results showed that the modified PET had higher complex viscosity than the unmodified one. Furthermore, the batch foaming by using supercritical CO2 as a blowing agent was carried to evaluate the foamability of modified PETs. It was found that an enlarged foaming temperature window was obtained for modified PETs compared to unmodified PET. Moreover, the modified PETs foams exhibited higher expansion ratio, smaller cell size and higher cell density at high temperatures than the neat PET.
Wei, Jiaojun; Li, Feiwu; Guo, Jinchao; Li, Xiang; Xu, Junfeng; Wu, Gang; Zhang, Dabing; Yang, Litao
2013-11-27
The papaya (Carica papaya L.) Chymopapain (CHY) gene has been reported as a suitable endogenous reference gene for genetically modified (GM) papaya detection in previous studies. Herein, we further validated the use of the CHY gene and its qualitative and quantitative polymerase chain reaction (PCR) assays through an interlaboratory collaborative ring trial. A total of 12 laboratories working on detection of genetically modified organisms participated in the ring trial and returned test results. Statistical analysis of the returned results confirmed the species specificity, low heterogeneity, and single-copy number of the CHY gene among different papaya varieties. The limit of detection of the CHY qualitative PCR assay was 0.1%, while the limit of quantification of the quantitative PCR assay was ∼25 copies of haploid papaya genome with acceptable PCR efficiency and linearity. The differences between the tested and true values of papaya content in 10 blind samples ranged from 0.84 to 6.58%. These results indicated that the CHY gene was suitable as an endogenous reference gene for the identification and quantification of GM papaya.
Li, Yongfu; Meunier, David M; Partain, Emmett M
2014-09-12
Size-exclusion chromatography (SEC) of hydrophobe-modified hydroxyethyl cellulose (HmHEC) is challenging because polymer chains are not isolated in solution due to association of hydrophobic groups and hydrophobic interaction with column packing materials. An approach to neutralize these hydrophobic interactions was developed by adding β-cyclodextrin (β-CD) to the aqueous eluent. SEC mass recovery, especially for the higher molecular weight chains, increased with increasing concentration of β-CD in the eluent. A β-CD concentration of 0.75wt% in the eluent was determined to be optimal for the HmHEC polymers studied. These conditions enabled precise determinations of apparent molecular weight distributions exhibiting less than 2% relative standard deviation in the measured weight-average molecular weight (MW) for five injections on three studied samples and showed no significant differences in MW determined on two different days. The developed technology was shown to be very robust for characterizing HmHEC having MW from 500kg/mol to 2000kg/mol, and it can be potentially applied to other hydrophobe-modified polymers. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of surfactant types and their concentration on the structural characteristics of nanoclay
NASA Astrophysics Data System (ADS)
Zawrah, M. F.; Khattab, R. M.; Saad, E. M.; Gado, R. A.
2014-03-01
A series of organo-modified nanoclays was synthesized using three different surfactants having different alkyl chain lengths and concentrations [0.5-5.0 cation exchange capacity (CEC)]. These surfactants were Ethanolamine (EA), Cetyltrimethylammoniumbromide (CTAB) and Tetraoctadecylammoniumbromide (TO). The obtained modified nanoclays were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM) and compared with unmodified nanoclay. The results of XRD analysis indicated that the basal d-spacing has increased with increasing alkyl chain length and surfactant concentration. From the obtained microstructures of these organo-modified nanoclays, the mechanism of surfactant adsorption was proposed. At relatively low loading of surfactant, most of surfactant entered the spacing by an ion-exchange mechanism and is adsorbed onto the interlayer cation sites. When the concentration of the surfactant exceeds the CEC of clay, the surfactant molecules then adhere to the surface adsorbed surfactant. Some surfactants entered the interlayers, whereas the others were attached to the clay surface. When the concentration of surfactant increased further beyond 2.0 CEC, the surfactants might occupy the inter-particle space within the house-of-cards aggregate structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellberg, Kristina; Grimsrud, Paul A.; Kruse, Andrew C.
2012-07-11
Fatty acid binding proteins (FABP) have been characterized as facilitating the intracellular solubilization and transport of long-chain fatty acyl carboxylates via noncovalent interactions. More recent work has shown that the adipocyte FABP is also covalently modified in vivo on Cys117 with 4-hydroxy-2-nonenal (4-HNE), a bioactive aldehyde linked to oxidative stress and inflammation. To evaluate 4-HNE binding and modification, the crystal structures of adipocyte FABP covalently and noncovalently bound to 4-HNE have been solved to 1.9 {angstrom} and 2.3 {angstrom} resolution, respectively. While the 4-HNE in the noncovalently modified protein is coordinated similarly to a carboxylate of a fatty acid, themore » covalent form show a novel coordination through a water molecule at the polar end of the lipid. Other defining features between the two structures with 4-HNE and previously solved structures of the protein include a peptide flip between residues Ala36 and Lys37 and the rotation of the side chain of Phe57 into its closed conformation. Representing the first structure of an endogenous target protein covalently modified by 4-HNE, these results define a new class of in vivo ligands for FABPs and extend their physiological substrates to include bioactive aldehydes.« less
Isolation of high-quality total RNA from leaves of Myrciaria dubia "CAMU CAMU".
Gómez, Juan Carlos Castro; Reátegui, Alina Del Carmen Egoavil; Flores, Julián Torres; Saavedra, Roberson Ramírez; Ruiz, Marianela Cobos; Correa, Sixto Alfredo Imán
2013-01-01
Myrciaria dubia is a main source of vitamin C for people in the Amazon region. Molecular studies of M. dubia require high-quality total RNA from different tissues. So far, no protocols have been reported for total RNA isolation from leaves of this species. The objective of this research was to develop protocols for extracting high-quality total RNA from leaves of M. dubia. Total RNA was purified following two modified protocols developed for leaves of other species (by Zeng and Yang, and by Reid et al.) and one modified protocol developed for fruits of the studied species (by Silva). Quantity and quality of purified total RNA were assessed by spectrophotometric and electrophoretic analysis. Additionally, quality of total RNA was evaluated with reverse-transcription polymerase chain reaction (RT-PCR). With these three modified protocols we were able to isolate high-quality RNA (A260nm/A280nm >1.9 and A260nm/A230nm >2.0). Highest yield was produced with the Zeng and Yang modified protocol (384±46µg ARN/g fresh weight). Furthermore, electrophoretic analysis showed the integrity of isolated RNA and the absence of DNA. Another proof of the high quality of our purified RNA was the successful cDNA synthesis and amplification of a segment of the M. dubia actin 1 gene. We report three modified protocols for isolation total RNA from leaves of M. dubia. The modified protocols are easy, rapid, low in cost, and effective for high-quality and quantity total RNA isolation suitable for cDNA synthesis and polymerase chain reaction.
Functionalizing graphene by embedded boron clusters
NASA Astrophysics Data System (ADS)
Quandt, Alexander; Özdoğan, Cem; Kunstmann, Jens; Fehske, Holger
2008-08-01
We present a model system that might serve as a blueprint for the controlled layout of graphene based nanodevices. The systems consists of chains of B7 clusters implanted in a graphene matrix, where the boron clusters are not directly connected. We show that the graphene matrix easily accepts these alternating B7-C6 chains and that the implanted boron components may dramatically modify the electronic properties of graphene based nanomaterials. This suggests a functionalization of graphene nanomaterials, where the semiconducting properties might be supplemented by parts of the graphene matrix itself, but the basic wiring will be provided by alternating chains of implanted boron clusters that connect these areas.
Arefi, Hadi H; Nolan, Michael; Fagas, Giorgos
2014-11-11
Surface modification of silicon with organic monolayers tethered to the surface by different linkers is an important process in realizing future miniaturized electronic and sensor devices. Understanding the roles played by the nature of the linking group and the chain length on the adsorption structures and stabilities of these assemblies is vital to advance this technology. This paper presents a density functional theory (DFT) study of the hydrogen passivated Si(111) surface modified with alkyl chains of the general formula H:Si-(CH2)n-CH2 and H:Si-X-(CH2)n-CH3, where X = NH, O, S and n = (0, 1, 3, 5, 7, 9, 11), at half coverage. For (X)-hexane and (X)-dodecane functionalization, we also examined various coverages up to full monolayer grafting in order to validate the result of half covered surface and the linker effect on the coverage. We find that it is necessary to take into account the van der Waals interaction between the alkyl chains. The strongest binding is for the oxygen linker, followed by S, N, and C, irrespective of chain length. The result revealed that the sequence of the stability is independent of coverage; however, linkers other than carbon can shift the optimum coverage considerably and allow further packing density. For all linkers apart from sulfur, structural properties, in particular, surface-linker-chain angles, saturate to a single value once n > 3. For sulfur, we identify three regimes, namely, n = 0-3, n = 5-7, and n = 9-11, each with its own characteristic adsorption structures. Where possible, our computational results are shown to be consistent with the available experimental data and show how the fundamental structural properties of modified Si surfaces can be controlled by the choice of linking group and chain length.
Design and preparation of bi-functionalized short-chain modified zwitterionic nanoparticles.
Hu, Fenglin; Chen, Kaimin; Xu, Hong; Gu, Hongchen
2018-05-01
An ideal nanomaterial for use in the bio-medical field should have a distinctive surface capable of effectively preventing nonspecific protein adsorption and identifying target bio-molecules. Recently, the short-chain zwitterion strategy has been suggested as a simple and novel approach to create outstanding anti-fouling surfaces. In this paper, the carboxyl end group of short-chain zwitterion-coated silica nanoparticles (SiO 2 -ZWS) was found to be difficult to functionalize via a conventional EDC/NHS strategy due to its rapid hydrolysis side-reactions. Hence, a series of bi-functionalized silica nanoparticles (SiO 2 -ZWS/COOH) were designed and prepared by controlling the molar ratio of 3-aminopropyltriethoxysilane (APTES) to short-chain zwitterionic organosiloxane (ZWS) in order to achieve above goal. The synthesized SiO 2 -ZWS/COOH had similar excellent anti-fouling properties compared with SiO 2 -ZWS, even in 50% fetal bovine serum characterized by DLS and turbidimetric titration. Subsequently, SiO 2 -ZWS/COOH 5/1 was chosen as a representative and then demonstrated higher detection signal intensity and more superior signal-to-noise ratios compare with the pure SiO 2 -COOH when they were used as a bio-carrier for chemiluminescence enzyme immunoassay (CLEIA). These unique bi-functionalized silica nanoparticles have many potential applications in the diagnostic and therapeutic fields. Reducing nonspecific protein adsorption and enhancing the immobilized efficiency of specific bio-probes are two of the most important issues for bio-carriers, particularly for a nanoparticle based bio-carrier. Herein, we designed and prepared a bi-functional nanoparticle with anti-fouling property and bio conjugation capacity for further bioassay by improving the short-chain zwitterionic modification strategy we have proposed previously. The heterogeneous surface of this nanoparticle showed effective anti-fouling properties both in model protein solutions and fetal bovine serum (FBS). The modified nanoparticles can also be successfully functionalized with a specific antibody for CLEIA assay with a prominent bio-detection performance even in 50% FBS. In this paper, we also investigated an unexpectedly fast hydrolysis behavior of NHS-activated carboxylic groups within the pure short-chain zwitterionic molecule that led to no protein binding in the short-chain zwitterion modified nanoparticle. Our findings pave a new way for the designing of high performance bio-carriers, demonstrating their strong potential as a robust platform for diagnosis and therapy. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Method for altering antibody light chain interactions
Stevens, Fred J.; Stevens, Priscilla Wilkins; Raffen, Rosemarie; Schiffer, Marianne
2002-01-01
A method for recombinant antibody subunit dimerization including modifying at least one codon of a nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in the interface segment of the light polypeptide variable region, the charged amino acid having a first polarity; and modifying at least one codon of the nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in an interface segment of the heavy polypeptide variable region corresponding to a position in the light polypeptide variable region, the charged amino acid having a second polarity opposite the first polarity. Nucleic acid sequences which code for novel light chain proteins, the latter of which are used in conjunction with the inventive method, are also provided.
Use of a Modified Chaining Procedure with Textual Prompts to Establish Intraverbal Storytelling.
Valentino, Amber L; Conine, Daniel E; Delfs, Caitlin H; Furlow, Christopher M
2015-06-01
Echoic, tact, and textual transfer procedures have been proven successful in establishing simple intraverbals (Braam and Poling Applied Research in Mental Retardation, 4, 279-302, 1983; Luciano Applied Research in Mental Retardation, 102, 346-357, 1986; Watkins et al. The Analysis of Verbal Behavior, 7, 69-81, 1989). However, these strategies may be ineffective for some children due to the complexity of the targeted intraverbals. The current study investigated the use of a novel procedure which included a modified chaining procedure and textual prompts to establish intraverbal behavior in the form of telling short stories. Visual prompts and rule statements were used with some of the participants in order to produce the desired behavior change. Results indicated that the procedure was effective for teaching retelling of short stories in three children with autism.
Role for phospholipid acyl chains and cholesterol in pulmonary infections and inflammation
Shaikh, Saame Raza; Fessler, Michael B.
2016-01-01
Bacterial and viral respiratory tract infections result in millions of deaths worldwide and are currently the leading cause of death from infection. Acute inflammation is an essential element of host defense against infection, but can be damaging to the host when left unchecked. Effective host defense requires multiple lipid mediators, which collectively have proinflammatory and/or proresolving effects on the lung. During pulmonary infections, phospholipid acyl chains and cholesterol can be chemically and enzymatically oxidized, as well as truncated and modified, producing complex mixtures of bioactive lipids. We review recent evidence that phospholipids and cholesterol and their derivatives regulate pulmonary innate and adaptive immunity during infection. We first highlight data that oxidized phospholipids generated in the lung during infection stimulate pattern recognition receptors, such as TLRs and scavenger receptors, thereby amplifying the pulmonary inflammatory response. Next, we discuss evidence that oxidation of endogenous pools of cholesterol during pulmonary infections produces oxysterols that also modify the function of both innate and adaptive immune cells. Last, we conclude with data that n-3 polyunsaturated fatty acids, both in the form of phospholipid acyl chains and through enzymatic processing into endogenous proresolving lipid mediators, aid in the resolution of lung inflammation through distinct mechanisms. Unraveling the complex mechanisms of induction and function of distinct classes of bioactive lipids, both native and modified, may hold promise for developing new therapeutic strategies for improving pulmonary outcomes in response to infection. PMID:27286794
Khoramnia, Anahita; Ebrahimpour, Afshin; Ghanbari, Raheleh; Ajdari, Zahra; Lai, Oi-Ming
2013-01-01
Coconut oil is a rich source of beneficial medium chain fatty acids (MCFAs) particularly lauric acid. In this study, the oil was modified into a value-added product using direct modification of substrate through fermentation (DIMOSFER) method. A coconut-based and coconut-oil-added solid-state cultivation using a Malaysian lipolytic Geotrichum candidum was used to convert the coconut oil into MCFAs-rich oil. Chemical characteristics of the modified coconut oils (MCOs) considering total medium chain glyceride esters were compared to those of the normal coconut oil using ELSD-RP-HPLC. Optimum amount of coconut oil hydrolysis was achieved at 29% moisture content and 10.14% oil content after 9 days of incubation, where the quantitative amounts of the modified coconut oil and MCFA were 0.330 mL/g of solid media (76.5% bioconversion) and 0.175 mL/g of solid media (53% of the MCO), respectively. MCOs demonstrated improved antibacterial activity mostly due to the presence of free lauric acid. The highest MCFAs-rich coconut oil revealed as much as 90% and 80% antibacterial activities against Staphylococcus aureus and Escherichia coli, respectively. The results of the study showed that DIMOSFER by a local lipolytic G. candidum can be used to produce MCFAs as natural, effective, and safe antimicrobial agent. The produced MCOs and MCFAs could be further applied in food and pharmaceutical industries. PMID:23971051
Khoramnia, Anahita; Ebrahimpour, Afshin; Ghanbari, Raheleh; Ajdari, Zahra; Lai, Oi-Ming
2013-01-01
Coconut oil is a rich source of beneficial medium chain fatty acids (MCFAs) particularly lauric acid. In this study, the oil was modified into a value-added product using direct modification of substrate through fermentation (DIMOSFER) method. A coconut-based and coconut-oil-added solid-state cultivation using a Malaysian lipolytic Geotrichum candidum was used to convert the coconut oil into MCFAs-rich oil. Chemical characteristics of the modified coconut oils (MCOs) considering total medium chain glyceride esters were compared to those of the normal coconut oil using ELSD-RP-HPLC. Optimum amount of coconut oil hydrolysis was achieved at 29% moisture content and 10.14% oil content after 9 days of incubation, where the quantitative amounts of the modified coconut oil and MCFA were 0.330 mL/g of solid media (76.5% bioconversion) and 0.175 mL/g of solid media (53% of the MCO), respectively. MCOs demonstrated improved antibacterial activity mostly due to the presence of free lauric acid. The highest MCFAs-rich coconut oil revealed as much as 90% and 80% antibacterial activities against Staphylococcus aureus and Escherichia coli, respectively. The results of the study showed that DIMOSFER by a local lipolytic G. candidum can be used to produce MCFAs as natural, effective, and safe antimicrobial agent. The produced MCOs and MCFAs could be further applied in food and pharmaceutical industries.
In situ characterization of N-carboxy anhydride polymerization in nanoporous anodic alumina.
Lau, K H Aaron; Duran, Hatice; Knoll, Wolfgang
2009-03-12
Poly(gamma-benzyl-L-glutamate) (PBLG) has been a popular model polypeptide for a range of physicochemical studies, and its modifiable ester side chains make it an attractive platform for various potential applications. Thin films of Poly(gamma-benzyl-L-glutamate) PBLG were surface grafted within nanoporous anodic alumina (AAO) by surface-initiated polymerization of the N-carboxy anhydride of benzyl-L-glutamate (BLG-NCA). The grafting process was characterized by optical waveguide spectroscopy (OWS), infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). OWS was able to track the PBLG layer thickness increase in situ, and ex situ FT-IR gave complementary information on the PBLG chain's secondary structure. Transitions in the PBLG growth rate could be correlated with transitions in the polypeptide secondary structure. The emergence of a three-dimensional, anisotropic PBLG morphology within the cylindrical pores of the AAO membrane was also identified as the grafted PBLG average layer thickness increased. Comparison of the PBLG/AAO results with those on a planar silicon dioxide surface indicated that both the conformational transitions and the PBLG nanostructure development could be attributed to the confining geometry within the pores of the nanoporous AAO matrix. The use of a nanoporous AAO matrix, combined with the surface grafting of a thin film of PBLG chains with multiple modifiable side chains, could potentially offer a nanoporous platform with a very high density of functional sites.
Zhang, Tao; Yang, Hao; Kang, Lin; Gao, Shan; Xin, Wenwen; Yao, Wenwu; Zhuang, Xiangjin; Ji, Bin; Wang, Jinglin
2015-01-01
Ricin toxin (RT) is an extremely potent toxin derived from the castor bean plant. As a possible bioterrorist weapon, it was categorized as a level B agent in international society. With the growing awareness and concerns of the "white powder incident" in recent years, it is indispensable to develop an effective countermeasure against RT intoxication. In this study we used site-directed mutagenesis and polymerase chain reaction (PCR) techniques to modify the gene of ricin A-chain (RTA). As a result, we have generated a mutated and truncated ricin A-chain (mtRTA) vaccine antigen by E.coli strain. The cytotoxicity assay was used to evaluate the safety of the as-prepared mtRTA antigen, and the results showed that there was no residual toxicity observed when compared to the recombinant RTA (rRTA) or native RT. Furthermore, BALB/c mice were subcutaneously (s.c.) vaccinated with mtRTA 3 times at an interval of 2 weeks, and then the survivals were evaluated after intraperitoneal (i.p.) or intratracheal challenge of RT. The vaccinated mice developed a strong protective immune response that was wholly protective against 40 × LD50 of RT i.p. injection or 20 × LD50 of RT intratracheal spraying. The mtRTA antigen has great potential to be a vaccine candidate for future application in humans.
Cieluch, Ewelina; Pietryga, Krzysztof; Sarewicz, Marcin; Osyczka, Artur
2010-02-01
Cytochrome c(1) of Rhodobacter (Rba.) species provides a series of mutants which change barriers for electron transfer through the cofactor chains of cytochrome bc(1) by modifying heme c(1) redox midpoint potential. Analysis of post-flash electron distribution in such systems can provide useful information about the contribution of individual reactions to the overall electron flow. In Rba. capsulatus, the non-functional low-potential forms of cytochrome c(1) which are devoid of the disulfide bond naturally present in this protein revert spontaneously by introducing a second-site suppression (mutation A181T) that brings the potential of heme c(1) back to the functionally high levels, yet maintains it some 100 mV lower from the native value. Here we report that the disulfide and the mutation A181T can coexist in one protein but the mutation exerts a dominant effect on the redox properties of heme c(1) and the potential remains at the same lower value as in the disulfide-free form. This establishes effective means to modify a barrier for electron transfer between the FeS cluster and heme c(1) without breaking disulfide. A comparison of the flash-induced electron transfers in native and mutated cytochrome bc(1) revealed significant differences in the post-flash equilibrium distribution of electrons only when the connection of the chains with the quinone pool was interrupted at the level of either of the catalytic sites by the use of specific inhibitors, antimycin or myxothiazol. In the non-inhibited system no such differences were observed. We explain the results using a kinetic model in which a shift in the equilibrium of one reaction influences the equilibrium of all remaining reactions in the cofactor chains. It follows a rather simple description in which the direction of electron flow through the coupled chains of cytochrome bc(1) exclusively depends on the rates of all reversible partial reactions, including the Q/QH2 exchange rate to/from the catalytic sites. 2009 Elsevier B.V. All rights reserved.
Electronic band gaps of confined linear carbon chains ranging from polyyne to carbyne
NASA Astrophysics Data System (ADS)
Shi, Lei; Rohringer, Philip; Wanko, Marius; Rubio, Angel; Waßerroth, Sören; Reich, Stephanie; Cambré, Sofie; Wenseleers, Wim; Ayala, Paola; Pichler, Thomas
2017-12-01
Ultralong linear carbon chains of more than 6000 carbon atoms have recently been synthesized within double-walled carbon nanotubes (DWCNTs), and they show a promising route to one-atom-wide semiconductors with a direct band gap. Theoretical studies predicted that this band gap can be tuned by the length of the chains, the end groups, and their interactions with the environment. However, different density functionals lead to very different values of the band gap of infinitely long carbyne. In this work, we applied resonant Raman excitation spectroscopy with more than 50 laser wavelengths to determine the band gap of long carbon chains encapsulated inside DWCNTs. The experimentally determined band gaps ranging from 2.253 to 1.848 eV follow a linear relation with Raman frequency. This lower bound is the smallest band gap of linear carbon chains observed so far. The comparison with experimental data obtained for short chains in gas phase or in solution demonstrates the effect of the DWCNT encapsulation, leading to an essential downshift of the band gap. This is explained by the interaction between the carbon chain and the host tube, which greatly modifies the chain's bond-length alternation.
Covalent modification of proteins by cocaine
NASA Astrophysics Data System (ADS)
Deng, Shi-Xian; Bharat, Narine; Fischman, Marian C.; Landry, Donald W.
2002-03-01
Cocaine covalently modifies proteins through a reaction in which the methyl ester of cocaine acylates the -amino group of lysine residues. This reaction is highly specific in vitro, because no other amino acid reacts with cocaine, and only cocaine's methyl ester reacts with the lysine side chain. Covalently modified proteins were present in the plasma of rats and human subjects chronically exposed to cocaine. Modified endogenous proteins are immunogenic, and specific antibodies were elicited in mouse and detected in the plasma of human subjects. Covalent modification of proteins could explain cocaine's autoimmune effects and provide a new biochemical approach to cocaine's long-term actions.
[Interaction of chaotropically modified immunoglobulins with protein and glicolipid antigens].
Gordienko, A I; Khimich, N V
2006-01-01
The features of interaction of native and chaotropically modified immunoglobulins with proteins (ovalbumin) and glicolipids (lipopolysaccharides, LPS) enterobacteria Escherichia coli K235, Salmonella minnesota and Salmonella enteritidis have been investigated. It has been established, that after processing of native antibodies with 3.5 M KSCN their ability to contact to the specified antigenes repeatedly grows. Besides the intensity of interaction of modified immunoglobulins with the mentioned above antigenes was various, that is determined by the presence of structural distinctions between antigen determinants of proteins and glycolipid antigens, and also between O-polysaccharide chains of LPS in different species of enterobacteria.
Host cells and methods for producing isoprenyl alkanoates
Lee, Taek Soon; Fortman, Jeffrey L.; Keasling, Jay D.
2015-12-01
The invention provides for a method of producing an isoprenyl alkanoate in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses an enzyme capable of catalyzing the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) or lipase, under a suitable condition so that the isoprenyl alkanoate is produced.
Coronado Mondragon, Adrian E; Coronado Mondragon, Christian E; Coronado, Etienne S
2015-01-01
Flexibility and innovation at creating shapes, adapting processes, and modifying materials characterize composites materials, a "high-tech" industry. However, the absence of standard manufacturing processes and the selection of materials with defined properties hinder the configuration of the composites materials supply chain. An interesting alternative for a "high-tech" industry such as composite materials would be to review supply chain lessons and practices in "low-tech" industries such as food. The main motivation of this study is to identify lessons and practices that comprise innovations in the supply chain of a firm in a perceived "low-tech" industry that can be used to provide guidelines in the design of the supply chain of a "high-tech" industry, in this case composite materials. This work uses the case study/site visit with analogy methodology to collect data from a Spanish leading producer of fresh fruit juice which is sold in major European markets and makes use of a cold chain. The study highlights supply base management and visibility/traceability as two elements of the supply chain in a "low-tech" industry that can provide guidelines that can be used in the configuration of the supply chain of the composite materials industry.
Crowe, Sean O; Pham, Grace H; Ziegler, Jacob C; Deol, Kirandeep K; Guenette, Robert G; Ge, Ying; Strieter, Eric R
2016-08-17
Information embedded in different ubiquitin chains is transduced by proteins with ubiquitin-binding domains (UBDs) and erased by a set of hydrolytic enzymes referred to as deubiquitinases (DUBs). Understanding the selectivity of UBDs and DUBs is necessary for decoding the functions of different ubiquitin chains. Critical to these efforts is the access to chemically defined ubiquitin chains bearing site-specific fluorescent labels. One approach toward constructing such molecules involves peptide ligation by sortase (SrtA), a bacterial transpeptidase responsible for covalently attaching cell surface proteins to the cell wall. Here, we demonstrate the utility of SrtA in modifying individual subunits of ubiquitin chains. Using ubiquitin derivatives in which an N-terminal glycine is unveiled after protease-mediated digestion, we synthesized ubiquitin dimers, trimers, and tetramers with different isopeptide linkages. SrtA was then used in combination with fluorescent depsipeptide substrates to effect the modification of each subunit in a chain. By constructing branched ubiquitin chains with individual subunits tagged with a fluorophore, we provide evidence that the ubiquitin-specific protease USP15 prefers ubiquitin trimers but has little preference for a particular isopeptide linkage. Our results emphasize the importance of subunit-specific labeling of ubiquitin chains when studying how DUBs process these chains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Protonic transport through solitons in hydrogen-bonded systems
NASA Astrophysics Data System (ADS)
Kavitha, L.; Jayanthi, S.; Muniyappan, A.; Gopi, D.
2011-09-01
We offer an alternative route for investigating soliton solutions in hydrogen-bonded (HB) chains. We invoke the modified extended tangent hyperbolic function method coupled with symbolic computation to solve the governing equation of motion for proton dynamics. We investigate the dynamics of proton transfer in HB chains through bell-shaped soliton excitations, which trigger the bio-energy transport in most biological systems. This solitonic mechanism of proton transfer could play functional roles in muscular contraction, enzymatic activity and oxidative phosphorylation.
A Synthetic Recursive “+1” Pathway for Carbon Chain Elongation
Marcheschi, Ryan J.; Li, Han; Zhang, Kechun; Noey, Elizabeth L.; Kim, Seonah; Chaubey, Asha; Houk, K. N.; Liao, James C.
2013-01-01
Nature uses four methods of carbon chain elongation for the production of 2-ketoacids, fatty acids, polyketides, and isoprenoids. Using a combination of quantum mechanical (QM) modeling, protein–substrate modeling, and protein and metabolic engineering, we have engineered the enzymes involved in leucine biosynthesis for use as a synthetic “+1” recursive metabolic pathway to extend the carbon chain of 2-ketoacids. This modified pathway preferentially selects longer-chain substrates for catalysis, as compared to the non-recursive natural pathway, and can recursively catalyze five elongation cycles to synthesize bulk chemicals, such as 1-heptanol, 1-octanol, and phenylpropanol directly from glucose. The “+1” chemistry is a valuable metabolic tool in addition to the “+5” chemistry and “+2” chemistry for the biosynthesis of isoprenoids, fatty acids, or polyketides. PMID:22242720
Mirzazadeh, Roghieh; Khatami, Shohreh; Bayat, Parastoo; Zamani, Zahra; Sadeghi, Sedigheh; Roohi, Soghra; Saidi, Parinaz
2005-01-01
The diagnosis of the different forms of thalassemia is one of the important applications of analysis of globin chains. These analyses are done by high performance liquid chromatography (HPLC) using a MONO-S cation exchange column and ether is used for washing the globin powder in the final step. The presence of peroxide impurities in ether could change the structure of the globin chains. In the chromatograms, these modified globins appear as separated peaks next to the unmodified globin peaks. In these cases, the alpha/beta ratio exceed by artifact the correct value. Our study demonstrates that diagnostic centers should ensure that the ether they use is pure.
Click-coated, heparinized, decellularized vascular grafts
Dimitrievska, Sashka; Cai, Chao; Weyers, Amanda; Balestrini, Jenna L.; Lin, Tylee; Sundaram, Sumati; Hatachi, Go; Spiegel, David A.; Kyriakides, Themis R.; Miao, Jianjun; Li, Guoyun; Niklason, Laura; Linhardt, Robert J.
2014-01-01
A novel method enabling the engineering of a dense and appropriately oriented heparin-containing layer on decellularized aortas has been developed. Amino groups of decellularized aortas were first modified to azido groups using 3-azidobenzoic acid. Azide-clickable dendrons were attached onto the azido groups through “alkyne-azide” click chemistry, affording a ten-fold amplification of adhesions sites. Dendron end groups were finally decorated with end-on modified heparin chains. Heparin chains were oriented like heparan sulfate groups on native endothelial cells surface. XPS, NMR, MS and FTIR were used to characterize the synthesis steps, building the final heparin layered coatings. Continuity of the heparin coating was verified using fluorescent microscopy and histological analysis. Efficacy of heparin linkage was demonstrated with factor Xa antithrombogenic assay and platelet adhesion studies. The results suggest that oriented heparin immobilization to decellularized aortas may improve the in vivo blood compatibility of decellularized aortas and vessels. PMID:25463496
NASA Astrophysics Data System (ADS)
Lee, Jonghwi; Urry, Dan W.; Macosko, Christopher W.
2000-03-01
Selectively modified elastic protein-based polymers demonstrate diverse energy conversions by means of the control of a phase transition resulting from the sensitivity to stimuli of the hydrophobic association. Among these polymers, poly(GVGVP), poly(GVGIP) and analogues of poly(GVGVP) containing carboxylic acid or amino functional groups as side chains were cross-linked and their swelling behavior was studied. Regardless of cross-linking method, reversible phase transitions can be observed in the swelling of all cross-linked polymers by changing temperature and pH, where relevant. Decreased cross-link density leads to increased swelling ratio as the transition becomes more pronounced. Fibers, chemically cross-linked after formation, exhibit anisotropic dimensional changes on changing the temperature. Gamma-irradiation cross-linked poly(GVGVP) exhibited a more distinct phase transition than modified poly(GVGVP) with ion pairs between side chains, which were partially converted to amide cross-links.
Sulfation effect on levan polysaccharide chains structure with molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Coskunkan, Binnaz; Turgut, Deniz; Rende, Deniz; Malta, Seyda; Baysal, Nihat; Ozisik, Rahmi; Toksoy-Oner, Ebru
Diversity in conformations and structural heterogeneity make polysaccharides the most challenging biopolymer type for experimental and theoretical characterization studies. Levan is a biopolymer chain that consists of fructose rings with β(2-6) linkages. It is a glycan that has great potential as a functional biopolymer in foods, feeds, cosmetics, pharmaceutical and chemical industries. Sulfated polysaccharides are group of macromolecules with sulfated groups in their hydroxyl parts with a range of important biological properties. Sulfate groups and their positions have a major effect on anticoagulant activity. It is reported that sulfate modified levan has anticoagulant activity such as heparin. In the current study, the effect of sulfation on the structure and dynamics of unmodified and sulfate modified levan are investigated via fully atomistic Molecular Dynamics simulations in aqueous media and varying salt concentrations at 310 K. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.
Substrate specificity of the ubiquitin and Ubl proteases
Ronau, Judith A; Beckmann, John F; Hochstrasser, Mark
2016-01-01
Conjugation and deconjugation of ubiquitin and ubiquitin-like proteins (Ubls) to cellular proteins are highly regulated processes integral to cellular homeostasis. Most often, the C-termini of these small polypeptides are attached to lysine side chains of target proteins by an amide (isopeptide) linkage. Deubiquitinating enzymes (DUBs) and Ubl-specific proteases (ULPs) comprise a diverse group of proteases that recognize and remove ubiquitin and Ubls from their substrates. How DUBs and ULPs distinguish among different modifiers, or different polymeric forms of these modifiers, remains poorly understood. The specificity of ubiquitin/Ubl-deconjugating enzymes for particular substrates depends on multiple factors, ranging from the topography of specific substrate features, as in different polyubiquitin chain types, to structural elements unique to each enzyme. Here we summarize recent structural and biochemical studies that provide insights into mechanisms of substrate specificity among various DUBs and ULPs. We also discuss the unexpected specificities of non-eukaryotic proteases in these families. PMID:27012468
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuchiya, Hikaru; Tanaka, Keiji, E-mail: tanaka-kj@igakuken.or.jp; Saeki, Yasushi, E-mail: saeki-ys@igakuken.or.jp
2013-06-28
Highlights: •The parallel reaction monitoring method was applied to ubiquitin quantification. •The ubiquitin PRM method is highly sensitive even in biological samples. •Using the method, we revealed that Ufd4 assembles the K29-linked ubiquitin chain. -- Abstract: Ubiquitylation is an essential posttranslational protein modification that is implicated in a diverse array of cellular functions. Although cells contain eight structurally distinct types of polyubiquitin chains, detailed function of several chain types including K29-linked chains has remained largely unclear. Current mass spectrometry (MS)-based quantification methods are highly inefficient for low abundant atypical chains, such as K29- and M1-linked chains, in complex mixtures thatmore » typically contain highly abundant proteins. In this study, we applied parallel reaction monitoring (PRM), a quantitative, high-resolution MS method, to quantify ubiquitin chains. The ubiquitin PRM method allows us to quantify 100 attomole amounts of all possible ubiquitin chains in cell extracts. Furthermore, we quantified ubiquitylation levels of ubiquitin-proline-β-galactosidase (Ub-P-βgal), a historically known model substrate of the ubiquitin fusion degradation (UFD) pathway. In wild-type cells, Ub-P-βgal is modified with ubiquitin chains consisting of 21% K29- and 78% K48-linked chains. In contrast, K29-linked chains are not detected in UFD4 knockout cells, suggesting that Ufd4 assembles the K29-linked ubiquitin chain(s) on Ub-P-βgal in vivo. Thus, the ubiquitin PRM is a novel, useful, quantitative method for analyzing the highly complicated ubiquitin system.« less
Simple route for nano-hydroxyapatite properties expansion.
Rojas, L; Olmedo, H; García-Piñeres, A J; Silveira, C; Tasic, L; Fraga, F; Montero, M L
2015-10-20
Simple surface modification of nano-hydroxyapatite, through acid-basic reactions, allows expanding the properties of this material. Introduction of organic groups such as hydrophobic alkyl chains, carboxylic acid, and amide or amine basic groups on the hydroxyapatite surface systematically change the polarity, surface area, and reactivity of hydroxyapatite without modifying its phase. Physical and chemical properties of the new derivative particles were analyzed. The biocompatibility of modified Nano-Hap on Raw 264.7 cells was also assessed.
Li, Yi-Jia; Perkins, Angela L; Su, Yang; Ma, Yuelong; Colson, Loren; Horne, David A; Chen, Yuan
2012-03-13
Protein-protein interactions mediated by ubiquitin-like (Ubl) modifications occur as mono-Ubl or poly-Ubl chains. Proteins that regulate poly-SUMO (small ubiquitin-like modifier) chain conjugates play important roles in cellular response to DNA damage, such as those caused by cancer radiation therapy. Additionally, high atomic number metals, such as gold, preferentially absorb much more X-ray energy than soft tissues, and thus augment the effect of ionizing radiation when delivered to cells. In this study, we demonstrate that conjugation of a weak SUMO-2/3 ligand to gold nanoparticles facilitated selective multivalent interactions with poly-SUMO-2/3 chains leading to efficient inhibition of poly-SUMO-chain-mediated protein-protein interactions. The ligand-gold particle conjugate significantly sensitized cancer cells to radiation but was not toxic to normal cells. This study demonstrates a viable approach for selective targeting of poly-Ubl chains through multivalent interactions created by nanoparticles that can be chosen based on their properties, such as abilities to augment radiation effects.
Li, Yi-Jia; Perkins, Angela L.; Su, Yang; Ma, Yuelong; Colson, Loren; Horne, David A.; Chen, Yuan
2012-01-01
Protein-protein interactions mediated by ubiquitin-like (Ubl) modifications occur as mono-Ubl or poly-Ubl chains. Proteins that regulate poly-SUMO (small ubiquitin-like modifier) chain conjugates play important roles in cellular response to DNA damage, such as those caused by cancer radiation therapy. Additionally, high atomic number metals, such as gold, preferentially absorb much more X-ray energy than soft tissues, and thus augment the effect of ionizing radiation when delivered to cells. In this study, we demonstrate that conjugation of a weak SUMO-2/3 ligand to gold nanoparticles facilitated selective multivalent interactions with poly-SUMO-2/3 chains leading to efficient inhibition of poly-SUMO-chain-mediated protein-protein interactions. The ligand-gold particle conjugate significantly sensitized cancer cells to radiation but was not toxic to normal cells. This study demonstrates a viable approach for selective targeting of poly-Ubl chains through multivalent interactions created by nanoparticles that can be chosen based on their properties, such as abilities to augment radiation effects. PMID:22388745
Structural and kinetic mapping of side-chain exposure onto the protein energy landscape.
Bernstein, Rachel; Schmidt, Kierstin L; Harbury, Pehr B; Marqusee, Susan
2011-06-28
Identification and characterization of structural fluctuations that occur under native conditions is crucial for understanding protein folding and function, but such fluctuations are often rare and transient, making them difficult to study. Native-state hydrogen exchange (NSHX) has been a powerful tool for identifying such rarely populated conformations, but it generally reveals no information about the placement of these species along the folding reaction coordinate or the barriers separating them from the folded state and provides little insight into side-chain packing. To complement such studies, we have performed native-state alkyl-proton exchange, a method analogous to NSHX that monitors cysteine modification rather than backbone amide exchange, to examine the folding landscape of Escherichia coli ribonuclease H, a protein well characterized by hydrogen exchange. We have chosen experimental conditions such that the rate-limiting barrier acts as a kinetic partition: residues that become exposed only upon crossing the unfolding barrier are modified in the EX1 regime (alkylation rates report on the rate of unfolding), while those exposed on the native side of the barrier are modified predominantly in the EX2 regime (alkylation rates report on equilibrium populations). This kinetic partitioning allows for identification and placement of partially unfolded forms along the reaction coordinate. Using this approach we detect previously unidentified, rarely populated conformations residing on the native side of the barrier and identify side chains that are modified only upon crossing the unfolding barrier. Thus, in a single experiment under native conditions, both sides of the rate-limiting barrier are investigated.
Structural and kinetic mapping of side-chain exposure onto the protein energy landscape
Bernstein, Rachel; Schmidt, Kierstin L.; Harbury, Pehr B.; Marqusee, Susan
2011-01-01
Identification and characterization of structural fluctuations that occur under native conditions is crucial for understanding protein folding and function, but such fluctuations are often rare and transient, making them difficult to study. Native-state hydrogen exchange (NSHX) has been a powerful tool for identifying such rarely populated conformations, but it generally reveals no information about the placement of these species along the folding reaction coordinate or the barriers separating them from the folded state and provides little insight into side-chain packing. To complement such studies, we have performed native-state alkyl-proton exchange, a method analogous to NSHX that monitors cysteine modification rather than backbone amide exchange, to examine the folding landscape of Escherichia coli ribonuclease H, a protein well characterized by hydrogen exchange. We have chosen experimental conditions such that the rate-limiting barrier acts as a kinetic partition: residues that become exposed only upon crossing the unfolding barrier are modified in the EX1 regime (alkylation rates report on the rate of unfolding), while those exposed on the native side of the barrier are modified predominantly in the EX2 regime (alkylation rates report on equilibrium populations). This kinetic partitioning allows for identification and placement of partially unfolded forms along the reaction coordinate. Using this approach we detect previously unidentified, rarely populated conformations residing on the native side of the barrier and identify side chains that are modified only upon crossing the unfolding barrier. Thus, in a single experiment under native conditions, both sides of the rate-limiting barrier are investigated. PMID:21670244
Control of crystallite orientation and size in Fe and FeCo nanoneedles.
Mendoza-Reséndez, Raquel; Luna, Carlos; Barriga-Castro, Enrique Diaz; Bonville, Pierre; Serna, Carlos J
2012-06-08
Uniform magnetic nanoneedles have been prepared by hydrogen reduction of elongated nanoarchitectures. These precursors are as-prepared or cobalt-coated aggregates of highly oriented haematite nanocrystals (∼5 nm). The final materials are flattened nanoneedles formed by chains of assembled Fe or FeCo single-domain nanocrystals. The microstructural properties of such nanoneedles were tailored using renewed and improved synthetic strategies. In this fashion, the needle elongation and composition, the crystallite size (from 15 up to 30 nm), the nanocrystal orientation (with the 〈110〉 or 〈001〉 directions roughly along the long axis of the nanoneedle) and their type of arrangement (single chains, frustrated double chains and double chains) were controlled by modifying the reduction time, the axial ratio of the precursor haematite and the presence of additional coatings of aluminum or yttrium compounds. The values of the coercivity H(C) found for these nanoneedles are compared with the values predicted by the chain of spheres model assuming a symmetric fanning mechanism for magnetization reversal.
Exploring the impact of the side-chain length on peptide/RNA binding events.
Sbicca, Lola; González, Alejandro López; Gresika, Alexandra; Di Giorgio, Audrey; Closa, Jordi Teixido; Tejedor, Roger Estrada; Andréola, Marie-Line; Azoulay, Stéphane; Patino, Nadia
2017-07-19
The impact of the amino-acid side-chain length on peptide-RNA binding events has been investigated using HIV-1 Tat derived peptides as ligands and the HIV-1 TAR RNA element as an RNA model. Our studies demonstrate that increasing the length of all peptide side-chains improves unexpectedly the binding affinity (K D ) but reduces the degree of compactness of the peptide-RNA complex. Overall, the side-chain length appears to modulate in an unpredictable way the ability of the peptide to compete with the cognate TAR RNA partner. Beyond the establishment of non-intuitive fundamental relationships, our results open up new perspectives in the design of effective RNA ligand competitors, since a large number of them have already been identified but few studies report on the modulation of the biological activity by modifying in the same way the length of all chains connecting RNA recognition motives to the central scaffold of a ligand.
Effect of thermal modification on rheological properties of polyethylene blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siriprumpoonthum, Monchai; Nobukawa, Shogo; Yamaguchi, Masayuki, E-mail: m-yama@jaist.ac.jp
2014-03-15
We examined the effects of thermal modification under flow field on the rheological properties of linear low-density polyethylene (LLDPE) with high molecular weight, low-density polyethylene (LDPE), and their blends, without thermal stabilizer. Although structural changes during processing are not detected by size extrusion chromatography or nuclear magnetic resonance spectroscopy, linear viscoelastic properties changed greatly, especially for the LLDPE. A cross-linking reaction took place, leading to, presumably, star-shaped long-chain branches. Consequently, the modified LLDPE, having high zero-shear viscosity, became a thermorheologically complex melt. Moreover, it should be noted that the drawdown force, defined as the uniaxial elongational force at a constantmore » draw ratio, was significantly enhanced for the blends. Enhancement of elongational viscosity was also detected. The drawdown force and elongational viscosity are marked for the thermally modified blend as compared with those for the blend of thermally modified pure components. Intermolecular cross-linking reactions between LDPE and LLDPE, yielding polymers with more than two branch points per chain, result in marked strain-hardening in the elongational viscosity behavior even at small strain. The recovery curve of the oscillatory modulus after the shear modification is further evidence of a branched structure.« less
Backlund, Christopher J; Worley, Brittany V; Schoenfisch, Mark H
2016-01-01
The effect of nitric oxide (NO)-releasing dendrimer hydrophobicity on Streptococcus mutans killing and biofilm disruption was examined at pH 7.4 and 6.4, the latter relevant to dental caries. Generation 1 (G1) poly(amidoamine) (PAMAM) dendrimers were modified with alkyl epoxides to generate propyl-, butyl-, hexyl-, octyl-, and dodecyl-functionalized dendrimers. The resulting secondary amines were reacted with NO to form N-diazeniumdiolate NO donor-modified dendrimer scaffolds (total NO ∼1μmol/mg). The bactericidal action of the NO-releasing dendrimers against both planktonic and biofilm-based S. mutans proved greatest with increasing alkyl chain length and at lower pH. Improved bactericidal efficacy at pH 6.4 was attributed to increased scaffold surface charge that enhanced dendrimer-bacteria association and ensuing membrane damage. For shorter alkyl chain (i.e., propyl and butyl) dendrimer modifications, increased antibacterial action at pH 6.4 was due to faster NO-release kinetics from proton-labile N-diazeniumdiolate NO donors. Octyl- and dodecyl-modified PAMAM dendrimers proved most effective for eradicating S. mutans biofilms with NO release mitigating dendrimer scaffold cytotoxicity. We report the antibacterial and anti-biofilm efficacy of dual-action nitric oxide (NO)-releasing dendrimers against S. mutans, an etiological agent in dental caries. This work was undertaken to enhance the anti-biofilm action of these scaffolds by employing various alkyl chain modifications. Furthermore, we evaluated the ability of NO to eradicate cariogenic biofilms. We found that at the lower pH associated with dental caries (pH ∼6.4), NO has a more pronounced antibacterial effect for alkyl modifications less capable of biofilm penetration and membrane disruption. Of greatest significance, we introduce dendrimers as a new macromolecular antibacterial agent against the cariogenic bacteria S. mutans. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Aquaglyceroporins: ancient channels for metalloids
Bhattacharjee, Hiranmoy; Mukhopadhyay, Rita; Thiyagarajan, Saravanamuthu; Rosen, Barry P
2008-01-01
The identification of aquaglyceroporins as uptake channels for arsenic and antimony shows how these toxic elements can enter the food chain, and suggests that food plants could be genetically modified to exclude arsenic while still accumulating boron and silicon. PMID:19014407
Methylation of hemoglobin to enhance flocculant performance
USDA-ARS?s Scientific Manuscript database
An inexpensive bioflocculant, bovine hemoglobin (Hb), has been covalently modified through methylation of the side chain carboxyl groups of aspartic and glutamic acid residues to improve its flocculation activity. Potentiometric titration of the recovered products showed approximately 28% degree of ...
Cartier, Yuri; Benmarhnia, Tarik; Brousselle, Astrid
2015-12-01
Urban outdoor air pollution (AP) is a major public health concern but the mechanisms by which interventions impact health and social inequities are rarely assessed. Health and equity impacts of policies and interventions are questioned, but managers and policy agents in various institutional contexts have very few practical tools to help them better orient interventions in sectors other than the health sector. Our objective was to create such a tool to facilitate the assessment of health impacts of urban outdoor AP interventions by non-public health experts. An iterative process of reviewing the academic literature, brainstorming, and consultation with experts was used to identify the chain of effects of urban outdoor AP and the major modifying factors. To test its applicability, the tool was applied to two interventions, the London Low Emission Zone and the Montréal BIXI public bicycle-sharing program. We identify the chain of effects, six categories of modifying factors: those controlling the source of emissions, the quantity of emissions, concentrations of emitted pollutants, their spatial distribution, personal exposure, and individual vulnerability. Modifiable and non-modifiable factors are also identified. Results are presented in the text but also graphically, as we wanted it to be a practical tool, from pollution sources to emission, exposure, and finally, health effects. The tool represents a practical first step to assessing AP-related interventions for health and equity impacts. Understanding how different factors affect health and equity through air pollution can provide insight to city policymakers pursuing Health in All Policies. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Doping of Semiconducting Atomic Chains
NASA Technical Reports Server (NTRS)
Toshishige, Yamada; Kutler, Paul (Technical Monitor)
1997-01-01
Due to the rapid progress in atom manipulation technology, atomic chain electronics would not be a dream, where foreign atoms are placed on a substrate to form a chain, and its electronic properties are designed by controlling the lattice constant d. It has been shown theoretically that a Si atomic chain is metallic regardless of d and that a Mg atomic chain is semiconducting or insulating with a band gap modified with d. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along the chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of dopant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.
Controllable Nanoparticle Assembly and Actuation with Modified Dipole Potentials in Simulation
NASA Astrophysics Data System (ADS)
Dempster, Joshua
Science at the nanoscale poses several recurring difficulties. How can we control the assembly of objects too small for direct manipulation to be practical? How can we extend that control to in vivo systems so we can make use of nanotechnology in medicine? And how can we recreate the extraordinary capacities of Nature: healing, replication, growth, adaptation, self-regulation? One of the most powerful tools for addressing these challenges is the simple, familiar dipole moment. Since their debut as fuel control devices at NASA in the early sixties, possible applications for dipole suspensions have grown to areas far beyond what their creators envisioned. A multitude of ambitious new medical and mechanical applications make use of dipolar colloids. Dipoles are attractive from a practical standpoint because one can use fields to control not just their orientation and location, but also their mutual interactions. From a physical standpoint, dipoles are compelling as an exceptionally simple form of symmetry-breaking that leads to a variety of complex phenomena. This thesis studies the assembly and control of spherical colloids with a dipolar interaction modified by additional conditions using simulations. Three cases are examined in detail. The first is the case of an electrical dipole moment created by regions of opposite charge density on the surface of a colloid. Here the dipole potential is modified by strong screening. Such a system is interesting as a model for certain proteins in a high-salt solution and suggests possible uses for inverse Janus colloids. The resulting phases have little resemblance to the usual dipole phases and can be controlled with small quantities of homogeneously charged particles. In the second case, superparamagnetic dipoles are linked into chains. Such chains have been realized in a wide variety of experimental schemes. A general theory is developed for the equilibrium shapes of the chains in a precessing field when their endpoints are fixed. This theory reveals that the chains are good candidates for contracting muscles in microscopic devices with a conveniently harmonic form for their potentials. Ensembles of free chains can be put to more elaborate uses. To illustrate, a regime is designed that spins the chains into a self-healing cross-linked gel. Finally, we will turn to self-replication. Decorating a permanent dipole with a single permanent binding site is enough to enable self-replication using dimers as the template. A periodic magnetic drive provides the energy to drive replication. Several theoretical principles regarding the statistics of linear self-replicators are deduced and used to optimize the dipole replicating system.
Ferritin nanocontainers that self-direct in synthetic polymer systems
NASA Astrophysics Data System (ADS)
Sengonul, Merih C.
Currently, there are many approaches to introduce functionality into synthetic polymers. Among these, for example, are copolymerization, grafting, and blending methods. However, modifications made by such methods also change the thermodynamics and rheological properties of the polymer system of interest, and each new modification often requires a costly reoptimization of polymer processing. Such a reoptimalization would not be necessary if new functionality could be introduced via a container whose external surface is chemically and physically tuned to interact with the parent polymer. The contents of the container could then be changed without changing other important properties of the parent polymer. In this context this thesis project explores an innovative nanocontainer platform which can be introduced into phase-separating homopolymer blends. Ferritin is a naturally existing nanocontainer that can be used synthetically to package and selectively transport functional moieties to a particular phase that is either in the bulk or on the surface of a homopolymer blend system. The principal focus of this work centers on modifying the surface of wild ferritin to: (1) render modified ferritin soluble in a non-aqueous solvent; and (2) impart it with self-directing properties when exposed to a homopolymer blend surface or incorporated into the bulk of a homopolymer blend. Wild ferritin is water soluble, and this research project successfully modified wild ferritin by grafting either amine-functional poly(ethylene glycol) (PEG) or short-chain alkanes to carbodiimide activated carboxylate groups on ferritin's surface. Such modified ferritin is soluble in dichloromethane (DCM). Modification was confirmed by ion-exchange chromatography, zeta-potential measurements, and electrospray mass spectroscopy. FT-IR was used to quantify the extent of PEGylation of the reaction products through area ratios of the -C-O-C asymmetric stretching vibration of the grafted PEG chains to the carbonyl stretching vibration (amide I band) of the protein. The dimensionless grafting density after PEGylation was found to be 0.13 with 120 average grafted PEG chains per ferritin nanocontainer. Modified ferritin was used for bulk modification of a phase-separated polymer blend of poly(desaminotyrosyl tyrosine dodecyl ester carbonate) [PDTD] and PEG. TEM micrographs showed remarkable selectivity of PEGylated ferritin to PEG domains, while alkylated ferritin self-directs to the PDTD matrix. We explain this strong selectivity by the favourable interaction energies between the grafted and free matrix chains. In addition, both modified and wild ferritin were used for surface modification of the phase-separated homopolymer blend of PDTD and poly(ε-caprolactone) (PCL). At physiological pH wild ferritin selectively adsorbed onto the PDTD phase, while alkylated ferritin showed a striking selectivity to PCL phase. We attribute this behavior to the increase in protein's pI point above physiological pH after modification, which changes the electrostatic interactions between the ferritin and the polymer surface. Collectively, these results demonstrate the versatile use of ferritin as a model nanocontainer for the selective modification of surface and bulk properties of polymers.
Gharakhanian, Eric G; Deming, Timothy J
2016-07-07
A series of thermoresponsive polypeptides has been synthesized using a methodology that allowed facile adjustment of side-chain functional groups. The lower critical solution temperature (LCST) properties of these polymers in water were then evaluated relative to systematic molecular modifications in their side-chains. It was found that in addition to the number of ethylene glycol repeats in the side-chains, terminal and linker groups also have substantial and predictable effects on cloud point temperatures (Tcp). In particular, we found that the structure of these polypeptides allowed for inclusion of polar hydroxyl groups, which significantly increased their hydrophilicity and decreased the need to use long oligoethylene glycol repeats to obtain LCSTs. The thioether linkages in these polypeptides were found to provide an additional structural feature for reversible switching of both polypeptide conformation and thermoresponsive properties.
NASA Astrophysics Data System (ADS)
Vaia, Ruggero
2018-04-01
Almost-dispersionless pulse transfer between the extremal masses of a uniform harmonic spring-mass chain of arbitrary length can be induced by suitably modifying two masses and their spring's elastic constant at both extrema of the chain. It is shown that a deviation (or a pulse) imposed to the first mass gives rise to a wave packet that, after a time of the order of the chain length, almost perfectly reproduces the same deviation (pulse) at the opposite end, with an amplitude loss that is as small as 1.3% in the infinite-length limit; such a dynamics can continue back and forth again for several times before dispersion cleared the effect. The underlying coherence mechanism is that the initial condition excites a bunch of normal modes with almost equal frequency spacing. This constitutes a possible mechanism for efficient energy transfer, e.g., in nanofabricated structures.
NASA Astrophysics Data System (ADS)
Gilliland, D. Gary; Steplewski, Zenon; Collier, R. John; Mitchell, Kenneth F.; Chang, Tong H.; Koprowski, Hilary
1980-08-01
We have constructed cell-specific cytotoxic agents by covalently coupling the A chain from diphtheria toxin or ricin toxin to monoclonal antibody directed against a colorectal carcinoma tumor-associated antigen. Antibody 1083-17-1A was modified by attachment of 3-(2-pyridyldithio)propionyl or cystaminyl groups and then treated with reduced A chain to give disulfide-linked conjugates that retained the original binding specificity of the antibody moiety. The conjugates showed cytotoxic activity for colorectal carcinoma cells in culture, but were not toxic in the same concentration range for a variety of cell lines that lacked the antigen. Under defined conditions virtually 100% of antigen-bearing cultured cells were killed, whereas cells that lacked the antigen were not affected. Conjugates containing toxin A chains coupled to monoclonal antibodies may be useful in studying functions of various cell surface components and, possibly, as tumor-specific therapeutic agents.
Regimes of electrostatic collapse of a highly charged polyelectrolyte in a poor solvent.
Tom, Anvy Moly; Vemparala, Satyavani; Rajesh, R; Brilliantov, Nikolai V
2017-03-01
We perform extensive molecular dynamics simulations of a highly charged, collapsed, flexible polyelectrolyte chain in a poor solvent for the case when the electrostatic interactions, characterized by the reduced Bjerrum length l B , are strong. We find the existence of several sub-regimes in the dependence of the gyration radius of the chain R g on l B characterized by R g ∼ l. In contrast to a good solvent, the exponent γ for a poor solvent crucially depends on the size and valency of the counterions. To explain the different sub-regimes, we generalize the existing counterion fluctuation theory by including a more complete account of all possible volume interactions in the free energy of the polyelectrolyte chain. We also show that the presence of condensed counterions modifies the effective attraction among the chain monomers and modulates the sign of the second virial coefficient under poor solvent conditions.
Coronado Mondragon, Adrian E.; Coronado, Etienne S.
2015-01-01
Flexibility and innovation at creating shapes, adapting processes, and modifying materials characterize composites materials, a “high-tech” industry. However, the absence of standard manufacturing processes and the selection of materials with defined properties hinder the configuration of the composites materials supply chain. An interesting alternative for a “high-tech” industry such as composite materials would be to review supply chain lessons and practices in “low-tech” industries such as food. The main motivation of this study is to identify lessons and practices that comprise innovations in the supply chain of a firm in a perceived “low-tech” industry that can be used to provide guidelines in the design of the supply chain of a “high-tech” industry, in this case composite materials. This work uses the case study/site visit with analogy methodology to collect data from a Spanish leading producer of fresh fruit juice which is sold in major European markets and makes use of a cold chain. The study highlights supply base management and visibility/traceability as two elements of the supply chain in a “low-tech” industry that can provide guidelines that can be used in the configuration of the supply chain of the composite materials industry. PMID:25821848
NASA Astrophysics Data System (ADS)
Ferrer, Evelina G.; Gómez, Analía V.; Añón, María C.; Puppo, María C.
2011-06-01
Food protein product, gluten protein, was chemically modified by varying levels of sodium stearoyl lactylate (SSL); and the extent of modifications (secondary and tertiary structures) of this protein was analyzed by using Raman spectroscopy. Analysis of the Amide I band showed an increase in its intensity mainly after the addition of the 0.25% of SSL to wheat flour to produced modified gluten protein, pointing the formation of a more ordered structure. Side chain vibrations also confirmed the observed changes.
a Numerical Comparison of Langrange and Kane's Methods of AN Arm Segment
NASA Astrophysics Data System (ADS)
Rambely, Azmin Sham; Halim, Norhafiza Ab.; Ahmad, Rokiah Rozita
A 2-D model of a two-link kinematic chain is developed using two dynamics equations of motion, namely Kane's and Lagrange Methods. The dynamics equations are reduced to first order differential equation and solved using modified Euler and fourth order Runge Kutta to approximate the shoulder and elbow joint angles during a smash performance in badminton. Results showed that Runge-Kutta produced a better and exact approximation than that of modified Euler and both dynamic equations produced better absolute errors.
Synthesis and antifungal activities of miltefosine analogs
USDA-ARS?s Scientific Manuscript database
Nine alkylphosphocholine derivatives (3a-3i) were prepared by modifying the choline structural moiety and the alkyl chain length of miltefosine (hexadecylphosphocholine), a broad-spectrum antifungal compound that has shown modest therapeutic efficacy in a mouse model of cryptococcosis. The synthetic...
Synthesis of a Novel Biodegradable Polyurethane with Phosphatidylcholines
Cao, Jun; Chen, Niancao; Chen, Yuanwei; Luo, Xianglin
2010-01-01
A novel polyurethane was successfully synthesized by chain-extension of biodegradable poly (l-lactide) functionalized phosphatidylcholine (PC) with hexamethylene diisocyanate (HDI) as chain extender (PUR-PC). The molecular weights, glass transition temperature (Tg) increased significantly after the chain-extension. The hydrophilicity of PUR-PC was better than the one without PC, according to a water absorption test. Moreover, the number of adhesive platelets and anamorphic platelets on PUR-PC film were both less than those on PUR film. These preliminary results suggest that this novel polyurethane might be a better scaffold than traditional biodegradable polyurethanes for tissue engineering due to its better blood compatibility. Besides, this study also provides a new method to prepare PC-modified biodegradable polyurethanes. PMID:20480047
Daigle, Maxime; Cantin, Katy
2014-01-01
Summary The synthesis and self-assembly of two new phenylacetylene macrocycle (PAM) organogelators were performed. Polar 2-hydroxyethoxy side chains were incorporated in the inner part of the macrocycles to modify the assembly mode in the gel state. With this modification, it was possible to increase the reactivity of the macrocycles in the xerogel state to form polydiacetylenes (PDAs), leading to a significant enhancement of the polymerization yields. The organogels and the PDAs were characterized using Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). PMID:25161718
Maoka, Takashi
2011-01-01
Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade. PMID:21566799
NASA Astrophysics Data System (ADS)
Roghani-Mamaqani, Hossein; Khezri, Khezrollah
2016-01-01
(3-Aminopropyl) triethoxysilane was grafted at the surface of GO in low and high different graft densities to yield GOHAL and GOHAH, respectively. Subsequently, 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (RA) was attached at the surface of GOHAL and GOHAH by an amidation reaction to yield GOHRL and GOHRH, respectively. Then, GOHRL and GOHRH were used in grafting from RAFT polymerization of styrene. Grafting of APTES and RA was approved by Fourier transform infrared spectroscopy, X-ray photo electron spectroscopy, and Raman spectroscopy. Expansion of graphene interlayer by oxidation and functionalization processes was evaluated by X-ray diffraction. Conversion values of styrene were calculated using gas chromatography. Molecular weight and PDI values of attached polystyrene (PS) chains were studied by size exclusion chromatography. Thermogravimetric analysis was also used to investigate the degradation temperatures, char contents, and graft contents of modifiers and PS chains. GOHRH and GOHRL reach to char content of 55.3 and 45.2% at 600 °C, which shows that weight ratio of modifier (APTES and RA moieties) is 15.3 and 5.2%, respectively. Scanning and transmission electron microscopies show that graphite layers with flat and smooth surface wrinkled after oxidation and turned to opaque layers by grafting PS.
Chang, Tzuu-Wang; Janardhanan, Pavithra; Mello, Charlene M; Singh, Bal Ram; Cai, Shuowei
2016-09-01
Botulinum neurotoxin (BoNT), a category A agent, is the most toxic molecule known to mankind. The endopeptidase activity of light chain domain of BoNT is the cause for the inhibition of the neurotransmitter release and the flaccid paralysis that leads to lethality in botulism. Currently, antidotes are not available to reverse the flaccid paralysis caused by BoNT. In the present study, a non-radioactive-based systematic evolution of ligands by exponential enrichment (SELEX) process is developed by utilizing surface plasmon resonance to monitor the binding enrichment. Two RNA aptamers have been identified as strong binders against light chain of botulinum neurotoxin type A. These two aptamers showed strong inhibition activity on LCA, with IC50 in nanomolar range. Inhibition kinetic studies reveal mid nanomolar KI and non-competitive nature of their inhibition, suggesting that they have strong potential as antidotes that can reverse the symptom caused by BoNT/A. More importantly, we observed that the 2'-fluorine-pyrimidine-modified RNA aptamers identified here do not change their binding and biological activities. This observation could lead to a cost-effective way for SELEX, by using regular nucleotide during SELEX, and 2'-fluorine-pyrimidine-modified nucleotide for final application to enhance their RNase-resistance.
Chang, Tzuu-Wang; Janardhanan, Pavithra; Mello, Charlene; Singh, Bal Ram; Cai, Shuowei
2016-01-01
Botulinum neurotoxin (BoNT), a category A agent, is the most toxic molecule known to mankind. The endopeptidase activity of light chain domain of BoNT is the cause for the inhibition of the neurotransmitter release and the flaccid paralysis that leads to lethality in botulism. Currently, antidotes are not available to reverse the flaccid paralysis caused by BoNT. In the present study, a non-radioactive based SELEX process is developed by utilizing surface plasmon resonance to monitor the binding enrichment. Two RNA aptamers have been identified as strong binders against light chain of botulinum neurotoxin type A. These two aptamers showed strong inhibition activity on LCA, with IC50 in nM range. Inhibition kinetic studies reveal mid nanomolar KI and non-competitive nature of their inhibition, suggesting they have strong potential as antidotes that can reverse the symptom caused by BoNT/A. More importantly, we observed that 2′-fluorine-pyrimidines modified RNA aptamers identified here do not change their binding and biological activities. This observation could lead to a cost-effective way for Systematic Evolution of Ligands by EXponential enrichment (SELEX), by using regular nucleotide during SELEX, and 2′-fluorine-pyrimidines modified nucleotide for final application to enhance their RNase-resistance. PMID:27085355
Oishi, Motoi
2015-05-01
An enzyme-free and isothermal microRNA (miRNA) detection method has been developed based on click-chemical ligation-assisted hybridization coupled with hybridization chain reaction (HCR) on magnetic beads (MBs). The click-chemical ligation between an azide-modified probe DNA and a dibenzocyclooctyne-modified probe DNA occurred through the hybridization of target miRNA (miR-141). HCR on MBs was performed by the addition of DNA hairpin monomers (H1 and H2). After magnetic separation and denaturation/rehybridization of HCR products ([H1/H2] n ), the resulting HCR products were analyzed by the fluorescence emitted from an intercalative dye, allowing amplification of the fluorescent signal. The proposed assay had a limit of detection of 0.55 fmol, which was 230-fold more sensitive than that of the HCR on the MBs coupled with a conventional sandwich hybridization assay (without click-chemical ligation) (limit of detection 127 fmol). Additionally, the proposed assay could discriminate between miR-141 and other miR-200 family members. In contrast to quantitative reverse transcription polymerase chain reaction techniques using enzymes and thermal cycling, this is an enzyme-free assay that can be conducted under isothermal conditions and can specifically detect miR-141 in fetal bovine serum.
NASA Astrophysics Data System (ADS)
Ku, Ming-Chun; Fang, Chieh-Ming; Cheng, Juei-Tang; Liang, Huei-Chen; Wang, Tzu-Fan; Wu, Chih-Hsing; Chen, Chiao-Chen; Tai, Jung-Hsiang; Chen, Shu-Hui
2016-06-01
Proteins, covalently modified by catechol estrogens (CEs), were identified recently from the blood serum of diabetic patients and referred to as estrogenized proteins. Estrogenization of circulating insulin may occur and affect its molecular functioning. Here, the chemical reactivity of CEs towards specific amino acid residues of proteins and the structural and functional changes induced by the estrogenization of insulin were studied using cyclic voltammetry, liquid chromatography-mass spectrometry, circular dichroism spectroscopy, molecular modeling, and bioassays. Our results indicate that CEs, namely, 2- and 4-hydroxyl estrogens, were thermodynamically and kinetically more reactive than the catechol moiety. Upon co-incubation, intact insulin formed a substantial number of adducts with one or multiple CEs via covalent conjugation at its Cys 7 in the A or B chain, as well as at His10 or Lys29 in the B chain. Such conjugation was coupled with the cleavage of inter-chain disulfide linkages. Estrogenization on these sites may block the receptor-binding pockets of insulin. Insulin signaling and glucose uptake levels were lower in MCF-7 cells treated with modified insulin than in cells treated with native insulin. Taken together, our findings demonstrate that insulin molecules are susceptible to active estrogenization, and that such modification may alter the action of insulin.
Modified Mason number for charged paramagnetic colloidal suspensions
NASA Astrophysics Data System (ADS)
Du, Di; Hilou, Elaa; Biswal, Sibani Lisa
2016-06-01
The dynamics of magnetorheological fluids have typically been described by the Mason number, a governing parameter defined as the ratio between viscous and magnetic forces in the fluid. For most experimental suspensions of magnetic particles, surface forces, such as steric and electrostatic interactions, can significantly influence the dynamics. Here we propose a theory of a modified Mason number that accounts for surface forces and show that this modified Mason number is a function of interparticle distance. We demonstrate that this modified Mason number is accurate in describing the dynamics of a rotating pair of paramagnetic colloids of identical or mismatched sizes in either high or low salt solutions. The modified Mason number is confirmed to be pseudoconstant for particle pairs and particle chains undergoing a stable-metastable transition during rotation. The interparticle distance term can be calculated using theory or can be measured experimentally. This modified Mason number is more applicable to magnetorheological systems where surface forces are not negligible.
Column Grid Array Rework for High Reliability
NASA Technical Reports Server (NTRS)
Mehta, Atul C.; Bodie, Charles C.
2008-01-01
Due to requirements for reduced size and weight, use of grid array packages in space applications has become common place. To meet the requirement of high reliability and high number of I/Os, ceramic column grid array packages (CCGA) were selected for major electronic components used in next MARS Rover mission (specifically high density Field Programmable Gate Arrays). ABSTRACT The probability of removal and replacement of these devices on the actual flight printed wiring board assemblies is deemed to be very high because of last minute discoveries in final test which will dictate changes in the firmware. The questions and challenges presented to the manufacturing organizations engaged in the production of high reliability electronic assemblies are, Is the reliability of the PWBA adversely affected by rework (removal and replacement) of the CGA package? and How many times can we rework the same board without destroying a pad or degrading the lifetime of the assembly? To answer these questions, the most complex printed wiring board assembly used by the project was chosen to be used as the test vehicle, the PWB was modified to provide a daisy chain pattern, and a number of bare PWB s were acquired to this modified design. Non-functional 624 pin CGA packages with internal daisy chained matching the pattern on the PWB were procured. The combination of the modified PWB and the daisy chained packages enables continuity measurements of every soldered contact during subsequent testing and thermal cycling. Several test vehicles boards were assembled, reworked and then thermal cycled to assess the reliability of the solder joints and board material including pads and traces near the CGA. The details of rework process and results of thermal cycling are presented in this paper.
Surface modification and antimicrobial properties of cellulose nanocrystals
NASA Astrophysics Data System (ADS)
Bespalova, Yulia A.
Surface modification of cellulose nanocrystals (CNC) was performed by acetylation and subsequent reaction with various tertiary amines with different lengths of alkyl groups. Chloroacetic anhydride (95%) was used for acetylation. The acetylation of CNC was confirmed using IR spectroscopy. The bands associated with C=0 stretching (1740 cm-1) and C-Cl stretching (793 cm -1) was present in the acetylated CNC but they were absent in the neat CNC. It has been suggested that the primary hydroxyl groups of CNC are substituted by chloro acetyl groups during acetylation reaction. Subsequent reaction of chloro acetylated CNC with N, N - Dimethyl ethylamine, N, N - Dimethyl hexylamine, N, N - Dimethyl dodecylamine, N, N - Dimethyl hexadecylamine and N, N - Dimethyl decylamine formed quaternary ammonium salts. These quaternary ammonium salts were characterized by FTIR and solid state13C NMR spectroscopy. FTIR spectra of five types of quaternary ammonium salts of CNC are similar and they showed infrared bands at 2905 -1 and 2850 cm-1, attributed to symmetrical and unsymmetrical C-H stretching vibration. The absence of C-Cl band at 793 cm-1 proves that quaternary salt formation was successful. The 13C NMR spectrum of quaternary ammonium modified CNC with N, N - Dimethyl dodecylamine shows several additional resonances ranging from 14.5 ppm to 58.0 ppm when compared to 13C NMR spectrum of pure CNC. This evidence proves that long alkyl chains have been added to the pure CNC. The disc diffusion method confirmed that quaternary ammonium modified CNCs with a chain longer than ten carbons are effective antimicrobial agents against Staphylococcus aureus and E. coli bacteria. Pure CNC and quaternary ammonium modified CNCs with an alkyl chain length of ten or less were not able to inhibit bacteria growth.
Stloukal, Petr; Pekařová, Silvie; Kalendova, Alena; Mattausch, Hannelore; Laske, Stephan; Holzer, Clemens; Chitu, Livia; Bodner, Sabine; Maier, Guenther; Slouf, Miroslav; Koutny, Marek
2015-08-01
The degradation mechanism and kinetics of polylactic acid (PLA) nanocomposite films, containing various commercially available native or organo-modified montmorillonites (MMT) prepared by melt blending, were studied under composting conditions in thermophilic phase of process and during abiotic hydrolysis and compared to the pure polymer. Described first order kinetic models were applied on the data from individual experiments by using non-linear regression procedures to calculate parameters characterizing aerobic composting and abiotic hydrolysis, such as carbon mineralization, hydrolysis rate constants and the length of lag phase. The study showed that the addition of nanoclay enhanced the biodegradation of PLA nanocomposites under composting conditions, when compared with pure PLA, particularly by shortening the lag phase at the beginning of the process. Whereas the lag phase of pure PLA was observed within 27days, the onset of CO2 evolution for PLA with native MMT was detected after just 20days, and from 13 to 16days for PLA with organo-modified MMT. Similarly, the hydrolysis rate constants determined tended to be higher for PLA with organo-modified MMT, particularly for the sample PLA-10A with fastest degradation, in comparison with pure PLA. The acceleration of chain scission in PLA with nanoclays was confirmed by determining the resultant rate constants for the hydrolytical chain scission. The critical molecular weight for the hydrolysis of PLA was observed to be higher than the critical molecular weight for onset of PLA mineralization, suggesting that PLA chains must be further shortened so as to be assimilated by microorganisms. In conclusion, MMT fillers do not represent an obstacle to acceptance of the investigated materials in composting facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zheng, Jia N; Xie, Hong G; Yu, Wei T; Liu, Xiu D; Xie, Wei Y; Zhu, Jing; Ma, Xiao J
2010-11-16
The chemical modification of the alginate/chitosan/alginate (ACA) hydrogel microcapsule with methoxy poly(ethylene glycol) (MPEG) was investigated to reduce nonspecific protein adsorption and improve biocompatibility in vivo. The graft copolymer chitosan-g-MPEG (CS-g-MPEG) was synthesized, and then alginate/chitosan/alginate/CS-g-MPEG (ACAC(PEG)) multilayer hydrogel microcapsules were fabricated by the layer-by-layer (LBL) polyelectrolyte self-assembly method. A quantitative study of the modification was carried out by the gel permeation chromatography (GPC) technique, and protein adsorption on the modified microcapsules was also investigated. The results showed that the apparent graft density of the MPEG side chain on the microcapsules decreased with increases in the degree of substitution (DS) and the MPEG chain length. During the binding process, the apparent graft density of CS-g-MPEG showed rapid growth-plateau-rapid growth behavior. CS-g-MPEG was not only bound to the surface but also penetrated a certain depth into the microcapsule membranes. The copolymers that penetrated the microcapsules made a smaller contribution to protein repulsion than did the copolymers on the surfaces of the microcapsules. The protein repulsion ability decreased with the increase in DS from 7 to 29% with the same chain length of MPEG 2K. CS-g-MPEG with MPEG 2K was more effective at protein repulsion than CS-g-MPEG with MPEG 550, having a similar DS below 20%. In this study, the microcapsules modified with CS-g-MPEG2K-DS7% had the lowest IgG adsorption of 3.0 ± 0.6 μg/cm(2), a reduction of 61% compared to that on the chitosan surface.
Photografting of perfluoroalkanes onto polyethylene surfaces via azide/nitrene chemistry
NASA Astrophysics Data System (ADS)
Siegmann, Konstantin; Inauen, Jan; Villamaina, Diego; Winkler, Martin
2017-02-01
The purpose of this study is to render polyethylene surfaces strongly and permanently hydrophobic. Polyethylene is a common plastic and, because of its inertness, difficult to graft. We chose polyethylene as example because of its ubiquity and model character. As graft chains linear perfluoroalkyl residues (-C4F9, -C6F13, -C8F17 and -C10F21) were chosen, and photografting was selected as grafting method. Photolytically generated nitrenes can insert into carbon-hydrogen bonds and are therefore suited for binding to polyethylene. Hydrophobic photo reactive surface modifiers based on azide/nitrene chemistry are designed, synthesized in high yield and characterized. Four new molecules are described. Water contact angles exceeding 110° were achieved on grafted polyethylene. One problem is to demonstrate that the photografted surface modifiers are bound covalently to the polyethylene. Abrasion tests show that all new molecules, when photografted to polyethylene, have a higher abrasion resistance than a polyethylene surface coated with a long-chain perfluoroalkane. Relative abrasion resitances of 1.4, 2.0, 2.1 and 2.5 compared to the fluoroalkane coating were obtained for the four compounds. An abrasion model using ice is developed. Although all four compounds have the same λmax of 266 nm in acetonitrile solution, their molar extincition coefficients increase from 1.6·104 to 2.2·104 with increasing length of the fluorotelomer chain. Exitonic coupling of the chromophores of the surface modifiers is observed for specific molecules in the neat state. A linear correlation of water contact angle with fluorine surface content, as measured by photoelectron spectroscopy, in grafted polyethylene surfaces is established.
Sugimoto, Takumi; Yamazaki, Naoko; Hayashi, Takaaki; Yuba, Eiji; Harada, Atsushi; Kotaka, Aki; Shinde, Chiharu; Kumei, Takayuki; Sumida, Yasushi; Fukushima, Mitsuhiro; Munekata, Yuki; Maruyama, Keiichi; Kono, Kenji
2017-07-01
Dual-signal-sensitive copolymers were synthesized by copolymerization of methoxy diethylene glycol methacrylate, methacrylic acid, and lauroxy tetraethylene glycol methacrylate, which respectively provide temperature sensitivity, pH sensitivity, and anchoring to liposome surfaces. These novel copolymers, with water solubility that differs depending on temperature and pH, are soluble in water under neutral pH and low-temperature conditions, but they become water-insoluble and form aggregates under acidic pH and high-temperature conditions. Liposomes modified with these copolymers exhibited enhanced content release at weakly acidic pH with increasing temperature, although no temperature-dependent content release was observed in neutral conditions. Interaction between the copolymers and the lipid monolayer at the air-water interface revealed that the copolymer chains penetrate more deeply into the monolayer with increasing temperature at acidic pH than at neutral pH, where the penetration of copolymer chains was moderate and temperature-independent at neutral pH. Interaction of the copolymer-modified liposomes with HeLa cells demonstrated that the copolymer-modified liposomes were adsorbed quickly and efficiently onto the cell surface and that they were internalized more gradually than the unmodified liposomes through endocytosis. Furthermore, the copolymer-modified liposomes enhanced the content release in endosomes with increasing temperature, but no such temperature-dependent enhancement of content release was observed for unmodified liposomes. Copyright © 2017 Elsevier B.V. All rights reserved.
Shinchi, Hiroyuki; Yuki, Nobuhiro; Ishida, Hideharu; Hirata, Koichi; Wakao, Masahiro; Suda, Yasuo
2015-01-01
Sugar chain binding antibodies have gained substantial attention as biomarkers due to their crucial roles in various disorders. In this study, we developed simple and quick detection method of anti-sugar chain antibodies in sera using our previously developed sugar chain-immobilized fluorescent nanoparticles (SFNPs) for the point-of-care diagnostics. Sugar chain structure on SFNPs was modified with the sugar moieties of the GM1 ganglioside via our original linker molecule to detect anti-GM1 antibodies. The structures and densities of the sugar moieties immobilized on the nanoparticles were evaluated in detail using lectins and sera containing anti-GM1 antibodies from patients with Guillain-Barré syndrome, a neurological disorder, as an example of disease involving anti-sugar chain antibodies. When optimized SFNPs were added to sera from patients with Guillain-Barré syndrome, fluorescent aggregates were able to visually detect under UV light in three hours. The sensitivity of the detection method was equivalent to that of the current ELISA method used for the diagnosis of Guillain-Barré syndrome. These results suggest that our method using SFNPs is suitable for the point-of-care diagnostics of diseases involving anti-sugar chain antibodies.
Choice and conditioned reinforcement.
Fantino, E; Freed, D; Preston, R A; Williams, W A
1991-01-01
A potential weakness of one formulation of delay-reduction theory is its failure to include a term for rate of conditioned reinforcement, that is, the rate at which the terminal-link stimuli occur in concurrent-chains schedules. The present studies assessed whether or not rate of conditioned reinforcement has an independent effect upon choice. Pigeons responded on either modified concurrent-chains schedules or on comparable concurrent-tandem schedules. The initial link was shortened on only one of two concurrent-chains schedules and on only one of two corresponding concurrent-tandem schedules. This manipulation increased rate of conditioned reinforcement sharply in the chain but not in the tandem schedule. According to a formulation of delay-reduction theory, when the outcomes chosen (the terminal links) are equal, as in Experiment 1, choice should depend only on rate of primary reinforcement; thus, choice should be equivalent for the tandem and chain schedules despite a large difference in rate of conditioned reinforcement. When the outcomes chosen are unequal, however, as in Experiment 2, choice should depend upon both rate of primary reinforcement and relative signaled delay reduction; thus, larger preferences should occur in the chain than in the tandem schedules. These predictions were confirmed, suggesting that increasing the rate of conditioned reinforcement on concurrent-chains schedules may have no independent effect on choice. PMID:2037826
Faitschuk, E; Nagy, V; Hombach, A A; Abken, H
2016-10-01
Adoptive cell therapy with chimeric antigen receptor (CAR)-modified T cells showed remarkable therapeutic efficacy in the treatment of leukaemia/lymphoma. However, the application to a variety of cancer entities is often constricted by the non-availability of a single chain antibody (scFv), which is usually the targeting domain in a CAR, while antibodies in the natural format are often available. To overcome the limitation, we designed a CAR that uses an antibody in its natural configuration for binding. Such CAR consists of two chains, the immunoglobulin light and heavy chain with their constant regions, whereby the heavy chain is anchored to the membrane and linked to an intracellular signalling domain for T-cell activation. The two chains form a stable heterodimer, a so-called dual chain CAR (dcCAR), and bind with high affinity and in a specific manner to their cognate antigen. By specific binding, the dcCAR activates engineered T cells for the release of pro-inflammatory cytokines and for target cell lysis. We provide evidence by three examples that the dcCAR format is universally applicable and thereby broadens the CAR cell therapy towards a larger variety of targets for which an scFv antibody is not available.
NASA Astrophysics Data System (ADS)
Fukunaga, Naoto; Konishi, Katsuaki
2015-12-01
Poly(ethylene glycol) (PEG) has been widely used for the surface protection of inorganic nanoobjects because of its virtually `inert' nature, but little attention has been paid to its inherent electronic impacts on inorganic cores. Herein, we definitively show, through studies on optical properties of a series of PEG-modified Cd10Se4(SR)10 clusters, that the surrounding PEG environments can electronically affect the properties of the inorganic core. For the clusters with PEG units directly attached to an inorganic core (R = (CH2CH2O)nOCH3, 1-PEGn, n = 3, ~7, ~17, ~46), the absorption bands, associated with the low-energy transitions, continuously blue-shifted with the increasing PEG chain length. The chain length dependencies were also observed in the photoluminescence properties, particularly in the excitation spectral profiles. By combining the spectral features of several PEG17-modified clusters (2-Cm-PEG17 and 3) whose PEG and core units are separated by various alkyl chain-based spacers, it was demonstrated that sufficiently long PEG units, including PEG17 and PEG46, cause electronic perturbations in the cluster properties when they are arranged near the inorganic core. These unique effects of the long-PEG environments could be correlated with their large dipole moments, suggesting that the polarity of the proximal chemical environment is critical when affecting the electronic properties of the inorganic cluster core.Poly(ethylene glycol) (PEG) has been widely used for the surface protection of inorganic nanoobjects because of its virtually `inert' nature, but little attention has been paid to its inherent electronic impacts on inorganic cores. Herein, we definitively show, through studies on optical properties of a series of PEG-modified Cd10Se4(SR)10 clusters, that the surrounding PEG environments can electronically affect the properties of the inorganic core. For the clusters with PEG units directly attached to an inorganic core (R = (CH2CH2O)nOCH3, 1-PEGn, n = 3, ~7, ~17, ~46), the absorption bands, associated with the low-energy transitions, continuously blue-shifted with the increasing PEG chain length. The chain length dependencies were also observed in the photoluminescence properties, particularly in the excitation spectral profiles. By combining the spectral features of several PEG17-modified clusters (2-Cm-PEG17 and 3) whose PEG and core units are separated by various alkyl chain-based spacers, it was demonstrated that sufficiently long PEG units, including PEG17 and PEG46, cause electronic perturbations in the cluster properties when they are arranged near the inorganic core. These unique effects of the long-PEG environments could be correlated with their large dipole moments, suggesting that the polarity of the proximal chemical environment is critical when affecting the electronic properties of the inorganic cluster core. Electronic supplementary information (ESI) available: Details of synthetic procedures and characterisation data of the PEGylated thiols and clusters and additional absorption, photoluminescence emission and excitation spectral data. See DOI: 10.1039/c5nr06307h
Improving TCO-Conjugated Antibody Reactivity for Bioorthogonal Pretargeting
NASA Astrophysics Data System (ADS)
Chu, Tina Tingyi
Cancer remains a major cause of death because of its unpredictable progression. Utilizing bioorthogonal chemistry between trans-cyclooctene (TCO) and tetrazine to target imaging agents to tumors in two subsequent steps offers a more versatile platform for molecular imaging. This is accomplished by pretargeting TCO-modified primary antibody to cell surface biomarkers, followed by delivery of tetrazine-modified imaging probes. In previous work, it has been established that TCO-tetrazine chemistry can be applied to in vivo imaging, resulting in precise tumor detection. However, most TCO modifications on an antibody are not reactive because they are buried within hydrophobic domains. To expose and improve the reactivity, Rahim et al. incorporated a polyethylene glycol (PEG) linker through a two-step reaction with DBCO-azide, which successfully maintained 100% TCO functionality. In this project, various types of linkers were studied to improve the reactivity in a single step. Three primary types of linkers were studied: hydrophilic PEG chains, hydrophobic short linkers, and amphiphilic linkers. Our results show that PEG chain alone can only maintain 40% TCO reactivity. Unexpectedly, a short alkyl chain (valeric acid) provided superior results, with 60% TCO reactivity. Lengthening the alkyl chain did not improve results further. Finally, an amphiphilic linker containing valeric acid and PEG performed worse than either linker type alone, at ˜30% functionality. We conclude that our previous 100% functional TCO result obtained with the two-step coupling may have stemmed from generation of the DBCO/azide cycloaddition product. Future work will explore factors such as rigidity of linker structure, polarity, or charges.
Utilization of two web-based continuing education courses evaluated by Markov chain model.
Tian, Hao; Lin, Jin-Mann S; Reeves, William C
2012-01-01
To evaluate the web structure of two web-based continuing education courses, identify problems and assess the effects of web site modifications. Markov chain models were built from 2008 web usage data to evaluate the courses' web structure and navigation patterns. The web site was then modified to resolve identified design issues and the improvement in user activity over the subsequent 12 months was quantitatively evaluated. Web navigation paths were collected between 2008 and 2010. The probability of navigating from one web page to another was analyzed. The continuing education courses' sequential structure design was clearly reflected in the resulting actual web usage models, and none of the skip transitions provided was heavily used. The web navigation patterns of the two different continuing education courses were similar. Two possible design flaws were identified and fixed in only one of the two courses. Over the following 12 months, the drop-out rate in the modified course significantly decreased from 41% to 35%, but remained unchanged in the unmodified course. The web improvement effects were further verified via a second-order Markov chain model. The results imply that differences in web content have less impact than web structure design on how learners navigate through continuing education courses. Evaluation of user navigation can help identify web design flaws and guide modifications. This study showed that Markov chain models provide a valuable tool to evaluate web-based education courses. Both the results and techniques in this study would be very useful for public health education and research specialists.
Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Gunay, Nur Sibel; Wang, Jing; Sun, Elaine Y; Pradines, Joël R; Farutin, Victor; Shriver, Zachary; Kaundinya, Ganesh V; Capila, Ishan
2017-02-01
Heparan sulfate (HS), a glycosaminoglycan present on the surface of cells, has been postulated to have important roles in driving both normal and pathological physiologies. The chemical structure and sulfation pattern (domain structure) of HS is believed to determine its biological function, to vary across tissue types, and to be modified in the context of disease. Characterization of HS requires isolation and purification of cell surface HS as a complex mixture. This process may introduce additional chemical modification of the native residues. In this study, we describe an approach towards thorough characterization of bovine kidney heparan sulfate (BKHS) that utilizes a variety of orthogonal analytical techniques (e.g. NMR, IP-RPHPLC, LC-MS). These techniques are applied to characterize this mixture at various levels including composition, fragment level, and overall chain properties. The combination of these techniques in many instances provides orthogonal views into the fine structure of HS, and in other instances provides overlapping / confirmatory information from different perspectives. Specifically, this approach enables quantitative determination of natural and modified saccharide residues in the HS chains, and identifies unusual structures. Analysis of partially digested HS chains allows for a better understanding of the domain structures within this mixture, and yields specific insights into the non-reducing end and reducing end structures of the chains. This approach outlines a useful framework that can be applied to elucidate HS structure and thereby provides means to advance understanding of its biological role and potential involvement in disease progression. In addition, the techniques described here can be applied to characterization of heparin from different sources.
Utilization of two web-based continuing education courses evaluated by Markov chain model
Lin, Jin-Mann S; Reeves, William C
2011-01-01
Objectives To evaluate the web structure of two web-based continuing education courses, identify problems and assess the effects of web site modifications. Design Markov chain models were built from 2008 web usage data to evaluate the courses' web structure and navigation patterns. The web site was then modified to resolve identified design issues and the improvement in user activity over the subsequent 12 months was quantitatively evaluated. Measurements Web navigation paths were collected between 2008 and 2010. The probability of navigating from one web page to another was analyzed. Results The continuing education courses' sequential structure design was clearly reflected in the resulting actual web usage models, and none of the skip transitions provided was heavily used. The web navigation patterns of the two different continuing education courses were similar. Two possible design flaws were identified and fixed in only one of the two courses. Over the following 12 months, the drop-out rate in the modified course significantly decreased from 41% to 35%, but remained unchanged in the unmodified course. The web improvement effects were further verified via a second-order Markov chain model. Conclusions The results imply that differences in web content have less impact than web structure design on how learners navigate through continuing education courses. Evaluation of user navigation can help identify web design flaws and guide modifications. This study showed that Markov chain models provide a valuable tool to evaluate web-based education courses. Both the results and techniques in this study would be very useful for public health education and research specialists. PMID:21976027
Antiplasmodial activity of new 4-aminoquinoline derivatives against chloroquine resistant strain.
Sinha, Manish; Dola, Vasanth R; Agarwal, Pooja; Srivastava, Kumkum; Haq, Wahajul; Puri, Sunil K; Katti, Seturam B
2014-07-15
Emergence and spread of multidrug resistant strains of Plasmodium falciparum has severely limited the antimalarial chemotherapeutic options. In order to overcome the obstacle, a set of new side-chain modified 4-aminoquinolines were synthesized and screened against chloroquine-sensitive (3D7) and chloroquine-resistant (K1) strains of P. falciparum. The key feature of the designed molecules is the use of methylpiperazine linked α, β(3)- and γ-amino acids to generate novel side chain modified 4-aminoquinoline analogues. Among the evaluated compounds, 20c and 30 were found more potent than CQ against K1 and displayed a four-fold and a three-fold higher activity respectively, with a good selectivity index (SI=5846 and 11,350). All synthesized compounds had resistance index between 1.06 and >14.13 as against 47.2 for chloroquine. Biophysical studies suggested that this series of compounds act on heme polymerization target. Copyright © 2014 Elsevier Ltd. All rights reserved.
Majeed, Sophia R; Vasudevan, Lavanya; Chen, Chih-Ying; Luo, Yi; Torres, Jorge A; Evans, Timothy M; Sharkey, Andrew; Foraker, Amy B; Wong, Nicole M L; Esk, Christopher; Freeman, Theresa A; Moffett, Ashley; Keen, James H; Brodsky, Frances M
2014-05-23
The clathrin light chain (CLC) subunits participate in several membrane traffic pathways involving both clathrin and actin, through binding the actin-organizing huntingtin-interacting proteins (Hip). However, CLCs are dispensable for clathrin-mediated endocytosis of many cargoes. Here we observe that CLC depletion affects cell migration through Hip binding and reduces surface expression of β1-integrin by interference with recycling following normal endocytosis of inactive β1-integrin. CLC depletion and expression of a modified CLC also inhibit the appearance of gyrating (G)-clathrin structures, known mediators of rapid recycling of transferrin receptor from endosomes. Expression of the modified CLC reduces β1-integrin and transferrin receptor recycling, as well as cell migration, implicating G-clathrin in these processes. Supporting a physiological role for CLC in migration, the CLCb isoform of CLC is upregulated in migratory human trophoblast cells during uterine invasion. Together, these studies establish CLCs as mediating clathrin-actin interactions needed for recycling by G-clathrin during migration.
Yang, Taeseung; Choi, Sang Koo; Park, Daehwan; Lee, Yea Ram; Chung, Chan Bok; Kim, Jin Woong
2016-12-20
This study introduces a new type of associative nanoparticle (ANP) that provides controlled chain-to-chain attraction with an associative polymer rheology modifier (APRM) to produce highly stable Pickering emulsions. The ANPs were synthesized by grafting hydrophobically modified hygroscopic zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine-co-stearyl methacrylate) brushes onto 20 nm sized silica NPs via surface-mediated living radical polymerization. The ANP-stabilized Pickering emulsions show significant viscosity enhancement in the presence of the APRM. This indicates that the ANPs act as particulate concentration agents at the interface owing to their hydrophobic association with the APRM in the aqueous phase, which leads to the generation of an ANP-mediated complex colloidal film. Consequently, the described ANP-reinforced Pickering emulsion system exhibits improved resistance to pH and salinity changes. This coacervation approach is advantageous because the complex colloidal layer at the interface provides the emulsion drops with a mechanically robust barrier, thus guaranteeing the improved Pickering emulsion stability against harsh environmental factors.
Electrochemical product detection of an asymmetric convective polymerase chain reaction.
Duwensee, Heiko; Mix, Maren; Stubbe, Marco; Gimsa, Jan; Adler, Marcel; Flechsig, Gerd-Uwe
2009-10-15
For the first time, we describe the application of heated microwires for an asymmetric convective polymerase chain reaction (PCR) in a modified PCR tube in a small volume. The partly single-stranded product was labeled with the electrochemically active compound osmium tetroxide bipyridine using a partially complementary protective strand with five mismatches compared to the single-stranded product. The labeled product could be successfully detected at a gold electrode modified with a complementary single-stranded capture probe immobilized via a thiol-linker. Our simple thermo-convective PCR yielded electrochemically detectable products after only 5-10 min. A significant discrimination between complementary and non-complementary target was possible using different immobilized capture probes. The total product yield was approx. half the amount of the classical thermocycler PCR. Numerical simulations describing the thermally driven convective PCR explain the received data. Discrimination between complementary capture probes and non-complementary capture probes was performed using square-wave voltammetry. The coupling of asymmetric thermo-convective PCR with electrochemical detection is very promising for future compact DNA sensor devices.
NASA Astrophysics Data System (ADS)
Fitzpatrick, Richard
2017-12-01
An investigation is made into the interaction of a magnetic island chain, embedded in a tokamak plasma, with an externally generated magnetic perturbation of the same helicity whose helical phase is rapidly oscillating. The analysis is similar in form to the classic analysis used by Kapitza [Sov. Phys. JETP 21, 588 (1951)] to examine the angular motion of a rigid pendulum whose pivot point undergoes rapid vertical oscillations. The phase oscillations are found to modify the existing terms, and also to give rise to new terms, in the equations governing the secular evolution of the island chain's radial width and helical phase. An examination of the properties of the new secular evolution equation reveals that it is possible to phase-lock an island chain to an external magnetic perturbation with an oscillating helical phase in a stabilizing phase relation provided that the amplitude, ɛ, of the phase oscillations (in radians) is such that |J0(ɛ )|≪1 , and the mean angular frequency of the perturbation closely matches the natural angular frequency of the island chain.
Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions.
Abraham, Alex; Chatterji, Apratim
2018-04-21
We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.
Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions
NASA Astrophysics Data System (ADS)
Abraham, Alex; Chatterji, Apratim
2018-04-01
We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.
Treml, Diana; Venturelli, Gustavo L; Brod, Fábio C A; Faria, Josias C; Arisi, Ana C M
2014-12-10
A genetically modified (GM) common bean event, namely Embrapa 5.1, resistant to the bean golden mosaic virus (BGMV), was approved for commercialization in Brazil. Brazilian regulation for genetically modified organism (GMO) labeling requires that any food containing more than 1% GMO be labeled. The event-specific polymerase chain reaction (PCR) method has been the primary trend for GMO identification and quantitation because of its high specificity based on the flanking sequence. This work reports the development of an event-specific assay, named FGM, for Embrapa 5.1 detection and quantitation by use of SYBR Green or hydrolysis probe. The FGM assay specificity was tested for Embrapa 2.3 event (a noncommercial GM common bean also resistant to BGMV), 46 non-GM common bean varieties, and other crop species including maize, GM maize, soybean, and GM soybean. The FGM assay showed high specificity to detect the Embrapa 5.1 event. Standard curves for the FGM assay presented a mean efficiency of 95% and a limit of detection (LOD) of 100 genome copies in the presence of background DNA. The primers and probe developed are suitable for the detection and quantitation of Embrapa 5.1.
Zhong, Yong; Huang, Lihong; Zhang, Zhisen; Xiong, Yunjing; Sun, Liping; Weng, Jian
Graphene oxides (GOs) with different surface characteristics, such as size, reduction degree and charge, are prepared, and their effects on the specificity of polymerase chain reaction (PCR) are investigated. In this study, we demonstrate that GO with a large size and high reduction degree is superior to small and nonreduced GO in enhancing the specificity of PCR. Negatively charged polyacrylic acid (PAA), positively charged polyacrylamide (PAM), neutral polyethylene glycol (PEG) and zwitterionic polymer poly(sulfobetaine) (pSB) are used to modify GO. The PCR specificity-enhancing ability increases in the following order: GO-PAA < GO-PAM < GO-PEG < GO-pSB. Thus, zwitterionic polymer-modified GO is superior to other GO derivatives with different charges in enhancing the specificity of PCR. GO derivatives are also successfully used to enhance the specificity of PCR for the amplification of human mitochondrial DNA using blood genomic DNA as template. Molecular dynamics simulations and molecular docking are performed to elucidate the interaction between the polymers and Pfu DNA polymerase. Our data demonstrate that the size, reduction degree and surface charge of GO affect the specificity of PCR. Based on our results, zwitterionic polymer-modified GO may be used as an efficient additive for enhancing the specificity of PCR.
NASA Astrophysics Data System (ADS)
Chen, Huirong; Ma, Wenzhong; Xia, Yanping; Gu, Yi; Cao, Zheng; Liu, Chunlin; Yang, Haicun; Tao, Shengxi; Geng, Haoran; Tao, Guoliang; Matsuyama, Hideto
2017-10-01
An amphiphilic polypropylene-g-poly[vinylpyrrolidone-co-poly(ethylene glycol) methacrylate] (PP-g-(NVP-co-PEGMA)) modifier was prepared by melt grafting polymerization using N-vinyl pyrrolidone (NVP) as the grafting monomer and poly(ethylene glycol) (PEGMA) as the comonomer. Fourier transform infrared (FTIR) spectroscopy and elemental analysis showed that the hydrophilic branched chains (NVP-g-PEGMA) were successfully grafted to polypropylene (PP) macromolecular chains. The largest NVP grafting degree for PP-g-(NVP-co-PEGMA) (up to 20.4%) was obtained when the mass ratio of PP/NVP/PEGMA was 100/30/15. Hydrophilic PP microporous membranes were prepared by stretching cast films of PP/PP-g-(NVP-co-PEGMA) blends. The membrane thermostability (including the modifier) was better than that of the pure PP membrane with a similar surface pore structure. The porosity of the modified membranes was only slightly lower than that of the pure PP membranes. Contact angle measurements were used to examine the hydrophilicity of the membranes. The water contact angle of the membranes decreased when PP-g-(NVP-co-PEGMA) was added, and the minimum contact angle was 64.5°. Therefore, this work provides a good application for stretched hydrophilic PP membrane fabrication.
Zeglis, Brian M.; Davis, Charles B.; Aggeler, Robert; Kang, Hee Chol; Chen, Aimei; Agnew, Brian J.; Lewis, Jason S.
2013-01-01
An enzyme- and click chemistry-mediated methodology for the site-selective radiolabeling of antibodies on the heavy chain glycans has been developed and validated. To this end, a model system based on the prostate specific membrane antigen-targeting antibody J591, the positron-emitting radiometal 89Zr, and the chelator desferrioxamine has been employed. The methodology consists of four steps: (1) the removal of sugars on the heavy chain region of the antibody to expose terminal N-acetylglucosamine residues; (2) the incorporation of azide-modified N-acetylgalactosamine monosaccharides into the glycans of the antibody; (3) the catalyst-free click conjugation of desferrioxamine-modified dibenzocyclooctynes to the azide-bearing sugars; and (4) the radiolabeling of the chelator-modified antibody with 89Zr. The site-selective labeling methodology has proven facile, reproducible, and robust, producing 89Zr-labeled radioimmunoconjguates that display high stability and immunoreactivity in vitro (>95%) in addition to high selective tumor uptake (67.5 ± 5.0 %ID/g) and tumor-to-background contrast in athymic nude mice bearing PSMA-expressing subcutaneous LNCaP xenografts. Ultimately, this strategy could play a critical role in the development of novel well-defined and highly immunoreactive radioimmunoconjugates for both the laboratory and clinic. PMID:23688208
Extending the maximum operation time of the MNSR reactor.
Dawahra, S; Khattab, K; Saba, G
2016-09-01
An effective modification to extend the maximum operation time of the Miniature Neutron Source Reactor (MNSR) to enhance the utilization of the reactor has been tested using the MCNP4C code. This modification consisted of inserting manually in each of the reactor inner irradiation tube a chain of three polyethylene-connected containers filled of water. The total height of the chain was 11.5cm. The replacement of the actual cadmium absorber with B(10) absorber was needed as well. The rest of the core structure materials and dimensions remained unchanged. A 3-D neutronic model with the new modifications was developed to compare the neutronic parameters of the old and modified cores. The results of the old and modified core excess reactivities (ρex) were: 3.954, 6.241 mk respectively. The maximum reactor operation times were: 428, 1025min and the safety reactivity factors were: 1.654 and 1.595 respectively. Therefore, a 139% increase in the maximum reactor operation time was noticed for the modified core. This increase enhanced the utilization of the MNSR reactor to conduct a long time irradiation of the unknown samples using the NAA technique and increase the amount of radioisotope production in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Functionalizing graphene by embedded boron clusters
NASA Astrophysics Data System (ADS)
Quandt, Alexander; Kunstmann, Jens; Ozdogan, Cem; Fehske, Holger
2010-03-01
We present results from an ab initio study of B7 clusters implanted into graphene [1,2]. Our model system consists of an alternating chain of quasiplanar B7 clusters. We show that graphene easily accepts these alternating B7-C6 chains and that the implanted boron components may dramatically modify the electronic properties. This suggests that our model system might serve as a blueprint for the controlled layout of graphene based nanodevices, where the semiconducting properties are supplemented by parts of the graphene matrix itself, and the basic metallic wiring is provided by alternating chains of implanted boron clusters. [1] A. Quandt, C. "Ozdogan, J. Kunstmann, and H. Fehske, Nanotechnology 19, 335707 (2008). [2] A. Quandt, C. "Ozdogan, J. Kunstmann, and H. Fehske, phys. stat. solidi (b) 245, 2077 (2008).
Modified allocation capacitated planning model in blood supply chain management
NASA Astrophysics Data System (ADS)
Mansur, A.; Vanany, I.; Arvitrida, N. I.
2018-04-01
Blood supply chain management (BSCM) is a complex process management that involves many cooperating stakeholders. BSCM involves four echelon processes, which are blood collection or procurement, production, inventory, and distribution. This research develops an optimization model of blood distribution planning. The efficiency of decentralization and centralization policies in a blood distribution chain are compared, by optimizing the amount of blood delivered from a blood center to a blood bank. This model is developed based on allocation problem of capacitated planning model. At the first stage, the capacity and the cost of transportation are considered to create an initial capacitated planning model. Then, the inventory holding and shortage costs are added to the model. These additional parameters of inventory costs lead the model to be more realistic and accurate.
Electrochemical Properties of Organosilane Self Assembled Monolayers on Aluminum 2024
NASA Technical Reports Server (NTRS)
Hintze, Paul E.; Calle, Luz Marina
2004-01-01
Self assembled monolayers are commonly used to modify surfaces. Within the last 15 years, self assembled monolayers have been investigated as a way to protect from corrosion[1,2] or biofouling.[3] In this study, self assembled monolayers of decitriethoxysilane (C10H21Si(OC2H5)3) and octadecyltriethoxysilane (C18H37Si(OC2H5)3) were formed on aluminum 2024-T3. The modified surfaces and bare Al 2024 were characterized by dynamic water contact angle measurements, x-ray photoelectron spectroscopy (XIPS) and infrared spectroscopy. Electrochemical impedance spectroscopy (EIS) in 0.5 M NaCl was used to characterize the monolayers and evaluate their corrosion protection properties. The advancing water contact angle and infrared measurements show that the mono layers form a surface where the hydrocarbon chains are packed and oriented away from the surface, consistent with what is found in similar systems. The contact angle hysteresis measured in these systems is relatively large, perhaps indicating that the hydrocarbon chains are not as well packed as monolayers formed on other substrates. The results of the EIS measurements were modeled using a Randle's circuit modified by changing the capacitor to a constant phase element. The constant phase element values were found to characterize the monolayer. The capacitance of the monolayer modified surface starts lower than the bare Al 2024, but approaches values similar to the bare Al 2024 within 24 hours as the monolayer is degraded. The n values found for bare Al 2024 quickly approach the value of a true capacitor and are greater than 0.9 within hours after the start of exposure. For the monolayer modified structure, n can stay lower than 0.9 for a longer period of time. In fact, n for the monolayer modified surfaces is different from the bare surface even after the capacitance values have converged. This indicates that the deviation from ideal capacitance is the most sensitive indicator of the presence of the monolayer.
Pansuwan, Haruthai; Ditmangklo, Boonsong; Vilaivan, Chotima; Jiangchareon, Banphot; Pan-In, Porntip; Wanichwecharungruang, Supason; Palaga, Tanapat; Nuanyai, Thanesuan; Suparpprom, Chaturong; Vilaivan, Tirayut
2017-09-20
Peptide nucleic acid (PNA) is a nucleic acid mimic in which the deoxyribose-phosphate was replaced by a peptide-like backbone. The absence of negative charge in the PNA backbone leads to several unique behaviors including a stronger binding and salt independency of the PNA-DNA duplex stability. However, PNA possesses poor aqueous solubility and cannot directly penetrate cell membranes. These are major obstacles that limit in vivo applications of PNA. In previous strategies, the PNA can be conjugated to macromolecular carriers or modified with positively charged side chains such as guanidinium groups to improve the aqueous solubility and cell permeability. In general, a preformed modified PNA monomer was required. In this study, a new approach for post-synthetic modification of PNA backbone with one or more hydrophilic groups was proposed. The PNA used in this study was the conformationally constrained pyrrolidinyl PNA with prolyl-2-aminocyclopentanecarboxylic acid dipeptide backbone (acpcPNA) that shows several advantages over the conventional PNA. The aldehyde modifiers carrying different linkers (alkylene and oligo(ethylene glycol)) and end groups (-OH, -NH 2 , and guanidinium) were synthesized and attached to the backbone of modified acpcPNA by reductive alkylation. The hybrids between the modified acpcPNAs and DNA exhibited comparable or superior thermal stability with base-pairing specificity similar to those of unmodified acpcPNA. Moreover, the modified apcPNAs also showed the improvement of aqueous solubility (10-20 folds compared to unmodified PNA) and readily penetrate cell membranes without requiring any special delivery agents. This study not only demonstrates the practicality of the proposed post-synthetic modification approach for PNA modification, which could be readily applied to other systems, but also opens up opportunities for using pyrrolidinyl PNA in various applications such as intracellular RNA sensing, specific gene detection, and antisense and antigene therapy.
Artificial mismatch hybridization
Guo, Zhen; Smith, Lloyd M.
1998-01-01
An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.
Single ricin detection by atomic force microscopy chemomechanical mapping
NASA Astrophysics Data System (ADS)
Chen, Guojun; Zhou, Jianfeng; Park, Bosoon; Xu, Bingqian
2009-07-01
The authors report on a study of detecting ricin molecules immobilized on chemically modified Au (111) surface by chemomechanically mapping the molecular interactions with a chemically modified atomic force microscopy (AFM) tip. AFM images resolved the different fold-up conformations of single ricin molecule as well as their intramolecule structure of A- and B-chains. AFM force spectroscopy study of the interaction indicates that the unbinding force has a linear relation with the logarithmic force loading rate, which agrees well with calculations using one-barrier bond dissociation model.
Sung, W L; Hsiung, H M; Brousseau, R; Michniewicz, J; Wu, R; Narang, S A
1979-01-01
The purification of protected deoxyribooligonucleotides containing phosphotriester internucleotidic linkages has been improved by developing a deactivated silica gel chromatographic technique. The efficiency of this technique as applied in the modified phosphotriester approach has been demonstrated in the rapid synthesis of seventeen pure fragments constituting the sequence of human insulin B and mini-C DNA. The sequence of each oligomer was confirmed by the two-dimensional mobility shift method of fingerprinting. Images PMID:230464
USDA-ARS?s Scientific Manuscript database
Glucansucrases catalyze the transfer of D-glucopyranosyl units from sucrose to form a-glucan chains. Glucansucrases are capable of catalyzing the synthesis of several different a-glucosidic linkages that affect molecular mass, branching, and solubility of the polysaccharide. In general, a-glucans co...
Missing the Forest for the Trees
ERIC Educational Resources Information Center
Amaral, Olga Maia; Garrison, Leslie
2007-01-01
This case study examines the alignment between the Intended Curriculum, Implemented Curriculum and Achieved Curriculum of a fourth grade inquiry based unit, "Food Chains and Webs." Specifically addressed are how the curriculum was modified to meet state standards, how teachers were trained, and how assessment of curricular implementation was…
NASA Astrophysics Data System (ADS)
Salamito, B.; Fries, P. H.
1991-07-01
We study fluids of rigid rods which are generated by a distribution of line sites and which carry a polarizable electric point dipole at their centre. We examine the difficulties for solving the integral equations, which result from truncating the rotational invariant expansion of the usual intermolecular rapidly varying shape potentials. In order to overcome these convergence problems, soft shape potentials are used in addition to an approximation HNCAR, of the hypernetted chain (HNC) type, which Amplifies these soft Repulsive effects. The polarization due to all the molecules is treated at a self-consistent mean field level. This formalism is applied to a model of liquid acetonitrile at 291K. The Kirkwood factors, the dielectric constant, and the cross sections of neutron or X-rays diffraction studies are in good agreement with experiment. This justifies the theoretical molecular pair distribution, from which the local molecular order is carefully analyzed. On étudie des fluides de bâtonnets rigides engendrés par une distribution de sites alignés et portant en leur centre un dipôle électrique ponctuel polarisable. On examine les difficultés de résolution des équations intégrales liées à la troncature du développement en invariants rotationnels des potentiels de forme intermoléculaires usuels à variation rapide. Pour contourner ces problèmes de convergence on utilise des potentiels de forme molle combinés à une approximation HNCAR, du type des chaînes hypertressées (HNC), qui Amplifie ces effets Répulsifs mous. On traite la polarisation due à l'ensemble des molécules par une approximation auto-cohérente de champ moyen. On applique ce formalisme à un modèle d'acétonitrile liquide à 291K. Les facteurs de Kirkwood, la constante diélectrique et les sections efficaces de diffusion des neutrons ou des rayons X calculés sont en bon accord avec l'expérience. Ceci justifie la distribution théorique de paires de molécules à partir de laquelle on analyse en détail l'ordre moléculaire local.
Compression induced phase transition of nematic brush: A mean-field theory study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Jiuzhou; Zhang, Xinghua, E-mail: zhangxh@bjtu.edu.cn; Yan, Dadong, E-mail: yandd@bnu.edu.cn
2015-11-28
Responsive behavior of polymer brush to the external compression is one of the most important characters for its application. For the flexible polymer brush, in the case of low grafting density, which is widely studied by the Gaussian chain model based theory, the compression leads to a uniform deformation of the chain. However, in the case of high grafting density, the brush becomes anisotropic and the nematic phase will be formed. The normal compression tends to destroy the nematic order, which leads to a complex responsive behaviors. Under weak compression, chains in the nematic brush are buckled, and the bendingmore » energy and Onsager interaction give rise to the elasticity. Under deep compression, the responsive behaviors of the nematic polymer brush depend on the chain rigidity. For the compressed rigid polymer brush, the chains incline to re-orientate randomly to maximize the orientational entropy and its nematic order is destroyed. For the compressed flexible polymer brush, the chains incline to fold back to keep the nematic order. A buckling-folding transition takes place during the compressing process. For the compressed semiflexible brush, the chains are collectively tilted to a certain direction, which leads to the breaking of the rotational symmetry in the lateral plane. These responsive behaviors of nematic brush relate to the properties of highly frustrated worm-like chain, which is hard to be studied by the traditional self-consistent field theory due to the difficulty to solve the modified diffusion equation. To overcome this difficulty, a single chain in mean-field theory incorporating Monte Carlo simulation and mean-field theory for the worm-like chain model is developed in present work. This method shows high performance for entire region of chain rigidity in the confined condition.« less
The rational design of biomimetic skin barrier lipid formulations using biophysical methods.
Bulsara, P A; Varlashkin, P; Dickens, J; Moore, D J; Rawlings, A V; Clarke, M J
2017-04-01
The focus of this communication was to study phospholipid-structured emulsions whose phase behaviour is modified with monoalkyl fatty amphiphiles. Ideally, these systems would mimic key physical and structural attributes observed in human stratum corneum (SC) so that they better alleviate xerotic skin conditions. Phosphatidylcholine-structured emulsions were prepared, and their phase behaviour modified with monoalkyl fatty amphiphiles. The effect of molecular volume, acyl chain length and head-group interactions was studied using a combination of physical methods. Water vapour transmission rate (WVTR) was used as a primary test to assess occlusive character. Changes in the vibrational modes observed in Fourier transform infrared (FTIR) spectroscopy and bilayer spacing measured by X-ray diffraction (XRD) were then applied to elucidate the lateral and lamellar microstructural characteristics in the systems. Water vapour transmission rate demonstrated that as the phosphatidylcholine acyl chain length increased from C14, to C18, to C22, there was a corresponding increase in occlusive character. The addition of monoalkyl fatty amphiphiles such as behenic acid, behenyl alcohol or cetostearyl alcohol to a base formulation incorporating dipalmitoyl and distearoylphosphatidylcholine (C18) was seen to further increase barrier characteristics of the emulsions. FTIR methods used to probe lipid-chain conformational ordering demonstrated that as phosphatidylcholine acyl chain lengths increased, there was a corresponding improvement in acyl chain ordering, with an increase in thermal transition temperatures. The addition of a monoalkyl fatty amphiphile resulted in conformational order and thermal transition temperature improvements trending towards those observed in stratum corneum. FTIR also demonstrated that systems containing behenic acid or behenyl alcohol exhibited features associated with orthorhombic character. X-ray diffraction data showed that addition of monoalkyl fatty amphiphile also resulted in thicker lamellar structures than when those agents are not present. The generalized approach described herein is shown to mechanistically describe the occlusive character of phospholipid-structured formulations in the presence of long-chain fatty acids or alcohols and that they exhibit characteristics mimicking those found in human SC lipids. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Effect of Nanoparticle Core Size on Polymer-Coated Gold Nanoparticle Location in Block Copolymers
NASA Astrophysics Data System (ADS)
Petrie, J. D.; Fredrickson, G. H.; Kramer, E. J.
2009-03-01
Gold nanoparticles modified by short chain polymer thiols [Au-PS] can be designed to strongly localize either in the PS domains of a polystyrene-b-poly(2-vinylpyridine) [PS-PVP] block copolymer or at the interface. The P2VP block has a stronger attractive interaction with bare gold than the PS block. Thus, when the areal chain density σ of end-attached PS chains falls below a critical areal chain density σc the Au-PS nanoparticles adsorb to the PS-b-P2VP interface. The effect of the polymer ligand molecular weight on the σc has been shown to scale as σc˜ ((R + Rg)/(R*Rg))̂2, where R is the curvature of the Au nanoparticle core radius. To test this scaling relation for σc further we are synthesizing gold nanoparticles with different core radii and will present preliminary results on σc as a function of R.
NASA Astrophysics Data System (ADS)
Petrie, Joshua; Kim, Bumjoon; Fredrickson, Glenn; Kramer, Ed
2008-03-01
Gold nanoparticles modified by short chain polymer thiols [Au-PS] can be designed to strongly localize in either domain of a polystyrene-b-poly(2-vinylpyridine) [PS-PVP] block copolymer or at the interface. The P2VP block has a stronger attractive interaction with bare gold than the PS block. Thus, when the areal chain density σ of end-attached PS chains falls below a critical areal chain density σc the Au-PS nanoparticles adsorb to the PS-b-P2VP interface. The effect of the polymer ligand molecular weight on the σchas been shown to scale as σc˜ ((R+Rg)/(R*Rg))̂2, where R is the curvature of the Au nanoparticle core radius. To test this scaling relation for σc further we are synthesizing gold nanoparticles with different core radii and will present preliminary results on σcas a function of R.
Yabe, Uichiro; Sato, Chihiro; Matsuda, Tsukasa; Kitajima, Ken
2003-04-18
The neural cell adhesion molecule and the voltage-sensitive sodium channel alpha-subunit are the only two molecules in mammals known to be modified by alpha-2,8-linked polysialic acid (polySia). We found a new polySia-containing glycoprotein in human milk and identified it as CD36, a member of the B class of the scavenger receptor superfamily. The polySia-containing glycan chain(s) were removed by alkaline treatment but not by peptide:N-glycanase F digestion, indicating that milk CD36 contained polySia on O-linked glycan chain(s). Polysialylation of CD36 occurs not only in human milk but also in mouse milk. However, CD36 in human platelets is not polysialylated. PolySia CD36 is secreted in milk at any lactation stage and reaches peak level at 1 month after parturition. Thus, it is suggested that polySia of milk CD36 is significant for neonatal development in terms of protection and nutrition.
Zhang, Xinxing; Bhar, Subhradeep; Jones Lipinski, Rachel A; Han, Jungsoo; Feng, Likui
2018-01-01
Caenorhabditis elegans produces ascaroside pheromones to control its development and behavior. Even minor structural differences in the ascarosides have dramatic consequences for their biological activities. Here, we identify a mechanism that enables C. elegans to dynamically tailor the fatty-acid side chains of the indole-3-carbonyl (IC)-modified ascarosides it has produced. In response to starvation, C. elegans uses the peroxisomal acyl-CoA synthetase ACS-7 to activate the side chains of medium-chain IC-ascarosides for β-oxidation involving the acyl-CoA oxidases ACOX-1.1 and ACOX-3. This pathway rapidly converts a favorable ascaroside pheromone that induces aggregation to an unfavorable one that induces the stress-resistant dauer larval stage. Thus, the pathway allows the worm to respond to changing environmental conditions and alter its chemical message without having to synthesize new ascarosides de novo. We establish a new model for biosynthesis of the IC-ascarosides in which side-chain β-oxidation is critical for controlling the type of IC-ascarosides produced. PMID:29863473
NASA Astrophysics Data System (ADS)
Dagan, Shai; Hua, Yimin; Boday, Dylan J.; Somogyi, Arpad; Wysocki, Ronald J.; Wysocki, Vicki H.
2009-06-01
The use of silicon nanoparticles for laser desorption/ionization (LDI) is a new appealing matrix-less approach for the selective and sensitive mass spectrometry of small molecules in MALDI instruments. Chemically modified silicon nanoparticles (30 nm) were previously found to require very low laser fluence in order to induce efficient LDI, which raised the question of internal energy deposition processes in that system. Here we report a comparative study of internal energy deposition from silicon nanoparticles to previously explored benzylpyridinium (BP) model compounds during LDI experiments. The internal energy deposition in silicon nanoparticle-assisted laser desorption/ionization (SPALDI) with different fluorinated linear chain modifiers (decyl, hexyl and propyl) was compared to LDI from untreated silicon nanoparticles and from the organic matrix, [alpha]-cyano-4-hydroxycinnamic acid (CHCA). The energy deposition to internal vibrational modes was evaluated by molecular ion survival curves and indicated that the ions produced by SPALDI have an internal energy threshold of 2.8-3.7 eV. This is slightly lower than the internal energy induced using the organic CHCA matrix, with similar molecular survival curves as previously reported for LDI off silicon nanowires. However, the internal energy associated with desorption/ionization from the silicon nanoparticles is significantly lower than that reported for desorption/ionization on silicon (DIOS). The measured survival yields in SPALDI gradually decrease with increasing laser fluence, contrary to reported results for silicon nanowires. The effect of modification of the silicon particle surface with semifluorinated linear chain silanes, including fluorinated decyl (C10), fluorinated hexyl (C6) and fluorinated propyl (C3) was explored too. The internal energy deposited increased with a decrease in the length of the modifier alkyl chain. Unmodified silicon particles exhibited the highest analyte internal energy deposition. These findings may suggest a role of the modifier as a moderator in the energy dissipation and relaxation process. The relatively low internal energy content of SPALDI-produced ions indicates that this is a "soft" desorption technique, with potential advantages in the analysis of labile compounds.
A facile method to modify bentonite nanoclay with silane
NASA Astrophysics Data System (ADS)
Abeywardena, Sujani B. Y.; Perera, Srimala; Nalin de Silva, K. M.; Tissera, Nadeeka P.
2017-07-01
Immobilization of smectite clay onto a desirable surface has received much attention, since its nanospace can be utilized for many applications in material science. Here, we present an efficient method to functionalize surface of bentonite nanoclay (BNC) through the grafting of 3-aminotriethoxysilane (APTES). Infrared spectroscopy and elemental analysis confirmed the presence of organic chains and amine groups in modified nanoclay. XRD analysis confirmed grafting of APTES on the surface of bentonite nanoclay without intercalation. The accomplishment of the surface modification was quantitatively proved by TGA analysis. Modified BNC can covalently couple with different material surfaces, allowing its nanospace to be utilized for intercalation of cations, bio-molecules, and polymeric materials, to be used in advanced military aerospace, pharmaceuticals, and many other commercial applications.
Food Security: Selected Global and U.S. Resources
ERIC Educational Resources Information Center
Kocher, Megan
2015-01-01
Food security is researched and dealt with on local, regional, national, and global levels with solutions ranging from local farmers' market initiatives to increasing crop yields through genetically modified plants to streamlining global supply chains. Because of its broad, interdisciplinary nature, it is necessary to narrow the focus of this…
United Nations Environment Programme. Annual Review 1981.
ERIC Educational Resources Information Center
United Nations Environment Programme, Nairobi (Kenya).
This edition of the United Nations Environment Programme (UNEP) annual report is structured in three parts. Part 1 focuses on three contemporary problems (ground water, toxic chemicals and human food chains and environmental economics) and attempts to solve them. Also included is a modified extract of "The Annual State of the Environment…
Yuan, Shaochun; Dong, Xiangru; Tao, Xin; Xu, Liqun; Ruan, Jie; Peng, Jian; Xu, Anlong
2014-05-06
In the past decade, ubiquitination has been well documented to have multifaceted roles in regulating NF-κB activation in mammals. However, its function, especially how deubiquitinating enzymes balance the NF-κB activation, remains largely elusive in invertebrates. Investigating bbtA20 and its binding proteins, bbt A20-binding inhibitor of NF-κB (bbtABIN1) and bbtABIN2, in Chinese amphioxus Branchiostoma belcheri tsingtauense, we found that bbtABIN2 can colocalize and compete with bbt TNF receptor-associated factor 6 to connect the K63-linked polyubiquitin chains, whereas bbtABIN1 physically links bbtA20 to bbt NF-κB essential modulator (bbtNEMO) to facilitate the K48-linked ubiquitination of bbtNEMO. Similar to human A20, bbtA20 is a dual enzyme that removes the K63-linked polyubiquitin chains and builds the K48-linked polyubiquitin chains on bbt receptor-interacting serine/threonine protein kinase 1b, leading to the inhibition of NF-κB signaling. Our study not only suggests that ubiquitination is an ancient strategy in regulating NF-κB activation but also provides the first evidence, to our knowledge, for ABINs/A20-mediated inhibition of NF-κB via modifying the ubiquitinated proteins in a basal chordate, adding information on the stepwise development of vertebrate innate immune signaling.
Akiyama, Hiroshi; Nakamura, Fumi; Yamada, Chihiro; Nakamura, Kosuke; Nakajima, Osamu; Kawakami, Hiroshi; Harikai, Naoki; Furui, Satoshi; Kitta, Kazumi; Teshima, Reiko
2009-11-01
To screen for unauthorized genetically modified organisms (GMO) in the various crops, we developed a multiplex real-time polymerase chain reaction high-resolution melting-curve analysis method for the simultaneous qualitative detection of 35S promoter sequence of cauliflower mosaic virus (35SP) and the nopaline synthase terminator (NOST) in several crops. We selected suitable primer sets for the simultaneous detection of 35SP and NOST and designed the primer set for the detection of spiked ColE1 plasmid to evaluate the validity of the polymerase chain reaction (PCR) analyses. In addition, we optimized the multiplex PCR conditions using the designed primer sets and EvaGreen as an intercalating dye. The contamination of unauthorized GMO with single copy similar to NK603 maize can be detected as low as 0.1% in a maize sample. Furthermore, we showed that the present method would be applicable in identifying GMO in various crops and foods like authorized GM soybean, authorized GM potato, the biscuit which is contaminated with GM soybeans and the rice which is contaminated with unauthorized GM rice. We consider this method to be a simple and reliable assay for screening for unauthorized GMO in crops and the processing food products.
Molecular Origin of the Self-Assembly of Lanreotide into Nanotubes: A Mutational Approach☆
Valéry, Céline; Pouget, Emilie; Pandit, Anjali; Verbavatz, Jean-Marc; Bordes, Luc; Boisdé, Isabelle; Cherif-Cheikh, Roland; Artzner, Franck; Paternostre, Maité
2008-01-01
Lanreotide, a synthetic, therapeutic octapeptide analog of somatostatin, self-assembles in water into perfectly hollow and monodisperse (24-nm wide) nanotubes. Lanreotide is a cyclic octapeptide that contains three aromatic residues. The molecular packing of the peptide in the walls of a nanotube has recently been characterized, indicating four hierarchical levels of organization. This is a fascinating example of spontaneous self-organization, very similar to the formation of the gas vesicle walls of Halobacterium halobium. However, this unique peptide self-assembly raises important questions about its molecular origin. We adopted a directed mutation approach to determine the molecular parameters driving the formation of such a remarkable peptide architecture. We have modified the conformation by opening the cycle and by changing the conformation of a Lys residue, and we have also mutated the aromatic side chains of the peptide. We show that three parameters are essential for the formation of lanreotide nanotubes: i), the specificity of two of the three aromatic side chains, ii), the spatial arrangement of the hydrophilic and hydrophobic residues, and iii), the aromatic side chain in the β-turn of the molecule. When these molecular characteristics are modified, either the peptides lose their self-assembling capability or they form less-ordered architectures, such as amyloid fibers and curved lamellae. Thus we have determined key elements of the molecular origins of lanreotide nanotube formation. PMID:17993497
Structural analysis of poly-SUMO chain recognition by the RNF4-SIMs domain.
Kung, Camy C-H; Naik, Mandar T; Wang, Szu-Huan; Shih, Hsiu-Ming; Chang, Che-Chang; Lin, Li-Ying; Chen, Chia-Lin; Ma, Che; Chang, Chi-Fon; Huang, Tai-Huang
2014-08-15
The E3 ubiquitin ligase RNF4 (RING finger protein 4) contains four tandem SIM [SUMO (small ubiquitin-like modifier)-interaction motif] repeats for selective interaction with poly-SUMO-modified proteins, which it targets for degradation. We employed a multi-faceted approach to characterize the structure of the RNF4-SIMs domain and the tetra-SUMO2 chain to elucidate the interaction between them. In solution, the SIM domain was intrinsically disordered and the linkers of the tetra-SUMO2 were highly flexible. Individual SIMs of the RNF4-SIMs domains bind to SUMO2 in the groove between the β2-strand and the α1-helix parallel to the β2-strand. SIM2 and SIM3 bound to SUMO with a high affinity and together constituted the recognition module necessary for SUMO binding. SIM4 alone bound to SUMO with low affinity; however, its contribution to tetra-SUMO2 binding avidity is comparable with that of SIM3 when in the RNF4-SIMs domain. The SAXS data of the tetra-SUMO2-RNF4-SIMs domain complex indicate that it exists as an ordered structure. The HADDOCK model showed that the tandem RNF4-SIMs domain bound antiparallel to the tetra-SUMO2 chain orientation and wrapped around the SUMO protamers in a superhelical turn without imposing steric hindrance on either molecule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechinger, B.; Seelig, J.
1991-04-23
Phloretin, 4-hydroxyvalerophenone, and 2-hydroxy-{omega}-phenylpropiophenone are lipophilic dipolar substances that modify ionic conductances of bilayer membranes. The structural changes at the level of the head groups and the hydrocarbon chains as induced by the incorporation of phloretin and its analogues were investigated with deuterium and phosphorus nuclear magnetic resonance. Membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were selectively deuterated at the choline head group and at the hydrocarbon chains, and {sup 2}H and {sup 31}P NMR spectra were recorded with varying concentrations of dipolar agents. Incorporation of phloretin leaves the bilayer structure intact, induces only a small disordering of the hydrocarbon chains andmore » has no significant effect on the head-group dynamics. On the other hand, quite distinct structural changes are observed for the phosphocholine head group. In addition to this structural change, phloretin also modifies the hydration layer at the lipid-water interface. Much less {sup 2}H{sub 2} is adsorbed to the membrane surface when the bilayer contains phloretin, 4-hydroxyvalerophenone, or 2-hydroxy-{omega}-phenylpropiophenone. Moreover, a rather large change in the residual phosphorus chemical shielding anisotropy argues in favor of hydrogen-bond formation between the phosphate segment and the phloretin hydroxyl groups.« less
Coutinho, Tania Alen; Bernardi, Mari Lourdes; de Itapema Cardoso, Marisa Ribeiro; Borowski, Sandra Maria; Moreno, Andrea Micke; de Barcellos, David Emilio Santos Neves
2009-01-01
Three comparative assays were performed seeking to improve the sensitivity of the diagnosis of Bordetella bronchiseptica infection analyzing swine nasal swabs. An initial assay compared the recovery of B. bronchiseptica from swabs simultaneously inoculated with B. bronchiseptica and some interfering bacteria, immersed into three transport formulations (Amies with charcoal, trypticase soy broth and phosphate buffer according to Soerensen supplemented with 5% of bovine fetal serum) and submitted to different temperatures (10°C and 27°C) and periods of incubation (24, 72 and 120 hours). A subsequent assay compared three selective media (MacConkey agar, modified selective medium G20G and a ceftiofur medium) for their recovery capabilities from clinical specimens. One last assay compared the polymerase chain reaction to the three selective media. In the first assay, the recovery of B. bronchiseptica from transport systems was better at 27°C and the three formulations had good performances at this temperature, but the collection of qualitative and quantitative analysis indicated the advantage of Amies medium for nasal swabs transportation. The second assay indicated that MacConkey agar and modified G20G had similar results and were superior to the ceftiofur medium. In the final assay, polymerase chain reaction presented superior capability of B. bronchiseptica detection to culture procedures. PMID:24031390
Shang, Jing; Hong, Kunlun; Wang, Tao; ...
2016-10-02
Here, polyethylene oxide (PEO) has been widely used in biomedical fields. The antibiofouling property of the PEO-modified surface has been extensively investigated but is far from being fully understood. A series of PEOs with narrowly distributed molecular weight (M w), synthesized with the technique of high vacuum anionic polymerization, have been successfully grafted onto the surface of silicon wafers. The power-law relationship between the thickness of the monolayer versus the M w of the grafted PEO shows a scaling of 0.3, indicating compact condensing of the chains. The static contact angles show higher hydrophobicity for the layer of PEO withmore » higher M w, which can be attributed to the closely packed conformation of the chains with high density. The frequency shift of the contact resonance indicates that the Young’s modulus decreases and the loss factor increases with the increase in the M w of PEO and the thickness of the PEO layers. Dielectric spectroscopy of bare or PEO-grafted wafers in the aqueous solutions reveals an interfacial polarization, which results from compositional and structural changes in the interface layer and depends on temperatures and salt concentrations. At a given grafting density, the PEO chains are swollen in pure water, demonstrating hydrophilic behavior, whereas they collapse in salt solutions, showing hydrophobic characteristics.« less
Doubly self-consistent field theory of grafted polymers under simple shear in steady state.
Suo, Tongchuan; Whitmore, Mark D
2014-03-21
We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.
Structure and phase behavior of a confined nanodroplet composed of the flexible chain molecules.
Kim, Soon-Chul; Kim, Eun-Young; Seong, Baek-Seok
2011-04-28
A polymer density functional theory has been employed for investigating the structure and phase behaviors of the chain polymer, which is modelled as the tangentially connected sphere chain with an attractive interaction, inside the nanosized pores. The excess free energy of the chain polymer has been approximated as the modified fundamental measure-theory for the hard spheres, the Wertheim's first-order perturbation for the chain connectivity, and the mean-field approximation for the van der Waals contribution. For the value of the chemical potential corresponding to a stable liquid phase in the bulk system and a metastable vapor phase, the flexible chain molecules undergo the liquid-vapor transition as the pore size is reduced; the vapor is the stable phase at small volume, whereas the liquid is the stable phase at large volume. The wide liquid-vapor coexistence curve, which explains the wide range of metastable liquid-vapor states, is observed at low temperature. The increase of temperature and decrease of pore size result in a narrowing of liquid-vapor coexistence curves. The increase of chain length leads to a shift of the liquid-vapor coexistence curve towards lower values of chemical potential. The coexistence curves for the confined phase diagram are contained within the corresponding bulk liquid-vapor coexistence curve. The equilibrium capillary phase transition occurs at a higher chemical potential than in the bulk phase.
Solution structure of a small protein containing a fluorinated side chain in the core
Cornilescu, Gabriel; Hadley, Erik B.; Woll, Matthew G.; Markley, John L.; Gellman, Samuel H.; Cornilescu, Claudia C.
2007-01-01
We report the first high-resolution structure for a protein containing a fluorinated side chain. Recently we carried out a systematic evaluation of phenylalanine to pentafluorophenylalanine (Phe → F5-Phe) mutants for the 35-residue chicken villin headpiece subdomain (c-VHP), the hydrophobic core of which features a cluster of three Phe side chains (residues 6, 10, and 17). Phe → F5-Phe mutations are interesting because aryl–perfluoroaryl interactions of optimal geometry are intrinsically more favorable than either aryl–aryl or perfluoroaryl–perfluoroaryl interactions, and because perfluoroaryl units are more hydrophobic than are analogous aryl units. Only one mutation, Phe10 → F5-Phe, was found to provide enhanced tertiary structural stability relative to the native core (by ∼1 kcal/mol, according to guanidinium chloride denaturation studies). The NMR structure of this mutant, described here, reveals very little variation in backbone conformation or side chain packing relative to the wild type. Thus, although Phe → F5-Phe mutations offer the possibility of greater tertiary structural stability from side chain–side chain attraction and/or side chain desolvation, the constraints associated with the native c-VHP fold apparently prevent the modified polypeptide from taking advantage of this possibility. Our findings are important because they complement several studies that have shown that fluorination of saturated side chain carbon atoms can provide enhanced conformational stability. PMID:17123960
Carnal, Fabrice; Stoll, Serge
2011-10-27
Complex formation between a weak flexible polyelectrolyte chain and one positively charged nanoparticle in presence of explicit counterions and salt particles is investigated using Monte Carlo simulations. The influence of parameters such as the nanoparticle surface charge density, salt valency, and solution property such as the pH on the chain protonation/deprotonation process and monomer adsorption at the nanoparticle surface are systematically investigated. It is shown that the nanoparticle presence significantly modifies chain acid/base and polyelectrolyte conformational properties. The importance of the attractive electrostatic interactions between the chain and the nanoparticle clearly promotes the chain deprotonation leading, at high pH and nanoparticle charge density, to fully wrapped polyelectrolyte at the nanoparticle surface. When the nanoparticle bare charge is overcompensated by the polyelectrolyte charges, counterions and salt particles condense at the surface of the polyelectrolyte-nanoparticle complex to compensate for the excess of charges providing from the adsorbed polyelectrolyte chain. It is also shown that the complex formation is significantly affected by the salt valency. Indeed, with the presence of trivalent salt cations, competition is observed between the nanoparticle and the trivalent cations. As a result, the amount of adsorbed monomers is less important than in the monovalent and divalent case and chain conformations are different due to the collapse of polyelectrolyte segments around trivalent cations out of the nanoparticle adsorption layer.
Heat conduction in diatomic chains with correlated disorder
NASA Astrophysics Data System (ADS)
Savin, Alexander V.; Zolotarevskiy, Vadim; Gendelman, Oleg V.
2017-01-01
The paper considers heat transport in diatomic one-dimensional lattices, containing equal amounts of particles with different masses. Ordering of the particles in the chain is governed by single correlation parameter - the probability for two neighboring particles to have the same mass. As this parameter grows from zero to unity, the structure of the chain varies from regular staggering chain to completely random configuration, and then - to very long clusters of particles with equal masses. Therefore, this correlation parameter allows a control of typical cluster size in the chain. In order to explore different regimes of the heat transport, two interatomic potentials are considered. The first one is an infinite potential wall, corresponding to instantaneous elastic collisions between the neighboring particles. In homogeneous chains such interaction leads to an anomalous heat transport. The other one is classical Lennard-Jones interatomic potential, which leads to a normal heat transport. The simulations demonstrate that the correlated disorder of the particle arrangement does not change the convergence properties of the heat conduction coefficient, but essentially modifies its value. For the collision potential, one observes essential growth of the coefficient for fixed chain length as the limit of large homogeneous clusters is approached. The thermal transport in these models remains superdiffusive. In the Lennard-Jones chain the effect of correlation appears to be not monotonous in the limit of low temperatures. This behavior stems from the competition between formation of long clusters mentioned above, and Anderson localization close to the staggering ordered state.
Peng, Cheng; Wang, Hua; Xu, Xiaoli; Wang, Xiaofu; Chen, Xiaoyun; Wei, Wei; Lai, Yongmin; Liu, Guoquan; Godwin, Ian Douglas; Li, Jieqin; Zhang, Ling; Xu, Junfeng
2018-05-15
Gene editing techniques are becoming powerful tools for modifying target genes in organisms. Although several methods have been developed to detect gene-edited organisms, these techniques are time and labour intensive. Meanwhile, few studies have investigated high-throughput detection and screening strategies for plants modified by gene editing. In this study, we developed a simple, sensitive and high-throughput quantitative real-time (qPCR)-based method. The qPCR-based method exploits two differently labelled probes that are placed within one amplicon at the gene editing target site to simultaneously detect the wild-type and a gene-edited mutant. We showed that the qPCR-based method can accurately distinguish CRISPR/Cas9-induced mutants from the wild-type in several different plant species, such as Oryza sativa, Arabidopsis thaliana, Sorghum bicolor, and Zea mays. Moreover, the method can subsequently determine the mutation type by direct sequencing of the qPCR products of mutations due to gene editing. The qPCR-based method is also sufficiently sensitive to distinguish between heterozygous and homozygous mutations in T 0 transgenic plants. In a 384-well plate format, the method enabled the simultaneous analysis of up to 128 samples in three replicates without handling the post-polymerase chain reaction (PCR) products. Thus, we propose that our method is an ideal choice for screening plants modified by gene editing from many candidates in T 0 transgenic plants, which will be widely used in the area of plant gene editing. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Conzatti, Lucia; Utzeri, Roberto; Hodge, Philip; Stagnaro, Paola
2016-05-01
An original compatibilizing pathway for hemp fibers/poly(1,4-butylene adipate-co-terephtalate) (PBAT) eco-composites was explored exploiting the capability of macrocyclic oligomers (MCOs), obtained by cyclodepolymerization (CDP) of PBAT at high dilution, of being re-converted into linear chains by entropically-driven ring-opening polymerization (ED-ROP) that occurs simply heating the MCOS in the bulk. CDP reaction of PBAT was carried out varying solvent, catalyst and reaction time. Selected MCOs were used to adjust the conditions of the ED-ROP reaction. The best experimental conditions were then adopted to modify hemp fibers. Eco-composites based on PBAT and hemp fibers as obtained or modified with PBAT macrocyclics or oligomers were prepared by different process strategies. The best fiber-PBAT compatibility was observed when the fibers were modified with PBAT oligomers before incorporation in the polyester matrix.
[Adenylate cyclase from rabbit heart: substrate binding site].
Perfil'eva, E A; Khropov, Iu V; Khachatrian, L; Bulargina, T V; Baranova, L A
1981-08-01
The effects of 17 ATP analogs on the solubilized rabbit heart adenylate cyclase were studied. The triphosphate chain, position 8 of the adenine base and the ribose residue of the ATP molecule were modified. Despite the presence of the alkylating groups in two former types of the analogs tested, no covalent blocking of the active site of the enzyme was observed. Most of the compounds appeared to be competitive reversible inhibitors. The kinetic data confirmed the importance of the triphosphate chain for substrate binding in the active site of adenylate cyclase. (Formula: See Text) The inhibitors with different substituents in position 8 of the adenine base had a low affinity for the enzyme. The possible orientation of the triphosphate chain and the advantages of anti-conformation of the ATP molecule for their binding in the active site of adenylate cyclase are discussed.
Hoernke, Maria; Schwieger, Christian; Kerth, Andreas; Blume, Alfred
2012-07-01
Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely omithine (Orn), alpha, gamma-diaminobutyric acid (Dab) and alpha, beta-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.
Niedzwiedzki, Dariusz M; Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Bocian, David F; Holten, Dewey; Hunter, C Neil
2015-01-01
Light-harvesting 2 (LH2) complexes from a genetically modified strain of the purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. Carotenoid synthesis in the Rba. sphaeroides strain was engineered to redirect carotenoid production away from spheroidene into the spirilloxanthin synthesis pathway. The strain assembles LH2 antennas with substantial amounts of spirilloxanthin (total double-bond conjugation length N=13) if grown anaerobically and of keto-bearing long-chain analogs [2-ketoanhydrorhodovibrin (N=13), 2-ketospirilloxanthin (N=14) and 2,2'-diketospirilloxanthin (N=15)] if grown semi-aerobically (with ratios that depend on growth conditions). We present the photophysical, electronic, and vibrational properties of these carotenoids, both isolated in organic media and assembled within LH2 complexes. Measurements of excited-state energy transfer to the array of excitonically coupled bacteriochlorophyll a molecules (B850) show that the mean lifetime of the first singlet excited state (S1) of the long-chain (N≥13) carotenoids does not change appreciably between organic media and the protein environment. In each case, the S1 state appears to lie lower in energy than that of B850. The energy-transfer yield is ~0.4 in LH2 (from the strain grown aerobically or semi-aerobically), which is less than half that achieved for LH2 that contains short-chain (N≤11) analogues. Collectively, the results suggest that the S1 excited state of the long-chain (N≥13) carotenoids participates little if at all in carotenoid-to-BChl a energy transfer, which occurs predominantly via the carotenoid S2 excited state in these antennas. Copyright © 2015 Elsevier B.V. All rights reserved.
D'Ascoli, T A; Mursu, J; Voutilainen, S; Kauhanen, J; Tuomainen, T-P; Virtanen, J K
2016-08-01
Fish intake and the long-chain omega-3 polyunsaturated fatty acids (PUFAs) in fish have been suggested to lower the risk of cognitive decline. We assessed whether serum long-chain omega-3 PUFAs eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) are associated with performance on neuropsychological tests in an older population and whether exposure to methylmercury, mainly from fish, or apolipoprotein-E4 (Apo-E4) phenotype can modify the associations. A total of 768 participants from the population-based Kuopio Ischaemic Heart Disease Risk Factor Study were included. Cognitive function was measured using five neuropsychological tests: the Trail Making Test, the Verbal Fluency Test, the Selective Reminding Test, the Visual Reproduction Test and the Mini Mental State Exam. Multivariate-adjusted analysis of covariance and linear regression were used to analyze the cross-sectional associations. We found statistically significant associations between serum EPA+DPA+DHA and better performance in the Trail Making Test and the Verbal Fluency Test. The individual associations with EPA and DHA were similar with the findings with EPA+DPA+DHA, although the associations with DHA were stronger. No associations were observed with serum DPA. Pubic hair mercury content was associated only with a worse performance in the Trail Making Test, and mercury had only little impact on the associations between the serum PUFAs and cognitive performance. Apo-E4 phenotype did not modify the associations with PUFAs or mercury. Higher serum long-chain omega-3 PUFA concentrations were associated with better performance on neuropsychological tests of frontal lobe functioning in older men and women. Mercury exposure or Apo-E4 phenotype had little impact on cognitive performance.
Chung, Kyeongwoon; McAllister, Andrew; Bilby, David; ...
2015-09-03
Building molecular-design insights for controlling both the intrachain and the interchain properties of conjugated polymers (CPs) is essential to determine their characteristics and to optimize their performance in applications. However, most CP designs have focused on the conjugated main chain to control the intrachain properties, while the design of side chains is usually used to render CPs soluble, even though the side chains critically affect the interchain packing. Here, we present a straightforward and effective design strategy for modifying the optical and electrochemical properties of diketopyrrolopyrrole-based CPs by controlling both the intrachain and interchain properties in a single system. Themore » synthesized polymers, P1, P2 and P3, show almost identical optical absorption spectra in solution, manifesting essentially the same intrachain properties of the three CPs having restricted effective conjugation along the main chain. However, the absorption spectra of CP films are gradually tuned by controlling the interchain packing through the side-chain design. Here, based on the tailored optical properties, we demonstrate the encoding of latent optical information utilizing the CPs as security inks on a silica substrate, which reveals and conceals hidden information upon the reversible aggregation/deaggregation of CPs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Kyeongwoon; McAllister, Andrew; Bilby, David
Building molecular-design insights for controlling both the intrachain and the interchain properties of conjugated polymers (CPs) is essential to determine their characteristics and to optimize their performance in applications. However, most CP designs have focused on the conjugated main chain to control the intrachain properties, while the design of side chains is usually used to render CPs soluble, even though the side chains critically affect the interchain packing. Here, we present a straightforward and effective design strategy for modifying the optical and electrochemical properties of diketopyrrolopyrrole-based CPs by controlling both the intrachain and interchain properties in a single system. Themore » synthesized polymers, P1, P2 and P3, show almost identical optical absorption spectra in solution, manifesting essentially the same intrachain properties of the three CPs having restricted effective conjugation along the main chain. However, the absorption spectra of CP films are gradually tuned by controlling the interchain packing through the side-chain design. Here, based on the tailored optical properties, we demonstrate the encoding of latent optical information utilizing the CPs as security inks on a silica substrate, which reveals and conceals hidden information upon the reversible aggregation/deaggregation of CPs.« less
Jang, Kwang-Suk; Kim, Won Soo; Won, Jong-Myung; Kim, Yun-Ho; Myung, Sung; Ka, Jae-Won; Kim, Jinsoo; Ahn, Taek; Yi, Mi Hye
2013-01-21
The surface property of a polyimide gate insulator was successfully modified with an n-octadecyl side-chain. Alkyl chain-grafted poly(amic acid), the polyimide precursor, was synthesized using the diamine comonomer with an alkyl side-chain. By adding a base catalyst to the poly(amic acid) coating solution, the imidization temperature of the spin-coated film could be reduced to 200 °C. The 350 nm-thick polyimide film had a dielectric constant of 3.3 at 10 kHz and a leakage current density of less than 8.7 × 10(-10) A cm(-2), while biased from 0 to 100 V. To investigate the potential of the alkyl chain-grafted polyimide film as a gate insulator for solution-processed organic thin-film transistors (TFTs), we fabricated C(10)-BTBT TFTs. C(10)-BTBT was deposited on the alkyl chain-grafted polyimide gate insulator by spin-coating, forming a well-ordered crystal structure. The field-effect mobility and the on/off current ratio of the TFT device were measured to be 0.20-0.56 cm(2) V(-1) s(-1) and >10(5), respectively.
Cankar, Katarina; Chauvensy-Ancel, Valérie; Fortabat, Marie-Noelle; Gruden, Kristina; Kobilinsky, André; Zel, Jana; Bertheau, Yves
2008-05-15
Detection of nonauthorized genetically modified organisms (GMOs) has always presented an analytical challenge because the complete sequence data needed to detect them are generally unavailable although sequence similarity to known GMOs can be expected. A new approach, differential quantitative polymerase chain reaction (PCR), for detection of nonauthorized GMOs is presented here. This method is based on the presence of several common elements (e.g., promoter, genes of interest) in different GMOs. A statistical model was developed to study the difference between the number of molecules of such a common sequence and the number of molecules identifying the approved GMO (as determined by border-fragment-based PCR) and the donor organism of the common sequence. When this difference differs statistically from zero, the presence of a nonauthorized GMO can be inferred. The interest and scope of such an approach were tested on a case study of different proportions of genetically modified maize events, with the P35S promoter as the Cauliflower Mosaic Virus common sequence. The presence of a nonauthorized GMO was successfully detected in the mixtures analyzed and in the presence of (donor organism of P35S promoter). This method could be easily transposed to other common GMO sequences and other species and is applicable to other detection areas such as microbiology.
Lee, Yuan-Ming; Chen, Yen-Ju; Lee, Cheng-Ming; Kuo, Lou-Hui; Wong, Wing-Wai; Chen, Yi-Ming Arthur
2011-12-01
In the past few years, many new subtypes in hepatitis C virus (HCV) genotype 6 have been identified. The aim of this study was to modify the multiplex real-time polymerase chain reaction (RT-PCR) protocol and use it to determine the HCV subtypes of a group of Taiwanese injection drug users (IDUs). We used 76 serum specimens collected in northern Taiwan in 2008. Multiplex RT-PCR was used for HCV subtyping among those serum samples having anti-HCV antibodies. Twenty cases were randomly selected for comparison with subtyping results from Inno-LiPa II tests and phylogenetic tree analysis using NS5B sequences. Multiplex RT-PCR assays showed that 60.5% (46/76) of IDUs had single HCV infection. Three out of 76 (3.9%) had double HCV infection (1b/6a, 2a/2b and 2b/6a). Besides this, 27.6% (21/76) had no HCV signal. One IDU had subtype 6n and two had subtype 6w infection. Inno-LiPa II tests misclassified all 6n and 6w cases as 1b subtype. Our modified multiplex RT-PCR protocol can be used to support molecular epidemiological studies and laboratory diagnoses of different HCV subtypes including genotype 6. Copyright © 2011. Published by Elsevier B.V.
Häkkinen, T; Luoma, J S; Hiltunen, M O; Macphee, C H; Milliner, K J; Patel, L; Rice, S Q; Tew, D G; Karkola, K; Ylä-Herttuala, S
1999-12-01
We studied the expression of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), an enzyme capable of hydrolyzing platelet-activating factor (PAF), PAF-like phospholipids, and polar-modified phosphatidylcholines, in human and rabbit atherosclerotic lesions. Oxidative modification of low-density lipoprotein, which plays an important role in atherogenesis, generates biologically active PAF-like modified phospholipid derivatives with polar fatty acid chains. PAF is known to have a potent proinflammatory activity and is inactivated by its hydrolysis. On the other hand, lysophosphatidylcholine and oxidized fatty acids released from oxidized low-density lipoprotein as a result of Lp-PLA(2) activity are thought to be involved in the progression of atherosclerosis. Using combined in situ hybridization and immunocytochemistry, we detected Lp-PLA(2) mRNA and protein in macrophages in both human and rabbit atherosclerotic lesions. Reverse transcriptase-polymerase chain reaction analysis indicated an increased expression of Lp-PLA(2) mRNA in human atherosclerotic lesions. In addition, approximately 6-fold higher Lp-PLA(2) activity was detected in atherosclerotic aortas of Watanabe heritable hyperlipidemic rabbits compared with normal aortas from control rabbits. It is concluded that (1) macrophages in both human and rabbit atherosclerotic lesions express Lp-PLA(2), which could cleave any oxidatively modified phosphatidylcholine present in the lesion area, and (2) modulation of Lp-PLA(2) activity could lead to antiatherogenic effects in the vessel wall.
NASA Astrophysics Data System (ADS)
Wang, Li; Yu, Zebin; Hou, Yanping; Peng, Zhenbo; Zhang, Li; Meng, Zhengcheng; Li, Fengyuan; He, Jun; Huang, Junlin
2016-06-01
A novel Fe3O4@rhamnolipid@BiOBr (FRB) was synthesized via a modified precipitation method and applied in the plasma discharge system. Rhamnolipid was used as biosurfactant to modify Fe3O4 by interacting with Fe3O4 via its aliphatic chain. The results show that the prepared FRB magnetic photocatalyst exhibited excellent photocatalytic activity and Fenton reaction behavior in the plasma discharge system. Meanwhile, the addition of FRB could improve energy efficiency of defluorination by 21.29 mg kW-1 h-1.
NASA Astrophysics Data System (ADS)
Mosnáček, Jaroslav; Ilčíková, Markéta; Chorvát, Dušan; Czaniková, Klaudia; Krupa, Igor
2012-07-01
Styrene-b-isoprene-b-styrene (Kraton) was used as polymer matrix for preparation of multiwall carbon nanotubes (MWCNT) based nanocomposites. In order to suppress aggregation of the he carbon nanotubes and to improve the interations with the Kraton matrix, the MWCNT were modified with cholesteryl molecules and/or polystyrene chains. The effect of the modification on the composite materials was evaluated by using DMTA. The nanocomposite materials were thermoformed to achieve Braille text elements and their elastic response to light (photoactuation) was tested by atomic force microscopy in a contact mode.
Doping of the step-edge Si chain: Ag on a Si(557)-Au surface
NASA Astrophysics Data System (ADS)
Krawiec, M.; Jałochowski, M.
2010-11-01
Structural and electronic properties of monatomic Ag chains on the Au-induced, highly ordered Si(557) surface are investigated by scanning tunneling microscopy (STM)/spectroscopy and first-principles density functional theory (DFT) calculations. The STM topography data show that a small amount of Ag (0.25 ML) very weakly modifies the one-dimensional structure induced by Au atoms. However, the bias-dependent STM topography and spectroscopy point to the importance of the electronic effects in this system, which are further corroborated by the DFT calculations. The obtained results suggest that Ag atoms act as electron donors leaving the geometry of the surface almost unchanged.
Area law violations and quantum phase transitions in modified Motzkin walk spin chains
NASA Astrophysics Data System (ADS)
Sugino, Fumihiko; Padmanabhan, Pramod
2018-01-01
Area law violations for entanglement entropy in the form of a square root have recently been studied for one-dimensional frustration-free quantum systems based on the Motzkin walks and their variations. Here we consider a Motzkin walk with a different Hilbert space on each step of the walk spanned by the elements of a symmetric inverse semigroup with the direction of each step governed by its algebraic structure. This change alters the number of paths allowed in the Motzkin walk and introduces a ground state degeneracy that is sensitive to boundary perturbations. We study the frustration-free spin chains based on three symmetric inverse semigroups, \
Use of a Modified Chaining Procedure with Textual Prompts to Establish Intraverbal Storytelling
ERIC Educational Resources Information Center
Valentino, Amber L.; Conine, Daniel E.; Delfs, Caitlin H.; Furlow, Christopher M.
2015-01-01
Echoic, tact, and textual transfer procedures have been proven successful in establishing simple intraverbals (Braam and Poling "Applied Research in Mental Retardation," 4, 279-302, 1983; Luciano "Applied Research in Mental Retardation," 102, 346-357, 1986; Watkins et al. "The Analysis of Verbal Behavior," 7, 69-81,…
ERIC Educational Resources Information Center
Toussaint, Karen A.; Kodak, Tiffany; Vladescu, Jason C.
2016-01-01
The current study compared the differential effects of choice and no-choice reinforcement conditions on skill acquisition. In addition, we assessed preference for choice-making opportunities with 3 children with autism, using a modified concurrent-chains procedure. We replicated the experiment with 2 participants. The results indicated that…
USDA-ARS?s Scientific Manuscript database
The fermentation system of mixed ruminal bacteria is capable of generating large amounts of short-chain volatile fatty acids (VFA) via the carboxylate platform in vitro. These VFAs are subject to elongation to larger, more energy-dense products through reverse beta-oxidation. This study examined the...
A Simple Model System to Demonstrate Antibody Structure and Functions.
ERIC Educational Resources Information Center
O'Kennedy, Richard
1991-01-01
A model that can be used to show the arrangement of light and heavy chains, disulfide linkages, domains, and subclass variations in antibodies is given. It can be constructed and modified to illustrate Fab, F(ab')2, and Fc fragments, single domain and bifunctional antibodies, and labeling of antibodies. (Author)
Bai, Guangyue; Nichifor, Marieta; Lopes, António; Bastos, Margarida
2005-01-13
We have used a precision isothermal titration microcalorimeter (ITC) to measure the enthalpy curves for the interaction of a hydrophobically modified polyelectrolyte (D40OCT30) with oppositely charged surfactants (SC(n)S) in aqueous solution. D40OCT30 is a newly synthesized polymer based on dextran having pendant N-(2-hydroxypropyl)-N,N-dimethyl-N-octylammonium chloride groups randomly distributed along the polymer backbone with degree of substitution of 28.1%. The employed anionic surfactants are sodium octyl sulfate (SC(8)S) and sodium tetradecyl sulfate (SC(14)S). Microcalorimetric results along with turbidity and kinematic viscosity measurements demonstrate systematically the thermodynamic characterization of the interaction of D40OCT30/SC(n)S. A three-dimensional diagram with the derived phase boundaries is drawn to describe the effect of the alkyl chain length of surfactant and of the ratio between surfactant and pendant groups on the interaction. A more complete picture of the interaction mechanism for D40OCT30/SC(n)S systems is proposed here.
Boric Acid Induced Transient Cross-Links in Lactose-Modified Chitosan (Chitlac).
Sacco, Pasquale; Furlani, Franco; Cok, Michela; Travan, Andrea; Borgogna, Massimiliano; Marsich, Eleonora; Paoletti, Sergio; Donati, Ivan
2017-12-11
The present paper explores the effect of boric acid on Chitlac, a lactose-modified chitosan which had previously shown interesting biological and physical-chemical features. The herewith-reported experimental evidences demonstrated that boric acid binds to Chitlac, producing conformational and association effects on the chitosan derivative. The thermodynamics of boric acid binding to Chitlac was explored by means of 11 B NMR, circular dichroism (CD), and UV-vis spectroscopy, while macromolecular effects were investigated by means of viscometry and dynamic light scattering (DLS). The experimental results revealed a chain-chain association when limited amounts of boric acid were added to Chitlac. However, upon exceeding a critical boric acid limit dependent on the polysaccharide concentration, the soluble aggregates disentangle. The rheological behavior of Chitlac upon treatment with boric acid was explored showing a dilatant behavior in conditions of steady flow. An uncommonly high dependence in the scaling law between the zero-shear viscosity and the concentration of Chitlac was found, i.e., η 0 ∝ C CTL 5.8 , pointing to interesting potential implications of the present system in biomaterials development.
X-Ray Synchrotron and Neutron Reflectivity Studies of = Polymer-Modified Lipid Monolayers on Water
NASA Astrophysics Data System (ADS)
Smith, G. S.; Majewski, J.; Kuhl, T.; Israelachvili, J.; Kjaer, K.; Gerstenberg, M. C.; Als-Nielsen, J.
1997-03-01
We studied monolayers (at air-water interface) composed of mixtures of distearoyl phosphatidyl ethanolamine (DSPE) mixed with 1.3, 4.5 and 9% of the same lipid but modified by polyethylene glycol chains (PEG) covalently linked to its head group. The GID data yielded three reflections leading to a hexagonal unit cell a_H=4.7Åarea per lipid molecule = 38.3Åindependent of PEG concentration. The in-plane coherence lengths decreased from 360Åfor the pure lipid to 230Åfor 9.0% DSPE-PEG. The FWHM(q_z) of each of the Bragg rods increased with PEG-lipid concentration suggesting decreasing of the lengths of the coherently diffracting part of the hydrocarbon chains. Reflectivities show that both the density and the extension of the polymer segments increase with DSPE-PEG concentration and can be well modeled with a parabolic density profile. Our data indicates that the bulky hydrophilic polymer disrupts the lipid monolayer. This is attributed to an increase in lipid protrusions and a relaxation of the lateral force between PEG portions by staggering of the lipid headgroups.
Grasso, G; Komatsu, H; Axelsen, P H
2017-09-01
Amyloid β peptides (Aβ) and metal ions are associated with oxidative stress in Alzheimer's disease (AD). Oxidative stress, acting on ω-6 polyunsaturated fatty acyl chains, produces diverse products, including 4-hydroxy-2-nonenal (HNE), which can covalently modify the Aβ that helped to produce it. To examine possible feedback mechanisms involving Aβ, metal ions and HNE production, the effects of HNE modification and fibril formation on metal ion binding was investigated. Results indicate that copper(II) generally inhibits the modification of His side chains in Aβ by HNE, but that once modified, copper(II) still binds to Aβ with high affinity. Fibril formation protects only one of the three His residues in Aβ from HNE modification, and this protection is consistent with proposed models of fibril structure. These results provide insight into a network of biochemical reactions that may be operating as a consequence of oxidative stress in AD, or as part of the pathogenic process. Copyright © 2016. Published by Elsevier Inc.
Ultrasensitive direct impedimetric immunosensor for detection of serum HER2.
Sharma, Shikha; Zapatero-Rodríguez, Julia; Saxena, Rahul; O'Kennedy, Richard; Srivastava, Sudha
2018-05-30
Assesment of human epidermal growth factor receptor 2 status is a key factor prompting definitive treatment decisions that help in reducing mortality rates associated with breast cancer. In this article, highly sensitive and low-cost impedimetric immunosensor using single-chain fragment variable antibody fragments was developed for quantitative detection of human epidermal growth factor receptor 2 from serum employing gold nanoparticle-modified disposable screen-printed carbon electrodes. The gold nanoparticles facilitate fast electron transfer and offer a biocompatible surface for immobilization of small antibody fragments in an oriented manner, resulting in improved antigen binding efficiency. The single-chain fragment variable antibody fragment-modified screen printed immunosensor exhibits wide dynamic range of 0.01-100 ng mL -1 and detection limit of 0.01 ng mL -1 . The advantages offered by this platform in terms of high sensitivity, broad dynamic range and low-cost demonstrates great potential for improved monitoring of human epidermal growth factor receptor 2 levels for the management of breast and other cancers. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mei, Xiong; Gong, Guangcai
2018-07-01
As potential carriers of hazardous pollutants, airborne particles may deposit onto surfaces due to gravitational settling. A modified Markov chain model to predict gravity induced particle dispersion and deposition is proposed in the paper. The gravity force is considered as a dominant weighting factor to adjust the State Transfer Matrix, which represents the probabilities of the change of particle spatial distributions between consecutive time steps within an enclosure. The model performance has been further validated by particle deposition in a ventilation chamber and a horizontal turbulent duct flow in pre-existing literatures. Both the proportion of deposited particles and the dimensionless deposition velocity are adopted to characterize the validation results. Comparisons between our simulated results and the experimental data from literatures show reasonable accuracy. Moreover, it is also found that the dimensionless deposition velocity can be remarkably influenced by particle size and stream-wise velocity in a typical horizontal flow. This study indicates that the proposed model can predict the gravity-dominated airborne particle deposition with reasonable accuracy and acceptable computing time.
The effect of self-assembled monolayers on graphene conductivity and morphology
NASA Astrophysics Data System (ADS)
Moore, T. L.; Chen, J. H.; Riddick, B.; Williams, E. D.
2009-03-01
Graphene transport properties are limited by charge defects in SiO2, and by large charge density due to strong interaction with SiC. To modify these effects we have treated 300 nm SiO2 with tricholosilanes with different termination groups including pure and fluoro and amino-terminated hydrocarbons for use as substrates for mechanical exfoliation of graphene. XPS measurements verify the presence of the expected termination groups. AFM measurements reveal modified monolayer roughness and correlation lengths; for a fluorinated carbon chain the RMS roughness is 0.266 ± 0.017 nm and the correlation length is 10.2 ± 0.7 nm compared to 0.187 ± 0.011 nm and 19.8 ± 2.5 nm for SiO2. Surface free energies of the monolayers and the SiO2 blank have been computed from static contact angle measurements and all decrease the SiO2 surface free energy; for the fluorinated carbon chain monolayer a decrease of 20 mJ/m^2 from SiO2. We will discuss the ease of exfoliation, and the morphology and conductivity of graphene on these monolayers.
Mai-ngam, Katanchalee
2006-05-01
A series of structurally well-defined poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers that undergo surface induced self assembly on hydrophobic biomaterial surfaces were synthesized and characterized. The surfactant polymers consist of low molecular weight (Mw) chitosan backbone with hydrophilic poly(ethylene oxide) (PEO) and hydrophobic hexyl pendant groups. Chitosan was depolymerized by nitrous acid deaminative cleavage. Hexanal and aldehyde-terminated PEO chains were simultaneously attached to low Mw chitosan hydrochloride via reductive amination. The surfactant polymers were prepared with various ratios of the two side chains. The molecular composition of the surfactant polymers was determined by FT-IR and 1H NMR. Surface active properties at the air-water interface were determined by Langmuir film balance measurements. The surfactant polymers with PEO/hexyl ratios of 1:3.0 and 1:14.4 were used as surface modifying agents to investigate their anti-infection properties. E. coli adhesion on Silastic surface was decreased significantly by the surfactant polymer with PEO/hexyl 1:3.0. Surface growth of adherent E. coli was effectively suppressed by both tested surfactant polymers.
NASA Astrophysics Data System (ADS)
Yoshida, Wayne Hiroshi
Nanostructural engineering of inorganic substrates by free radical graft polymerization was studied with the goal of developing new membrane materials for pervaporation. Graft polymerization consisted of modification of surface hydroxyls with vinyl trimethoxysilane, followed by solution graft polymerization reaction using either vinyl acetate (VAc) or vinyl pyrrolidone (VP). The topology of the modified surfaces was studied by atomic force microscopy (AFM) on both atomically smooth silicon wafer substrates and microporous inorganic membrane supports in order to deduce the effects of modification on the nanostructural properties of the membrane. While unmodified wafers showed a root-mean-square (RMS) surface roughness of 0.21 +/- 0.03 nm, roughness increased to 3.15 +/- 0.23 nm upon silylation. Under poor solvent conditions (i.e., air), surfaces modified with higher poly(vinyl acetate) (PVAc) or poly(vinyl pyrrolidone) (PVP) polymer graft yields displayed lateral inhomogeneities in the polymer layer. Although RMS surface roughness was nearly identical (0.81--0.85 nm) for PVAc-modified surfaces grafted at different monomer concentrations, the skewness of the height distribution decreased from 2.22 to 0.78 as polymer graft yield increased from 0.8 to 3.5 mg/m2. The polymer-modified surfaces were used to create inorganic pervaporation membranes consisting of a single macromolecular separation layer formed by graft polymerization. PVAc grafted silica membranes (500A native pore size) were found selective for MTBE in the separation of 0.1--1% (v/v) MTBE from water, achieving MTBE enrichment factors as high as 371 at a permeate flux of 0.38 l/m2 hr and a Reynolds number of 6390; however, these membranes could not separate anhydrous organic mixtures. Pervaporative separation of methanol/MTBE mixtures was possible with PVAc and PVP-modified alumina supports of 50A native pore size, where the separation layer consisted of grafted polymer chains with estimated radius of gyration 4.5--6.8 times larger than the membrane pore radius. Methanol separation factors for the PVP and PVAc-grafted alumina pervaporation membranes reached values of 26 and 100 (respectively) at total permeate fluxes of 0.055--1.26 kg/m 2 hr and 0.55--6.19 kg/m2 hr. The present study demonstrated that selective pervaporation membranes for separation of both organic/organic and organic/aqueous mixtures can be effectively designed by careful selection of the surface-grafted polymer chain density and the ratio of the polymer chain size to the native support pore size.
Burmester, Mike; Munilla, Jorge; Ortiz, Andrés; Caballero-Gil, Pino
2017-07-04
The National Strategy for Global Supply Chain Security published in 2012 by the White House identifies two primary goals for strengthening global supply chains: first, to promote the efficient and secure movement of goods, and second to foster a resilient supply chain. The Internet of Things (IoT), and in particular Radio Frequency Identification (RFID) technology, can be used to realize these goals. For product identification, tracking and real-time awareness, RFID tags are attached to goods. As tagged goods move along the supply chain from the suppliers to the manufacturers, and then on to the retailers until eventually they reach the customers, two major security challenges can be identified: (I) to protect the shipment of goods that are controlled by potentially untrusted carriers; and (II) to secure the transfer of ownership at each stage of the chain. For the former, grouping proofs in which the tags of the scanned goods generate a proof of "simulatenous" presence can be employed, while for the latter, ownership transfer protocols (OTP) are used. This paper describes enhanced security solutions for both challenges. We first extend earlier work on grouping proofs and group codes to capture resilient group scanning with untrusted readers; then, we describe a modified version of a recently published OTP based on channels with positive secrecy capacity adapted to be implemented on common RFID systems in the supply chain. The proposed solutions take into account the limitations of low cost tags employed in the supply chain, which are only required to generate pseudorandom numbers and compute one-way hash functions.
NASA Astrophysics Data System (ADS)
Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi
2017-11-01
We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.
Optimized nested Markov chain Monte Carlo sampling: theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coe, Joshua D; Shaw, M Sam; Sewell, Thomas D
2009-01-01
Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermodynamic variables characterizing the reference system we maximize the average acceptance probability of composite moves, lengthening significantly the random walk made between consecutive evaluations of the full energy at a fixed acceptance probability. This provides maximally decorrelated samples ofmore » the full potential, thereby lowering the total number required to build ensemble averages of a given variance. The efficiency of the method is illustrated using model potentials appropriate to molecular fluids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are discussed.« less
Chang, Limin; Li, Ying; Chu, Jia; Qi, Jingyao; Li, Xin
2010-11-08
In this paper, we demonstrated an efficient and robust route to the preparation of well-defined molecularly imprinted polymer based on reversible addition-fragmentation chain transfer (RAFT) polymerization and click chemistry. The alkyne terminated RAFT chain transfer agent was first synthesized, and then click reaction was used to graft RAFT agent onto the surface of silica particles which was modified by azide. Finally, imprinted thin film was prepared in the presence of 2,4-dichlorophenol as the template. The imprinted beads were demonstrated with a homogeneous polymer films (thickness of about 2.27 nm), and exhibited thermal stability under 255°C. The as-synthesized product showed obvious molecular imprinting effects towards the template, fast template rebinding kinetics and an appreciable selectivity over structurally related compounds. Copyright © 2010 Elsevier B.V. All rights reserved.
Doubly self-consistent field theory of grafted polymers under simple shear in steady state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suo, Tongchuan; Whitmore, Mark D., E-mail: mark-whitmore@umanitoba.ca
2014-03-21
We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkmanmore » equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.« less
NASA Astrophysics Data System (ADS)
Porter, Stephen Christopher
1999-10-01
New segmented polyetherurethanes (PEUs) with low surface energy hydrocarbon and fluorocarbon side-chains attached to the polymer hard segments were synthesized. The surface chemistry of solvent cast polymer films was studied using X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and dynamic contact angle (DCA) measurements. Increases in the overall density and length of the alkyl side-chains within the PEUs resulted in greater side-chain concentrations at the polymer surface. PEUs bearing long alkyl (> C10 ) and perfluorocarbon side-chains were found to posses surfaces with highly enriched side-chain concentrations relative to the bulk polymer. In PEUs with significant side-chain surface enrichment, the relatively polar hard segment blocks were shown to reside in high concentrations just below the side-chain enriched surface layer. Furthermore, DCA measurements demonstrated that the surface of the alkyl side-chain PEUs did not undergo significant rearrangement when placed into an aqueous environment, whereas the surface of a hard segment model polymer bearing C18 sidechains (PEU-C18-HS) did. Hydrogen bonding within the PEUs was examined using FTIR and was shown to be disrupted by the addition of side-chains; an effect dependent on the density but not on the length of the side-chains. Heteropolymer blends comprised of mixtures of high side-chain density and side-chain free PEUs were compared with homopolymers having the same overall side-chain concentration as the blends. Significantly more surface enrichment of side-chains was found in the heteropolymer blends whereas hydrogen bonding nearly the same as in the homopolymers. Adsorption of native and delipidized human serum albumin (HSA) from pure solution and blood plasma; the elutabilty of adsorbed HSA; and static platelet adhesion to plasma preadsorbed surfaces, were all examined on alkyl side-chain PEUs. Several polymers with high C18 side-chain densities displayed increased affinity for albumin, and reduced elutability. Among these, PEU-C18-HS demonstrated a significant reduction in platelet adhesion at low plasma pre-adsorption concentrations. However, competitive binary adsorption of fibrinogen in the presence of HSA demonstrated lower relative albumin affinity for PEU-C18-HS than other PEUs. The observed effects are thought to be mainly a result of increased surface hydrophobicity of the alkyl-side chain modified PEU, and not high specificity albumin binding.
Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity.
Jevprasesphant, Rachaneekorn; Penny, Jeffrey; Attwood, David; McKeown, Neil B; D'Emanuele, Antony
2003-10-01
To evaluate the cytotoxicity, permeation, and transport mechanisms of PAMAM dendrimers and surface-modified cationic PAMAM dendrimers using monolayers of the human colon adenocarcinoma cell line, Caco-2. Cytotoxicity was determined using the MTT assay. The effect of dendrimers on monolayer integrity was determined from measurements of transepithelial electrical resistance (TEER) and [14C]mannitol apparent permeability coefficient (Papp). The Papp of dendrimers through monolayers was measured in both the apical (A)-to-basolateral (B) and B --> A directions at 4 degrees C and 37 degrees C and also in the presence and absence of ethylenediamine tetraacetic acid (EDTA) and colchicine. The cytotoxicity and permeation of dendrimers increased with both concentration and generation. The cytotoxicity of cationic dendrimers (G2, G3, G4) was greater than that of anionic dendrimers (G2.5, G3.5) but was reduced by conjugation with lauroyl chloride: the least cytotoxic conjugates were those with six attached lauroyl chains. At 37 degrees C the Papp of cationic dendrimers was higher than that of anionic dendrimers and, in general, increased with the number of attached lipid chains. Cationic dendrimers decreased TEER and significantly increased the Papp of mannitol. Modified dendrimers also reduced TEER and caused a more marked increase in the Papp of mannitol. The Papp values of dendrimers and modified dendrimers were higher in the presence of EDTA, lower in the presence of colchicine, and lower at 4 degrees C than at 37 degrees C. The properties of dendrimers may be significantly modified by surface engineering. Conjugation of cationic PAMAM dendrimers with lauroyl chloride decreased their cytotoxicity and increased their permeation through Caco-2 cell monolayers. Both PAMAM dendrimers and lauroyl-PAMAM dendrimer conjugates can cross epithelial monolayers by paracellular and transcellular pathways.
MacDonald, Gordon A; Veneman, P Alexander; Placencia, Diogenes; Armstrong, Neal R
2012-11-27
We demonstrate mapping of electrical properties of heterojunctions of a molecular semiconductor (copper phthalocyanine, CuPc) and a transparent conducting oxide (indium-tin oxide, ITO), on 20-500 nm length scales, using a conductive-probe atomic force microscopy technique, scanning current spectroscopy (SCS). SCS maps are generated for CuPc/ITO heterojunctions as a function of ITO activation procedures and modification with variable chain length alkyl-phosphonic acids (PAs). We correlate differences in small length scale electrical properties with the performance of organic photovoltaic cells (OPVs) based on CuPc/C(60) heterojunctions, built on these same ITO substrates. SCS maps the "ohmicity" of ITO/CuPc heterojunctions, creating arrays of spatially resolved current-voltage (J-V) curves. Each J-V curve is fit with modified Mott-Gurney expressions, mapping a fitted exponent (γ), where deviations from γ = 2.0 suggest nonohmic behavior. ITO/CuPc/C(60)/BCP/Al OPVs built on nonactivated ITO show mainly nonohmic SCS maps and dark J-V curves with increased series resistance (R(S)), lowered fill-factors (FF), and diminished device performance, especially near the open-circuit voltage. Nearly optimal behavior is seen for OPVs built on oxygen-plasma-treated ITO contacts, which showed SCS maps comparable to heterojunctions of CuPc on clean Au. For ITO electrodes modified with PAs there is a strong correlation between PA chain length and the degree of ohmicity and uniformity of electrical response in ITO/CuPc heterojunctions. ITO electrodes modified with 6-8 carbon alkyl-PAs show uniform and nearly ohmic SCS maps, coupled with acceptable CuPc/C(60)OPV performance. ITO modified with C14 and C18 alkyl-PAs shows dramatic decreases in FF, increases in R(S), and greatly enhanced recombination losses.
Cankar, Katarina; Ravnikar, Maja; Zel, Jana; Gruden, Kristina; Toplak, Natasa
2005-01-01
Labeling of genetically modified organisms (GMOs) is now in place in many countries, including the European Union, in order to guarantee the consumer's choice between GM and non-GM products. Screening of samples is performed by polymerase chain reaction (PCR) amplification of regulatory sequences frequently introduced into genetically modified plants. Primers for the 35S promoter from Cauliflower mosaic virus (CaMV) are those most frequently used. In virus-infected plants or in samples contaminated with plant material carrying the virus, false-positive results can consequently occur. A system for real-time PCR using a TaqMan minor groove binder probe was designed that allows recognition of virus coat protein in the sample, thus allowing differentiation between transgenic and virus-infected samples. We measured the efficiency of PCR amplification, limits of detection and quantification, range of linearity, and repeatability of the assay in order to assess the applicability of the assay for routine analysis. The specificity of the detection system was tested on various virus isolates and plant species. All 8 CaMV isolates were successfully amplified using the designed system. No cross-reactivity was detected with DNA from 3 isolates of the closely related Carnation etched ring virus. Primers do not amplify plant DNA from available genetically modified maize and soybean lines or from different species of Brassicaceae or Solanaceae that are natural hosts for CaMV. We evaluated the assay for different food matrixes by spiking CaMV DNA into DNA from food samples and have successfully amplified CaMV from all samples. The assay was tested on rapeseed samples from routine GMO testing that were positive in the 35S screening assay, and the presence of the virus was confirmed.
Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing
2005-11-30
Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.
Thermodynamic and hydration effects for the incorporation of a cationic 3-aminopropyl chain into DNA
Soto, Ana Maria; Kankia, Besik I.; Dande, Prasad; Gold, Barry; Marky, Luis A.
2002-01-01
The introduction of cationic 5-(ω-aminoalkyl)-2′-deoxypyrimidines into duplex DNA has been shown to induce DNA bending. In order to understand the energetic and hydration contributions for the incorporation of a cationic side chain in DNA a combination of spectroscopy, calorimetry and density techniques were used. Specifically, the temperature unfolding and isothermal formation was studied for a pair of duplexes with sequence d(CGTAGUCG TGC)/d(GCACGACTACG), where U represents 2′-deoxyuridine (‘control’) or 5-(3-aminopropyl)-2′-deoxyuridine (‘modified’). Continuous variation experiments confirmed 1:1 stoichiometries for each duplex and the circular dichroism spectra show that both duplexes adopted the B conformation. UV and differential scanning calorimetry melting experiments reveal that each duplex unfolds in two-state transitions. In low salt buffer, the ‘modified’ duplex is more stable and unfolds with a lower endothermic heat and lower release of counterion and water. This electrostatic stabilization is entropy driven and disappears at higher salt concentrations. Complete thermodynamic profiles at 15°C show that the favorable formation of each duplex results from the compensation of a favorable exothermic heat with an unfavorable entropy contribution. However, the isothermal profiles yielded a differential enthalpy of 8.8 kcal/mol, which is 4.3 kcal/mol higher than the differential enthalpy observed in the unfolding profiles. This indicates that the presence of the aminopropyl chain induces an increase in base stacking interactions in the modified single strand and a decrease in base stacking interactions in the modified duplex. Furthermore, the formation of the ‘control’ duplex releases water while the ‘modified’ duplex takes up water. Relative to the control duplex, formation of the modified duplex at 15°C yielded a marginal differential ΔG° term, positive ΔΔHITC–Δ(TΔS) compensation, negative ΔΔV and a net release of counterions. The opposite signs of the differential enthalpy–entropy compensation and differential volume change terms show a net uptake of structural water around polar and non-polar groups. This indicates that incorporation of the aminopropyl chain induces a higher exposure of aromatic bases to the solvent, which may be consistent with a small and local bend in the ‘modified’ duplex. PMID:12136099
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullinax, R.L.; Gross, E.A.; Amberg, J.R.
1990-10-01
The authors have applied a molecular biology approach to the identification of human monoclonal antibodies. Human peripheral blood lymphocyte mRNA was converted to cDNA and a select subset was amplified by the polymerase chain reaction. These products, containing coding sequences for numerous immunoglobulin heavy- and {kappa} light-chain variable and constant region domains, were inserted into modified bacteriophase {lambda} expression vectors and introduced into Escherichia coli by infection to yield a combinatorial immunoexpression library. Clones with binding activity to tetanus toxoid were identified by filter hybridization with radiolabeled antigen and appeared at a frequency of 0.2{percent} in the library. These humanmore » antigen binding fragments, consisting of a heavy-chain fragment covalently linked to a light chain, displayed high affinity of binding to tetanus toxoid with equilibrium constants in the nanomolar range but did not cross-react with other proteins tested. They estimate that this human immunoexpression library contains 20,000 clones with high affinity and specificity to our chosen antigen.« less
Synthesis and antimalarial activity study of some new Mannich bases of 7-chloro-4-aminoquinoline.
Roy, Susanta; Chetia, Dipak; Rudrapal, Mithun; Prakash, Anil
2013-05-01
New derivatives of 7-chloro-4-aminoquinoline Mannich base were prepared by selectively modifying the aliphatic diethyl amino function of isoquine with different aliphatic/aromatic heterocyclic primary amino moieties at Mannich side chain. The synthesized compounds were characterized by their analytical and spectral data, and screened for in-vitro antimalarial activity against a chloroquine-sensitive 3D7 strain of Plasmodium falciparum. All the compounds showed in-vitro antimalarial activity at the tested dose; which, however, was considerably less than that of the standard reference drug, chloroquine. Among synthesized compounds, compounds with cyclohexyl (2f), methyl (2c) substitutions showed better activity than compounds substituted with n-octyl (2a), propyl (2b), 3-aminopropyl (2d) and furan-2- ylmethyl (2e) moieties at aminomethyl side chain. The results clearly demonstrate that the compound substituted with saturated cycloalkyl moiety (cyclohexyl) exhibited to some extent increased activity as compared to the compound containing heterocyclic moiety (furan-2-ylmethyl), and compounds with short chain alkyl substitutions (methyl, propyl) were found to be more active than that of compounds with long chain alkyl substitution (n-octyl).
Wei, Wei-Li; Chen, Qiushui; Li, Haifang; Lin, Jin-Ming
2011-01-01
Pyrene-modified dextrin (Py-Dex) was synthesized via the Schiff base reaction between reducing end of dextrins and 1-aminopyrene, and then self-assemblies of single-walled carbon nanotubes (SWNTs) were fabricated through the tunable tethering of pyrene to SWNTs by dextrin chains. The Py-Dex-SWNTs assemblies were found to be significantly water-soluble because of the synergistic effect of dextrin chains and pyrene moieties. Py-Dex and Py-Dex-SWNTs were adequately characterized by NMR, UV-vis, fluorescence spectroscopy, Raman spectroscopy, matrix-assisted laser desorption/ionization-time of flight mass spectroscopy, and transmission electron microscopy. The tethering effect of dextrin toward pyrene moieties was clearly revealed and was found to be tunable by adjusting the length of dextrin chains. The fluorescence of pyrene moieties was sufficiently quenched by SWNTs with the support of dextrin chains. Furthermore, the Py-Dex-SWNTs assemblies were used for chiral selective sensing by introducing cyclodextrins as chiral binding sites. The rapid chiral sensing was successfully tested for different enantiomers. PMID:21811502
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan-Ying; Zhao, Jun-Wei, E-mail: zhaojunwei@henu.edu.cn; Wei, Qi
A novel Cu–azido complex modified hexa-Cu{sup II} substituted sandwich-type phosphotungstate [Cu(en){sub 2}]([Cu{sub 2}(en){sub 2}(μ-1,1-N{sub 3}){sub 2}(H{sub 2}O)]{sub 2}[Cu{sub 6}(en){sub 2}(H{sub 2}O){sub 2}(B-α-PW{sub 9}O{sub 34}){sub 2}])·6H{sub 2}O (1) (en=ethylene-diamine) has been prepared under hydrothermal conditions and structurally characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. 1 displays a beautiful 1-D chain architecture constructed from sandwich-type [Cu{sub 2}(en){sub 2}(μ-1,1-N{sub 3}){sub 2}(H{sub 2}O)]{sub 2}[Cu{sub 6}(en){sub 2}(H{sub 2}O){sub 2}(B-α-PW{sub 9}O{sub 34}){sub 2}]{sup 2−} units and [Cu(en){sub 2}]{sup 2+} linkers. To our knowledge, 1 represents the first hexa-Cu{sup II} sandwiched phosphotungstate with supporting Cu–azido complexes. - Graphical abstract: Themore » first hexa-Cu{sup II} sandwiched phosphotungstate with supporting Cu–azido complexes has been prepared and characterized. Display Omitted - Highlights: • Hexa-copper-substituted phosphotungstate. • Cu–azido complexes modified hexa-Cu{sup II} substituted sandwich-type polyoxometalate. • 1-D chain architecture built by hexa-copper-substituted polyoxotungstate units.« less
Inhibition of quorum sensing in gram-negative bacteria by alkylamine-modified cyclodextrins.
Morohoshi, Tomohiro; Tokita, Kazuho; Ito, Satoshi; Saito, Yuki; Maeda, Saki; Kato, Norihiro; Ikeda, Tsukasa
2013-08-01
N-Acylhomoserine lactones (AHLs) are used as quorum-sensing (QS) signals by gram-negative bacteria. We have reported that the cyclic oligosaccharides known as cyclodextrins (CDs) form inclusion complexes with AHLs and disrupt QS signaling. In this study, a series of CD derivatives were designed and synthesized to improve the QS inhibitory activity over that of native CDs. The production of the red pigment prodigiosin by Serratia marcescens AS-1, which is regulated by AHL-mediated QS, was drastically decreased by adding 10 mg/ml 6-alkylacylamino-β-CD with an alkyl chain ranging from C7 to C12. An improvement in the QS inhibitory activity was also observed for 6-alkylamino-α- or γ-CDs and 2-alkylamino-CDs. Furthermore, 6,6'-dioctylamino-β-CD, which contains two octylamino groups, exhibited greater inhibitory activity than 6-monooctylamino-β-CD. The synthesized CD derivatives also had strong inhibitory effects on QS by other gram-negative bacteria, including Chromobacterium violaceum and Pseudomonas aeruginosa. The synthetic alkylamine-modified CD derivatives had higher equilibrium binding constants for binding with AHL than the native CDs did, consistent with the improved QS inhibition. ¹H NMR measurements suggested that the alkyl side chains of 6-alkylacylamino-β-CDs with alkyl chains up to 6 carbon atoms long could form self-inclusion complexes with the CD unit. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Das, Amaresh; Deng, Ming Y; Babiuk, Shawn; McIntosh, Michael T
2017-05-01
Capripoxviruses (CaPVs), consisting of Sheeppox virus (SPV), Goatpox virus (GPV), and Lumpy skin disease virus (LSDV) species, cause economically significant diseases in sheep, goats, and cattle, respectively. Quantitative real-time polymerase chain reaction (qPCR) assays are routinely used for rapid detection of CaPVs in surveillance and outbreak management programs. We further modified and optimized 2 previously published CaPV qPCR assays, referred to as the Balinsky and Bowden assays, by changing commercial PCR reagents used in the tests. The modified assays displayed 100% analytical specificity and showed no apparent changes in analytical sensitivities for detection of CaPVs compared with the original assays. Diagnostic sensitivities, assessed using 50 clinical reference samples from experimentally infected sheep, goats, and cattle, improved from 82% to 92% for the modified Balinsky assay and from 58% to 82% for the modified Bowden assay. The modified qPCR assays were multiplexed for detection of beta-actin as an indicator for potential false-negative results. The multiplex modified qPCR assays exhibited the same diagnostic sensitivities as the singleplex assays suggesting their utility in the detection of CaPVs.
Yu, Lin-Ling; Tao, Shi-Peng; Dong, Xiao-Yan; Sun, Yan
2013-08-30
To explore the details of protein uptake to polymer-grafted ion exchangers, Sepharose FF was modified with poly(ethylenimine) (PEI) to prepare anion exchanger of 10 different ionic capacities (ICs, 100-1220mmol/L). Adsorption equilibria and kinetics of bovine serum albumin (BSA) were then studied. It is found that ionic capacity, i.e., the coupling density of PEI, had significant effect on both adsorption capacity (qm) and effective protein diffusivity (De). With increasing ionic capacity, the qm value increased rapidly at IC<260mmol/L and then increased slowly till reaching a plateau at IC=600mmol/L. In the IC range of 100-600mmol/L, however, the De values kept at a low level (De/D0<0.07); it first decreased from 0.05±0.01 at IC=100mmol/L to 0.01±0.01 at IC=260mmol/L and then increased to 0.06±0.01 at IC=600mmol/L. Thereafter, sharp increases of the qm and De values [36% (from 201 to 273mg/mL) and 670% (from 0.06±0.01 to 0.49±0.04), respectively] were observed in the narrow range of IC from 600 to 740mmol/L. Finally, at IC>740mmol/L, the qm value decreased significantly while the De value increased moderately with increasing the IC. The results indicate that PEI chains played an important role in protein adsorption and transport. In brief, there was a critical IC (cIC) or PEI chain density, above which protein adsorption and transport behaviors changed drastically. The cIC was identified to be about 600mmol/L. Estimation of PEI grafting-layer thickness suggests that PEI chains formed an extended three-dimensional grafting-layer at IC>cIC, which provided high flexibility as well as accessibility of the chains for protein binding. Therefore, at IC>cIC, the adjacent PEI chains became close and flexible enough, leading to facilitated transport of adsorbed protein molecules by the interactions of neighboring chains mediated by the bound molecules. It is regarded as "chain delivery" effect. At the same time, improved accessibility of binding sites led the significant increase of binding capacity. The decrease of qm value at IC>740mmol/L is considered due to the decrease of effective porosity. The research has thus provided new insight into protein adsorption and transport in polymer-grafted ion-exchange media. Copyright © 2013 Elsevier B.V. All rights reserved.
The Unknowns and Possible Implications of Mandatory Labeling.
McFadden, Brandon R
2017-01-01
The National Bioengineered Food Disclosure Standard requires a mandatory label for genetically modified (GM) food. Currently, some aspects of the bill are unknown, including what constitutes a food to be considered GM. The costs associated with this legislation will depend on how actors in the food value chain respond. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Goldenberg, Edward E.; DeNinno, John
1977-01-01
Self-control techniques were taught to an obese 27-year-old black male to help modify overeating behavior. Self-reinforcement was utilized in addition to systematic isolation of chained eating behavior from associated stimulus situations. A physical exercise program was employed in conjunction with the self-control techniques. (Author)
Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu
2016-05-01
To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process.
NASA Astrophysics Data System (ADS)
Anjum, Rana S.; Bray, Sian M.; Blackwood, John K.; Kilkenny, Mairi L.; Coelho, Matthew A.; Foster, Benjamin M.; Li, Shurong; Howard, Julie A.; Pellegrini, Luca; Albers, Sonja-Verena; Deery, Michael J.; Robinson, Nicholas P.
2015-09-01
In eukaryotes, the covalent attachment of ubiquitin chains directs substrates to the proteasome for degradation. Recently, ubiquitin-like modifications have also been described in the archaeal domain of life. It has subsequently been hypothesized that ubiquitin-like proteasomal degradation might also operate in these microbes, since all archaeal species utilize homologues of the eukaryotic proteasome. Here we perform a structural and biochemical analysis of a ubiquitin-like modification pathway in the archaeon Sulfolobus acidocaldarius. We reveal that this modifier is homologous to the eukaryotic ubiquitin-related modifier Urm1, considered to be a close evolutionary relative of the progenitor of all ubiquitin-like proteins. Furthermore we demonstrate that urmylated substrates are recognized and processed by the archaeal proteasome, by virtue of a direct interaction with the modifier. Thus, the regulation of protein stability by Urm1 and the proteasome in archaea is likely representative of an ancient pathway from which eukaryotic ubiquitin-mediated proteolysis has evolved.
Removing the regional level from the Niger vaccine supply chain.
Assi, Tina-Marie; Brown, Shawn T; Kone, Souleymane; Norman, Bryan A; Djibo, Ali; Connor, Diana L; Wateska, Angela R; Rajgopal, Jayant; Slayton, Rachel B; Lee, Bruce Y
2013-06-10
Since many of the world's vaccine supply chains contain multiple levels, the question remains of whether removing a level could bring efficiencies. We utilized HERMES to generate a detailed discrete-event simulation model of Niger's vaccine supply chain and compared the current four-tier (central, regional, district, and integrated health center levels) with a modified three-tier structure (removing the regional level). Different scenarios explored various accompanying shipping policies and frequencies. Removing the regional level and implementing a collection-based shipping policy from the district stores increases vaccine availability from a mean of 70-100% when districts could collect vaccines at least weekly. Alternatively, implementing a delivery-based shipping policy from the central store monthly in three-route and eight-route scenarios only increases vaccine availability to 87%. Restricting central-to district vaccine shipments to a quarterly schedule for three-route and eight-route scenarios reduces vaccine availability to 49%. The collection-based shipping policy from district stores reduces supply chain logistics cost per dose administered from US$0.14 at baseline to US$0.13 after removing the regional level. Removing the regional level from Niger's vaccine supply chain can substantially improve vaccine availability as long as certain concomitant adjustments to shipping policies and frequencies are implemented. Copyright © 2013 Elsevier Ltd. All rights reserved.
Removing the Regional Level from the Niger Vaccine Supply Chain
Assi, Tina-Marie; Brown, Shawn T.; Kone, Souleymane; Norman, Bryan A.; Djibo, Ali; Connor, Diana L.; Wateska, Angela R.; Rajgopal, Jayant; Slayton, Rachel B.; Lee, Bruce Y.
2013-01-01
Objective Since many of the world’s vaccine supply chains contain multiple levels, the question remains of whether removing a level could bring efficiencies. Methods We utilized HERMES to generate a detailed discrete-event simulation model of Niger’s vaccine supply chain and compare the current four-tier (central, regional, district and integrated health center levels) with a modified three-tier structure (removing the regional level). Different scenarios explored various accompanying shipping policies and frequencies. Findings Removing the regional level and implementing a collection-based shipping policy from the district stores increases vaccine availability from a mean of 70% to 100% when districts could collect vaccines at least weekly. Alternatively, implementing a delivery-based shipping policy from the central store monthly in three-route and eight-route scenarios only increases vaccine availability to 87%. Restricting central-to district vaccine shipments to a quarterly schedule for three-route and eight-route scenarios reduces vaccine availability to 49%. The collection-based shipping policy from district stores reduces supply chain logistics cost per dose administered from US$0.14 at baseline to US$0.13 after removing the regional level. Conclusion Removing the regional level from Niger’s vaccine supply chain can substantially improve vaccine availability as long as certain concomitant adjustments to shipping policies and frequencies are implemented. PMID:23602666
[Detection of recombinant-DNA in foods from stacked genetically modified plants].
Sorokina, E Iu; Chernyshova, O N
2012-01-01
A quantitative real-time multiplex polymerase chain reaction method was applied to the detection and quantification of MON863 and MON810 in stacked genetically modified maize MON 810xMON 863. The limit of detection was approximately 0,1%. The accuracy of the quantification, measured as bias from the accepted value and the relative repeatability standard deviation, which measures the intra-laboratory variability, were within 25% at each GM-level. A method verification has demonstrated that the MON 863 and the MON810 methods can be equally applied in quantification of the respective events in stacked MON810xMON 863.
Sochacka, E
2001-01-01
In order to efficiently assess the chemical stability of modified nucleosides to the reagents and conditions of automated oligonucleotide synthesis, we designed, developed and tested a scheme in which the modified nucleoside, directly attached to a solid support, is exposed to the cyclic chemistry of the instrument. Stability of 2-thiouridine against different oxidizers was investigated. Tertbutyl hydroperoxide (1 M) in anhydrous acetonitrile was a more effective oxidizer for the incorporation of 2-thiouridine into oligonucleotide chains than the same oxidizer in methylene chloride. Carbon tetrachloride/water in the presence of a basic catalyst was superior in maintaining the thiocarbonyl function, but its utility for RNA synthesis has yet to be fully tested, whereas 2-phenylsulfonyloxaziridine was a very efficient reagent for oxidative desulfurization of 2-thiouridine.
Application of molecular simulation to investigate chrome(III)-crosslinked collagen problems
NASA Astrophysics Data System (ADS)
Ding, Yun-Qiao; Chen, Cheng-Lung; Gu, Qi-Rui; Liao, Jun-Min; Chuang, Po-Hsiang
2014-04-01
Molecular dynamics simulation with a modified CHARMM (Chemistry at Harvard Macromolecular Mechanics) force field was carried out to investigate the properties of chrome-tanned collagen in comparison with chrome-free collagen under hydrated and dehydrated conditions. An attempt has been made to explain the microcosmic origins of the various properties of the chromium(III)-crosslinked collagen. The present simulation describes the clear crosslinking topology of polychromiums to peptide chains, identifies the linking site and the capacity of the linkage, explains why the efficiency is not 100% in a practical tanning process and provides a new viewpoint on the crosslinking of the polychromium with the side chains of the collagen.
NASA Astrophysics Data System (ADS)
Purwanto, Agung; Yusmaniar, Ferdiani, Fatmawati; Damayanti, Rachma
2017-03-01
Silica gel modified APTS was synthesized from silica gel which was obtained from corn cobs via sol-gel process. Silica gel was synthesized from corn cobs and then chemically modified with silane coupling agent which has an amine group (NH2). This process resulting modified silica gel 3-aminopropyltriethoxysilane (APTS). Characterization of silica gel modified APTS by SEM-EDX showed that the size of the particles of silica gel modified APTS was 20µm with mass percentage of individual elements were nitrogen (N) 15.56%, silicon (Si) 50.69% and oxygen (O) 33.75%. In addition, silica gel modified APTS also showed absorption bands of functional groups silanol (Si-OH), siloxane (Si-O-Si), and an aliphatic chain (-CH2-), as well as amine (NH2) from FTIR spectra. Based on the characterization of XRD, silica gel 2θ of 21.094° and 21.32° respectively. It indicated that both material were amorphous. Determination of optimum pH and contact time on adsorption of silica gel 3-aminopropyltriethoxysilane (APTS) against Cu(II). The optimum pH and contact time was measured by using AAS. Optimum pH of adsorption silica gel modified APTS against metal Cu(II) could be obtained at pH 6 while optimum contact time was at 30 minutes, with the process of adsorption metal Cu(II) occured based on the model Freundlich isotherm.
Halter, Mathew C; Zahn, James A
2017-02-01
White biotechnology has made a positive impact on the chemical industry by providing safer, more efficient chemical manufacturing processes that have reduced the use of toxic chemicals, harsh reaction conditions, and expensive metal catalysts, which has improved alignment with the principles of Green Chemistry. The genetically-modified (GM) biocatalysts that are utilized in these processes are typically separated from high-value products and then recycled, or eliminated. Elimination routes include disposal in sanitary landfills, incineration, use as a fuel, animal feed, or reuse as an agricultural soil amendment or other value-added products. Elimination routes that have the potential to impact the food chain or environment have been more heavily scrutinized for the fate and persistence of biological products. In this study, we developed and optimized a method for monitoring the degradation of strain-specific DNA markers from a genetically-modified organism (GMO) used for the commercial production of 1,3-propanediol. Laboratory and field tests showed that a marker for heterologous DNA in the GM organism was no longer detectable by end-point polymerase chain reaction (PCR) after 14 days. The half-life of heterologous DNA was increased by 17% (from 42.4 to 49.7 h) after sterilization of the soil from a field plot, which indicated that abiotic factors were important in degradation of DNA under field conditions. There was no evidence for horizontal transfer of DNA target sequences from the GMO to viable organisms present in the soil.
Hernández, Marta; Rodríguez-Lázaro, David; Esteve, Teresa; Prat, Salomé; Pla, Maria
2003-12-15
Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.
Polymers modified with double-tailed fluorous compounds for efficient DNA and siRNA delivery.
He, Bingwei; Wang, Yitong; Shao, Naimin; Chang, Hong; Cheng, Yiyun
2015-08-01
Cationic polymers are widely used as gene carriers, however, these polymers are usually associated with low transfection efficacy and non-negligible toxicity. Fluorination on polymers significantly improves their performances in gene delivery, but a high density of fluorous chains must be conjugated on a single polymer. Here we present a new strategy to construct fluorinated polymers with minimal fluorous chains for efficient DNA and siRNA delivery. A double-tailed fluorous compound 2-chloro-4,6-bis[(perfluorohexyl)propyloxy]-1,3,5-triazine (CBT) was conjugated on dendrimers of different generations and low molecular weight polyethylenimine via a facile synthesis. The yielding products with average numbers of 1-2 conjugated CBT moieties showed much improved EGFP and luciferase transfection efficacy compared to unmodified polymers. In addition, these polymers show high siRNA delivery efficacy on different cell lines. Among the synthesized polymers, generation 1 (G1) dendrimer modified with an average number of 1.9 CBT moieties (G1-CBT1.9) shows the highest efficacy when delivering both DNA and siRNA and its efficacy approaches that of Lipofectamine 2000. G1-CBT1.9 also shows efficient gene silencing in vivo. All of the CBT-modified polymers exhibit minimal toxicity on the cells at their optimal transfection conditions. This study provides a new strategy to design efficient fluorous polymers for DNA and siRNA delivery. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Liu, Yun-Jun; Nunes-Nesi, Adriano; Wallström, Sabá V; Lager, Ida; Michalecka, Agnieszka M; Norberg, Fredrik E B; Widell, Susanne; Fredlund, Kenneth M; Fernie, Alisdair R; Rasmusson, Allan G
2009-07-01
Cytosolic NADPH can be directly oxidized by a calcium-dependent NADPH dehydrogenase, NDB1, present in the plant mitochondrial electron transport chain. However, little is known regarding the impact of modified cytosolic NADPH reduction levels on growth and metabolism. Nicotiana sylvestris plants overexpressing potato (Solanum tuberosum) NDB1 displayed early bolting, whereas sense suppression of the same gene led to delayed bolting, with consequential changes in flowering time. The phenotype was dependent on light irradiance but not linked to any change in biomass accumulation. Whereas the leaf NADPH/NADP(+) ratio was unaffected, the stem NADPH/NADP(+) ratio was altered following the genetic modification and strongly correlated with the bolting phenotype. Metabolic profiling of the stem showed that the NADP(H) change affected relatively few, albeit central, metabolites, including 2-oxoglutarate, glutamate, ascorbate, sugars, and hexose-phosphates. Consistent with the phenotype, the modified NDB1 level also affected the expression of putative floral meristem identity genes of the SQUAMOSA and LEAFY types. Further evidence for involvement of the NADPH redox in stem development was seen in the distinct decrease in the stem apex NADPH/NADP(+) ratio during bolting. Additionally, the potato NDB1 protein was specifically detected in mitochondria, and a survey of its abundance in major organs revealed that the highest levels are found in green stems. These results thus strongly suggest that NDB1 in the mitochondrial electron transport chain can, by modifying cell redox levels, specifically affect developmental processes.
Changing pollutants to green biogases for the crop food cycle chain.
Zong, B Y; Xu, F J; Zong, B D; Zhang, Z G
2012-09-01
When fossil fuels on the Earth are used up, which kind of green energy can be used to replace them? Do every bioenergy generation or crop food chain results in environmental pollution? These questions are major concerns in a world facing restricted supplies of energy and food as well as environmental pollutions. To alleviate these issues, option biogases are explored in this paper. Two types of biogas generators were used for modifying the traditional crop food chain [viz. from atmospheric CO(2) photosynthesis to crops, crop stem/husk biowastes (burnt in cropland or as home fuels), to livestock droppings (dumping away), pork and people foods, then to CO(2)], via turning the biowaste pollutants into green bioenergies. By analyzing the traditional food chain via observation method, the drawbacks of by-product biowastes were revealed. Also, the whole cycle chain was further analyzed to assess its "greenness," using experimental data and other information, such as the material balance (e.g., the absorbed CO(2), investment versus generated food, energy, and wastes). The data show that by using the two types of biogas generators, clean renewable bioenergy, crop food, and livestock meat could be continuously produced without creating any waste to the world. The modification chain largely reduced CO(2) greenhouse gas and had a low-cost investment. The raw materials for the gas generators were only the wastes of crop stems and livestock droppings. Thus, the recommended CO(2) bioenergy cycle chain via the modification also greatly solved the environmental biowaste pollutions in the world. The described two type biogases effectively addressed the issues on energy, food, and environmental pollution. The green renewable bioenergy from the food cycle chain may be one of suitable alternatives to fossil and tree fuels for agricultural countries.
Ortiz, Andrés
2017-01-01
The National Strategy for Global Supply Chain Security published in 2012 by the White House identifies two primary goals for strengthening global supply chains: first, to promote the efficient and secure movement of goods, and second to foster a resilient supply chain. The Internet of Things (IoT), and in particular Radio Frequency Identification (RFID) technology, can be used to realize these goals. For product identification, tracking and real-time awareness, RFID tags are attached to goods. As tagged goods move along the supply chain from the suppliers to the manufacturers, and then on to the retailers until eventually they reach the customers, two major security challenges can be identified: (I) to protect the shipment of goods that are controlled by potentially untrusted carriers; and (II) to secure the transfer of ownership at each stage of the chain. For the former, grouping proofs in which the tags of the scanned goods generate a proof of “simulatenous” presence can be employed, while for the latter, ownership transfer protocols (OTP) are used. This paper describes enhanced security solutions for both challenges. We first extend earlier work on grouping proofs and group codes to capture resilient group scanning with untrusted readers; then, we describe a modified version of a recently published OTP based on channels with positive secrecy capacity adapted to be implemented on common RFID systems in the supply chain. The proposed solutions take into account the limitations of low cost tags employed in the supply chain, which are only required to generate pseudorandom numbers and compute one-way hash functions. PMID:28677637
Peano, C; Lesignoli, F; Gulli, M; Corradini, R; Samson, M C; Marchelli, R; Marmiroli, N
2005-09-15
In the present study a peptide nucleic acid (PNA)-mediated polymerase chain reaction (PCR) clamping method was developed and applied to the detection of genetically modified organisms (GMO), to test PCR products for band identity and to obtain a semiquantitative evaluation of GMO content. The minimal concentration of PNA necessary to block the PCR was determined by comparing PCRs containing a constant amount of DNA in the presence of increasing concentration of target-specific PNA. The lowest PNA concentration at which specific inhibition took place, by the inhibition of primer extension and/or steric hindrance, was the most efficient condition. Optimization of PCR clamping by PNA was observed by testing five different PNAs with a minimum of 13 bp to a maximum of 15 bp, designed on the target sequence of Roundup Ready soybean. The results obtained on the DNA extracted from Roundup Ready soybean standard flour were verified also on DNA extracted from standard flours of maize GA21, Bt176, Bt11, and MON810. A correlation between the PNA concentration necessary for inducing PCR clamping and the percentage of the GMO target sequence in the sample was found.
Activation of the Slx5–Slx8 Ubiquitin Ligase by Poly-small Ubiquitin-like Modifier Conjugates*S⃞
Mullen, Janet R.; Brill, Steven J.
2008-01-01
Protein sumoylation is a regulated process that is important for the health of human and yeast cells. In budding yeast, a subset of sumoylated proteins is targeted for ubiquitination by a conserved heterodimeric ubiquitin (Ub) ligase, Slx5–Slx8, which is needed to suppress the accumulation of high molecular weight small ubiquitin-like modifier (SUMO) conjugates. Structure-function analysis indicates that the Slx5–Slx8 complex contains multiple SUMO-binding domains that are collectively required for in vivo function. To determine the specificity of Slx5–Slx8, we assayed its Ub ligase activity using sumoylated Siz2 as an in vitro substrate. In contrast to unsumoylated or multisumoylated Siz2, substrates containing poly-SUMO conjugates were efficiently ubiquitinated by Slx5–Slx8. Although Siz2 itself was ubiquitinated, the bulk of the Ub was conjugated to SUMO residues. Slx5–Slx8 primarily mono-ubiquitinated the N-terminal SUMO moiety of the chain. These data indicate that the Slx5–Slx8 Ub ligase is stimulated by poly-SUMO conjugates and that it can ubiquitinate a poly-SUMO chain. PMID:18499666
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duranty, Edward R.; Baschnagel, Jörg; Dadmun, Mark
Copolymers are commonly used as interface modifiers that allow for the compatibilization of polymer components in a blend. For copolymers to function as a compatibilizer, they must diffuse through the matrix of the blend to the interface between the two blend components. The diffusivity of a copolymer in a blend matrix therefore becomes important in determining good candidates for use as compatibilizers. In this paper, coarse-grained Monte Carlo simulations using the bond fluctuation model modified with an overlap penalty have been developed to study the diffusive behavior of PS/PMMA random copolymers in a PMMA homopolymer blend. The simulations vary themore » connectivity between different monomers, the thermodynamic interactions between the monomers which manifest within a chain, and between copolymer and homopolymer matrix and define the monomer friction coefficient of each component independently, allowing for the determination of the combined effect of these parameters on copolymer chain diffusion. Finally, the results of this work indicate that PS-r-PMMA copolymer diffusion is not linearly dependent on the copolymer composition on a logarithmic scale, but its diffusion is a balance of the kinetics governed by the dominant motion of the faster styrene monomers and thermodynamics, which are governed by the concentration of styrene monomer within a given monomer’s local volume.« less
Li, Xiaolei; Fei, Teng; Wang, Yong; Zhao, Yakun; Pan, Yutian; Li, Dan
2018-04-18
A GtfB enzyme 4,6-α-glucanotransferase from Streptococcus thermophilus lacking 761 N-terminal amino acids was heterologously expressed in Escherichia coli. Purified S. thermophilus GtfB showed transglycosylation activities toward starch, resulting in branch points of (α1→6)-glycosidic linkages plus linear chains of (α1→4)-glycosidic linkages. After wheat starch was modified at a rate of 0.1 g/mL by 1-4 U/g starch GtfB at pH 6.0 and 40 °C for 1 h, the weight-averaged molecular weight decreased from 1.70 × 10 7 g/mol to 1.21 × 10 6 to 3.41 × 10 6 g/mol, the amylose content decreased from 22.07 to 16.34-17.11%, and that of amylopectin long-branch chains decreased from 26.4 to 10.25-15.64% ( P < 0.05). After the GtfB-modified wheat starches were gelatinized and stored at 4 °C for 1-2 weeks, their endothermic enthalpies were significantly lower than that of the control sample ( P < 0.05), indicating low retrogradation rates.
Modified ZIF-8 mixed matrix membrane for CO2/CH4 separation
NASA Astrophysics Data System (ADS)
Nordin, Nik Abdul Hadi Md; Ismail, Ahmad Fauzi; Misdan, Nurasyikin; Nazri, Noor Aina Mohd
2017-10-01
Tunability of metal-organic frameworks (MOFs) properties enables them to be tailored for specific applications. In this study, zeolitic imidazole framework 8 (ZIF-8), sub-class of MOF, underwent pre-synthesis and post-synthesis modifications. The pre-synthesis modification using GO (ZIF-8/GO) shows slight decrease in textural properties, while the post-synthesis modification using amine solution (ZIF-8/NH2) resulted in superior BET surface area and pore volume. Mixed matrix membranes (MMMs) derived from polysulfone (PSf) and the modified ZIF-8s were then prepared via dry/wet phase inversion. The polymer chain flexibility of the resulted MMMs shows rigidification, where ZIF-8/NH2 as filler resulting higher rigidification compared to ZIF-8/GO. The MMMs were further subjected to pure CO2 and CH4 gas permeation experiments. The PSf/ZIF-8/NH2 shows superior CO2/CH4 selectivity (88% increased) while sacrificing CO2 permeance due to combination of severe polymer chain rigidification and the presence of CO2-philic group, amine. Whereas, the PSf/ZIF-8/GO possess 64% increase in CO2 permeance without notable changes in CO2/CH4 selectivity.
Tucci, Sara; Primassin, Sonja; Ter Veld, Frank; Spiekerkoetter, Ute
2010-09-01
A medium-chain-triglyceride (MCT)-based diet is mainstay of treatment in very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD), a long-chain fatty acid beta-oxidation defect. Beneficial effects have been reported with an MCT-bolus prior to exercise. Little is known about the impact of a long-term MCT diet on hepatic lipid metabolism. Here we investigate the effects of MCT-supplementation on liver and blood lipids in the murine model of VLCADD. Wild-type (WT) and VLCAD-knock-out (KO) mice were fed (1) a long-chain triglyceride (LCT)-diet over 5weeks, (2) an MCT diet over 5 weeks and (3) an LCT diet plus MCT-bolus. Blood and liver lipid content were determined. Expression of genes regulating lipogenesis was analyzed by RT-PCR. Under the LCT diet, VLCAD-KO mice accumulated significantly higher blood cholesterol concentrations compared to WT mice. The MCT-diet induced severe hepatic steatosis, significantly higher serum free fatty acids and impaired hepatic lipid mobilization in VLCAD-KO mice. Expression at mRNA level of hepatic lipogenic genes was up-regulated. The long-term MCT diet stimulates lipogenesis and impairs hepatic lipid metabolism in VLCAD-KO mice. These results suggest a critical reconsideration of a long-term MCT-modified diet in human VLCADD. In contrast, MCT in situations of increased energy demand appears to be a safer treatment alternative.
Ogawa, Hiroyasu; Hatano, Sonoko; Sugiura, Nobuo; Nagai, Naoko; Sato, Takashi; Shimizu, Katsuji; Kimata, Koji; Narimatsu, Hisashi; Watanabe, Hideto
2012-01-01
Chondroitin sulfate (CS) is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1)/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2)/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2(-/-) mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2(-/-) chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.
On the mobility of iron particles embedded in elastomeric silicone matrix
NASA Astrophysics Data System (ADS)
Rabindranath, R.; Böse, H.
2013-02-01
In this contribution the rheological and magnetorheological properties of different polydimethylsiloxane (PDMS) based magnetorheological elastomers (MRE) are presented and discussed. In order to investigate the mobility of the iron particles with respect to the rheological characteristics, the iron particles were silanized with vinyltrimethoxysilane to enable a reaction between the modified particle and the cross-linking agent of the silicone elastomer. In addition, the vinyl-functionalized particles were further modified by the coupling of the superficial vinyl groups with a long-chain hydride terminated PDMS, which enables a reaction pathway with the vinyl terminated PDMS. On the other hand, the iron particles were treated with surfactants such as fatty acids, calcium and aluminum soaps, respectively, prior to vulcanization in order to increase the mobility of the iron particles in the elastomeric matrix. It was found, that both, the modification with the long-chain hydride terminated PDMS as well as the treatment with surfactants lead to an increase of the storage modulus G', the loss modulus G" and the loss factor tan δ in the magnetic field. It is concluded that both modifications, the coupling with long-chain hydride terminated PDMS as well as the treatment with surfactants, provide a greater mobility of the iron particles and hence a greater friction represented by the increase of the loss factor tan δ. Consequently it is assumed that untreated iron particles are less mobile in the rubber matrix due to covalent bonding with the silicone components, most likely due to the reaction of the hydroxyl groups on the metal surface with the silane groups of the cross-linking agent.
NASA Astrophysics Data System (ADS)
Pérez Urquiza, M.; Acatzi Silva, A. I.
2014-02-01
Three certified reference materials produced from powdered seeds to measure the copy number ratio sequences of p35S/hmgA in maize containing MON 810 event, p35S/Le1 in soybeans containing GTS 40-3-2 event and DREB1A/acc1 in wheat were produced according to the ISO Guides 34 and 35. In this paper, we report digital polymerase chain reaction (dPCR) protocols, performance parameters and results of copy number ratio content of genetically modified organisms (GMOs) in these materials using two new dPCR systems to detect and quantify molecular deoxyribonucleic acid: the BioMark® (Fluidigm) and the OpenArray® (Life Technologies) systems. These technologies were implemented at the National Institute of Metrology in Mexico (CENAM) and in the Reference Center for GMO Detection from the Ministry of Agriculture (CNRDOGM), respectively. The main advantage of this technique against the more-used quantitative polymerase chain reaction (qPCR) is that it generates an absolute number of target molecules in the sample, without reference to standards or an endogenous control, which is very useful when not much information is available for new developments or there are no standard reference materials in the market as in the wheat case presented, or when it was not possible to test the purity of seeds as in the maize case presented here. Both systems reported enhanced productivity, increased reliability and reduced instrument footprint. In this paper, the performance parameters and uncertainty of measurement obtained with both systems are presented and compared.
Hydrophobically modified chitosan: a bio-based material for antimicrobial active film.
Inta, Orathai; Yoksan, Rangrong; Limtrakul, Jumras
2014-09-01
The objective of the present research was to improve the hydrophobicity of chitosan, while retaining its antibacterial activity, through the grafting of dodecenyl succinyl chains onto phthaloyl chitosan, mainly at the C-6 position. Dodecenyl succinylated phthaloyl chitosan (DS-g-PHCTS) was synthesized via phthaloylation-dodecenyl succinylation-hydrazinolysis. The obtained derivatives were characterized by FTIR, (1)H NMR and XRD. Hydrazinolysis time was found to be a key factor in controlling the substitution of dodecenyl succinyl chains and phthalimido groups of the final product. DS-g-PHCTS - with a grafting degree of dodecenyl succinyl chains and a substitution degree of phthalimido groups of 0.73 and 0.39, respectively - exhibited an anhydrous crystal structure and the same solubility behavior as native chitosan. The introduction of hydrophobic alkyl chains provided DS-g-PHCTS with enhanced antibacterial activity against Gram-positive bacteria. In addition, DS-g-PHCTS film showed more effective bacterial growth inhibition and better water vapor barrier property under neutral pH condition than chitosan film. The results suggested that DS-g-PHCTS film could be potentially used as antibacterial active film. Copyright © 2014 Elsevier B.V. All rights reserved.
Direct observation of single flexible polymers using single stranded DNA†
Brockman, Christopher; Kim, Sun Ju
2012-01-01
Over the last 15 years, double stranded DNA (dsDNA) has been used as a model polymeric system for nearly all single polymer dynamics studies. However, dsDNA is a semiflexible polymer with markedly different molecular properties compared to flexible chains, including synthetic organic polymers. In this work, we report a new system for single polymer studies of flexible chains based on single stranded DNA (ssDNA). We developed a method to synthesize ssDNA for fluorescence microscopy based on rolling circle replication, which generates long strands (>65 kb) of ssDNA containing “designer” sequences, thereby preventing intramolecular base pair interactions. Polymers are synthesized to contain amine-modified bases randomly distributed along the backbone, which enables uniform labelling of polymer chains with a fluorescent dye to facilitate fluorescence microscopy and imaging. Using this approach, we synthesized ssDNA chains with long contour lengths (>30 μm) and relatively low dye loading ratios (~1 dye per 100 bases). In addition, we used epifluorescence microscopy to image single ssDNA polymer molecules stretching in flow in a microfluidic device. Overall, we anticipate that ssDNA will serve as a useful model system to probe the dynamics of polymeric materials at the molecular level. PMID:22956981
Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field.
Carmelo, J M P; Sacramento, P D; Machado, J D P; Campbell, D K
2015-10-14
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the 'pseudofermion dynamical theory' (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζ(τ)(k) controlling the singularities for both the longitudinal (τ = l) and transverse (τ = t) dynamical structure factors for the whole momentum range k ∈ ]0,π[, in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.
Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field
NASA Astrophysics Data System (ADS)
Carmelo, J. M. P.; Sacramento, P. D.; Machado, J. D. P.; Campbell, D. K.
2015-10-01
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents {{\\zeta}τ}(k) controlling the singularities for both the longitudinal ≤ft(τ =l\\right) and transverse ≤ft(τ =t\\right) dynamical structure factors for the whole momentum range k\\in ]0,π[ , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.
NASA Astrophysics Data System (ADS)
Rathgeber, S.; Kuehnlenz, F.; Hoppe, H.; Egbe, D. A. M.; Tuerk, S.; Perlich, J.; Gehrke, R.
2012-02-01
A poly(arylene-ethynylene)-alt-poly(arylene-vinylene) statistical copolymer carrying linear and branched alkoxy side chains along the conjugated backbone in a random manner, yields, compared to its regular substituted counterparts, an improved performance in polymer:fullerene bulk-heterojunction solar cells. Results obtained from GiWAXS experiments show that the improved performance of the statistical copolymer may be attributed to the following structural characteristics: 1) Well, ordered stacked domains that promote backbone planarization and thus improve the ππ-overlap. 2) Partly face-on alignment of domains relative to the electrodes for an improved active layer electrode charge transfer. Branched side chains seem to promote face-on domain orientation. Most likely they can minimize their unfavorable contact with the interface by just bringing the CH3 groups of the branches into direct contact with the surface so that favorable phenylene-substrate interaction can promote face-on orientation. 3) A more isotropic domain orientation throughout the active layer to ensure that the backbone alignment direction has components perpendicular and parallel to the electrodes in order to compromise between light absorption and efficient intra-chain charge transport.
Yu, Xu; Zhang, Zhi-Ling; Zheng, Si-Yang
2014-01-01
A novel highly sensitive colorimetric assay for DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization was established. The DNA modified superparamagnetic beads were demonstrated to capture and enrich the target DNA in the hybridization buffer or human plasma. The hybridization chain reaction and enzyme-induced silver metallization on the gold nanoparticles were used as cascade signal amplification for the detection of target DNA. The metalization of silver on the gold nanoparticles induced a significant colour change from red to yellow until black depending on the concentration of the target DNA, which could be recognized by naked eyes. This method showed a good specificity for the target DNA detection, with the capabilty to discriminate single-base-pair mismatched DNA mutation (single nucleotide polymorphism). Meanwhile, this approach exhibited an excellent anti-interference capability with the convenience of the magentic seperation and washing, which enabled its usage in complex biological systems such as human blood plasma. As an added benefit, the utilization of hybridization chain reaction and enzyme-induced metallization improved detection sensitivity down to 10 pM, which is about 100-fold lower than that of traditional unamplified homogeneous assays. PMID:25500528
Universal scaling for the quantum Ising chain with a classical impurity
NASA Astrophysics Data System (ADS)
Apollaro, Tony J. G.; Francica, Gianluca; Giuliano, Domenico; Falcone, Giovanni; Palma, G. Massimo; Plastina, Francesco
2017-10-01
We study finite-size scaling for the magnetic observables of an impurity residing at the end point of an open quantum Ising chain with transverse magnetic field, realized by locally rescaling the field by a factor μ ≠1 . In the homogeneous chain limit at μ =1 , we find the expected finite-size scaling for the longitudinal impurity magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity limit μ =0 , we recover finite scaling for the longitudinal magnetization, while the transverse one basically does not scale. We provide both analytic approximate expressions for the magnetization and the susceptibility as well as numerical evidences for the scaling behavior. At intermediate values of μ , finite-size scaling is violated, and we provide a possible explanation of this result in terms of the appearance of a second, impurity-related length scale. Finally, by going along the standard quantum-to-classical mapping between statistical models, we derive the classical counterpart of the quantum Ising chain with an end-point impurity as a classical Ising model on a square lattice wrapped on a half-infinite cylinder, with the links along the first circle modified as a function of μ .
Chu, Chenyu; Liu, Li; Wang, Yufei; Wei, Shimin; Wang, Yuanjing; Man, Yi; Qu, Yili
2018-04-28
Collagen has been widely used in guided bone regeneration, and the implantation of collagen membranes will elicit the foreign body reaction (FBR). The imbalance of FBR often leads to failure of dental implants. Therefore, modulation of the FBR after implantation of collagen membranes becomes increasingly important. Macrophages, pivotal in FBR, have been distinguished into pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Epigallocatechin-3-gallate (EGCG)-modified collagen membranes have been previously shown to regulate secretion of inflammatory factors. In this study, immunohistochemistry of CD31 showed that areas of blood vessels were significantly enlarged after implantation of EGCG-modified collagen membranes compared with those treated with pure collagen membranes. Besides, haematoxylin-eosin staining and immunofluorescence showed an increased number of M2 macrophages after implantation of EGCG-modified collagen membranes. In addition, quantitative real-time polymerase chain reaction showed that after implantation of EGCG-modified collagen membranes, expression of CXCL1 (predominant chemoattractants to neutrophils and inflammation promotors) was significantly downregulated, whereas expressions of STAB1, CCR2, CCR3, CCL2, and CCL3 (related to M2 macrophages) were significantly upregulated. From these findings, we conclude that EGCG-modified collagen membranes were able to regulate the recruitment and polarization of macrophages, so that ameliorate FBR. Copyright © 2018 John Wiley & Sons, Ltd.
Li, Peng; Jia, Junwei; Bai, Lan; Pan, Aihu; Tang, Xueming
2013-07-01
Genetically modified carnation (Dianthus caryophyllus L.) Moonshade was approved for planting and commercialization in several countries from 2004. Developing methods for analyzing Moonshade is necessary for implementing genetically modified organism labeling regulations. In this study, the 5'-transgene integration sequence was isolated using thermal asymmetric interlaced (TAIL)-PCR. Based upon the 5'-transgene integration sequence, conventional and TaqMan real-time PCR assays were established. The relative limit of detection for the conventional PCR assay was 0.05 % for Moonshade using 100 ng total carnation genomic DNA, corresponding to approximately 79 copies of the carnation haploid genome, and the limits of detection and quantification of the TaqMan real-time PCR assay were estimated to be 51 and 254 copies of haploid carnation genomic DNA, respectively. These results are useful for identifying and quantifying Moonshade and its derivatives.
Onishchenko, G G
2010-01-01
Commercial production of genetically modified (GM) crops as food or feed is regarded as a promising social area in the development of modern biotechnology. The Russian Federation has set up a governmental system to regulate the use of biotechnology products, which is based on Russian and foreign experience and the most up-to-date scientific approaches. The system for evaluating the quality and safety of GM foodstuffs envisages the postregistration monitoring of their circulation as an obligatory stage. For these purposes, the world community applies two methods: enzyme immunoassay and polymerase chain reaction. It should be noted that there are various approaches to GM food labeling in the world; this raises the question of whether the labeling of foods that are prepared from genetically modified organisms, but contain no protein or DNA is to be introduced in Russia, as in the European Union.
Navarro, Aude-Emmanuelle; Spinelli, Nicolas; Moustrou, Corinne; Chaix, Carole; Mandrand, Bernard; Brisset, Hugues
2004-01-01
We have developed new ferrocenyl-modified oligonucleotide (ODN) probes for electrochemical DNA sensors. A monofunctional ferrocene containing phosphoramidite group has been prepared, and a new bisfunctional ferrocene containing phosphoramidite and dimethoxytrityl (DMT) groups has been developed. These ferrocenyl-phosphoramidites have been directly employed in an automated solid-phase DNA synthesizer using phosphoramidite chemistry. The advantages of this method are that it allows a non-specialist in nucleotide chemistry to access labeled ODNs and that it has demonstrated good results. ODNs modified at the 3′ and/or 5′ extremities have been prepared, with the incorporation of the ferrocenyl group into the chain. The 5′ position appears to be more important due to its particular behavior. The thermal stability and electrochemical properties of these new ODN ferrocenes were analyzed before and after hybridization with different ODNs. The feasibility of using these new ferrocenyl-labeled ODNs in DNA sensors has been demonstrated. PMID:15466597
Functional lignocellulosic materials prepared by ATRP from a wood scaffold.
Cabane, Etienne; Keplinger, Tobias; Künniger, Tina; Merk, Vivian; Burgert, Ingo
2016-08-10
Wood, a natural and abundant source of organic polymers, has been used as a scaffold to develop novel wood-polymer hybrid materials. Through a two-step surface-initiated Atom Transfer Radical Polymerization (ATRP), the porous wood structure can be effectively modified with polymer chains of various nature. In the present study, polystyrene and poly(N-isopropylacrylamide) were used. As shown with various characterization techniques including confocal Raman microscopy, FTIR, and SEM/EDX, the native wood ultrastructure and features are retained and the polymer chains can be introduced deep within the wood, i.e. inside the wood cell walls. The physical properties of the new materials have been studied, and results indicate that the insertion of polymer chains inside the wood cell wall alters the intrinsic properties of wood to yield a hybrid composite material with new functionalities. This approach to the functionalization of wood could lead to the fabrication of a new class of interesting functional materials and promote innovative utilizations of the renewable resource wood.
Sarkar, Kanchan; Sharma, Rahul; Bhattacharyya, S P
2010-03-09
A density matrix based soft-computing solution to the quantum mechanical problem of computing the molecular electronic structure of fairly long polythiophene (PT) chains is proposed. The soft-computing solution is based on a "random mutation hill climbing" scheme which is modified by blending it with a deterministic method based on a trial single-particle density matrix [P((0))(R)] for the guessed structural parameters (R), which is allowed to evolve under a unitary transformation generated by the Hamiltonian H(R). The Hamiltonian itself changes as the geometrical parameters (R) defining the polythiophene chain undergo mutation. The scale (λ) of the transformation is optimized by making the energy [E(λ)] stationary with respect to λ. The robustness and the performance levels of variants of the algorithm are analyzed and compared with those of other derivative free methods. The method is further tested successfully with optimization of the geometry of bipolaron-doped long PT chains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Nicole R.; Hecht, Karen A.; Hu, Dehong
2016-01-08
The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins incorporating a tetracysteine tag for site-directed labeling with biarsenical affinity probes and either EGFP or single chain antibody to test colocalization of probes with the EGFP-tagged recombinant protein or binding of biosilica-immobilized antibodies to large and small molecule antigens, respectively. Site-directed labeling with the biarsenical probes demonstrated colocalization with EGFP-encoded proteins in nascent and mature biosilica, supporting their use in studying biosilica maturation. Isolated biosilica transformed with a single chain antibody against either the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT) effectively boundmore » the respective antigens. A marked increase in fluorescence lifetime of the TNT surrogate Alexa Fluor 555-trinitrobenzene reflected the high binding specificity of the transformed isolated biosilica. These results demonstrated the potential use of biosilica-immobilized single chain antibodies as binders for large and small molecule antigens in sensing and therapeutics.« less
Enhancing Antibody Fc Heterodimer Formation through Electrostatic Steering Effects
Gunasekaran, Kannan; Pentony, Martin; Shen, Min; Garrett, Logan; Forte, Carla; Woodward, Anne; Ng, Soo Bin; Born, Teresa; Retter, Marc; Manchulenko, Kathy; Sweet, Heather; Foltz, Ian N.; Wittekind, Michael; Yan, Wei
2010-01-01
Naturally occurring IgG antibodies are bivalent and monospecific. Bispecific antibodies having binding specificities for two different antigens can be produced using recombinant technologies and are projected to have broad clinical applications. However, co-expression of multiple light and heavy chains often leads to contaminants and pose purification challenges. In this work, we have modified the CH3 domain interface of the antibody Fc region with selected mutations so that the engineered Fc proteins preferentially form heterodimers. These novel mutations create altered charge polarity across the Fc dimer interface such that coexpression of electrostatically matched Fc chains support favorable attractive interactions thereby promoting desired Fc heterodimer formation, whereas unfavorable repulsive charge interactions suppress unwanted Fc homodimer formation. This new Fc heterodimer format was used to produce bispecific single chain antibody fusions and monovalent IgGs with minimal homodimer contaminants. The strategy proposed here demonstrates the feasibility of robust production of novel Fc-based heterodimeric molecules and hence broadens the scope of bispecific molecules for therapeutic applications. PMID:20400508
HYDRA: A Middleware-Oriented Integrated Architecture for e-Procurement in Supply Chains
NASA Astrophysics Data System (ADS)
Alor-Hernandez, Giner; Aguilar-Lasserre, Alberto; Juarez-Martinez, Ulises; Posada-Gomez, Ruben; Cortes-Robles, Guillermo; Garcia-Martinez, Mario Alberto; Gomez-Berbis, Juan Miguel; Rodriguez-Gonzalez, Alejandro
The Service-Oriented Architecture (SOA) development paradigm has emerged to improve the critical issues of creating, modifying and extending solutions for business processes integration, incorporating process automation and automated exchange of information between organizations. Web services technology follows the SOA's principles for developing and deploying applications. Besides, Web services are considered as the platform for SOA, for both intra- and inter-enterprise communication. However, an SOA does not incorporate information about occurring events into business processes, which are the main features of supply chain management. These events and information delivery are addressed in an Event-Driven Architecture (EDA). Taking this into account, we propose a middleware-oriented integrated architecture that offers a brokering service for the procurement of products in a Supply Chain Management (SCM) scenario. As salient contributions, our system provides a hybrid architecture combining features of both SOA and EDA and a set of mechanisms for business processes pattern management, monitoring based on UML sequence diagrams, Web services-based management, event publish/subscription and reliable messaging service.
In Vitro Characterization of Chain Depolymerization Activities of SUMO-Specific Proteases.
Eckhoff, Julia; Dohmen, R Jürgen
2016-01-01
SUMO-specific proteases, known as Ulps in baker's yeast and SENPs in humans, have important roles in controlling the dynamics of SUMO-modified proteins. They display distinct modes of action and specificity, in that they may act on the SUMO precursor, mono-sumoylated, and/or polysumoylated proteins, and they might be specific for substrates with certain SUMO paralogs. SUMO chains may be dismantled either by endo or exo mechanisms. Biochemical characterization of a protease usually requires purification of the protein of interest. Developing a purification protocol, however, can be very difficult, and in some cases, isolation of a protease in its pure form may go along with a substantial loss of activity. To characterize the reaction mechanism of Ulps, we have developed an in vitro assay, which makes use of substrates endowed with artificial poly-SUMO chains of defined lengths, and S. cerevisiae Ulp enzymes in crude extract from E. coli. This fast and economic approach should be applicable to SUMO-specific proteases from other species as well.
Zeta potentials in the flotation of oxide and silicate minerals.
Fuerstenau, D W; Pradip
2005-06-30
Adsorption of collectors and modifying reagents in the flotation of oxide and silicate minerals is controlled by the electrical double layer at the mineral-water interface. In systems where the collector is physically adsorbed, flotation with anionic or cationic collectors depends on the mineral surface being charged oppositely. Adjusting the pH of the system can enhance or prevent the flotation of a mineral. Thus, the point of zero charge (PZC) of the mineral is the most important property of a mineral in such systems. The length of the hydrocarbon chain of the collector is important because of chain-chain association enhances the adsorption once the surfactant ions aggregate to form hemimicelles at the surface. Strongly chemisorbing collectors are able to induce flotation even when collector and the mineral surface are charged similarly, but raising the pH sufficiently above the PZC can repel chemisorbing collectors from the mineral surface. Zeta potentials can be used to delineate interfacial phenomena in these various systems.
Bridgeman, J S; Ladell, K; Sheard, V E; Miners, K; Hawkins, R E; Price, D A; Gilham, D E
2014-01-01
Chimeric antigen receptors (CARs) can mediate redirected lysis of tumour cells in a major histocompatibility complex (MHC)-independent manner, thereby enabling autologous adoptive T cell therapy for a variety of malignant neoplasms. Currently, most CARs incorporate the T cell receptor (TCR) CD3ζ signalling chain; however, the precise mechanisms responsible for CAR-mediated T cell activation are unclear. In this study, we used a series of immunoreceptor tyrosine-based activation motif (ITAM)-mutant and transmembrane-modified receptors to demonstrate that CARs activate T cells both directly via the antigen-ligated signalling chain and indirectly via associated chains within the TCR complex. These observations allowed us to generate new receptors capable of eliciting polyfunctional responses in primary human T cells. This work increases our understanding of CAR function and identifies new avenues for the optimization of CAR-based therapeutic interventions. PMID:24116999
Electronic Transport in Single-Stranded DNA Molecule Related to Huntington's Disease
NASA Astrophysics Data System (ADS)
Sarmento, R. G.; Silva, R. N. O.; Madeira, M. P.; Frazão, N. F.; Sousa, J. O.; Macedo-Filho, A.
2018-04-01
We report a numerical analysis of the electronic transport in single chain DNA molecule consisting of 182 nucleotides. The DNA chains studied were extracted from a segment of the human chromosome 4p16.3, which were modified by expansion of CAG (cytosine-adenine-guanine) triplet repeats to mimics Huntington's disease. The mutated DNA chains were connected between two platinum electrodes to analyze the relationship between charge propagation in the molecule and Huntington's disease. The computations were performed within a tight-binding model, together with a transfer matrix technique, to investigate the current-voltage (I-V) of 23 types of DNA sequence and compare them with the distributions of the related CAG repeat numbers with the disease. All DNA sequences studied have a characteristic behavior of a semiconductor. In addition, the results showed a direct correlation between the current-voltage curves and the distributions of the CAG repeat numbers, suggesting possible applications in the development of DNA-based biosensors for molecular diagnostics.
Functional lignocellulosic materials prepared by ATRP from a wood scaffold
Cabane, Etienne; Keplinger, Tobias; Künniger, Tina; Merk, Vivian; Burgert, Ingo
2016-01-01
Wood, a natural and abundant source of organic polymers, has been used as a scaffold to develop novel wood-polymer hybrid materials. Through a two-step surface-initiated Atom Transfer Radical Polymerization (ATRP), the porous wood structure can be effectively modified with polymer chains of various nature. In the present study, polystyrene and poly(N-isopropylacrylamide) were used. As shown with various characterization techniques including confocal Raman microscopy, FTIR, and SEM/EDX, the native wood ultrastructure and features are retained and the polymer chains can be introduced deep within the wood, i.e. inside the wood cell walls. The physical properties of the new materials have been studied, and results indicate that the insertion of polymer chains inside the wood cell wall alters the intrinsic properties of wood to yield a hybrid composite material with new functionalities. This approach to the functionalization of wood could lead to the fabrication of a new class of interesting functional materials and promote innovative utilizations of the renewable resource wood. PMID:27506369
Interaction between AIF and CHCHD4 Regulates Respiratory Chain Biogenesis.
Hangen, Emilie; Féraud, Olivier; Lachkar, Sylvie; Mou, Haiwei; Doti, Nunzianna; Fimia, Gian Maria; Lam, Ngoc-Vy; Zhu, Changlian; Godin, Isabelle; Muller, Kevin; Chatzi, Afroditi; Nuebel, Esther; Ciccosanti, Fabiola; Flamant, Stéphane; Bénit, Paule; Perfettini, Jean-Luc; Sauvat, Allan; Bennaceur-Griscelli, Annelise; Ser-Le Roux, Karine; Gonin, Patrick; Tokatlidis, Kostas; Rustin, Pierre; Piacentini, Mauro; Ruvo, Menotti; Blomgren, Klas; Kroemer, Guido; Modjtahedi, Nazanine
2015-06-18
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that, beyond its apoptotic function, is required for the normal expression of major respiratory chain complexes. Here we identified an AIF-interacting protein, CHCHD4, which is the central component of a redox-sensitive mitochondrial intermembrane space import machinery. Depletion or hypomorphic mutation of AIF caused a downregulation of CHCHD4 protein by diminishing its mitochondrial import. CHCHD4 depletion sufficed to induce a respiratory defect that mimicked that observed in AIF-deficient cells. CHCHD4 levels could be restored in AIF-deficient cells by enforcing its AIF-independent mitochondrial localization. This modified CHCHD4 protein reestablished respiratory function in AIF-deficient cells and enabled AIF-deficient embryoid bodies to undergo cavitation, a process of programmed cell death required for embryonic morphogenesis. These findings explain how AIF contributes to the biogenesis of respiratory chain complexes, and they establish an unexpected link between the vital function of AIF and the propensity of cells to undergo apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.
Utilization of modified starch from avocado (Persea americana Mill.) seed in cream soup production
NASA Astrophysics Data System (ADS)
Cornelia, M.; Christianti, A.
2018-01-01
Avocado (Persea americana Mill.) seed was often seen as waste and underutilized resources, especially in the food industry. The aim of this research was to modify the structure of avocado seed starch using the cross-linking method, to improve the viscosity stability in the cream soup. In the preliminary research, starch was isolated from the seed and modified by STPP (sodium tripolyphosphate) with 2%, 4%, and 6% concentration and were reacted for 1, 2, and 3 hours. Starches were analyzed for moisture and ash content, paste clarity, gel strength, swelling power, solubility, yield, and degree of whiteness. Based on the analysis results, the best reaction time and STPP concentration was 6% at 1 hour reaction time. Native starch and the best-modified starch were applied in the cream soup and compared with commercial cream soup. Cream soups were analyzed for viscosity stability using viscometer in 0, 1, 3, and 5 hours after storage in room temperature. The result showed that cream soup using modified starch has better viscosity stability than native starch and commercial cream soup after 5 hours storage, which was 181.7 ± 4.85 cP. Sensory analysis showed that cream soup using modified starch was more acceptable than the others. Avocado seed modified starch has phosphate group that strengthen the starch chain to prevent viscosity breakdown.
Modified beacon probe assisted dual signal amplification for visual detection of microRNA.
Sun, Xiuwei; Ying, Na; Ju, Chuanjing; Li, Zhongyi; Xu, Na; Qu, Guijuan; Liu, Wensen; Wan, Jiayu
2018-06-01
In a recent study, we reported a novel assay for the detection of microRNA-21 based on duplex-specific nuclease (DSN)-assisted isothermal cleavage and hybridization chain reaction (HCR) dual signal amplification. The Fam modified double-stranded DNA products were generated after the HCR, another biotin modified probe was digested by DSN and released from the magnetic beads after the addition of the target miRNA. The released sequence was then combined with HCR products to form a double-tagging dsDNA, which can be recognized by the lateral flow strips. In this study, we introduced a 2-OMethyl-RNA modified beacon probe (2-OMe-MB) to make some improvements based on the previous study. Firstly, the substitution of modified probe combined on magnetic beads avoids the fussy washing steps for the separation of un-reacted probes. Furthermore, the modification of 2-OMe on the stem of the probe avoided the unnecessary cleavage by DSN, which greatly reduce the background signal. Compared to the previous work, these improvements save us a lot of steps but possess the comparable sensitivity and selectivity. Copyright © 2018 Elsevier Inc. All rights reserved.
Modified silicas with different structure of grafted methylphenylsiloxane layer
NASA Astrophysics Data System (ADS)
Bolbukh, Yuliia; Terpiłowski, Konrad; Kozakevych, Roman; Sternik, Dariusz; Deryło-Marczewska, Anna; Tertykh, Valentin
2016-06-01
The method of a chemical assembly of the surface polymeric layer with high contents of the modifying agent was developed. Powders of nanodispersed silica with chemisorbed polymethylphenylsiloxane (PMPS) were synthesized by solvent-free chemical assembly technique with a dimethyl carbonate (DMC) as scission agent. Samples were characterized using FTIR spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), and elemental analysis (CHN analysis). Coating microstructure, morphology, and hydrophilic-hydrophobic properties of nanoparticles were estimated. The results indicate a significant effect of the PMPS/DMC ratio at each modification stage on hydrophobic properties of modified silicas. Modification with a similar composition of the PMPS/DMC mixture, even with different polymer amount at each stage, provides the worst hydrophobicity. Results suggest that the highest hydrophobicity (contact angle θ = 135°-140°) is achieved in the case when silica modified with the PMPS/DMC mixture using multistage approach that providing a formation of the monomolecular layer of polysiloxane at the first modification step. The characteristics of surface structure were interpreted in terms of density of polymer-silica bonds at the interfaces that, usually, are reduced for modified surfaces, in a coupling with conformation model that accented the shape of chains (arch- and console-like) adsorbed on solid surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bambal, Ashish S.; Guggilla, Vidya S.; Kugler, Edwin L.
2014-04-09
The effects of sulfur impurities on the performance of cobalt-based Fischer–Tropsch catalysts are evaluated under industrially relevant operating conditions of temperature, pressure, and impurity levels. Chelating agents (CAs) were used to modify the SiO 2 support, and the performances of the CA-modified catalysts are compared with conventional Co/SiO 2 catalysts. For both the Co/SiO 2 and CA-modified catalysts, the presence of sulfur in the inlet syngas results in a notable drop in the CO conversion, an undesired shift in the hydrocarbon selectivity toward short-chain hydrocarbons, more olefins in the products, and lower product yields. In the post-poisoning stage, i.e., aftermore » termination of sulfur introduction in the inlet syngas, the CA-modified catalysts recover activity and selectivity (to some extent at least), whereas such trends are not observed for the base-case, i.e., unmodified Co/SiO 2 catalyst. Finally, the improved performance of the CA-modified catalysts in the presence of sulfur is attributed to higher densities of active sites.« less
Ouchi, Kazuki; Colyer, Christa L; Sebaiy, Mahmoud; Zhou, Jin; Maeda, Takeshi; Nakazumi, Hiroyuki; Shibukawa, Masami; Saito, Shingo
2015-02-03
We designed a new series of boronic acid-functionalized squarylium cyanine dyes (SQ-BA) with different lengths of alkyl chain residues, suitable for multiple discriminant analysis (MDA) of sialic acid (Neu5Ac) in biological samples. The SQ-BA dyes form aggregates based on hydrophobic interactions, which result in quenched fluorescence in aqueous solutions. When the boronic acid binds with saccharides, the fluorescence intensity increases as a result of dissociation to the emissive monomeric complex. We inferred that different dye aggregate structures (H-aggregates and J-aggregates) were induced depending on the alkyl chain length, so that monosaccharides would be recognized in different ways (especially, multipoint interaction with J-aggregates). A distinctive emission enhancement of SQ-BA dyes with shorter-alkyl-chains in the presence of Neu5Ac was observed (2.4-fold fluorescence enhancement; with formation constant 10(1.7) M(-1)), with no such enhancement for SQ-BA dyes with longer-alkyl-chain. In addition, various enhancement factors for other monosaccharides were observed depending on the alkyl chain length. Detailed thermodynamic and NMR studies of the SQ-BA complexes revealed the unique recognition mechanism: the dye aggregate with a shorter-alkyl-chain causes the slipped parallel structure and forms a stable 2:1 complex with Neu5Ac, as distinct from longer-alkyl-chain dyes, which form a 1:1 monomeric complex. MDA using the four SQ-BA dyes was performed for human urine samples, resulting in the successful discrimination between normal and abnormal Neu5Ac levels characteristic of disease. Thus, we successfully controlled various responses to similar monosaccharides with a novel approach that chemically modified not the boronic acid moiety itself but the length of the alkyl chain residue attached to the dye in order to generate specificity.
Improved actuation strain of PDMS-based DEA materials chemically modified with softening agents
NASA Astrophysics Data System (ADS)
Biedermann, Miriam; Blümke, Martin; Wegener, Michael; Krüger, Hartmut
2015-04-01
Dielectric elastomer actuators (DEAs) are smart materials that gained much in interest particularly in recent years. One active field of research is the improvement of their properties by modification of their structural framework. The object of this work is to improve the actuation properties of polydimethylsiloxane (PDMS)-based DEAs by covalent incorporation of mono-vinyl-terminated low-molecular PDMS chains into the PDMS network. These low-molecular units act as a kind of softener within the PDMS network. The loose chain ends interfere with the network formation and lower the network's density. PDMS films with up to 50wt% of low-molecular PDMS additives were manufactured and the chemical, mechanical, electrical, and electromechanical properties of these novel materials were investigated.
NASA Technical Reports Server (NTRS)
Sparks, S. D.
1973-01-01
The Varian cup and slat dynode chain was modified to have a flat cathode. These modifications were incorporated in an all-electrostatic photomultiplier tube having a rise time of 0.25 n sec. The tube delivered under the contract had a flat S-20 opaque cathode with a useful diameter of 5 mm. The design of the tube is such that a III to V cathode support is mounted in place of the existing cathode substrate. This cathode support is designed to accept a transferred III to V cathode and maintain the cathode surface in the same position as the S-20 photocathode.
A switchable polymer layer: Chain folding in end-charged polymer brushes
NASA Astrophysics Data System (ADS)
Heine, David; Wu, David T.
2001-03-01
We use a self-consistent field approximation to model the configurations of end-charged homopolymer and block copolymer brushes in response to an external electric field due to charges on the grafting surface. By varying the charge density on the grafting surface, we can cause the chains either to extend outward, greatly increasing the brush height, or to loop back to the grafting surface. We show that such a copolymer brush can present one block at the exposed surface in the extended state and present the other block in the retracted state. This occurs for both a solvated brush and a dry brush. We also compare these results to those of a modified Alexander-de Gennes model for the end-charged homopolymer brush.
How Can We Better Detect Unauthorized GMOs in Food and Feed Chains?
Fraiture, Marie-Alice; Herman, Philippe; De Loose, Marc; Debode, Frédéric; Roosens, Nancy H
2017-06-01
Current GMO detection systems have limited abilities to detect unauthorized genetically modified organisms (GMOs). Here, we propose a new workflow, based on next-generation sequencing (NGS) technology, to overcome this problem. In providing information about DNA sequences, this high-throughput workflow can distinguish authorized and unauthorized GMOs by strengthening the tools commonly used by enforcement laboratories with the help of NGS technology. In addition, thanks to its massive sequencing capacity, this workflow could be used to monitor GMOs present in the food and feed chain. In view of its potential implementation by enforcement laboratories, we discuss this innovative approach, its current limitations, and its sustainability of use over time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Electron Flow through Proteins
Gray, Harry B.; Winkler, Jay R.
2009-01-01
Electron transfers in photosynthesis and respiration commonly occur between metal-containing cofactors that are separated by large molecular distances. Employing laser flash-quench triggering methods, we have shown that 20-Å, coupling-limited FeII to RuIII and CuI to RuIII electron tunneling in Ru-modified cytochromes and blue copper proteins can occur on the microsecond timescale both in solutions and crystals. Redox equivalents can be transferred even longer distances by multistep tunneling, often called hopping, through intervening amino acid side chains. Our work has established that 20-Å hole hopping through an intervening tryptophan is two orders of magnitude faster than single-step electron tunneling in a Re-modified blue copper protein. PMID:20161522
Small ubiquitin-related modifier is secreted and shows cytokine-like activity.
Hosono, Hidetaka; Yokosawa, Hideyoshi
2008-05-01
Small ubiquitin-related modifier (SUMO) is a type I ubiquitin-like protein family member and is covalently attached to various target proteins. Through this post-translational modification, SUMO plays important roles in various cellular events. Here, we show that SUMO is secreted from cultured cells in an endoplasmic reticulum (ER)/Golgi-independent manner and that this secretion occurs without covalent binding to target proteins or chain formation. Overexpression experiments using C-terminally truncated mutants of SUMO revealed that the secretion requires the C-terminal sequence. Recombinant SUMO-3 protein was capable of binding to and promoting the proliferation of cultured cells. Thus, we propose that SUMO functions as a cytokine-like molecule extracellularly.
NASA Astrophysics Data System (ADS)
Liu, Jian; Ren, Zhongzhou; Xu, Chang
2018-07-01
Combining the modified Skyrme-like model and the local density approximation model, the slope parameter L of symmetry energy is extracted from the properties of finite nuclei with an improved iterative method. The calculations of the iterative method are performed within the framework of the spherical symmetry. By choosing 200 neutron rich nuclei on 25 isotopic chains as candidates, the slope parameter is constrained to be 50 MeV < L < 62 MeV. The validity of this method is examined by the properties of finite nuclei. Results show that reasonable descriptions on the properties of finite nuclei and nuclear matter can be obtained together.
Augustin, Katrin; Khabbush, Aziza; Williams, Sophie; Eaton, Simon; Orford, Michael; Cross, J Helen; Heales, Simon J R; Walker, Matthew C; Williams, Robin S B
2018-01-01
High-fat, low-carbohydrate diets, known as ketogenic diets, have been used as a non-pharmacological treatment for refractory epilepsy. A key mechanism of this treatment is thought to be the generation of ketones, which provide brain cells (neurons and astrocytes) with an energy source that is more efficient than glucose, resulting in beneficial downstream metabolic changes, such as increasing adenosine levels, which might have effects on seizure control. However, some studies have challenged the central role of ketones because medium-chain fatty acids, which are part of a commonly used variation of the diet (the medium-chain triglyceride ketogenic diet), have been shown to directly inhibit AMPA receptors (glutamate receptors), and to change cell energetics through mitochondrial biogenesis. Through these mechanisms, medium-chain fatty acids rather than ketones are likely to block seizure onset and raise seizure threshold. The mechanisms underlying the ketogenic diet might also have roles in other disorders, such as preventing neurodegeneration in Alzheimer's disease, the proliferation and spread of cancer, and insulin resistance in type 2 diabetes. Analysing medium-chain fatty acids in future ketogenic diet studies will provide further insights into their importance in modified forms of the diet. Moreover, the results of these studies could facilitate the development of new pharmacological and dietary therapies for epilepsy and other disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.
TRIM5α requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription
Fletcher, Adam J; Christensen, Devin E; Nelson, Chad; Tan, Choon Ping; Schaller, Torsten; Lehner, Paul J; Sundquist, Wesley I; Towers, Greg J
2015-01-01
TRIM5α is an antiviral, cytoplasmic, E3 ubiquitin (Ub) ligase that assembles on incoming retroviral capsids and induces their premature dissociation. It inhibits reverse transcription of the viral genome and can also synthesize unanchored polyubiquitin (polyUb) chains to stimulate innate immune responses. Here, we show that TRIM5α employs the E2 Ub-conjugating enzyme Ube2W to anchor the Lys63-linked polyUb chains in a process of TRIM5α auto-ubiquitination. Chain anchoring is initiated, in cells and in vitro, through Ube2W-catalyzed monoubiquitination of TRIM5α. This modification serves as a substrate for the elongation of anchored Lys63-linked polyUb chains, catalyzed by the heterodimeric E2 enzyme Ube2N/Ube2V2. Ube2W targets multiple TRIM5α internal lysines with Ub especially lysines 45 and 50, rather than modifying the N-terminal amino group, which is instead αN-acetylated in cells. E2 depletion or Ub mutation inhibits TRIM5α ubiquitination in cells and restores restricted viral reverse transcription, but not infection. Our data indicate that the stepwise formation of anchored Lys63-linked polyUb is a critical early step in the TRIM5α restriction mechanism and identify the E2 Ub-conjugating cofactors involved. PMID:26101372
COL4A6 is dispensable for autosomal recessive Alport syndrome.
Murata, Tomohiro; Katayama, Kan; Oohashi, Toshitaka; Jahnukainen, Timo; Yonezawa, Tomoko; Sado, Yoshikazu; Ishikawa, Eiji; Nomura, Shinsuke; Tryggvason, Karl; Ito, Masaaki
2016-07-05
Alport syndrome is caused by mutations in the genes encoding α3, α4, or α5 (IV) chains. Unlike X-linked Alport mice, α5 and α6 (IV) chains are detected in the glomerular basement membrane of autosomal recessive Alport mice, however, the significance of this finding remains to be investigated. We therefore generated mice lacking both α3 and α6 (IV) chains and compared their renal function and survival with Col4a3 knockout mice of 129 × 1/Sv background. No significant difference was observed in the renal function or survival of the two groups, or when the mice were backcrossed once to C57BL/6 background. However, the survival of backcrossed double knockout mice was significantly longer than that of the mice of 129 × 1/Sv background, which suggests that other modifier genes were involved in this phenomenon. In further studies we identified two Alport patients who had a homozygous mutation in intron 46 of COL4A4. The α5 and α6 (IV) chains were focally detected in the glomerular basement membrane of these patients. These findings indicate that although α5 and α6 (IV) chains are induced in the glomerular basement membrane in autosomal recessive Alport syndrome, their induction does not seem to play a major compensatory role.
COL4A6 is dispensable for autosomal recessive Alport syndrome
Murata, Tomohiro; Katayama, Kan; Oohashi, Toshitaka; Jahnukainen, Timo; Yonezawa, Tomoko; Sado, Yoshikazu; Ishikawa, Eiji; Nomura, Shinsuke; Tryggvason, Karl; Ito, Masaaki
2016-01-01
Alport syndrome is caused by mutations in the genes encoding α3, α4, or α5 (IV) chains. Unlike X-linked Alport mice, α5 and α6 (IV) chains are detected in the glomerular basement membrane of autosomal recessive Alport mice, however, the significance of this finding remains to be investigated. We therefore generated mice lacking both α3 and α6 (IV) chains and compared their renal function and survival with Col4a3 knockout mice of 129 × 1/Sv background. No significant difference was observed in the renal function or survival of the two groups, or when the mice were backcrossed once to C57BL/6 background. However, the survival of backcrossed double knockout mice was significantly longer than that of the mice of 129 × 1/Sv background, which suggests that other modifier genes were involved in this phenomenon. In further studies we identified two Alport patients who had a homozygous mutation in intron 46 of COL4A4. The α5 and α6 (IV) chains were focally detected in the glomerular basement membrane of these patients. These findings indicate that although α5 and α6 (IV) chains are induced in the glomerular basement membrane in autosomal recessive Alport syndrome, their induction does not seem to play a major compensatory role. PMID:27377778
Job satisfaction among chain community pharmacists: results from a pilot study
Hincapie, Ana L.; Yandow, Stephanie; Hines, Stephanie; Martineau, Megan; Warholak, Terri
Objective The objectives of this study were to obtain pilot data concerning the job satisfaction of Tucson area retail chain setting and to identify the facets of community practice that have the greatest contribution to job satisfaction Methods This was a cross-sectional study of chain pharmacists in the Tucson area. The Warr-Cook-Wall questionnaire of job satisfaction was used to evaluate community pharmacists’ satisfaction with their current position. This study used Rasch analysis to assess the validity and reliability of the questionnaire. The Rasch scores obtained for each respondent were used as a dependent variable in univariate and bivariate analyses to evaluate differences in job satisfaction. Results A total of 32 pharmacists responded from 129 chain community pharmacies in the cities of Tucson, Marana and Oro Valley, Arizona. The mean (SD) Rasch score for job satisfaction was 0.93 (2.1). Results from bivariate analysis indicate that pharmacists in the Tucson area with practice experience outside community pharmacy were less satisfied with their job compared to those without experience outside community pharmacy (p<0.01). Conclusions This pilot evaluation suggests that having pharmacy experience outside community practice affects pharmacist job satisfaction. Additionally, findings from this study indicate that there is reliability and validity evidence to support the use of the modified Warr-Cook-Wall questionnaire for assessing overall job satisfaction in chain community pharmacy practice. PMID:24155841
Bourassa, Dianna V; Kannenberg, Elmar L; Sherrier, D Janine; Buhr, R Jeffrey; Carlson, Russell W
2017-02-01
Rhizobium bacteria live in soil and plant environments, are capable of inducing symbiotic nodules on legumes, invade these nodules, and develop into bacteroids that fix atmospheric nitrogen into ammonia. Rhizobial lipopolysaccharide (LPS) is anchored in the bacterial outer membrane through a specialized lipid A containing a very long-chain fatty acid (VLCFA). VLCFA function for rhizobial growth in soil and plant environments is not well understood. Two genes, acpXL and lpxXL, encoding acyl carrier protein and acyltransferase, are among the six genes required for biosynthesis and transfer of VLCFA to lipid A. Rhizobium leguminosarum mutant strains acpXL, acpXL - /lpxXL - , and lpxXL - were examined for LPS structure, viability, and symbiosis. Mutations in acpXL and lpxXL abolished VLCFA attachment to lipid A. The acpXL mutant transferred a shorter acyl chain instead of VLCFA. Strains without lpxXL neither added VLCFA nor a shorter acyl chain. In all strains isolated from nodule bacteria, lipid A had longer acyl chains compared with laboratory-cultured bacteria, whereas mutant strains displayed altered membrane properties, modified cationic peptide sensitivity, and diminished levels of cyclic β-glucans. In pea nodules, mutant bacteroids were atypically formed and nitrogen fixation and senescence were affected. The role of VLCFA for rhizobial environmental fitness is discussed.
Li, Min; Cortez, Shirley; Nakamachi, Tomoya; Batuman, Vecihi; Arimura, Akira
2006-09-01
Multiple myeloma represents a malignant proliferation of plasma cells in the bone marrow, which often overproduces immunoglobulin light chains. We have shown previously that pituitary adenylate cyclase-activating polypeptide (PACAP) markedly suppresses the release of proinflammatory cytokines from light chain-stimulated human renal proximal tubule epithelial cells and prevents the resulting tubule cell injury. In this study, we have shown that PACAP suppresses the proliferation of human kappa and lambda light chain-secreting multiple myeloma-derived cells. The addition of PACAP suppressed light chain-producing myeloma cell-stimulated interleukin 6 (IL-6) secretion by the bone marrow stromal cells (BMSCs). A specific antagonist to either the human PACAP-specific receptor or the vasoactive intestinal peptide receptor attenuated the suppressive effect of PACAP on IL-6 production in the adhesion of human multiple myeloma cells to BMSCs. The secretion of IL-6 by BMSCs was completely inhibited by 10(-9) mol/L PACAP, which also attenuated the phosphorylation of both p42/44 and p38 mitogen-activated protein kinases (MAPK) as well as nuclear factor-kappaB (NF-kappaB) activation in response to the adhesion of multiple myeloma cells to BMSCs, whereas the inhibition of p42/44 MAPK signaling attenuated PACAP action. The signaling cascades involved in the inhibitory effect of PACAP on IL-6-mediated paracrine stimulation of light chain-secreting myeloma cell growth was mediated through the suppression of p38 MAPK as well as modulation of activation of transcription factor NF-kappaB. These findings suggest that PACAP may be a new antitumor agent that directly suppresses light chain-secreting myeloma cell growth and indirectly affects tumor cell growth by modifying the bone marrow milieu of the multiple myeloma.
Mapping Risks of Indonesian Tuna Supply Chain
NASA Astrophysics Data System (ADS)
Karningsih, P. D.; Anggrahini, D.; Kurniati, N.; Suef, M.; Fachrur, A. R.; Syahroni, N.
2018-04-01
Due to its high economic value and is produced by many countries, Tuna is considered as one of the world’s popular fish. Demand for Tuna species are very high and it usually sells in three form: fresh, frozen or canned. Competition in Tuna trading is challengin with the potential risk of price and supply fluctuations. With recent focus of Indonesia government that see the future of Indonesia civilization depend on the oceans and as the three biggest Tuna producing country, Ministry of Marine Affairs and Fisheries should ensure sustainability and competitiveness of Indonesian tuna. Therefore, there is a great need to develop a proper and effective strategy to manage potential risks in Indonesian Tuna supply chain. This paper is aimed at identifying and mapping potential Tuna supply chain risks and its interrelationships that would assist government in determining proper strategies to manage Indonesian Tuna. A framework for identifying Tuna supply chain risks is proposed. Generic risk structure of Supply Chain Risk Identification System is adopted and modified to match with particular object, which is Indonesian Tuna. The proposed model consists of hierarchical and causal structure that encompass potential risks of Tuna supply chain operations from fishing, trading, processing and distribution. The causal structure consist of risk events and its risk agents which is the cause of risk events. To ensure the root cause of risk events are identified properly, five why’s analysis is utilized to obtain risk agents. This proposed model also captures risk interrelationship between internal and external environment of Tuna supply chain. Preliminary result of this study identifies 15 risk events and 13 risk factors on fishing and trading operations and maps their interrelationships.
Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early
2013-07-01
biology, nanotechnology, and imaging technology, molecular imaging utilizes specific probes as contrast agents to visualize cellular processes at the...This reagent was covalently coupled to the oligosaccharides attached to polypeptide side-chains of extracellular membrane proteins on living cells...website. The normal tissue gene expression profile dataset was modified and processed as described by Fang (8) and mean intensities and standard
Ying, Na; Ju, Chuanjing; Sun, Xiuwei; Li, Letian; Chang, Hongbiao; Song, Guangping; Li, Zhongyi; Wan, Jiayu; Dai, Enyong
2017-01-01
MicroRNAs (miRNAs) constitute novel biomarkers for various diseases. Accurate and quantitative analysis of miRNA expression is critical for biomedical research and clinical theranostics. In this study, a method was developed for sensitive and specific detection of miRNAs via dual signal amplification based on duplex specific nuclease (DSN) and hybridization chain reaction (HCR). A reporter probe (RP), comprising recognition sequence (3' end modified with biotin) for a target miRNA of miR-21 and capture sequence (5' end modified with Fam) for HCR product, was designed and synthesized. HCR was initiated by partial sequence of initiator probe (IP), the other part of which can hybridize with capture sequence of RP, and was assembled by hairpin probes modified with biotin (H1-bio and H2-bio). A miR-21 triggered cyclical DSN cleavage of RP, which was immobilized to a streptavidin (SA) coated magnetic bead (MB). The released Fam labeled capture sequence then hybridized with the HCR product to generate a detectable dsDNA. This polymer was then dropped on lateral flow strip and positive result was observed. The proposed method allowed quantitative sequence-specific detection of miR-21 (with a detection limit of 2.1 fM, S/N = 3) in a dynamic range from 100 fM to 100 pM, with an excellent ability to discriminate differences in miRNAs. The method showed acceptable testing recoveries for the determination of miRNAs in serum.
Rohloff, John C; Gelinas, Amy D; Jarvis, Thale C; Ochsner, Urs A; Schneider, Daniel J; Gold, Larry; Janjic, Nebojsa
2014-01-01
Limited chemical diversity of nucleic acid libraries has long been suspected to be a major constraining factor in the overall success of SELEX (Systematic Evolution of Ligands by EXponential enrichment). Despite this constraint, SELEX has enjoyed considerable success over the past quarter of a century as a result of the enormous size of starting libraries and conformational richness of nucleic acids. With judicious introduction of functional groups absent in natural nucleic acids, the “diversity gap” between nucleic acid–based ligands and protein-based ligands can be substantially bridged, to generate a new class of ligands that represent the best of both worlds. We have explored the effect of various functional groups at the 5-position of uracil and found that hydrophobic aromatic side chains have the most profound influence on the success rate of SELEX and allow the identification of ligands with very low dissociation rate constants (named Slow Off-rate Modified Aptamers or SOMAmers). Such modified nucleotides create unique intramolecular motifs and make direct contacts with proteins. Importantly, SOMAmers engage their protein targets with surfaces that have significantly more hydrophobic character compared with conventional aptamers, thereby increasing the range of epitopes that are available for binding. These improvements have enabled us to build a collection of SOMAmers to over 3,000 human proteins encompassing major families such as growth factors, cytokines, enzymes, hormones, and receptors, with additional SOMAmers aimed at pathogen and rodent proteins. Such a large and growing collection of exquisite affinity reagents expands the scope of possible applications in diagnostics and therapeutics. PMID:25291143
Agardh, Elisabet; Gustavsson, Carin; Hagert, Per; Nilsson, Marie; Agardh, Carl-David
2006-02-01
The aim of the study was to evaluate messenger RNA and protein expression in limited amounts of tissue with low protein content. The Chomczynski method was used for simultaneous extraction of RNA, and protein was modified in the protein isolation step. Template mass and cycling time for the complementary DNA synthesis step of real-time reverse transcription-polymerase chain reaction (RT-PCR) for analysis of catalase, copper/zinc superoxide dismutase, manganese superoxide dismutase, the catalytic subunit of glutamylcysteine ligase, glutathione peroxidase 1, and the endogenous control cyclophilin B (CypB) were optimized before PCR. Polymerase chain reaction accuracy and efficacy were demonstrated by calculating the regression (R2) values of the separate amplification curves. Appropriate antibodies, blocking buffers, and running conditions were established for Western blot, and protein detection and multiplex assays with CypB were performed for each target. During the extraction procedure, the protein phase was dissolved in a modified washing buffer containing 0.1% sodium dodecyl sulfate, followed by ultrafiltration. Enzyme expression on real-time RT-PCR was accomplished with high reliability and reproducibility (R2, 0.990-0.999), and all enzymes except for glutathione peroxidase 1 were detectable in individual retinas on Western blot. Western blot multiplexing with CypB was possible for all targets. In conclusion, connecting gene expression directly to protein levels in the individual rat retina was possible by simultaneous extraction of RNA and protein. Real-time RT-PCR and Western blot allowed accurate detection of retinal protein expressions and levels.
Zhang, Chun; Fan, Kai; Luo, Hua; Ma, Xuefeng; Liu, Riyong; Yang, Li; Hu, Chunlan; Chen, Zhenmin; Min, Zhiqiang; Wei, Dongzhi
2012-07-01
PEGylated uricase is a promising anti-gout drug, but the only commercially marketed 10kDa mPEG modified porcine-like uricase (Pegloticase) can only be used for intravenous infusion. In this study, tetrameric canine uricase variant was modified by covalent conjugation of all accessible ɛ amino sites of lysine residues with a smaller 5kDa mPEG (mPEG-UHC). The average modification degree and PEGylation homogeneity were evaluated. Approximately 9.4 5 kDa mPEG chains were coupled to each monomeric uricase and the main conjugates contained 7-11 mPEG chains per subunit. mPEG-UHC showed significantly therapeutic or preventive effect on uric acid nephropathy and acute urate arthritis based on three different animal models. The clearance rate from an intravenous injection of mPEG-UHC varied significantly between species, at 2.61 mL/h/kg for rats and 0.21 mL/h/kg for monkeys. The long elimination half-life of mPEG-UHC in non-human primate (191.48 h, intravenous injection) indicated the long-term effects in humans. Moreover, the acceptable bioavailability of mPEG-UHC after subcutaneous administration in monkeys (94.21%) suggested that subcutaneous injection may be regarded as a candidate administration route in clinical trails. Non-specific tissue distribution was observed after administration of (125)I-labeled mPEG-UHC in rats, and elimination by the kidneys into the urine is the primary excretion route. Copyright © 2012 Elsevier B.V. All rights reserved.
Riet, Tobias; Holzinger, Astrid; Dörrie, Jan; Schaft, Niels; Schuler, Gerold; Abken, Hinrich
2013-01-01
Redirecting T cells with a chimeric antigen receptor (CAR) of predefined specificity showed remarkable efficacy in the adoptive therapy trials of malignant diseases. The CAR consists of a single chain fragment of variable region (scFv) antibody targeting domain covalently linked to the CD3ζ signalling domain of the T cell receptor complex to mediate T cell activation upon antigen engagement. By using an antibody-derived targeting domain a CAR can potentially redirect T cells towards any target expressed on the cell surface as long as a binding domain is available. Antibody-mediated targeting moreover circumvents MHC restriction of the targeted antigen, thereby broadening the potential of applicability of adoptive T cell therapy. While T cells were so far genetically modified by viral transduction, transient modification with a CAR by RNA transfection gained increasing interest during the last years. This chapter focuses on methods to modify human T cells from peripheral blood with a CAR by electroporation of in vitro transcribed RNA and to test modified T cells for function for use in adoptive immunotherapy.
Palomares, Roberto A; Marley, Shonda M; Givens, M Daniel; Gallardo, Rodrigo A; Brock, Kenny V
2013-05-01
The objective was to determine whether a multivalent modified-live virus vaccine containing noncytopathic bovine viral diarrhea virus (BVDV) administered off-label to pregnant cattle can result in persistently infected fetuses and to assess whether vaccinal strains can be shed to unvaccinated pregnant cattle commingling with vaccinates. Nineteen BVDV-naïve pregnant heifers were randomly assigned to two groups: cattle vaccinated near Day 77 of gestation with modified-live virus vaccine containing BVDV-1a (WRL strain), bovine herpes virus-1, parainfluenza 3, and bovine respiratory syncytial virus (Vx group; N = 10) or control unvaccinated cattle (N = 9). During the course of the study a voluntary stop-sale/recall was conducted by the manufacturer because of the presence of a BVDV contaminant in the vaccine. At Day 175 of gestation, fetuses were removed by Cesarean section and fetal tissues were submitted for virus isolation, and quantitative reverse transcription polymerase chain reaction using BVDV-1- and BVDV-2-specific probes. Nucleotide sequencing of viral RNA was performed for quantitative reverse transcription polymerase chain reaction-positive samples. Two vaccinated and two control heifers aborted their pregnancies, but their fetuses were unavailable for BVDV testing. Virus was isolated from all eight fetuses in the Vx group heifers and from 2 of 7 fetuses in the control unvaccinated heifers. Only BVDV-2 was detected in fetuses from the Vx group, and only BVDV-1 was detected in the two fetuses from the control group. Both BVDV-1 and BVDV-2 were detected in the vaccine. In conclusion, vaccination of pregnant heifers with a contaminated modified-live BVDV vaccine resulted in development of BVDV-2 persistently infected fetuses in all tested vaccinated animals. Furthermore, BVDV was apparently shed to unvaccinated heifers causing fetal infections from which only BVDV-1 was detected. Published by Elsevier Inc.
First Principles Study for Proton Transport and Diffusion Behavior in Hydrous Hexagonal WO3
NASA Astrophysics Data System (ADS)
Liu, Chi-Ping; Zhou, Fei; Ozolins, Vidvuds; QPAM Team
2013-03-01
Proton transport is of great importance in biological species and energy storage and conversion systems. Previous studies have shown fast proton conduction in liquids and polymers but seldom in inorganic materials. In this work, first principles density functional theory (DFT) reveals that the formation of hydronium and water chains inside the hexagonal channels plays the key roles for the anomalously fast proton transport, by following modified Grotthuss mechanism. Our DFT study shows the detailed microscopic proton diffusion mechanism along the channel in hydrous WO3 with 50% water composition, which is proper for water chain formation. The water chain in the channel serves as a possible diffusion media for hydronium (H3O +) . With the continuous formation and cleavage of hydrogen bonds in the channel, the hydronium diffuses by hydrogen bonds exchange between water molecules. This mechanism is very similar with Grotthuss relay mechanism for proton transport in liquid. The possible proton diffusion were studied for hydronium is either far away from the water chain bond defect or next to H2O defect at the end of water chain. The diffusion barriers for both conditions are around 150 meV to 200 meV, and water defects reorganization in the chain is the rate-limited step for proton diffusion. These small diffusion barriers could explain the fast 1-D proton transport in hydrous WO3 channel. Further studies about fast proton transport in other inorganic materials could be an important topic in not only biochemistry but also clean energy applications like fuel cell applications.
Development of a novel folate-modified nanobubbles with improved targeting ability to tumor cells.
Duan, Sujuan; Guo, Lu; Shi, Dandan; Shang, Mengmeng; Meng, Dong; Li, Jie
2017-07-01
Conjugation of folate (FOL) to nanobubbles could enhance the selective targeting to tumors expressing high levels of folate receptor (FR). To further improve the selective targeting ability of FOL-modified nanobubbles, a novel FOL-targeted nanobubble ((FOL) 2 -NB) with increasing FOL content (accomplished by linking two FOL molecules per DSPE-PEG2000 chain) was synthesized, through the methods of mechanical shaking and low-speed centrifugation based on lipid-stabilized perfluoropropane. The bubble size and distribution range were measured by dynamic light scattering (DLS). Enhanced imaging ability was evaluated using a custom-made agarose mold with a clinical US imaging system at mechanical indices of up to 0.12 at a center frequency of 9.0MHz. Targeted ability was also carried out in human breast cancer MCF-7 cells, which over-express the FR, by fluorescence activated cell sorting (FACS) and fluorescence microscopy, respectively. (FOL) 2 -NB with a particle size of 286.87±22.96nm were successfully prepared, and they exhibited superior contrast imaging effect. FACS and fluorescence microscopy studies showed greater cellular targeting ability in the group of (FOL) 2 -NB than in their control group of Non-targeted-NB (no FOL targeted nanobubbles) and FOL-NB (one FOL molecule per DSPE-PEG2000 chain). These results suggest that a new type of stronger targeted nanobubble was successfully prepared by increasing the FOL content per DSPE-PEG2000 chain. This novel (FOL) 2 -NBs are potentially useful for ultrasound molecular imaging and treatment of FR-positive tumors and are worthy for further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.
Turner, Tiffany; Shao, Qiujia; Wang, Weiran; Wang, Yudi; Wang, Chenliang; Kinlock, Ballington; Liu, Bindong
2016-08-28
Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) is a host restriction factor that impedes HIV-1 replication. Viral integrity is salvaged by HIV-1 virion infectivity factor (Vif), which mediates A3G polyubiquitination and subsequent cellular depletion. Previous studies have implied that A3G polyubiquitination is essential for Vif-induced degradation. However, the contribution of polyubiquitination to the rate of A3G degradation remains unclear. Here, we show that A3G polyubiquitination is essential for degradation. Inhibition of ubiquitin-activating enzyme E1 by PYR-41 or blocking the formation of ubiquitin chains by over-expressing the lysine to arginine mutation of ubiquitin K48 (K48R) inhibited A3G degradation. Our A3G mutagenesis study showed that lysine residues 297, 301, 303, and 334 were not sufficient to render lysine-free A3G sensitive to Vif-mediated degradation. Our data also confirm that Vif could induce ubiquitin chain formation on lysine residues interspersed throughout A3G. Notably, A3G degradation relied on the lysine residues involved in polyubiquitination. Although A3G and the A3G C-terminal mutant interacted with Vif and were modified by ubiquitin chains, the latter remained more resistant to Vif-induced degradation. Furthermore, the A3G C-terminal mutant, but not the N-terminal mutant, maintained potent antiviral activity in the presence of Vif. Taken together, our results suggest that the location of A3G ubiquitin modification is a determinant for Vif-mediated degradation, implying that in addition to polyubiquitination, other factors may play a key role in the rate of A3G degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cai, Wei; Xie, Shunbi; Zhang, Jin; Tang, Dianyong; Tang, Ying
2017-12-15
In this work, an electrochemical impedance biosensor for high sensitive detection of Hg 2+ was presented by coupling with Hg 2+ -induced activation of Mg 2+ -specific DNAzyme (Mg 2+ -DNAzyme) for target cycling and hybridization chain reaction (HCR) assembled DNA hydrogel for signal amplification. Firstly, we synthesized two different copolymer chains P1 and P2 by modifying hairpin DNA H3 and H4 with acrylamide polymer, respectively. Subsequently, Hg 2+ was served as trigger to activate the Mg 2+ -DNAzyme for selectively cleavage ribonucleobase-modified substrate in the presence of Mg 2+ . The partial substrate strand could dissociate from DNAzyme structure, and hybridize with capture probe H1 to expose its concealed sequence for further hybridization. With the help of the exposed sequence, the HCR between hairpin DNA H3 and H4 in P1 and P2 was initiated, and assembled a layer of DNA cross-linked hydrogel on the electrode surface. The formed non-conductive DNA hydrogel film could greatly hinder the interfacial electronic transfer which provided a possibility for us to construct a high sensitive impedance biosensor for Hg 2+ detection. Under the optimal conditions, the impedance biosensor showed an excellent sensitivity and selectivity toward Hg 2+ in a concentration range of 0.1pM - 10nM with a detection limit of 0.042pM Moreover, the real sample analysis reveal that the proposed biosensor is capable of discriminating Hg 2+ ions in reliable and quantitative manners, indicating this method has a promising potential for preliminary application in routine tests. Copyright © 2017 Elsevier B.V. All rights reserved.
Niu, Junfeng; Lin, Hui; Xu, Jiale; Wu, Hao; Li, Yangyang
2012-09-18
The Ce-doped modified porous nanocrystalline PbO(2) film electrode prepared by electrodeposition technology was used for electrochemical mineralization of environmentally persistent perfluorinated carboxylic acids (PFCAs) (~C(4)-C(8)), i.e., perfluorobutanoic acid (PFBA), perfluopentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoheptanoic acid (PFHpA), and perfluorooctanoic acid (PFOA) in aqueous solution (100 mL of 100 mg L(-1)). The degradation of PFCAs follows pseudo-first-order kinetics, and the values of the relative rate constant (k) depend upon chain length k(PFHpA) (4.1 × 10(-2) min(-1); corresponding half-life 16.8 min) ≈ 1.1k(PFOA) ≈ 2.5k(PFHxA)≈ 6.9k(PFPeA) ≈ 9.7k(PFBA). The carbon mineralization indices [i.e., 1 - (TOC(insolution)/TOC(inPFCA,degraded))] were 0.49, 0.70, 0.84, 0.91, and 0.95 for PFBA, PFPeA, PFHxA, PFHpA, and PFOA, respectively, after 90 min electrolysis. The major mineralization product, F(-), as well as low amount of intermediate PFCAs with shortened chain lengths were detected in aqueous solution. By observing the intermediates and tracking the concentration change, a possible pathway of electrochemical mineralization is proposed as follows: Kolbe decarboxylation reaction occurs first at the anode to form the perfluoroalkyl radical, followed by reaction with hydroxyl radicals to form the perfluoroalkyl alcohol which then undergoes intramolecular rearrangement to form the perfluoroalkyl fluoride. After this, the perfluoroalkyl fluoride reforms perfluorinated carboxylic with shorter chain length than its origin by hydrolysis. This electrochemical technique could be employed to treat PFCAs (~C(4)-C(8)) in contaminated wastewater.
Control Transfer in Operating System Kernels
1994-05-13
microkernel system that runs less code in the kernel address space. To realize the performance benefit of allocating stacks in unmapped kseg0 memory, the...review how I modified the Mach 3.0 kernel to use continuations. Because of Mach’s message-passing microkernel structure, interprocess communication was...critical control transfer paths, deeply- nested call chains are undesirable in any case because of the function call overhead. 4.1.3 Microkernel Operating
In vivo myosin step-size from zebrafish skeletal muscle
Ajtai, Katalin; Sun, Xiaojing; Takubo, Naoko; Wang, Yihua
2016-01-01
Muscle myosins transduce ATP free energy into actin displacement to power contraction. In vivo, myosin side chains are modified post-translationally under native conditions, potentially impacting function. Single myosin detection provides the ‘bottom-up’ myosin characterization probing basic mechanisms without ambiguities inherent to ensemble observation. Macroscopic muscle physiological experimentation provides the definitive ‘top-down’ phenotype characterizations that are the concerns in translational medicine. In vivo single myosin detection in muscle from zebrafish embryo models for human muscle fulfils ambitions for both bottom-up and top-down experimentation. A photoactivatable green fluorescent protein (GFP)-tagged myosin light chain expressed in transgenic zebrafish skeletal muscle specifically modifies the myosin lever-arm. Strychnine induces the simultaneous contraction of the bilateral tail muscles in a live embryo, causing them to be isometric while active. Highly inclined thin illumination excites the GFP tag of single lever-arms and its super-resolution orientation is measured from an active isometric muscle over a time sequence covering many transduction cycles. Consecutive frame lever-arm angular displacement converts to step-size by its product with the estimated lever-arm length. About 17% of the active myosin steps that fall between 2 and 7 nm are implicated as powerstrokes because they are beyond displacements detected from either relaxed or ATP-depleted (rigor) muscle. PMID:27249818
Kommareddy, Sushma; Amiji, Mansoor
2007-02-01
The objective of the present study was to modify thiolated gelatin nanoparticles with poly(ethylene glycol) (PEG) chains and examine their long circulating and tumor-targeting properties in vivo in an orthotopic a human breast adenocarcinoma xenograft model. The crosslinked nanoparticle systems were characterized to have a size of 150-250 nm with rapid payload release properties in a highly reducing environment. Upon PEG modification, the nanoparticle size increased to 300-350 nm in diameter. The presence of PEG chains on the surface was confirmed by characterization with electron spectroscopy for chemical analysis. The in vivo long-circulating potential, biodistribution and passive tumor targeting of the controls, and PEG-modified thiolated gelatin nanoparticles were evaluated by injecting indium-111 (111In)-labeled nanoparticles into breast tumor (MDA-MB-435)-bearing nude mice. Upon modification with PEG, the nanoparticles were found to have longer circulation times, with the plasma and tumor half-lives of 15.3 and 37.8 h, respectively. The results also showed preferential localization of thiolated nanoparticles in the tumor mass. The resulting nanoparticulate systems with long circulation properties could be used to target encapsulated drugs and genes to tumors passively by utilizing the enhanced permeability and retention effect of the tumor vasculature. Copyright (c) 2006 Wiley-Liss, Inc.
Clinical and health care aspects of respiratory tract disorders in Poland.
Kanecki, Krzysztof; Zycinska, Katarzyna; Tyszko, Piotr
2016-01-01
Respiratory diseases constitute a public health priority worldwide. This is related to the increasing exposure to microorganisms, toxic factors, allergens, drugs and smoking, as the most important factors. Increasing costs of health promotion, prevention, diagnosis and treatment of respiratory tract diseases forces the search for effective strategies in the reduction of costs without making a significant impact of these activities on health results. Chronic obstructive pulmonary disease (COPD) is an example of these diseases with increasing incidence, which has few known modifiable factors and absorbs large medical and social costs. The aim of this study is to present the conception of cost driver analysis that could be useful in constructing a good combination of the EBM-based treatment with cost reduction decisions. Analysis of cost drivers was based on the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines and Polish recommendations of COPD diagnosis and treatment. The proposition of cost reduction strategy in COPD treatment was based on identification of cost drivers in value chain conception. An increasing incidence and treatment costs of COPD force the search for methods of costs reduction in health care. Identifying, evaluating and modifying the cost drivers with use of the value chain conception could be an effective method in achieving these objectives.
Laser synthesis of aluminium nanoparticles in biocompatible polymer solutions
NASA Astrophysics Data System (ADS)
Singh, Rina; Soni, R. K.
2014-08-01
Pulsed laser ablation of Aluminium (Al) in pure water rapidly forms a thin alumina (Al2O3) layer which drastically modifies surface plasmon resonance (SPR) absorption characteristics in deep-UV region. Initially, pure aluminium nanoparticles (NPs) are generated in water without any stabilizers or surfactants at low laser fluence which gradually transform to stable Al-Al2O3 core-shell nanostructure with increasing either residency time or fluence. The role of laser wavelength and fluence on the SPR properties and oxidation characteristics of Al NPs has been investigated in detail. We also present a one-step in situ synthesis of oxide-free stable Al NPs in biocompatible polymer solutions using laser ablation in liquid method. We have used nonionic polymers (PVP, PVA and PEG) and anionic surfactant (SDS) stabilizer to suppress the Al2O3 formation and studied the effect of polymer functional group, polymeric chain length, polymer concentration and anionic surfactant on the incipient embryonic aluminium particles and their sizes. The different functional groups of polymers resulted in different oxidation states of Al. PVP and PVA polymers resulted in pure Al NPs; however, PEG and SDS resulted in alumina-modified Al NPs. The Al nanoparticles capped with PVP, PVA, and PEG show a good correlation between nanoparticle stability and monomeric length of the polymer chain.
Duranty, Edward R.; Baschnagel, Jörg; Dadmun, Mark
2017-02-07
Copolymers are commonly used as interface modifiers that allow for the compatibilization of polymer components in a blend. For copolymers to function as a compatibilizer, they must diffuse through the matrix of the blend to the interface between the two blend components. The diffusivity of a copolymer in a blend matrix therefore becomes important in determining good candidates for use as compatibilizers. In this paper, coarse-grained Monte Carlo simulations using the bond fluctuation model modified with an overlap penalty have been developed to study the diffusive behavior of PS/PMMA random copolymers in a PMMA homopolymer blend. The simulations vary themore » connectivity between different monomers, the thermodynamic interactions between the monomers which manifest within a chain, and between copolymer and homopolymer matrix and define the monomer friction coefficient of each component independently, allowing for the determination of the combined effect of these parameters on copolymer chain diffusion. Finally, the results of this work indicate that PS-r-PMMA copolymer diffusion is not linearly dependent on the copolymer composition on a logarithmic scale, but its diffusion is a balance of the kinetics governed by the dominant motion of the faster styrene monomers and thermodynamics, which are governed by the concentration of styrene monomer within a given monomer’s local volume.« less
NASA Astrophysics Data System (ADS)
Roshchina, T. M.; Shoniya, N. K.; Tayakina, O. Ya.; Tkachenko, O. P.; Kustov, L. M.; Bernardoni, F.; Fadeev, A. Y.
2012-03-01
The role of the grafting density of monofunctional polyfluoroalkylsilanes of the C n F2 n - 1(CH2) m Si(CH3)2Cl general formula (where n = 3, 4, and 6; and m = 2 and 3) and their composition in intermolecular interactions of the molecules of saturated and aromatic hydrocarbons with a surface of chemically modified silica is studied by means of IR spectroscopy and adsorption-static and gas chromatography. It is shown that the higher the concentration and the shorter the length of the grafted chain, the greater (by a factor of 2 to 25) the drop in the adsorption values of hydrocarbons as a result of modifications, due to an increase in the degree of oleophobization of surface upon the formation of polyorganofluorine coatings. The high specificity of the surface with respect to benzene, which is due to the active participation of the polar fragment of a grafted chain in adsorption process, is related to the features of a relatively low-density sample with a concentration of grafted perfluorobutyl groups of 1.7 nm-2. It is shown that the thermodestruction of polyfluoroalkyl silica remains virtually unobserved upon heating to 523 K in an argon flow.
Swatek, Kirby N; Komander, David
2016-01-01
Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation. PMID:27012465
[Effect of polyethylene glycol-lipid derivatives on the stability of grafted liposomes].
Xu, Yang; Shi, Li; Deng, Yi-hui
2011-10-01
It is reported that polyethylene glycol-lipid (PEG-lipid) derivatives increase liposomes stability, prolong the blood circulation of liposomes, enhance their tumor-targeting efficiency, and improve drug efficacy. Therefore, it is of great importance to investigate the influence of modified PEG-lipid derivatives on the physical, chemical, and biological characteristics of liposomes for the promotion of dealing with the existed problems, such as the accelerated blood clearance (ABC) phenomenon when repeated intravous injection at a certain time-interval, and developing novel targeted pharmaceutical preparations. In this review, the effects of modified PEG-lipid derivatives were summarized in many aspects. It indicats that the chemical bonds (amide, ether, ester, and disulfide) between PEG and lipid, as well as the species of lipids, such as the commonly used phosphatidylethanolamine, cholesterol, and diacylglycerol have substantial effects on the grafted liposomes stability in vitro and in vivo. Besides, the properties of lipids (the fatty acid chain length and saturation) and the groups (methoxy, carboxylic and amino) at the distal ends of the PEG chains were also considered to be important factors. In the end, the influence of the average molecular weight of PEG and the molar ratio of PEG-lipid derivatives in the total lipid were further focused.
Liu, Jia; Guo, Jinchao; Zhang, Haibo; Li, Ning; Yang, Litao; Zhang, Dabing
2009-11-25
Various polymerase chain reaction (PCR) methods were developed for the execution of genetically modified organism (GMO) labeling policies, of which an event-specific PCR detection method based on the flanking sequence of exogenous integration is the primary trend in GMO detection due to its high specificity. In this study, the 5' and 3' flanking sequences of the exogenous integration of MON89788 soybean were revealed by thermal asymmetric interlaced PCR. The event-specific PCR primers and TaqMan probe were designed based upon the revealed 5' flanking sequence, and the qualitative and quantitative PCR assays were established employing these designed primers and probes. In qualitative PCR, the limit of detection (LOD) was about 0.01 ng of genomic DNA corresponding to 10 copies of haploid soybean genomic DNA. In the quantitative PCR assay, the LOD was as low as two haploid genome copies, and the limit of quantification was five haploid genome copies. Furthermore, the developed PCR methods were in-house validated by five researchers, and the validated results indicated that the developed event-specific PCR methods can be used for identification and quantification of MON89788 soybean and its derivates.
Lokshina, L Y; Vavilin, V A; Salminen, E; Rintala, J
2003-01-01
The anaerobic bioconversion of solid poultry slaughterhouse wastes was kinetically investigated. The modified version of
Bellec, Amandine; Arrigoni, Claire; Douillard, Ludovic; Fiorini-Debuisschert, Céline; Mathevet, Fabrice; Kreher, David; Attias, André-Jean; Charra, Fabrice
2014-10-31
Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons' self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.
NASA Astrophysics Data System (ADS)
Stępniak, A.; Nita, P.; Krawiec, M.; Jałochowski, M.
2009-09-01
Structural properties of monatomic indium chains on Si(111)5×2-Au surface are investigated by scanning tunneling microscopy (STM) and first-principles density functional calculations (DFT). The STM topography data show that submonolayer coverage of indium leads to a well-ordered chain structure with the same periodicity as the Si adatoms form on Si(111)5×2-Au surface. Bias-dependent STM topography and spectroscopy reveal two different mechanisms of In-atoms adsorption on the surface: bonding to Si adatoms and substitution for Si atoms in the adatom positions. Those mechanisms are further corroborated by DFT calculations. The obtained structural model of In-modified Si(111)5×2-Au surface remains in good agreement with the experimental data.
Moghadasi, Mohammad; Kozakov, Dima; Mamonov, Artem B.; Vakili, Pirooz; Vajda, Sandor; Paschalidis, Ioannis Ch.
2013-01-01
We introduce a message-passing algorithm to solve the Side Chain Positioning (SCP) problem. SCP is a crucial component of protein docking refinement, which is a key step of an important class of problems in computational structural biology called protein docking. We model SCP as a combinatorial optimization problem and formulate it as a Maximum Weighted Independent Set (MWIS) problem. We then employ a modified and convergent belief-propagation algorithm to solve a relaxation of MWIS and develop randomized estimation heuristics that use the relaxed solution to obtain an effective MWIS feasible solution. Using a benchmark set of protein complexes we demonstrate that our approach leads to more accurate docking predictions compared to a baseline algorithm that does not solve the SCP. PMID:23515575
Mercury sulphide dimorphism in glasses
Kassem, Mohammad; Sokolov, Anton; Cuisset, Arnault; ...
2016-05-23
Crystals usually exist in several polymorphic forms in different domains of the P,T-diagram. Glasses and liquids also reveal density- or entropy-driven polyamorphism when e.g. an amorphous molecular solid or liquid transforms into a network polymorph. Using pulsed neutron and high-energy X-ray diffraction, we show that mercury sulphide exists simultaneously in two polymorphic modifications in a glass network forming chain-like and tetrahedral motifs. DFT simulations of 4-fold coordinated mercury species and RMC modelling of high-resolution diffraction data provide additional details on local Hg environment and connectivity implying the (HgS2/2)m oligomeric chains (1 m 6) are acting as a network former whilemore » the HgS4/4-related mixed agglomerated units behave as a modifier« less
Negri, Graciela E; Deming, Timothy J
2017-01-01
New poly(L-lysine)-b-poly(ethylene glycol) copolypeptides have been prepared, where the side-chain amine groups of lysine residues are modified to contain ortho-amine substituted phenylboronic acid, i.e., Wulff-type phenylboronic acid (WBA), groups to improve their pH responsive, carbohydrate binding properties. These block copolymers form nanoscale complexes with glycosylated proteins that are stable at physiological pH, yet dissociate and release the glycoproteins under acidic conditions, similar to those found in endosomal and lysosomal compartments within cells. These results suggest that WBA modified polypeptide copolymers are promising for further development as degradable carriers for intracellular protein delivery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Irradiation influence on the detection of genetic-modified soybeans
NASA Astrophysics Data System (ADS)
Villavicencio, A. L. C. H.; Araújo, M. M.; Baldasso, J. G.; Aquino, S.; Konietzny, U.; Greiner, R.
2004-09-01
Three soybean varieties were analyzed to evaluate the irradiation influence on the detection of genetic modification. Samples were treated in a 60Co facility at dose levels of 0, 500, 800, and 1000Gy. The seeds were at first analyzed by Comet Assay as a rapid screening irradiation detection method. Secondly, germination test was performed to detect the viability of irradiated soybeans. Finally, because of its high sensitivity, its specificity and rapidity the polimerase chain reaction was the method applied for genetic modified organism detection. The analysis of DNA by the single technique of microgel electrophoresis of single cells (DNA Comet Assay) showed that DNA damage increased with increasing radiation doses. No negative influence of irradiation on the genetic modification detection was found.
A kinematic analysis of the modified flight telerobotic servicer manipulator system
NASA Technical Reports Server (NTRS)
Crane, Carl; Carnahan, Tim; Duffy, Joseph
1992-01-01
A reverse kinematic analysis is presented of a six-DOF subchain of a modified seven-DOF flight telerobotic servicer manipulator system. The six-DOF subchain is designated as a TR-RT chain, which describes the sequence of manipulator joints beginning with the first grounded hook joint (universal joint) T, where the sequence R-R designates a pair of revolute joints with parallel axes. At the outset, it had been thought that the reverse kinematic analysis would be similar to a TTT manipulator previously analyzed, in which the third and fourth joints intersected at a finite point. However, this is shown not the case, and a 16th-degree tan-half-angle polynomial is derived for the TR-RT manipulator.
Melin, Frederic; Noor, Mohamed R.; Pardieu, Elodie; Boulmedais, Fouzia; Banhart, Florian; Cecchini, Gary; Soulimane, Tewfik
2015-01-01
Succinate Quinone reductases (SQRs) are the enzymes which couple the oxidation of succinate and the reduction of quinones in the respiratory chain of prokaryotes and eukaryotes. We compare herein the temperature-dependent activity and structural stability of two SQRs, the first one from the mesophilic bacterium E. coli and the second one from the thermophilic bacterium T. thermophilus by a combined electrochemical and infrared spectroscopy approach. Direct electron transfer was achieved with the full membrane protein complexes at SWNTs-modified electrodes. The possible structural factors which contribute to the temperature-dependent activity of the enzymes and to the thermostability of the T. thermophiles SQR in particular, are discussed. PMID:25139263
NASA Astrophysics Data System (ADS)
Chen, Chun-Hsien; Hutchison, James H.; Postlethwaite, Timothy A.; Richardson, John N.; Murray, R. W.
1994-07-01
Chlorosilylated platinum oxide electrode surfaces can be generated by reaction of SiCl4 vapor with an electrochemically prepared monolayer of platinum oxide. A variety of nucleophilic agents (such as alcohols, amines, thiols, and Grignard reagents) can be used to displace chloride and thereby functionalize the metal surface. Electroactive surfaces prepared with ferrocene methanol as the nucleophile show that derivatization by small molecules can achieve coverages on the order of a full monolayer. Surfaces modified with long-chain alkyl groups efficiently block electrode reactions of redox probes dissolved in the contacting solution, but other electrochemical (double layer capacitance and surface coverage) and contact angle measurements suggest that these molecule films are not highly ordered, self-assembled monolayers.
Method to Produce Flexible Ceramic Thermal Protection System Resistant to High Aeroacoustic Noise
NASA Technical Reports Server (NTRS)
Sawko, Paul M. (Inventor); Calamito, Dominic P. (Inventor); Jong, Anthony (Inventor)
1997-01-01
A method of producing a three dimensional angle interlock ceramic fiber which is stable to high aeroacoustic noise of about 170 decibels and to high temperatures of about 2500 F is disclosed. The method uses multiple separate strands of a ceramic fiber or ceramic tow suitable for weaving having multiple warp fibers and multiple fill fibers woven with a modified fly-shuttle loom or rapier shuttleless loom which has nip rolls, a modified fabric advancement mechanism and at least eight harnesses in connection with a Dobby pattern chain utilizing sufficient heddles for each warp fiber and a reed which accommodates at least 168 ends per inch. The method produces a multilayered top fabric, rib fabric and single-layered bottom fabric.
Kurata, Shinya; Kanagawa, Takahiro; Yamada, Kazutaka; Torimura, Masaki; Yokomaku, Toyokazu; Kamagata, Yoichi; Kurane, Ryuichiro
2001-01-01
We have developed a simple method for the quantitative detection of specific DNA or RNA molecules based on the finding that BODIPY® FL fluorescence was quenched by its interaction with a uniquely positioned guanine. This approach makes use of an oligonucleotide probe or primer containing a BODIPY® FL-modified cytosine at its 5′-end. When such a probe was hybridized with a target DNA, its fluorescence was quenched by the guanine in the target, complementary to the modified cytosine, and the quench rate was proportional to the amount of target DNA. This widely applicable technique will be used directly with larger samples or in conjunction with the polymerase chain reaction to quantify small DNA samples. PMID:11239011
Reiner, S J; Reineccius, G A; Peppard, T L
2010-06-01
The performance of several hydrocolloids (3 gum acacias, 1 modified gum acacia, and 3 modified starches) in stabilizing beverage emulsions and corresponding model beverages was investigated employing different core materials, emulsifier usage levels, and storage temperatures. Concentrated emulsions were prepared using orange terpenes or Miglyol 812 (comprising medium-chain triglycerides, MCT) weighted 1:1 with ester gum, stored at 25 or 35 degrees C, and analyzed on days 0, 1, and 3. On day 3, model beverages were made from each emulsion, stored at both temperatures, and analyzed weekly for 4 wk. Stability of concentrated emulsions was assessed by measuring mean particle size and by visual observations of ringing; beverage stability was judged similarly and also by loss of turbidity. Particle size measurements showed concentrated emulsions containing gum acacia or modified gum acacia with either core material were stable over 3 d storage at both temperatures whereas those made with modified starches were not, destabilization being faster at 35 degrees C. Beverages based on orange terpenes, in contrast to Miglyol, yielded smaller mean particle sizes, both on manufacture and during storage, regardless of hydrocolloid used. Visual observations of ringing generally supported this finding. Modified gum acacia was evaluated at both recommended and higher usage levels, stability increasing in the latter case. In general, all gum acacia and modified gum acacia emulsifiers were superior in stability to those based on modified starches, at either temperature, for orange terpene-based beverages. In Miglyol-based beverages, similar results were seen, except 1 modified starch performed as well as the gum acacia products.
Erythrolic acids A-E, Meroterpenoids from a Marine-Derived Erythrobacter sp
Hu, Youcai; Legako, Aaron G.; Espindola, Ana Paula D.M.; MacMillan, John B.
2012-01-01
Erythrolic acids A-E (1–5) are five unusual meroterpenoids isolated from the bacterium Erythrobacter sp. derived from a marine sediment sample collected in Galveston, TX. The structures were elucidated by means of detailed spectroscopic analysis and chemical derivatization. The erythrolic acids contain a 4-hydroxybenzoic acid appended with a modified terpene side chain. The side chain modifications include oxidation of a terminal methyl substituent and in the case of 1–4 addition of a 2-carbon unit to give terpene side chains of unusual length; C22 for 1 and 2, C17 for 3 and C12 for 4. The relative and absolute configurations of the meroterpenoids were determined by coupling constant, NOE and Mosher’s analysis. In vitro cytotoxicity towards a number of non-small cell lung cancer (NSCLC) cell lines revealed only modest activity for erythrolic acid D (4) (2.5 μM against HCC44). The discovery of these unusual diterpenes, along with the previously reported erythrazoles, demonstrate the natural product potential of a previously unstudied group of bacteria for drug discovery. The unusual nature of the terpene side chain, we believe, involves an oxidation of a terminal methyl group to a carboxylic acid and subsequent Claisen condensation with acetyl-CoA. PMID:22384985
Mui, Barbara L; Tam, Ying K; Jayaraman, Muthusamy; Ansell, Steven M; Du, Xinyao; Tam, Yuen Yi C; Lin, Paulo JC; Chen, Sam; Narayanannair, Jayaprakash K; Rajeev, Kallanthottathil G; Manoharan, Muthiah; Akinc, Akin; Maier, Martin A; Cullis, Pieter; Madden, Thomas D; Hope, Michael J
2013-01-01
Lipid nanoparticles (LNPs) encapsulating short interfering RNAs that target hepatic genes are advancing through clinical trials, and early results indicate the excellent gene silencing observed in rodents and nonhuman primates also translates to humans. This success has motivated research to identify ways to further advance this delivery platform. Here, we characterize the polyethylene glycol lipid (PEG-lipid) components, which are required to control the self-assembly process during formation of lipid particles, but can negatively affect delivery to hepatocytes and hepatic gene silencing in vivo. The rate of transfer from LNPs to plasma lipoproteins in vivo is measured for three PEG-lipids with dialkyl chains 14, 16, and 18 carbons long. We show that 1.5 mol % PEG-lipid represents a threshold concentration at which the chain length exerts a minimal effect on hepatic gene silencing but can still modify LNPs pharmacokinetics and biodistribution. Increasing the concentration to 2.5 and 3.5 mol % substantially compromises hepatocyte gene knockdown for PEG-lipids with distearyl (C18) chains but has little impact for shorter dimyristyl (C14) chains. These data are discussed with respect to RNA delivery and the different rates at which the steric barrier disassociates from LNPs in vivo. PMID:24345865
Wang, Fei; Shih, Kaimin; Leckie, James O
2015-01-01
The sorption of PFOS and PFBS on boehmite was significantly retarded by the competitive sorption of humic acid (HA), implying that PFOS and PFBS are likely more mobile in water and groundwater systems enriched with HA. The sorption behavior of PFOS and PFBS on the HA-modified boehmite surface were also found to differ due to their different chain lengths. For a partially HA-modified boehmite surface, the isotherm study showed that PFOS had a much higher maximum sorption capacity than PFBS and that PFOS might possess additional surface interactions besides electrostatic interaction. For a HA-saturated boehmite, a linear sorption isotherm was found for PFOS while nearly no PFBS sorption was observed. This indicates that sorption behavior between PFOS and the sorbed HA on boehmite was dominated by hydrophobic interactions, instead of electrostatic interaction. In addition, a conceptual model combining hydrophobic and electrostatic interaction was established to explain the sorption behavior of PFOS and PFBS on HA-modified boehmite. Finally, the results revealed that the sorption of PFOS and PFBS on HA-modified boehmite is pH-dependent. The neutralization of negative sites on HA-modified boehmite reduced the electrostatic repulsion and enhanced the partitioning of PFBS on the sorbed HA. Copyright © 2014 Elsevier Ltd. All rights reserved.
Patel, Anjali A.; Lopez, Nanette V.; Lawless, Harry T.; Njike, Valentine; Beleche, Mariana; Katz, David L.
2016-01-01
OBJECTIVE This study assessed consumer acceptance of reductions of calories, fat, saturated fat, and sodium to current restaurant recipes. METHODS Twenty-four menu items, from six restaurant chains, were slightly modified and moderately modified by reducing targeted ingredients. Restaurant customers (n=1,838) were recruited for a taste test and were blinded to the recipe version as well as the purpose of the study. Overall consumer acceptance was measured using a 9-point hedonic (like/dislike) scale, likelihood to purchase scale, Just-About-Right (JAR) 5-point scale, penalty analysis and alienation analysis. RESULTS Overall, modified recipes of 19 menu items were scored similar to (or better than) their respective current versions. Eleven menu items were found to be acceptable at the slightly modified recipe version and eight menu items were found to be acceptable at the moderately modified recipe version. Acceptable ingredient reductions resulted in a reduction of up to 26% in calories and a reduction of up to 31% in sodium per serving. CONCLUSIONS The majority of restaurant menu items with small reductions of calories, fat, saturated fat and sodium were acceptable. Given the frequency of eating foods away from home, these reductions could be effective in creating dietary improvements for restaurant diners. PMID:27891828
Patel, Anjali A; Lopez, Nanette V; Lawless, Harry T; Njike, Valentine; Beleche, Mariana; Katz, David L
2016-12-01
To assess consumer acceptance of reductions of calories, fat, saturated fat, and sodium to current restaurant recipes. Twenty-four menu items, from six restaurant chains, were slightly modified and moderately modified by reducing targeted ingredients. Restaurant customers (n = 1,838) were recruited for a taste test and were blinded to the recipe version as well as the purpose of the study. Overall consumer acceptance was measured using a 9-point hedonic (like/dislike) scale, likelihood to purchase scale, Just-About-Right (JAR) 5-point scale, penalty analysis, and alienation analysis. Overall, modified recipes of 19 menu items were scored similar to (or better than) their respective current versions. Eleven menu items were found to be acceptable in the slightly modified recipe version, and eight menu items were found to be acceptable in the moderately modified recipe version. Acceptable ingredient modifications resulted in a reduction of up to 26% in calories and a reduction of up to 31% in sodium per serving. The majority of restaurant menu items with small reductions of calories, fat, saturated fat, and sodium were acceptable. Given the frequency of eating foods away from home, these reductions could be effective in creating dietary improvements for restaurant diners. © 2016 The Obesity Society.
Kamrava, Brandon; Roehm, Pamela C
2017-08-01
Objective To systematically review the anatomy of the ossicular chain. Data Sources Google Scholar, PubMed, and otologic textbooks. Review Methods A systematic literature search was performed on January 26, 2015. Search terms used to discover articles consisted of combinations of 2 keywords. One keyword from both groups was used: [ ossicular, ossicle, malleus, incus, stapes] and [ morphology, morphometric, anatomy, variation, physiology], yielding more than 50,000 hits. Articles were then screened by title and abstract if they did not contain information relevant to human ossicular chain anatomy. In addition to this search, references of selected articles were studied as well as suggested relevant articles from publication databases. Standard otologic textbooks were screened using the search criteria. Results Thirty-three sources were selected for use in this review. From these studies, data on the composition, physiology, morphology, and morphometrics were acquired. In addition, any correlations or lack of correlations between features of the ossicular chain and other features of the ossicular chain or patient were noted, with bilateral symmetry between ossicles being the only important correlation reported. Conclusion There was significant variation in all dimensions of each ossicle between individuals, given that degree of variation, custom fitting, or custom manufacturing of prostheses for each patient could optimize prosthesis fit. From published data, an accurate 3-dimensional model of the malleus, incus, and stapes can be created, which can then be further modified for each patient's individual anatomy.
Haslam, Tegan M; Haslam, Richard; Thoraval, Didier; Pascal, Stéphanie; Delude, Camille; Domergue, Frédéric; Fernández, Aurora Mañas; Beaudoin, Frédéric; Napier, Johnathan A; Kunst, Ljerka; Joubès, Jérôme
2015-03-01
The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function. © 2015 American Society of Plant Biologists. All Rights Reserved.
Haslam, Tegan M.; Haslam, Richard; Thoraval, Didier; Pascal, Stéphanie; Delude, Camille; Domergue, Frédéric; Fernández, Aurora Mañas; Beaudoin, Frédéric; Napier, Johnathan A.; Kunst, Ljerka; Joubès, Jérôme
2015-01-01
The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function. PMID:25596184
Shojaei, Taha Roodbar; Mohd Salleh, Mohamad Amran; Tabatabaei, Meisam; Ekrami, Alireza; Motallebi, Roya; Rahmani-Cherati, Tavoos; Hajalilou, Abdollah; Jorfi, Raheleh
2014-01-01
Mycobacterium tuberculosis, the causing agent of tuberculosis, comes second only after HIV on the list of infectious agents slaughtering many worldwide. Due to the limitations behind the conventional detection methods, it is therefore critical to develop new sensitive sensing systems capable of quick detection of the infectious agent. In the present study, the surface modified cadmium-telluride quantum dots and gold nanoparticles conjunct with two specific oligonucleotides against early secretory antigenic target 6 were used to develop a sandwich-form fluorescence resonance energy transfer-based biosensor to detect M. tuberculosis complex and differentiate M. tuberculosis and M. bovis Bacille Calmette-Guerin simultaneously. The sensitivity and specificity of the newly developed biosensor were 94.2% and 86.6%, respectively, while the sensitivity and specificity of polymerase chain reaction and nested polymerase chain reaction were considerably lower, 74.2%, 73.3% and 82.8%, 80%, respectively. The detection limits of the sandwich-form fluorescence resonance energy transfer-based biosensor were far lower (10 fg) than those of the polymerase chain reaction and nested polymerase chain reaction (100 fg). Although the cost of the developed nanobiosensor was slightly higher than those of the polymerase chain reaction-based techniques, its unique advantages in terms of turnaround time, higher sensitivity and specificity, as well as a 10-fold lower detection limit would clearly recommend this test as a more appropriate and cost-effective tool for large scale operations. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
Cescutti, P; Paoletti, S
1994-02-15
The specificity of the endoglycanase associated with the bacteriophage phi SK1 particles was tested on the native capsular polysaccharide produced by Klebsiella pneumoniae serotype SK1 and on three chemically modified polymers derived from it. The primary structure of the SK1 capsular polysaccharide is: [formula: see text] and the beta 1-3 linkage between the glucose and the galactose residues is the one cleaved by the phage enzyme. The enzyme activity was assayed on the deacetylated polysaccharide and on two derivatives obtained by removal of both the side-chain sugars and of only the alpha-D-galactosyl unit, respectively. The endoglycanase was more active on the deacetylated polysaccharide than on the native one, suggesting that the presence of the acetyl groups interferes with the enzyme-polysaccharide interaction. A possible role of the acetyl groups in the control of the polysaccharide chain length and hence on the rheological behaviour of the capsule cannot be ruled out, as already indicated for other bacterial polysaccharides. On the contrary, the removal of the side chains, either complete or selective, caused the modification of the recognition site in such a way that the enzymatic depolymerization no longer occurred. Therefore, it can be inferred that the phi SK1 endoglycanase requires the presence of both the side chain sugars to exhibit its cleaving activity, although this latter is in the main chain.
Interplay between Ubiquitin, SUMO, and Poly(ADP-Ribose) in the Cellular Response to Genotoxic Stress
Pellegrino, Stefania; Altmeyer, Matthias
2016-01-01
Cells employ a complex network of molecular pathways to cope with endogenous and exogenous genotoxic stress. This multilayered response ensures that genomic lesions are efficiently detected and faithfully repaired in order to safeguard genome integrity. The molecular choreography at sites of DNA damage relies heavily on post-translational modifications (PTMs). Protein modifications with ubiquitin and the small ubiquitin-like modifier SUMO have recently emerged as important regulatory means to coordinate DNA damage signaling and repair. Both ubiquitylation and SUMOylation can lead to extensive chain-like protein modifications, a feature that is shared with yet another DNA damage-induced PTM, the modification of proteins with poly(ADP-ribose) (PAR). Chains of ubiquitin, SUMO, and PAR all contribute to the multi-protein assemblies found at sites of DNA damage and regulate their spatio-temporal dynamics. Here, we review recent advancements in our understanding of how ubiquitin, SUMO, and PAR coordinate the DNA damage response and highlight emerging examples of an intricate interplay between these chain-like modifications during the cellular response to genotoxic stress. PMID:27148359
Comparison of tetrachloromethane sorption to an alkylammonium-clay and an alkyldiammonium-clay
Smith, J.A.; Jaffe, P.R.
1991-01-01
The interlamellar space of Wyoming bentonite (clay) was modified by exchanging either decyltrimethyl-ammonium (DTMA) or decyltrimethyldiammonium (DTMDA) cations for inorganic ions, and tetrachloromethane sorption to the resulting two organoclays from water was studied at 10, 20, and 35??C. Only one end of the 10-carbon alkyl chain of the DTMA cation is attached to the silica surface of the clay mineral, and tetrachloromethane sorption of DTMA-clay is characterized by isotherm linearity, noncompetitive sorption, weak solute uptake, and a relatively low heat of sorption. Both ends of the 10-carbon chain of the DTMDA cation are attached to the silica surface of the clay mineral, and tetrachloromethane sorption to DTMDA-clay is characterized by nonlinear isotherms, competitive sorption, strong solute uptake, and a relatively high, exothermic heat of sorption that varies as a function of the mass of tetrachloromethane sorbed. Therefore, the attachment of both ends of the alkyl chain to the interlamellar mineral surface appears to change the sorption mechanism from a partition-dominated process to an adsorption-dominated process. ?? 1991 American Chemical Society.
Wei, Qingshuo; Tajima, Keisuke; Tong, Yujin; Ye, Shen; Hashimoto, Kazuhito
2009-12-09
We report a new type of ordered monolayer for the surface modification of organic semiconductors. Fullerene derivatives with fluorocarbon chains ([6,6]-phenyl-C(61)-buryric acid 1H,1H-perfluoro-1-alkyl ester or FC(n)) spontaneously segregated as a monolayer on the surface of a [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) film during a spin-coating process from the mixture solutions, as confirmed by X-ray photoelectron spectroscopy (XPS). Ultraviolet photoelectron spectroscopy (UPS) showed the shift of ionization potentials (IPs) depending on the fluorocarbon chain length, indicating the formation of surface dipole moments. Surface-sensitive vibrational spectroscopy, sum frequency generation (SFG) revealed the ordered molecular orientations of the C(60) moiety in the surface FC(n) layers. The intensity of the SFG signals from FC(n) on the surface showed a clear odd-even effect when the length of the fluorocarbon chain was changed. This new concept of the surface-segregated monolayer provides a facile and versatile approach to modifying the surface of organic semiconductors and is applicable to various organic optoelectronic devices.
Mesoscopic modeling for nucleic acid chain dynamics
Sales-Pardo, M.; Guimerà, R.; Moreira, A. A.; Widom, J.; Amaral, L. A. N.
2007-01-01
To gain a deeper insight into cellular processes such as transcription and translation, one needs to uncover the mechanisms controlling the configurational changes of nucleic acids. As a step toward this aim, we present here a mesoscopic-level computational model that provides a new window into nucleic acid dynamics. We model a single-stranded nucleic as a polymer chain whose monomers are the nucleosides. Each monomer comprises a bead representing the sugar molecule and a pin representing the base. The bead-pin complex can rotate about the backbone of the chain. We consider pairwise stacking and hydrogen-bonding interactions. We use a modified Monte Carlo dynamics that splits the dynamics into translational bead motion and rotational pin motion. By performing a number of tests, we first show that our model is physically sound. We then focus on a study of the kinetics of a DNA hairpin—a single-stranded molecule comprising two complementary segments joined by a noncomplementary loop—studied experimentally. We find that results from our simulations agree with experimental observations, demonstrating that our model is a suitable tool for the investigation of the hybridization of single strands. PMID:16089566
Evaluation of a novel ultra-sensitive nanoparticle probe-based assay for ricin detection.
Yin, Hui-qiong; Jia, Min-xian; Shi, Li-jun; Liu, Jun; Wang, Rui; Lv, Mao-min; Ma, Yu-yuan; Zhao, Xiong; Zhang, Jin-gang
2014-01-01
A gold nanoparticle (GNP) probe-based assay (GNPA) modified from the bio-barcode assay (BCA) was developed for ultrasensitive detection of ricin, a potential biothreat agent. In the GNPA, a chain of ricin was captured by a GNP probe coated with polyclonal antibodies and single-stranded signal DNA. A magnetic microparticle (MMP) probe coated with ricin A chain monoclonal antibody was then added to form an immuno-complex. After being magnetically separated, the immuno-complex containing the single-stranded signal DNA was characterized by PCR and real-time PCR. A detection limit of 10(-2) fg/ml was determined for the ricin A chain; this is eight orders of magnitude more sensitive than that achieved with an ELISA and two orders more sensitive than that obtained with the BCA. The coefficients of variation (CV) of the intra- and inter-assay values ranged from 3.82-6.46%. The results here show that this novel assay is an ultrasensitive method for detection of ricin proteins and may be suitable for the ultrasensitive detection of other proteins.
Li, Jiehua; Zhang, Yi; Yang, Jian; Tan, Hong; Li, Jianshu; Fu, Qiang
2013-05-01
To improve hemocompatibility of biomedical polyurethanes (PUs), a series of new fluorinated phospholipid end-capped polyurethanes (FPCPUs) as blending PU additives were designed and synthesized using diphenyl methane diisocyanate and 1,4-butanediol as hard segment, poly(tetramethylene glycol), polypropylene glycol, polycarbonate diols, and polyethylene glycol as soft segments, respectively, aminofunctionalized hybrid hydrocarbon/fluorocarbon double-chain phospholipid as end-capper. The bulk structures and surface properties of the obtained FPCPUs were fully characterized by (1)H NMR, Fourier transform infrared, gel permeation chromatography, X-ray photoelectron spectroscopy, differential scanning calorimetry, atomic force microscopy, and water contact angle measurement. It was found that the phosphatidylcholine groups could enrich on the surfaces and subsurfaces with the help of the fluorocarbon chains and self-assemble into mimic biomembrane on these polymer surfaces. These surfaces could effectively suppress fibrinogen adsorption, as evaluated by enzyme-linked immunosorbent assay method. Our work indicates that the FPCPUs should be one of the most potential modified additives for enhancing hemocompatibility of traditional medical PUs. Copyright © 2012 Wiley Periodicals, Inc.
Engineered Recombinant Single-Chain Fragment Variable Antibody for Immunosensors
Shen, Zhihong; Mernaugh, Raymond L.; Yan, Heping; Yu, Lei; Zhang, Ying; Zeng, Xiangqun
2008-01-01
A recombinant single-chain fragment variable (scFv) antibody (designated A10B) was engineered to contain two histidines within the linker peptide used to join the scFv heavy and light chains. A piezoimmunosensor using the scFv was successfully developed. A10B scFv bound to the gold piezoimmunosensor surface were correctly oriented, retained antigen-binding activity, and coupled at high surface concentration. These results, and results obtained from an earlier study using an scFv containing a linker cysteine, suggest that the location on the linker sequence in which the amino acids were incorporated was well tolerated by the scFv and did not interfere with scFv antigen-binding activity. The scFv-modified QCM sensor was thoroughly characterized and used to specifically detect antigen in crude serum sample and had a sensitivity of 2.3 ± 0.15 nM (n = 4) with a linear range over 2.3 × 10−9–3.3 × 10−8 M. The piezoimmunosensor was also used to study the kinetics and thermodynamics of antigen/scFv antibody binding. PMID:16255580
Yu, W H; Kang, E T; Neoh, K G
2005-01-04
Surface modification of poly(tetrafluoroethylene) (PTFE) films by well-defined comb copolymer brushes was carried out. Peroxide initiators were generated directly on the PTFE film surface via radio frequency Ar plasma pretreatment, followed by air exposure. Poly(glycidyl methacrylate) (PGMA) brushes were first prepared by surface-initiated reversible addition-fragmentation chain transfer polymerization from the peroxide initiators on the PTFE surface in the presence of a chain transfer agent. Kinetics study revealed a linear increase in the graft concentration of PGMA with the reaction time, indicating that the chain growth from the surface was consistent with a "controlled" or "living" process. alpha-Bromoester moieties were attached to the grafted PGMA by reaction of the epoxide groups with 2-bromo-2-methylpropionic acid. The comb copolymer brushes were subsequently prepared via surface-initiated atom transfer radical polymerization of two hydrophilic vinyl monomers, including poly(ethylene glycol) methyl ether methacrylate and sodium salt of 4-styrenesulfonic acid. The chemical composition of the modified PTFE surfaces was characterized by X-ray photoelectron spectroscopy.
Can 5-methylcytosine analogues with extended alkyl side chains guide DNA methylation?
Kotandeniya, D; Seiler, C L; Fernandez, J; Pujari, S S; Curwick, L; Murphy, K; Wickramaratne, S; Yan, S; Murphy, D; Sham, Yuk Y; Tretyakova, N Y
2018-01-25
5-Methylcytosine ( Me C) is an endogenous modification of DNA that plays a crucial role in DNA-protein interactions, chromatin structure, epigenetic regulation, and DNA repair. Me C is produced via enzymatic methylation of the C-5 position of cytosine by DNA-methyltransferases (DNMT) which use S-adenosylmethionine (SAM) as a cofactor. Hemimethylated CG dinucleotides generated as a result of DNA replication are specifically recognized and methylated by maintenance DNA methyltransferase 1 (DNMT1). The accuracy of DNMT1-mediated methylation is essential for preserving tissue-specific DNA methylation and thus gene expression patterns. In the present study, we synthesized DNA duplexes containing MeC analogues with modified C-5 side chains and examined their ability to guide cytosine methylation by the human DNMT1 protein. We found that the ability of 5-alkylcytosines to direct cytosine methylation decreased with increased alkyl chain length and rigidity (methyl > ethyl > propyl ∼ vinyl). Molecular modeling studies indicated that this loss of activity may be caused by the distorted geometry of the DNA-protein complex in the presence of unnatural alkylcytosines.