Science.gov

Sample records for modified intracellular-associated phenotypes

  1. The renal microenvironment modifies dendritic cell phenotype.

    PubMed

    Chessa, Federica; Mathow, Daniel; Wang, Shijun; Hielscher, Thomas; Atzberger, Ann; Porubsky, Stefan; Gretz, Norbert; Burgdorf, Sven; Gröne, Hermann-Josef; Popovic, Zoran V

    2016-01-01

    Renal dendritic cells are a major component of the renal mononuclear phagocytic system. In the renal interstitium, these cells are exposed to an osmotic gradient, mainly sodium, whose concentration progressively increases towards inner medulla. Renal allograft rejection affects predominantly the cortex, suggesting a protective role of the renal medullary micromilieu. Whether osmolar variations can modulate the function of renal dendritic cells is currently undefined. Considering the central role of dendritic cells in promoting allorejection, we tested whether the biophysical micromilieu, particularly the interstitial osmotic gradient, influences their alloreactivity. There was a progressive depletion of leukocytes towards the medulla of homeostatic kidney. Only macrophages opposed this tendency. Flow cytometry of homeostatic and post-transplant medullary dendritic cells revealed a switch towards a macrophage-like phenotype. Similarly, bone marrow-derived dendritic cells developed ex vivo in sodium chloride-enriched medium acquired a M2-like signature. Microarray analysis of allotransplant dendritic cells posed a medullary downregulation of genes mainly involved in alloantigen recognition. Gene expression profiles of both medullary dendritic cells and bone marrow-derived dendritic cells matured in hyperosmolar medium had an overlap with the macrophage M2 signature. Thus, the medullary environment inhibits an alloimmune response by modulating the phenotype and function of dendritic cells.

  2. STRAIN-SPECIFIC MODIFIER GENES GOVERNING CRANIOFACIAL PHENOTYPES

    PubMed Central

    Mukhopadhyay, Partha; Brock, Guy; Webb, Cynthia; Pisano, M. Michele; Greene, Robert M

    2012-01-01

    BACKGROUND The presence of strain-specific modifier genes is known to modulate the phenotype and pathophysiology of mice harboring genetically engineered mutations. Thus, identification of genetic modifier genes is requisite to understanding control of phenotypic expression. c-Ski is a transcriptional regulator. Ski−/− mice on a C57BL6J (B6) background exhibit facial clefting, while Ski−/− mice on a 129P3 (129) background present with exencephaly. METHODS In the present study, oligonucleotide-based gene expression profiling was utilized to identify potential strain-specific modifier gene candidates present in wild-type mice of B6 and 129 genetic backgrounds. Changes in gene expression were verified by TaqMan quantitative real-time PCR. RESULTS Steady-state levels of 89 genes demonstrated a significantly higher level of expression, and those of 68 genes demonstrated a significantly lower level of expression in the developing neural tubes from E8.5, B6 embryos when compared to expression levels in neural tubes derived from E8.5, 129 embryos. CONCLUSIONS Based on the results from the current comparative microarray study, and taking into consideration a number of relevant published reports, several potential strain-specific gene candidates, likely to modify the craniofacial phenotypes in various knockout mouse models have been identified. PMID:22371338

  3. A Novel Lung Disease Phenotype Adjusted for Mortality Attrition for Cystic Fibrosis Genetic Modifier Studies

    PubMed Central

    Taylor, Chelsea; Commander, Clayton W.; Collaco, Joseph M.; Strug, Lisa J.; Li, Weili; Wright, Fred A.; Webel, Aaron D.; Pace, Rhonda G.; Stonebraker, Jaclyn R.; Naughton, Kathleen; Dorfman, Ruslan; Sandford, Andrew; Blackman, Scott M.; Berthiaume, Yves; Paré, Peter; Drumm, Mitchell L.; Zielenski, Julian; Durie, Peter; Cutting, Garry R.; Knowles, Michael R.; Corey, Mary

    2011-01-01

    SUMMARY Genetic studies of lung disease in Cystic Fibrosis are hampered by the lack of a severity measure that accounts for chronic disease progression and mortality attrition. Further, combining analyses across studies requires common phenotypes that are robust to study design and patient ascertainment. Using data from the North American Cystic Fibrosis Modifier Consortium (Canadian Consortium for CF Genetic Studies, Johns Hopkins University CF Twin and Sibling Study, and University of North Carolina/Case Western Reserve University Gene Modifier Study), the authors calculated age-specific CF percentile values of FEV1 which were adjusted for CF age-specific mortality data. The phenotype was computed for 2061 patients representing the Canadian CF population, 1137 extreme phenotype patients in the UNC/Case Western study, and 1323 patients from multiple CF sib families in the CF Twin and Sibling Study. Despite differences in ascertainment and median age, our phenotype score was distributed in all three samples in a manner consistent with ascertainment differences, reflecting the lung disease severity of each individual in the underlying population. The new phenotype score was highly correlated with the previously recommended complex phenotype, but the new phenotype is more robust for shorter follow-up and for extreme ages. A disease progression and mortality adjusted phenotype reduces the need for stratification or additional covariates, increasing statistical power and avoiding possible distortions. This approach will facilitate large scale genetic and environmental epidemiological studies which will provide targeted therapeutic pathways for the clinical benefit of patients with CF. PMID:21462361

  4. Modifiers of the Genotype–Phenotype Map: Hsp90 and Beyond

    PubMed Central

    Ehrenreich, Ian M.

    2016-01-01

    Disruption of certain genes alters the heritable phenotypic variation among individuals. Research on the chaperone Hsp90 has played a central role in determining the genetic basis of this phenomenon, which may be important to evolution and disease. Key studies have shown that Hsp90 perturbation modifies the effects of many genetic variants throughout the genome. These modifications collectively transform the genotype–phenotype map, often resulting in a net increase or decrease in heritable phenotypic variation. Here, we summarize some of the foundational work on Hsp90 that led to these insights, discuss a framework for interpreting this research that is centered upon the standard genetics concept of epistasis, and propose major questions that future studies in this area should address. PMID:27832066

  5. Approaches for the Identification of Genetic Modifiers of Nutrient Dependent Phenotypes: Examples from Folate

    PubMed Central

    Zinck, John W. R.; MacFarlane, Amanda J.

    2014-01-01

    By combining the sciences of nutrition, bioinformatics, genomics, population genetics, and epidemiology, nutrigenomics is improving our understanding of how diet and nutrient intake can interact with or modify gene expression and disease risk. In this review, we explore various approaches to examine gene–nutrient interactions and the modifying role of nutrient consumption, as they relate to nutrient status and disease risk in human populations. Two common approaches include the use of SNPs in candidate genes to identify their association with nutritional status or disease outcomes, or genome-wide association studies to identify genetic polymorphisms associated with a given phenotype. Here, we examine the results of various gene–nutrient interaction studies, the association of genetic polymorphisms with disease expression, and the identification of nutritional factors that modify gene-dependent disease phenotypes. We have focused on specific examples from investigations of the interactions of folate, B-vitamin consumption, and polymorphisms in the genes of B-vitamin dependent enzymes and their association with disease risk, followed by an examination of the strengths and limitations of the methods employed. We also present suggestions for future studies, including an approach from an on-going large scale study, to examine the interaction of nutrient intake and genotypic variation and their impact on nutritional status. PMID:25988111

  6. Evaluation of Potential Modifiers of the Palatal Phenotype in the 22q11.2 Deletion Syndrome

    PubMed Central

    Driscoll, Deborah A.; Boland, Torrey; Emanuel, Beverly S.; Kirschner, Richard E.; LaRossa, Don; Manson, Jeanne; McDonald-McGinn, Donna; Randall, Peter; Solot, Cynthia; Zackai, Elaine; Mitchell, Laura E.

    2010-01-01

    Objective To evaluate potential modifiers of the palatal phenotype in individuals with the 22q11.2 deletion syndrome. Design Data from 356 subjects enrolled in a study of the 22q11.2 deletion syndrome were used to evaluate potential modifiers of the palatal phenotype. Specifically, subjects with and without velopharyngeal inadequacy and/or structural malformations of the palate were compared with respect to gender, race, and genotype for variants of seven genes that may influence palatal development. Methods The chi-square test or Fisher exact test was used to evaluate the association between palatal phenotype and each potential modifier. Odds ratios and their associated 95% confidence intervals were used to measure the magnitude of the association between palatal phenotype, subject gender and race, and each of the bi-allelic variants. Results The palatal phenotype observed in individuals with the 22q11.2 deletion syndrome was significantly associated with both gender and race. In addition, there was tentative evidence that the palatal phenotype may be influenced by variation within the gene that encodes methionine synthase. Conclusions Variation in the palatal phenotype observed between individuals with the 22q11.2 deletion syndrome may be related to personal characteristics such as gender and race as well as variation within genes that reside outside of the 22q11.2 region. PMID:16854201

  7. Does the SLC40A1 gene modify HFE-related haemochromatosis phenotypes?

    PubMed

    Altès, Albert; Bach, Vanessa; Ruiz, Angels; Esteve, Anna; Remacha, Angel F; Sardà, M Pilar; Felez, Jordi; Baiget, Montserrat

    2009-04-01

    Most hereditary haemochromatosis patients are homozygous for the C282Y mutation of the HFE gene. However, the phenotypic expression and clinical aggressiveness of the disease differs considerably from patient to patient. The main objective of this work was to study the role of variants in the SLC40A1 gene in the severity of iron overload and his clinical consequences in 100 Spanish probands homozygous for the C282Y mutation of the HFE gene. We performed automated sequencing of the coding regions, including intron-exon junctions of the SLC40A1 gene. We studied the association between polymorphisms in the SLC40A1 gene and median values of iron removed, taking into account statistical corrections for multiple comparisons. No pathogenic mutations in the SLC40A1 were detected. Five known single nucleotide polymorphisms (SNPs) were identified, and two of them were associated with phenotypic characteristics. IVS1-24 C>G was associated with the amount of iron removed and presence of liver disease: Of the 83 patients finally studied for this SNP, the amount of iron removed was above the median in 36 of 56 (64.3%) for C/C, in nine of 23(39.1%) for C/G and in zero of four (0%) for G/G patients (P=0.01). Liver damage was observed in 34 of 56 patients (60.7%) for C/C, in eight of 23 (34.8%) for C/G and in zero of four (0%) for G/G (P=0.01). Both associations remained significant at multivariate analysis (P=0.011 and P=0.023, respectively). IVS1-24 C>G on the ferroportin gene seems to be a genetic modifier for clinical aggressiveness of HFE1 haemochromatosis.

  8. Polysaccharide storage myopathy phenotype in quarter horse-related breeds is modified by the presence of an RYR1 mutation.

    PubMed

    McCue, M E; Valberg, S J; Jackson, M; Borgia, L; Lucio, M; Mickelson, J R

    2009-01-01

    In this study we examined a family of Quarter Horses with Polysaccharide Storage Myopathy (PSSM) with a dominant mutation in the skeletal muscle glycogen synthase (GYS1) gene. A subset of horses within this family had a more severe and occasionally fatal PSSM phenotype. The purpose of this study was to identify a modifying gene(s) for the severe clinical phenotype. A genetic association analysis was used to identify RYR1 as a candidate modifying gene. A rare, known equine RYR1 mutation, associated with malignant hyperthermia (MH), was found to segregate in this GYS1 PSSM family. Retrospective analysis of patient records (n=179) demonstrated that horses with both the GYS1 and RYR1 mutations had a more severe clinical phenotype than horses with the GYS1 mutation alone. A treadmill trial (n=8) showed that serum creatine kinase activity was higher and exercise intolerance greater in horses with both mutations compared to the GYS1 mutation alone.

  9. A Modified Approach to Inducing Bone Marrow Stromal Cells to Differentiate into Cells with Mature Schwann Cell Phenotypes.

    PubMed

    Liu, Yutian; Chen, Jianghai; Liu, Wei; Lu, Xiaocheng; Liu, Zhenyu; Zhao, Xiaobo; Li, Gongchi; Chen, Zhenbing

    2016-02-15

    Marrow stromal cells (MSCs) can be induced to differentiate into Schwann-like cells under classical induction conditions. However, cells derived from this method are unstable, exhibiting a low neurotrophin expression level after the induction conditions are removed. In Schwann cell (SC) culture, progesterone (PROG) enhances neurotrophic synthesis and myelination, specifically regulating the expression of the myelin protein zero (P0)- and peripheral myelin protein 22 (PMP22)-encoding genes by acting in concert or in synergy with insulin and glucocorticoids (GLUCs). In the present study, we investigated whether combined PROG, GLUC, and insulin therapy induced MSCs to differentiate into modified SC-like cells with phenotypes similar to those of mature SCs. After being cultured for 2 weeks in modified differentiation medium, the modified SC-like cells showed increased expression of P0 and PMP22. In addition, morphological and phenotypic characterizations were conducted over a period of over 2 weeks, and functional characteristics persisted for more than 3 weeks after the induction reagents were withdrawn. The transplantation of green fluorescent protein-labeled, modified SC-like cells into transected sciatic nerves with a 10-mm gap significantly increased the proliferation of the original SCs and improved axon regeneration and myelination compared with original BM-SCs. Immunostaining for P0 revealed that more of the transplanted modified SC-like cells retained the phenotypic characteristics of SCs. Taken together, these results reveal that the combined application of PROG, GLUC, and insulin induces MSCs to differentiate into cells with phenotypic, molecular, and functional properties of mature SCs.

  10. Evaluation of Potential Modifiers of the Cardiac Phenotype in the 22q11.2 Deletion Syndrome

    PubMed Central

    Goldmuntz, Elizabeth; Driscoll, Deborah A.; Emanuel, Beverly S.; McDonald-McGinn, Donna; Mei, Minghua; Zackai, Elaine; Mitchell, Laura E.

    2010-01-01

    BACKGROUND The phenotype associated with deletion of the 22q11.2 chromosomal region is highly variable, yet little is known about the source of this variability. Cardiovascular anomalies, including tetralogy of Fallot, truncus arteriosus, interrupted aortic arch type B, perimembranous ventricular septal defects, and aortic arch anomalies, occur in approximately 75% of individuals with a 22q11.2 deletion. METHODS Data from 343 subjects enrolled in a study of the 22q11.2 deletion syndrome were used to evaluate potential modifiers of the cardiac phenotype in this disorder. Subjects with and without cardiac malformations, and subjects with and without aortic arch anomalies were compared with respect to sex and race. In addition, in the subset of subjects from whom a DNA sample was available, genotypes for variants of four genes that are involved in the folate-homocysteine metabolic pathway and that have been implicated as risk factors for other birth defects were compared. Five variants in four genes were genotyped by heteroduplex or restriction digest assays. The chi-square or Fisher’s exact test was used to evaluate the association between the cardiac phenotype and each potential modifier. RESULTS The cardiac phenotype observed in individuals with a 22q11.2 deletion was not significantly associated with either sex or race. The genetic variants that were evaluated also did not appear to be associated with the cardiovascular phenotype. CONCLUSIONS Variation in the cardiac phenotype observed between individuals with a 22q11.2 deletion does not appear to be related to sex, race, or five sequence variants in four folate-related genes that are located outside of the 22q11.2 region. PMID:18770859

  11. A genetic screen for modifiers of a kinase suppressor of Ras-dependent rough eye phenotype in Drosophila.

    PubMed Central

    Therrien, M; Morrison, D K; Wong, A M; Rubin, G M

    2000-01-01

    kinase suppressor of Ras (ksr) encodes a putative protein kinase that by genetic criteria appears to function downstream of RAS in multiple receptor tyrosine kinase (RTK) pathways. While biochemical evidence suggests that the role of KSR is closely linked to the signal transduction mechanism of the MAPK cascade, the precise molecular function of KSR remains unresolved. To further elucidate the role of KSR and to identify proteins that may be required for KSR function, we conducted a dominant modifier screen in Drosophila based on a KSR-dependent phenotype. Overexpression of the KSR kinase domain in a subset of cells during Drosophila eye development blocks photoreceptor cell differentiation and results in the external roughening of the adult eye. Therefore, mutations in genes functioning with KSR might modify the KSR-dependent phenotype. We screened approximately 185,000 mutagenized progeny for dominant modifiers of the KSR-dependent rough eye phenotype. A total of 15 complementation groups of Enhancers and four complementation groups of Suppressors were derived. Ten of these complementation groups correspond to mutations in known components of the Ras1 pathway, demonstrating the ability of the screen to specifically identify loci critical for Ras1 signaling and further confirming a role for KSR in Ras1 signaling. In addition, we have identified 4 additional complementation groups. One of them corresponds to the kismet locus, which encodes a putative chromatin remodeling factor. The relevance of these loci with respect to the function of KSR and the Ras1 pathway in general is discussed. PMID:11063697

  12. Genetic modifiers of sickle cell anemia in the BABY HUG cohort: influence on laboratory and clinical phenotypes.

    PubMed

    Sheehan, Vivien A; Luo, Zhaoyu; Flanagan, Jonathan M; Howard, Thad A; Thompson, Bruce W; Wang, Winfred C; Kutlar, Abdullah; Ware, Russell E

    2013-07-01

    The recently completed BABY HUG trial investigated the safety and efficacy of hydroxyurea in infants with sickle cell anemia (SCA). To investigate the effects of known genetic modifiers, genomic DNA on 190 randomized subjects were analyzed for alpha thalassemia, beta-globin haplotype, polymorphisms affecting endogenous fetal hemoglobin (HbF) levels (XmnI, BCL11A, and HBS1L-MYB), UGT1A1 promoter polymorphisms, and the common G6PD A(-) mutation. At study entry, infants with alpha thalassemia trait had significantly lower mean corpuscular volume, total bilirubin, and absolute reticulocyte count. Beta-globin haplotypes associated with milder disease had significantly higher hemoglobin and %HbF. BCL11A and XmnI polymorphisms had significant effects on baseline HbF, while UGT1A1 promoter polymorphisms significantly influenced baseline serum bilirubin. At study exit, subjects randomized to placebo still exhibited laboratory effects of alpha thalassemia and other modifiers, while those assigned hydroxyurea had treatment effects that exceeded most genetic influences. The pain phenotype was influenced by HbF modifiers in both treatment groups. These data document that genetic polymorphisms do modify laboratory and clinical phenotypes even in very young patients with SCA. The hydroxyurea effects are more potent, however, indicating that treatment criteria should not be limited to certain genetic subsets, and supporting the use of hydroxyurea for all young patients with SCA.

  13. Asthma phenotypes modify the impact of environmetnal factors on lung function

    EPA Science Inventory

    Previous studies have examined the role of childhood asthma phenotypes based on clinical history on asthma severity and symptom aggravation by environmental risk factors. The current study focuses on the associations between lung function in childhood and environmental factors an...

  14. Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow.

    PubMed

    Crispo, E

    2008-11-01

    Divergent natural selection, adaptive divergence and gene flow may interact in a number of ways. Recent studies have focused on the balance between selection and gene flow in natural populations, and empirical work has shown that gene flow can constrain adaptive divergence, and that divergent selection can constrain gene flow. A caveat is that phenotypic diversification may be under the direct influence of environmental factors (i.e. it may be due to phenotypic plasticity), in addition to partial genetic influence. In this case, phenotypic divergence may occur between populations despite high gene flow that imposes a constraint on genetic divergence. Plasticity may dampen the effects of natural selection by allowing individuals to rapidly adapt phenotypically to new conditions, thus slowing adaptive genetic divergence. On the other hand, plasticity may promote future adaptive divergence by allowing populations to persist in novel environments. Plasticity may promote gene flow between selective regimes by allowing dispersers to adapt to alternate conditions, or high gene flow may result in the selection for increased plasticity. Here I expand frameworks for understanding relationships among selection, adaptation and gene flow to include the effects of phenotypic plasticity in natural populations, and highlight its importance in evolutionary diversification.

  15. The effect of chemically modified alginates on macrophage phenotype and biomolecule transport.

    PubMed

    Bygd, Hannah C; Bratlie, Kaitlin M

    2016-07-01

    Macrophage (MΦ) reprogramming has received significant attention in applications such as cancer therapeutics and tissue engineering where the host immune response to biomaterials is crucial in determining the success or failure of an implanted device. Polymeric systems can potentially be used to redirect infiltrating M1 MΦs toward a proangiogenic phenotype. This work exploits the concept of MΦ reprogramming in the engineering of materials for improving the longevity of tissue engineering scaffolds. We have investigated the effect of 13 different chemical modifications of alginate on MΦ phenotype. Markers of the M1 response-tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase-and the M2 response-arginase-were measured and used to determine the ability of the materials to alter MΦ phenotype. It was found that some modifications were able to reduce the pro-inflammatory response of M1 MΦs, others appeared to amplify the M2 phenotype, and the results for two materials suggested they were able to reprogram a MΦ population from M1 to M2. These findings were supplemented by studies done to examine the permselectivity of the materials. Diffusion of TNF-α was completely prevented through some of these materials, while up to 84% was found to diffuse through others. The diffusion of insulin through the materials was statistically consistent. These results suggest that the modification of these materials might alter mass transport in beneficial ways. The ability to control polarization of MΦ phenotypes with immunoprotective materials has the potential to augment the success of tissue engineering scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1707-1719, 2016.

  16. Manufacture of gene-modified human T-cells with a memory stem/central memory phenotype.

    PubMed

    Gomez-Eerland, Raquel; Nuijen, Bastiaan; Heemskerk, Bianca; van Rooij, Nienke; van den Berg, Joost H; Beijnen, Jos H; Uckert, Wolfgang; Kvistborg, Pia; Schumacher, Ton N; Haanen, John B A G; Jorritsma, Annelies

    2014-10-01

    Advances in genetic engineering have made it possible to generate human T-cell products that carry desired functionalities, such as the ability to recognize cancer cells. The currently used strategies for the generation of gene-modified T-cell products lead to highly differentiated cells within the infusion product, and on the basis of data obtained in preclinical models, this is likely to impact the efficacy of these products. We set out to develop a good manufacturing practice (GMP) protocol that yields T-cell receptor (TCR) gene-modified T-cells with more favorable properties for clinical application. Here, we show the robust clinical-scale production of human peripheral blood T-cells with an early memory phenotype that express a MART-1-specific TCR. By combining selection and stimulation using anti-CD3/CD28 beads for retroviral transduction, followed by expansion in the presence of IL-7 and IL-15, production of a well-defined clinical-scale TCR gene-modified T-cell product could be achieved. A major fraction of the T-cells generated in this fashion were shown to coexpress CD62L and CD45RA, and express CD27 and CD28, indicating a central memory or memory stemlike phenotype. Furthermore, these cells produced IFNγ, TNFα, and IL-2 and displayed cytolytic activity against target cells expressing the relevant antigen. The T-cell products manufactured by this robust and validated GMP production process are now undergoing testing in a phase I/IIa clinical trial in HLA-A*02:01 MART-1-positive advanced stage melanoma patients. To our knowledge, this is the first clinical trial protocol in which the combination of IL-7 and IL-15 has been applied for the generation of gene-modified T-cell products.

  17. Manufacture of Gene-Modified Human T-Cells with a Memory Stem/Central Memory Phenotype

    PubMed Central

    Gomez-Eerland, Raquel; Nuijen, Bastiaan; Heemskerk, Bianca; van Rooij, Nienke; van den Berg, Joost H.; Beijnen, Jos H.; Uckert, Wolfgang; Kvistborg, Pia; Schumacher, Ton N.; Jorritsma, Annelies

    2014-01-01

    Abstract Advances in genetic engineering have made it possible to generate human T-cell products that carry desired functionalities, such as the ability to recognize cancer cells. The currently used strategies for the generation of gene-modified T-cell products lead to highly differentiated cells within the infusion product, and on the basis of data obtained in preclinical models, this is likely to impact the efficacy of these products. We set out to develop a good manufacturing practice (GMP) protocol that yields T-cell receptor (TCR) gene-modified T-cells with more favorable properties for clinical application. Here, we show the robust clinical-scale production of human peripheral blood T-cells with an early memory phenotype that express a MART-1-specific TCR. By combining selection and stimulation using anti-CD3/CD28 beads for retroviral transduction, followed by expansion in the presence of IL-7 and IL-15, production of a well-defined clinical-scale TCR gene-modified T-cell product could be achieved. A major fraction of the T-cells generated in this fashion were shown to coexpress CD62L and CD45RA, and express CD27 and CD28, indicating a central memory or memory stemlike phenotype. Furthermore, these cells produced IFNγ, TNFα, and IL-2 and displayed cytolytic activity against target cells expressing the relevant antigen. The T-cell products manufactured by this robust and validated GMP production process are now undergoing testing in a phase I/IIa clinical trial in HLA-A*02:01 MART-1-positive advanced stage melanoma patients. To our knowledge, this is the first clinical trial protocol in which the combination of IL-7 and IL-15 has been applied for the generation of gene-modified T-cell products. PMID:25143008

  18. The therapeutic potential of skeletal muscle plasticity in Duchenne muscular dystrophy: phenotypic modifiers as pharmacologic targets.

    PubMed

    Ljubicic, Vladimir; Burt, Matthew; Jasmin, Bernard J

    2014-02-01

    Duchenne muscular dystrophy (DMD) is a life-limiting, neuromuscular disorder that causes progressive, severe muscle wasting in boys and young men. Although there is no cure, scientists and clinicians can leverage the fact that slower, more oxidative skeletal muscle fibers possess an enhanced degree of resistance to the dystrophic pathology relative to their faster, more glycolytic counterparts, and can thus use this knowledge when investigating novel therapeutic avenues. Several factors have been identified as powerful regulators of muscle plasticity. Some proteins, such as calcineurin, peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α), PPARβ/δ, and AMP-activated protein kinase (AMPK), when chronically stimulated in animal models, remodel skeletal muscle toward the slow, oxidative myogenic program, whereas others, such as receptor-interacting protein 140 (RIP140) and E2F transcription factor 1 (E2F1), repress this phenotype. Recent studies demonstrating that pharmacologic and physiological activation of targets that shift dystrophic muscle toward the slow, oxidative myogenic program provide appreciable molecular and functional benefits. This review surveys the rationale behind, and evidence for, the study of skeletal muscle plasticity in preclinical models of DMD and highlights the potential therapeutic opportunities in advancing a strategy focused on remodeling skeletal muscle in patients with DMD toward the slow, oxidative phenotype.

  19. Genotyping and phenotyping of an epigenetic modifier Unstable factor for orange1 (Ufo1) in maize

    NASA Astrophysics Data System (ADS)

    Bowersox, Karisa; Chopra, Surinder

    2012-02-01

    Pericarp color 1 is a model system for the study of epigenetic gene regulation. It has more than 100 alleles that contribute to the color of the pericarp and cob glume of maize. Unstable factor for orange 1 (Ufo1) is a spontaneous dominant mutation that leads to a gain in pigmentation due to a decrease in methylation in p1 genes. This decrease in methylation of cytosine in the DNA leads to changes in chromatin structure. Finding the mechanism for this spontaneous mutation can lead to way of preventing the mutation increasing production colorless maize for food production. Through genotyping and phenotyping fine gene mapping, gene expression and whole genome profiling can be accomplished for plants with the Ufo1 mutation present.

  20. Histone Modifier Genes Alter Conotruncal Heart Phenotypes in 22q11.2 Deletion Syndrome.

    PubMed

    Guo, Tingwei; Chung, Jonathan H; Wang, Tao; McDonald-McGinn, Donna M; Kates, Wendy R; Hawuła, Wanda; Coleman, Karlene; Zackai, Elaine; Emanuel, Beverly S; Morrow, Bernice E

    2015-12-03

    We performed whole exome sequence (WES) to identify genetic modifiers on 184 individuals with 22q11.2 deletion syndrome (22q11DS), of whom 89 case subjects had severe congenital heart disease (CHD) and 95 control subjects had normal hearts. Three genes including JMJD1C (jumonji domain containing 1C), RREB1 (Ras responsive element binding protein 1), and SEC24C (SEC24 family member C) had rare (MAF < 0.001) predicted deleterious single-nucleotide variations (rdSNVs) in seven case subjects and no control subjects (p = 0.005; Fisher exact and permutation tests). Because JMJD1C and RREB1 are involved in chromatin modification, we investigated other histone modification genes. Eighteen case subjects (20%) had rdSNVs in four genes (JMJD1C, RREB1, MINA, KDM7A) all involved in demethylation of histones (H3K9, H3K27). Overall, rdSNVs were enriched in histone modifier genes that activate transcription (Fisher exact p = 0.0004, permutations, p = 0.0003, OR = 5.16); however, rdSNVs in control subjects were not enriched. This implicates histone modification genes as influencing risk for CHD in presence of the deletion.

  1. Consistent and reproducible positioning in longitudinal imaging for phenotyping genetically modified swine

    NASA Astrophysics Data System (ADS)

    Hammond, Emily; Dilger, Samantha K. N.; Stoyles, Nicholas; Judisch, Alexandra; Morgan, John; Sieren, Jessica C.

    2015-03-01

    Recent growth of genetic disease models in swine has presented the opportunity to advance translation of developed imaging protocols, while characterizing the genotype to phenotype relationship. Repeated imaging with multiple clinical modalities provides non-invasive detection, diagnosis, and monitoring of disease to accomplish these goals; however, longitudinal scanning requires repeatable and reproducible positioning of the animals. A modular positioning unit was designed to provide a fixed, stable base for the anesthetized animal through transit and imaging. Post ventilation and sedation, animals were placed supine in the unit and monitored for consistent vitals. Comprehensive imaging was performed with a computed tomography (CT) chest-abdomen-pelvis scan at each screening time point. Longitudinal images were rigidly registered, accounting for rotation, translation, and anisotropic scaling, and the skeleton was isolated using a basic thresholding algorithm. Assessment of alignment was quantified via eleven pairs of corresponding points on the skeleton with the first time point as the reference. Results were obtained with five animals over five screening time points. The developed unit aided in skeletal alignment within an average of 13.13 +/- 6.7 mm for all five subjects providing a strong foundation for developing qualitative and quantitative methods of disease tracking.

  2. SCN4A mutation as modifying factor of myotonic dystrophy type 2 phenotype.

    PubMed

    Bugiardini, E; Rivolta, I; Binda, A; Soriano Caminero, A; Cirillo, F; Cinti, A; Giovannoni, R; Botta, A; Cardani, R; Wicklund, M P; Meola, G

    2015-04-01

    In myotonic dystrophy type 2 (DM2), an association has been reported between early and severe myotonia and recessive chloride channel (CLCN1) mutations. No DM2 cases have been described with sodium channel gene (SCN4A) mutations. The aim is to describe a DM2 patient with severe and early onset myotonia and co-occurrence of a novel missense mutation in SNC4A. A 26-year-old patient complaining of hand cramps and difficulty relaxing her hands after activity was evaluated at our department. Neurophysiology and genetic analysis for DM1, DM2, CLCN1 and SCN4A mutations were performed. Genetic testing was positive for DM2 (2650 CCTG repeat) and for a variant c.215C>T (p.Pro72Leu) in the SCN4A gene. The variation affects the cytoplasmic N terminus domain of Nav1.4, where mutations have never been reported. The biophysical properties of the mutant Nav1.4 channels were evaluated by whole-cell voltage-clamp analysis of heterologously expressed mutant channel in tsA201 cells. Electrophysiological studies of the P72L variant showed a hyperpolarizing shift (-5 mV) of the voltage dependence of activation that may increase cell excitability. This case suggests that SCN4A mutations may enhance the myotonic phenotype of DM2 patients and should be screened for atypical cases with severe myotonia.

  3. Renin-angiotensin system gene polymorphisms as potential modifiers of hypertrophic and dilated cardiomyopathy phenotypes.

    PubMed

    Rani, Bindu; Kumar, Amit; Bahl, Ajay; Sharma, Rajni; Prasad, Rishikesh; Khullar, Madhu

    2017-03-01

    The renin-angiotensin (RAS) pathway has an important role in the etiology of heart failure and given the importance of RAS as a therapeutic target in various cardiomyopathies, genetic polymorphisms in the RAS genes may modulate the risk and severity of disease in cardiomyopathy patients. In the present study, we examined the association of RAS pathway gene polymorphisms, angiotensin converting enzyme (ACE), angiotensinogen (AGT), and angiotensin receptor type 1 (AGTR1) with risk and disease severity in Asian Indian idiopathic cardiomyopathy patients. The case-control study was conducted in 400 cardiomyopathy patients diagnosed with HCM, DCM, or restrictive cardiomyopathy (RCM) and 235 healthy controls. Genotyping of patients and controls was done by PCR-RFLP assays. Left ventricular wall thickness and left ventricular ejection fraction were measured by means of M-mode echocardiography. We observed significantly higher prevalence of ACE DD and AGTR1 1166CC genotypes in hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) patients. Also, 235TT genotype of AGT (M235T) was significantly associated with enhanced risk of the disease phenotype in HCM, DCM, and RCM.

  4. F12-46C/T polymorphism as modifier of the clinical phenotype of hereditary angioedema.

    PubMed

    Speletas, M; Szilágyi, Á; Csuka, D; Koutsostathis, N; Psarros, F; Moldovan, D; Magerl, M; Kompoti, M; Varga, L; Maurer, M; Farkas, H; Germenis, A E

    2015-12-01

    The factors influencing the heterogeneous clinical manifestation of hereditary angioedema due to C1-INH deficiency (C1-INH-HAE) represent one of the oldest unsolved problems of the disease. Considering that factor XII (FXII) levels may affect bradykinin production, we investigated the contribution of the functional promoter polymorphism F12-46C/T in disease phenotype. We studied 258 C1-INH-HAE patients from 113 European families, and we explored possible associations of F12-46C/T with clinical features and the SERPING1 mutational status. Given that our cohort consisted of related subjects, we implemented generalized estimating equations (GEEs), an extension of the generalized linear model accounting for the within-subject correlation. F12-46C/T carriers exhibited a significantly delayed disease onset (P < 0.001) and did not need long-term treatment (P = 0.02). In a GEE linear regression model, the presence of F12-46C/T was significantly associated with a 7-year delay in disease onset (P < 0.0001) regardless of SERPING1 mutational status. It is concluded that F12-46C/T carriage acts as an independent modifier of C1-INH-HAE severity.

  5. DNA polymorphisms in the controlling region of the human haptoglobin genes: a molecular explanation for the haptoglobin 2-1 modified phenotype.

    PubMed Central

    Maeda, N

    1991-01-01

    A haptoglobin 2-1 modified (Hp2-1mod) phenotype results when the amount of Hp2 polypeptide synthesized in Hp2/Hp1 heterozygotes is less than that of Hp1 polypeptide. Cloned Hp2 DNA from an individual with the Hp2-1mod phenotype is here shown to have a C in place of the normal A at nucleotide position -61 in one of the interleukin-6 (IL-6) responsive elements of the haptoglobin promoter region. Direct sequencing of the haptoglobin promoter region, amplified by PCR, from DNA from unrelated American blacks showed a C at -61 in all of 10 individuals with the Hp2-1mod phenotype, in two of four with a "possible Hp2-1mod" phenotype, but in none of 15 with the Hp2-1 phenotype. Thus the -61C mutation in the Hp2-61C allele is strongly associated with the Hp2-1mod phenotype. Sequencing results also show that there are three other promoter sequences in the population studied; each can be associated with either Hp2 or Hp1. The variability seen in the Hp2-1mod phenotype, a variability which ranges from close to Hp2-1 to close to Hp1-1, can be explained, in part, by the existence of several Hp2 alleles differing in their promoters--and possibly, in part, by differences in the promoters of the accompanying Hp1 allele. A further part of the variability may be the consequence of differences in the way that the Hp2-61C and the Hp2 alleles respond to the IL-6-dependent factor during an acute-phase response. Images Figure 2 Figure 3 PMID:2063867

  6. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster.

    PubMed

    Rodriguez-Fernandez, Imilce A; Dell'Angelica, Esteban C

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated in

  7. Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status.

    PubMed

    Mittag, Diana; Proietto, Anna I; Loudovaris, Thomas; Mannering, Stuart I; Vremec, David; Shortman, Ken; Wu, Li; Harrison, Leonard C

    2011-06-01

    Mouse dendritic cells (DC) have been extensively studied in various tissues, especially spleen, and they comprise subsets with distinct developmental origins, surface phenotypes, and functions. Considerably less is known about human DC due to their rarity in blood and inaccessibility of other human tissues. The study of DC in human blood has revealed four subsets distinct in phenotype and function. In this study, we describe four equivalent DC subsets in human spleen obtained from deceased organ donors. We identify three conventional DC subsets characterized by surface expression of CD1b/c, CD141, and CD16, and one plasmacytoid DC subset characterized by CD304 expression. Human DC subsets in spleen were very similar to those in human blood with respect to surface phenotype, TLR and transcription factor expression, capacity to stimulate T cells, cytokine secretion, and cross-presentation of exogenous Ag. However, organ donor health status, in particular treatment with corticosteroid methylprednisolone and brain death, may affect DC phenotype and function. DC T cell stimulatory capacity was reduced but DC were qualitatively unchanged in methylprednisolone-treated deceased organ donor spleen compared with healthy donor blood. Overall, our findings indicate that human blood DC closely resemble human spleen DC. Furthermore, we confirm parallels between human and mouse DC subsets in phenotype and function, but also identify differences in transcription factor and TLR expression as well as functional properties. In particular, the hallmark functions of mouse CD8α(+) DC subsets, that is, IL-12p70 secretion and cross-presentation, are not confined to the equivalent human CD141(+) DC but are shared by CD1b/c(+) and CD16(+) DC subsets.

  8. Detection of KPC Carbapenemase in Pseudomonas aeruginosa Isolated From Clinical Samples Using Modified Hodge Test and Boronic Acid Phenotypic Methods and Their Comparison With the Polymerase Chain Reaction

    PubMed Central

    Falahat, Saeed; Shojapour, Mana; Sadeghi, Abdorrahim

    2016-01-01

    Background Bacterial resistance to antibiotics has become a major source of concern for public health. Pseudomonas aeruginosa strains are important opportunistic pathogens. These bacteria have a high resistance to a wide range of existing antimicrobials and antibiotics. Objectives The present study was performed to evaluate the frequency of KPC in P. aeruginosa isolated from clinical samples of educational hospitals of Arak University of Medical Sciences, using the mentioned phenotypic and genotypic methods. Materials and Methods One hundred and eight non-duplicate clinical isolates of P. aeruginosa were collected from hospitals of Arak University of Medical Sciences, Arak, Iran. Antibacterial susceptibility was determined by the disk diffusion method. KPC production was confirmed by the Modified Hodge Test (MHT), which is a phenotypic test, and combined-disk test with boronic acid and the Polymerase Chain Reaction (PCR). Results In the present study, 13 isolates (12%) of P. aeruginosa were positive for KPC, using PCR. Comparison of the two phenotypic methods used in this study showed that boronic acid is more sensitive than MHT in identification of KPC-producing strains (84.6% vs. 77%). Conclusions Utilization of reliable methods for identifying carbapenemase-producing strains and determining their antibiotic resistance pattern could have a very important role in treatment of infections caused by these strains. A substantial amount of P. aeruginosa isolated from clinical samples of hospitals in Arak (Iran) produce KPC carbapenemase. Due to their low specificity, MHT and boronic acid phenotypic methods could not completely identify KPC-producing P. aeruginosa. However, the sensitivity of boronic acid phenotypic method in detection of KPC was higher than MHT. PMID:27800140

  9. A candidate gene approach to identify modifiers of the palatal phenotype in 22q11.2 deletion syndrome patients

    PubMed Central

    Widdershoven, Josine C.C.; Bowser, Mark; Sheridan, Molly B.; McDonald-McGinn, Donna M.; Zackai, Elaine H.; Solot, Cynthia B.; Kirschner, Richard E.; Beemer, Frits A.; Morrow, Bernice E.; Devoto, Marcella; Emanuel, Beverly S.

    2014-01-01

    Objective Palatal anomalies are one of the identifying features of 22q11.2 deletion syndrome (22q11.2DS) affecting about one third of patients. To identify genetic variants that increase the risk of cleft or palatal anomalies in 22q11.2DS patients, we performed a candidate gene association study in 101 patients with 22q11.2DS genotyped with the Affymetrix genome-wide human SNP array 6.0. Methods Patients from Children's Hospital of Philadelphia, USA and Wilhelmina Children's Hospital Utrecht, The Netherlands were stratified based on palatal phenotype (overt cleft, submucosal cleft, bifid uvula). SNPs in 21 candidate genes for cleft palate were analyzed for genotype-phenotype association. In addition, TBX1 sequencing was carried out. Quality control and association analyses were conducted using the software package PLINK. Results Genotype and phenotype data of 101 unrelated patients (63 non-cleft subjects (62.4%), 38 cleft subjects (37.6%)) were analyzed. A Total of 39 SNPs on 10 genes demonstrated a p-value ≤0.05 prior to correction. The most significant SNPs were found on FGF10. However none of the SNPs remained significant after correcting for multiple testing. Conclusions Although these results are promising, analysis of additional samples will be required to confirm that variants in these regions influence risk for cleft palate or palatal anomalies in 22q11.2DS patients. PMID:23121717

  10. Genetic screening of LCA in Belgium: predominance of CEP290 and identification of potential modifier alleles in AHI1 of CEP290-related phenotypes.

    PubMed

    Coppieters, Frauke; Casteels, Ingele; Meire, Françoise; De Jaegere, Sarah; Hooghe, Sally; van Regemorter, Nicole; Van Esch, Hilde; Matuleviciene, Ausra; Nunes, Luis; Meersschaut, Valérie; Walraedt, Sophie; Standaert, Lieve; Coucke, Paul; Hoeben, Heidi; Kroes, Hester Y; Vande Walle, Johan; de Ravel, Thomy; Leroy, Bart P; De Baere, Elfride

    2010-10-01

    Leber Congenital Amaurosis (LCA), the most severe inherited retinal dystrophy, is genetically heterogeneous, with 14 genes accounting for 70% of patients. Here, 91 LCA probands underwent LCA chip analysis and subsequent sequencing of 6 genes (CEP290, CRB1, RPE65, GUCY2D, AIPL1and CRX), revealing mutations in 69% of the cohort, with major involvement of CEP290 (30%). In addition, 11 patients with early-onset retinal dystrophy (EORD) and 13 patients with Senior-Loken syndrome (SLS), LCA-Joubert syndrome (LCA-JS) or cerebello-oculo-renal syndrome (CORS) were included. Exhaustive re-inspection of the overall phenotypes in our LCA cohort revealed novel insights mainly regarding the CEP290-related phenotype. The AHI1 gene was screened as a candidate modifier gene in three patients with the same CEP290 genotype but different neurological involvement. Interestingly, a heterozygous novel AHI1 mutation, p.Asn811Lys, was found in the most severely affected patient. Moreover, AHI1 screening in five other patients with CEP290-related disease and neurological involvement revealed a second novel missense variant, p.His758Pro, in one LCA patient with mild mental retardation and autism. These two AHI1 mutations might thus represent neurological modifiers of CEP290-related disease.

  11. A systematic screen for dominant second-site modifiers of Merlin/NF2 phenotypes reveals an interaction with blistered/DSRF and scribbler.

    PubMed Central

    LaJeunesse, D R; McCartney, B M; Fehon, R G

    2001-01-01

    Merlin, the Drosophila homologue of the human tumor suppressor gene Neurofibromatosis 2 (NF2), is required for the regulation of cell proliferation and differentiation. To better understand the cellular functions of the NF2 gene product, Merlin, recent work has concentrated on identifying proteins with which it interacts either physically or functionally. In this article, we describe genetic screens designed to isolate second-site modifiers of Merlin phenotypes from which we have identified five multiallelic complementation groups that modify both loss-of-function and dominant-negative Merlin phenotypes. Three of these groups, Group IIa/scribbler (also known as brakeless), Group IIc/blistered, and Group IId/net, are known genes, while two appear to be novel. In addition, two genes, Group IIa/scribbler and Group IIc/blistered, alter Merlin subcellular localization in epithelial and neuronal tissues, suggesting that they regulate Merlin trafficking or function. Furthermore, we show that mutations in scribbler and blistered display second-site noncomplementation with one another. These results suggest that Merlin, blistered, and scribbler function together in a common pathway to regulate Drosophila wing epithelial development. PMID:11404331

  12. Loci on murine chromosomes 7 and 13 that modify the phenotype of the NOA mouse, an animal model of atopic dermatitis.

    PubMed

    Watanabe, O; Tamari, M; Natori, K; Onouchi, Y; Shiomoto, Y; Hiraoka, I; Nakamura, Y

    2001-01-01

    The NOA (Naruto Research Institute Otsuka Atrichia) mouse is an animal model of allergic or atopic dermatitis, a condition characterized by ulcerative skin lesions with accumulation of mast cells and increased serum IgE. We reported earlier that a major gene responsible for dermatitis in the NOA mouse lay in the middle of chromosome 14, and that the incidence of disease clearly differed according to parental strain; the mode of inheritance was autosomal recessive with incomplete penetrance. In the study reported here, we searched for genes that might modify the NOA phenotype, and we identified two candidate loci that appeared to contain genes capable of modifying atopic or allergic dermatitis, one in the middle of chromosome 7 (chi2 = 14.66; P = 0.00013 for D7Mit62) and the other in the telomeric region of chromosome 13 (chi2 = 15.352; P = 0.000089 for D13Mit147). These loci correspond to regions of synteny in human chromosomes where linkages to asthma, atopy, or related phenotypes, such as serum IgE levels, have been documented.

  13. Biochemical evidence for a mitochondrial genetic modifier in the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation.

    PubMed

    Jiang, Pingping; Liang, Min; Zhang, Chaofan; Zhao, Xiaoxu; He, Qiufen; Cui, Limei; Liu, Xiaoling; Sun, Yan-Hong; Fu, Qun; Ji, Yanchun; Bai, Yidong; Huang, Taosheng; Guan, Min-Xin

    2016-08-15

    Leber's hereditary optic neuropathy (LHON) is the most common mitochondrial disease. Mitochondrial modifiers are proposed to modify the phenotypic expression of primary LHON-associated mitochondrial DNA (mtDNA) mutations. In this study, we demonstrated that the LHON susceptibility allele (m.14502T > C, p. 58I > V) in the ND6 gene modulated the phenotypic expression of primary LHON-associated m.11778G > A mutation. Twenty-two Han Chinese pedigrees carrying m.14502T > C and m.11778G > A mutations exhibited significantly higher penetrance of optic neuropathy than those carrying only m.11778G > A mutation. We performed functional assays using the cybrid cell models, generated by fusing mtDNA-less ρ(o) cells with enucleated cells from LHON patients carrying both m.11778G > A and m.14502T > C mutations, only m.14502T > C or m.11778G > A mutation and a control belonging to the same mtDNA haplogroup. These cybrids cell lines bearing m.14502T > C mutation exhibited mild effects on mitochondrial functions compared with those carrying only m.11778G > A mutation. However, more severe mitochondrial dysfunctions were observed in cell lines bearing both m.14502T > C and m.11778G > A mutations than those carrying only m.11778G > A or m.14502T > C mutation. In particular, the m.14502T > C mutation altered assemble of complex I, thereby aggravating the respiratory phenotypes associated with m.11778G > A mutation, resulted in a more defective complex I. Furthermore, more reductions in the levels of mitochondrial ATP and increasing production of reactive oxygen species were also observed in mutant cells bearing both m.14502T > C and m.11778G > A mutation than those carrying only 11778G > A mutation. Our findings provided new insights into the pathophysiology of LHON that were manifested by interaction between primary and secondary mtDNA mutations.

  14. BODE-index, modified BODE-index and ADO-score in chronic obstructive pulmonary disease: relationship with COPD phenotypes and CT lung density changes.

    PubMed

    Camiciottoli, Gianna; Bigazzi, Francesca; Bartolucci, Maurizio; Cestelli, Lucia; Paoletti, Matteo; Diciotti, Stefano; Cavigli, Edoardo; Magni, Chiara; Buonasera, Luigi; Mascalchi, Mario; Pistolesi, Massimo

    2012-06-01

    COPD is a heterogeneous disorder whose assessment is going to be increasingly multidimensional. Grading systems such as BODE (Body-Mass Index, Obstruction, Dyspnea, Exercise), mBODE (BODE modified in grading of walked distance), ADO (Age, Dyspnea, Obstruction) are proposed to assess COPD severity and outcome. Computed tomography (CT) is deemed to reflect COPD lung pathologic changes. We studied the relationship of multidimensional grading systems (MGS) with clinically determined COPD phenotypes and CT lung density. Seventy-two patients underwent clinical and chest x-ray evaluation, pulmonary function tests (PFT), 6-minute walking test (6MWT) to derive: predominant COPD clinical phenotype, BODE, mBODE, ADO. Inspiratory and expiratory CT was performed to calculate mean lung attenuation (MLA), relative area with density below-950 HU at inspiration (RAI(-950)), and below -910 HU at expiration (RAE(-910)). MGS, PFT, and CT data were compared between bronchial versus emphysematous COPD phenotype. MGS were correlated with CT data. The prediction of CT density by means of MGS was investigated by direct and stepwise multivariate regression. MGS did not differ in clinically determined COPD phenotypes. BODE was more closely related and better predicted CT findings than mBODE and ADO; the better predictive model was obtained for CT expiratory data; stepwise regression models of CT data did not include 6MWT distance; the dyspnea score MRC was included only to predict RA-950 and RA-910 which quantify emphysema extent. BODE reflect COPD severity better than other MGS, but not its clinical heterogeneity. 6MWT does not significantly increase BODE predictivity of CT lung density changes.

  15. A base substitution in the promoter associated with the human haptoglobin 2-1 modified phenotype decreases transcriptional activity and responsiveness to interleukin-6 in human hepatoma cells

    SciTech Connect

    Grant, D.J.; Maeda, N. )

    1993-05-01

    An A-to-C base substitution at nucleotide position -61 in the promoter region of the human haptoglobin gene (Hp) has been shown to be strongly associated with the haptoglobin 2-1 modified (Hp2-1mod) phenotype. In order to investigate whether this base substitution is the cause of reduced expression of the Hp[sup 2] allele relative to the Hp[sup 1] allele in individuals with the Hp2-1mod phenotype, the authors used the chloramphenicol acetyl transferase (CAT) expression system to evaluate promoter function. In HepG2 cells, which normally express their endogenous haptoglobin genes, CAT plasmid constructs with the -61C base change in the promoter had about 10-fold-lower transcriptional activity after transfection than did the Hp control construct. The -61C substitution also rendered the construct unresponsive to treatment by interleukin-6 after transfection into Hep3B2 cells, which normally do not express haptoglobin but do so in response to stimulation by acute-phase reactants. In addition, two base substitutions, T to A and A to G, at positions -104 and -55G, respectively, in the promoter region of the Hp[sup 1] allele, are also associated with the Hp2-1mod phenotype. CAT constructs with both substitutions (-104A-55G) and with one substitution (-55G) showed activity similar to that in the Hp control when transfected into both HepG2 and Hep3B2 cells, although interleukin-6 induction was less than with the Hp control construct. These results further support the hypothesis that the Hp2-1mod phenotype results, in part, from the -61C mutation in the promoter region of the Hp[sup 2] gene.

  16. Placental phenotype and resource allocation to fetal growth are modified by the timing and degree of hypoxia during mouse pregnancy

    PubMed Central

    Higgins, J. S.; Vaughan, O. R.; Fernandez de Liger, E.; Fowden, A. L.

    2015-01-01

    Key points Hypoxia is a major cause of fetal growth restriction, particularly at high altitude, although little is known about its effects on placental phenotype and resource allocation to fetal growth.In the present study, maternal hypoxia induced morphological and functional changes in the mouse placenta, which depended on the timing and severity of hypoxia, as well as the degree of maternal hypophagia.Hypoxia at 13% inspired oxygen induced beneficial changes in placental morphology, nutrient transport and metabolic signalling pathways associated with little or no change in fetal growth, irrespective of gestational age.Hypoxia at 10% inspired oxygen adversely affected placental phenotype and resulted in severe fetal growth restriction, which was due partly to maternal hypophagia.There is a threshold between 13% and 10% inspired oxygen, corresponding to altitudes of ∼3700 m and 5800 m, respectively, at which the mouse placenta no longer adapts to support fetal resource allocation. This has implications for high altitude human pregnancies. Abstract The placenta adapts its transport capacity to nutritional cues developmentally, although relatively little is known about placental transport phenotype in response to hypoxia, a major cause of fetal growth restriction. The present study determined the effects of both moderate hypoxia (13% inspired O2) between days (D)11 and D16 or D14 and D19 of pregnancy and severe hypoxia (10% inspired O2) from D14 to D19 on placental morphology, transport capacity and fetal growth on D16 and D19 (term∼D20.5), relative to normoxic mice in 21% O2. Placental morphology adapted beneficially to 13% O2; fetal capillary volume increased at both ages, exchange area increased at D16 and exchange barrier thickness reduced at D19. Exposure to 13% O2 had no effect on placental nutrient transport on D16 but increased placental uptake and clearance of 3H‐methyl‐d‐glucose at D19. By contrast, 10% O2 impaired fetal vascularity

  17. A Screen for Modifiers of Cilia Phenotypes Reveals Novel MKS Alleles and Uncovers a Specific Genetic Interaction between osm-3 and nphp-4

    PubMed Central

    Williams, Corey L.; Pieczynski, Jay N.; Roszczynialski, Kelly N.; Covington, Jannese E.; Malarkey, Erik B.; Yoder, Bradley K.

    2016-01-01

    Nephronophthisis (NPHP) is a ciliopathy in which genetic modifiers may underlie the variable penetrance of clinical features. To identify modifiers, a screen was conducted on C. elegans nphp-4(tm925) mutants. Mutations in ten loci exacerbating nphp-4(tm925) ciliary defects were obtained. Four loci have been identified, three of which are established ciliopathy genes mks-1, mks-2, and mks-5. The fourth allele (yhw66) is a missense mutation (S316F) in OSM-3, a kinesin required for cilia distal segment assembly. While osm-3(yhw66) mutants alone have no overt cilia phenotype, nphp-4(tm925);osm-3(yhw66) double mutants lack distal segments and are dye-filling (Dyf) and osmotic avoidance (Osm) defective, similar to osm-3(mn357) null mutants. In osm-3(yhw66) mutants anterograde intraflagellar transport (IFT) velocity is reduced. Furthermore, expression of OSM-3(S316F)::GFP reduced IFT velocities in nphp-4(tm925) mutants, but not in wild type animals. In silico analysis indicates the S316F mutation may affect a phosphorylation site. Putative phospho-null OSM-3(S316F) and phospho-mimetic OSM-3(S316D) proteins accumulate at the cilia base and tip respectively. FRAP analysis indicates that the cilia entry rate of OSM-3(S316F) is slower than OSM-3 and that in the presence of OSM-3(S316F), OSM-3 and OSM-3(S316D) rates decrease. In the presence OSM-3::GFP or OSM-3(S316D)::GFP, OSM-3(S316F)::tdTomato redistributes along the cilium and accumulates in the cilia tip. OSM-3(S316F) and OSM-3(S316D) are functional as they restore cilia distal segment formation in osm-3(mn357) null mutants; however, only OSM-3(S316F) rescues the osm-3(mn357) null Dyf phenotype. Despite rescue of cilia length in osm-3(mn357) null mutants, neither OSM-3(S316F) nor OSM-3(S316D) restores ciliary defects in nphp-4(tm925);osm-3(yhw66) double mutants. Thus, these OSM-3 mutations cause NPHP-4 dependent and independent phenotypes. These data indicate that in addition to regulating cilia protein entry or exit

  18. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster

    PubMed Central

    Rodriguez-Fernandez, Imilce A.; Dell’Angelica, Esteban C.

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions–which together covered most of the autosomal chromosomes–to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated

  19. Genetic polymorphisms in one-carbon metabolism: associations with CpG island methylator phenotype (CIMP) in colon cancer and the modifying effects of diet

    PubMed Central

    Curtin, Karen; Slattery, Martha L.; Ulrich, Cornelia M.; Bigler, Jeannette; Levin, Theodore R.; Wolff, Roger K.; Albertsen, Hans; Potter, John D.; Samowitz, Wade S.

    2008-01-01

    This study investigated associations between CpG island methylator phenotype (CIMP) colon cancer and genetic polymorphisms relevant to one-carbon metabolism and thus, potentially the provision of methyl groups and risk of colon cancer. Data from a large, population-based case–control study (916 incident colon cancer cases and 1972 matched controls) were used. Candidate polymorphisms in methylenetetrahydrofolate reductase (MTHFR), thymidylate synthase (TS), transcobalamin II (TCNII), methionine synthase (MTR), reduced folate carrier (RFC), methylene-tetrahydrofolate dehydrogenase 1 (MTHFD1), dihydrofolate reductase (DHFR) and alcohol dehydrogenase 3 (ADH3) were evaluated. CIMP− or CIMP+ phenotype was based on five CpG island markers: MINT1, MINT2, MINT31, p16 and MLH1. The influence of specific dietary factors (folate, methionine, vitamin B12 and alcohol) on these associations was also analyzed. We hypothesized that polymorphisms involved in the provision of methyl groups would be associated with CIMP+ tumors (two or more of five markers methylated), potentially modified by diet. Few associations specific to CIMP+ tumors were observed overall, which does not support the hypothesis that the provision of methyl groups is important in defining a methylator phenotype. However, our data suggest that genetic polymorphisms in MTHFR 1298A > C, interacting with diet, may be involved in the development of highly CpG-methylated colon cancers. AC and CC genotypes in conjunction with a high-risk dietary pattern (low folate and methionine intake and high alcohol use) were associated with CIMP+ (OR = 2.1, 95% CI = 1.3–3.4 versus AA/high risk; P-interaction = 0.03). These results provide only limited support for a role of polymorphisms in one-carbon metabolism in the etiology of CIMP colon cancer. PMID:17449906

  20. Interaction between mutations in the suppressor of Hairy wing and modifier of mdg4 genes of Drosophila melanogaster affecting the phenotype of gypsy-induced mutations

    SciTech Connect

    Georgiev, P.; Kozycina, M.

    1996-02-01

    The suppressor of Hairy-wing [su(Hw)] protein mediates the mutagenic effect of the gypsy retrotransposon by repressing the function of transcriptional enhancers located distally from the promoter with respect to the position of the su(Hw)-binding region. Mutations in a second gene, modifier of mdg4, also affect the gypsy-induced phenotype. Two major effects of the mod(mdg4){sup lu1} mutation can be distinguished: the interference with insulation by the su(Hw)-binding region and direct inhibition of gene expression that is not dependent on the su(Hw)-binding region position. The mod(mdg4){sup lu1} mutation partially suppresses ct{sup 6}, sc{sup D1} and Hw{sup 1} mutations, possibly by interfering with the insulation effect of the su(Hw)-binding region. An example of the second effect of mod(mdg4){sup lu1} is a complete inactivation of yellow expression in combination with the y{sup 2} allele. Phenotypic analyses of flies with combinations of mdg(mdg4){sup lu1} and different su(Hw) mutations, or with constructions carrying deletions of the acidic domains of the su(Hw) protein, suggest that the carboxy-terminal acidic domain is important for direct inhibition of yellow transcription in bristles, while the amino-terminal acidic domain is more essential for insulation. 31 refs., 1 fig., 6 tabs.

  1. A Novel Zebrafish ret Heterozygous Model of Hirschsprung Disease Identifies a Functional Role for mapk10 as a Modifier of Enteric Nervous System Phenotype Severity

    PubMed Central

    Kawakami, Koichi; Pachnis, Vassilis

    2016-01-01

    Hirschsprung disease (HSCR) is characterized by absence of enteric neurons from the distal colon and severe intestinal dysmotility. To understand the pathophysiology and genetics of HSCR we developed a unique zebrafish model that allows combined genetic, developmental and in vivo physiological studies. We show that ret mutant zebrafish exhibit cellular, physiological and genetic features of HSCR, including absence of intestinal neurons, reduced peristalsis, and varying phenotype expressivity in the heterozygous state. We perform live imaging experiments using a UAS-GAL4 binary genetic system to drive fluorescent protein expression in ENS progenitors. We demonstrate that ENS progenitors migrate at reduced speed in ret heterozygous embryos, without changes in proliferation or survival, establishing this as a principal pathogenic mechanism for distal aganglionosis. We show, using live imaging of actual intestinal movements, that intestinal motility is severely compromised in ret mutants, and partially impaired in ret heterozygous larvae, and establish a clear correlation between neuron position and organised intestinal motility. We exploited the partially penetrant ret heterozygous phenotype as a sensitised background to test the influence of a candidate modifier gene. We generated mapk10 loss-of-function mutants, which show reduced numbers of enteric neurons. Significantly, we show that introduction of mapk10 mutations into ret heterozygotes enhanced the ENS deficit, supporting MAPK10 as a HSCR susceptibility locus. Our studies demonstrate that ret heterozygous zebrafish is a sensitized model, with many significant advantages over existing murine models, to explore the pathophysiology and complex genetics of HSCR. PMID:27902697

  2. Monozygotic twins discordant for recessive dystrophic epidermolysis bullosa phenotype highlight the role of TGF-β signalling in modifying disease severity.

    PubMed

    Odorisio, Teresa; Di Salvio, Michela; Orecchia, Angela; Di Zenzo, Giovanni; Piccinni, Eugenia; Cianfarani, Francesca; Travaglione, Antonella; Uva, Paolo; Bellei, Barbara; Conti, Andrea; Zambruno, Giovanna; Castiglia, Daniele

    2014-08-01

    Recessive dystrophic epidermolysis bullosa (RDEB) is a genodermatosis characterized by fragile skin forming blisters that heal invariably with scars. It is due to mutations in the COL7A1 gene encoding type VII collagen, the major component of anchoring fibrils connecting the cutaneous basement membrane to the dermis. Identical COL7A1 mutations often result in inter- and intra-familial disease variability, suggesting that additional modifiers contribute to RDEB course. Here, we studied a monozygotic twin pair with RDEB presenting markedly different phenotypic manifestations, while expressing similar amounts of collagen VII. Genome-wide expression analysis in twins' fibroblasts showed differential expression of genes associated with TGF-β pathway inhibition. In particular, decorin, a skin matrix component with anti-fibrotic properties, was found to be more expressed in the less affected twin. Accordingly, fibroblasts from the more affected sibling manifested a profibrotic and contractile phenotype characterized by enhanced α-smooth muscle actin and plasminogen activator inhibitor 1 expression, collagen I release and collagen lattice contraction. These cells also produced increased amounts of proinflammatory cytokines interleukin 6 and monocyte chemoattractant protein-1. Both TGF-β canonical (Smads) and non-canonical (MAPKs) pathways were basally more activated in the fibroblasts of the more affected twin. The profibrotic behaviour of these fibroblasts was suppressed by decorin delivery to cells. Our data show that the amount of type VII collagen is not the only determinant of RDEB clinical severity, and indicate an involvement of TGF-β pathways in modulating disease variability. Moreover, our findings identify decorin as a possible anti-fibrotic/inflammatory agent for RDEB therapeutic intervention.

  3. Silent polymorphisms in the RYR1 gene do not modify the phenotype of the p.4898 I>T pathogenic mutation in central core disease: a case report

    PubMed Central

    2014-01-01

    Background Central core disease is a congenital myopathy, characterized by presence of central core-like areas in muscle fibers. Patients have mild or moderate weakness, hypotonia and motor developmental delay. The disease is caused by mutations in the human ryanodine receptor gene (RYR1), which encodes a calcium-release channel. Since the RYR1 gene is huge, containing 106 exons, mutation screening has been limited to three ‘hot spots’, with particular attention to the C-terminal region. Recent next- generation sequencing methods are now identifying multiple numbers of variants in patients, in which interpretation and phenotype prevision is difficult. Case presentation In a Brazilian Caucasian family, clinical, histopathological and molecular analysis identified a new case of central core disease in a 48-year female. Sanger sequencing of the C-terminal region of the RYR1 gene identified two different missense mutations: c.14256 A > C polymorphism in exon 98 and c.14693 T > C in exon 102, which have already been described as pathogenic. Trans-position of the 2 mutations was confirmed because patient’s daughter, mother and sister carried only the exon 98’s mutation, a synonymous variant that was subsequently found in the frequency of 013–0,05 of alleles. Further next generation sequencing study of the whole RYR1 gene in the patient revealed the presence of additional 5 common silent polymorphisms in homozygosis and 8 polymorphisms in heterozygosis. Conclusions Considering that patient’s relatives showed no pathologic phenotype, and the phenotype presented by the patient is within the range observed in other central core disease patients with the same mutation, it was concluded that the c.14256 A > C polymorphism alone is not responsible for disease, and the associated additional silent polymorphisms are not acting as modifiers of the primary pathogenic mutation in the affected patient. The case described above illustrates the present reality where

  4. Genetic Modifiers of Sickle Cell Disease: A Genotype-Phenotype Relationship Study in a Cohort of 82 Children on Mayotte Island.

    PubMed

    Muszlak, Mathias; Pissard, Serge; Badens, Catherine; Chamouine, Abdourahim; Maillard, Olivier; Thuret, Isabelle

    2015-01-01

    Sickle cell disease presents a great clinical variability that remains largely misunderstood. New disease protective genetic modifiers acting mainly through an increased Hb F level have recently been described. We studied relations between clinical and hematological phenotypes and known sickle cell disease genetic modifiers in patients from Mayotte Island, a remote French territory located in the Indian Ocean. Eighty-two children with sickle cell disease were enrolled; their median age was 5.9 years (range 1-18). Clinical and hematological features of sickle cell disease were retrospectively collected. Genetic studies included determination of β-globin genotypes [Hb SS, Hb S-β(0)-thalassemia (Hb S-β(0)-thal), Hb S-β(+)-thal], β(S)-globin locus haplotype, α-thalassemia (α-thal), and single nucleotide polymorphisms (SNPs) located in quantitative trait loci for Hb F expression (XmnI polymorphism, BCL11A rs4671393 and rs11886868, intergenic region of HBS1L-MYB rs28384513, rs4895441 and rs9399137). Univariate and multivariate analyses were conducted. Twenty-eight percent of the patients had Hb S-β-thal (eight different mutations in 21 patients), 55.0% had the -α(3.7) (rightward) deletion and 88.0% of the homozygous Hb SS patients were carrying a homozygous Bantu haplotype. In the multivariate model, the prognosis role of the SNP BCL11A rs4671393 was confirmed in the studied population showing a significant association with an elevated Hb F level and with a low hospitalization rate. The -α(3.7) deletion, XmnI polymorphism and intergenic region HBS1L-MYB SNPs were not significantly linked to any clinical criteria of severity. This report, the first to describe the main features of children with sickle cell disease on Mayotte Island, highlights the protective effect of the BCL11A polymorphism in this population.

  5. The Power of Human Protective Modifiers: PLS3 and CORO1C Unravel Impaired Endocytosis in Spinal Muscular Atrophy and Rescue SMA Phenotype.

    PubMed

    Hosseinibarkooie, Seyyedmohsen; Peters, Miriam; Torres-Benito, Laura; Rastetter, Raphael H; Hupperich, Kristina; Hoffmann, Andrea; Mendoza-Ferreira, Natalia; Kaczmarek, Anna; Janzen, Eva; Milbradt, Janine; Lamkemeyer, Tobias; Rigo, Frank; Bennett, C Frank; Guschlbauer, Christoph; Büschges, Ansgar; Hammerschmidt, Matthias; Riessland, Markus; Kye, Min Jeong; Clemen, Christoph S; Wirth, Brunhilde

    2016-09-01

    Homozygous loss of SMN1 causes spinal muscular atrophy (SMA), the most common and devastating childhood genetic motor-neuron disease. The copy gene SMN2 produces only ∼10% functional SMN protein, insufficient to counteract development of SMA. In contrast, the human genetic modifier plastin 3 (PLS3), an actin-binding and -bundling protein, fully protects against SMA in SMN1-deleted individuals carrying 3-4 SMN2 copies. Here, we demonstrate that the combinatorial effect of suboptimal SMN antisense oligonucleotide treatment and PLS3 overexpression-a situation resembling the human condition in asymptomatic SMN1-deleted individuals-rescues survival (from 14 to >250 days) and motoric abilities in a severe SMA mouse model. Because PLS3 knockout in yeast impairs endocytosis, we hypothesized that disturbed endocytosis might be a key cellular mechanism underlying impaired neurotransmission and neuromuscular junction maintenance in SMA. Indeed, SMN deficit dramatically reduced endocytosis, which was restored to normal levels by PLS3 overexpression. Upon low-frequency electro-stimulation, endocytotic FM1-43 (SynaptoGreen) uptake in the presynaptic terminal of neuromuscular junctions was restored to control levels in SMA-PLS3 mice. Moreover, proteomics and biochemical analysis revealed CORO1C, another F-actin binding protein, whose direct binding to PLS3 is dependent on calcium. Similar to PLS3 overexpression, CORO1C overexpression restored fluid-phase endocytosis in SMN-knockdown cells by elevating F-actin amounts and rescued the axonal truncation and branching phenotype in Smn-depleted zebrafish. Our findings emphasize the power of genetic modifiers to unravel the cellular pathomechanisms underlying SMA and the power of combinatorial therapy based on splice correction of SMN2 and endocytosis improvement to efficiently treat SMA.

  6. Randomly detected genetically modified (GM) maize (Zea mays L.) near a transport route revealed a fragile 45S rDNA phenotype.

    PubMed

    Waminal, Nomar Espinosa; Ryu, Ki Hyun; Choi, Sun-Hee; Kim, Hyun Hee

    2013-01-01

    Monitoring of genetically modified (GM) crops has been emphasized to prevent their potential effects on the environment and human health. Monitoring of the inadvertent dispersal of transgenic maize in several fields and transport routes in Korea was carried out by qualitative multiplex PCR, and molecular analyses were conducted to identify the events of the collected GM maize. Cytogenetic investigations through fluorescence in situ hybridization (FISH) of the GM maize were performed to check for possible changes in the 45S rDNA cluster because this cluster was reported to be sensitive to replication and transcription stress. Three GM maize kernels were collected from a transport route near Incheon port, Korea, and each was found to contain NK603, stacked MON863 x NK603, and stacked NK603 x MON810 inserts, respectively. Cytogenetic analysis of the GM maize containing the stacked NK603 x MON810 insert revealed two normal compact 5S rDNA signals, but the 45S rDNA showed a fragile phenotype, demonstrating a "beads-on-a-string" fragmentation pattern, which seems to be a consequence of genetic modification. Implications of the 45S rDNA cluster fragility in GM maize are also discussed.

  7. Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein–protein interactions

    PubMed Central

    Liu, Fushan; Ahmed, Zaheer; Lee, Elizabeth A.; Donner, Elizabeth; Liu, Qiang; Ahmed, Regina; Morell, Matthew K.; Emes, Michael J.; Tetlow, Ian J.

    2012-01-01

    amylose extender (ae−) starches characteristically have modified starch granule morphology resulting from amylopectin with reduced branch frequency and longer glucan chains in clusters, caused by the loss of activity of the major starch branching enzyme (SBE), which in maize endosperm is SBEIIb. A recent study with ae− maize lacking the SBEIIb protein (termed ae1.1 herein) showed that novel protein–protein interactions between enzymes of starch biosynthesis in the amyloplast could explain the starch phenotype of the ae1.1 mutant. The present study examined an allelic variant of the ae− mutation, ae1.2, which expresses a catalytically inactive form of SBEIIb. The catalytically inactive SBEIIb in ae1.2 lacks a 28 amino acid peptide (Val272–Pro299) and is unable to bind to amylopectin. Analysis of starch from ae1.2 revealed altered granule morphology and physicochemical characteristics distinct from those of the ae1.1 mutant as well as the wild-type, including altered apparent amylose content and gelatinization properties. Starch from ae1.2 had fewer intermediate length glucan chains (degree of polymerization 16–20) than ae1.1. Biochemical analysis of ae1.2 showed that there were differences in the organization and assembly of protein complexes of starch biosynthetic enzymes in comparison with ae1.1 (and wild-type) amyloplasts, which were also reflected in the composition of starch granule-bound proteins. The formation of stromal protein complexes in the wild-type and ae1.2 was strongly enhanced by ATP, and broken by phosphatase treatment, indicating a role for protein phosphorylation in their assembly. Labelling experiments with [γ-32P]ATP showed that the inactive form of SBEIIb in ae1.2 was phosphorylated, both in the monomeric form and in association with starch synthase isoforms. Although the inactive SBEIIb was unable to bind starch directly, it was strongly associated with the starch granule, reinforcing the conclusion that its presence in the

  8. Estimating rice yield related traits and quantitative trait loci analysis under different nitrogen treatments using a simple tower-based field phenotyping system with modified single-lens reflex cameras

    NASA Astrophysics Data System (ADS)

    Naito, Hiroki; Ogawa, Satoshi; Valencia, Milton Orlando; Mohri, Hiroki; Urano, Yutaka; Hosoi, Fumiki; Shimizu, Yo; Chavez, Alba Lucia; Ishitani, Manabu; Selvaraj, Michael Gomez; Omasa, Kenji

    2017-03-01

    Application of field based high-throughput phenotyping (FB-HTP) methods for monitoring plant performance in real field conditions has a high potential to accelerate the breeding process. In this paper, we discuss the use of a simple tower based remote sensing platform using modified single-lens reflex cameras for phenotyping yield traits in rice under different nitrogen (N) treatments over three years. This tower based phenotyping platform has the advantages of simplicity, ease and stability in terms of introduction, maintenance and continual operation under field conditions. Out of six phenological stages of rice analyzed, the flowering stage was the most useful in the estimation of yield performance under field conditions. We found a high correlation between several vegetation indices (simple ratio (SR), normalized difference vegetation index (NDVI), transformed vegetation index (TVI), corrected transformed vegetation index (CTVI), soil-adjusted vegetation index (SAVI) and modified soil-adjusted vegetation index (MSAVI)) and multiple yield traits (panicle number, grain weight and shoot biomass) across a three trials. Among all of the indices studied, SR exhibited the best performance in regards to the estimation of grain weight (R2 = 0.80). Under our tower-based field phenotyping system (TBFPS), we identified quantitative trait loci (QTL) for yield related traits using a mapping population of chromosome segment substitution lines (CSSLs) and a single nucleotide polymorphism data set. Our findings suggest the TBFPS can be useful for the estimation of yield performance during early crop development. This can be a major opportunity for rice breeders whom desire high throughput phenotypic selection for yield performance traits.

  9. Exome Sequencing of Phenotypic Extremes Identifies CAV2 and TMC6 as Interacting Modifiers of Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis

    PubMed Central

    Emond, Mary J.; Louie, Tin; Emerson, Julia; Chong, Jessica X.; Mathias, Rasika A.; Knowles, Michael R.; Rieder, Mark J.; Tabor, Holly K.; Nickerson, Debbie A.; Barnes, Kathleen C.; GO, Lung; Gibson, Ronald L.; Bamshad, Michael J.

    2015-01-01

    Discovery of rare or low frequency variants in exome or genome data that are associated with complex traits often will require use of very large sample sizes to achieve adequate statistical power. For a fixed sample size, sequencing of individuals sampled from the tails of a phenotype distribution (i.e., extreme phenotypes design) maximizes power and this approach was recently validated empirically with the discovery of variants in DCTN4 that influence the natural history of P. aeruginosa airway infection in persons with cystic fibrosis (CF; MIM219700). The increasing availability of large exome/genome sequence datasets that serve as proxies for population-based controls affords the opportunity to test an alternative, potentially more powerful and generalizable strategy, in which the frequency of rare variants in a single extreme phenotypic group is compared to a control group (i.e., extreme phenotype vs. control population design). As proof-of-principle, we applied this approach to search for variants associated with risk for age-of-onset of chronic P. aeruginosa airway infection among individuals with CF and identified variants in CAV2 and TMC6 that were significantly associated with group status. These results were validated using a large, prospective, longitudinal CF cohort and confirmed a significant association of a variant in CAV2 with increased age-of-onset of P. aeruginosa airway infection (hazard ratio = 0.48, 95% CI=[0.32, 0.88]) and variants in TMC6 with diminished age-of-onset of P. aeruginosa airway infection (HR = 5.4, 95% CI=[2.2, 13.5]) A strong interaction between CAV2 and TMC6 variants was observed (HR=12.1, 95% CI=[3.8, 39]) for children with the deleterious TMC6 variant and without the CAV2 protective variant. Neither gene showed a significant association using an extreme phenotypes design, and conditions for which the power of an extreme phenotype vs. control population design was greater than that for the extreme phenotypes design were

  10. Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations

    SciTech Connect

    Yan Qingfeng; Bykhovskaya, Yelena; Li Ronghua; Mengesha, Emebet; Shohat, Mordechai; Estivill, Xavier; Fischel-Ghodsian, Nathan; Guan Minxin . E-mail: min-xin.guan@chmcc.org

    2006-04-21

    Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937 bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations.

  11. Biochemical Evidence for a Nuclear Modifier Allele (A10S) in TRMU (Methylaminomethyl-2-thiouridylate-methyltransferase) Related to Mitochondrial tRNA Modification in the Phenotypic Manifestation of Deafness-associated 12S rRNA Mutation.

    PubMed

    Meng, Feilong; Cang, Xiaohui; Peng, Yanyan; Li, Ronghua; Zhang, Zhengyue; Li, Fushan; Fan, Qingqing; Guan, Anna S; Fischel-Ghosian, Nathan; Zhao, Xiaoli; Guan, Min-Xin

    2017-02-17

    Nuclear modifier gene(s) was proposed to modulate the phenotypic expression of mitochondrial DNA mutation(s). Our previous investigations revealed that a nuclear modifier allele (A10S) in TRMU (methylaminomethyl-2-thiouridylate-methyltransferase) related to tRNA modification interacts with 12S rRNA 1555A→G mutation to cause deafness. The A10S mutation resided at a highly conserved residue of the N-terminal sequence. It was hypothesized that the A10S mutation altered the structure and function of TRMU, thereby causing mitochondrial dysfunction. Using molecular dynamics simulations, we showed that the A10S mutation introduced the Ser(10) dynamic electrostatic interaction with the Lys(106) residue of helix 4 within the catalytic domain of TRMU. The Western blotting analysis displayed the reduced levels of TRMU in mutant cells carrying the A10S mutation. The thermal shift assay revealed the Tm value of mutant TRMU protein, lower than that of the wild-type counterpart. The A10S mutation caused marked decreases in 2-thiouridine modification of U34 of tRNA(Lys), tRNA(Glu) and tRNA(Gln) However, the A10S mutation mildly increased the aminoacylated efficiency of tRNAs. The altered 2-thiouridine modification worsened the impairment of mitochondrial translation associated with the m.1555A→G mutation. The defective translation resulted in the reduced activities of mitochondrial respiration chains. The respiratory deficiency caused the reduction of mitochondrial ATP production and elevated the production of reactive oxidative species. As a result, mutated TRMU worsened mitochondrial dysfunctions associated with m.1555A→G mutation, exceeding the threshold for expressing a deafness phenotype. Our findings provided new insights into the pathophysiology of maternally inherited deafness that was manifested by interaction between mtDNA mutation and nuclear modifier gene.

  12. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring

    PubMed Central

    Short, A K; Fennell, K A; Perreau, V M; Fox, A; O'Bryan, M K; Kim, J H; Bredy, T W; Pang, T Y; Hannan, A J

    2016-01-01

    Recent studies have suggested that physiological and behavioral traits may be transgenerationally inherited through the paternal lineage, possibly via non-genomic signals derived from the sperm. To investigate how paternal stress might influence offspring behavioral phenotypes, a model of hypothalamic–pituitary–adrenal (HPA) axis dysregulation was used. Male breeders were administered water supplemented with corticosterone (CORT) for 4 weeks before mating with untreated female mice. Female, but not male, F1 offspring of CORT-treated fathers displayed altered fear extinction at 2 weeks of age. Only male F1 offspring exhibited altered patterns of ultrasonic vocalization at postnatal day 3 and, as adults, showed decreased time in open on the elevated-plus maze and time in light on the light–dark apparatus, suggesting a hyperanxiety-like behavioral phenotype due to paternal CORT treatment. Interestingly, expression of the paternally imprinted gene Igf2 was increased in the hippocampus of F1 male offspring but downregulated in female offspring. Male and female F2 offspring displayed increased time spent in the open arm of the elevated-plus maze, suggesting lower levels of anxiety compared with control animals. Only male F2 offspring showed increased immobility time on the forced-swim test and increased latency to feed on the novelty-supressed feeding test, suggesting a depression-like phenotype in these animals. Collectively, these data provide evidence that paternal CORT treatment alters anxiety and depression-related behaviors across multiple generations. Analysis of the small RNA profile in sperm from CORT-treated males revealed marked effects on the expression of small noncoding RNAs. Sperm from CORT-treated males contained elevated levels of three microRNAs, miR-98, miR-144 and miR-190b, which are predicted to interact with multiple growth factors, including Igf2 and Bdnf. Sustained elevation of glucocorticoids is therefore involved in the transmission of

  13. The exome sequencing identified the mutation in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase as a nuclear modifier for the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation.

    PubMed

    Jiang, Pingping; Jin, Xiaofen; Peng, Yanyan; Wang, Meng; Liu, Hao; Liu, Xiaoling; Zhang, Zengjun; Ji, Yanchun; Zhang, Juanjuan; Liang, Min; Zhao, Fuxin; Sun, Yan-Hong; Zhang, Minglian; Zhou, Xiangtian; Chen, Ye; Mo, Jun Qin; Huang, Taosheng; Qu, Jia; Guan, Min-Xin

    2016-02-01

    Leber's hereditary optic neuropathy (LHON) is the most common mitochondrial disorder. Nuclear modifier genes are proposed to modify the phenotypic expression of LHON-associated mitochondrial DNA (mtDNA) mutations. By using an exome sequencing approach, we identified a LHON susceptibility allele (c.572G>T, p.191Gly>Val) in YARS2 gene encoding mitochondrial tyrosyl-tRNA synthetase, which interacts with m.11778G>A mutation to cause visual failure. We performed functional assays by using lymphoblastoid cell lines derived from members of Chinese families (asymptomatic individuals carrying m.11778G>A mutation, or both m.11778G>A and heterozygous p.191Gly>Val mutations and symptomatic subjects harboring m.11778G>A and homozygous p.191Gly>Val mutations) and controls lacking these mutations. The 191Gly>Val mutation reduced the YARS2 protein level in the mutant cells. The aminoacylated efficiency and steady-state level of tRNA(Tyr) were markedly decreased in the cell lines derived from patients both carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The failure in tRNA(Tyr) metabolism impaired mitochondrial translation, especially for polypeptides with high content of tyrosine codon such as ND4, ND5, ND6 and COX2 in cells lines carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The YARS2 p.191Gly>Val mutation worsened the respiratory phenotypes associated with m.11778G>A mutation, especially reducing activities of complexes I and IV. The respiratory deficiency altered the efficiency of mitochondrial ATP synthesis and increased the production of reactive oxygen species. Thus, mutated YARS2 aggravates mitochondrial dysfunctions associated with the m.11778G>A mutation, exceeding the threshold for the expression of blindness phenotype. Our findings provided new insights into the pathophysiology of LHON that were manifested by interaction between mtDNA mutation and mutated nuclear-modifier YARS2.

  14. Gender as a Modifying Factor Influencing Myotonic Dystrophy Type 1 Phenotype Severity and Mortality: A Nationwide Multiple Databases Cross-Sectional Observational Study

    PubMed Central

    Hamroun, Dalil; Varet, Hugo; Fabbro, Marianne; Rougier, Felix; Amarof, Khadija; Arne Bes, Marie-Christine; Bedat-Millet, Anne-Laure; Behin, Anthony; Bellance, Remi; Bouhour, Françoise; Boutte, Celia; Boyer, François; Campana-Salort, Emmanuelle; Chapon, Françoise; Cintas, Pascal; Desnuelle, Claude; Deschamps, Romain; Drouin-Garraud, Valerie; Ferrer, Xavier; Gervais-Bernard, Helene; Ghorab, Karima; Laforet, Pascal; Magot, Armelle; Magy, Laurent; Menard, Dominique; Minot, Marie-Christine; Nadaj-Pakleza, Aleksandra; Pellieux, Sybille; Pereon, Yann; Preudhomme, Marguerite; Pouget, Jean; Sacconi, Sabrina; Sole, Guilhem; Stojkovich, Tanya; Tiffreau, Vincent; Urtizberea, Andoni; Vial, Christophe; Zagnoli, Fabien; Caranhac, Gilbert; Bourlier, Claude; Riviere, Gerard; Geille, Alain; Gherardi, Romain K.; Eymard, Bruno; Puymirat, Jack; Katsahian, Sandrine; Bassez, Guillaume

    2016-01-01

    Background Myotonic Dystrophy type 1 (DM1) is one of the most heterogeneous hereditary disease in terms of age of onset, clinical manifestations, and severity, challenging both medical management and clinical trials. The CTG expansion size is the main factor determining the age of onset although no factor can finely predict phenotype and prognosis. Differences between males and females have not been specifically reported. Our aim is to study gender impact on DM1 phenotype and severity. Methods We first performed cross-sectional analysis of main multiorgan clinical parameters in 1409 adult DM1 patients (>18y) from the DM-Scope nationwide registry and observed different patterns in males and females. Then, we assessed gender impact on social and economic domains using the AFM-Téléthon DM1 survey (n = 970), and morbidity and mortality using the French National Health Service Database (n = 3301). Results Men more frequently had (1) severe muscular disability with marked myotonia, muscle weakness, cardiac, and respiratory involvement; (2) developmental abnormalities with facial dysmorphism and cognitive impairment inferred from low educational levels and work in specialized environments; and (3) lonely life. Alternatively, women more frequently had cataracts, dysphagia, digestive tract dysfunction, incontinence, thyroid disorder and obesity. Most differences were out of proportion to those observed in the general population. Compared to women, males were more affected in their social and economic life. In addition, they were more frequently hospitalized for cardiac problems, and had a higher mortality rate. Conclusion Gender is a previously unrecognized factor influencing DM1 clinical profile and severity of the disease, with worse socio-economic consequences of the disease and higher morbidity and mortality in males. Gender should be considered in the design of both stratified medical management and clinical trials. PMID:26849574

  15. Disabling of the erbB Pathway Followed by IFN-γ Modifies Phenotype and Enhances Genotoxic Eradication of Breast Tumors

    PubMed Central

    Nagai, Yasuhiro; Tsuchiya, Hiromichi; Runkle, E. Aaron; Young, Peter D.; Ji, Mei Q.; Norton, Larry; Drebin, Jeffrey A.; Zhang, Hongtao; Greene, Mark I.

    2015-01-01

    Summary Reversion of the malignant phenotype of erbB2-transformed cells can be driven by anti-erbB2/neu monoclonal antibodies (mAb), which disrupt the receptor's kinase activity. We examined the biologic effects of IFN-γ alone or after anti-erbB2/neu mAb treatment of erbB2-positive cells. IFN-γ had no effect on its own. Treatment of the tumors with anti-erbB2/neu mAb followed by IFN-γ led to dramatic inhibition of tumor growth in vitro and in vivo with minimal mAb dosing. Sequential therapy enhanced the effects of chemotherapy. Moreover, IFN-γ with mAb treatment of mice with IFNγR knock down tumors did not demonstrate marked synergistic eradication effects, indicating an unexpected role of IFN-γ on the tumor itself. Additionally, mAb and IFN-γ treatment also in duced immune host responses that enhanced tumor eradication. Biochemical analyses identified loss of Snail expression in tumor cells, reflecting diminution of tumor stem cell-like properties as a consequence of altered activity of GSK3-β and KLF molecules. PMID:26365188

  16. Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration.

    PubMed

    Dauwe, Rebecca; Morreel, Kris; Goeminne, Geert; Gielen, Birgit; Rohde, Antje; Van Beeumen, Jos; Ralph, John; Boudet, Alain-Michel; Kopka, Joachim; Rochange, Soizic F; Halpin, Claire; Messens, Eric; Boerjan, Wout

    2007-10-01

    Lignin is an important component of secondarily thickened cell walls. Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) are two key enzymes that catalyse the penultimate and last steps in the biosynthesis of the monolignols. Downregulation of CCR in tobacco (Nicotiana tabacum) has been shown to reduce lignin content, whereas lignin in tobacco downregulated for CAD incorporates more aldehydes. We show that altering the expression of either or both genes in tobacco has far-reaching consequences on the transcriptome and metabolome. cDNA-amplified fragment length polymorphism-based transcript profiling, combined with HPLC and GC-MS-based metabolite profiling, revealed differential transcripts and metabolites within monolignol biosynthesis, as well as a substantial network of interactions between monolignol and other metabolic pathways. In general, in all transgenic lines, the phenylpropanoid biosynthetic pathway was downregulated, whereas starch mobilization was upregulated. CCR-downregulated lines were characterized by changes at the level of detoxification and carbohydrate metabolism, whereas the molecular phenotype of CAD-downregulated tobacco was enriched in transcript of light- and cell-wall-related genes. In addition, the transcript and metabolite data suggested photo-oxidative stress and increased photorespiration, mainly in the CCR-downregulated lines. These predicted effects on the photosynthetic apparatus were subsequently confirmed physiologically by fluorescence and gas-exchange measurements. Our data provide a molecular picture of a plant's response to altered monolignol biosynthesis.

  17. Hereditary hemochromatosis type 1 phenotype modifiers in Italian patients. The controversial role of variants in HAMP, BMP2, FTL and SLC40A1 genes.

    PubMed

    Radio, Francesca Clementina; Majore, Silvia; Aurizi, Caterina; Sorge, Fiammetta; Biolcati, Gianfranco; Bernabini, Sara; Giotti, Irene; Torricelli, Francesca; Giannarelli, Diana; De Bernardo, Carmelilia; Grammatico, Paola

    2015-06-01

    Hereditary hemochromatosis (HH) is a heterogeneous disorder of iron metabolism. The most common form of the disease is Classic or type 1 HH, mainly caused by a biallelic missense p.Cys282Tyr (c.845G>A) mutation in the HFE gene. However, the penetrance of p.Cys282Tyr/p.Cys282Tyr genotype is incomplete in terms of both biochemical and clinical expressivity. Lack of penetrance is thought to be caused by several genetic and environmental factors. Recently, a lot of evidences on HH genetic modifiers were produced, often without conclusive results. We investigated 6 polymorphisms (rs10421768 in HAMP gene, rs235756 in BMP2 gene, rs2230267 in FTL gene, rs1439816 in SLC40A1 gene, rs41295942 in TFR2 gene and rs2111833 in TMPRSS6 gene) with uncertain function in order to further evaluate their role in an independent cohort of 109 HH type 1 patients. Our results make it likely the role of rs10421768, rs235756, rs2230267 and rs1439816 polymorphisms, respectively in HAMP, BMP2, FTL and SLC40A1 genes in HH expressivity. In addition, previous and our findings support a hypothetical multifactorial model of HH, characterized by a principal gene (HFE in HH type 1) and minor genetic and environmental factors that still have to be fully elucidated.

  18. Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration.

    PubMed

    Choi, Dong-Young; Lee, Myung Koo; Hong, Jin Tae

    2013-01-01

    Constitutive expression of C-C chemokine receptor (CCR) 5 has been detected in astrocytes, microglia and neurons, but its physiological roles in the central nervous system are obscure. The bidirectional interactions between neuron and glial cells through CCR5 and its ligands were thought to be crucial for maintaining normal neuronal activities. No study has described function of CCR5 in the dopaminergic neurodegeneration in Parkinson's disease. In order to examine effects of CCR5 on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration, we employed CCR5 wild type (WT) and knockout (KO) mice. Immunostainings for tyrosine hydroxylase (TH) exhibited that CCR5 KO mice had lower number of TH-positive neurons even in the absence of MPTP. Difference in MPTP (15mg/kg×4 times, 2hr interval)-mediated loss of TH-positive neurons was subtle between CCR5 WT and KO mice, but there was larger dopamine depletion, behavioral impairments and microglial activation in CCR5 deficient mice. Intriguingly, CCR5 KO brains contained higher immunoreactivity for monoamine oxidase (MAO) B which was mainly localized within astrocytes. In agreement with upregulation of MAO B, concentration of MPP+ was higher in the substantia nigra and striatum of CCR5 KO mice after MPTP injection. We found remarkable activation of p38 MAPK in CCR5 deficient mice, which positively regulates MAO B expression. These results indicate that CCR5 deficiency modifies the nigrostriatal dopaminergic neuronal system and bidirectional interaction between neurons and glial cells via CCR5 might be important for dopaminergic neuronal survival.

  19. Dynamic Changes in the Intracellular Association of Selected Rab Small GTPases with MHC Class II and DM during Dendritic Cell Maturation

    PubMed Central

    Pérez-Montesinos, Gibrán; López-Ortega, Orestes; Piedra-Reyes, Jessica; Bonifaz, Laura C.; Moreno, José

    2017-01-01

    Antigen processing for presentation by major histocompatibility complex class II (MHCII) molecules requires the latter to travel through the endocytic pathway together with its chaperons: the invariant chain (Ii) and DM. Nevertheless, the nature of the compartments where MHCII molecules travel to acquire peptides lacks definition regarding molecules involved in intracellular vesicular trafficking, such as Rab small GTPases. We aimed to define which Rab proteins are present during the intracellular transport of MHCII, DM, and Ii through the endocytic pathway on their route to the cell surface during dendritic cell (DC) maturation. We examined, by means of three-color confocal microscopy, the association of MHCII, DM, and Ii with Rab5, Rab7, Rab9, and Rab11 during the maturation of bone marrow-derived or spleen DC in response to LPS as an inflammatory stimulus. Prior to the stage of immature DC, MHCII migrated from diffuse small cytoplasmic vesicles, predominantly Rab5+Rab7− and Rab5+Rab7+ into a pericentriolar Rab5+Rab7+Rab9+ cluster, with Rab11+ areas. As DC reached the mature phenotype, MHCII left the pericentriolar endocytic compartments toward the cell surface in Rab11+ and Rab9+Rab11+ vesicles. The invariant chain and MHCII transport pathways were not identical. DM and MHCII appeared to arrive to pericentriolar endocytic compartments of immature DC through partially different routes. The association of MHCII molecules with distinct Rab GTPases during DC maturation suggests that after leaving the biosynthetic pathway, MHCII sequentially traffic from typical early endosomes to multivesicular late endosomes to finally arrive at the cell surface in Rab11+ recycling-type endosomes. In immature DCs, DM encounters transiently MHCII in the Rab5+Rab7+Rab9+ compartments, to remain there in mature DC.

  20. Mitochondrial COX2 G7598A mutation may have a modifying role in the phenotypic manifestation of aminoglycoside antibiotic-induced deafness associated with 12S rRNA A1555G mutation in a Han Chinese pedigree.

    PubMed

    Chen, Tianbin; Liu, Qicai; Jiang, Ling; Liu, Can; Ou, Qishui

    2013-02-01

    Recent studies suggest that certain mitochondrial haplogroup markers and some specific variants in mitochondrial haplogroup may also influence the phenotypic expression of particular mitochondrial disorders. In this report, the clinical, genetic, and molecular characterization were identified in a Chinese pedigree with the aminoglycoside antibiotic (AmAn)-induced deafness and nonsyndromic hearing loss (NSHL). The pathogenic gene responsible for this hereditary NSHL pedigree was determined by Microarray chip, which possessed the nine NSHL hot-spot mutations, including GJB2 (35delG, 176dell6bp, 235de1C, and 299delAT), GJB3 (538C>T), SLC26A4 (IVS7-2A>G and 2168A>G), and mitochondrial DNA (mtDNA) 12S rRNA (C1494T and A1555G). Only the homoplasmic A1555G mutation was detected, which was confirmed by direct sequencing. Also, real-time amplification refractory mutation system quantitative polymerase chain reaction methodology was performed to calculate the A1555G mutation load. The proband's complete mtDNA genome were amplified and direct sequencing was performed to determine the mitochondrial haplogroup and private mutations. The proband's mitochondrial haplogroup belonges to M7b1 and a private mutation MTCOX2 G7598A (p.Ala 5 Thr) is found. Phylogenetic analysis of COX2 polypeptide sequences demonstrates that the alanine residue is relatively conserved, but owing to the missense mutation (p.Ala 5 Thr), its side chain hydrophobicity will be changed, and what is more, as it is adjacent to a glutamine residue, which is highly conserved and hydrophilic, in an evolutionary stable domain; G7598A (p.Ala 5 Thr) may alter the protein secondary structure and physiological function of COX2 and, thus, aggravate the mitochondrial dysfunction conferred by the A1555G mutation. Furthermore, the G7598A mutation is absent in 100 unrelated healthy controls; therefore, G7598A (p.Ala 5 Thr) in the mitochondrial haplogoup M7b1 may have a modifying role, enhancing its penetrance and severity

  1. From Phenotype to Genotype

    PubMed Central

    2014-01-01

    The progress in phenotype descriptions, measurements, and analyses has been remarkable in the last 50 years. Biomarkers (proteins, carbohydrates, lipids, hormones, various RNAs and cDNAs, microarrays) have been discovered and correlated with diseases and disorders, as well as physiological responses to disease, injury, stress, within blood, urine, and saliva. Three-dimensional digital imaging advanced how we “see” and utilize phenotypes toward diagnosis, treatment, and prognosis. In each example, scientific discovery led to inform clinical health care. In tandem, genetics evolved from Mendelian inheritance (single gene mutations) to include Complex Human Diseases (multiple gene-gene and gene-environment interactions). In addition, epigenetics blossomed with new insights about gene modifiers (e.g., histone and non-histone chromosomal protein methylation, acetylation, sulfation, phosphorylation). We are now at the beginning of a new era using human and microbial whole-genome sequencing to make significant healthcare decisions as to risk, stratification of patients, diagnosis, treatments, and outcomes. Are we as clinicians, scientists, and educators prepared to expand our scope of practice, knowledge base, integration into primary health care (medicine, pharmacy, nursing, and allied health science professions), and clinical approaches to craniofacial-oral-dental health care? The time is now. PMID:24799423

  2. Histopathology reveals correlative and unique phenotypes in a high-throughput mouse phenotyping screen.

    PubMed

    Adissu, Hibret A; Estabel, Jeanne; Sunter, David; Tuck, Elizabeth; Hooks, Yvette; Carragher, Damian M; Clarke, Kay; Karp, Natasha A; Newbigging, Susan; Jones, Nora; Morikawa, Lily; White, Jacqueline K; McKerlie, Colin

    2014-05-01

    The Mouse Genetics Project (MGP) at the Wellcome Trust Sanger Institute aims to generate and phenotype over 800 genetically modified mouse lines over the next 5 years to gain a better understanding of mammalian gene function and provide an invaluable resource to the scientific community for follow-up studies. Phenotyping includes the generation of a standardized biobank of paraffin-embedded tissues for each mouse line, but histopathology is not routinely performed. In collaboration with the Pathology Core of the Centre for Modeling Human Disease (CMHD) we report the utility of histopathology in a high-throughput primary phenotyping screen. Histopathology was assessed in an unbiased selection of 50 mouse lines with (n=30) or without (n=20) clinical phenotypes detected by the standard MGP primary phenotyping screen. Our findings revealed that histopathology added correlating morphological data in 19 of 30 lines (63.3%) in which the primary screen detected a phenotype. In addition, seven of the 50 lines (14%) presented significant histopathology findings that were not associated with or predicted by the standard primary screen. Three of these seven lines had no clinical phenotype detected by the standard primary screen. Incidental and strain-associated background lesions were present in all mutant lines with good concordance to wild-type controls. These findings demonstrate the complementary and unique contribution of histopathology to high-throughput primary phenotyping of mutant mice.

  3. In-silico identification of phenotype-biased functional modules

    PubMed Central

    2012-01-01

    Background Phenotypes exhibited by microorganisms can be useful for several purposes, e.g., ethanol as an alternate fuel. Sometimes, the target phenotype maybe required in combination with other phenotypes, in order to be useful, for e.g., an industrial process may require that the organism survive in an anaerobic, alcohol rich environment and be able to feed on both hexose and pentose sugars to produce ethanol. This combination of traits may not be available in any existing organism or if they do exist, the mechanisms involved in the phenotype-expression may not be efficient enough to be useful. Thus, it may be required to genetically modify microorganisms. However, before any genetic modification can take place, it is important to identify the underlying cellular subsystems responsible for the expression of the target phenotype. Results In this paper, we develop a method to identify statistically significant and phenotypically-biased functional modules. The method can compare the organismal network information from hundreds of phenotype expressing and phenotype non-expressing organisms to identify cellular subsystems that are more prone to occur in phenotype-expressing organisms than in phenotype non-expressing organisms. We have provided literature evidence that the phenotype-biased modules identified for phenotypes such as hydrogen production (dark and light fermentation), respiration, gram-positive, gram-negative and motility, are indeed phenotype-related. Conclusion Thus we have proposed a methodology to identify phenotype-biased cellular subsystems. We have shown the effectiveness of our methodology by applying it to several target phenotypes. The code and all supplemental files can be downloaded from (http://freescience.org/cs/phenotype-biased-biclusters/). PMID:22759578

  4. Phenotype definition in epilepsy.

    PubMed

    Winawer, Melodie R

    2006-05-01

    Phenotype definition consists of the use of epidemiologic, biological, molecular, or computational methods to systematically select features of a disorder that might result from distinct genetic influences. By carefully defining the target phenotype, or dividing the sample by phenotypic characteristics, we can hope to narrow the range of genes that influence risk for the trait in the study population, thereby increasing the likelihood of finding them. In this article, fundamental issues that arise in phenotyping in epilepsy and other disorders are reviewed, and factors complicating genotype-phenotype correlation are discussed. Methods of data collection, analysis, and interpretation are addressed, focusing on epidemiologic studies. With this foundation in place, the epilepsy subtypes and clinical features that appear to have a genetic basis are described, and the epidemiologic studies that have provided evidence for the heritability of these phenotypic characteristics, supporting their use in future genetic investigations, are reviewed. Finally, several molecular approaches to phenotype definition are discussed, in which the molecular defect, rather than the clinical phenotype, is used as a starting point.

  5. Modified cyanobacteria

    SciTech Connect

    Vermaas, Willem F J.

    2014-06-17

    Disclosed is a modified photoautotrophic bacterium comprising genes of interest that are modified in terms of their expression and/or coding region sequence, wherein modification of the genes of interest increases production of a desired product in the bacterium relative to the amount of the desired product production in a photoautotrophic bacterium that is not modified with respect to the genes of interest.

  6. Phenotypic approaches to drought in cassava: review.

    PubMed

    Okogbenin, Emmanuel; Setter, Tim L; Ferguson, Morag; Mutegi, Rose; Ceballos, Hernan; Olasanmi, Bunmi; Fregene, Martin

    2013-01-01

    Cassava is an important crop in Africa, Asia, Latin America, and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative trait and its multigenic nature makes it very challenging to effectively manipulate and combine genes in breeding for rapid genetic gain and selection process. Cassava has a long growth cycle of 12-18 months which invariably contributes to a long breeding scheme for the crop. Modern breeding using advances in genomics and improved genotyping, is facilitating the dissection and genetic analysis of complex traits including drought tolerance, thus helping to better elucidate and understand the genetic basis of such traits. A beneficial goal of new innovative breeding strategies is to shorten the breeding cycle using minimized, efficient or fast phenotyping protocols. While high throughput genotyping have been achieved, this is rarely the case for phenotyping for drought adaptation. Some of the storage root phenotyping in cassava are often done very late in the evaluation cycle making selection process very slow. This paper highlights some modified traits suitable for early-growth phase phenotyping that may be used to reduce drought phenotyping cycle in cassava. Such modified traits can significantly complement the high throughput genotyping procedures to fast track breeding of improved drought tolerant varieties. The need for metabolite profiling, improved phenomics to take advantage of next generation sequencing technologies and high throughput phenotyping are basic steps for future direction to improve genetic gain and maximize speed for drought tolerance breeding.

  7. Phenotypic approaches to drought in cassava: review

    PubMed Central

    Okogbenin, Emmanuel; Setter, Tim L.; Ferguson, Morag; Mutegi, Rose; Ceballos, Hernan; Olasanmi, Bunmi; Fregene, Martin

    2012-01-01

    Cassava is an important crop in Africa, Asia, Latin America, and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative trait and its multigenic nature makes it very challenging to effectively manipulate and combine genes in breeding for rapid genetic gain and selection process. Cassava has a long growth cycle of 12–18 months which invariably contributes to a long breeding scheme for the crop. Modern breeding using advances in genomics and improved genotyping, is facilitating the dissection and genetic analysis of complex traits including drought tolerance, thus helping to better elucidate and understand the genetic basis of such traits. A beneficial goal of new innovative breeding strategies is to shorten the breeding cycle using minimized, efficient or fast phenotyping protocols. While high throughput genotyping have been achieved, this is rarely the case for phenotyping for drought adaptation. Some of the storage root phenotyping in cassava are often done very late in the evaluation cycle making selection process very slow. This paper highlights some modified traits suitable for early-growth phase phenotyping that may be used to reduce drought phenotyping cycle in cassava. Such modified traits can significantly complement the high throughput genotyping procedures to fast track breeding of improved drought tolerant varieties. The need for metabolite profiling, improved phenomics to take advantage of next generation sequencing technologies and high throughput phenotyping are basic steps for future direction to improve genetic gain and maximize speed for drought tolerance breeding. PMID

  8. Macrophage phenotypes in atherosclerosis.

    PubMed

    Colin, Sophie; Chinetti-Gbaguidi, Giulia; Staels, Bart

    2014-11-01

    Initiation and progression of atherosclerosis depend on local inflammation and accumulation of lipids in the vascular wall. Although many cells are involved in the development and progression of atherosclerosis, macrophages are fundamental contributors. For nearly a decade, the phenotypic heterogeneity and plasticity of macrophages has been studied. In atherosclerotic lesions, macrophages are submitted to a large variety of micro-environmental signals, such as oxidized lipids and cytokines, which influence the phenotypic polarization and activation of macrophages resulting in a dynamic plasticity. The macrophage phenotype spectrum is characterized, at the extremes, by the classical M1 macrophages induced by T-helper 1 (Th-1) cytokines and by the alternative M2 macrophages induced by Th-2 cytokines. M2 macrophages can be further classified into M2a, M2b, M2c, and M2d subtypes. More recently, additional plaque-specific macrophage phenotypes have been identified, termed as Mox, Mhem, and M4. Understanding the mechanisms and functional consequences of the phenotypic heterogeneity of macrophages will contribute to determine their potential role in lesion development and plaque stability. Furthermore, research on macrophage plasticity could lead to novel therapeutic approaches to counteract cardiovascular diseases such as atherosclerosis. The present review summarizes our current knowledge on macrophage subsets in atherosclerotic plaques and mechanism behind the modulation of the macrophage phenotype.

  9. Down Syndrome: Cognitive Phenotype

    ERIC Educational Resources Information Center

    Silverman, Wayne

    2007-01-01

    Down syndrome is the most prevalent cause of intellectual impairment associated with a genetic anomaly, in this case, trisomy of chromosome 21. It affects both physical and cognitive development and produces a characteristic phenotype, although affected individuals vary considerably with respect to severity of specific impairments. Studies…

  10. Single cell dynamic phenotyping

    PubMed Central

    Patsch, Katherin; Chiu, Chi-Li; Engeln, Mark; Agus, David B.; Mallick, Parag; Mumenthaler, Shannon M.; Ruderman, Daniel

    2016-01-01

    Live cell imaging has improved our ability to measure phenotypic heterogeneity. However, bottlenecks in imaging and image processing often make it difficult to differentiate interesting biological behavior from technical artifact. Thus there is a need for new methods that improve data quality without sacrificing throughput. Here we present a 3-step workflow to improve dynamic phenotype measurements of heterogeneous cell populations. We provide guidelines for image acquisition, phenotype tracking, and data filtering to remove erroneous cell tracks using the novel Tracking Aberration Measure (TrAM). Our workflow is broadly applicable across imaging platforms and analysis software. By applying this workflow to cancer cell assays, we reduced aberrant cell track prevalence from 17% to 2%. The cost of this improvement was removing 15% of the well-tracked cells. This enabled detection of significant motility differences between cell lines. Similarly, we avoided detecting a false change in translocation kinetics by eliminating the true cause: varied proportions of unresponsive cells. Finally, by systematically seeking heterogeneous behaviors, we detected subpopulations that otherwise could have been missed, including early apoptotic events and pre-mitotic cells. We provide optimized protocols for specific applications and step-by-step guidelines for adapting them to a variety of biological systems. PMID:27708391

  11. [Phenotype specific therapy of COPD].

    PubMed

    Rothe, Thomas

    2014-12-10

    COPD is not a homogenous disease but consists of at least four different phenotypes: Emphysema, COPD with chronic bronchitis, asthma-COPD overlap syndrome (ACOS), and COPD with recurrent exacerbations. With differentiation, treatment can be designed phenotype-specific. Some modern drugs are not indicated in all phenotypes.

  12. Glyoxalase I drives epithelial-to-mesenchymal transition via argpyrimidine-modified Hsp70, miR-21 and SMAD signalling in human bronchial cells BEAS-2B chronically exposed to crystalline silica Min-U-Sil 5: Transformation into a neoplastic-like phenotype.

    PubMed

    Antognelli, Cinzia; Gambelunghe, Angela; Muzi, Giacomo; Talesa, Vincenzo Nicola

    2016-03-01

    Glyoxalase I (Glo1) is the main scavenging enzyme of methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs). AGEs are known to control multiple biological processes, including epithelial to mesenchymal transition (EMT), a multistep phenomenon associated with cell transformation, playing a major role in a variety of diseases, including cancer. Crystalline silica is a well-known occupational health hazard, responsible for a great number of human pulmonary diseases, such as silicosis. There is still much debate concerning the carcinogenic role of crystalline silica, mainly due to the lack of a causal demonstration between silica exposure and carcinogenesis. It has been suggested that EMT might play a role in crystalline silica-induced lung neoplastic transformation. The aim of this study was to investigate whether, and by means of which mechanism, the antiglycation defence Glo1 is involved in Min-U-Sil 5 (MS5) crystalline silica-induced EMT in BEAS-2B human bronchial epithelial cells chronically exposed, and whether this is associated with the beginning of a neoplastic-like transformation process. By using gene silencing/overexpression and scavenging/inhibitory agents, we demonstrated that MS5 induced hydrogen peroxide-mediated c-Jun-dependent Glo1 up-regulation which resulted in a decrease in the Argpyrimidine-modified Hsp70 protein level which triggered EMT in a novel mechanism involving miR-21 and SMAD signalling. The observed EMT was associated with a neoplastic-like phenotype. The results obtained provide a causal in vitro demonstration of the MS5 pro-carcinogenic transforming role and more importantly they provide new insights into the mechanisms involved in this process, thus opening new paths in research concerning the in vivo study of the carcinogenic potential of crystalline silica.

  13. Cardiac sodium channel mutations: why so many phenotypes?

    PubMed Central

    Liu, Man; Yang, Kai-Chien; Dudley, Samuel C.

    2016-01-01

    Mutations of the cardiac sodium channel (Nav1.5) can induce gain or loss of channel function. Gain-of-function mutations can cause long QT syndrome type 3 and possibly atrial fibrillation, whereas loss-of-function mutations are associated with a variety of phenotypes, such as Brugada syndrome, cardiac conduction disease, sick sinus syndrome, and possibly dilated cardiomyopathy. The phenotypes produced by Nav1.5 mutations vary according to the direct effect of the mutation on channel biophysics, but also with age, sex, body temperature, and between regions of the heart. This phenotypic variability makes genotype–phenotype correlations difficult. In this Perspectives article, we propose that phenotypic variability not ascribed to mutation-dependent changes in channel function might be the result of additional modifiers of channel behaviour, such as other genetic variation and alterations in transcription, RNA processing, translation, post-translational modifications, and protein degradation. Consideration of these modifiers might help to improve genotype–phenotype correlations and lead to new therapeutic strategies. PMID:24958080

  14. `Weak A' phenotypes

    PubMed Central

    Cartron, J. P.; Gerbal, A.; Hughes-Jones, N. C.; Salmon, C.

    1974-01-01

    Thirty-five weak A samples including fourteen A3, eight Ax, seven Aend, three Am and three Ae1 were studied in order to determine their A antigen site density, using an IgG anti-A labelled with 125I. The values obtained ranged between 30,000 A antigen sites for A3 individuals, and 700 sites for the Ae1 red cells. The hierarchy of values observed made it possible to establish a quantitative relationship between the red cell agglutinability of these phenotypes measured under standard conditions, and their antigen site density. PMID:4435836

  15. Bioimaging for quantitative phenotype analysis.

    PubMed

    Chen, Weiyang; Xia, Xian; Huang, Yi; Chen, Xingwei; Han, Jing-Dong J

    2016-06-01

    With the development of bio-imaging techniques, an increasing number of studies apply these techniques to generate a myriad of image data. Its applications range from quantification of cellular, tissue, organismal and behavioral phenotypes of model organisms, to human facial phenotypes. The bio-imaging approaches to automatically detect, quantify, and profile phenotypic changes related to specific biological questions open new doors to studying phenotype-genotype associations and to precisely evaluating molecular changes associated with quantitative phenotypes. Here, we review major applications of bioimage-based quantitative phenotype analysis. Specifically, we describe the biological questions and experimental needs addressable by these analyses, computational techniques and tools that are available in these contexts, and the new perspectives on phenotype-genotype association uncovered by such analyses.

  16. The Phenotype of Loneliness

    PubMed Central

    Cacioppo, John T.; Cacioppo, Stephanie

    2012-01-01

    Goossens’ (in press) review nicely maps the progression of scientific research from its early focus on loneliness as a dysphoric state that results from the discrepancy between a person's ideal and actual social relationships to its current emphasis on the centrality of loneliness to our very nature as a social species, and he argues that developmental science throughout Europe has a great deal to contribute to our understanding of this construct. He concludes that psychologists should care about research on loneliness for five reasons: (i) it is a well-defined phenotype, (ii) it shows both high stability and individual differences in rates of change across years, (iii) it has adaptive value and evolutionary significance, (iv) it has a genetic substrate that is moderated by social environments, and (v) it has self-maintaining features that can lead to adverse mental health outcomes. Goossen's (2012) review is rife with information and ideas. We focus here on two additional important reasons and on the phenotype of loneliness. PMID:23024688

  17. Quantification of Microbial Phenotypes

    PubMed Central

    Martínez, Verónica S.; Krömer, Jens O.

    2016-01-01

    Metabolite profiling technologies have improved to generate close to quantitative metabolomics data, which can be employed to quantitatively describe the metabolic phenotype of an organism. Here, we review the current technologies available for quantitative metabolomics, present their advantages and drawbacks, and the current challenges to generate fully quantitative metabolomics data. Metabolomics data can be integrated into metabolic networks using thermodynamic principles to constrain the directionality of reactions. Here we explain how to estimate Gibbs energy under physiological conditions, including examples of the estimations, and the different methods for thermodynamics-based network analysis. The fundamentals of the methods and how to perform the analyses are described. Finally, an example applying quantitative metabolomics to a yeast model by 13C fluxomics and thermodynamics-based network analysis is presented. The example shows that (1) these two methods are complementary to each other; and (2) there is a need to take into account Gibbs energy errors. Better estimations of metabolic phenotypes will be obtained when further constraints are included in the analysis. PMID:27941694

  18. [Detection of resistance phenotypes in gram-negative bacteria].

    PubMed

    Navarro, Ferran; Calvo, Jorge; Cantón, Rafael; Fernández-Cuenca, Felipe; Mirelis, Beatriz

    2011-01-01

    Detecting resistance in gram-negative microorganisms has a strong clinical and epidemiological impact, but there is still a great deal of debate about the most sensitive phenotypic method and whether in vitro susceptibility results should be interpreted. The present work reviews the phenotypes and mechanisms of resistance to beta-lactams, quinolones and aminoglycosides in gram-negative bacilli and also revises the different phenotypic methods used for their detection. A clinical interpretation of in vitro susceptibility results is also discussed. Extended-spectrum and inhibitor resistant beta-lactamases, AmpC type beta-lactamases and carbapenemases are thoroughly reviewed. As regards quinolones, the resistance mediated both by plasmids and by mutations in the DNA gyrase and the topoisomerase IV genes is also reviewed. This report includes resistance patterns to aminoglycosides caused by modifying enzymes. Phenotypic detection of beta-lactam resistance in Neisseria spp. and Haemophilus influenzae is also reviewed in a separate section.

  19. High-throughput mouse phenotyping.

    PubMed

    Gates, Hilary; Mallon, Ann-Marie; Brown, Steve D M

    2011-04-01

    Comprehensive phenotyping will be required to reveal the pleiotropic functions of a gene and to uncover the wider role of genetic loci within diverse biological systems. The challenge will be to devise phenotyping approaches to characterise the thousands of mutants that are being generated as part of international efforts to acquire a mutant for every gene in the mouse genome. In order to acquire robust datasets of broad based phenotypes from mouse mutants it is necessary to design and implement pipelines that incorporate standardised phenotyping platforms that are validated across diverse mouse genetics centres or mouse clinics. We describe here the rationale and methodology behind one phenotyping pipeline, EMPReSSslim, that was designed as part of the work of the EUMORPHIA and EUMODIC consortia, and which exemplifies some of the challenges facing large-scale phenotyping. EMPReSSslim captures a broad range of data on diverse biological systems, from biochemical to physiological amongst others. Data capture and dissemination is pivotal to the operation of large-scale phenotyping pipelines, including the definition of parameters integral to each phenotyping test and the associated ontological descriptions. EMPReSSslim data is displayed within the EuroPhenome database, where a variety of tools are available to allow the user to search for interesting biological or clinical phenotypes.

  20. EHR Big Data Deep Phenotyping

    PubMed Central

    Lenert, L.; Lopez-Campos, G.

    2014-01-01

    Summary Objectives Given the quickening speed of discovery of variant disease drivers from combined patient genotype and phenotype data, the objective is to provide methodology using big data technology to support the definition of deep phenotypes in medical records. Methods As the vast stores of genomic information increase with next generation sequencing, the importance of deep phenotyping increases. The growth of genomic data and adoption of Electronic Health Records (EHR) in medicine provides a unique opportunity to integrate phenotype and genotype data into medical records. The method by which collections of clinical findings and other health related data are leveraged to form meaningful phenotypes is an active area of research. Longitudinal data stored in EHRs provide a wealth of information that can be used to construct phenotypes of patients. We focus on a practical problem around data integration for deep phenotype identification within EHR data. The use of big data approaches are described that enable scalable markup of EHR events that can be used for semantic and temporal similarity analysis to support the identification of phenotype and genotype relationships. Conclusions Stead and colleagues’ 2005 concept of using light standards to increase the productivity of software systems by riding on the wave of hardware/processing power is described as a harbinger for designing future healthcare systems. The big data solution, using flexible markup, provides a route to improved utilization of processing power for organizing patient records in genotype and phenotype research. PMID:25123744

  1. Plant Phenotype Characterization System

    SciTech Connect

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  2. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, Elliott M.; Chang, Caren; Bleecker, Anthony B.

    1997-01-01

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  3. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, Elliot M.; Chang, Caren; Bleecker, Anthony B.

    1998-01-01

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  4. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1998-10-20

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 67 figs.

  5. Plants having modified response to ethylene

    DOEpatents

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1997-11-18

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 31 figs.

  6. Global phenotypic characterization of bacteria

    PubMed Central

    Bochner, Barry R

    2009-01-01

    The measure of the quality of a systems biology model is how well it can reproduce and predict the behaviors of a biological system such as a microbial cell. In recent years, these models have been built up in layers, and each layer has been growing in sophistication and accuracy in parallel with a global data set to challenge and validate the models in predicting the content or activities of genes (genomics), proteins (proteomics), metabolites (metabolomics), and ultimately cell phenotypes (phenomics). This review focuses on the latter, the phenotypes of microbial cells. The development of Phenotype MicroArrays, which attempt to give a global view of cellular phenotypes, is described. In addition to their use in fleshing out and validating systems biology models, there are many other uses of this global phenotyping technology in basic and applied microbiology research, which are also described. PMID:19054113

  7. Identification of Loci Modulating the Cardiovascular and Skeletal Phenotypes of Marfan Syndrome in Mice

    PubMed Central

    Fernandes, Gustavo R.; Massironi, Silvia M. G.; Pereira, Lygia V.

    2016-01-01

    Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue, affecting mostly the skeletal, ocular and cardiovascular systems, caused by mutations in the FBN1 gene. The existence of modifier genes has been postulated based on the wide clinical variability of manifestations in patients, even among those with the same FBN1 mutation. Although isogenic mouse models of the disease were fundamental in dissecting the molecular mechanism of pathogenesis, they do not address the effect of genetic background on the disease phenotype. Here, we use a new mouse model, mgΔloxPneo, which presents different phenotype severity dependent on the genetic backgrounds, to identify genes involved in modulating MFS phenotype. F2 heterozygotes showed wide phenotypic variability, with no correlations between phenotypic severities of the different affected systems, indicating that each has its specific set of modifier genes. Individual analysis of the phenotypes, with SNP microarrays, identified two suggestive QTL each to the cardiovascular and skeletal, and one significant QTL to the skeletal phenotype. Epistatic interactions between the QTL account for 47.4% and 53.5% of variation in the skeletal and cardiovascular phenotypes, respectively. This is the first study that maps modifier loci for MFS, showing the complex genetic architecture underlying the disease. PMID:26927851

  8. Congenital erythropoietic porphyria: mutation update and correlations between genotype and phenotype.

    PubMed

    Ged, C; Moreau-Gaudry, F; Richard, E; Robert-Richard, E; de Verneuil, H

    2009-02-16

    High quality genotype/phenotype analysis is a difficult issue in rare genetic diseases such as congenital erythropoietic porphyria (CEP) or Günther's disease, a heme biosynthesis defect due to uroporphyrinogen III synthase deficiency. The historical background and the main phenotypic features of the disease are depicted together with an update of published mutants and genotype/phenotype correlations. General rules concerning the prediction of disease severity are drawn as a guide for patient management and therapeutic choices. The phenotypic heterogeneity of the disease is presented in relation with a likely influence of modifying factors, either genetic or acquired.

  9. Root Traits and Phenotyping Strategies for Plant Improvement.

    PubMed

    Paez-Garcia, Ana; Motes, Christy M; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B; Monteros, Maria J

    2015-06-15

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs.

  10. Root Traits and Phenotyping Strategies for Plant Improvement

    PubMed Central

    Paez-Garcia, Ana; Motes, Christy M.; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B.; Monteros, Maria J.

    2015-01-01

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs. PMID:27135332

  11. Finding Our Way through Phenotypes

    PubMed Central

    Deans, Andrew R.; Lewis, Suzanna E.; Huala, Eva; Anzaldo, Salvatore S.; Ashburner, Michael; Balhoff, James P.; Blackburn, David C.; Blake, Judith A.; Burleigh, J. Gordon; Chanet, Bruno; Cooper, Laurel D.; Courtot, Mélanie; Csösz, Sándor; Cui, Hong; Dahdul, Wasila; Das, Sandip; Dececchi, T. Alexander; Dettai, Agnes; Diogo, Rui; Druzinsky, Robert E.; Dumontier, Michel; Franz, Nico M.; Friedrich, Frank; Gkoutos, George V.; Haendel, Melissa; Harmon, Luke J.; Hayamizu, Terry F.; He, Yongqun; Hines, Heather M.; Ibrahim, Nizar; Jackson, Laura M.; Jaiswal, Pankaj; James-Zorn, Christina; Köhler, Sebastian; Lecointre, Guillaume; Lapp, Hilmar; Lawrence, Carolyn J.; Le Novère, Nicolas; Lundberg, John G.; Macklin, James; Mast, Austin R.; Midford, Peter E.; Mikó, István; Mungall, Christopher J.; Oellrich, Anika; Osumi-Sutherland, David; Parkinson, Helen; Ramírez, Martín J.; Richter, Stefan; Robinson, Peter N.; Ruttenberg, Alan; Schulz, Katja S.; Segerdell, Erik; Seltmann, Katja C.; Sharkey, Michael J.; Smith, Aaron D.; Smith, Barry; Specht, Chelsea D.; Squires, R. Burke; Thacker, Robert W.; Thessen, Anne; Fernandez-Triana, Jose; Vihinen, Mauno; Vize, Peter D.; Vogt, Lars; Wall, Christine E.; Walls, Ramona L.; Westerfeld, Monte; Wharton, Robert A.; Wirkner, Christian S.; Woolley, James B.; Yoder, Matthew J.; Zorn, Aaron M.; Mabee, Paula

    2015-01-01

    Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility. PMID:25562316

  12. Finding our way through phenotypes.

    PubMed

    Deans, Andrew R; Lewis, Suzanna E; Huala, Eva; Anzaldo, Salvatore S; Ashburner, Michael; Balhoff, James P; Blackburn, David C; Blake, Judith A; Burleigh, J Gordon; Chanet, Bruno; Cooper, Laurel D; Courtot, Mélanie; Csösz, Sándor; Cui, Hong; Dahdul, Wasila; Das, Sandip; Dececchi, T Alexander; Dettai, Agnes; Diogo, Rui; Druzinsky, Robert E; Dumontier, Michel; Franz, Nico M; Friedrich, Frank; Gkoutos, George V; Haendel, Melissa; Harmon, Luke J; Hayamizu, Terry F; He, Yongqun; Hines, Heather M; Ibrahim, Nizar; Jackson, Laura M; Jaiswal, Pankaj; James-Zorn, Christina; Köhler, Sebastian; Lecointre, Guillaume; Lapp, Hilmar; Lawrence, Carolyn J; Le Novère, Nicolas; Lundberg, John G; Macklin, James; Mast, Austin R; Midford, Peter E; Mikó, István; Mungall, Christopher J; Oellrich, Anika; Osumi-Sutherland, David; Parkinson, Helen; Ramírez, Martín J; Richter, Stefan; Robinson, Peter N; Ruttenberg, Alan; Schulz, Katja S; Segerdell, Erik; Seltmann, Katja C; Sharkey, Michael J; Smith, Aaron D; Smith, Barry; Specht, Chelsea D; Squires, R Burke; Thacker, Robert W; Thessen, Anne; Fernandez-Triana, Jose; Vihinen, Mauno; Vize, Peter D; Vogt, Lars; Wall, Christine E; Walls, Ramona L; Westerfeld, Monte; Wharton, Robert A; Wirkner, Christian S; Woolley, James B; Yoder, Matthew J; Zorn, Aaron M; Mabee, Paula

    2015-01-01

    Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.

  13. The digital revolution in phenotyping

    PubMed Central

    Oellrich, Anika; Collier, Nigel; Groza, Tudor; Rebholz-Schuhmann, Dietrich; Shah, Nigam; Bodenreider, Olivier; Boland, Mary Regina; Georgiev, Ivo; Liu, Hongfang; Livingston, Kevin; Luna, Augustin; Mallon, Ann-Marie; Manda, Prashanti; Robinson, Peter N.; Rustici, Gabriella; Simon, Michelle; Wang, Liqin; Winnenburg, Rainer; Dumontier, Michel

    2016-01-01

    Phenotypes have gained increased notoriety in the clinical and biological domain owing to their application in numerous areas such as the discovery of disease genes and drug targets, phylogenetics and pharmacogenomics. Phenotypes, defined as observable characteristics of organisms, can be seen as one of the bridges that lead to a translation of experimental findings into clinical applications and thereby support ‘bench to bedside’ efforts. However, to build this translational bridge, a common and universal understanding of phenotypes is required that goes beyond domain-specific definitions. To achieve this ambitious goal, a digital revolution is ongoing that enables the encoding of data in computer-readable formats and the data storage in specialized repositories, ready for integration, enabling translational research. While phenome research is an ongoing endeavor, the true potential hidden in the currently available data still needs to be unlocked, offering exciting opportunities for the forthcoming years. Here, we provide insights into the state-of-the-art in digital phenotyping, by means of representing, acquiring and analyzing phenotype data. In addition, we provide visions of this field for future research work that could enable better applications of phenotype data. PMID:26420780

  14. Reciprocal phenotypic plasticity in a predator-prey interaction between larval amphibians.

    PubMed

    Kishida, Osamu; Mizuta, Yuuki; Nishimura, Kinya

    2006-06-01

    In biological interactions, phenotypic change in interacting organisms induced by their interaction partners causes a substantial shift in some environmental factor of the partners, which may subsequently change their phenotype in response to that modified environmental factor. Few examples of such arms-race-like plastic responses, known as reciprocal phenotypic plasticity, have been identified in predator-prey interactions. We experimentally identified a reciprocal defensive plastic response of a prey species against a predator with a predaceous phenotype using a model system of close predator-prey interaction. Rana pirica tadpoles (the prey species) were reared with larvae of the salamander Hynobius retardatus (the predator species) having either a predaceous or a typical, nonpredaceous phenotype. The H. retardatus larvae with the predaceous phenotype, which is known to be induced by the presence of R. pirica tadpoles, induced a more defensive phenotype in the tadpoles than did larvae with the typical phenotype. The result suggests that the reciprocal phenotypic plasticity of R. pirica tadpoles is in response to a phenotype-specific signal under a close-signal recognition process.

  15. Epigenetic reversion of breast carcinoma phenotype is accompaniedby DNA sequestration

    SciTech Connect

    Sandal, Tone; Valyi-Nagy, Klara; Spencer, Virginia A.; Folberg,Robert; Bissell, Mina J.; Maniotis, Andrew J.

    2006-07-19

    The importance of microenvironment and context in regulation of tissue-specific genes is finally well established. DNA exposure to, or sequestration from, nucleases can be used to detect differences in higher order chromatin structure in intact cells without disturbing cellular or tissue architecture. To investigate the relationship between chromatin organization and tumor phenotype, we utilized an established 3-D assay where normal and malignant human breast cells can be easily distinguished by the morphology of the structures they make (acinus-like vs tumor-like, respectively). We show that these phenotypes can be distinguished also by sensitivity to AluI digestion where the malignant cells are resistant to digestion relative to non-malignant cells. Reversion of the T4-2 breast cancer cells by either cAMP analogs, or a phospatidylinositol 3-kinase (P13K) inhibitor not only reverted the phenotype, but also the chromatin sensitivity to AluI. By using different cAMP-analogs, we show that the cAMP-induced phenotypic reversion, polarization, and shift in DNA organization act through a cAMP-dependent-protein-kinase A-coupled signaling pathway. Importantly, inhibitory antibody to fibronectin also reverted the malignant phenotype, polarized the acini, and changed chromatin sequestration. These experiments show not only that modifying the tumor microenvironment can alter the organization of tumor cells but also that architecture of the tissues and the global chromatin organization are coupled and yet highly plastic.

  16. Refining mimicry: phenotypic variation tracks the local optimum.

    PubMed

    Mérot, Claire; Le Poul, Yann; Théry, Marc; Joron, Mathieu

    2016-07-01

    Müllerian mimicry between chemically defended preys is a textbook example of natural selection favouring phenotypic convergence onto a shared warning signal. Studies of mimicry have concentrated on deciphering the ecological and genetic underpinnings of dramatic switches in mimicry association, producing a well-known mosaic distribution of mimicry patterns across geography. However, little is known about the accuracy of resemblance between natural comimics when the local phenotypic optimum varies. In this study, using analyses of wing shape, pattern and hue, we quantify multimodal phenotypic similarity between butterfly comimics sharing the so-called postman pattern in different localities with varying species composition. We show that subtle but consistent variation between populations of the localized species, Heliconius timareta thelxinoe, enhance resemblance to the abundant comimics which drive the mimicry in each locality. Those results suggest that rarer comimics track the changes in the phenotypic optimum caused by gradual changes in the composition of the mimicry community, providing insights into the process by which intraspecific diversity of mimetic pattern may arise. Furthermore, our results suggest a multimodal evolution of similarity, with coordinated convergence in different features of the phenotype such as wing outline, pattern and hue. Finally, multilocus genotyping allows estimating local hybridization rates between H. timareta and comimic H. melpomene in different populations, raising the hypothesis that mimicry refinement between closely related comimics may be enhanced by adaptive introgression at loci modifying the accuracy of resemblance.

  17. In pursuit of taste phenotypes.

    PubMed

    Green, Barry G

    2013-05-01

    Notable progress has been made relating individual differences in bitter taste sensitivity to specific alleles and TAS2R receptors, but psychophysical evidence of reliable phenotypes for other tastes has been more elusive. In this issue, Wise and Breslin report a study of individual differences in threshold sensitivity to sour and salty taste, which, though failing to find clear phenotypes, exemplifies the type of approach and analysis necessary to disentangle sources of variance inherent in the psychophysical measures applied from those attributable to true differences in sensitivity. Methodological and theoretical lessons that can be taken from this work are discussed in the context of the early and dramatic evidence of chemosensory phenotypes that belied the complexity of taste receptor genetics and focused attention solely on peripheral determinants of sensitivity.

  18. Optofluidic Detection for Cellular Phenotyping

    PubMed Central

    Tung, Yi-Chung; Huang, Nien-Tsu; Oh, Bo-Ram; Patra, Bishnubrata; Pan, Chi-Chun; Qiu, Teng; Paul, K. Chu; Zhang, Wenjun; Kurabayashi, Katsuo

    2012-01-01

    Quantitative analysis of the output of processes and molecular interactions within a single cell is highly critical to the advancement of accurate disease screening and personalized medicine. Optical detection is one of the most broadly adapted measurement methods in biological and clinical assays and serves cellular phenotyping. Recently, microfluidics has obtained increasing attention due to several advantages, such as small sample and reagent volumes, very high throughput, and accurate flow control in the spatial and temporal domains. Optofluidics, which is the attempt to integrate optics with microfluidic, shows great promise to enable on-chip phenotypic measurements with high precision, sensitivity, specificity, and simplicity. This paper reviews the most recent developments of optofluidic technologies for cellular phenotyping optical detection. PMID:22854915

  19. Identification of extreme motor phenotypes in Huntington's disease.

    PubMed

    Braisch, Ulrike; Hay, Birgit; Muche, Rainer; Rothenbacher, Dietrich; Landwehrmeyer, G Bernhard; Long, Jeffrey D; Orth, Michael

    2017-04-01

    The manifestation of motor signs in Huntington's disease (HD) has a well-known inverse relationship with HTT CAG repeat length, but the prediction is far from perfect. The probability of finding disease modifiers is enhanced in individuals with extreme HD phenotypes. We aimed to identify extreme HD motor phenotypes conditional on CAG and age, such as patients with very early or very late onset of motor manifestation. Retrospective data were available from 1,218 healthy controls and 9,743 HD participants with CAG repeats ≥40, and a total of about 30,000 visits. Boundaries (2.5% and 97.5% quantiles) for extreme motor phenotypes (UHDRS total motor score (TMS) and motor age-at-onset) were estimated using quantile regression for longitudinal data. More than 15% of HD participants had an extreme TMS phenotype for at least one visit. In contrast, only about 4% of participants were consistent TMS extremes at two or more visits. Data from healthy controls revealed an upper cut-off of 13 for the TMS representing the extreme of motor ratings for a normal aging population. In HD, boundaries of motor age-at-onset based on diagnostic confidence or derived from the TMS data cut-off in controls were similar. In summary, a UHDRS TMS of more than 13 in an individual carrying the HD mutation indicates a high likelihood of motor manifestations of HD irrespective of CAG repeat length or age. The identification of motor phenotype extremes can be useful in the search for disease modifiers, for example, genetic or environmental such as medication. © 2016 Wiley Periodicals, Inc.

  20. Putative modifier genes in mevalonate kinase deficiency.

    PubMed

    Marcuzzi, Annalisa; Vozzi, Diego; Girardelli, Martina; Tricarico, Paola Maura; Knowles, Alessandra; Crovella, Sergio; Vuch, Josef; Tommasini, Alberto; Piscianz, Elisa; Bianco, Anna Monica

    2016-04-01

    Mevalonate kinase deficiency (MKD) is an autosomal recessive auto‑inflammatory disease, caused by impairment of the mevalonate pathway. Although the molecular mechanism remains to be elucidated, there is clinical evidence suggesting that other regulatory genes may be involved in determining the phenotype. The identification of novel target genes may explain non‑homogeneous genotype‑phenotype correlations, and provide evidence in support of the hypothesis that novel regulatory genes predispose or amplify deregulation of the mevalonate pathway in this orphan disease. In the present study, DNA samples were obtained from five patients with MKD, which were then analyzed using whole exome sequencing. A missense variation in the PEX11γ gene was observed in homozygosis in P2, possibly correlating with visual blurring. The UNG rare gene variant was detected in homozygosis in P5, without correlating with a specific clinical phenotype. A number of other variants were found in the five analyzed DNA samples from the MKD patients, however no correlation with the phenotype was established. The results of the presents study suggested that further analysis, using next generation sequencing approaches, is required on a larger sample size of patients with MKD, who share the same MVK mutations and exhibit 'extreme' clinical phenotypes. As MVK mutations may be associated with MKD, the identification of specific modifier genes may assist in providing an earlier diagnosis.

  1. Distinct clinical phenotypes of airways disease defined by cluster analysis.

    PubMed

    Weatherall, M; Travers, J; Shirtcliffe, P M; Marsh, S E; Williams, M V; Nowitz, M R; Aldington, S; Beasley, R

    2009-10-01

    Airways disease is currently classified using diagnostic labels such as asthma, chronic bronchitis and emphysema. The current definitions of these classifications may not reflect the phenotypes of airways disease in the community, which may have differing disease processes, clinical features or responses to treatment. The aim of the present study was to use cluster analysis to explore clinical phenotypes in a community population with airways disease. A random population sample of 25-75-yr-old adults underwent detailed investigation, including a clinical questionnaire, pulmonary function tests, nitric oxide measurements, blood tests and chest computed tomography. Cluster analysis was performed on the subgroup with current respiratory symptoms or obstructive spirometric results. Subjects with a complete dataset (n = 175) were included in the cluster analysis. Five clusters were identified with the following characteristics: cluster 1: severe and markedly variable airflow obstruction with features of atopic asthma, chronic bronchitis and emphysema; cluster 2: features of emphysema alone; cluster 3: atopic asthma with eosinophilic airways inflammation; cluster 4: mild airflow obstruction without other dominant phenotypic features; and cluster 5: chronic bronchitis in nonsmokers. Five distinct clinical phenotypes of airflow obstruction were identified. If confirmed in other populations, these findings may form the basis of a modified taxonomy for the disorders of airways obstruction.

  2. Effect of genetic background on the dystrophic phenotype in mdx mice

    PubMed Central

    Coley, William D.; Bogdanik, Laurent; Vila, Maria Candida; Yu, Qing; Van Der Meulen, Jack H.; Rayavarapu, Sree; Novak, James S.; Nearing, Marie; Quinn, James L.; Saunders, Allison; Dolan, Connor; Andrews, Whitney; Lammert, Catherine; Austin, Andrew; Partridge, Terence A.; Cox, Gregory A.; Lutz, Cathleen; Nagaraju, Kanneboyina

    2016-01-01

    Genetic background significantly affects phenotype in multiple mouse models of human diseases, including muscular dystrophy. This phenotypic variability is partly attributed to genetic modifiers that regulate the disease process. Studies have demonstrated that introduction of the γ-sarcoglycan-null allele onto the DBA/2J background confers a more severe muscular dystrophy phenotype than the original strain, demonstrating the presence of genetic modifier loci in the DBA/2J background. To characterize the phenotype of dystrophin deficiency on the DBA/2J background, we created and phenotyped DBA/2J-congenic Dmdmdx mice (D2-mdx) and compared them with the original, C57BL/10ScSn-Dmdmdx (B10-mdx) model. These strains were compared with their respective control strains at multiple time points between 6 and 52 weeks of age. Skeletal and cardiac muscle function, inflammation, regeneration, histology and biochemistry were characterized. We found that D2-mdx mice showed significantly reduced skeletal muscle function as early as 7 weeks and reduced cardiac function by 28 weeks, suggesting that the disease phenotype is more severe than in B10-mdx mice. In addition, D2-mdx mice showed fewer central myonuclei and increased calcifications in the skeletal muscle, heart and diaphragm at 7 weeks, suggesting that their pathology is different from the B10-mdx mice. The new D2-mdx model with an earlier onset and more pronounced dystrophy phenotype may be useful for evaluating therapies that target cardiac and skeletal muscle function in dystrophin-deficient mice. Our data align the D2-mdx with Duchenne muscular dystrophy patients with the LTBP4 genetic modifier, making it one of the few instances of cross-species genetic modifiers of monogenic traits. PMID:26566673

  3. Identifying neurocognitive phenotypes in autism.

    PubMed Central

    Tager-Flusberg, Helen; Joseph, Robert M

    2003-01-01

    Autism is a complex disorder that is heterogeneous both in its phenotypic expression and its etiology. The search for genes associated with autism and the neurobiological mechanisms that underlie its behavioural symptoms has been hampered by this heterogeneity. Recent studies indicate that within autism, there may be distinct subgroups that can be defined based on differences in neurocognitive profiles. This paper presents evidence for two kinds of subtypes in autism that are defined on the basis of language profiles and on the basis of cognitive profiles. The implications for genetic and neurobiological studies of these subgroups are discussed, with special reference to evidence relating these cognitive phenotypes to volumetric studies of brain size and organization in autism. PMID:12639328

  4. Geno- and phenotypic resistance tests.

    PubMed

    1998-09-01

    There are two types of experimental drug resistance tests, genotypic and phenotypic, that may be able to determine a person's level of resistance to certain HIV drugs. Genotypic resistance testing seeks mutations in the genetic structure of HIV. The analysis is typically conducted from a blood test, and several methods may be used to read the blood sample including a machine that reads gene sequences, a line probe assay, and the GeneChip, which scans blood samples into a computer. Phenotypic resistance testing assesses the quantity of a drug necessary to suppress the virus in a laboratory setting. Both tests require a patient to have a viral load over 1,000 HIV RNA copies, and both are relatively expensive. Neither test can predict which treatments will definitely be successful, as the results are likely to be subjective, depending on the laboratory. Pros and cons for each type of test are listed. Availability, cost, and contact information are provided.

  5. Phenotypic deconstruction of gene circuitry

    NASA Astrophysics Data System (ADS)

    Lomnitz, Jason G.; Savageau, Michael A.

    2013-06-01

    It remains a challenge to obtain a global perspective on the behavioral repertoire of complex nonlinear gene circuits. In this paper, we describe a method for deconstructing complex systems into nonlinear sub-systems, based on mathematically defined phenotypes, which are then represented within a system design space that allows the repertoire of qualitatively distinct phenotypes of the complex system to be identified, enumerated, and analyzed. This method efficiently characterizes large regions of system design space and quickly generates alternative hypotheses for experimental testing. We describe the motivation and strategy in general terms, illustrate its use with a detailed example involving a two-gene circuit with a rich repertoire of dynamic behavior, and discuss experimental means of navigating the system design space.

  6. Microtubule stabilising peptides rescue tau phenotypes in-vivo

    PubMed Central

    Quraishe, Shmma; Sealey, Megan; Cranfield, Louise; Mudher, Amritpal

    2016-01-01

    The microtubule cytoskeleton is a highly dynamic, filamentous network underpinning cellular structure and function. In Alzheimer’s disease, the microtubule cytoskeleton is compromised, leading to neuronal dysfunction and eventually cell death. There are currently no disease-modifying therapies to slow down or halt disease progression. However, microtubule stabilisation is a promising therapeutic strategy that is being explored. We previously investigated the disease-modifying potential of a microtubule-stabilising peptide NAP (NAPVSIPQ) in a well-established Drosophila model of tauopathy characterised by microtubule breakdown and axonal transport deficits. NAP prevented as well as reversed these phenotypes even after they had become established. In this study, we investigate the neuroprotective capabilities of an analogous peptide SAL (SALLRSIPA). We found that SAL mimicked NAP’s protective effects, by preventing axonal transport disruption and improving behavioural deficits, suggesting both NAP and SAL may act via a common mechanism. Both peptides contain a putative ‘SIP’ (Ser-Ile-Pro) domain that is important for interactions with microtubule end-binding proteins. Our data suggests this domain may be central to the microtubule stabilising function of both peptides and the mechanism by which they rescue phenotypes in this model of tauopathy. Our observations support microtubule stabilisation as a promising disease-modifying therapeutic strategy for tauopathies like Alzheimer’s disease. PMID:27910888

  7. Characterizing visible and invisible cell wall mutant phenotypes.

    PubMed

    Carpita, Nicholas C; McCann, Maureen C

    2015-07-01

    About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with 'invisible' phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basis of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall.

  8. Phenotypic variation in LADD syndrome.

    PubMed Central

    Thompson, E; Pembrey, M; Graham, J M

    1985-01-01

    A mother and son are reported with chronic dacrocystitis, cup shaped ears, hearing loss, abnormal teeth, and poor formation of saliva and tears. They are similar to previously reported cases of lacrimo-auriculo-dento-digital (LADD) syndrome. The variability of expression of this autosomal dominant syndrome is discussed, and it is suggested that poor saliva and tear formation be added to the phenotype. Images PMID:4078868

  9. Wine Expertise Predicts Taste Phenotype.

    PubMed

    Hayes, John E; Pickering, Gary J

    2012-03-01

    Taste phenotypes have long been studied in relation to alcohol intake, dependence, and family history, with contradictory findings. However, on balance - with appropriate caveats about populations tested, outcomes measured and psychophysical methods used - an association between variation in taste responsiveness and some alcohol behaviors is supported. Recent work suggests super-tasting (operationalized via propylthiouracil (PROP) bitterness) not only associates with heightened response but also with more acute discrimination between stimuli. Here, we explore relationships between food and beverage adventurousness and taste phenotype. A convenience sample of wine drinkers (n=330) were recruited in Ontario and phenotyped for PROP bitterness via filter paper disk. They also filled out a short questionnaire regarding willingness to try new foods, alcoholic beverages and wines as well as level of wine involvement, which was used to classify them as a wine expert (n=110) or wine consumer (n=220). In univariate logisitic models, food adventurousness predicted trying new wines and beverages but not expertise. Likewise, wine expertise predicted willingness to try new wines and beverages but not foods. In separate multivariate logistic models, willingness to try new wines and beverages was predicted by expertise and food adventurousness but not PROP. However, mean PROP bitterness was higher among wine experts than wine consumers, and the conditional distribution functions differed between experts and consumers. In contrast, PROP means and distributions did not differ with food adventurousness. These data suggest individuals may self-select for specific professions based on sensory ability (i.e., an active gene-environment correlation) but phenotype does not explain willingness to try new stimuli.

  10. Phenotyping jasmonate regulation of senescence.

    PubMed

    Seltmann, Martin A; Berger, Susanne

    2013-01-01

    Osmotic stress induces several senescence-like processes in leaves, such as specific changes in gene expression and yellowing. These processes are dependent on the accumulation of jasmonates and on intact jasmonate signaling. This chapter describes the treatment of Arabidopsis thaliana leaves with sorbitol as an osmotic stress agent and the determination of the elicited phenotypes encompassing chlorophyll loss, degradation of plastidial membrane lipids, and induction of genes regulated by senescence and jasmonate.

  11. Animal models of RLS phenotypes.

    PubMed

    Allen, Richard P; Donelson, Nathan C; Jones, Byron C; Li, Yuqing; Manconi, Mauro; Rye, David B; Sanyal, Subhabrata; Winkelmann, Juliane

    2017-03-01

    Restless legs syndrome (RLS) is a complex disorder that involves sensory and motor systems. The major pathophysiology of RLS is low iron concentration in the substantia nigra containing the cell bodies of dopamine neurons that project to the striatum, an area that is crucial for modulating movement. People who have RLS often present with normal iron values outside the brain; recent studies implicate several genes are involved in the syndrome. Like most complex diseases, animal models usually do not faithfully capture the full phenotypic spectrum of "disease," which is a uniquely human construct. Nonetheless, animal models have proven useful in helping to unravel the complex pathophysiology of diseases such as RLS and suggesting novel treatment paradigms. For example, hypothesis-independent genome-wide association studies (GWAS) have identified several genes as increasing the risk for RLS, including BTBD9. Independently, the murine homolog Btbd9 was identified as a candidate gene for iron regulation in the midbrain in mice. The relevance of the phenotype of another of the GWAS identified genes, MEIS1, has also been explored. The role of Btbd9 in iron regulation and RLS-like behaviors has been further evaluated in mice carrying a null mutation of the gene and in fruit flies when the BTBD9 protein is degraded. The BTBD9 and MEIS1 stories originate from human GWAS research, supported by work in a genetic reference population of mice (forward genetics) and further verified in mice, fish flies, and worms. Finally, the role of genetics is further supported by an inbred mouse strain that displays many of the phenotypic characteristics of RLS. The role of animal models of RLS phenotypes is also extended to include periodic limb movements.

  12. Polydactyly: phenotypes, genetics and classification.

    PubMed

    Malik, S

    2014-03-01

    Polydactyly is one of the most common hereditary limb malformations featuring additional digits in hands and/or feet. It constituted the highest proportion among the congenital limb defects in various epidemiological surveys. Polydactyly, primarily presenting as an additional pre-axial or post-axial digit of autopod, is a highly heterogeneous condition and depicts broad inter- and intra-familial clinical variability. There is a plethora of polydactyly classification methods reported in the medical literature which approach the heterogeneity in polydactyly in various ways. In this communication, well-characterized, non-syndromic polydactylies in humans are reviewed. The cardinal features, phenotypic variability and molecular advances of each type have been presented. Polydactyly at cellular and developmental levels is mainly a failure in the control of digit number. Interestingly, GLI3 and SHH (ZRS/SHH enhancer), two antagonistic factors known to modulate digit number and identity during development, have also been implicated in polydactyly. Mutations in GLI3 and ZRS/SHH cause overlapping polydactyly phenotypes highlighting shared molecular cascades in the etiology of additional digits, and thus suggesting the lumping of at least six distinct polydactyly entities. However, owing to the extreme phenotypic and clinical heterogeneity witnessed in polydactyly a substantial genetic heterogeneity is expected across different populations and ethnic groups.

  13. Adaptive evolution of molecular phenotypes

    NASA Astrophysics Data System (ADS)

    Held, Torsten; Nourmohammad, Armita; Lässig, Michael

    2014-09-01

    Molecular phenotypes link genomic information with organismic functions, fitness, and evolution. Quantitative traits are complex phenotypes that depend on multiple genomic loci. In this paper, we study the adaptive evolution of a quantitative trait under time-dependent selection, which arises from environmental changes or through fitness interactions with other co-evolving phenotypes. We analyze a model of trait evolution under mutations and genetic drift in a single-peak fitness seascape. The fitness peak performs a constrained random walk in the trait amplitude, which determines the time-dependent trait optimum in a given population. We derive analytical expressions for the distribution of the time-dependent trait divergence between populations and of the trait diversity within populations. Based on this solution, we develop a method to infer adaptive evolution of quantitative traits. Specifically, we show that the ratio of the average trait divergence and the diversity is a universal function of evolutionary time, which predicts the stabilizing strength and the driving rate of the fitness seascape. From an information-theoretic point of view, this function measures the macro-evolutionary entropy in a population ensemble, which determines the predictability of the evolutionary process. Our solution also quantifies two key characteristics of adapting populations: the cumulative fitness flux, which measures the total amount of adaptation, and the adaptive load, which is the fitness cost due to a population's lag behind the fitness peak.

  14. Multivariate Analysis of Genotype–Phenotype Association

    PubMed Central

    Mitteroecker, Philipp; Cheverud, James M.; Pavlicev, Mihaela

    2016-01-01

    With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated—in terms of effect size—with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype–phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype–phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype–phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype–phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3—the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the

  15. Exacerbation phenotyping in chronic obstructive pulmonary disease.

    PubMed

    MacDonald, Martin; Korman, Tony; King, Paul; Hamza, Kais; Bardin, Philip

    2013-11-01

    Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are crucial events but causes remain poorly defined. A method to clinically 'phenotype' AECOPD have been proposed, and 52 hospitalized chronic obstructive pulmonary disease exacerbations according to underlying aetiology have now been prospectively phenotyped. Multiple exacerbation phenotypes were identified. A subpopulation coinfected with virus and bacteria had a significantly longer length of hospital stay, and this pilot study indicates that exacerbation phenotyping may be advantageous.

  16. Multivariate Analysis of Genotype-Phenotype Association.

    PubMed

    Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela

    2016-04-01

    With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map

  17. Atypical Ligon Lintless-2 Phenotype in Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mutant Li2 is reported to be a dominant single gene mutation in cotton, Gossypium hirsutum L. It has normal vegetative phenotypic morphology and the phenotype of the seed cotton is reported to be fuzzy seed with short fibers. The objective of this research was to report on atypical phenotypes ob...

  18. Alteration of fibroblast phenotype by asbestos-induced autoantibodies.

    PubMed

    Pfau, Jean C; Li, Sheng'ai; Holland, Sara; Sentissi, Jami J

    2011-06-01

    Pulmonary fibrosis is a relentlessly progressive disease for which the etiology can be idiopathic or associated with environmental or occupational exposures. There is not a clear explanation for the chronic and progressive nature of the disease, leaving treatment and prevention options limited. However, there is increasing evidence of an autoimmune component, since fibrotic diseases are often accompanied by production of autoantibodies. Because exposure to silicates such as silica and asbestos can lead to both autoantibodies and pulmonary/pleural fibrosis, these exposures provide an excellent tool for examining the relationship between these outcomes. This study explored the possibility that autoantibodies induced by asbestos exposure in mice would affect fibroblast phenotype. L929 fibroblasts and primary lung fibroblasts were treated with serum IgG from asbestos- or saline-treated mice, and tested for binding using cell-based ELISA, and for phenotypic changes using immunofluorescence, laser scanning cytometry and Sirius Red collagen assay. Autoantibodies in the serum of C57Bl/6 mice exposed to asbestos (but not sera from untreated mice) bound to mouse fibroblasts. The autoantibodies induced differentiation to a myofibroblast phenotype, as demonstrated by increased expression of smooth muscle α-actin (SMA), which was lost when the serum was cleared of IgG. Cells treated with purified IgG of exposed mice produced excess collagen. Using ELISA, we tested serum antibody binding to DNA topoisomerase (Topo) I, vimentin, TGFβ-R, and PDGF-Rα. Antibodies to DNA Topo I and to PDGF-Rα were detected, both of which have been shown by others to be able to affect fibroblast phenotype. The anti-fibroblast antibodies (AFA) also induced STAT-1 activation, implicating the PDGF-R pathway as part of the response to AFA binding. These data support the hypothesis that asbestos induces AFA that modify fibroblast phenotype, and suggest a mechanism whereby autoantibodies may mediate

  19. Phenotype diversity in type 1 Gaucher disease: discovering the genetic basis of Gaucher disease/hematologic malignancy phenotype by individual genome analysis.

    PubMed

    Lo, Sarah M; Choi, Murim; Liu, Jun; Jain, Dhanpat; Boot, Rolf G; Kallemeijn, Wouter W; Aerts, Johannes M F G; Pashankar, Farzana; Kupfer, Gary M; Mane, Shrikant; Lifton, Richard P; Mistry, Pramod K

    2012-05-17

    Gaucher disease (GD), an inherited macrophage glycosphingolipidosis, manifests with an extraordinary variety of phenotypes that show imperfect correlation with mutations in the GBA gene. In addition to the classic manifestations, patients suffer from increased susceptibility to hematologic and nonhematologic malignancies. The mechanism(s) underlying malignancy in GD is not known, but is postulated to be secondary to macrophage dysfunction and immune dysregulation arising from lysosomal accumulation of glucocerebroside. However, there is weak correlation between GD/cancer phenotype and the systemic burden of glucocerebroside-laden macrophages. Therefore, we hypothesized that genetic modifier(s) may underlie the GD/cancer phenotype. In the present study, the genetic basis of GD/T-cell acute lymphoblastic lymphoma in 2 affected siblings was deciphered through genomic analysis. GBA gene sequencing revealed homozygosity for a novel mutation, D137N. Whole-exome capture and massively parallel sequencing combined with homozygosity mapping identified a homozygous novel mutation in the MSH6 gene that leads to constitutional mismatch repair deficiency syndrome and increased cancer risk. Enzyme studies demonstrated that the D137N mutation in GBA is a pathogenic mutation, and immunohistochemistry confirmed the absence of the MSH6 protein. Therefore, precise phenotype annotation followed by individual genome analysis has the potential to identify genetic modifiers of GD, facilitate personalized management, and provide novel insights into disease pathophysiology.

  20. Organ system heterogeneity DB: a database for the visualization of phenotypes at the organ system level.

    PubMed

    Mannil, Deepthi; Vogt, Ingo; Prinz, Jeanette; Campillos, Monica

    2015-01-01

    Perturbations of mammalian organisms including diseases, drug treatments and gene perturbations in mice affect organ systems differently. Some perturbations impair relatively few organ systems while others lead to highly heterogeneous or systemic effects. Organ System Heterogeneity DB (http://mips.helmholtz-muenchen.de/Organ_System_Heterogeneity/) provides information on the phenotypic effects of 4865 human diseases, 1667 drugs and 5361 genetically modified mouse models on 26 different organ systems. Disease symptoms, drug side effects and mouse phenotypes are mapped to the System Organ Class (SOC) level of the Medical Dictionary of Regulatory Activities (MedDRA). Then, the organ system heterogeneity value, a measurement of the systemic impact of a perturbation, is calculated from the relative frequency of phenotypic features across all SOCs. For perturbations of interest, the database displays the distribution of phenotypic effects across organ systems along with the heterogeneity value and the distance between organ system distributions. In this way, it allows, in an easy and comprehensible fashion, the comparison of the phenotypic organ system distributions of diseases, drugs and their corresponding genetically modified mouse models of associated disease genes and drug targets. The Organ System Heterogeneity DB is thus a platform for the visualization and comparison of organ system level phenotypic effects of drugs, diseases and genes.

  1. Organ system heterogeneity DB: a database for the visualization of phenotypes at the organ system level

    PubMed Central

    Mannil, Deepthi; Vogt, Ingo; Prinz, Jeanette; Campillos, Monica

    2015-01-01

    Perturbations of mammalian organisms including diseases, drug treatments and gene perturbations in mice affect organ systems differently. Some perturbations impair relatively few organ systems while others lead to highly heterogeneous or systemic effects. Organ System Heterogeneity DB (http://mips.helmholtz-muenchen.de/Organ_System_Heterogeneity/) provides information on the phenotypic effects of 4865 human diseases, 1667 drugs and 5361 genetically modified mouse models on 26 different organ systems. Disease symptoms, drug side effects and mouse phenotypes are mapped to the System Organ Class (SOC) level of the Medical Dictionary of Regulatory Activities (MedDRA). Then, the organ system heterogeneity value, a measurement of the systemic impact of a perturbation, is calculated from the relative frequency of phenotypic features across all SOCs. For perturbations of interest, the database displays the distribution of phenotypic effects across organ systems along with the heterogeneity value and the distance between organ system distributions. In this way, it allows, in an easy and comprehensible fashion, the comparison of the phenotypic organ system distributions of diseases, drugs and their corresponding genetically modified mouse models of associated disease genes and drug targets. The Organ System Heterogeneity DB is thus a platform for the visualization and comparison of organ system level phenotypic effects of drugs, diseases and genes. PMID:25313158

  2. Phenotype of normal hairline maturation.

    PubMed

    Rassman, William R; Pak, Jae P; Kim, Jino

    2013-08-01

    Hairlines change shape with age, starting at birth. A good head of hair is frequently present some time after ages 3 to 5 years. The look of childhood has its corresponding hairline, and, as the child grows and develops into adulthood, facial morphology migrate changes from a childlike look to a more mature look. This article discusses the dynamics of hairline evolution and the phenotypic variations of the front and side hairlines in men and women. A modeling system is introduced that provides a common language to define the various anatomic points of the full range of hairlines.

  3. The Human Phenotype Ontology in 2017

    PubMed Central

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie; Aymé, Ségolène; Baynam, Gareth; Bello, Susan M.; Boerkoel, Cornelius F.; Boycott, Kym M.; Brudno, Michael; Buske, Orion J.; Chinnery, Patrick F.; Cipriani, Valentina; Connell, Laureen E.; Dawkins, Hugh J.S.; DeMare, Laura E.; Devereau, Andrew D.; de Vries, Bert B.A.; Firth, Helen V.; Freson, Kathleen; Greene, Daniel; Hamosh, Ada; Helbig, Ingo; Hum, Courtney; Jähn, Johanna A.; James, Roger; Krause, Roland; F. Laulederkind, Stanley J.; Lochmüller, Hanns; Lyon, Gholson J.; Ogishima, Soichi; Olry, Annie; Ouwehand, Willem H.; Pontikos, Nikolas; Rath, Ana; Schaefer, Franz; Scott, Richard H.; Segal, Michael; Sergouniotis, Panagiotis I.; Sever, Richard; Smith, Cynthia L.; Straub, Volker; Thompson, Rachel; Turner, Catherine; Turro, Ernest; Veltman, Marijcke W.M.; Vulliamy, Tom; Yu, Jing; von Ziegenweidt, Julie; Zankl, Andreas; Züchner, Stephan; Zemojtel, Tomasz; Jacobsen, Julius O.B.; Groza, Tudor; Smedley, Damian; Mungall, Christopher J.; Haendel, Melissa; Robinson, Peter N.

    2017-01-01

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology. PMID:27899602

  4. The Human Phenotype Ontology in 2017.

    PubMed

    Köhler, Sebastian; Vasilevsky, Nicole A; Engelstad, Mark; Foster, Erin; McMurry, Julie; Aymé, Ségolène; Baynam, Gareth; Bello, Susan M; Boerkoel, Cornelius F; Boycott, Kym M; Brudno, Michael; Buske, Orion J; Chinnery, Patrick F; Cipriani, Valentina; Connell, Laureen E; Dawkins, Hugh J S; DeMare, Laura E; Devereau, Andrew D; de Vries, Bert B A; Firth, Helen V; Freson, Kathleen; Greene, Daniel; Hamosh, Ada; Helbig, Ingo; Hum, Courtney; Jähn, Johanna A; James, Roger; Krause, Roland; F Laulederkind, Stanley J; Lochmüller, Hanns; Lyon, Gholson J; Ogishima, Soichi; Olry, Annie; Ouwehand, Willem H; Pontikos, Nikolas; Rath, Ana; Schaefer, Franz; Scott, Richard H; Segal, Michael; Sergouniotis, Panagiotis I; Sever, Richard; Smith, Cynthia L; Straub, Volker; Thompson, Rachel; Turner, Catherine; Turro, Ernest; Veltman, Marijcke W M; Vulliamy, Tom; Yu, Jing; von Ziegenweidt, Julie; Zankl, Andreas; Züchner, Stephan; Zemojtel, Tomasz; Jacobsen, Julius O B; Groza, Tudor; Smedley, Damian; Mungall, Christopher J; Haendel, Melissa; Robinson, Peter N

    2017-01-04

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.

  5. Phenotypic plasticity in bacterial plasmids.

    PubMed Central

    Turner, Paul E

    2004-01-01

    Plasmid pB15 was previously shown to evolve increased horizontal (infectious) transfer at the expense of reduced vertical (intergenerational) transfer and vice versa, a key trade-off assumed in theories of parasite virulence. Whereas the models predict that susceptible host abundance should determine which mode of transfer is selectively favored, host density failed to mediate the trade-off in pB15. One possibility is that the plasmid's transfer deviates from the assumption that horizontal spread (conjugation) occurs in direct proportion to cell density. I tested this hypothesis using Escherichia coli/pB15 associations in laboratory serial culture. Contrary to most models of plasmid transfer kinetics, my data show that pB15 invades static (nonshaking) bacterial cultures only at intermediate densities. The results can be explained by phenotypic plasticity in traits governing plasmid transfer. As cells become more numerous, the plasmid's conjugative transfer unexpectedly declines, while the trade-off between transmission routes causes vertical transfer to increase. Thus, at intermediate densities the plasmid's horizontal transfer can offset selection against plasmid-bearing cells, but at high densities pB15 conjugates so poorly that it cannot invade. I discuss adaptive vs. nonadaptive causes for the phenotypic plasticity, as well as potential mechanisms that may lead to complex transfer dynamics of plasmids in liquid environments. PMID:15166133

  6. Phenotyping bananas for drought resistance

    PubMed Central

    Ravi, Iyyakkutty; Uma, Subbaraya; Vaganan, Muthu Mayil; Mustaffa, Mohamed M.

    2012-01-01

    Drought has emerged as one of the major constraints in banana production. Its effects are pronounced substantially in the tropics and sub-tropics of the world due to climate change. Bananas are quite sensitive to drought; however, genotypes with “B” genome are more tolerant to abiotic stresses than those solely based on “A” genome. In particular, bananas with “ABB” genomes are more tolerant to drought and other abiotic stresses than other genotypes. A good phenotyping plan is a prerequisite for any improvement program for targeted traits. In the present article, known drought tolerant traits of other crop plants are validated in bananas with different genomic backgrounds and presented. Since, banana is recalcitrant to breeding, strategies for making hybrids between different genomic backgrounds are also discussed. Stomatal conductance, cell membrane stability (CMS), leaf emergence rate, rate of leaf senescence, RWC, and bunch yield under soil moisture deficit stress are some of the traits associated with drought tolerance. Among these stress bunch yield under drought should be given top priority for phenotyping. In the light of recently released Musa genome draft sequence, the molecular breeders may have interest in developing molecular markers for drought resistance. PMID:23443573

  7. Psychotic-affective symptoms and multiple system atrophy expand phenotypes of spinocerebellar ataxia type 2.

    PubMed

    Chen, Kai-Hsiang; Lin, Chin-Hsien; Wu, Ruey-Meei

    2012-03-20

    Spinocerebellar ataxia type 2 (SCA2) is a progressive neurodegenerative disorder, characterised by ataxic gait, slow saccades and peripheral neuropathy. Levodopa-responsive parkinsonism could be a clinical phenotype of SCA2, especially those of Chinese origin. In addition to these motor symptoms, SCA2 has been associated with depression and cognitive dysfunction, with only rare reports of psychosis. The authors report the presence of severe psychosis, major depression and multiple system atrophy in affected subjects of a Taiwanese family with intermediate CAG repeats within the ATXN2 gene. The identification of this rare and distinctive SCA2 phenotype expands the current knowledge of the phenotypic variability of SCA2 and suggests that modifier genes could influence the clinical phenotype of SCA2.

  8. Phenotypic plasticity: molecular mechanisms and adaptive significance.

    PubMed

    Kelly, Scott A; Panhuis, Tami M; Stoehr, Andrew M

    2012-04-01

    Phenotypic plasticity can be broadly defined as the ability of one genotype to produce more than one phenotype when exposed to different environments, as the modification of developmental events by the environment, or as the ability of an individual organism to alter its phenotype in response to changes in environmental conditions. Not surprisingly, the study of phenotypic plasticity is innately interdisciplinary and encompasses aspects of behavior, development, ecology, evolution, genetics, genomics, and multiple physiological systems at various levels of biological organization. From an ecological and evolutionary perspective, phenotypic plasticity may be a powerful means of adaptation and dramatic examples of phenotypic plasticity include predator avoidance, insect wing polymorphisms, the timing of metamorphosis in amphibians, osmoregulation in fishes, and alternative reproductive tactics in male vertebrates. From a human health perspective, documented examples of plasticity most commonly include the results of exercise, training, and/or dieting on human morphology and physiology. Regardless of the discipline, phenotypic plasticity has increasingly become the target of a plethora of investigations with the methodological approaches utilized ranging from the molecular to whole organsimal. In this article, we provide a brief historical outlook on phenotypic plasticity; examine its potential adaptive significance; emphasize recent molecular approaches that provide novel insight into underlying mechanisms, and highlight examples in fishes and insects. Finally, we highlight examples of phenotypic plasticity from a human health perspective and underscore the use of mouse models as a powerful tool in understanding the genetic architecture of phenotypic plasticity.

  9. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance.

    PubMed

    Hughes, Diarmaid; Andersson, Dan I

    2017-03-08

    Antibiotic resistance can be acquired by mutation or horizontal transfer of a resistance gene, and generally an acquired mechanism results in a predictable increase in phenotypic resistance. However, recent findings suggest that the environment and/or the genetic context can modify the phenotypic expression of specific resistance genes/mutations. An important implication from these findings is that a given genotype does not always result in the expected phenotype. This dissociation of genotype and phenotype has important consequences for clinical bacteriology and for our ability to predict resistance phenotypes from genetics and DNA sequences. A related problem concerns the degree to which the genes/mutations currently identified in vitro can fully explain the in vivo resistance phenotype, or whether there is a significant additional amount of presently unknown mutations/genes (genetic 'dark matter') that could contribute to resistance in clinical isolates. Finally, a very important question is whether/how we can identify the genetic features that contribute to making a successful pathogen, and predict why some resistant clones are very successful and spread globally? In this review, we describe different environmental and genetic factors that influence phenotypic expression of antibiotic resistance genes/mutations and how this information is needed to understand why particular resistant clones spread worldwide and to what extent we can use DNA sequences to predict evolutionary success.

  10. Virus infection suppresses Nicotiana benthamiana adaptive phenotypic plasticity.

    PubMed

    Bedhomme, Stéphanie; Elena, Santiago F

    2011-02-17

    Competition and parasitism are two important selective forces that shape life-histories, migration rates and population dynamics. Recently, it has been shown in various pathosystems that parasites can modify intraspecific competition, thus generating an indirect cost of parasitism. Here, we investigated if this phenomenon was present in a plant-potyvirus system using two viruses of different virulence (Tobacco etch virus and Turnip mosaic virus). Moreover, we asked if parasitism interacted with the shade avoidance syndrome, the plant-specific phenotypic plasticity in response to intraspecific competition. Our results indicate that the modification of intraspecific competition by parasitism is not present in the Nicotiana benthamiana--potyvirus system and suggests that this phenomenon is not universal but depends on the peculiarities of each pathosystem. However, whereas the healthy N. benthamiana presented a clear shade avoidance syndrome, this phenotypic plasticity totally disappeared when the plants were infected with TEV and TuMV, very likely resulting in a fitness loss and being another form of indirect cost of parasitism. This result suggests that the suppression or the alteration of adaptive phenotypic plasticity might be a component of virulence that is often overlooked.

  11. Virus Infection Suppresses Nicotiana benthamiana Adaptive Phenotypic Plasticity

    PubMed Central

    Bedhomme, Stéphanie; Elena, Santiago F.

    2011-01-01

    Competition and parasitism are two important selective forces that shape life-histories, migration rates and population dynamics. Recently, it has been shown in various pathosystems that parasites can modify intraspecific competition, thus generating an indirect cost of parasitism. Here, we investigated if this phenomenon was present in a plant-potyvirus system using two viruses of different virulence (Tobacco etch virus and Turnip mosaic virus). Moreover, we asked if parasitism interacted with the shade avoidance syndrome, the plant-specific phenotypic plasticity in response to intraspecific competition. Our results indicate that the modification of intraspecific competition by parasitism is not present in the Nicotiana benthamiana – potyvirus system and suggests that this phenomenon is not universal but depends on the peculiarities of each pathosystem. However, whereas the healthy N. benthamiana presented a clear shade avoidance syndrome, this phenotypic plasticity totally disappeared when the plants were infected with TEV and TuMV, very likely resulting in a fitness loss and being another form of indirect cost of parasitism. This result suggests that the suppression or the alteration of adaptive phenotypic plasticity might be a component of virulence that is often overlooked. PMID:21359142

  12. Phenotypic heterogeneity and genotypic instability in coupled cellular arrays

    NASA Astrophysics Data System (ADS)

    Klevecz, Robert R.

    1998-12-01

    The dynamic origins of phenotypic heterogeneity and genotypic instability and hypermutation have been investigated in simulated tissues comprised of 900-25 600 cells each represented by initially identical Rossler attractors running in the chaotic domain. This attractor, representing the cell cycle behavior of individual cells in the array, has previously been used to model the dynamic behavior of mammalian cells in culture. In these tissue constructs, the behavior of an individual cell is modified by its interactions with its immediate neighbors as a consequence of diffusive coupling through one of the variables. Differentiation within the initially identical population of attractors is manifested as a position dependent set of novel stable trajectories in phase space that are revealed through the use of return maps. These self-mapping patterns, which we define as the phenotype of the cell, are periodic and stable over a considerable period of time. A comparison of tissues whose individual cell cycle attractor phases describe an archimedean spiral with those that exhibit S-T chaos, or turbulence, suggests that the heterogeneous phenotype of tumor tissues is better modeled by turbulence. Instability in the spiral array exists primarily at the boundary between periodic regions of differing phase and trajectory, and involves infrequent excursions by these boundary cells away from their stables trajectories. Such instabilities are hypothesized to play an important role in the amplification, hypermutation, and gene conversion events seen in certain normal biological tissues and tumors.

  13. Phenotypic checkpoints regulate neuronal development.

    PubMed

    Ben-Ari, Yehezkel; Spitzer, Nicholas C

    2010-11-01

    Nervous system development proceeds by sequential gene expression mediated by cascades of transcription factors in parallel with sequences of patterned network activity driven by receptors and ion channels. These sequences are cell type- and developmental stage-dependent and modulated by paracrine actions of substances released by neurons and glia. How and to what extent these sequences interact to enable neuronal network development is not understood. Recent evidence demonstrates that CNS development requires intermediate stages of differentiation providing functional feedback that influences gene expression. We suggest that embryonic neuronal functions constitute a series of phenotypic checkpoint signatures; neurons failing to express these functions are delayed or developmentally arrested. Such checkpoints are likely to be a general feature of neuronal development and constitute presymptomatic signatures of neurological disorders when they go awry.

  14. Phenotypic plasticity and experimental evolution.

    PubMed

    Garland, Theodore; Kelly, Scott A

    2006-06-01

    Natural or artificial selection that favors higher values of a particular trait within a given population should engender an evolutionary response that increases the mean value of the trait. For this prediction to hold, the phenotypic variance of the trait must be caused in part by additive effects of alleles segregating in the population, and also the trait must not be too strongly genetically correlated with other traits that are under selection. Another prediction, rarely discussed in the literature, is that directional selection should favor alleles that increase phenotypic plasticity in the direction of selection, where phenotypic plasticity is defined as the ability of one genotype to produce more than one phenotype when exposed to different environments. This prediction has received relatively little empirical attention. Nonetheless, many laboratory experiments impose selection regimes that could allow for the evolution of enhanced plasticity (e.g. desiccation trials with Drosophila that last for several hours or days). We review one example that involved culturing of Drosophila on lemon for multiple generations and then tested for enhanced plasticity of detoxifying enzymes. We also review an example with vertebrates that involves selective breeding for high voluntary activity levels in house mice, targeting wheel-running behavior on days 5+6 of a 6-day wheel exposure. This selection regime allows for the possibility of wheel running itself or subordinate traits that support such running to increase in plasticity over days 1-4 of wheel access. Indeed, some traits, such as the concentration of the glucose transporter GLUT4 in gastrocnemius muscle, do show enhanced plasticity in the selected lines over a 5-6 day period. In several experiments we have housed mice from both the Selected (S) and Control (C) lines with or without wheel access for several weeks to test for differences in plasticity (training effects). A variety of patterns were observed, including

  15. Evolution of phenotypic plasticity in colonizing species.

    PubMed

    Lande, Russell

    2015-05-01

    I elaborate an hypothesis to explain inconsistent empirical findings comparing phenotypic plasticity in colonizing populations or species with plasticity from their native or ancestral range. Quantitative genetic theory on the evolution of plasticity reveals that colonization of a novel environment can cause a transient increase in plasticity: a rapid initial increase in plasticity accelerates evolution of a new optimal phenotype, followed by slow genetic assimilation of the new phenotype and reduction of plasticity. An association of colonization with increased plasticity depends on the difference in the optimal phenotype between ancestral and colonized environments, the difference in mean, variance and predictability of the environment, the cost of plasticity, and the time elapsed since colonization. The relative importance of these parameters depends on whether a phenotypic character develops by one-shot plasticity to a constant adult phenotype or by labile plasticity involving continuous and reversible development throughout adult life.

  16. Epithelial phenotype in total sclerocornea

    PubMed Central

    Yeh, Lung-Kun; Chen, Hung-Chi; Chang, Anna Marie; Ho, Yi-Ju; Chang, Shirley H.L.; Yang, Unique

    2014-01-01

    Purpose To understand whether the epithelial phenotype in total sclerocornea is corneal or conjunctival in origin. Methods Four cases of total sclerocornea (male:female = 1:3; mean age = 5.4±4.3; 1–11 years old) who received penetrating keratoplasty (PKP) at our hospital between 2008 and 2011 were included. Corneal buttons obtained during PKP were used for transmission electron microscopy (TEM) as well as immunoconfocal microscopy for cytokeratins 3, 12, and 13, goblet cell mucin MUC5AC, connexin 43, stem cell markers p63 and ABCG2, laminin-5, and fibronectin. Results After a mean follow-up period of 38.8±14.0 (12–54) months, the grafts remained clear in half of the patients. TEM examination revealed a markedly attenuated Bowman’s layer in the scleralized corneas, with irregular and variably thinned collagen lamellar layers, and disorganization and random distribution of collagen fibrils, which were much larger in diameter compared with a normal cornea. Immunoconfocal microscopy showed that keratin 3 was expressed in all four patients, while p63, ABCG2, and MUC5AC were all absent. Cornea-specific keratin 12 was universally expressed in Patients 1 to 3, while mucosa (including conjunctiva)-specific keratin 13 was negative in these patients. Interestingly, keratin 12 and 13 were expressed in Patient 4 in a mutually exclusive manner. Linear expression of laminin-5 in the basement membrane zone and similar expression of fibronectin were observed. Conclusions The epithelia in total sclerocornea are essentially corneal in phenotype, but in the event of massive corneal angiogenesis, invasion by the conjunctival epithelium is possible. PMID:24744607

  17. Adrenoleukodystrophy: phenotypic variability and implications for therapy.

    PubMed

    Moser, H W; Moser, A B; Smith, K D; Bergin, A; Borel, J; Shankroff, J; Stine, O C; Merette, C; Ott, J; Krivit, W

    1992-01-01

    X-linked adrenoleukodystrophy (ALD) is a relatively common disorder that shows a great deal of phenotypic variability. Approximately half of the patients have the rapidly progressive childhood cerebral form that is associated with an inflammatory response in brain and leads to total disability or death during the first decade. Twenty five per cent or more of the patients have adrenomyeloneuropathy (AMN), a form that progresses slowly, involves the spinal cord mainly, shows little or no inflammatory response, manifests in adulthood, and is compatible with a near-normal life span. The two forms of the disease occur frequently within the same kindreds and nuclear families. Segregation analysis based on 3862 individuals in 89 kindreds points to the existence of an autosomal modifier locus with a likelihood ratio of 20:1. In addition, we present preliminary results of three types of therapy. Two hundred and four patients have received a dietary regimen that combines the administration of oils containing mono-unsaturated fatty acids (oleic and erucic) with the restricted intake of very long-chain fatty acids. This regimen normalizes the levels of satured very long-chain fatty acids in plasma within 4 weeks. It appears to improve peripheral nerve function in patients with AMN, and a large-scale trial is in progress to determine whether it can prevent the onset of neurological involvement in patients who have the biochemical abnormality of ALD but are neurologically intact. We report early results of bone marrow transplantation in 14 patients. There is encouraging but still preliminary evidence that transplantation can arrest the progression of the disease in patients with mild neurological involvement. There is urgent need to develop methods to combat the rapid progression of the cerebral forms of the disease, which so far has resisted therapeutic intervention, including immunosuppression or the administration of immunoglobulin.

  18. The cognitive phenotype of spina bifida meningomyelocele.

    PubMed

    Dennis, Maureen; Barnes, Marcia A

    2010-01-01

    A cognitive phenotype is a product of both assets and deficits that specifies what individuals with spina bifida meningomyelocele (SBM) can and cannot do and why they can or cannot do it. In this article, we review the cognitive phenotype of SBM and describe the processing assets and deficits that cut within and across content domains, sensory modality, and material, including studies from our laboratory and other investigations. We discuss some implications of the SBM cognitive phenotype for assessment, rehabilitation, and research.

  19. Phenotypic screening: the future of antibody discovery.

    PubMed

    Gonzalez-Munoz, Andrea L; Minter, Ralph R; Rust, Steven J

    2016-01-01

    Most antibody therapeutics have been isolated from high throughput target-based screening. However, as the number of validated targets diminishes and the target space becomes increasingly competitive, alternative strategies, such as phenotypic screening, are gaining momentum. Here, we review successful phenotypic screens, including those used to isolate antibodies against cancer and infectious agents. We also consider exciting advances in the expression and phenotypic screening of antibody repertoires in single cell autocrine systems. As technologies continue to develop, we believe that antibody phenotypic screening will increase further in popularity and has the potential to provide the next generation of therapeutic antibodies.

  20. Interoperability between phenotype and anatomy ontologies

    PubMed Central

    Hoehndorf, Robert; Oellrich, Anika; Rebholz-Schuhmann, Dietrich

    2010-01-01

    Motivation: Phenotypic information is important for the analysis of the molecular mechanisms underlying disease. A formal ontological representation of phenotypic information can help to identify, interpret and infer phenotypic traits based on experimental findings. The methods that are currently used to represent data and information about phenotypes fail to make the semantics of the phenotypic trait explicit and do not interoperate with ontologies of anatomy and other domains. Therefore, valuable resources for the analysis of phenotype studies remain unconnected and inaccessible to automated analysis and reasoning. Results: We provide a framework to formalize phenotypic descriptions and make their semantics explicit. Based on this formalization, we provide the means to integrate phenotypic descriptions with ontologies of other domains, in particular anatomy and physiology. We demonstrate how our framework leads to the capability to represent disease phenotypes, perform powerful queries that were not possible before and infer additional knowledge. Availability: http://bioonto.de/pmwiki.php/Main/PheneOntology Contact: rh497@cam.ac.uk PMID:20971987

  1. Phenotype of Normal Spirometry in an Aging Population

    PubMed Central

    McAvay, Gail; Van Ness, Peter H.; Casaburi, Richard; Jensen, Robert L.; MacIntyre, Neil; Gill, Thomas M.; Yaggi, H. Klar; Concato, John

    2015-01-01

    Rationale: In aging populations, the commonly used Global Initiative for Chronic Obstructive Lung Disease (GOLD) may misclassify normal spirometry as respiratory impairment (airflow obstruction and restrictive pattern), including the presumption of respiratory disease (chronic obstructive pulmonary disease [COPD]). Objectives: To evaluate the phenotype of normal spirometry as defined by a new approach from the Global Lung Initiative (GLI), overall and across GOLD spirometric categories. Methods: Using data from COPDGene (n = 10,131; ages 45–81; smoking history, ≥10 pack-years), we evaluated spirometry and multiple phenotypes, including dyspnea severity (Modified Medical Research Council grade 0–4), health-related quality of life (St. George’s Respiratory Questionnaire total score), 6-minute-walk distance, bronchodilator reversibility (FEV1 % change), computed tomography–measured percentage of lung with emphysema (% emphysema) and gas trapping (% gas trapping), and small airway dimensions (square root of the wall area for a standardized airway with an internal perimeter of 10 mm). Measurements and Main Results: Among 5,100 participants with GLI-defined normal spirometry, GOLD identified respiratory impairment in 1,146 (22.5%), including a restrictive pattern in 464 (9.1%), mild COPD in 380 (7.5%), moderate COPD in 302 (5.9%), and severe COPD in none. Overall, the phenotype of GLI-defined normal spirometry included normal adjusted mean values for dyspnea grade (0.8), St. George’s Respiratory Questionnaire (15.9), 6-minute-walk distance (1,424 ft [434 m]), bronchodilator reversibility (2.7%), % emphysema (0.9%), % gas trapping (10.7%), and square root of the wall area for a standardized airway with an internal perimeter of 10 mm (3.65 mm); corresponding 95% confidence intervals were similarly normal. These phenotypes remained normal for GLI-defined normal spirometry across GOLD spirometric categories. Conclusions: GLI-defined normal spirometry, even

  2. Sickle Cell Disease in the Post Genomic Era: A Monogenic Disease with a Polygenic Phenotype

    PubMed Central

    Driss, A; Asare, KO; Hibbert, JM; Gee, BE; Adamkiewicz, TV; Stiles, JK

    2009-01-01

    More than half a century after the discovery of the molecular basis of Sickle Cell Disease (SCD), the causes of the phenotypic heterogeneity of the disease remain unclear. This heterogeneity manifests with different clinical outcomes such as stroke, vaso-occlusive episodes, acute chest syndrome, avascular necrosis, leg ulcers, priapism and retinopathy. These outcomes cannot be explained by the single mutation in the beta-globin gene alone but may be attributed to genetic modifiers and environmental effects. Recent advances in the post human genome sequence era have opened the door for the identification of novel genetic modifiers in SCD. Studies are showing that phenotypes of SCD seem to be modulated by polymorphisms in genes that are involved in inflammation, cell–cell interaction and modulators of oxidant injury and nitric oxide biology. The discovery of genes implicated in different phenotypes will help understanding of the physiopathology of the disease and aid in establishing targeted cures. However, caution is needed in asserting that genetic modifiers are the cause of all SCD phenotypes, because there are other factors such as genetic background of the population, environmental components, socio-economics and psychology that can play significant roles in the clinical heterogeneity. PMID:20401335

  3. Genetic modifier loci of mouse Mfrp(rd6) identified by quantitative trait locus analysis.

    PubMed

    Won, Jungyeon; Charette, Jeremy R; Philip, Vivek M; Stearns, Timothy M; Zhang, Weidong; Naggert, Jürgen K; Krebs, Mark P; Nishina, Patsy M

    2014-01-01

    The identification of genes that modify pathological ocular phenotypes in mouse models may improve our understanding of disease mechanisms and lead to new treatment strategies. Here, we identify modifier loci affecting photoreceptor cell loss in homozygous Mfrp(rd6) mice, which exhibit a slowly progressive photoreceptor degeneration. A cohort of 63 F2 homozygous Mfrp(rd6) mice from a (B6.C3Ga-Mfrp(rd6)/J × CAST/EiJ) F1 intercross exhibited a variable number of cell bodies in the retinal outer nuclear layer at 20 weeks of age. Mice were genotyped with a panel of single nucleotide polymorphism markers, and genotypes were correlated with phenotype by quantitative trait locus (QTL) analysis to map modifier loci. A genome-wide scan revealed a statistically significant, protective candidate locus on CAST/EiJ Chromosome 1 and suggestive modifier loci on Chromosomes 6 and 11. Multiple regression analysis of a three-QTL model indicated that the modifier loci on Chromosomes 1 and 6 together account for 26% of the observed phenotypic variation, while the modifier locus on Chromosome 11 explains only an additional 4%. Our findings indicate that the severity of the Mfrp(rd6) retinal degenerative phenotype in mice depends on the strain genetic background and that a significant modifier locus on CAST/EiJ Chromosome 1 protects against Mfrp(rd6)-associated photoreceptor loss.

  4. The Neuroanatomy of the Autistic Phenotype

    ERIC Educational Resources Information Center

    Fahim, Cherine; Meguid, Nagwa A.; Nashaat, Neveen H.; Yoon, Uicheul; Mancini-Marie, Adham; Evans, Alan C.

    2012-01-01

    The autism phenotype is associated with an excess of brain volume due in part to decreased pruning during development. Here we aimed at assessing brain volume early in development to further elucidate previous findings in autism and determine whether this pattern is restricted to idiopathic autism or shared within the autistic phenotype (fragile X…

  5. Daddy issues: paternal effects on phenotype.

    PubMed

    Rando, Oliver J

    2012-11-09

    The once popular and then heretical idea that ancestral environment can affect the phenotype of future generations is coming back into vogue due to advances in the field of epigenetic inheritance. How paternal environmental conditions influence the phenotype of progeny is now a tractable question, and researchers are exploring potential mechanisms underlying such effects.

  6. Emerging semantics to link phenotype and environment

    DOE PAGES

    Thessen, Anne E.; Bunker, Daniel E.; Buttigieg, Pier Luigi; ...

    2015-12-14

    Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies aremore » well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. Lastly, in this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments.« less

  7. Emerging semantics to link phenotype and environment

    SciTech Connect

    Thessen, Anne E.; Bunker, Daniel E.; Buttigieg, Pier Luigi; Cooper, Laurel D.; Dahdul, Wasila M.; Domisch, Sami; Franz, Nico M.; Jaiswal, Pankaj; Lawrence-Dill, Carolyn J.; Midford, Peter E.; Mungall, Christopher J.; Ramirez, Martin J.; Specht, Chelsea D.; Vogt, Lars; Vos, Rutger Aldo; Walls, Ramona L.; White, Jeffrey W.; Zhang, Guanyang; Deans, Andrew R.; Huala, Eva; Lewis, Suzanna E.; Mabee, Paula M.

    2015-12-14

    Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. Lastly, in this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments.

  8. Emerging semantics to link phenotype and environment.

    PubMed

    Thessen, Anne E; Bunker, Daniel E; Buttigieg, Pier Luigi; Cooper, Laurel D; Dahdul, Wasila M; Domisch, Sami; Franz, Nico M; Jaiswal, Pankaj; Lawrence-Dill, Carolyn J; Midford, Peter E; Mungall, Christopher J; Ramírez, Martín J; Specht, Chelsea D; Vogt, Lars; Vos, Rutger Aldo; Walls, Ramona L; White, Jeffrey W; Zhang, Guanyang; Deans, Andrew R; Huala, Eva; Lewis, Suzanna E; Mabee, Paula M

    2015-01-01

    Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. In this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments.

  9. Emerging semantics to link phenotype and environment

    PubMed Central

    Bunker, Daniel E.; Buttigieg, Pier Luigi; Cooper, Laurel D.; Dahdul, Wasila M.; Domisch, Sami; Franz, Nico M.; Jaiswal, Pankaj; Lawrence-Dill, Carolyn J.; Midford, Peter E.; Mungall, Christopher J.; Ramírez, Martín J.; Specht, Chelsea D.; Vogt, Lars; Vos, Rutger Aldo; Walls, Ramona L.; White, Jeffrey W.; Zhang, Guanyang; Deans, Andrew R.; Huala, Eva; Lewis, Suzanna E.; Mabee, Paula M.

    2015-01-01

    Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. In this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments. PMID:26713234

  10. The Cognitive Phenotype of Spina Bifida Meningomyelocele

    ERIC Educational Resources Information Center

    Dennis, Maureen; Barnes, Marcia A.

    2010-01-01

    A cognitive phenotype is a product of both assets and deficits that specifies what individuals with spina bifida meningomyelocele (SBM) can and cannot do and why they can or cannot do it. In this article, we review the cognitive phenotype of SBM and describe the processing assets and deficits that cut within and across content domains, sensory…

  11. Phenotypic screening for developmental neurotoxicity ...

    EPA Pesticide Factsheets

    There are large numbers of environmental chemicals with little or no available information on their toxicity, including developmental neurotoxicity. Because of the resource-intensive nature of traditional animal tests, high-throughput (HTP) methods that can rapidly evaluate chemicals for the potential to affect the developing brain are being explored. Typically, HTP screening uses biochemical and molecular assays to detect the interaction of a chemical with a known target or molecular initiating event (e.g., the mechanism of action). For developmental neurotoxicity, however, the mechanism(s) is often unknown. Thus, we have developed assays for detecting chemical effects on the key events of neurodevelopment at the cellular level (e.g., proliferation, differentiation, neurite growth, synaptogenesis, network formation). Cell-based assays provide a test system at a level of biological complexity that encompasses many potential neurotoxic mechanisms. For example, phenotypic assessment of neurite outgrowth at the cellular level can detect chemicals that target kinases, ion channels, or esterases at the molecular level. The results from cell-based assays can be placed in a conceptual framework using an Adverse Outcome Pathway (AOP) which links molecular, cellular, and organ level effects with apical measures of developmental neurotoxicity. Testing a wide range of concentrations allows for the distinction between selective effects on neurodevelopmental and non-specific

  12. Phenotypic plasticity in freshwater picocyanobacteria.

    PubMed

    Huber, Paula; Diovisalvi, Nadia; Ferraro, Marcela; Metz, Sebastián; Lagomarsino, Leonardo; Llames, María Eugenia; Royo-Llonch, Marta; Bustingorry, José; Escaray, Roberto; Acinas, Silvia G; Gasol, Josep M; Unrein, Fernando

    2017-03-01

    Picocyanobacteria can occur as single-cell (Pcy) or as colonies (CPcy). Published evidence suggests that some Pcy strains have the capability to aggregate under certain culture conditions, however this has not been demonstrated to occur in natural environments. We investigated whether the Pcy and CPcy belong to the same species (i.e. phylotype), and the factors that determine their morphological and genetic variability in a hypertrophic shallow lake dominated by picocyanobacteria. Six main different morphologies and >30 phylotypes were observed. All sequences retrieved belonged to the 'Anathece + Cyanobium' clade (Synechococcales) that are known to have the capability of aggregation/disaggregation. The temporal variation of picocyanobacteria morphotype composition was weakly correlated with the DGGE temporal pattern, and could be explained by the composition of the zooplankton assemblage. Laboratory experiments confirmed that the small cladoceran Bosmina favoured the dominance of CPcy, i.e. Cyanodictyon doubled the size of the colonies when present, most likely through the aggregation of single-cell picocyanobacteria into colonies. Flow cytometry cell sorting and 16S rRNA + ITS sequencing of the Pcy and CPcy cytometrically-defined populations revealed that some phylotypes could be found in both sorted populations, suggesting phenotypic plasticity in which various Synechococcales phylotypes could be found in situ either as single-cells or as colonies.

  13. Bronchiectasis: Phenotyping a Complex Disease.

    PubMed

    Chalmers, James D

    2017-03-15

    Bronchiectasis is a long-neglected disease currently experiencing a surge in interest. It is a highly complex condition with numerous aetiologies, co-morbidities and a heterogeneous disease presentation and clinical course. The past few years have seen major advances in our understanding of the disease, primarily through large real-life cohort studies. The main outcomes of interest in bronchiectasis are symptoms, exacerbations, treatment response, disease progression and death. We are now more able to identify clearly the radiological, clinical, microbiological and inflammatory contributors to these outcomes. Over the past couple of years, multidimensional scoring systems such as the Bronchiectasis Severity Index have been introduced to predict disease severity and mortality. Although there are currently no licensed therapies for bronchiectasis, an increasing number of clinical trials are planned or ongoing. While this emerging evidence is awaited, bronchiectasis guidelines will continue to be informed largely by real-life evidence from observational studies and patient registries. Key developments in the bronchiectasis field include the establishment of international disease registries and characterisation of disease phenotypes using cluster analysis and biological data.

  14. ICAM-1: isoforms and phenotypes.

    PubMed

    Ramos, Theresa N; Bullard, Daniel C; Barnum, Scott R

    2014-05-15

    ICAM-1 plays an important role in leukocyte trafficking, immunological synapse formation, and numerous cellular immune responses. Although considered a single glycoprotein, there are multiple membrane-bound and soluble ICAM-1 isoforms that arise from alternative splicing and proteolytic cleavage during inflammatory responses. The function and expression of these isoforms on various cell types are poorly understood. In the generation of ICAM-1-deficient mice, two isoform-deficient ICAM-1 mutants were inadvertently produced as a result of alternative splicing. These mice, along with true ICAM-1-deficient mice and newly generated ICAM-1-transgenic mice, have provided the opportunity to begin examining the role of ICAM-1 isoforms (singly or in combination) in various disease settings. In this review, we highlight the sharply contrasting disease phenotypes using ICAM-1 isoform mutant mice. These studies demonstrate that ICAM-1 immunobiology is highly complex but that individual isoforms, aside from the full-length molecule, make significant contributions to disease development and pathogenesis.

  15. ICAM-1: Isoforms and Phenotypes

    PubMed Central

    Ramos, Theresa N.; Bullard, Daniel C.; Barnum, Scott R.

    2014-01-01

    Intercellular adhesion molecule-1 (ICAM-1) plays an important role in leukocyte trafficking, immunological synapse formation and, numerous cellular immune responses. Although considered a single glycoprotein, there are multiple membrane bound and soluble ICAM-1 isoforms which arise from alternative splicing and proteolytic cleavage during inflammatory responses. The function and expression of these isoforms on various cell types is poorly understood. In the generation of ICAM-1-deficient mice, two isoform-deficient ICAM-1 mutants were inadvertently produced due to alternative splicing. These mice along with true ICAM-1-deficient mice and newly generated ICAM-1 transgenic mice have provided the opportunity to begin examining the role of ICAM-1 isoforms (singly or in combination) in various disease settings. In this review we highlight the sharply contrasting disease phenotypes using ICAM-1 isoform mutant mice. These studies demonstrate that ICAM-1 immunobiology is highly complex but that individual isoforms, aside from the full-length molecule, make significant contributions to disease development and pathogenesis. PMID:24795464

  16. Modifying toxicokinetics with antidotes.

    PubMed

    Baud, F J; Borron, S W; Bismuth, C

    1995-12-01

    Five approaches may be described through which antidotes can modify toxicokinetics: (1) Decreased bioavailability of the toxins; (2) Cellular redistribution of the toxin in the organism; (3) Promotion of elimination in an unchanged form; (4) Slowing of metabolic activation pathways; (5) Acceleration of metabolic deactivation pathways. However, the ability to modify toxicokinetics with a new treatment, while demonstrating an understanding of the mechanism of action, must never be construed to be, in and of itself, the goal of therapy. The ultimate evaluation of an antidote modifying toxicokinetics is strictly clinical.

  17. Detection of Mutually Exclusive Mosaicism in a Girl with Genotype-Phenotype Discrepancies

    PubMed Central

    Luo, Minjie; Mulchandani, Surabhi; Dubbs, Holly A.; Swarr, Daniel; Pyle, Louise; Zackai, Elaine H.; Spinner, Nancy B.; Conlin, Laura K.

    2015-01-01

    Discordance between clinical phenotype and genotype has multiple causes, including mosaicism. Phenotypes can be modified due to tissue distribution, or the presence of multiple abnormal cell lines with different genomic contributions. We have studied a 20-month-old female whose main phenotypes were failure to thrive, developmental delay, and patchy skin pigmentation. Initial chromosome and SNP microarray analysis of her blood revealed a non-mosaic ~24 Mb duplication of 15q25.1q26.3 resulting from the unbalanced translocation of terminal 15q to the short arm of chromosome 15. The most common feature associated with distal trisomy 15q is prenatal and postnatal overgrowth, which was not consistent with this patient’s phenotype. The phenotypic discordance, in combination with the patchy skin pigmentation, suggested the presence of mosaicism. Further analysis of skin biopsies from both hyper- and hypopigmented regions confirmed the presence of an additional cell line with the short arm of chromosome X deleted and replaced by the entire long arm of chromosome 15. The Xp deletion, consistent with a variant Turner Syndrome diagnosis, better explained the patient’s phenotype. Parental studies revealed that the alterations in both cell lines were de novo and the duplicated distal 15q and the deleted Xp were from different parental origins, suggesting a mitotic event. The possible mechanism for the occurrence of two mutually exclusive structural rearrangements with both involving the long arm of chromosome 15 is discussed. PMID:26198585

  18. Invasive ecosystem engineer selects for different phenotypes of an associated native species.

    PubMed

    Wright, Jeffrey T; Gribben, Paul E; Byers, James E; Monro, Keyne

    2012-06-01

    Invasive habitat-forming ecosystem engineers modify the abiotic environment and thus represent a major perturbation to many ecosystems. Because native species often persist in these invaded habitats but have no shared history with the ecosystem engineer, the engineer may impose novel selective pressure on native species. In this study, we used a phenotypic selection framework to determine whether an invasive habitat-forming ecosystem engineer (the seaweed Caulerpa taxifolia) selects for different phenotypes of a common co-occurring native species (the bivalve Anadara trapezia). Compared to unvegetated habitat, Caulerpa habitat has lower water flow, lower dissolved oxygen, and sediments are more silty and anoxic. We determined the performance consequences of variation in key functional traits that may be affected by these abiotic changes (shell morphology, gill mass, and palp mass) for Anadara transplanted into Caulerpa and unvegetated habitat. Both linear and nonlinear performance gradients in Anadara differed between habitats, and these gradients were stronger in Caulerpa compared to unvegetated sediment. Moreover, in Caulerpa alternate phenotypes performed well, and these phenotypes were different from the dominant phenotype in unvegetated sediment. By demonstrating that phenotype-performance gradients differ between habitats, we have highlighted a role for Caulerpa as an agent of selection on native species.

  19. Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes.

    PubMed

    Loviglio, M N; Leleu, M; Männik, K; Passeggeri, M; Giannuzzi, G; van der Werf, I; Waszak, S M; Zazhytska, M; Roberts-Caldeira, I; Gheldof, N; Migliavacca, E; Alfaiz, A A; Hippolyte, L; Maillard, A M; Van Dijck, A; Kooy, R F; Sanlaville, D; Rosenfeld, J A; Shaffer, L G; Andrieux, J; Marshall, C; Scherer, S W; Shen, Y; Gusella, J F; Thorsteinsdottir, U; Thorleifsson, G; Dermitzakis, E T; Deplancke, B; Beckmann, J S; Rougemont, J; Jacquemont, S; Reymond, A

    2016-05-31

    Copy number variants (CNVs) are major contributors to genomic imbalance disorders. Phenotyping of 137 unrelated deletion and reciprocal duplication carriers of the distal 16p11.2 220 kb BP2-BP3 interval showed that these rearrangements are associated with autism spectrum disorders and mirror phenotypes of obesity/underweight and macrocephaly/microcephaly. Such phenotypes were previously associated with rearrangements of the non-overlapping proximal 16p11.2 600 kb BP4-BP5 interval. These two CNV-prone regions at 16p11.2 are reciprocally engaged in complex chromatin looping, as successfully confirmed by 4C-seq, fluorescence in situ hybridization and Hi-C, as well as coordinated expression and regulation of encompassed genes. We observed that genes differentially expressed in 16p11.2 BP4-BP5 CNV carriers are concomitantly modified in their chromatin interactions, suggesting that disruption of chromatin interplays could participate in the observed phenotypes. We also identified cis- and trans-acting chromatin contacts to other genomic regions previously associated with analogous phenotypes. For example, we uncovered that individuals with reciprocal rearrangements of the trans-contacted 2p15 locus similarly display mirror phenotypes on head circumference and weight. Our results indicate that chromosomal contacts' maps could uncover functionally and clinically related genes.Molecular Psychiatry advance online publication, 31 May 2016; doi:10.1038/mp.2016.84.

  20. Rethinking phenotypic plasticity and its consequences for individuals, populations and species.

    PubMed

    Forsman, A

    2015-10-01

    Much research has been devoted to identify the conditions under which selection favours flexible individuals or genotypes that are able to modify their growth, development and behaviour in response to environmental cues, to unravel the mechanisms of plasticity and to explore its influence on patterns of diversity among individuals, populations and species. The consequences of developmental plasticity and phenotypic flexibility for the performance and ecological success of populations and species have attracted a comparatively limited but currently growing interest. Here, I re-emphasize that an increased understanding of the roles of plasticity in these contexts requires a 'whole organism' (rather than 'single trait') approach, taking into consideration that organisms are integrated complex phenotypes. I further argue that plasticity and genetic polymorphism should be analysed and discussed within a common framework. I summarize predictions from theory on how phenotypic variation stemming from developmental plasticity and phenotypic flexibility may affect different aspects of population-level performance. I argue that it is important to distinguish between effects associated with greater interindividual phenotypic variation resulting from plasticity, and effects mediated by variation among individuals in the capacity to express plasticity and flexibility as such. Finally, I claim that rigorous testing of predictions requires methods that allow for quantifying and comparing whole organism plasticity, as well as the ability to experimentally manipulate the level of and capacity for developmental plasticity and phenotypic flexibility independent of genetic variation.

  1. Refined Phenotyping of Modic Changes

    PubMed Central

    Määttä, Juhani H.; Karppinen, Jaro; Paananen, Markus; Bow, Cora; Luk, Keith D.K.; Cheung, Kenneth M.C.; Samartzis, Dino

    2016-01-01

    Abstract Low back pain (LBP) is the world's most disabling condition. Modic changes (MC) are vertebral bone marrow changes adjacent to the endplates as noted on magnetic resonance imaging. The associations of specific MC types and patterns with prolonged, severe LBP and disability remain speculative. This study assessed the relationship of prolonged, severe LBP and back-related disability, with the presence and morphology of lumbar MC in a large cross-sectional population-based study of Southern Chinese. We addressed the topographical and morphological dimensions of MC along with other magnetic resonance imaging phenotypes (eg, disc degeneration and displacement) on the basis of axial T1 and sagittal T2-weighted imaging of L1-S1. Prolonged severe LBP was defined as LBP lasting ≥30 days during the past year, and a visual analog scale severest pain intensity of at least 6/10. An Oswestry Disability Index score of 15% was regarded as significant disability. We also assessed subject demographics, occupation, and lifestyle factors. In total, 1142 subjects (63% females, mean age 53 years) were assessed. Of these, 282 (24.7%) had MC (7.1% type I, 17.6% type II). MC subjects were older (P = 0.003), had more frequent disc displacements (P < 0.001) and greater degree of disc degeneration (P < 0.001) than non-MC subjects. In adjusted models, any MC (odds ratio [OR] 1.48, 95% confidence interval [CI] 1.01–2.18), MC affecting whole anterior-posterior length (OR 1.62, 95% CI 1.04–2.51), and MC affecting 2/3 posterior length (OR 2.79, 95% CI 1.17–6.65) were associated with prolonged severe LBP. Type I MC tended to associate with pain more strongly than type II MC (OR 1.80, 95% CI 0.94–3.44 vs OR 1.36, 95% CI 0.88–2.09, respectively). Any MC (OR 1.47, 95% CI 1.04–2.10), type II MC (OR 1.56, 95% CI 1.06–2.31), MC affecting 2/3 posterior length (OR 2.96, 95% CI 1.27–6.89), and extensive MC (OR 1.95, 95% CI 1.21–3.15) were associated with disability

  2. Targeting phenotypically tolerant Mycobacterium tuberculosis

    PubMed Central

    Gold, Ben; Nathan, Carl

    2016-01-01

    While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in a clinical setting. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of post-treatment relapse. Some promising drugs to treat tuberculosis, such as rifampicin and bedaquiline, only kill nonreplicating M. tuberculosis in vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores. However, few of these compounds were tested under conditions that would exclude the impact of adsorbed compound acting during the recovery phase of

  3. Cystic fibrosis modifier genes.

    PubMed Central

    Davies, Jane; Alton, Eric; Griesenbach, Uta

    2005-01-01

    Since the recognition that CFTR genotype was not a good predictor of pulmonary disease severity in CF, several candidate modifier genes have been identified. It is unlikely that a single modifier gene will be found, but more probable that several haplotypes in combination may contribute, which in itself presents a major methodological challenge. The aims of such studies are to increase our understanding of disease pathogenesis, to aid prognosis and ultimately to lead to the development of novel treatments. PMID:16025767

  4. [Phenotypic heterogeneity of chronic obstructive pulmonary disease].

    PubMed

    Garcia-Aymerich, Judith; Agustí, Alvar; Barberà, Joan A; Belda, José; Farrero, Eva; Ferrer, Antoni; Ferrer, Jaume; Gáldiz, Juan B; Gea, Joaquim; Gómez, Federico P; Monsó, Eduard; Morera, Josep; Roca, Josep; Sauleda, Jaume; Antó, Josep M

    2009-03-01

    A functional definition of chronic obstructive pulmonary disease (COPD) based on airflow limitation has largely dominated the field. However, a view has emerged that COPD involves a complex array of cellular, organic, functional, and clinical events, with a growing interest in disentangling the phenotypic heterogeneity of COPD. The present review is based on the opinion of the authors, who have extensive research experience in several aspects of COPD. The starting assumption of the review is that current knowledge on the pathophysiology and clinical features of COPD allows us to classify phenotypic information in terms of the following dimensions: respiratory symptoms and health status, acute exacerbations, lung function, structural changes, local and systemic inflammation, and systemic effects. Twenty-six phenotypic traits were identified and assigned to one of the 6 dimensions. For each dimension, a summary is provided of the best evidence on the relationships among phenotypic traits, in particular among those corresponding to different dimensions, and on the relationship between these traits and relevant events in the natural history of COPD. The information has been organized graphically into a phenotypic matrix where each cell representing a pair of phenotypic traits is linked to relevant references. The information provided has the potential to increase our understanding of the heterogeneity of COPD phenotypes and help us plan future studies on aspects that are as yet unexplored.

  5. Transcriptome transfer produces a predictable cellular phenotype

    PubMed Central

    Sul, Jai-Yoon; Wu, Chia-wen K.; Zeng, Fanyi; Jochems, Jeanine; Lee, Miler T.; Kim, Tae Kyung; Peritz, Tiina; Buckley, Peter; Cappelleri, David J.; Maronski, Margaret; Kim, Minsun; Kumar, Vijay; Meaney, David; Kim, Junhyong; Eberwine, James

    2009-01-01

    Cellular phenotype is the conglomerate of multiple cellular processes involving gene and protein expression that result in the elaboration of a cell's particular morphology and function. It has been thought that differentiated postmitotic cells have their genomes hard wired, with little ability for phenotypic plasticity. Here we show that transfer of the transcriptome from differentiated rat astrocytes into a nondividing differentiated rat neuron resulted in the conversion of the neuron into a functional astrocyte-like cell in a time-dependent manner. This single-cell study permits high resolution of molecular and functional components that underlie phenotype identity. The RNA population from astrocytes contains RNAs in the appropriate relative abundances that give rise to regulatory RNAs and translated proteins that enable astrocyte identity. When transferred into the postmitotic neuron, the astrocyte RNA population converts 44% of the neuronal host cells into the destination astrocyte-like phenotype. In support of this observation, quantitative measures of cellular morphology, single-cell PCR, single-cell microarray, and single-cell functional analyses have been performed. The host-cell phenotypic changes develop over many weeks and are persistent. We call this process of RNA-induced phenotype changes, transcriptome-induced phenotype remodeling. PMID:19380745

  6. Phenoscape: Identifying Candidate Genes for Evolutionary Phenotypes

    PubMed Central

    Edmunds, Richard C.; Su, Baofeng; Balhoff, James P.; Eames, B. Frank; Dahdul, Wasila M.; Lapp, Hilmar; Lundberg, John G.; Vision, Todd J.; Dunham, Rex A.; Mabee, Paula M.; Westerfield, Monte

    2016-01-01

    Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish. For this, we searched ZFIN for genetic perturbations that result in either loss of basihyal element or loss of scales phenotypes, because these are the ancestral phenotypes observed in catfishes (Siluriformes). We tested the identified candidate genes by examining their endogenous expression patterns in the channel catfish, Ictalurus punctatus. The experimental results were consistent with the hypotheses that these features evolved through disruption in developmental pathways at, or upstream of, brpf1 and eda/edar for the ancestral losses of basihyal element and scales, respectively. These results demonstrate that ontological annotations of the phenotypic effects of genetic alterations in model organisms, when aggregated within a knowledgebase, can be used effectively to generate testable, and useful, hypotheses about evolutionary changes in morphology. PMID:26500251

  7. Evolution of molecular phenotypes under stabilizing selection

    NASA Astrophysics Data System (ADS)

    Nourmohammad, Armita; Schiffels, Stephan; Lässig, Michael

    2013-01-01

    Molecular phenotypes are important links between genomic information and organismic functions, fitness, and evolution. Complex phenotypes, which are also called quantitative traits, often depend on multiple genomic loci. Their evolution builds on genome evolution in a complicated way, which involves selection, genetic drift, mutations and recombination. Here we develop a coarse-grained evolutionary statistics for phenotypes, which decouples from details of the underlying genotypes. We derive approximate evolution equations for the distribution of phenotype values within and across populations. This dynamics covers evolutionary processes at high and low recombination rates, that is, it applies to sexual and asexual populations. In a fitness landscape with a single optimal phenotype value, the phenotypic diversity within populations and the divergence between populations reach evolutionary equilibria, which describe stabilizing selection. We compute the equilibrium distributions of both quantities analytically and we show that the ratio of mean divergence and diversity depends on the strength of selection in a universal way: it is largely independent of the phenotype’s genomic encoding and of the recombination rate. This establishes a new method for the inference of selection on molecular phenotypes beyond the genome level. We discuss the implications of our findings for the predictability of evolutionary processes.

  8. Biological response modifiers

    SciTech Connect

    Weller, R.E.

    1988-10-01

    Much of what used to be called immunotherapy is now included in the term biological response modifiers. Biological response modifiers (BRMs) are those agents or approaches that modify the relationship between the tumor and host by modifying the host's biological response to tumor cells with resultant therapeutic effects. Most of the early work with BRMs centered around observations of spontaneous tumor regression and the association of tumor regression with concurrent bacterial infections. The BRM can modify the host response by increasing the host's antitumor responses through augmentation and/or restoration of effector mechanisms or mediators of the host's defense or decrease the deleterious component by the host's reaction, increasing the host's defenses by the administration of natural biologics (or the synthetic derivatives thereof) as effectors or mediators of an antitumor response, augmenting the host's response to modified tumor cells or vaccines, which might stimulate a greater response by the host or increase tumor-cell sensitivity to an existing response, decreasing the transformation and/or increase differentiation (maturation) of tumor cells, or increasing the ability of the host to tolerate damage by cytotoxic modalities of cancer treatment.

  9. Biological response modifiers

    SciTech Connect

    Weller, R.E.

    1991-10-01

    Much of what used to be called immunotherapy is now included in the term biological response modifiers. Biological response modifiers (BRMs) are defined as those agents or approaches that modify the relationship between the tumor and host by modifying the host's biological response to tumor cells with resultant therapeutic effects.'' Most of the early work with BRMs centered around observations of spontaneous tumor regression and the association of tumor regression with concurrent bacterial infections. The BRM can modify the host response in the following ways: Increase the host's antitumor responses through augmentation and/or restoration of effector mechanisms or mediators of the host's defense or decrease the deleterious component by the host's reaction; Increase the host's defenses by the administration of natural biologics (or the synthetic derivatives thereof) as effectors or mediators of an antitumor response; Augment the host's response to modified tumor cells or vaccines, which might stimulate a greater response by the host or increase tumor-cell sensitivity to an existing response; Decrease the transformation and/or increase differentiation (maturation) of tumor cells; or Increase the ability of the host to tolerate damage by cytotoxic modalities of cancer treatment.

  10. Distribution of phenotypes among Bacillus thuringiensis strains.

    PubMed

    Martin, Phyllis A W; Gundersen-Rindal, Dawn E; Blackburn, Michael B

    2010-06-01

    An extensive collection of Bacillus thuringiensis isolates from around the world were phenotypically profiled using standard biochemical tests. Six phenotypic traits occurred in 20-86% of the isolates and were useful in distinguishing isolates: production of urease (U; 20.5% of isolates), hydrolysis of esculin (E; 32.3% of isolates), acid production from salicin (A; 37.4% of isolates), acid production from sucrose (S; 34.0% of isolates), production of phospholipase C or lecithinase (L; 79.7% of isolates), and hydrolysis of starch (T; 85.8% of isolates). With the exception of acid production from salicin and hydrolysis of esculin, which were associated, the traits assorted independently. Of the 64 possible combinations of these six phenotypic characteristics, 15 combinations accounted for ca. 80% of all isolates, with the most common phenotype being TL (23.6% of isolates). Surprisingly, while the biochemical traits generally assorted independently, certain phenotypic traits associated with the parasporal crystal were correlated with certain combinations of biochemical traits. Crystals that remained attached to spores (which tended to be non-toxic to insects) were highly correlated with the phenotypes that included both L and S. Among the 15 most abundant phenotypes characterizing B. thuringiensis strains, amorphous crystals were associated with TLE, TL, T, and Ø (the absence of positive tested biochemical traits). Amorphous crystal types displayed a distinct bias toward toxicity to dipteran insects. Although all common phenotypes included B. thuringiensis isolates producing bipyramidal crystals toxic to lepidopteran insects, those with the highest abundance of these toxic crystals displayed phenotypes TLU, TLUA, TLUAE, and TLAE.

  11. Development of a phenotypic susceptibility assay for HIV-1 integrase inhibitors.

    PubMed

    Heger, Eva; Theis, Alexandra Andrée; Remmel, Klaus; Walter, Hauke; Pironti, Alejandro; Knops, Elena; Di Cristanziano, Veronica; Jensen, Björn; Esser, Stefan; Kaiser, Rolf; Lübke, Nadine

    2016-12-01

    Phenotypic resistance analysis is an indispensable method for determination of HIV-1 resistance and cross-resistance to novel drug compounds. Since integrase inhibitors are essential components of recent antiretroviral combination therapies, phenotypic resistance data, in conjunction with the corresponding genotypes, are needed for improving rules-based and data-driven tools for resistance prediction, such as HIV-Grade and geno2pheno[integrase]. For generation of phenotypic resistance data to recent integrase inhibitors, a recombinant phenotypic integrase susceptibility assay was established. For validation purposes, the phenotypic resistance to raltegravir, elvitegravir and dolutegravir of nine subtype-B virus strains, isolated from integrase inhibitor-naïve and raltegravir-treated patients was determined. Genotypic resistance analysis identified four virus strains harbouring RAL resistance-associated mutations. Phenotypic resistance analysis was performed as follows. The HIV-1 integrase genes were cloned into a modified pNL4-3 vector and transfected into 293T cells for the generation of recombinant virus. The integrase-inhibitor susceptibility of the recombinant viruses was determined via an indicator cell line. While raltegravir resistance profiles presented a high cross-resistance to elvitegravir, dolutegravir maintained in-vitro activity in spite of the Y143R and N155H mutations, confirming the strong activity of dolutegravir against raltegravir-resistant viruses. Solely a Q148H+G140S variant presented reduced susceptibility to dolutegravir. In conclusion, our phenotypic susceptibility assay permits resistance analysis of the integrase gene of patient-derived viruses for integrase inhibitors by replication-competent recombinants. Thus, this assay can be used to analyze phenotypic drug resistance of integrase inhibitors in vitro. It provides the possibility to determine the impact of newly appearing mutational patterns to drug resistance of recent integrase

  12. Phenotypic plasticity and evolution by genetic assimilation.

    PubMed

    Pigliucci, Massimo; Murren, Courtney J; Schlichting, Carl D

    2006-06-01

    In addition to considerable debate in the recent evolutionary literature about the limits of the Modern Synthesis of the 1930s and 1940s, there has also been theoretical and empirical interest in a variety of new and not so new concepts such as phenotypic plasticity, genetic assimilation and phenotypic accommodation. Here we consider examples of the arguments and counter-arguments that have shaped this discussion. We suggest that much of the controversy hinges on several misunderstandings, including unwarranted fears of a general attempt at overthrowing the Modern Synthesis paradigm, and some fundamental conceptual confusion about the proper roles of phenotypic plasticity and natural selection within evolutionary theory.

  13. Important discoveries from analysing bacterial phenotypes

    PubMed Central

    Bochner, Barry R; Giovannetti, Luciana; Viti, Carlo

    2008-01-01

    The ability to test hundreds to thousands of cellular phenotypes in a single experiment has opened up new avenues of investigation and exploration and led to important discoveries in very diverse applications of microbiological research and development. The information provided by global phenotyping is complementary to, and often more easily interpretable than information provided by global molecular analytical methods such as gene chips and proteomics. This report summarizes advances presented by scientists brought together to share their experiences and knowledge gained with high-throughput phenotyping. PMID:18681942

  14. Wound macrophages as key regulators of repair: origin, phenotype, and function.

    PubMed

    Brancato, Samielle K; Albina, Jorge E

    2011-01-01

    Recent results call for the reexamination of the phenotype of wound macrophages and their role in tissue repair. These results include the characterization of distinct circulating monocyte populations with temporally restricted capacities to migrate into wounds and the observation that the phenotype of macrophages isolated from murine wounds partially reflects those of their precursor monocytes, changes with time, and does not conform to current macrophage classifications. Moreover, findings in genetically modified mice lacking macrophages have confirmed that these cells are essential to normal wound healing because their depletion results in retarded and abnormal repair. This mini-review focuses on current knowledge of the phenotype of wound macrophages, their origin and fate, and the specific macrophage functions that underlie their reparative role in injured tissues, including the regulation of the cellular infiltration of the wound and the production of transforming growth factor-β and vascular endothelial growth factor.

  15. Variable phenotypes associated with aromatase (CYP19) insufficiency in humans

    PubMed Central

    Lin, Lin; Ercan, Oya; Raza, Jamal; Burren, Christine P.; Creighton, Sarah M.; Auchus, Richard J.; Dattani, Mehul T.; Achermann, John C.

    2007-01-01

    Context The P450 enzyme aromatase (CYP19) plays a crucial role in the endocrine and paracrine biosynthesis of estrogens from androgens in many diverse estrogen-responsive tissues. Complete aromatase deficiency has been reported in a small number of 46,XX girls with genital ambiguity and absent pubertal development, but it is unknown whether non-classic phenotypes exist. Objective The objective of the study was to determine whether variant forms of aromatase insufficiency can occur in humans. Patients Four patients (46,XX) from three kindred with variable degrees of androgenization and pubertal failure. Methods Mutational analysis of CYP19 and assay of enzyme activity. Results Aromatase insufficiency resulting in genital ambiguity at birth, but with variable breast development at puberty (B2-B4), occurred in 46,XX patients from two kindred who harbored point mutations or single codon deletions (R435C, F234del). Absent puberty with minimal androgenization at birth was found in one girl with a deletion involving exon5 of CYP19 (exon5del), which would be predicted to lead to an in-frame deletion of 59 amino acids from the enzyme. Functional studies revealed low residual aromatase activity in the cases where breast development occurred. Conclusions These studies demonstrate that aromatase mutations can produce variable or “non-classic” phenotypes in humans. Low residual aromatase activity may be sufficient for breast and uterine development to occur at puberty, despite significant androgenization in utero. Such phenotypic variability may be influenced further by modifying factors, such as non-classic pathways of estrogen synthesis, variability in co-regulators, or differences in androgen responsiveness. PMID:17164303

  16. Phenotypic Assessment and the Discovery of Topiramate

    PubMed Central

    2016-01-01

    The role of phenotypic assessment in drug discovery is discussed, along with the discovery and development of TOPAMAX (topiramate), a billion-dollar molecule for the treatment of epilepsy and migraine. PMID:27437073

  17. Probing genetic overlap among complex human phenotypes.

    PubMed

    Rzhetsky, Andrey; Wajngurt, David; Park, Naeun; Zheng, Tian

    2007-07-10

    Geneticists and epidemiologists often observe that certain hereditary disorders cooccur in individual patients significantly more (or significantly less) frequently than expected, suggesting there is a genetic variation that predisposes its bearer to multiple disorders, or that protects against some disorders while predisposing to others. We suggest that, by using a large number of phenotypic observations about multiple disorders and an appropriate statistical model, we can infer genetic overlaps between phenotypes. Our proof-of-concept analysis of 1.5 million patient records and 161 disorders indicates that disease phenotypes form a highly connected network of strong pairwise correlations. Our modeling approach, under appropriate assumptions, allows us to estimate from these correlations the size of putative genetic overlaps. For example, we suggest that autism, bipolar disorder, and schizophrenia share significant genetic overlaps. Our disease network hypothesis can be immediately exploited in the design of genetic mapping approaches that involve joint linkage or association analyses of multiple seemingly disparate phenotypes.

  18. Phenotypic Plasticity and Selection: Nonexclusive Mechanisms of Adaptation

    PubMed Central

    Grenier, S.; Barre, P.; Litrico, I.

    2016-01-01

    Selection and plasticity are two mechanisms that allow the adaptation of a population to a changing environment. Interaction between these nonexclusive mechanisms must be considered if we are to understand population survival. This review discusses the ways in which plasticity and selection can interact, based on a review of the literature on selection and phenotypic plasticity in the evolution of populations. The link between selection and phenotypic plasticity is analysed at the level of the individual. Plasticity can affect an individual's response to selection and so may modify the end result of genetic diversity evolution at population level. Genetic diversity increases the ability of populations or communities to adapt to new environmental conditions. Adaptive plasticity increases individual fitness. However this effect must be viewed from the perspective of the costs of plasticity, although these are not easy to estimate. It is becoming necessary to engage in new experimental research to demonstrate the combined effects of selection and plasticity for adaptation and their consequences on the evolution of genetic diversity. PMID:27313957

  19. Different phenotypes in identical twins with cerebrotendinous xanthomatosis: case series.

    PubMed

    Zádori, Dénes; Szpisjak, László; Madar, László; Varga, Viktória Evelin; Csányi, Bernadett; Bencsik, Krisztina; Balogh, István; Harangi, Mariann; Kereszty, Éva; Vécsei, László; Klivényi, Péter

    2017-03-01

    Cerebrotendinous xanthomatosis (CTX) is a rare, genetically determined error of metabolism. The characteristic clinical symptoms are diarrhea, juvenile cataracts, tendon xanthomas and neuropsychiatric alterations. The aim of this study is to present a pair of identical adult twins with considerable differences in the severity of phenotype. With regards to neuropsychiatric symptoms, the predominant features were severe Parkinsonism and moderate cognitive dysfunctions in the more-affected individual, whereas these alterations in the less-affected patient were only very mild and mild, respectively. The characteristic increase in the concentrations of serum cholestanol and the lesion volumes in dentate nuclei in the brain assessed with magnetic resonance imaging were quite similar in both cases. The lifestyle conditions, including eating habits of the twin pair, were quite similar as well; therefore, currently unknown genetic modifiers or certain epigenetic factors may be responsible for the differences in severity of phenotype. This case series serves as the first description of an identical twin pair with CTX presenting heterogeneous clinical features.

  20. Parasites alter the pathological phenotype of lupus nephritis.

    PubMed

    Miyake, Katsuhisa; Adachi, Keishi; Watanabe, Maho; Sasatomi, Yoshie; Ogahara, Satoru; Abe, Yasuhiro; Ito, Kenji; Dan Justin, Yombo K; Saito, Takao; Nakashima, Hitoshi; Hamano, Shinjiro

    2014-12-01

    Lupus nephritis is one of the most serious complications of systemic lupus erythematosus and manifests with considerable phenotypic and histological heterogeneity. In particular, diffuse proliferative lupus nephritis (DPLN) and membranous lupus nephritis (MLN) represent morphologic forms that are polar opposites. DPLN is associated with autoimmune responses dominated by Th1 immune response associated with high levels of interferon (IFN)-γ. In contrast, a Th2 cytokine response is associated with the pathogenesis of MLN. MRL/lpr mice develop human LN-like immune complex-associated nephritis and provide a suitable histological model for human DPLN. Infection with Schistosoma mansoni skewed a Th2-type immune response induction and IL-10 in MRL/lpr mice, drastically changing the pathophysiology of glomerulonephritis from DPLN to MLN accompanied by increased IgG1 and IgE in the sera. T cells in 32-week-old MRL/lpr mice infected with S. mansoni expressed significantly more IL-4 and IL-10 than T cells of uninfected mice; T cells with IFN-γ were comparable between infected and uninfected MR/lpr mice. Thus, the helminthic infection modified the cytokine microenvironment and altered the pathological phenotype of autoimmune nephritis.

  1. Parasites alter the pathological phenotype of lupus nephritis

    PubMed Central

    Miyake, Katsuhisa; Adachi, Keishi; Watanabe, Maho; Sasatomi, Yoshie; Ogahara, Satoru; Abe, Yasuhiro; Ito, Kenji; Dan Justin, Yombo K.; Saito, Takao

    2014-01-01

    lpr Lupus nephritis is one of the most serious complications of systemic lupus erythematosus and manifests with considerable phenotypic and histological heterogeneity. In particular, diffuse proliferative lupus nephritis (DPLN) and membranous lupus nephritis (MLN) represent morphologic forms that are polar opposites. DPLN is associated with autoimmune responses dominated by Th1 immune response associated with high levels of interferon (IFN)-γ. In contrast, a Th2 cytokine response is associated with the pathogenesis of MLN. MRL/lpr mice develop human LN-like immune complex-associated nephritis and provide a suitable histological model for human DPLN. Infection with Schistosoma mansoni skewed a Th2-type immune response induction and IL-10 in MRL/lpr mice, drastically changing the pathophysiology of glomerulonephritis from DPLN to MLN accompanied by increased IgG1 and IgE in the sera. T cells in 32-week-old MRL/lpr mice infected with S. mansoni expressed significantly more IL-4 and IL-10 than T cells of uninfected mice; T cells with IFN-γ were comparable between infected and uninfected MR/lpr mice. Thus, the helminthic infection modified the cytokine microenvironment and altered the pathological phenotype of autoimmune nephritis. PMID:24957876

  2. Phenotypic Plasticity and Selection: Nonexclusive Mechanisms of Adaptation.

    PubMed

    Grenier, S; Barre, P; Litrico, I

    2016-01-01

    Selection and plasticity are two mechanisms that allow the adaptation of a population to a changing environment. Interaction between these nonexclusive mechanisms must be considered if we are to understand population survival. This review discusses the ways in which plasticity and selection can interact, based on a review of the literature on selection and phenotypic plasticity in the evolution of populations. The link between selection and phenotypic plasticity is analysed at the level of the individual. Plasticity can affect an individual's response to selection and so may modify the end result of genetic diversity evolution at population level. Genetic diversity increases the ability of populations or communities to adapt to new environmental conditions. Adaptive plasticity increases individual fitness. However this effect must be viewed from the perspective of the costs of plasticity, although these are not easy to estimate. It is becoming necessary to engage in new experimental research to demonstrate the combined effects of selection and plasticity for adaptation and their consequences on the evolution of genetic diversity.

  3. Aminoglycoside Modifying Enzymes

    PubMed Central

    Ramirez, Maria S.; Tolmasky, Marcelo E.

    2010-01-01

    Aminoglycosides have been an essential component of the armamentarium in the treatment of life-threatening infections. Unfortunately, their efficacy has been reduced by the surge and dissemination of resistance. In some cases the levels of resistance reached the point that rendered them virtually useless. Among many known mechanisms of resistance to aminoglycosides, enzymatic modification is the most prevalent in the clinical setting. Aminoglycoside modifying enzymes catalyze the modification at different −OH or −NH2 groups of the 2-deoxystreptamine nucleus or the sugar moieties and can be nucleotidyltranferases, phosphotransferases, or acetyltransferases. The number of aminoglycoside modifying enzymes identified to date as well as the genetic environments where the coding genes are located is impressive and there is virtually no bacteria that is unable to support enzymatic resistance to aminoglycosides. Aside from the development of new aminoglycosides refractory to as many as possible modifying enzymes there are currently two main strategies being pursued to overcome the action of aminoglycoside modifying enzymes. Their successful development would extend the useful life of existing antibiotics that have proven effective in the treatment of infections. These strategies consist of the development of inhibitors of the enzymatic action or of the expression of the modifying enzymes. PMID:20833577

  4. Phenotype standardization for statin-induced myotoxicity.

    PubMed

    Alfirevic, A; Neely, D; Armitage, J; Chinoy, H; Cooper, R G; Laaksonen, R; Carr, D F; Bloch, K M; Fahy, J; Hanson, A; Yue, Q-Y; Wadelius, M; Maitland-van Der Zee, A H; Voora, D; Psaty, B M; Palmer, C N A; Pirmohamed, M

    2014-10-01

    Statins are widely used lipid-lowering drugs that are effective in reducing cardiovascular disease risk. Although they are generally well tolerated, they can cause muscle toxicity, which can lead to severe rhabdomyolysis. Research in this area has been hampered to some extent by the lack of standardized nomenclature and phenotypic definitions. We have used numerical and descriptive classifications and developed an algorithm to define statin-related myotoxicity phenotypes, including myalgia, myopathy, rhabdomyolysis, and necrotizing autoimmune myopathy.

  5. A database of Caenorhabditis elegans behavioral phenotypes.

    PubMed

    Yemini, Eviatar; Jucikas, Tadas; Grundy, Laura J; Brown, André E X; Schafer, William R

    2013-09-01

    Using low-cost automated tracking microscopes, we have generated a behavioral database for 305 Caenorhabditis elegans strains, including 76 mutants with no previously described phenotype. The growing database currently consists of 9,203 short videos segmented to extract behavior and morphology features, and these videos and feature data are available online for further analysis. The database also includes summary statistics for 702 measures with statistical comparisons to wild-type controls so that phenotypes can be identified and understood by users.

  6. Complex Small-Molecule Architectures Regulate Phenotypic Plasticity in a Nematode**

    PubMed Central

    Bose, Neelanjan; Ogawa, Akira; von Reuss, Stephan H.; Yim, Joshua J.; Ragsdale, Erik J.; Sommer, Ralf J.; Schroeder, Frank C.

    2013-01-01

    Microorganisms and plants produce a large diversity of secondary metabolites, whereas analyses of metazoan metabolomes have yielded comparatively few types of small molecules. We show that the nematode Pristionchus pacificus constructs elaborate molecular architectures from modified building blocks of primary metabolism, including an unusual xylopyranose-based nucleoside. These compounds act as signaling molecules controlling adult phenotypic plasticity and development and provide striking examples for modular generation of structural diversity in metazoans. PMID:23161728

  7. Phenotypic consequences of aneuploidy in Arabidopsis thaliana.

    PubMed

    Henry, Isabelle M; Dilkes, Brian P; Miller, Eric S; Burkart-Waco, Diana; Comai, Luca

    2010-12-01

    Aneuploid cells are characterized by incomplete chromosome sets. The resulting imbalance in gene dosage has phenotypic consequences that are specific to each karyotype. Even in the case of Down syndrome, the most viable and studied form of human aneuploidy, the mechanisms underlying the connected phenotypes remain mostly unclear. Because of their tolerance to aneuploidy, plants provide a powerful system for a genome-wide investigation of aneuploid syndromes, an approach that is not feasible in animal systems. Indeed, in many plant species, populations of aneuploid individuals can be easily obtained from triploid individuals. We phenotyped a population of Arabidopsis thaliana aneuploid individuals containing 25 different karyotypes. Even in this highly heterogeneous population, we demonstrate that certain traits are strongly associated with the dosage of specific chromosome types and that chromosomal effects can be additive. Further, we identified subtle developmental phenotypes expressed in the diploid progeny of aneuploid parent(s) but not in euploid controls from diploid lineages. These results indicate long-term phenotypic consequences of aneuploidy that can persist after chromosomal balance has been restored. We verified the diploid nature of these individuals by whole-genome sequencing and discuss the possibility that trans-generational phenotypic effects stem from epigenetic modifications passed from aneuploid parents to their diploid progeny.

  8. Phenotypes of refractory/severe asthma.

    PubMed

    Bush, Andrew; Fleming, Louise

    2011-09-01

    The acid test of phenotyping is that it leads either to a clinically useful or mechanistically important insight. Phenotypes may change over time, but the exact definition of a phenotype shift is unclear. Methods of phenotyping are either investigator driven, in which a priori prejudices are applied to the data, or (semi) objective, in which mathematical techniques or systems biology approaches are applied to the dataset. However, the composition of the dataset is driven by investigator prejudice. Phenotyping is likely most useful in severe asthma, because mild and moderate asthma responds to simple treatments, and no great subtlety is required. Our non-evidence based approach is to define the subpopulation of genuine severe, therapy-resistant asthmatics from the generality of problematic severe asthma. We then investigate them invasively with bronchoscopy and a steroid trial using intramuscular triamcinolone to determine the nature of any inflammatory process; whether inflammation and symptoms are concordant or discordant; whether the inflammatory process is steroid resistant or sensitive; and whether the child has persistent airflow limitation. Other possibly relevant phenotypes include the child with severe exacerbations; brittle asthma; and severe asthma with fungal sensitization. Severe, therapy resistant asthma is a disparate disease, and only international uniform approaches, carefully characterising the children as a prelude to focussed clinical trials will allow progress to be made, and vindicate (or otherwise) our suggested approach.

  9. Geographically multifarious phenotypic divergence during speciation

    PubMed Central

    Gompert, Zachariah; Lucas, Lauren K; Nice, Chris C; Fordyce, James A; Alex Buerkle, C; Forister, Matthew L

    2013-01-01

    Speciation is an important evolutionary process that occurs when barriers to gene flow evolve between previously panmictic populations. Although individual barriers to gene flow have been studied extensively, we know relatively little regarding the number of barriers that isolate species or whether these barriers are polymorphic within species. Herein, we use a series of field and lab experiments to quantify phenotypic divergence and identify possible barriers to gene flow between the butterfly species Lycaeides idas and Lycaeides melissa. We found evidence that L. idas and L. melissa have diverged along multiple phenotypic axes. Specifically, we identified major phenotypic differences in female oviposition preference and diapause initiation, and more moderate divergence in mate preference. Multiple phenotypic differences might operate as barriers to gene flow, as shown by correlations between genetic distance and phenotypic divergence and patterns of phenotypic variation in admixed Lycaeides populations. Although some of these traits differed primarily between species (e.g., diapause initiation), several traits also varied among conspecific populations (e.g., male mate preference and oviposition preference). PMID:23532669

  10. The Genetics of Phenotypic Plasticity. XIV. Coevolution.

    PubMed

    Scheiner, Samuel M; Gomulkiewicz, Richard; Holt, Robert D

    2015-05-01

    Plastic changes in organisms' phenotypes can result from either abiotic or biotic effectors. Biotic effectors create the potential for a coevolutionary dynamic. Through the use of individual-based simulations, we examined the coevolutionary dynamic of two species that are phenotypically plastic. We explored two modes of biotic and abiotic interactions: ecological interactions that determine the form of natural selection and developmental interactions that determine phenotypes. Overall, coevolution had a larger effect on the evolution of phenotypic plasticity than plasticity had on the outcome of coevolution. Effects on the evolution of plasticity were greater when the fitness-maximizing coevolutionary outcomes were antagonistic between the species pair (predator-prey interactions) than when those outcomes were augmenting (competitive or mutualistic). Overall, evolution in the context of biotic interactions reduced selection for plasticity even when trait development was responding to just the abiotic environment. Thus, the evolution of phenotypic plasticity must always be interpreted in the full context of a species' ecology. Our results show how the merging of two theory domains--coevolution and phenotypic plasticity--can deepen our understanding of both and point to new empirical research.

  11. Advanced phenotyping and phenotype data analysis for the study of plant growth and development

    PubMed Central

    Rahaman, Md. Matiur; Chen, Dijun; Gillani, Zeeshan; Klukas, Christian; Chen, Ming

    2015-01-01

    Due to an increase in the consumption of food, feed, fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to breed high yielding crops that can adapt to the future climate changes, particularly in developing countries. To solve these global challenges, novel approaches are required to identify quantitative phenotypes and to explain the genetic basis of agriculturally important traits. These advances will facilitate the screening of germplasm with high performance characteristics in resource-limited environments. Recently, plant phenomics has offered and integrated a suite of new technologies, and we are on a path to improve the description of complex plant phenotypes. High-throughput phenotyping platforms have also been developed that capture phenotype data from plants in a non-destructive manner. In this review, we discuss recent developments of high-throughput plant phenotyping infrastructure including imaging techniques and corresponding principles for phenotype data analysis. PMID:26322060

  12. The evolution of phenotypic plasticity: genealogy of a debate in genetics.

    PubMed

    Nicoglou, Antonine

    2015-04-01

    The paper describes the context and the origin of a particular debate that concerns the evolution of phenotypic plasticity. In 1965, British biologist A. D. Bradshaw proposed a widely cited model intended to explain the evolution of norms of reaction, based on his studies of plant populations. Bradshaw's model went beyond the notion of the "adaptive norm of reaction" discussed before him by Dobzhansky and Schmalhausen by suggesting that "plasticity"--the ability of a phenotype to be modified by the environment--should be genetically determined. To prove Bradshaw's hypothesis, it became necessary for some authors to identify the pressures exerted by natural selection on phenotypic plasticity in particular traits, and thus to model its evolution. In this paper, I contrast two different views, based on quantitative genetic models, proposed in the mid-1980s: Russell Lande and Sara Via's conception of phenotypic plasticity, which assumes that the evolution of plasticity is linked to the evolution of the plastic trait itself, and Samuel Scheiner and Richard Lyman's view, which assumes that the evolution of plasticity is independent from the evolution of the trait. I show how the origin of this specific debate, and different assumptions about the evolution of phenotypic plasticity, depended on Bradshaw's definition of plasticity and the context of quantitative genetics.

  13. Potential variance affecting homeotic Ultrabithorax and Antennapedia phenotypes in Drosophila melanogaster.

    PubMed Central

    Gibson, G; Wemple, M; van Helden, S

    1999-01-01

    Introgression of homeotic mutations into wild-type genetic backgrounds results in a wide variety of phenotypes and implies that major effect modifiers of extreme phenotypes are not uncommon in natural populations of Drosophila. A composite interval mapping procedure was used to demonstrate that one major effect locus accounts for three-quarters of the variance for haltere to wing margin transformation in Ultrabithorax flies, yet has no obvious effect on wild-type development. Several other genetic backgrounds result in enlargement of the haltere significantly beyond the normal range of haploinsufficient phenotypes, suggesting genetic variation in cofactors that mediate homeotic protein function. Introgression of Antennapedia produces lines with heritable phenotypes ranging from almost complete suppression to perfect antennal leg formation, as well as transformations that are restricted to either the distal or proximal portion of the appendage. It is argued that the existence of "potential" variance, which is genetic variation whose effects are not observable in wild-type individuals, is a prerequisite for the uncoupling of genetic from phenotypic divergence. PMID:10049924

  14. iBeetle-Base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum.

    PubMed

    Dönitz, Jürgen; Schmitt-Engel, Christian; Grossmann, Daniela; Gerischer, Lizzy; Tech, Maike; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-01-01

    The iBeetle-Base (http://ibeetle-base.uni-goettingen.de) makes available annotations of RNAi phenotypes, which were gathered in a large scale RNAi screen in the red flour beetle Tribolium castaneum (iBeetle screen). In addition, it provides access to sequence information and links for all Tribolium castaneum genes. The iBeetle-Base contains the annotations of phenotypes of several thousands of genes knocked down during embryonic and metamorphic epidermis and muscle development in addition to phenotypes linked to oogenesis and stink gland biology. The phenotypes are described according to the EQM (entity, quality, modifier) system using controlled vocabularies and the Tribolium morphological ontology (TrOn). Furthermore, images linked to the respective annotations are provided. The data are searchable either for specific phenotypes using a complex 'search for morphological defects' or a 'quick search' for gene names and IDs. The red flour beetle Tribolium castaneum has become an important model system for insect functional genetics and is a representative of the most species rich taxon, the Coleoptera, which comprise several devastating pests. It is used for studying insect typical development, the evolution of development and for research on metabolism and pest control. Besides Drosophila, Tribolium is the first insect model organism where large scale unbiased screens have been performed.

  15. Rare variant association test with multiple phenotypes.

    PubMed

    Lee, Selyeong; Won, Sungho; Kim, Young Jin; Kim, Yongkang; Kim, Bong-Jo; Park, Taesung

    2017-04-01

    Although genome-wide association studies (GWAS) have now discovered thousands of genetic variants associated with common traits, such variants cannot explain the large degree of "missing heritability," likely due to rare variants. The advent of next generation sequencing technology has allowed rare variant detection and association with common traits, often by investigating specific genomic regions for rare variant effects on a trait. Although multiple correlated phenotypes are often concurrently observed in GWAS, most studies analyze only single phenotypes, which may lessen statistical power. To increase power, multivariate analyses, which consider correlations between multiple phenotypes, can be used. However, few existing multivariant analyses can identify rare variants for assessing multiple phenotypes. Here, we propose Multivariate Association Analysis using Score Statistics (MAAUSS), to identify rare variants associated with multiple phenotypes, based on the widely used sequence kernel association test (SKAT) for a single phenotype. We applied MAAUSS to whole exome sequencing (WES) data from a Korean population of 1,058 subjects to discover genes associated with multiple traits of liver function. We then assessed validation of those genes by a replication study, using an independent dataset of 3,445 individuals. Notably, we detected the gene ZNF620 among five significant genes. We then performed a simulation study to compare MAAUSS's performance with existing methods. Overall, MAAUSS successfully conserved type 1 error rates and in many cases had a higher power than the existing methods. This study illustrates a feasible and straightforward approach for identifying rare variants correlated with multiple phenotypes, with likely relevance to missing heritability.

  16. Molecular Genetic Studies of Complex Phenotypes

    PubMed Central

    Marian, A.J.

    2012-01-01

    The approach to molecular genetic studies of complex phenotypes has evolved considerably during the recent years. The candidate gene approach, restricted to analysis of a few single nucleotide polymorphisms (SNPs) in a modest number of cases and controls, has been supplanted by the unbiased approach of Genome-Wide Association Studies (GWAS), wherein a large number of tagger SNPs are typed in a large number of individuals. GWAS, which are designed upon the common disease- common variant hypothesis (CD-CV), have identified a large number of SNPs and loci for complex phenotypes. However, alleles identified through GWAS are typically not causative but rather in linkage disequilibrium (LD) with the true causal variants. The common alleles, which may not capture the uncommon and rare variants, account only for a fraction of heritability of the complex traits. Hence, the focus is being shifted to rare variants – common disease (RV-CD) hypothesis, surmising that rare variants exert large effect sizes on the phenotype. In conjunctional with this conceptual shift technological advances in DNA sequencing techniques have dramatically enhanced whole genome or whole exome sequencing capacity. The sequencing approach affords identification of not only the rare but also the common variants. The approach – whether used in complementation with GWAS or as a stand-alone approach - could define the genetic architecture of the complex phenotypes. Robust phenotyping and large-scale sequencing studies are essential to extract the information content of the vast number of DNA sequence variants (DSVs) in the genome. To garner meaningful clinical information and link the genotype to a phenotype, identification and characterization of a very large number of causal fields beyond the information content of DNA sequence variants would be necessary. This review provides an update on the current progress and limitations in identifying DSVs that are associated with phenotypic effects. PMID

  17. Modifying Cookbook Labs.

    ERIC Educational Resources Information Center

    Clark, Robert, L.; Clough, Michael P.; Berg, Craig A.

    2000-01-01

    Modifies an extended lab activity from a cookbook approach for determining the percent mass of water in copper sulfate pentahydrate crystals to one which incorporates students' prior knowledge, engenders active mental struggling with prior knowledge and new experiences, and encourages metacognition. (Contains 12 references.) (ASK)

  18. Modified Embedded Atom Method

    SciTech Connect

    Rudd, R. E.

    2012-08-01

    Interatomic force and energy calculation subroutine to be used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluated the total energy and atomic forces (energy gradient) according to a cubic spline-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM) with a additional Stillinger-Weber (SW) contribution.

  19. Factors influencing disease phenotype and penetrance in HFE haemochromatosis.

    PubMed

    Rochette, J; Le Gac, G; Lassoued, K; Férec, C; Robson, K J H

    2010-09-01

    Haemochromatosis is predominantly associated with the HFE p.C282Y homozygous genotype, which is present in approximately 1 in 200 people of Northern European origin. However, not all p.C282Y homozygotes develop clinical features of haemochromatosis, and not all p.C282Y homozygotes even present abnormal iron parameters justifying venesection therapy. This situation was not apparent from initial genotype/phenotype correlation studies as there was a selection bias of patients. Only those patients with a significant iron burden were included in these early studies. It is now largely accepted that the p.C282Y/p.C282Y genotype is necessary for the development of HFE haemochromatosis. However, this genotype provides few clues as to why certain symptoms are associated with the disease. Expression of iron overload in people with this genotype depends on the complex interplay of environmental factors and modifier genes. In this review, we restrict our discussion to work done in humans giving examples of animal models where this has helped clarify our understanding. We discuss penetrance, explaining that this concept normally does not apply to autosomal recessive disorders, and discuss the usefulness of different biochemical markers in ascertaining iron burden. Hepcidin, a peptide synthesized primarily by the liver, has been identified as the central regulator in iron homeostasis. Consequently, understanding its regulation is the key. We conclude that the main goal now is to identify important modifiers that have a significant and unambiguous effect on iron storage.

  20. Serum Biochemical Phenotypes in the Domestic Dog.

    PubMed

    Chang, Yu-Mei; Hadox, Erin; Szladovits, Balazs; Garden, Oliver A

    2016-01-01

    The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species.

  1. Vascular smooth muscle phenotypic diversity and function

    PubMed Central

    2010-01-01

    The control of force production in vascular smooth muscle is critical to the normal regulation of blood flow and pressure, and altered regulation is common to diseases such as hypertension, heart failure, and ischemia. A great deal has been learned about imbalances in vasoconstrictor and vasodilator signals, e.g., angiotensin, endothelin, norepinephrine, and nitric oxide, that regulate vascular tone in normal and disease contexts. In contrast there has been limited study of how the phenotypic state of the vascular smooth muscle cell may influence the contractile response to these signaling pathways dependent upon the developmental, tissue-specific (vascular bed) or disease context. Smooth, skeletal, and cardiac muscle lineages are traditionally classified into fast or slow sublineages based on rates of contraction and relaxation, recognizing that this simple dichotomy vastly underrepresents muscle phenotypic diversity. A great deal has been learned about developmental specification of the striated muscle sublineages and their phenotypic interconversions in the mature animal under the control of mechanical load, neural input, and hormones. In contrast there has been relatively limited study of smooth muscle contractile phenotypic diversity. This is surprising given the number of diseases in which smooth muscle contractile dysfunction plays a key role. This review focuses on smooth muscle contractile phenotypic diversity in the vascular system, how it is generated, and how it may determine vascular function in developmental and disease contexts. PMID:20736412

  2. Delineating the GRIN1 phenotypic spectrum

    PubMed Central

    Geider, Kirsten; Helbig, Katherine L.; Heyne, Henrike O.; Schütz, Hannah; Hentschel, Julia; Courage, Carolina; Depienne, Christel; Nava, Caroline; Heron, Delphine; Møller, Rikke S.; Hjalgrim, Helle; Lal, Dennis; Neubauer, Bernd A.; Nürnberg, Peter; Thiele, Holger; Kurlemann, Gerhard; Arnold, Georgianne L.; Bhambhani, Vikas; Bartholdi, Deborah; Pedurupillay, Christeen Ramane J.; Misceo, Doriana; Frengen, Eirik; Strømme, Petter; Dlugos, Dennis J.; Doherty, Emily S.; Bijlsma, Emilia K.; Ruivenkamp, Claudia A.; Hoffer, Mariette J.V.; Goldstein, Amy; Rajan, Deepa S.; Narayanan, Vinodh; Ramsey, Keri; Belnap, Newell; Schrauwen, Isabelle; Richholt, Ryan; Koeleman, Bobby P.C.; Sá, Joaquim; Mendonça, Carla; de Kovel, Carolien G.F.; Weckhuysen, Sarah; Hardies, Katia; De Jonghe, Peter; De Meirleir, Linda; Milh, Mathieu; Badens, Catherine; Lebrun, Marine; Busa, Tiffany; Francannet, Christine; Piton, Amélie; Riesch, Erik; Biskup, Saskia; Vogt, Heinrich; Dorn, Thomas; Helbig, Ingo; Michaud, Jacques L.; Laube, Bodo; Syrbe, Steffen

    2016-01-01

    Objective: To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology. Methods: We collected molecular and clinical data from several diagnostic and research cohorts. Functional consequences of GRIN1 mutations were investigated in Xenopus laevis oocytes. Results: We identified heterozygous de novo GRIN1 mutations in 14 individuals and reviewed the phenotypes of all 9 previously reported patients. These 23 individuals presented with a distinct phenotype of profound developmental delay, severe intellectual disability with absent speech, muscular hypotonia, hyperkinetic movement disorder, oculogyric crises, cortical blindness, generalized cerebral atrophy, and epilepsy. Mutations cluster within transmembrane segments and result in loss of channel function of varying severity with a dominant-negative effect. In addition, we describe 2 homozygous GRIN1 mutations (1 missense, 1 truncation), each segregating with severe neurodevelopmental phenotypes in consanguineous families. Conclusions: De novo GRIN1 mutations are associated with severe intellectual disability with cortical visual impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1-associated disorders. PMID:27164704

  3. Phenotypic switching in gene regulatory networks.

    PubMed

    Thomas, Philipp; Popović, Nikola; Grima, Ramon

    2014-05-13

    Noise in gene expression can lead to reversible phenotypic switching. Several experimental studies have shown that the abundance distributions of proteins in a population of isogenic cells may display multiple distinct maxima. Each of these maxima may be associated with a subpopulation of a particular phenotype, the quantification of which is important for understanding cellular decision-making. Here, we devise a methodology which allows us to quantify multimodal gene expression distributions and single-cell power spectra in gene regulatory networks. Extending the commonly used linear noise approximation, we rigorously show that, in the limit of slow promoter dynamics, these distributions can be systematically approximated as a mixture of Gaussian components in a wide class of networks. The resulting closed-form approximation provides a practical tool for studying complex nonlinear gene regulatory networks that have thus far been amenable only to stochastic simulation. We demonstrate the applicability of our approach in a number of genetic networks, uncovering previously unidentified dynamical characteristics associated with phenotypic switching. Specifically, we elucidate how the interplay of transcriptional and translational regulation can be exploited to control the multimodality of gene expression distributions in two-promoter networks. We demonstrate how phenotypic switching leads to birhythmical expression in a genetic oscillator, and to hysteresis in phenotypic induction, thus highlighting the ability of regulatory networks to retain memory.

  4. Understanding Genotypes and Phenotypes in Epileptic Encephalopathies

    PubMed Central

    Helbig, Ingo; Tayoun, Abou Ahmad N.

    2016-01-01

    Epileptic encephalopathies are severe often intractable seizure disorders where epileptiform abnormalities contribute to a progressive disturbance in brain function. Often, epileptic encephalopathies start in childhood and are accompanied by developmental delay and various neurological and non-neurological comorbidities. In recent years, this concept has become virtually synonymous with a group of severe childhood epilepsies including West syndrome, Lennox-Gastaut syndrome, Dravet syndrome, and several other severe childhood epilepsies for which genetic factors are increasingly recognized. In the last 5 years, the field has seen a virtual explosion of gene discovery, raising the number of bona fide genes and possible candidate genes for epileptic encephalopathies to more than 70 genes, explaining 20-25% of all cases with severe early-onset epilepsies that had otherwise no identifiable causes. This review will focus on the phenotypic variability as a characteristic aspect of genetic epilepsies. For many genetic epilepsies, the phenotypic presentation can be broad, even in patients with identical genetic alterations. Furthermore, patients with different genetic etiologies can have seemingly similar clinical presentations, such as in Dravet syndrome. While most patients carry mutations in SCN1A, similar phenotypes can be seen in patients with mutations in PCDH19, CHD2, SCN8A, or in rare cases GABRA1 and STXBP1. In addition to the genotypic and phenotypic heterogeneity, both benign phenotypes and severe encephalopathies have been recognized in an increasing number of genetic epilepsies, raising the question whether these conditions represent a fluid continuum or distinct entities. PMID:27781027

  5. Overeating phenotypes in overweight and obese children.

    PubMed

    Boutelle, Kerri N; Peterson, Carol B; Crosby, Ross D; Rydell, Sarah A; Zucker, Nancy; Harnack, Lisa

    2014-05-01

    The purpose of this study was to identify overeating phenotypes and their correlates in overweight and obese children. One hundred and seventeen treatment-seeking overweight and obese 8-12year-old children and their parents completed the study. Children completed an eating in the absence of hunger (EAH) paradigm, the Eating Disorder Examination interview, and measurements of height and weight. Parents and children completed questionnaires that evaluated satiety responsiveness, food responsiveness, negative affect eating, external eating and eating in the absence of hunger. Latent profile analysis was used to identify heterogeneity in overeating phenotypes in the child participants. Latent classes were then compared on measures of demographics, obesity status and nutritional intake. Three latent classes of overweight and obese children were identified: High Satiety Responsive, High Food Responsive, and Moderate Satiety and Food Responsive. Results indicated that the High Food Responsive group had higher BMI and BMI-Z scores compared to the High Satiety Responsive group. No differences were found among classes in demographics or nutritional intake. This study identified three overeating phenotypes, supporting the heterogeneity of eating patterns associated with overweight and obesity in treatment-seeking children. These finding suggest that these phenotypes can potentially be used to identify high risk groups, inform prevention and intervention targets, and develop specific treatments for these behavioral phenotypes.

  6. Phenotypic plasticity and diversity in insects

    PubMed Central

    Moczek, Armin P.

    2010-01-01

    Phenotypic plasticity in general and polyphenic development in particular are thought to play important roles in organismal diversification and evolutionary innovation. Focusing on the evolutionary developmental biology of insects, and specifically that of horned beetles, I explore the avenues by which phenotypic plasticity and polyphenic development have mediated the origins of novelty and diversity. Specifically, I argue that phenotypic plasticity generates novel targets for evolutionary processes to act on, as well as brings about trade-offs during development and evolution, thereby diversifying evolutionary trajectories available to natural populations. Lastly, I examine the notion that in those cases in which phenotypic plasticity is underlain by modularity in gene expression, it results in a fundamental trade-off between degree of plasticity and mutation accumulation. On one hand, this trade-off limits the extent of plasticity that can be accommodated by modularity of gene expression. On the other hand, it causes genes whose expression is specific to rare environments to accumulate greater variation within species, providing the opportunity for faster divergence and diversification between species, compared with genes expressed across environments. Phenotypic plasticity therefore contributes to organismal diversification on a variety of levels of biological organization, thereby facilitating the evolution of novel traits, new species and complex life cycles. PMID:20083635

  7. The new mutation theory of phenotypic evolution

    PubMed Central

    Nei, Masatoshi

    2007-01-01

    Recent studies of developmental biology have shown that the genes controlling phenotypic characters expressed in the early stage of development are highly conserved and that recent evolutionary changes have occurred primarily in the characters expressed in later stages of development. Even the genes controlling the latter characters are generally conserved, but there is a large component of neutral or nearly neutral genetic variation within and between closely related species. Phenotypic evolution occurs primarily by mutation of genes that interact with one another in the developmental process. The enormous amount of phenotypic diversity among different phyla or classes of organisms is a product of accumulation of novel mutations and their conservation that have facilitated adaptation to different environments. Novel mutations may be incorporated into the genome by natural selection (elimination of preexisting genotypes) or by random processes such as genetic and genomic drift. However, once the mutations are incorporated into the genome, they may generate developmental constraints that will affect the future direction of phenotypic evolution. It appears that the driving force of phenotypic evolution is mutation, and natural selection is of secondary importance. PMID:17640887

  8. Serum Biochemical Phenotypes in the Domestic Dog

    PubMed Central

    Chang, Yu-Mei; Hadox, Erin; Szladovits, Balazs; Garden, Oliver A.

    2016-01-01

    The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species. PMID:26919479

  9. Low level ozone exposure induces airways inflammation and modifies cell surface phenotypes in healthy humans

    EPA Science Inventory

    Background: The effects of low level ozone exposure (0.08 ppm) on pulmonary function in healthy young adults are well known, however much less is known about the inflammatory and immuno-modulatory effects oflow level ozone in the airways. Techniques such as induced sputum and flo...

  10. Genetic and Molecular Characterization of Drosophia Brakeless: A Novel Modifier of Merlin Phenotypes

    DTIC Science & Technology

    2005-07-01

    McCartney BM, Fehon RG. (1996) Distinct cellular and subcellular patterns of expression imply distinct functions for the Drosophila homologues of moesin and...isoforms have slightly different functions: the smaller SbbA expression promotes ectopic proliferation/Cyclin E expression , while the larger SbbB...represses proliferation/Cyclin E expression . Using these data we have constructed an intriguing pathway for scribbler/Merlin regulation of proliferation. In

  11. A network-based phenotype mapping approach to identify genes that modulate drug response phenotypes

    PubMed Central

    Cairns, Junmei; Ung, Choong Yong; da Rocha, Edroaldo Lummertz; Zhang, Cheng; Correia, Cristina; Weinshilboum, Richard; Wang, Liewei; Li, Hu

    2016-01-01

    To better address the problem of drug resistance during cancer chemotherapy and explore the possibility of manipulating drug response phenotypes, we developed a network-based phenotype mapping approach (P-Map) to identify gene candidates that upon perturbed can alter sensitivity to drugs. We used basal transcriptomics data from a panel of human lymphoblastoid cell lines (LCL) to infer drug response networks (DRNs) that are responsible for conferring response phenotypes for anthracycline and taxane, two common anticancer agents use in clinics. We further tested selected gene candidates that interact with phenotypic differentially expressed genes (PDEGs), which are up-regulated genes in LCL for a given class of drug response phenotype in triple-negative breast cancer (TNBC) cells. Our results indicate that it is possible to manipulate a drug response phenotype, from resistant to sensitive or vice versa, by perturbing gene candidates in DRNs and suggest plausible mechanisms regulating directionality of drug response sensitivity. More important, the current work highlights a new way to formulate systems-based therapeutic design: supplementing therapeutics that aim to target disease culprits with phenotypic modulators capable of altering DRN properties with the goal to re-sensitize resistant phenotypes. PMID:27841317

  12. The overshoot and phenotypic equilibrium in characterizing cancer dynamics of reversible phenotypic plasticity.

    PubMed

    Chen, Xiufang; Wang, Yue; Feng, Tianquan; Yi, Ming; Zhang, Xingan; Zhou, Da

    2016-02-07

    The paradigm of phenotypic plasticity indicates reversible relations of different cancer cell phenotypes, which extends the cellular hierarchy proposed by the classical cancer stem cell (CSC) theory. Since it is still questionable if the phenotypic plasticity is a crucial improvement to the hierarchical model or just a minor extension to it, it is worthwhile to explore the dynamic behavior characterizing the reversible phenotypic plasticity. In this study we compare the hierarchical model and the reversible model in predicting the cell-state dynamics observed in biological experiments. Our results show that the hierarchical model shows significant disadvantages over the reversible model in describing both long-term stability (phenotypic equilibrium) and short-term transient dynamics (overshoot) in cancer cell populations. In a very specific case in which the total growth of population due to each cell type is identical, the hierarchical model predicts neither phenotypic equilibrium nor overshoot, whereas the reversible model succeeds in predicting both of them. Even though the performance of the hierarchical model can be improved by relaxing the specific assumption, its prediction to the phenotypic equilibrium strongly depends on a precondition that may be unrealistic in biological experiments. Moreover, it still does not show as rich dynamics as the reversible model in capturing the overshoots of both CSCs and non-CSCs. By comparison, it is more likely for the reversible model to correctly predict the stability of the phenotypic mixture and various types of overshoot behavior.

  13. First insights into the genotype–phenotype map of phenotypic stability in rye

    PubMed Central

    Wang, Yu; Mette, Michael Florian; Miedaner, Thomas; Wilde, Peer; Reif, Jochen C.; Zhao, Yusheng

    2015-01-01

    Improving phenotypic stability of crops is pivotal for coping with the detrimental impacts of climate change. The goal of this study was to gain first insights into the genetic architecture of phenotypic stability in cereals. To this end, we determined grain yield, thousand kernel weight, test weight, falling number, and both protein and soluble pentosan content for two large bi-parental rye populations connected through one common parent and grown in multi-environmental field trials involving more than 15 000 yield plots. Based on these extensive phenotypic data, we calculated parameters for static and dynamic phenotypic stability of the different traits and applied linkage mapping using whole-genome molecular marker profiles. While we observed an absence of large-effect quantitative trait loci (QTLs) underlying yield stability, large and stable QTLs were found for phenotypic stability of test weight, soluble pentosan content, and falling number. Applying genome-wide selection, which in contrast to marker-assisted selection also takes into account loci with small-effect sizes, considerably increased the accuracy of prediction of phenotypic stability for all traits by exploiting both genetic relatedness and linkage between single-nucleotide polymorphisms and QTLs. We conclude that breeding for crop phenotypic stability can be improved in related populations using genomic selection approaches established upon extensive phenotypic data. PMID:25873667

  14. Disease-modifying genes and monogenic disorders: experience in cystic fibrosis.

    PubMed

    Gallati, Sabina

    2014-01-01

    The mechanisms responsible for the determination of phenotypes are still not well understood; however, it has become apparent that modifier genes must play a considerable role in the phenotypic heterogeneity of Mendelian disorders. Significant advances in genetic technologies and molecular medicine allow huge amounts of information to be generated from individual samples within a reasonable time frame. This review focuses on the role of modifier genes using the example of cystic fibrosis, the most common lethal autosomal recessive disorder in the white population, and discusses the advantages and limitations of candidate gene approaches versus genome-wide association studies. Moreover, the implications of modifier gene research for other monogenic disorders, as well as its significance for diagnostic, prognostic, and therapeutic approaches are summarized. Increasing insight into modifying mechanisms opens up new perspectives, dispelling the idea of genetic disorders being caused by one single gene.

  15. Target deconvolution techniques in modern phenotypic profiling.

    PubMed

    Lee, Jiyoun; Bogyo, Matthew

    2013-02-01

    The past decade has seen rapid growth in the use of diverse compound libraries in classical phenotypic screens to identify modulators of a given process. The subsequent process of identifying the molecular targets of active hits, also called 'target deconvolution', is an essential step for understanding compound mechanism of action and for using the identified hits as tools for further dissection of a given biological process. Recent advances in 'omics' technologies, coupled with in silico approaches and the reduced cost of whole genome sequencing, have greatly improved the workflow of target deconvolution and have contributed to a renaissance of 'modern' phenotypic profiling. In this review, we will outline how both new and old techniques are being used in the difficult process of target identification and validation as well as discuss some of the ongoing challenges remaining for phenotypic screening.

  16. Rational elicitation of cold-sensitive phenotypes

    PubMed Central

    Baliga, Chetana; Majhi, Sandipan; Mondal, Kajari; Bhattacharjee, Antara; Varadarajan, Raghavan

    2016-01-01

    Cold-sensitive phenotypes have helped us understand macromolecular assembly and biological phenomena, yet few attempts have been made to understand the basis of cold sensitivity or to elicit it by design. We report a method for rational design of cold-sensitive phenotypes. The method involves generation of partial loss-of-function mutants, at either buried or functional sites, coupled with selective overexpression strategies. The only essential input is amino acid sequence, although available structural information can be used as well. The method has been used to elicit cold-sensitive mutants of a variety of proteins, both monomeric and dimeric, and in multiple organisms, namely Escherichia coli, Saccharomyces cerevisiae, and Drosophila melanogaster. This simple, yet effective technique of inducing cold sensitivity eliminates the need for complex mutations and provides a plausible molecular mechanism for eliciting cold-sensitive phenotypes. PMID:27091994

  17. Application of phenotypic microarrays to environmental microbiology

    SciTech Connect

    Borglin, sharon; Joyner, Dominique; DeAngelis, Kristen; Khudyakov, Jane; D'haeseleer, Patrik; Joachimiak, Marcin; Hazen, Terry C; Fagan, Lisa Anne

    2012-01-01

    Environmental organisms are extremely diverse and only a small fraction has been successfully cultured in the laboratory. Culture in micro wells provides a method for rapid screening of a wide variety of growth conditions and commercially available plates contain a large number of substrates, nutrient sources, and inhibitors, which can provide an assessment of the phenotype of an organism. This review describes applications of phenotype arrays to anaerobic and thermophilic microorganisms, use of the plates in stress response studies, in development of culture media for newly discovered strains, and for assessment of phenotype of environmental communities. Also discussed are considerations and challenges in data interpretation and visualization, including data normalization, statistics, and curve fitting.

  18. Regulatory mechanisms link phenotypic plasticity to evolvability.

    PubMed

    van Gestel, Jordi; Weissing, Franz J

    2016-04-18

    Organisms have a remarkable capacity to respond to environmental change. They can either respond directly, by means of phenotypic plasticity, or they can slowly adapt through evolution. Yet, how phenotypic plasticity links to evolutionary adaptability is largely unknown. Current studies of plasticity tend to adopt a phenomenological reaction norm (RN) approach, which neglects the mechanisms underlying plasticity. Focusing on a concrete question - the optimal timing of bacterial sporulation - we here also consider a mechanistic approach, the evolution of a gene regulatory network (GRN) underlying plasticity. Using individual-based simulations, we compare the RN and GRN approach and find a number of striking differences. Most importantly, the GRN model results in a much higher diversity of responsive strategies than the RN model. We show that each of the evolved strategies is pre-adapted to a unique set of unseen environmental conditions. The regulatory mechanisms that control plasticity therefore critically link phenotypic plasticity to the adaptive potential of biological populations.

  19. The Phenotype of Spontaneous Preterm Birth: Application of a Clinical Phenotyping Tool

    PubMed Central

    Manuck, Tracy A.; Esplin, M. Sean; Biggio, Joseph; Bukowski, Radek; Parry, Samuel; Zhang, Heping; Varner, Michael W.; Andrews, William; Saade, George; Sadovsky, Yoel; Reddy, Uma M.; Ilekis, John

    2015-01-01

    Objective Spontaneous preterm birth (SPTB) is a complex condition that is likely a final common pathway with multiple possible etiologies. We hypothesized that a comprehensive classification system could appropriately group women with similar STPB etiologies, and provide an explanation, at least in part, for the disparities in SPTB associated with race and gestational age at delivery. Study Design Planned analysis of a multicenter, prospective study of singleton SPTB. Women with SPTB < 34 weeks were included. We defined 9 potential SPTB phenotypes based on clinical data, including infection/inflammation, maternal stress, decidual hemorrhage, uterine distention, cervical insufficiency, placental dysfunction, premature rupture of the membranes, maternal comorbidities, and familial factors. Each woman was evaluated for each phenotype. Delivery gestational age was compared between those with and without each phenotype. Phenotype profiles were also compared between women with very early (20.0–27.9 weeks) SPTB vs. those with early SPTB (28.0–34.0 weeks), and between African-American and Caucasian women. Statistical analysis was by t-test and chi-square as appropriate. Results The phenotyping tool was applied to 1025 women with SPTB who delivered at a mean 30.0 (+/− 3.2) weeks gestation. Of these, 800 (78%) had ≥2 phenotypes. Only 43 (4.2%) had no phenotypes. The 281 women with early SPTB were more likely to have infection/inflammation, decidual hemorrhage, and cervical insufficiency phenotypes (all p≤0.001). African-American women had more maternal stress and cervical insufficiency but less decidual hemorrhage and placental dysfunction compared to Caucasian women (all p<0.05). Gestational age at delivery decreased as the number of phenotypes present increased. Conclusions Precise SPTB phenotyping classifies women with SPTB and identifies specific differences between very early and early SPTB and between African-Americans and Caucasians. PMID:25687564

  20. Genetically modified bacteriophages.

    PubMed

    Sagona, Antonia P; Grigonyte, Aurelija M; MacDonald, Paul R; Jaramillo, Alfonso

    2016-04-18

    Phages or bacteriophages, viruses that infect and replicate inside bacteria, are the most abundant microorganisms on earth. The realization that antibiotic resistance poses a substantial risk to the world's health and global economy is revitalizing phage therapy as a potential solution. The increasing ease by which phage genomes can be modified, owing to the influx of new technologies, has led to an expansion of their natural capabilities, and a reduced dependence on phage isolation from environmental sources. This review will discuss the way synthetic biology has accelerated the construction of genetically modified phages and will describe the wide range of their applications. It will further provide insight into the societal and economic benefits that derive from the use of recombinant phages in various sectors, from health to biodetection, biocontrol and the food industry.

  1. Modified Faraday cup

    DOEpatents

    Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.

    1996-09-10

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees from 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.

  2. Modified Faraday cup

    DOEpatents

    Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.

    1996-01-01

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-din-tensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.

  3. Lung cancer stem cells—characteristics, phenotype

    PubMed Central

    George, Rachel; Sethi, Tariq

    2016-01-01

    Lung cancer remains a major cause of cancer-related deaths worldwide with unfavourable prognosis mainly due to the late stage of disease at presentation. High incidence and disease recurrence rates are a fact despite advances in treatment. Ongoing experimental and clinical observations suggest that the malignant phenotype in lung cancer is sustained by lung cancer stem cells (CSCs) which are putative stem cells situated throughout the airways that have the potential of initiating lung cancer formation. These cells share the common characteristic of increased proliferation and differentiation, long life span and resistance to chemotherapy and radiation therapy. This review summarises the current knowledge on their characteristics and phenotype. PMID:27413709

  4. Phenotypically heterogeneous populations in spatially heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Patra, Pintu; Klumpp, Stefan

    2014-03-01

    The spatial expansion of a population in a nonuniform environment may benefit from phenotypic heterogeneity with interconverting subpopulations using different survival strategies. We analyze the crossing of an antibiotic-containing environment by a bacterial population consisting of rapidly growing normal cells and slow-growing, but antibiotic-tolerant persister cells. The dynamics of crossing is characterized by mean first arrival times and is found to be surprisingly complex. It displays three distinct regimes with different scaling behavior that can be understood based on an analytical approximation. Our results suggest that a phenotypically heterogeneous population has a fitness advantage in nonuniform environments and can spread more rapidly than a homogeneous population.

  5. Phenotypic Responses of a Stoloniferous Clonal Plant Buchloe dactyloides to Scale-Dependent Nutrient Heterogeneity

    PubMed Central

    Han, Lei; Liu, Jun-Xiang; Sun, Zhen-Yuan

    2013-01-01

    Clonal plants could modify phenotypic responses to nutrients heterogeneously distributed both in space and time by physiological integration. It will take times to do phenotypic responses to modifications which are various in different growth periods. An optimal phenotype is reached when there is a match between nutrient conditions and foraging ability. A single plantlet of Buchloe dactyloides with two stolons was transplanted into heterogeneous nutrient conditions. One stolon grew in homogeneous nutrient patch, while the other cultured in different scales of heterogeneous nutrient patches. As compared to the other nutrient treatment, heterogeneous nutrient treatments with small scale of 25×25 cm resulted in a higher biomass, and larger number of ramets, clumps and stolons in B. dactyloides at both genet and clonal fragment levels. Significant differences of number of ramets, clumps and stolons were detected at the rapid growth stage, but not in the early stage of the experiment. Foraging ability was more efficient in heterogeneous than in homogeneous nutrient conditions as assessed by higher root mass and root to shoot ratio. Different nutrient treatments did not prompt significant differences in internode and root length. Physiological integration significantly increased biomass, but did not influence other growth or morphological characters. These results suggest that physiological integration modifies phenotypic plasticity of B. dactyloides for efficient foraging of nutrients in heterogeneous nutrient conditions. These effects are more pronounced at genet and clonal fragment levels when the patch scale is 25×25 cm. Time is a key factor when phenotypic plasticity of B. dactyloides in heterogeneous nutrient conditions is examined. PMID:23826285

  6. Modified entropic force

    SciTech Connect

    Gao Changjun

    2010-04-15

    The theory of statistical thermodynamics tells us the equipartition law of energy does not hold in the limit of very low temperatures. It is found the Debye model is very successful in explaining the experimental results for most of the solid objects. Motivated by this fact, we modify the entropic force formula which is proposed very recently. Since the Unruh temperature is proportional to the strength of the gravitational field, so the modified entropic force formula is an extension of the Newtonian gravity to the weak field. On the contrary, general relativity extends Newtonian gravity to the strong field case. Corresponding to Debye temperature, there exists a Debye acceleration g{sub D}. It is found the Debye acceleration is g{sub D}=10{sup -15} N kg{sup -1}. This acceleration is very much smaller than the gravitational acceleration 10{sup -4} N kg{sup -1} which is felt by Neptune and the gravitational acceleration 10{sup -10} N kg{sup -1} felt by the Sun. Therefore, the modified entropic force can be very well approximated by the Newtonian gravity in the Solar System and in the Galaxy. With this Debye acceleration, we find the current cosmic speeding up can be explained without invoking any kind of dark energy.

  7. Coevolutionary dynamics of phenotypic diversity and contingent cooperation

    PubMed Central

    Wang, Long

    2017-01-01

    Phenotypic diversity is considered beneficial to the evolution of contingent cooperation, in which cooperators channel their help preferentially towards others of similar phenotypes. However, it remains largely unclear how phenotypic variation arises in the first place and thus leads to the construction of phenotypic complexity. Here we propose a mathematical model to study the coevolutionary dynamics of phenotypic diversity and contingent cooperation. Unlike previous models, our model does not assume any prescribed level of phenotypic diversity, but rather lets it be an evolvable trait. Each individual expresses one phenotype at a time and only the phenotypes expressed are visible to others. Moreover, individuals can differ in their potential of phenotypic variation, which is characterized by the number of distinct phenotypes they can randomly switch to. Each individual incurs a cost proportional to the number of potentially expressible phenotypes so as to retain phenotypic variation and expression. Our results show that phenotypic diversity coevolves with contingent cooperation under a wide range of conditions and that there exists an optimal level of phenotypic diversity best promoting contingent cooperation. It pays for contingent cooperators to elevate their potential of phenotypic variation, thereby increasing their opportunities of establishing cooperation via novel phenotypes, as these new phenotypes serve as secret tags that are difficult for defector to discover and chase after. We also find that evolved high levels of phenotypic diversity can occasionally collapse due to the invasion of defector mutants, suggesting that cooperation and phenotypic diversity can mutually reinforce each other. Thus, our results provide new insights into better understanding the coevolution of cooperation and phenotypic diversity. PMID:28141806

  8. Coevolutionary dynamics of phenotypic diversity and contingent cooperation.

    PubMed

    Wu, Te; Wang, Long; Fu, Feng

    2017-01-01

    Phenotypic diversity is considered beneficial to the evolution of contingent cooperation, in which cooperators channel their help preferentially towards others of similar phenotypes. However, it remains largely unclear how phenotypic variation arises in the first place and thus leads to the construction of phenotypic complexity. Here we propose a mathematical model to study the coevolutionary dynamics of phenotypic diversity and contingent cooperation. Unlike previous models, our model does not assume any prescribed level of phenotypic diversity, but rather lets it be an evolvable trait. Each individual expresses one phenotype at a time and only the phenotypes expressed are visible to others. Moreover, individuals can differ in their potential of phenotypic variation, which is characterized by the number of distinct phenotypes they can randomly switch to. Each individual incurs a cost proportional to the number of potentially expressible phenotypes so as to retain phenotypic variation and expression. Our results show that phenotypic diversity coevolves with contingent cooperation under a wide range of conditions and that there exists an optimal level of phenotypic diversity best promoting contingent cooperation. It pays for contingent cooperators to elevate their potential of phenotypic variation, thereby increasing their opportunities of establishing cooperation via novel phenotypes, as these new phenotypes serve as secret tags that are difficult for defector to discover and chase after. We also find that evolved high levels of phenotypic diversity can occasionally collapse due to the invasion of defector mutants, suggesting that cooperation and phenotypic diversity can mutually reinforce each other. Thus, our results provide new insights into better understanding the coevolution of cooperation and phenotypic diversity.

  9. Application of a two-phenotype color-shift model with heterogeneous growth to a rat hepatocarcinogenesis experiment.

    PubMed

    Groos, Jutta; Kopp-Schneider, Annette

    2010-04-01

    The color-shift model (CSM) was introduced by Kopp-Schneider et al. [1] to describe formation and progression of foci of altered hepatocytes (FAH). It incorporates the field-effect hypothesis which postulates that entire colonies of altered hepatocytes simultaneously alter their phenotype. In the original CSM, FAH grow with deterministic growth rate and change their phenotype after an exponentially distributed waiting time. A modification of the original color-shift model (CSM beta) is presented here in which the growth rate varies from focus to focus according to a beta distribution. The concept of an exponentially distributed waiting time to phenotype change is modified to the concept of a random radius at which phenotype changes and this radius is modelled as beta distributed. The original and the modified CSM are applied to data from an initiation-promotion rat hepatocarcinogenesis experiment with diethylnitrosomorpholine (DEN) and N-nitrosomorpholine (NNM), in which two phenotypes of FAH were observed in hematoxilin/eosin (H&E) stained liver sections. The Cramer-von-Mises Distance is used as a measure for the discrepancy between empirical and theoretical size distributions. Comparisons of model fit show that considerable improvement is obtained for CSM beta compared to the original CSM.

  10. A new method to infer causal phenotype networks using QTL and phenotypic information.

    PubMed

    Wang, Huange; van Eeuwijk, Fred A

    2014-01-01

    In the context of genetics and breeding research on multiple phenotypic traits, reconstructing the directional or causal structure between phenotypic traits is a prerequisite for quantifying the effects of genetic interventions on the traits. Current approaches mainly exploit the genetic effects at quantitative trait loci (QTLs) to learn about causal relationships among phenotypic traits. A requirement for using these approaches is that at least one unique QTL has been identified for each trait studied. However, in practice, especially for molecular phenotypes such as metabolites, this prerequisite is often not met due to limited sample sizes, high noise levels and small QTL effects. Here, we present a novel heuristic search algorithm called the QTL+phenotype supervised orientation (QPSO) algorithm to infer causal directions for edges in undirected phenotype networks. The two main advantages of this algorithm are: first, it does not require QTLs for each and every trait; second, it takes into account associated phenotypic interactions in addition to detected QTLs when orienting undirected edges between traits. We evaluate and compare the performance of QPSO with another state-of-the-art approach, the QTL-directed dependency graph (QDG) algorithm. Simulation results show that our method has broader applicability and leads to more accurate overall orientations. We also illustrate our method with a real-life example involving 24 metabolites and a few major QTLs measured on an association panel of 93 tomato cultivars. Matlab source code implementing the proposed algorithm is freely available upon request.

  11. Behavioural Phenotypes in Disability Research: Historical Perspectives

    ERIC Educational Resources Information Center

    Goodey, C. F.

    2006-01-01

    Western medicine has a long history of accounting for behaviour by reducing the body to ultimate explanatory entities. In pre-modern medicine these were invisible "animal spirits" circulating the body. In modern medicine, they are "genes". Both raise questions. The psychological phenotype is defined by human consensus, varying according to time…

  12. Restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, Mina J.; Weaver, Valerie M.

    1998-01-01

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying .beta..sub.1 integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive.

  13. The Relativity of Genotypes and Phenotypes.

    ERIC Educational Resources Information Center

    Willie, Charles Vert

    1995-01-01

    Asserts that Herrnstein and Murray's "The Bell Curve" (1994) is an attempt to influence and control public discourse about public policy and inequality. It examines four of the book's flaws in classification, analyses, research, and its failure to recognize intelligence as having both genotypic and phenotypic manifestations. (GR)

  14. Usefulness of descriptors in phenotyping germplasm collections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large number of crop germplasm collections are maintained within the U.S. National Plant Germplasm System (NPGS). For each of these crop collections, Crop Germplasm committees (CGC), crop curators, and collection staff have established extensive lists of descriptors or phenotypic traits by which t...

  15. Restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, M.J.; Weaver, V.M.

    1998-12-08

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying {beta}{sub 1} integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive. 14 figs.

  16. Phenotypic plasticity with instantaneous but delayed switches.

    PubMed

    Utz, Margarete; Jeschke, Jonathan M; Loeschcke, Volker; Gabriel, Wilfried

    2014-01-07

    Phenotypic plasticity is a widespread phenomenon, allowing organisms to better adapt to changing environments. Most empirical and theoretical studies are restricted to irreversible plasticity where the expression of a specific phenotype is mostly determined during development. However, reversible plasticity is not uncommon; here, organisms are able to switch back and forth between phenotypes. We present two optimization models for the fitness of (i) non-plastic, (ii) irreversibly plastic, and (iii) reversibly plastic genotypes in a fluctuating environment. In one model, the fitness values of an organism during different life phases act together multiplicatively (so as to consider traits that are related to survival). The other model additionally considers additive effects (corresponding to traits related to fecundity). Both models yield qualitatively similar results. If the only costs of reversible plasticity are due to temporal maladaptation while switching between phenotypes, reversibility is virtually always advantageous over irreversibility, especially for slow environmental fluctuations. If reversibility implies an overall decreased fitness, then irreversibility is advantageous if the environment fluctuates quickly or if stress events last relatively short. Our results are supported by observations from different types of organisms and have implications for many basic and applied research questions, e.g., on invasive alien species.

  17. PRIMARY CILIARY DYSKINESIA: DIAGNOSTIC AND PHENOTYPIC FEATURES

    EPA Science Inventory

    Primary ciliary dyskinesia (PCD) is a genetic disease characterized by abnormalities in ciliary structure/function. We hypothesized that the major clinical and biologic phenotypic markers of the disease could be evaluated by studying a cohort of subjects suspected of having PCD. ...

  18. Phenotype as Agent for Epigenetic Inheritance

    PubMed Central

    Torday, John S.; Miller, William B.

    2016-01-01

    The conventional understanding of phenotype is as a derivative of descent with modification through Darwinian random mutation and natural selection. Recent research has revealed Lamarckian inheritance as a major transgenerational mechanism for environmental action on genomes whose extent is determined, in significant part, by germ line cells during meiosis and subsequent stages of embryological development. In consequence, the role of phenotype can productively be reconsidered. The possibility that phenotype is directed towards the effective acquisition of epigenetic marks in consistent reciprocation with the environment during the life cycle of an organism is explored. It is proposed that phenotype is an active agent in niche construction for the active acquisition of epigenetic marks as a dominant evolutionary mechanism rather than a consequence of Darwinian selection towards reproductive success. The reproductive phase of the life cycle can then be appraised as a robust framework in which epigenetic inheritance is entrained to affect growth and development in continued reciprocal responsiveness to environmental stresses. Furthermore, as first principles of physiology determine the limits of epigenetic inheritance, a coherent justification can thereby be provided for the obligate return of all multicellular eukaryotes to the unicellular state. PMID:27399791

  19. Parasitism and phenotypic change in colonial hosts.

    PubMed

    Hartikainen, Hanna; Fontes, Inês; Okamura, Beth

    2013-09-01

    Changes in host phenotype are often attributed to manipulation that enables parasites to complete trophic transmission cycles. We characterized changes in host phenotype in a colonial host–endoparasite system that lacks trophic transmission (the freshwater bryozoan Fredericella sultana and myxozoan parasite Tetracapsuloides bryosalmonae). We show that parasitism exerts opposing phenotypic effects at the colony and module levels. Thus, overt infection (the development of infectious spores in the host body cavity) was linked to a reduction in colony size and growth rate, while colony modules exhibited a form of gigantism. Larger modules may support larger parasite sacs and increase metabolite availability to the parasite. Host metabolic rates were lower in overtly infected relative to uninfected hosts that were not investing in propagule production. This suggests a role for direct resource competition and active parasite manipulation (castration) in driving the expression of the infected phenotype. The malformed offspring (statoblasts) of infected colonies had greatly reduced hatching success. Coupled with the severe reduction in statoblast production this suggests that vertical transmission is rare in overtly infected modules. We show that although the parasite can occasionally infect statoblasts during overt infections, no infections were detected in the surviving mature offspring, suggesting that during overt infections, horizontal transmission incurs a trade-off with vertical transmission.

  20. Phenotypic spandrel: absolute discrimination and ligand antagonism

    NASA Astrophysics Data System (ADS)

    François, Paul; Hemery, Mathieu; Johnson, Kyle A.; Saunders, Laura N.

    2016-12-01

    We consider the general problem of sensitive and specific discrimination between biochemical species. An important instance is immune discrimination between self and not-self, where it is also observed experimentally that ligands just below the discrimination threshold negatively impact response, a phenomenon called antagonism. We characterize mathematically the generic properties of such discrimination, first relating it to biochemical adaptation. Then, based on basic biochemical rules, we establish that, surprisingly, antagonism is a generic consequence of any strictly specific discrimination made independently from ligand concentration. Thus antagonism constitutes a ‘phenotypic spandrel’: a phenotype existing as a necessary by-product of another phenotype. We exhibit a simple analytic model of discrimination displaying antagonism, where antagonism strength is linear in distance from the detection threshold. This contrasts with traditional proofreading based models where antagonism vanishes far from threshold and thus displays an inverted hierarchy of antagonism compared to simpler models. The phenotypic spandrel studied here is expected to structure many decision pathways such as immune detection mediated by TCRs and FCɛRIs, as well as endocrine signalling/disruption.

  1. Radiofrequency treatment alters cancer cell phenotype

    PubMed Central

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-01-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment. PMID:26165830

  2. Radiofrequency treatment alters cancer cell phenotype

    NASA Astrophysics Data System (ADS)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  3. Characterizing the ADHD Phenotype for Genetic Studies

    ERIC Educational Resources Information Center

    Stevenson, Jim; Asherson, Phil; Hay, David; Levy, Florence; Swanson, Jim; Thapar, Anita; Willcutt, Erik

    2005-01-01

    The genetic study of ADHD has made considerable progress. Further developments in the field will be reliant in part on identifying the most appropriate phenotypes for genetic analysis. The use of both categorical and dimensional measures of symptoms related to ADHD has been productive. The use of multiple reporters is a valuable feature of the…

  4. The Behavioural Phenotype of Angelman Syndrome

    ERIC Educational Resources Information Center

    Horsler, K.; Oliver, C.

    2006-01-01

    Background: The purpose of this review is to examine the notion of a behavioural phenotype for Angelman syndrome and identify methodological and conceptual influences on the accepted presentation. Methods: Studies examining the behavioural characteristics associated with Angelman syndrome are reviewed and methodology is described. Results:…

  5. Cognitive Phenotype of Velocardiofacial Syndrome: A Review

    ERIC Educational Resources Information Center

    Furniss, Frederick; Biswas, Asit B.; Gumber, Rohit; Singh, Niraj

    2011-01-01

    The behavioural phenotype of velocardiofacial syndrome (VCFS), one of the most common human multiple anomaly syndromes, includes developmental disabilities, frequently including intellectual disability (ID) and high risk of diagnosis of psychotic disorders including schizophrenia. VCFS may offer a model of the relationship between ID and risk of…

  6. Macrophage Phenotype in Liver Injury and Repair.

    PubMed

    Sun, Y-Y; Li, X-F; Meng, X-M; Huang, C; Zhang, L; Li, J

    2017-03-01

    Macrophages hold a critical position in the pathogenesis of liver injury and repair, in which their infiltrations is regarded as a main feature for both acute and chronic liver diseases. It is noted that, based on the distinct phenotypes and origins, hepatic macrophages are capable of clearing pathogens, promoting/or inhibiting liver inflammation, while regulating liver fibrosis and fibrolysis through interplaying with hepatocytes and hepatic stellate cells (HSC) via releasing different types of pro- or anti-inflammatory cytokines and growth factors. Macrophages are typically categorized into M1 or M2 phenotypes by adapting to local microenvironment during the progression of liver injury. In most occasions, M1 macrophages play a pro-inflammatory role in liver injury, while M2 macrophages exert an anti-inflammatory or pro-fibrotic role during liver repair and fibrosis. In this review, we focused on the up-to-date information about the phenotypic and functional plasticity of the macrophages and discussed the detailed mechanisms through which the phenotypes and functions of macrophages are regulated in different stages of liver injury and repair. Moreover, their roles in determining the fate of liver diseases were also summarized. Finally, the macrophage-targeted therapies against liver diseases were also be evaluated.

  7. Phenotyping jasmonate regulation of root growth.

    PubMed

    Kellermeier, Fabian; Amtmann, Anna

    2013-01-01

    Root architecture is a complex and highly plastic feature of higher plants. Direct treatments with jasmonates and alterations in jasmonate signaling have been shown to elicit a range of root phenotypes. Here, we describe a fast, noninvasive, and semiautomatic method to monitor root architectural responses to environmental stimuli using plant tissue culture and the software tool EZ-RHIZO.

  8. Biodiversity of spoilage lactobacilli: phenotypic characterisation.

    PubMed

    Sanders, J W; Oomes, S J C M; Membré, J-M; Wegkamp, A; Wels, M

    2015-02-01

    Preventing food spoilage is a challenge for the food industry, especially when applying mild preservation methods and when avoiding the use of preservatives. Therefore, it is essential to explore the boundaries of preservation by better understanding the causative microbes, their phenotypic behaviour and their genetic makeup. Traditionally in food microbiology, single strains or small sets of selected strains are studied. Here a collection of 120 strains of 6 different spoilage related Lactobacillus species and a multitude of sources was prepared and their growth characteristics determined in 384-well plates by optical density measurements (OD) over 20 days, for 20 carbon source-related phenotypic parameters and 25 preservation-related phenotypic parameters. Growth under all conditions was highly strain specific and there was no correlation of phenotypes at the species level. On average Lactobacillus brevis strains were amongst the most robust whereas Lactobacillus fructivorans strains had a much narrower growth range. The biodiversity data allowed the definition of preservation boundaries on the basis of the number of Lactobacillus strains that reached a threshold OD, which is different from current methods that are based on growth ability or growth rate of a few selected strains. Genetic information on these microbes and a correlation study will improve the mechanistic understanding of preservation resistance and this will support the future development of superior screening and preservation methods.

  9. Engineering complex phenotypes in industrial strains.

    PubMed

    Patnaik, Ranjan

    2008-01-01

    The global demand is rising for greener manufacturing processes that are cost-competitive and available in a timely manner. This has led to the development of a series of new tools and integrative platforms enabling rapid engineering of complex phenotypes in industrial microbes. By blending "old classical methods" of strain isolation with "newer approaches" of cell engineering, researchers are demonstrating the ability to stack multiple complex phenotypes in industrial hosts with some level of certainty. Newer tools for dissecting the genotype-phenotype correlation include association analysis (Precision Engineering), multiSCale Analysis of Library Enrichment (SCALE) in competition experiments, whole-genome transcriptional analysis, and proteomics and metabolomics technology. These newer and older tools of metabolic engineering and synthetic biology when combined with recent whole cell engineering approaches like whole genome shuffling, global transciptome machinery engineering, and directed evolutionary engineering, provide a powerful platform for engineering complex phenotypes in industrial strains. This review attempts to highlight and compare these newer tools and approaches with traditional strain isolation procedures as it applies to genome engineering with examples taken from literature.

  10. Phenotypic mutant library: potential for gene discovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid development of high throughput and affordable Next- Generation Sequencing (NGS) techniques has renewed interest in gene discovery using forward genetics. The conventional forward genetic approach starts with isolation of mutants with a phenotype of interest, mapping the mutation within a s...

  11. Alcohol consumption, Lewis phenotypes, and risk of ischemic heart disease

    SciTech Connect

    Hein, H.O.; Suadicani, P.; Gyntelberg, F. . Epidemiological Research Unit); Sorenson, H. . Dept. of Chemical Immunology); Hein, H.O. . Dept. of Internal Medicine)

    1993-02-13

    The authors have previously found an increased risk of ischemic heart disease (IHD) in men with the Lewis phenotype Le(a[minus]b[minus]) and suggested that the Lewis blood group has a close genetic relation with insulin resistance. The authors have investigated whether any conventional risk factors explain the increased risk in Le(a[minus]b[minus]) men. 3,383 men aged 53-75 years were examined in 1985-86, and morbidity and mortality during the next 4 years were recorded. At baseline, the authors excluded 343 men with a history of myocardial infarction, angina pectoris, intermittent claudication, or stroke. The potential risk factors examined were alcohol consumption, physical activity, tobacco smoking, serum cotinine, serum lipids, body-mass index, blood pressure, prevalence of hypertension and non-insulin-dependent diabetes mellitus, and social class. In 280 (9.6%) men with Le(a[minus]b[minus]), alcohol was the only risk factor significantly associated with risk of IHD. There was a significant inverse dose-effect relation between alcohol consumption and risk; trend tests, with adjustment for age, were significant for fatal IHD (p=0.02), all IHD (p=0.03), and all causes of death (p=0.02). In 2649 (90.4%) men with other phenotypes, there was a limited negative association with alcohol consumption. In Le(a[minus]b[minus]) men, a group genetically at high risk of IHD, alcohol consumption seems to be especially protective. The authors suggest that alcohol consumption may modify insulin resistance in Le(a[minus]b[minus]) men.

  12. Phenotypic plasticity and divergence in gene expression.

    PubMed

    Healy, Timothy M; Schulte, Patricia M

    2015-07-01

    The extent to which phenotypic plasticity, or the ability of a single genotype to produce different phenotypes in different environments, impedes or promotes genetic divergence has been a matter of debate within evolutionary biology for many decades (see, for example, Ghalambor et al. ; Pfennig et al. ). Similarly, the role of evolution in shaping phenotypic plasticity remains poorly understood (Pigliucci ). In this issue of Molecular Ecology, Dayan et al. () provide empirical data relevant to these questions by assessing the extent of plasticity and divergence in the expression levels of 2272 genes in muscle tissue from killifish (genus Fundulus) exposed to different temperatures. F. heteroclitus (Fig. A) and F. grandis are minnows that inhabit estuarine marshes (Fig. B) along the coasts of the Atlantic Ocean and Gulf of Mexico in North America. These habitats undergo large variations in temperature both daily and seasonally, and these fish are known to demonstrate substantial phenotypic plasticity in response to temperature change (e.g. Fangue et al. ). Furthermore, the range of F. heteroclitus spans a large latitudinal gradient of temperatures, such that northern populations experience temperatures that are on average ~10°C colder than do southern populations (Schulte ). By comparing gene expression patterns between populations of these fish from different thermal habitats held in the laboratory at three different temperatures, Dayan et al. () address two important questions regarding the interacting effects of plasticity and evolution: (i) How does phenotypic plasticity affect adaptive divergence? and (ii) How does adaptive divergence affect plasticity?

  13. Down syndrome individuals with Alzheimer's disease have a distinct neuroinflammatory phenotype compared to sporadic Alzheimer's disease.

    PubMed

    Wilcock, Donna M; Hurban, Jennifer; Helman, Alex M; Sudduth, Tiffany L; McCarty, Katie L; Beckett, Tina L; Ferrell, Joshua C; Murphy, M Paul; Abner, Erin L; Schmitt, Frederick A; Head, Elizabeth

    2015-09-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability and is primarily caused by the triplication of chromosome 21. The overexpression of amyloid precursor protein gene may be sufficient to drive Alzheimer's disease (AD) neuropathology that is observed in virtually all individuals with DS by the age of 40 years. There is relatively little information about inflammation in the DS brain and how the genetics of DS may alter inflammatory responses and modify the course of AD pathogenesis in this disorder. Using the macrophage classification system of M1, M2a, M2b, and M2c inflammatory phenotypes, we have shown that the early stages of AD are associated with a bias toward an M1 or M2a phenotype. In later stages of AD, markers of M1, M2a and M2c are elevated. We now report the inflammatory phenotype in a DS autopsy series to compare this with the progression in sporadic AD. Tissue from young DS cases (under 40 years of age, pre-AD) show a bias toward M1 and M2b states with little M2a or M2c observed. Older DS cases (over 40 with AD pathology) show a distinct bias toward an M2b phenotype. Importantly, this is distinct from sporadic AD where the M2b phenotype has been rarely, if ever observed in postmortem studies. Stimulated by immune complex activation of microglial cells and toll-like receptor activation, the M2b phenotype represents a unique neuroinflammatory state in diseased brain and may have significant implications for therapeutic intervention for persons with DS.

  14. Phenotypic plasticity changes correlations of traits following experimental introductions of Trinidadian guppies (Poecilia reticulata).

    PubMed

    Handelsman, Corey A; Ruell, Emily W; Torres-Dowdall, Julián; Ghalambor, Cameron K

    2014-11-01

    Colonization of novel environments can alter selective pressures and act as a catalyst for rapid evolution in nature. Theory and empirical studies suggest that the ability of a population to exhibit an adaptive evolutionary response to novel selection pressures should reflect the presence of sufficient additive genetic variance and covariance for individual and correlated traits. As correlated traits should not respond to selection independently, the structure of correlations of traits can bias or constrain adaptive evolution. Models of how multiple correlated traits respond to selection often assume spatial and temporal stability of trait-correlations within populations. Yet, trait-correlations can also be plastic in response to environmental variation. Phenotypic plasticity, the ability of a single genotype to produce different phenotypes across environments, is of particular interest because it can induce population-wide changes in the combination of traits exposed to selection and change the trajectory of evolutionary divergence. We tested the ability of phenotypic plasticity to modify trait-correlations by comparing phenotypic variance and covariance in the body-shapes of four experimental populations of Trinidadian guppies (Poecilia reticulata) to their ancestral population. We found that phenotypic plasticity produced both adaptive and novel aspects of body-shape, which was repeated in all four experimental populations. Further, phenotypic plasticity changed patterns of covariance among morphological characters. These findings suggest our ability to make inferences about patterns of divergence based on correlations of traits in extant populations may be limited if novel environments not only induce plasticity in multiple traits, but also change the correlations among the traits.

  15. Surface modified aerogel monoliths

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas (Inventor); Johnston, James C. (Inventor); Kuczmarski, Maria A. (Inventor); Meador, Mary Ann B. (Inventor)

    2013-01-01

    This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.

  16. Modified arthroscopic Brostrom procedure.

    PubMed

    Lui, Tun Hing

    2015-09-01

    The open modified Brostrom anatomic repair technique is widely accepted as the reference standard for lateral ankle stabilization. However, there is high incidence of intra-articular pathologies associated with chronic lateral ankle instability which may not be addressed by an isolated open Brostrom procedure. Arthroscopic Brostrom procedure with suture anchor has been described for anatomic repair of chronic lateral ankle instability and management of intra-articular lesions. However, the complication rates seemed to be higher than open Brostrom procedure. Modification of the arthroscopic Brostrom procedure with the use of bone tunnel may reduce the risk of certain complications.

  17. Pragmatic Aspects of Scalar Modifiers

    ERIC Educational Resources Information Center

    Sawada, Osamu

    2010-01-01

    This dissertation investigates the pragmatic aspects of scalar modifiers from the standpoint of the interface between semantics and pragmatics, focusing on (i) the (non) parallelism between the truth-conditional scalar modifiers and the non-truth-conditional scalar modifiers, (ii) the compositionality and dimensionality of non-truth-conditional…

  18. The search for modifier genes in Huntington disease - Multifactorial aspects of a monogenic disorder.

    PubMed

    Arning, Larissa

    2016-12-01

    It is becoming increasingly evident that the underlying mutation of a single locus is often insufficient for the prediction of the comprehensive phenotype in human Mendelian disorders, implicating that there is no clear distinction between monogenic and complex traits. By definition, monogenic traits show a classic pattern of inheritance and are strongly influenced by variation within a single gene. However, many Mendelian traits that result in genetic disorders can have phenotypes that differ in subtle or profound ways such as severity, onset age and other associated phenotypic characteristics. Among the factors that may explain these differences in disease expression are modifier genes. This review focuses on the role of modifier genes using the example of Huntington Disease (HD), an autosomal dominantly transmitted, progressive neurodegenerative disorder. The advantages and limitations of candidate gene approaches versus genome-wide association studies (GWAS) as well as its implications for diagnostic, prognostic, and therapeutic interventions are discussed.

  19. Developmental thermal plasticity of prey modifies the impact of predation.

    PubMed

    Seebacher, Frank; Grigaltchik, Veronica S

    2015-05-01

    Environmental conditions during embryonic development can influence the mean expression of phenotypes as well as phenotypic responses to environmental change later in life. The resulting phenotypes may be better matched to their environment and more resilient to environmental change, including human-induced climate change. However, whether plasticity does improve success in an ecological context is unresolved. In a microcosm experiment, we show that developmental plasticity in embryos of the frog Limnodynastes peronii is beneficial by increasing survivorship of tadpoles in the presence of predators when egg incubation (15 or 25°C) and tadpole acclimation temperature in microcosms (15 or 25°C) coincided at 15°C. Tadpoles that survived predation were smaller, and had faster burst swimming speeds than those kept in no-predator control conditions, but only at high (25°C) egg incubation or subsequent microcosm temperatures. Metabolic rates were determined by a three-way interaction between incubation and microcosm temperatures and predation; maximal glycolytic and mitochondrial metabolic capacities (enzyme activities) were lower in survivors from predation compared with controls, particularly when eggs were incubated at 25°C. We show that thermal conditions experienced during early development are ecologically relevant by modulating survivorship from predation. Importantly, developmental thermal plasticity also impacts population phenotypes indirectly by modifying species interactions and the selection pressure imposed by predation.

  20. Phenotypic equilibrium as probabilistic convergence in multi-phenotype cell population dynamics

    PubMed Central

    Jiang, Da-Quan; Zhou, Da

    2017-01-01

    We consider the cell population dynamics with n different phenotypes. Both the Markovian branching process model (stochastic model) and the ordinary differential equation (ODE) system model (deterministic model) are presented, and exploited to investigate the dynamics of the phenotypic proportions. We will prove that in both models, these proportions will tend to constants regardless of initial population states (“phenotypic equilibrium”) under weak conditions, which explains the experimental phenomenon in Gupta et al.’s paper. We also prove that Gupta et al.’s explanation is the ODE model under a special assumption. As an application, we will give sufficient and necessary conditions under which the proportion of one phenotype tends to 0 (die out) or 1 (dominate). We also extend our results to non-Markovian cases. PMID:28182672

  1. Modifying Radiation Damage

    PubMed Central

    Kim, Kwanghee; McBride, William H.

    2011-01-01

    Radiation leaves a fairly characteristic footprint in biological materials, but this is rapidly all but obliterated by the canonical biological responses to the radiation damage. The innate immune recognition systems that sense “danger” through direct radiation damage and through associated collateral damage set in motion a chain of events that, in a tissue compromised by radiation, often unwittingly result in oscillating waves of molecular and cellular responses as tissues attempt to heal. Understanding “nature’s whispers” that inform on these processes will lead to novel forms of intervention targeted more precisely towards modifying them in an appropriate and timely fashion so as to improve the healing process and prevent or mitigate the development of acute and late effects of normal tissue radiation damage, whether it be accidental, as a result of a terrorist incident, or of therapeutic treatment of cancer. Here we attempt to discuss some of the non-free radical scavenging mechanisms that modify radiation responses and comment on where we see them within a conceptual framework of an evolving radiation-induced lesion. PMID:20583981

  2. Not in their genes: phenotypic flexibility, behavioural traditions and cultural evolution in wild bonnet macaques.

    PubMed

    Sinha, Anindya

    2005-02-01

    Phenotypic flexibility, or the within-genotype, context-dependent, variation in behaviour expressed by single reproductively mature individuals during their lifetimes, often impart a selective advantage to organisms and profoundly influence their survival and reproduction. Another phenomenon apparently not under direct genetic control is behavioural inheritance whereby higher animals are able to acquire information from the behaviour of others by social learning, and, through their own modified behaviour, transmit such information between individuals and across generations. Behavioural information transfer of this nature thus represents another form of inheritance that operates in many animals in tandem with the more basic genetic system. This paper examines the impact that phenotypic flexibility, behavioural inheritance and socially transmitted cultural traditions may have in shaping the structure and dynamics of a primate society--that of the bonnet macaque (Macaca radiata), a primate species endemic to peninsular India. Three principal issues are considered: the role of phenotypic flexibility in shaping social behaviour, the occurrence of individual behavioural traits leading to the establishment of social traditions, and the appearance of cultural evolution amidst such social traditions. Although more prolonged observations are required, these initial findings suggest that phenotypic plasticity, behavioural inheritance and cultural traditions may be much more widespread among primates than have previously been assumed but may have escaped attention due to a preoccupation with genetic inheritance in zoological thinking.

  3. Phenotype Determines Nanoparticle Uptake by Human Macrophages from Liver and Blood.

    PubMed

    MacParland, Sonya A; Tsoi, Kim M; Ouyang, Ben; Ma, Xue-Zhong; Manuel, Justin; Fawaz, Ali; Ostrowski, Mario A; Alman, Benjamin A; Zilman, Anton; Chan, Warren C W; McGilvray, Ian D

    2017-01-17

    A significant challenge to delivering therapeutic doses of nanoparticles to targeted disease sites is the fact that most nanoparticles become trapped in the liver. Liver-resident macrophages, or Kupffer cells, are key cells in the hepatic sequestration of nanoparticles. However, the precise role that the macrophage phenotype plays in nanoparticle uptake is unknown. Here, we show that the human macrophage phenotype modulates hard nanoparticle uptake. Using gold nanoparticles, we examined uptake by human monocyte-derived macrophages that had been driven to a "regulatory" M2 phenotype or an "inflammatory" M1 phenotype and found that M2-type macrophages preferentially take up nanoparticles, with a clear hierarchy among the subtypes (M2c > M2 > M2a > M2b > M1). We also found that stimuli such as LPS/IFN-γ rather than with more "regulatory" stimuli such as TGF-β/IL-10 reduce per cell macrophage nanoparticle uptake by an average of 40%. Primary human Kupffer cells were found to display heterogeneous expression of M1 and M2 markers, and Kupffer cells expressing higher levels of M2 markers (CD163) take up significantly more nanoparticles than Kupffer cells expressing lower levels of surface CD163. Our results demonstrate that hepatic inflammatory microenvironments should be considered when studying liver sequestration of nanoparticles, and that modifying the hepatic microenvironment might offer a tool for enhancing or decreasing this sequestration. Our findings also suggest that models examining the nanoparticle/macrophage interaction should include studies with primary tissue macrophages.

  4. Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes.

    PubMed

    Kreznar, Julia H; Keller, Mark P; Traeger, Lindsay L; Rabaglia, Mary E; Schueler, Kathryn L; Stapleton, Donald S; Zhao, Wen; Vivas, Eugenio I; Yandell, Brian S; Broman, Aimee Teo; Hagenbuch, Bruno; Attie, Alan D; Rey, Federico E

    2017-02-14

    Genetic variation drives phenotypic diversity and influences the predisposition to metabolic disease. Here, we characterize the metabolic phenotypes of eight genetically distinct inbred mouse strains in response to a high-fat/high-sucrose diet. We found significant variation in diabetes-related phenotypes and gut microbiota composition among the different mouse strains in response to the dietary challenge and identified taxa associated with these traits. Follow-up microbiota transplant experiments showed that altering the composition of the gut microbiota modifies strain-specific susceptibility to diet-induced metabolic disease. Animals harboring microbial communities with enhanced capacity for processing dietary sugars and for generating hydrophobic bile acids showed increased susceptibility to metabolic disease. Notably, differences in glucose-stimulated insulin secretion between different mouse strains were partially recapitulated via gut microbiota transfer. Our results suggest that the gut microbiome contributes to the genetic and phenotypic diversity observed among mouse strains and provide a link between the gut microbiome and insulin secretion.

  5. Phenotypic and evolutionary consequences of social behaviours: interactions among individuals affect direct genetic effects.

    PubMed

    Trubenová, Barbora; Hager, Reinmar

    2012-01-01

    Traditional quantitative genetics assumes that an individual's phenotype is determined by both genetic and environmental factors. For many animals, part of the environment is social and provided by parents and other interacting partners. When expression of genes in social partners affects trait expression in a focal individual, indirect genetic effects occur. In this study, we explore the effects of indirect genetic effects on the magnitude and range of phenotypic values in a focal individual in a multi-member model analyzing three possible classes of interactions between individuals. We show that social interactions may not only cause indirect genetic effects but can also modify direct genetic effects. Furthermore, we demonstrate that both direct and indirect genetic effects substantially alter the range of phenotypic values, particularly when a focal trait can influence its own expression via interactions with traits in other individuals. We derive a function predicting the relative importance of direct versus indirect genetic effects. Our model reveals that both direct and indirect genetic effects can depend to a large extent on both group size and interaction strength, altering group mean phenotype and variance. This may lead to scenarios where between group variation is much higher than within group variation despite similar underlying genetic properties, potentially affecting the level of selection. Our analysis highlights key properties of indirect genetic effects with important consequences for trait evolution, the level of selection and potentially speciation.

  6. Metabolic profiles to define the genome: can we hear the phenotypes?

    PubMed Central

    Griffin, Julian L

    2004-01-01

    There is an increased reliance on genetically modified organisms as a functional genomic tool to elucidate the role of genes and their protein products. Despite this, many models do not express the expected phenotype thought to be associated with the gene or protein. There is thus an increased need to further define the phenotype resultant from a genetic modification to understand how the transcriptional or proteomic network may conspire to alter the expected phenotype. This is best typified by the description of the silent phenotype in genetic manipulations of yeast. High-resolution proton nuclear magnetic resonance ((1)H NMR) spectroscopy provides an ideal mechanism for the profiling of metabolites within biofluids, tissue extracts or, with recent advances, intact tissues. These metabolic datasets can be readily mined using a range of pattern recognition techniques, including hierarchical cluster analysis, principal components analysis, partial least squares and neural networks, with the combined approach being termed metabolomics. This review describes the application of NMR-based metabolomics or metabonomics to genetic and chemical interventions in a number of different species, demonstrating the versatility of such an approach, as well as suggesting how it may be integrated with other "omic" technologies. PMID:15306403

  7. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data.

    PubMed

    Köhler, Sebastian; Doelken, Sandra C; Mungall, Christopher J; Bauer, Sebastian; Firth, Helen V; Bailleul-Forestier, Isabelle; Black, Graeme C M; Brown, Danielle L; Brudno, Michael; Campbell, Jennifer; FitzPatrick, David R; Eppig, Janan T; Jackson, Andrew P; Freson, Kathleen; Girdea, Marta; Helbig, Ingo; Hurst, Jane A; Jähn, Johanna; Jackson, Laird G; Kelly, Anne M; Ledbetter, David H; Mansour, Sahar; Martin, Christa L; Moss, Celia; Mumford, Andrew; Ouwehand, Willem H; Park, Soo-Mi; Riggs, Erin Rooney; Scott, Richard H; Sisodiya, Sanjay; Van Vooren, Steven; Wapner, Ronald J; Wilkie, Andrew O M; Wright, Caroline F; Vulto-van Silfhout, Anneke T; de Leeuw, Nicole; de Vries, Bert B A; Washingthon, Nicole L; Smith, Cynthia L; Westerfield, Monte; Schofield, Paul; Ruef, Barbara J; Gkoutos, Georgios V; Haendel, Melissa; Smedley, Damian; Lewis, Suzanna E; Robinson, Peter N

    2014-01-01

    The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes using terms from ontologies for anatomy, cell types, function, embryology, pathology and other domains. This allows interoperability with several resources, especially those containing phenotype information on model organisms such as mouse and zebrafish. Here we describe the updated HPO database, which provides annotations of 7,278 human hereditary syndromes listed in OMIM, Orphanet and DECIPHER to classes of the HPO. Various meta-attributes such as frequency, references and negations are associated with each annotation. Several large-scale projects worldwide utilize the HPO for describing phenotype information in their datasets. We have therefore generated equivalence mappings to other phenotype vocabularies such as LDDB, Orphanet, MedDRA, UMLS and phenoDB, allowing integration of existing datasets and interoperability with multiple biomedical resources. We have created various ways to access the HPO database content using flat files, a MySQL database, and Web-based tools. All data and documentation on the HPO project can be found online.

  8. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data

    PubMed Central

    Köhler, Sebastian; Doelken, Sandra C.; Mungall, Christopher J.; Bauer, Sebastian; Firth, Helen V.; Bailleul-Forestier, Isabelle; Black, Graeme C. M.; Brown, Danielle L.; Brudno, Michael; Campbell, Jennifer; FitzPatrick, David R.; Eppig, Janan T.; Jackson, Andrew P.; Freson, Kathleen; Girdea, Marta; Helbig, Ingo; Hurst, Jane A.; Jähn, Johanna; Jackson, Laird G.; Kelly, Anne M.; Ledbetter, David H.; Mansour, Sahar; Martin, Christa L.; Moss, Celia; Mumford, Andrew; Ouwehand, Willem H.; Park, Soo-Mi; Riggs, Erin Rooney; Scott, Richard H.; Sisodiya, Sanjay; Vooren, Steven Van; Wapner, Ronald J.; Wilkie, Andrew O. M.; Wright, Caroline F.; Vulto-van Silfhout, Anneke T.; de Leeuw, Nicole; de Vries, Bert B. A.; Washingthon, Nicole L.; Smith, Cynthia L.; Westerfield, Monte; Schofield, Paul; Ruef, Barbara J.; Gkoutos, Georgios V.; Haendel, Melissa; Smedley, Damian; Lewis, Suzanna E.; Robinson, Peter N.

    2014-01-01

    The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes using terms from ontologies for anatomy, cell types, function, embryology, pathology and other domains. This allows interoperability with several resources, especially those containing phenotype information on model organisms such as mouse and zebrafish. Here we describe the updated HPO database, which provides annotations of 7,278 human hereditary syndromes listed in OMIM, Orphanet and DECIPHER to classes of the HPO. Various meta-attributes such as frequency, references and negations are associated with each annotation. Several large-scale projects worldwide utilize the HPO for describing phenotype information in their datasets. We have therefore generated equivalence mappings to other phenotype vocabularies such as LDDB, Orphanet, MedDRA, UMLS and phenoDB, allowing integration of existing datasets and interoperability with multiple biomedical resources. We have created various ways to access the HPO database content using flat files, a MySQL database, and Web-based tools. All data and documentation on the HPO project can be found online. PMID:24217912

  9. Epigenetic modulators promote mesenchymal stem cell phenotype switches.

    PubMed

    Alexanian, Arshak R

    2015-07-01

    Discoveries in recent years have suggested that some tissue specific adult stem cells in mammals might have the ability to differentiate into cell types from different germ layers. This phenomenon has been referred to as stem cell transdifferentiation or plasticity. Despite controversy, the current consensus holds that transdifferentiation does occur in mammals, but only within a limited range. Understanding the mechanisms that underlie the switches in phenotype and development of the methods that will promote such type of conversions can open up endless possibilities for regenerative medicine. Epigenetic control contributes to various processes that lead to cellular plasticity and DNA and histone covalent modifications play a key role in these processes. Recently, we have been able to convert human mesenchymal stem cells (hMSCs) into neural-like cells by exposing cells to epigenetic modifiers and neural inducing factors. The goal of this study was to investigate the stability and plasticity of these transdifferentiated cells. To this end, neurally induced MSCs (NI-hMSCs) were exposed to adipocyte inducing factors. Grown for 24-48 h in fat induction media NI-hMSCs reversed their morphology into fibroblast-like cells and regained their proliferative properties. After 3 weeks approximately 6% of hMSCs differentiated into multilocular or plurivacuolar adipocyte cells that demonstrated by Oil Red O staining. Re-exposure of these cultures or the purified adipocytes to neural induction medium induced the cells to re-differentiate into neuronal-like cells. These data suggest that cell plasticity can be manipulated by the combination of small molecule modulators of chromatin modifying enzymes and specific cell signaling pathways.

  10. New genes as drivers of phenotypic evolution.

    PubMed

    Chen, Sidi; Krinsky, Benjamin H; Long, Manyuan

    2013-09-01

    During the course of evolution, genomes acquire novel genetic elements as sources of functional and phenotypic diversity, including new genes that originated in recent evolution. In the past few years, substantial progress has been made in understanding the evolution and phenotypic effects of new genes. In particular, an emerging picture is that new genes, despite being present in the genomes of only a subset of species, can rapidly evolve indispensable roles in fundamental biological processes, including development, reproduction, brain function and behaviour. The molecular underpinnings of how new genes can develop these roles are starting to be characterized. These recent discoveries yield fresh insights into our broad understanding of biological diversity at refined resolution.

  11. New genes as drivers of phenotypic evolution

    PubMed Central

    Chen, Sidi; Krinsky, Benjamin H.; Long, Manyuan

    2014-01-01

    During the course of evolution, genomes acquire novel genetic elements as sources of functional and phenotypic diversity, including new genes that originated in recent evolution. In the past few years, substantial progress has been made in understanding the evolution and phenotypic effects of new genes. In particular, an emerging picture is that new genes, despite being present in the genomes of only a subset of species, can rapidly evolve indispensable roles in fundamental biological processes, including development, reproduction, brain function and behaviour. The molecular underpinnings of how new genes can develop these roles are starting to be characterized. These recent discoveries yield fresh insights into our broad understanding of biological diversity at refined resolution. PMID:23949544

  12. [Research progress of epigenetic transgenerational phenotype].

    PubMed

    Kexue, Ma; Keshi, Ma; Xingzi, Xi

    2014-05-01

    The epigenome undergoes a reprogramming process during gametogenesis and early embryogenesis. Therefore, it is believed that epigenetic information cannot be transmitted across generations. However, the occurrence of epigenetic transgenerational phenotype suggests that certain epigenetic marks may escape reprogramming. Although the existence of such a mode of inheritance has been controversial, there is increasing evidence that epigenetic memory does occur in mammals. Due to the reversibility of epigenetic modification, the epigenome is easily changed by a variety of environ-mental factors, such as chemicals, nutrition and behaviour. Therefore, it provides a potential mechanism for the transgenerational transmission of the impact of environmental factors. The purpose of this review is to introduce the concept of epi-genetic transgenerational phenotype, to discuss the epigenetic reprogramming and the molecular mechanism of epigenetic transgenerational transmission, and to list some environmental factors that are associated with epigenetic transgenerational diseases.

  13. Animal biometrics: quantifying and detecting phenotypic appearance.

    PubMed

    Kühl, Hjalmar S; Burghardt, Tilo

    2013-07-01

    Animal biometrics is an emerging field that develops quantified approaches for representing and detecting the phenotypic appearance of species, individuals, behaviors, and morphological traits. It operates at the intersection between pattern recognition, ecology, and information sciences, producing computerized systems for phenotypic measurement and interpretation. Animal biometrics can benefit a wide range of disciplines, including biogeography, population ecology, and behavioral research. Currently, real-world applications are gaining momentum, augmenting the quantity and quality of ecological data collection and processing. However, to advance animal biometrics will require integration of methodologies among the scientific disciplines involved. Such efforts will be worthwhile because the great potential of this approach rests with the formal abstraction of phenomics, to create tractable interfaces between different organizational levels of life.

  14. Trisomy 4 mosaicism: Delineation of the phenotype.

    PubMed

    Bouman, Arjan; van der Kevie-Kersemaekers, Anne-Marie; Huijsdens-van Amsterdam, Karin; Dahhan, Nordin; Knegt, Lia; Vansenne, Fleur; Cobben, Jan Maarten

    2016-04-01

    Trisomy 4 mosaicism in liveborns is very rare. We describe a 17-month-old girl with trisomy 4 mosaicism. Clinical findings in this patient are compared to previously reported patients. Based on the few descriptions available in the literature the common phenotype of trisomy 4 mosaicism seems to consist of IUGR, low birth weight/length/OFC, congenital heart defects, characteristic thumb anomalies (aplasia/hypoplasia), skin abnormalities (hypo-/hyperpigmentation), several dysmorphic features, and likely some degree of intellectual disability. When trisomy 4 mosaicism is suspected clinicians should be aware that a normal karyotype in lymphocytes does not exclude mosaicism for trisomy 4. This report contributes to a further delineation of the phenotype associated with trisomy 4 mosaicism.

  15. Evolution of environmental cues for phenotypic plasticity.

    PubMed

    Chevin, Luis-Miguel; Lande, Russell

    2015-10-01

    Phenotypically plastic characters may respond to multiple variables in their environment, but the evolutionary consequences of this phenomenon have rarely been addressed theoretically. We model the evolution of linear reaction norms in response to several correlated environmental variables, in a population undergoing stationary environmental fluctuations. At evolutionary equilibrium, the linear combination of environmental variables that acts as a developmental cue for the plastic trait is the multivariate best linear predictor of changes in the optimum. However, the reaction norm with respect to any single environmental variable may exhibit nonintuitive patterns. Apparently maladaptive, or hyperadaptive plasticity can evolve with respect to single environmental variables, and costs of plasticity may increase, rather than reduce, plasticity in response to some variables. We also find conditions for the evolution of an indirect environmental indicator that affects expression of a plastic phenotype, despite not influencing natural selection on it.

  16. How epigenomics brings phenotype into being.

    PubMed

    Martín-Subero, Jose Ignacio

    2011-09-01

    After sequencing the human genome, it has become clear that genetic information alone is not sufficient to understand phenotypic manifestations. The way the DNA code is translated into function depends not only on its sequence but also on the interaction with environmental factors. It is in this intersection where the science of epigenetics plays a crucial role. Epigenetic mechanisms like DNA methylation and histone modifications are essential for multiple physiological processes like development, establishment of tissue identity, imprinting, X-chromosome inactivation, chromosomal stability and gene transcription regulation. Additionally, environmental factors like nutrition or maternal behavior in early childhood are able to induce epigenetic changes. This short review aims at summarizing the role of epigenetics in multiple aspects of biology and medicine, including development, cancer, non-tumoral diseases, environmentally induced phenotypic changes, and also in inheritance and evolution.

  17. The phenotype range of achondrogenesis 1A.

    PubMed

    Grigelioniene, Giedre; Geiberger, Stefan; Papadogiannakis, Nikos; Mäkitie, Outi; Nishimura, Gen; Nordgren, Ann; Conner, Peter

    2013-10-01

    Achondrogenesis 1A (ACG1A; OMIM 200600) is an autosomal recessive perinatally lethal skeletal dysplasia comprising intrauterine growth failure, micromelia, minor facial anomalies, deficient ossification of the skull, absent or extremely defective spinal ossification, short beaded ribs, and short deformed long bones with a stellate appearance. ACG1A is caused by mutations in the TRIP11 gene, resulting in deficiency of the Golgi microtubule associated protein 210. In this study we describe dizygotic twins with a clinical and radiological phenotype of ACG1A who were homozygous for a novel nonsense mutation in the TRIP11 gene. In addition, another patient with a milder manifestation, not readily distinguishable from those of other lethal skeletal dysplasias, was found to be a compound heterozygote for a nonsense mutation and a deletion of the 3' end of the TRIP11 gene. We conclude that mutations of the TRIP11 gene may encompass a wider phenotypic range than previously recognized.

  18. Chromosome imbalance, normal phenotype, and imprinting.

    PubMed Central

    Bortotto, L; Piovan, E; Furlan, R; Rivera, H; Zuffardi, O

    1990-01-01

    A duplication of the sub-bands 1q42.11 and 1q42.12 was found in a boy and his mother. The proband has short stature (around the 10th centile) but a normal phenotype and psychomotor development. His mother is also asymptomatic. We found 30 published cases of normal subjects with an imbalance of autosomal euchromatic material. In these cases the imbalance involved either only one G positive band or a G positive and a G negative band. Thus the absence of a phenotypic effect cannot always be ascribed to the deficiency in the G positive bands of coding DNA. Moreover, in some cases, the method of transmission of the chromosome abnormality was such that an imprinting effect could be postulated. Images PMID:2231652

  19. Phenotypic Signatures Arising from Unbalanced Bacterial Growth

    PubMed Central

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-01-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify “phenotypic signatures” by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains. PMID:25101949

  20. Effects of poor hygiene on cytokine phenotypes in children in the tropics.

    PubMed

    Figueiredo, C A; Amorim, L D; Vaca, M; Chico, M E; Campos, A C; Barreto, M L; Cooper, P J

    2016-01-01

    We describe immune phenotypes (innate and adaptive cytokines) according to environmental exposure using latent class analysis. A total of 310 schoolchildren living in Ecuador were assayed for spontaneous cytokine production as well as mitogen (SEB)-stimulated cytokines in whole blood cultures. We collected data on environmental exposures by questionnaire and on intestinal parasites by examination of stool samples. Latent class analysis (LCA) was used to group children according to their innate (IL-6, IL-8, IL-10 and TNF-α) and adaptive (IL-5, IL-13, IL-17, IFN-γ and IL-10) cytokine profile. We also conducted multiple-group LCA and LCA with covariates to evaluate the effect of predictors on profile membership. We identified both hyporesponsive and Th2-modified immune phenotypes produced by peripheral blood leukocytes (PBLs) that were associated with intestinal worms and birth order, providing insights into how poor hygiene mediates immunologic effects on immune-mediated diseases.

  1. A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington's disease CAG knock-in mice.

    PubMed

    Hölter, Sabine M; Stromberg, Mary; Kovalenko, Marina; Garrett, Lillian; Glasl, Lisa; Lopez, Edith; Guide, Jolene; Götz, Alexander; Hans, Wolfgang; Becker, Lore; Rathkolb, Birgit; Rozman, Jan; Schrewed, Anja; Klingenspor, Martin; Klopstock, Thomas; Schulz, Holger; Wolf, Eckhard; Wursta, Wolfgang; Gillis, Tammy; Wakimoto, Hiroko; Seidman, Jonathan; MacDonald, Marcy E; Cotman, Susan; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Lee, Jong-Min; Wheeler, Vanessa C

    2013-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing.

  2. A Broad Phenotypic Screen Identifies Novel Phenotypes Driven by a Single Mutant Allele in Huntington’s Disease CAG Knock-In Mice

    PubMed Central

    Kovalenko, Marina; Garrett, Lillian; Glasl, Lisa; Lopez, Edith; Guide, Jolene; Götz, Alexander; Hans, Wolfgang; Becker, Lore; Rathkolb, Birgit; Rozman, Jan; Schrewed, Anja; Klingenspor, Martin; Klopstock, Thomas; Schulz, Holger; Wolf, Eckhard; Wursta, Wolfgang; Gillis, Tammy; Wakimoto, Hiroko; Seidman, Jonathan; MacDonald, Marcy E.; Cotman, Susan; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Lee, Jong-Min; Wheeler, Vanessa C.

    2013-01-01

    Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing. PMID:24278347

  3. Multiple pterygium syndrome: evolution of the phenotype.

    PubMed Central

    Thompson, E M; Donnai, D; Baraitser, M; Hall, C M; Pembrey, M E; Fixsen, J

    1987-01-01

    The clinical features of the multiple pterygium syndrome are multiple congenital joint contractures, multiple skin webs, camptodactyly, vertebral anomalies, short stature, ptosis, and antimongoloid eye slant. We present 11 new cases to show the evolution of the full phenotype from birth and to confirm autosomal recessive inheritance. We emphasise morbidity secondary to respiratory impairment and that conductive deafness may be part of the syndrome. Images PMID:3430553

  4. Imaging Prostate Cancer (PCa) Phenotype and Evolution

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-1-0386 TITLE: Imaging Prostate Cancer (PCa) Phenotype and Evolution PRINCIPAL INVESTIGATOR: Jason A. Koutcher...CONTRACTING ORGANIZATION: Sloan Kettering Institute for Cancer Research New York, NY 10065 REPORT DATE: October 2015 TYPE OF REPORT: Annual Report...time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this

  5. Phenotyping maize for adaptation to drought

    PubMed Central

    Araus, Jose L.; Serret, María D.; Edmeades, Gregory O.

    2012-01-01

    The need of a better adaptation of crops to drought is an issue of increasing urgency. However, enhancing the tolerance of maize has, therefore, proved to be somewhat elusive in terms of plant breeding. In that context, proper phenotyping remains as one of the main factors limiting breeding advance. Topics covered by this review include the conceptual framework for identifying secondary traits associated with yield response to drought and how to measure these secondary traits in practice. PMID:22934056

  6. Genomic Analysis of the Opi− Phenotype

    PubMed Central

    Hancock, Leandria C.; Behta, Ryan P.; Lopes, John M.

    2006-01-01

    Most of the phospholipid biosynthetic genes of Saccharomyces cerevisiae are coordinately regulated in response to inositol and choline. Inositol affects the intracellular levels of phosphatidic acid (PA). Opi1p is a repressor of the phospholipid biosynthetic genes and specifically binds PA in the endoplasmic reticulum. In the presence of inositol, PA levels decrease, releasing Opi1p into the nucleus where it represses transcription. The opi1 mutant overproduces and excretes inositol into the growth medium in the absence of inositol and choline (Opi− phenotype). To better understand the mechanism of Opi1p repression, the viable yeast deletion set was screened to identify Opi− mutants. In total, 89 Opi− mutants were identified, of which 7 were previously known to have the Opi− phenotype. The Opi− mutant collection included genes with roles in phospholipid biosynthesis, transcription, protein processing/synthesis, and protein trafficking. Included in this set were all nonessential components of the NuA4 HAT complex and six proteins in the Rpd3p–Sin3p HDAC complex. It has previously been shown that defects in phosphatidylcholine synthesis (cho2 and opi3) yield the Opi− phenotype because of a buildup of PA. However, in this case the Opi− phenotype is conditional because PA can be shuttled through a salvage pathway (Kennedy pathway) by adding choline to the growth medium. Seven new mutants present in the Opi− collection (fun26, kex1, nup84, tps1, mrpl38, mrpl49, and opi10/yol032w) were also suppressed by choline, suggesting that these affect PC synthesis. Regulation in response to inositol is also coordinated with the unfolded protein response (UPR). Consistent with this, several Opi− mutants were found to affect the UPR (yhi9, ede1, and vps74). PMID:16582425

  7. Modified Composite Materials Workshop

    NASA Technical Reports Server (NTRS)

    Dicus, D. L. (Compiler)

    1978-01-01

    The reduction or elimination of the hazard which results from accidental release of graphite fibers from composite materials was studied at a workshop. At the workshop, groups were organized to consider six topics: epoxy modifications, epoxy replacement, fiber modifications, fiber coatings and new fibers, hybrids, and fiber release testing. Because of the time required to develop a new material and acquire a design data base, most of the workers concluded that a modified composite material would require about four to five years of development and testing before it could be applied to aircraft structures. The hybrid working group considered that some hybrid composites which reduce the risk of accidental fiber release might be put into service over the near term. The fiber release testing working group recommended a coordinated effort to define a suitable laboratory test.

  8. Why genetically modified crops?

    PubMed

    Jones, Jonathan D G

    2011-05-13

    This paper is intended to convey the message of the talk I gave at the Theo Murphy meeting at the Kavli Centre in July 2010. It, like the talk, is polemical, and conveys the exasperation felt by a practitioner of genetically modified (GM) plant science at its widespread misrepresentation. I argue that sustainable intensification of agriculture, using GM as well as other technologies, reduces its environmental impact by reducing pesticide applications and conserving soil carbon by enabling low till methods. Current technologies (primarily insect resistance and herbicide tolerance) have been beneficial. Moreover, the near-term pipeline of new GM methods and traits to enhance our diet, increase crop yields and reduce losses to disease is substantial. It would be perverse to spurn this approach at a time when we need every tool in the toolbox to ensure adequate food production in the short, medium and long term.

  9. Modified clay sorbents

    DOEpatents

    Fogler, H. Scott; Srinivasan, Keeran R.

    1990-01-01

    A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.

  10. In silico search for modifier genes associated with pancreatic and liver disease in Cystic Fibrosis.

    PubMed

    Trouvé, Pascal; Génin, Emmanuelle; Férec, Claude

    2017-01-01

    Cystic Fibrosis is the most common lethal autosomal recessive disorder in the white population, affecting among other organs, the lung, the pancreas and the liver. Whereas Cystic Fibrosis is a monogenic disease, many studies reveal a very complex relationship between genotype and clinical phenotype. Indeed, the broad phenotypic spectrum observed in Cystic Fibrosis is far from being explained by obvious genotype-phenotype correlations and it is admitted that Cystic Fibrosis disease is the result of multiple factors, including effects of the environment as well as modifier genes. Our objective was to highlight new modifier genes with potential implications in the lung, pancreatic and liver outcomes of the disease. For this purpose we performed a system biology approach which combined, database mining, literature mining, gene expression study and network analysis as well as pathway enrichment analysis and protein-protein interactions. We found that IFI16, CCNE2 and IGFBP2 are potential modifiers in the altered lung function in Cystic Fibrosis. We also found that EPHX1, HLA-DQA1, HLA-DQB1, DSP and SLC33A1, GPNMB, NCF2, RASGRP1, LGALS3 and PTPN13, are potential modifiers in pancreas and liver, respectively. Associated pathways indicate that immune system is likely involved and that Ubiquitin C is probably a central node, linking Cystic Fibrosis to liver and pancreatic disease. We highlight here new modifier genes with potential implications in Cystic Fibrosis. Nevertheless, our in silico analysis requires functional analysis to give our results a physiological relevance.

  11. In silico search for modifier genes associated with pancreatic and liver disease in Cystic Fibrosis

    PubMed Central

    Génin, Emmanuelle; Férec, Claude

    2017-01-01

    Cystic Fibrosis is the most common lethal autosomal recessive disorder in the white population, affecting among other organs, the lung, the pancreas and the liver. Whereas Cystic Fibrosis is a monogenic disease, many studies reveal a very complex relationship between genotype and clinical phenotype. Indeed, the broad phenotypic spectrum observed in Cystic Fibrosis is far from being explained by obvious genotype-phenotype correlations and it is admitted that Cystic Fibrosis disease is the result of multiple factors, including effects of the environment as well as modifier genes. Our objective was to highlight new modifier genes with potential implications in the lung, pancreatic and liver outcomes of the disease. For this purpose we performed a system biology approach which combined, database mining, literature mining, gene expression study and network analysis as well as pathway enrichment analysis and protein-protein interactions. We found that IFI16, CCNE2 and IGFBP2 are potential modifiers in the altered lung function in Cystic Fibrosis. We also found that EPHX1, HLA-DQA1, HLA-DQB1, DSP and SLC33A1, GPNMB, NCF2, RASGRP1, LGALS3 and PTPN13, are potential modifiers in pancreas and liver, respectively. Associated pathways indicate that immune system is likely involved and that Ubiquitin C is probably a central node, linking Cystic Fibrosis to liver and pancreatic disease. We highlight here new modifier genes with potential implications in Cystic Fibrosis. Nevertheless, our in silico analysis requires functional analysis to give our results a physiological relevance. PMID:28339466

  12. Signaling in Regulation of Podocyte Phenotypes

    PubMed Central

    Chuang, Peter Y.; He, John C.

    2010-01-01

    The kidney podocyte is a terminally differentiated and highly specialized cell. The function of the glomerular filtration barrier depends on the integrity of the podocyte. Podocyte injury and loss have been observed in human and experimental models of glomerular diseases. Three major podocyte phenotypes have been described in glomerular diseases: effacement, apoptosis, and proliferation. Here, we highlight the signaling cascades that are responsible for the manifestation of these pathologic phenotypes. The integrity of the podocyte foot process is determined by the interaction of nephrin with proteins in the slit diaphragm complex, the regulation of actin dynamics by the Rho family of GTPases, and the transduction of extracellular signals through focal adhesion complexes. Activation of the p38 mitogen-activated protein kinase and transforming growth factor-β 1 causes podocyte apoptosis. Phosphoinositide 3-kinase and its downstream target AKT protect podocytes from apoptosis. In human immunodeficiency virus-associated nephropathy, Src-dependent activation of Stat3, mitogen- activated protein kinase 1,2, and hypoxia-inducible factor 2α is an important driver of podocyte proliferation. At the level of intracellular signaling, it appears that different extracellular signals can converge onto a few pathways to induce changes in the phenotype of podocytes. PMID:19142027

  13. Learning probabilistic phenotypes from heterogeneous EHR data.

    PubMed

    Pivovarov, Rimma; Perotte, Adler J; Grave, Edouard; Angiolillo, John; Wiggins, Chris H; Elhadad, Noémie

    2015-12-01

    We present the Unsupervised Phenome Model (UPhenome), a probabilistic graphical model for large-scale discovery of computational models of disease, or phenotypes. We tackle this challenge through the joint modeling of a large set of diseases and a large set of clinical observations. The observations are drawn directly from heterogeneous patient record data (notes, laboratory tests, medications, and diagnosis codes), and the diseases are modeled in an unsupervised fashion. We apply UPhenome to two qualitatively different mixtures of patients and diseases: records of extremely sick patients in the intensive care unit with constant monitoring, and records of outpatients regularly followed by care providers over multiple years. We demonstrate that the UPhenome model can learn from these different care settings, without any additional adaptation. Our experiments show that (i) the learned phenotypes combine the heterogeneous data types more coherently than baseline LDA-based phenotypes; (ii) they each represent single diseases rather than a mix of diseases more often than the baseline ones; and (iii) when applied to unseen patient records, they are correlated with the patients' ground-truth disorders. Code for training, inference, and quantitative evaluation is made available to the research community.

  14. Abaxial Greening Phenotype in Hybrid Aspen

    PubMed Central

    Nowak, Julia S.; Douglas, Carl J.; Cronk, Quentin C.B.

    2013-01-01

    The typical angiosperm leaf, as in Arabidopsis, is bifacial consisting of top (adaxial) and bottom (abaxial) surfaces readily distinguishable by the underlying cell type (palisade and spongy mesophyll, respectively). Species of the genus Populus have leaves that are either conventionally bifacial or isobilateral. Isobilateral leaves have palisade mesophyll on the top and bottom of the leaf, making the two sides virtually indistinguishable at the macroscopic level. In poplars this has been termed the “abaxial greening” phenotype. Previous work has implicated ASYMMETRIC LEAVES1 (AS1) as an essential determinant of palisade mesophyll development. This gene, as well as other genes (84 in all) putatively involved in setting the dorsiventral axis of leaves, were investigated in two Populus species: black cottonwood (Populus trichocarpa) and hybrid aspen (P. tremula x tremuloides), representative of each leaf type (bifacial and isobilateral, respectively). Poplar orthologs of AS1 have significantly higher expression in aspen leaf blade and lower in the petiole, suggestive of a potential role in the isobilateral leaf phenotype consistent with the previously observed phenotypes. Furthermore, an ABERRANT TESTA SHAPE (ATS) ortholog has significantly lower expression in aspen leaf tissue, also suggesting a possible contribution of this gene to abaxial greening. PMID:27137376

  15. Topological Phenotypes in Complex Leaf Venation Networks

    NASA Astrophysics Data System (ADS)

    Ronellenfitsch, Henrik; Lasser, Jana; Daly, Douglas; Katifori, Eleni

    2015-03-01

    The leaves of vascular plants contain highly complex venation networks consisting of recursively nested, hierarchically organized loops. We analyze the topology of the venation of leaves from ca. 200 species belonging to ca. 10 families, defining topological metrics that quantify the hierarchical nestedness of the network cycles. We find that most of the venation variability can be described by a two dimensional phenotypic space, where one dimension consists of a linear combination of geometrical metrics and the other dimension of topological, previously uncharacterized metrics. We show how this new topological dimension in the phenotypic space significantly improves identification of leaves from fragments, by calculating a ``leaf fingerprint'' from the topology and geometry of the higher order veins. Further, we present a simple model suggesting that the topological phenotypic traits can be explained by noise effects and variations in the timing of higher order vein developmental events. This work opens the path to (a) new quantitative identification techniques for leaves which go beyond simple geometric traits such as vein density and (b) topological quantification of other planar or almost planar networks such as arterial vaculature in the neocortex and lung tissue.

  16. Zebrafish phenotypic screen identifies novel Notch antagonists.

    PubMed

    Velaithan, Vithya; Okuda, Kazuhide Shaun; Ng, Mei Fong; Samat, Norazwana; Leong, Sze Wei; Faudzi, Siti Munirah Mohd; Abas, Faridah; Shaari, Khozirah; Cheong, Sok Ching; Tan, Pei Jean; Patel, Vyomesh

    2017-04-01

    Zebrafish represents a powerful in vivo model for phenotype-based drug discovery to identify clinically relevant small molecules. By utilizing this model, we evaluated natural product derived compounds that could potentially modulate Notch signaling that is important in both zebrafish embryogenesis and pathogenic in human cancers. A total of 234 compounds were screened using zebrafish embryos and 3 were identified to be conferring phenotypic alterations similar to embryos treated with known Notch inhibitors. Subsequent secondary screens using HEK293T cells overexpressing truncated Notch1 (HEK293TΔE) identified 2 compounds, EDD3 and 3H4MB, to be potential Notch antagonists. Both compounds reduced protein expression of NOTCH1, Notch intracellular domain (NICD) and hairy and enhancer of split-1 (HES1) in HEK293TΔE and downregulated Notch target genes. Importantly, EDD3 treatment of human oral cancer cell lines demonstrated reduction of Notch target proteins and genes. EDD3 also inhibited proliferation and induced G0/G1 cell cycle arrest of ORL-150 cells through inducing p27(KIP1). Our data demonstrates the utility of the zebrafish phenotypic screen and identifying EDD3 as a promising Notch antagonist for further development as a novel therapeutic agent.

  17. Phenotypic Heterogeneity of Monogenic Frontotemporal Dementia

    PubMed Central

    Benussi, Alberto; Padovani, Alessandro; Borroni, Barbara

    2015-01-01

    Frontotemporal dementia (FTD) is a genetically and pathologically heterogeneous disorder characterized by personality changes, language impairment, and deficits of executive functions associated with frontal and temporal lobe degeneration. Different phenotypes have been defined on the basis of presenting clinical symptoms, i.e., the behavioral variant of FTD, the agrammatic variant of primary progressive aphasia, and the semantic variant of PPA. Some patients have an associated movement disorder, either parkinsonism, as in progressive supranuclear palsy and corticobasal syndrome, or motor neuron disease (FTD–MND). A family history of dementia is found in 40% of cases of FTD and about 10% have a clear autosomal-dominant inheritance. Genetic studies have identified several genes associated with monogenic FTD: microtubule-associated protein tau, progranulin, TAR DNA-binding protein 43, valosin-containing protein, charged multivesicular body protein 2B, fused in sarcoma, and the hexanucleotide repeat expansion in intron 1 of the chromosome 9 open reading frame 72. Patients often present with an extensive phenotypic variability, even among different members of the same kindred carrying an identical disease mutation. The objective of the present work is to review and evaluate available literature data in order to highlight recent advances in clinical, biological, and neuroimaging features of monogenic frontotemporal lobar degeneration and try to identify different mechanisms underlying the extreme phenotypic heterogeneity that characterizes this disease. PMID:26388768

  18. Phenotypic variability of Cat-Eye syndrome.

    PubMed

    Berends, M J; Tan-Sindhunata, G; Leegte, B; van Essen, A J

    2001-01-01

    Cat-Eye syndrome (CES) is a disorder with a variable pattern of multiple congenital anomalies of which coloboma of the iris and anal atresia are the best known. CES is cytogenetically characterised by the presence of an extra bisatellited marker chromosome, which represents an inverted dicentric duplication of a part of chromosome 22 (inv dup(22)). We report on three CES-patients who carry an inv dup(22) diagnosed with FISH studies. They show remarkable phenotypic variability. The cause of this variability is unknown. Furthermore, we review clinical features of 71 reported patients. Only 41% of the CES-patients have the combination of iris coloboma, anal anomalies and pre-auricular anomalies. Therefore, almost 60% of the CES-patients are hard to recognize by their phenotype alone. Mild to moderate mental retardation was found in 32% (16/50) of the cases. Mental retardation occurs more frequently in male CES-patients. There is no apparent phenotypic difference between mentally retarded and mentally normal CES-patients.

  19. Phenotypic Variability in the Coccolithophore Emiliania huxleyi

    PubMed Central

    Lebrato, Mario; Stoll, Heather M.; Iglesias-Rodriguez, Debora; Müller, Marius N.; Méndez-Vicente, Ana; Oschlies, Andreas

    2016-01-01

    Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr and Mg). Their associated carbon export from the euphotic zone to the oceans' interior plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The coccolithophore Emiliania huxleyi has been widely studied as a model organism to understand physiological, biogeochemical, and ecological processes in marine sciences. Here, we show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E. huxleyi from various biogeographical provinces obtained from culture collections commonly used in the literature. Our results demonstrate that inter-strain genetic variability has greater potential to induce larger phenotypic differences than the phenotypic plasticity of single strains cultured under a broad range of variable environmental conditions. The range of variation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider phenotypic variability in paleoproxy calibrations and model parameterizations to adequately translate findings from single strain laboratory experiments to the real ocean. PMID:27348427

  20. The phenotypic spectrum of congenital Zika syndrome.

    PubMed

    Del Campo, Miguel; Feitosa, Ian M L; Ribeiro, Erlane M; Horovitz, Dafne D G; Pessoa, André L S; França, Giovanny V A; García-Alix, Alfredo; Doriqui, Maria J R; Wanderley, Hector Y C; Sanseverino, Maria V T; Neri, João I C F; Pina-Neto, João M; Santos, Emerson S; Verçosa, Islane; Cernach, Mirlene C S P; Medeiros, Paula F V; Kerbage, Saile C; Silva, André A; van der Linden, Vanessa; Martelli, Celina M T; Cordeiro, Marli T; Dhalia, Rafael; Vianna, Fernanda S L; Victora, Cesar G; Cavalcanti, Denise P; Schuler-Faccini, Lavinia

    2017-04-01

    In October 2015, Zika virus (ZIKV) outbreak the Brazilian Ministry of Health (MoH). In response, the Brazilian Society of Medical Genetics established a task force (SBGM-ZETF) to study the phenotype of infants born with microcephaly due to ZIKV congenital infection and delineate the phenotypic spectrum of this newly recognized teratogen. This study was based on the clinical evaluation and neuroimaging of 83 infants born during the period from July, 2015 to March, 2016 and registered by the SBGM-ZETF. All 83 infants had significant findings on neuroimaging consistent with ZIKV congenital infection and 12 had confirmed ZIKV IgM in CSF. A recognizable phenotype of microcephaly, anomalies of the shape of skull and redundancy of the scalp consistent with the Fetal Brain Disruption Sequence (FBDS) was present in 70% of infants, but was most often subtle. In addition, features consistent with fetal immobility, ranging from dimples (30.1%), distal hand/finger contractures (20.5%), and feet malpositions (15.7%), to generalized arthrogryposis (9.6%), were present in these infants. Some cases had milder microcephaly or even a normal head circumference (HC), and other less distinctive findings. The detailed observation of the dysmorphic and neurologic features in these infants provides insight into the mechanisms and timings of the brain disruption and the sequence of developmental anomalies that may occur after prenatal infection by the ZIKV.

  1. Forbidden phenotypes and the limits of evolution

    PubMed Central

    Vermeij, Geerat J.

    2015-01-01

    Evolution has produced an astonishing array of organisms, but does it have limits and, if so, how are these overcome and how have they changed over the course of time? Here, I review models for describing and explaining existing diversity, and then explore parts of the evolutionary tree that remain empty. In an analysis of 32 forbidden states among eukaryotes, identified in major clades and in the three great habitat realms of water, land and air, I argue that no phenotypic constraint is absolute, that most constraints reflect a limited time–energy budget available to individual organisms, that natural selection is ultimately responsible for both imposing and overcoming constraints, including those normally ascribed to developmental patterns of construction and phylogenetic conservatism, and that increases in adaptive versatility in major clades together with accompanying new ecological opportunities have eliminated many constraints. Phenotypes that were inaccessible during the Early Palaeozoic era have evolved during later periods while very few adaptive states have disappeared. The filling of phenotypic space has proceeded cumulatively in three overlapping phases characterized by diversification at the biochemical, morphological and cultural levels. PMID:26640643

  2. Olfactory phenotypic expression unveils human aging

    PubMed Central

    Mazzatenta, Andrea; Cellerino, Alessandro; Origlia, Nicola; Barloscio, Davide; Sartucci, Ferdinando; Giulio, Camillo Di; Domenici, Luciano

    2016-01-01

    The mechanism of the natural aging of olfaction and its declinein the absence of any overt disease conditions remains unclear. Here, we investigated this mechanism through measurement of one of the parameters of olfactory function, the absolute threshold, in a healthy population from childhood to old age. The absolute olfactory threshold data were collected from an Italian observational study with 622 participants aged 5-105 years. A subjective testing procedure of constant stimuli was used, which was also compared to the ‘staircase’ method, with the calculation of the reliability. The n-butanol stimulus was used as an ascending series of nine molar concentrations that were monitored using an electronic nose. The data were analyzed using nonparametric statistics because of the multimodal distribution. We show that the age-related variations in the absolute olfactory threshold are not continuous; instead, there are multiple olfactory phenotypes. Three distinct age-related phenotypes were defined, termed as ‘juvenile’, ‘mature’ and ‘elder’. The frequency of these three phenotypes depends on age. Our data suggest that the sense of smell does not decrease linearly with aging. Our findings provide the basis for further understanding of olfactory loss as an anticipatory sign of aging and neurodegenerative processes. PMID:27027240

  3. Dietary composition programmes placental phenotype in mice.

    PubMed

    Coan, P M; Vaughan, O R; McCarthy, J; Mactier, C; Burton, G J; Constância, M; Fowden, A L

    2011-07-15

    Dietary composition during pregnancy influences fetal and adult phenotype but its effects on placental phenotype remain largely unknown. Using molecular, morphological and functional analyses, placental nutrient transfer capacity was examined in mice fed isocaloric diets containing 23%, 18% or 9% casein (C) during pregnancy. At day 16, placental transfer of glucose, but not methyl-aminoisobutyric acid (MeAIB), was greater in C18 and C9 than C23 mice, in association with increased placental expression of the glucose transporter Slc2a1/GLUT1, and the growth factor Igf2. At day 19, placental glucose transport remained high in C9 mice while MeAIB transfer was less in C18 than C23 mice, despite greater placental weights in C18 and C9 than C23 mice. Placental System A amino acid transporter expression correlated with protein intake at day 19. Relative growth of transport verses endocrine zones of the placenta was influenced by diet at both ages without changing the absolute volume of the transport surface. Fetal weight was unaffected by diet at day 16 but was reduced in C9 animals by day 19. Morphological and functional adaptations in placental phenotype, therefore, occur to optimise nutrient transfer when dietary composition is varied, even subtly. This has important implications for the intrauterine programming of life expectancy.

  4. Reversible phenotypic plasticity with continuous adaptation.

    PubMed

    Pfab, Ferdinand; Gabriel, Wilfried; Utz, Margarete

    2016-01-01

    We introduce a novel model for continuous reversible phenotypic plasticity. The model includes a one-dimensional environmental gradient, and we describe performance of an organism as a function of the environmental state by a Gaussian tolerance curve. Organisms are assumed to adapt their tolerance curve after a change of the environmental state. We present a general framework for calculating the genotype fitness if such adaptations happen in a continuous manner and apply the model to a periodically changing environment. Significant differences of our model with previous models for plasticity are the continuity of adaptation, the presence of intermediate phenotypes, that the duration of transformations depends on their extent, fewer restrictions on the distribution of the environment, and a higher robustness with respect to assumptions about environmental fluctuations. Further, we show that continuous reversible plasticity is beneficial mainly when environmental changes occur slow enough so that fully developed phenotypes can be exhibited. Finally we discuss how the model framework can be generalized to a wide variety of biological scenarios from areas that include population dynamics, evolution of environmental tolerance and physiology.

  5. Phenotypic and dermatological manifestations in Down Syndrome.

    PubMed

    Sureshbabu, Rengasamy; Kumari, Rashmi; Ranugha, Subramaniam; Sathyamoorthy, Ramanathan; Udayashankar, Carounanidy; Oudeacoumar, Paquirissamy

    2011-02-15

    Down syndrome (DS) is associated with various uncommon dermatological disorders and increased frequency of some common dermatoses. This study was conducted over a 2-year period to evaluate the frequency of phenotypic and dermatologic manifestations in patients with Down syndrome in south India. The most common phenotypic manifestations that characterize DS include the epicanthic fold (93.7%), brachicephaly (90.6%), flat nasal bridge (84.2%), upward angle of eyes (83.2%), wide gap between first and second toe (81.1%), clinodactyly (77.9%), small nose (74.7%), short broad neck (72.6%), single palmar crease (61.1%), increased nuchal skin fold (61.1%), and fissured tongue (52.6%). The most common dermatological manifestation seen in patients with DS were lichenification, xerosis, dental anomaly, fine, sparse hair, and delayed dentition. Alopecia areata was seen in 9.4 percent of patients and tended to be severe. Infections were relatively less common in our study. Our study has highlighted many phenotypic features and dermatoses, which may help provide better care for patients and counseling to the families.

  6. Molecular mechanisms of phenotypic plasticity in social insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenism in insects, whereby a single genome expresses different phenotypes in response to environmental cues, is a fascinating biological phenomenon. Social insects are especially intriguing examples of phenotypic plasticity because division of labor results in the development of extreme morphol...

  7. Plants having modified response to ethylene by transformation with an ETR nucleic acid

    DOEpatents

    Meyerowitz, Elliott M.; Chang, Caren; Bleecker, Anthony B.

    2001-01-01

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  8. Microglial phenotypes in Parkinson's disease and animal models of the disease.

    PubMed

    Joers, Valerie; Tansey, Malú G; Mulas, Giovanna; Carta, Anna R

    2016-04-20

    Over the last decade the important concept has emerged that microglia, similar to other tissue macrophages, assume different phenotypes and serve several effector functions, generating the theory that activated microglia can be organized by their pro-inflammatory or anti-inflammatory and repairing functions. Importantly, microglia exist in a heterogenous population and their phenotypes are not permanently polarized into two categories; they exist along a continuum where they acquire different profiles based on their local environment. In Parkinson's disease (PD), neuroinflammation and microglia activation are considered neuropathological hallmarks, however their precise role in relation to disease progression is not clear, yet represent a critical challenge in the search of disease-modifying strategies. This review will critically address current knowledge on the activation states of microglia as well as microglial phenotypes found in PD and in animal models of PD, focusing on the expression of surface molecules as well as pro-inflammatory and anti-inflammatory cytokine production during the disease process. While human studies have reported an elevation of both pro- or anti-inflammatory markers in the serum and CSF of PD patients, animal models have provided insights on dynamic changes of microglia phenotypes in relation to disease progression especially prior to the development of motor deficits. We also review recent evidence of malfunction at multiple steps of NFκB signaling that may have a causal interrelationship with pathological microglia activation in animal models of PD. Finally, we discuss the immune-modifying strategies that have been explored regarding mechanisms of chronic microglial activation.

  9. Peripheral circadian clocks--a conserved phenotype?

    PubMed

    Weigl, Yuval; Harbour, Valerie L; Robinson, Barry; Dufresne, Line; Amir, Shimon

    2013-05-01

    The circadian system of mammals regulates the timing of occurrence of behavioral and physiological events, thereby optimizing adaptation to their surroundings. This system is composed of a single master pacemaker located in the suprachiasmatic nucleus (SCN) and a population of peripheral clocks. The SCN integrates time information from exogenous sources and, in turn, synchronizes the downstream peripheral clocks. It is assumed that under normal conditions, the circadian phenotype of different peripheral clocks would be conserved with respect to its period and robustness. To study this idea, we measured the daily wheel-running activity (WRA; a marker of the SCN output) in 84 male inbred LEW/Crl rats housed under a 12 h:12 h light-dark cycle. In addition, we assessed the mRNA expression of two clock genes, rPer2 and rBmal1, and one clock-controlled gene, rDbp, in four tissues that have the access to time cues other than those emanating from the SCN: olfactory bulbs (OBs), liver, tail skin, and white blood cells (WBCs). In contrast with the assumption stated above, we found that circadian clocks in peripheral tissues differ in the temporal pattern of the expression of circadian clock genes, in the robustness of the rhythms, and possibly in the number of functional ~24-h-clock cells. Based on the tissue diversity in the robustness of the clock output, the hepatic clock is likely to house the highest number of functional ~24-h-clock cells, and the OBs, the fewest number. Thus, the phenotype of the circadian clock in the periphery is tissue specific and may depend not only on the SCN but also on the sensitivity of the tissue to non-SCN-derived time cues. In the OBs and liver, the circadian clock phenotypes seem to be dominantly shaped by the SCN output. However, in the tail skin and WBC, other time cues participate in the phenotype design. Finally, our study suggests that the basic phenotype of the circadian clock is constructed at the transcript level of the core clock

  10. Syndromic (phenotypic) diarrhea in early infancy.

    PubMed

    Goulet, Olivier; Vinson, Christine; Roquelaure, Bertrand; Brousse, Nicole; Bodemer, Christine; Cézard, Jean-Pierre

    2008-02-28

    Syndromic diarrhea (SD), also known as phenotypic diarrhea (PD) or tricho-hepato-enteric syndrome (THE), is a congenital enteropathy presenting with early-onset of severe diarrhea requiring parenteral nutrition (PN). To date, no epidemiological data are available. The estimated prevalence is approximately 1/300,000-400,000 live births in Western Europe. Ethnic origin does not appear to be associated with SD. Infants are born small for gestational age and present with facial dysmorphism including prominent forehead and cheeks, broad nasal root and hypertelorism. Hairs are woolly, easily removed and poorly pigmented. Severe and persistent diarrhea starts within the first 6 months of life (phenotype with partial PN dependency or require only enteral feeding. Prognosis of this syndrome is poor, but most patients now survive, and about half of the patients may be weaned from PN at adolescence, but experience failure to thrive and final short stature. DISEASE NAME AND SYNONYMS: Syndromic

  11. Linking Post-Translational Modifications and Variation of Phenotypic Traits*

    PubMed Central

    Albertin, Warren; Marullo, Philippe; Bely, Marina; Aigle, Michel; Bourgais, Aurélie; Langella, Olivier; Balliau, Thierry; Chevret, Didier; Valot, Benoît; da Silva, Telma; Dillmann, Christine; de Vienne, Dominique; Sicard, Delphine

    2013-01-01

    Enzymes can be post-translationally modified, leading to isoforms with different properties. The phenotypic consequences of the quantitative variability of isoforms have never been studied. We used quantitative proteomics to dissect the relationships between the abundances of the enzymes and isoforms of alcoholic fermentation, metabolic traits, and growth-related traits in Saccharomyces cerevisiae. Although the enzymatic pool allocated to the fermentation proteome was constant over the culture media and the strains considered, there was variation in abundance of individual enzymes and sometimes much more of their isoforms, which suggests the existence of selective constraints on total protein abundance and trade-offs between isoforms. Variations in abundance of some isoforms were significantly associated to metabolic traits and growth-related traits. In particular, cell size and maximum population size were highly correlated to the degree of N-terminal acetylation of the alcohol dehydrogenase. The fermentation proteome was found to be shaped by human selection, through the differential targeting of a few isoforms for each food-processing origin of strains. These results highlight the importance of post-translational modifications in the diversity of metabolic and life-history traits. PMID:23271801

  12. Root bacterial endophytes alter plant phenotype, but not physiology

    PubMed Central

    Weston, David J.; Pelletier, Dale A.; Jawdy, Sara S.; Classen, Aimée T.

    2016-01-01

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. We chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, net photosynthesis, net photosynthesis at saturating light–Asat, and saturating CO2–Amax). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host. PMID:27833797

  13. Lethal pallister-killian syndrome: Phenotypic similarity with fryns syndrome

    SciTech Connect

    Ignacio Rodriquez, J.; Garcia, I.; Alvarez, J.; Delicado, A.; Palacios, J.

    1994-11-01

    The Pallister-Killian syndrome is a sporadic multiple congenital anomaly syndrome characterized by {open_quotes}coarse{close_quotes} face, profound mental retardation, and epilepsy. Chromosomes of peripheral lymphocytes are usually normal, but tissue cultures show varying degrees of mosaicism for isochromosome 12p. In babies who die neonatally of severe malformations, including diaphragmatic hernia, and who also have a {open_quotes}coarse{close_quotes} face, acral hypoplasia, and other internal anomalies, Fryns syndrome is more likely to be suspected than Pallister-Killian syndrome, especially if karyotyping is unavailable or if peripheral lumphocytes have a normal chromosome constitution. An initial diagnosis of Fryns syndrome had to be modified in 3 successive newborn infants since chromosome analysis or in situ hybridization with a chromosome 12 probe on kidney tissue demonstrated the mosaic aneuploidy characteristic of Pallister-Killian syndrome. These 3 patients confirm that a similar pattern of malformations can be present in both conditions at birth. It consists of {open_quotes}coarse{close_quotes} face, acral hypoplasia, diaphragmatic hernia, and other defects. Newborn infants who present this phenotype, but lack a conclusively normal chromosome test, may not have Fryns syndrome. A diagnosis of Fryns syndrome should be made carefully to avoid the risk of inappropriate genetic counseling. 31 refs., 10 figs., 1 tab.

  14. Social Cognition, Social Skill, and the Broad Autism Phenotype

    ERIC Educational Resources Information Center

    Sasson, Noah J.; Nowlin, Rachel B.; Pinkham, Amy E.

    2013-01-01

    Social-cognitive deficits differentiate parents with the "broad autism phenotype" from non-broad autism phenotype parents more robustly than other neuropsychological features of autism, suggesting that this domain may be particularly informative for identifying genetic and brain processes associated with the phenotype. The current study…

  15. Effects of perinatal, late foetal, and early embryonic insults on the cardiovascular phenotype in experimental animal models and humans.

    PubMed

    Meister, Theo Arthur; Rexhaj, Emrush; Rimoldi, Stefano Flavio; Scherrer, Urs; Sartori, Claudio

    2016-11-01

    Cardiovascular diseases are the main cause of mortality and morbidity in Western countries, but the underlying mechanisms are still poorly understood. Genetic polymorphisms, once thought to represent a major determinant of cardiovascular risk, individually and collectively, only explain a tiny fraction of phenotypic variation and disease risk in humans. It is now clear that non-genetic factors, i.e., factors that modify gene activity without changing the DNA sequence and that are sensitive to the environment can cause important alterations of the cardiovascular phenotype in experimental animal models and humans. Here, we will review recent studies demonstrating that distinct pathological events during the perinatal (transient perinatal hypoxemia), late foetal (preeclampsia), and early embryonic (assisted reproductive technologies) periods induce profound alterations of the cardiovascular phenotype in humans and experimental animals. Moreover, we will provide evidence that epigenetic modifications are contributing importantly to this problem and are conferring the potential for its transmission to subsequent generations.

  16. Phenotypic Variability Associated with a Large Recurrent 1q21.1 Microduplication in a Three-Generation Family

    PubMed Central

    Verhagen, Judith M.A.; de Leeuw, Nicole; Papatsonis, Dimitri N.M.; Grijseels, Els W.M.; de Krijger, Ronald R.; Wessels, Marja W.

    2015-01-01

    Recurrent copy number variants of the q21.1 region of chromosome 1 have been associated with variable clinical features, including developmental delay, mild to moderate intellectual disability, psychiatric and behavioral problems, congenital heart malformations, and craniofacial abnormalities. A subset of individuals is clinically unaffected. We describe a unique 3-generation family with a large recurrent 1q21.1 microduplication (BP2-BP4). Our observations underline the incomplete penetrance and phenotypic variability of this rearrangement. We also confirm the association with congenital heart malformations, chronic depression, and anxiety. Furthermore, we report a broader range of dysmorphic features. The extreme phenotypic heterogeneity observed in this family suggests that additional factors modify the clinical phenotype. PMID:26279651

  17. Advances in biotechnology and informatics to link variation in the genome to phenotypes in plants and animals.

    PubMed

    Appels, R; Barrero, R; Bellgard, M

    2013-03-01

    Advances in our understanding of genome structure provide consistent evidence for the existence of a core genome representing species classically defined by phenotype, as well as conditionally dispensable components of the genome that shows extensive variation between individuals of a given species. Generally, conservation of phenotypic features between species reflects conserved features of the genome; however, this is evidently not necessarily always the case as demonstrated by the analysis of the tunicate chordate Oikopleura dioica. In both plants and animals, the methylation activity of DNA and histones continues to present new variables for modifying (eventually) the phenotype of an organism and provides for structural variation that builds on the point mutations, rearrangements, indels, and amplification of retrotransposable elements traditionally considered. The translation of the advances in the structure/function analysis of the genome to industry is facilitated through the capture of research outputs in "toolboxes" that remain accessible in the public domain.

  18. [Phenotypic heterogeneity and phenotype-genotype correlations in dystrophinopathies: Contribution of genetic and clinical databases].

    PubMed

    Humbertclaude, V; Hamroun, D; Picot, M-C; Bezzou, K; Bérard, C; Boespflug-Tanguy, O; Bommelaer, C; Campana-Salort, E; Cances, C; Chabrol, B; Commare, M-C; Cuisset, J-M; de Lattre, C; Desnuelle, C; Echenne, B; Halbert, C; Jonquet, O; Labarre-Vila, A; N'guyen-Morel, M-A; Pages, M; Pepin, J-L; Petitjean, T; Pouget, J; Ollagnon-Roman, E; Richelme, C; Rivier, F; Sacconi, S; Tiffreau, V; Vuillerot, C; Béroud, C; Tuffery-Giraud, S; Claustres, M

    2013-01-01

    The objective of this work was to study the natural history of dystrophinopathies and the genotype-phenotype correlations made possible by the development of the clinical part of the French DMD database. The collection of 70,000 clinical data for 600 patients with an average longitudinal follow-up of 12years enabled clarification of the natural history of Duchenne and Becker muscular dystrophies and clinical presentations in symptomatic females. We were able to specify the phenotypic heterogeneity of motor, orthopedic and respiratory involvements (severe, standard and intermediary form), of the cardiac disorder (severe, standard or absent cardiomyopathy, absence of correlation between motor and cardiac involvements), and of brain function (mental deficiency in the patients with Becker muscular dystrophy, psychopathological disorders in dystrophinopathies). Phenotypic variability did not correlate with a specific mutational spectrum. We propose a model of phenotypic analysis based on the presence or not of muscular and cardiac involvements (described by age at onset and rate of progression) and brain involvement (described by the type and the severity of the cognitive impairment and of the psychological disorders). The methodology developed for the DMD gene can be generalized and used for other databases dedicated to genetic diseases. Application of this model of phenotypic analysis for each patient and further development of the database should contribute substantially to clinical research providing useful tools for future clinical trials.

  19. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity.

    PubMed

    Murren, C J; Auld, J R; Callahan, H; Ghalambor, C K; Handelsman, C A; Heskel, M A; Kingsolver, J G; Maclean, H J; Masel, J; Maughan, H; Pfennig, D W; Relyea, R A; Seiter, S; Snell-Rood, E; Steiner, U K; Schlichting, C D

    2015-10-01

    Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently costly. In addition, we examine opportunities to offset costs of phenotypes through ontogeny, amelioration of phenotypic costs across environments, and the condition-dependent hypothesis. We propose avenues of further inquiry in the limits of plasticity using new and classic methods of ecological parameterization, phylogenetics and omics in the context of answering questions on the constraints of plasticity. Given plasticity's key role in coping with environmental change, approaches spanning the spectrum from applied to basic will greatly enrich our understanding of the evolution of plasticity and resolve our understanding of limits.

  20. GGCX-Associated Phenotypes: An Overview in Search of Genotype-Phenotype Correlations

    PubMed Central

    De Vilder, Eva Y. G.; Debacker, Jens; Vanakker, Olivier M.

    2017-01-01

    Gamma-carboxylation, performed by gamma-glutamyl carboxylase (GGCX), is an enzymatic process essential for activating vitamin K-dependent proteins (VKDP) with important functions in various biological processes. Mutations in the encoding GGCX gene are associated with multiple phenotypes, amongst which vitamin K-dependent coagulation factor deficiency (VKCFD1) is best known. Other patients have skin, eye, heart or bone manifestations. As genotype–phenotype correlations were never described, literature was systematically reviewed in search of patients with at least one GGCX mutation with a phenotypic description, resulting in a case series of 47 patients. Though this number was too low for statistically valid correlations—a frequent problem in orphan diseases—we demonstrate the crucial role of the horizontally transferred transmembrane domain in developing cardiac and bone manifestations. Moreover, natural history suggests ageing as the principal determinant to develop skin and eye symptoms. VKCFD1 symptoms seemed more severe in patients with both mutations in the same protein domain, though this could not be linked to a more perturbed coagulation factor function. Finally, distinct GGCX functional domains might be dedicated to carboxylation of very specific VKDP. In conclusion, this systematic review suggests that there indeed may be genotype–phenotype correlations for GGCX-related phenotypes, which can guide patient counseling and management. PMID:28125048

  1. Automated local bright feature image analysis of nuclear proteindistribution identifies changes in tissue phenotype

    SciTech Connect

    Knowles, David; Sudar, Damir; Bator, Carol; Bissell, Mina

    2006-02-01

    The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest proliferation, undergo apoptosis, or differentiate, the distribution of nuclear proteins changes. Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. Immunostaining and fluorescence microscopy have been critical for such findings. However, there is an increasing need for quantitative analysis of nuclear protein distribution to decipher epigenetic relationships between nuclear structure and cell phenotype, and to unravel the mechanisms linking nuclear structure and function. We have developed imaging methods to quantify the distribution of fluorescently-stained nuclear protein NuMA in different mammary phenotypes obtained using three-dimensional cell culture. Automated image segmentation of DAPI-stained nuclei was generated to isolate thousands of nuclei from three-dimensional confocal images. Prominent features of fluorescently-stained NuMA were detected using a novel local bright feature analysis technique, and their normalized spatial density calculated as a function of the distance from the nuclear perimeter to its center. The results revealed marked changes in the distribution of the density of NuMA bright features as non-neoplastic cells underwent phenotypically normal acinar morphogenesis. In contrast, we did not detect any reorganization of NuMA during the formation of tumor nodules by malignant cells. Importantly, the analysis also discriminated proliferating non-neoplastic cells from proliferating malignant cells, suggesting that these imaging methods are capable of identifying alterations linked not only to the proliferation status but also to the malignant character of cells. We believe that this quantitative analysis will have additional applications for classifying normal and pathological tissues.

  2. [Biotechnology using modified microorganisms].

    PubMed

    Deshayes, A F

    1992-11-01

    Few microorganisms, as compare to their high diversity, are used for human needs. They can produce molecules of interest, process fermentation, protect crops, treat wastes or clean environment. Molecular technics and genetic engineering are new tools offer to geneticists which breed microorganisms for years. Using them, it is now possible, theoretically, to introduce any gene in any organism. Some examples are given concerning genetic modifications in yeasts and lactic acid bacteria to optimize agrofood processes and to improve nutritive and flavour characteristics of fermented products like bread, beer, wine, cheese, meat, vegetable juices... In spite of scientific and industrial interest of the new technologies, limiting factors can explain that genetically modified microorganisms are not routinely used in agrofood yet. First, risks assessment on human health and environment are still in debate, but their is a consensus, within the scientific community, to consider that new characteristics of improved microorganisms are more important than the technics used for their construction. Second, regulations turn out to impose constraints susceptible to discourage technological innovations. At least, the public perception about the new technologies appears, actually, as the major factor to limit their development.

  3. Distinguishing modified gravity models

    SciTech Connect

    Brax, Philippe

    2015-10-01

    Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations.

  4. Nile red fluorescence screening facilitating neutral lipid phenotype determination in budding yeast, Saccharomyces cerevisiae, and the fission yeast Schizosaccharomyces pombe.

    PubMed

    Rostron, Kerry A; Rolph, Carole E; Lawrence, Clare L

    2015-07-01

    Investigation of yeast neutral lipid accumulation is important for biotechnology and also for modelling aberrant lipid metabolism in human disease. The Nile red (NR) method has been extensively utilised to determine lipid phenotypes of yeast cells via microscopic means. NR assays have been used to differentiate lipid accumulation and relative amounts of lipid in oleaginous species but have not been thoroughly validated for phenotype determination arising from genetic modification. A modified NR assay, first described by Sitepu et al. (J Microbiol Methods 91:321-328, 2012), was able to detect neutral lipid changes in Saccharomyces cerevisiae deletion mutants with sensitivity similar to more advanced methodology. We have also be able to, for the first time, successfully apply the NR assay to the well characterised fission yeast Schizosaccharomyces pombe, an increasingly important organism in biotechnology. The described NR fluorescence assay is suitable for increased throughput and rapid screening of genetically modified strains in both the biotechnology industry and for modelling ectopic lipid production for a variety of human diseases. This ultimately negates the need for labour intensive and time consuming lipid analyses of samples that may not yield a desirable lipid phenotype, whilst genetic modifications impacting significantly on the cellular lipid phenotype can be further promoted for more in depth analyses.

  5. Intein-modified enzymes, their production and industrial applications

    DOEpatents

    Apgar, James; Lessard, Philip; Raab, Michael R.; Shen, Binzhang; Lazar, Gabor; de la Vega, Humberto

    2016-10-11

    A method of predicting an intein insertion site in a protein that will lead to a switching phenotype is provided. The method includes identifying a plurality of C/T/S sites within the protein; selecting from the plurality of C/T/S/ sites those that are ranked 0.75 or higher by a support vector machine, within ten angstroms of the active site of the protein, and at or near a loop-.beta.-sheet junction or a loop-.alpha.-helix junction. A method of controlling protein activity and hosts including proteins with controlled activity are also provided. Also, intein modified proteins and plants containing intein modified proteins are provided.

  6. A multiple phenotype predator-prey model with mutation

    NASA Astrophysics Data System (ADS)

    Abernethy, Gavin M.; Mullan, Rory; Glass, David H.; McCartney, Mark

    2017-01-01

    An existing multiple phenotype predator-prey model is expanded to include mutation amongst the predator phenotypes. Two unimodal maps are used for the underlying dynamics of the prey. A predation strategy is also defined which differs for each of the predators in the model. Results show that the introduction of predator mutation enhances predator survival both in terms of the number of phenotypes and total population for a range of values of the predation rate. In general, the dominant predator phenotype is the one which is most focused on the prey phenotype with the largest population.

  7. Study of modifiers factors associated to mitochondrial mutations in individuals with hearing impairment

    SciTech Connect

    Sousa de Moraes, Vanessa Cristine; Alexandrino, Fabiana; Andrade, Paula Baloni; Camara, Marilia Fontenele; Sartorato, Edi Lucia

    2009-04-03

    Hearing impairment is the most prevalent sensorial deficit in the general population. Congenital deafness occurs in about 1 in 1000 live births, of which approximately 50% has hereditary cause in development countries. Non-syndromic deafness can be caused by mutations in both nuclear and mitochondrial genes. Mutations in mtDNA have been associated with aminoglycoside-induced and non-syndromic deafness in many families worldwide. However, the nuclear background influences the phenotypic expression of these pathogenic mutations. Indeed, it has been proposed that nuclear modifier genes modulate the phenotypic manifestation of the mitochondrial A1555G mutation in the MTRNR1 gene. The both putative nuclear modifiers genes TRMU and MTO1 encoding a highly conserved mitochondrial related to tRNA modification. It has been hypothesizes that human TRMU and also MTO1 nuclear genes may modulate the phenotypic manifestation of deafness-associated mitochondrial mutations. The aim of this work was to elucidate the contribution of mitochondrial mutations, nuclear modifier genes mutations and aminoglycoside exposure in the deafness phenotype. Our findings suggest that the genetic background of individuals may play an important role in the pathogenesis of deafness-associated with mitochondrial mutation and aminoglycoside-induced.

  8. Invasion strategies in clonal aquatic plants: are phenotypic differences caused by phenotypic plasticity or local adaptation?

    PubMed Central

    Riis, Tenna; Lambertini, Carla; Olesen, Birgit; Clayton, John S.; Brix, Hans; Sorrell, Brian K.

    2010-01-01

    Background and Aims The successful spread of invasive plants in new environments is often linked to multiple introductions and a diverse gene pool that facilitates local adaptation to variable environmental conditions. For clonal plants, however, phenotypic plasticity may be equally important. Here the primary adaptive strategy in three non-native, clonally reproducing macrophytes (Egeria densa, Elodea canadensis and Lagarosiphon major) in New Zealand freshwaters were examined and an attempt was made to link observed differences in plant morphology to local variation in habitat conditions. Methods Field populations with a large phenotypic variety were sampled in a range of lakes and streams with different chemical and physical properties. The phenotypic plasticity of the species before and after cultivation was studied in a common garden growth experiment, and the genetic diversity of these same populations was also quantified. Key Results For all three species, greater variation in plant characteristics was found before they were grown in standardized conditions. Moreover, field populations displayed remarkably little genetic variation and there was little interaction between habitat conditions and plant morphological characteristics. Conclusions The results indicate that at the current stage of spread into New Zealand, the primary adaptive strategy of these three invasive macrophytes is phenotypic plasticity. However, while limited, the possibility that genetic diversity between populations may facilitate ecotypic differentiation in the future cannot be excluded. These results thus indicate that invasive clonal aquatic plants adapt to new introduced areas by phenotypic plasticity. Inorganic carbon, nitrogen and phosphorous were important in controlling plant size of E. canadensis and L. major, but no other relationships between plant characteristics and habitat conditions were apparent. This implies that within-species differences in plant size can be explained

  9. Phenotype Sequencing: Identifying the Genes That Cause a Phenotype Directly from Pooled Sequencing of Independent Mutants

    PubMed Central

    Harper, Marc A.; Chen, Zugen; Toy, Traci; Machado, Iara M. P.; Nelson, Stanley F.; Liao, James C.; Lee, Christopher J.

    2011-01-01

    Random mutagenesis and phenotype screening provide a powerful method for dissecting microbial functions, but their results can be laborious to analyze experimentally. Each mutant strain may contain 50–100 random mutations, necessitating extensive functional experiments to determine which one causes the selected phenotype. To solve this problem, we propose a “Phenotype Sequencing” approach in which genes causing the phenotype can be identified directly from sequencing of multiple independent mutants. We developed a new computational analysis method showing that 1. causal genes can be identified with high probability from even a modest number of mutant genomes; 2. costs can be cut many-fold compared with a conventional genome sequencing approach via an optimized strategy of library-pooling (multiple strains per library) and tag-pooling (multiple tagged libraries per sequencing lane). We have performed extensive validation experiments on a set of E. coli mutants with increased isobutanol biofuel tolerance. We generated a range of sequencing experiments varying from 3 to 32 mutant strains, with pooling on 1 to 3 sequencing lanes. Our statistical analysis of these data (4099 mutations from 32 mutant genomes) successfully identified 3 genes (acrB, marC, acrA) that have been independently validated as causing this experimental phenotype. It must be emphasized that our approach reduces mutant sequencing costs enormously. Whereas a conventional genome sequencing experiment would have cost $7,200 in reagents alone, our Phenotype Sequencing design yielded the same information value for only $1200. In fact, our smallest experiments reliably identified acrB and marC at a cost of only $110–$340. PMID:21364744

  10. The Skeletal Phenotype of Chondroadherin Deficient Mice

    PubMed Central

    Wenglén, Christina; Petzold, Christiane; Tanner, Elizabeth K.; Brorson, Sverre-Henning; Baekkevold, Espen S.; Önnerfjord, Patrik; Reinholt, Finn P.; Heinegård, Dick

    2013-01-01

    Chondroadherin, a leucine rich repeat extracellular matrix protein with functions in cell to matrix interactions, binds cells via their α2β1 integrin as well as via cell surface proteoglycans, providing for different sets of signals to the cell. Additionally, the protein acts as an anchor to the matrix by binding tightly to collagens type I and II as well as type VI. We generated mice with inactivated chondroadherin gene to provide integrated studies of the role of the protein. The null mice presented distinct phenotypes with affected cartilage as well as bone. At 3–6 weeks of age the epiphyseal growth plate was widened most pronounced in the proliferative zone. The proteome of the femoral head articular cartilage at 4 months of age showed some distinct differences, with increased deposition of cartilage intermediate layer protein 1 and fibronectin in the chondroadherin deficient mice, more pronounced in the female. Other proteins show decreased levels in the deficient mice, particularly pronounced for matrilin-1, thrombospondin-1 and notably the members of the α1-antitrypsin family of proteinase inhibitors as well as for a member of the bone morphogenetic protein growth factor family. Thus, cartilage homeostasis is distinctly altered. The bone phenotype was expressed in several ways. The number of bone sialoprotein mRNA expressing cells in the proximal tibial metaphysic was decreased and the osteoid surface was increased possibly indicating a change in mineral metabolism. Micro-CT revealed lower cortical thickness and increased structure model index, i.e. the amount of plates and rods composing the bone trabeculas. The structural changes were paralleled by loss of function, where the null mice showed lower femoral neck failure load and tibial strength during mechanical testing at 4 months of age. The skeletal phenotype points at a role for chondroadherin in both bone and cartilage homeostasis, however, without leading to altered longitudinal growth. PMID

  11. Two Clinical Phenotypes in Polycythemia Vera

    PubMed Central

    Spivak, Jerry L.; Considine, Michael; Williams, Donna M.; Talbot, Conover C.; Rogers, Ophelia; Moliterno, Alison R.; Jie, Chunfa; Ochs, Michael F.

    2014-01-01

    BACKGROUND Polycythemia vera is the ultimate phenotypic consequence of the V617F mutation in Janus kinase 2 (encoded by JAK2), but the extent to which this mutation influences the behavior of the involved CD34+ hematopoietic stem cells is unknown. METHODS We analyzed gene expression in CD34+ peripheral-blood cells from 19 patients with polycythemia vera, using oligonucleotide microarray technology after correcting for potential confounding by sex, since the phenotypic features of the disease differ between men and women. RESULTS Men with polycythemia vera had twice as many up-regulated or down-regulated genes as women with polycythemia vera, in a comparison of gene expression in the patients and in healthy persons of the same sex, but there were 102 genes with differential regulation that was concordant in men and women. When these genes were used for class discovery by means of unsupervised hierarchical clustering, the 19 patients could be divided into two groups that did not differ significantly with respect to age, neutrophil JAK2 V617F allele burden, white-cell count, platelet count, or clonal dominance. However, they did differ significantly with respect to disease duration; hemoglobin level; frequency of thromboembolic events, palpable splenomegaly, and splenectomy; chemotherapy exposure; leukemic transformation; and survival. The unsupervised clustering was confirmed by a supervised approach with the use of a top-scoring-pair classifier that segregated the 19 patients into the same two phenotypic groups with 100% accuracy. CONCLUSIONS Removing sex as a potential confounder, we identified an accurate molecular method for classifying patients with polycythemia vera according to disease behavior, independently of their JAK2 V617F allele burden, and identified previously unrecognized molecular pathways in polycythemia vera outside the canonical JAK2 pathway that may be amenable to targeted therapy. PMID:25162887

  12. Modeling the Autism Spectrum Disorder Phenotype

    PubMed Central

    McCray, Alexa T.; Trevvett, Philip; Frost, H. Robert

    2013-01-01

    Background Autism Spectrum Disorder (ASD) is highly heritable, and although there has been active research in an attempt to discover the genetic factors underlying ASD, diagnosis still depends heavily on behavioral assessments. Recently, several large-scale initiatives, including those of the Autism Consortium, have contributed to the collection of extensive information from families affected by ASD. Purpose Our goal was to develop an ontology that can be used 1) to provide improved access to the data collected by those who study ASD and other neurodevelopmental disorders, and 2) to assess and compare the characteristics of the instruments that are used in the assessment of ASD. Materials and Methods We analyzed two dozen instruments used to assess ASD, studying the nature of the questions asked and items assessed, the method of delivery, and the overall scope of the content. These data together with the extensive literature on ASD contributed to our iterative development of an ASD phenotype ontology. Results The final ontology comprises 283 concepts distributed across three high-level classes, ‘Personal Traits’, ‘Social Competence’, and ‘Medical History’. The ontology is fully integrated with the Autism Consortium database, allowing researchers to pose ontology-based questions. The ontology also allows researchers to assess the degree of overlap among a set of candidate instruments according to several objective criteria. Conclusions The ASD phenotype ontology has promise for use in research settings where extensive phenotypic data have been collected, allowing a concept-based approach to identifying behavioral features of importance and for correlating these with genotypic data. PMID:24163114

  13. Molecular Basis of KELnull Phenotype in Brazilians

    PubMed Central

    Boturão-Neto, Edmir; Yamamoto, Mihoko; Chiba, Akemi Kuroda; Kimura, Elisa Yuriko Sugano; de Oliveira, Maria do Carmo Valgueiro Costa; do Monte Barretto, Cláudia Lumack; Nunes, Mércia Maria Alves; Albuquerque, Sérgio Roberto Lopes; de Deus Santos, Marcos Daniel; Bordin, José Orlando

    2015-01-01

    Summary Background KELnull (K0) persons can produce clinically significant anti-KEL5 antibody after transfusion and/or pregnancy, requiring K0 blood transfusion when indicated. 37 K0 alleles have been reported in studies over different populations, but none in Amerindian-Caucasian descendants from South America. The aim of this study was to identify the molecular basis of K0 phenotype in Brazilians. Methods We investigated three K0 samples from different Brazilian blood banks (Recife, Manaus, and Vila Velha) in women with anti-KEL5. KEL antigen typing was performed by serologic techniques, and the K0 status was confirmed by flow cytometry. PCR-RFLP and DNA sequencing of the KEL coding and exon-intron regions were also performed. Results RBCs of the 3 patients were phenotyped as KEL:-1,−2,−3,−4,−7. The 3 patients had the same KEL*02/02 genotype and were negative for KEL*02.03 and KEL*02.06 alleles. The Recife K0 patient was homozygous for IVS16 + 1g>a mutation (KEL*02N.31 allele). The flow cytometry with anti-KEL1, anti-KEL2, anti-KEL3, anti-KEL4, and anti-CD238 confirmed the K0 phenotype. In addition, we found the c.10423C>T mutation (KEL*02N.04 allele) in both the Manaus K0 and the Vila Velha K0 patients. Conclusion This report represents the first study of K0 molecular basis performed in Amerindian-Caucasian descendants from South America. PMID:25960716

  14. The Ecology and Evolution of Stoichiometric Phenotypes.

    PubMed

    Leal, Miguel C; Seehausen, Ole; Matthews, Blake

    2017-02-01

    Ecological stoichiometry has generated new insights into how the balance of elements affects ecological interactions and ecosystem processes, but little is known about the ecological and evolutionary dynamics of stoichiometric traits. Understanding the origins and drivers of stoichiometric trait variation between and within species will improve our understanding about the ecological responses of communities to environmental change and the ecosystem effects of organisms. In addition, studying the plasticity, heritability, and genetic basis of stoichiometric traits might improve predictions about how organisms adapt to changing environmental conditions, and help to identify interactions and feedbacks between phenotypic evolution and ecosystem processes.

  15. Fryns syndrome phenotype and trisomy 22

    SciTech Connect

    Ladonne, J.M.; Gaillard, D.; Carre-Pigeon, F.; Gabriel, R.

    1996-01-02

    Trisomy 22 was detected in a 32-week-old fetus born to an overweight mother with hypertension. Severe intrauterine growth retardation was associated with phenotypic manifestations of Fryns Syndrome: Diaphragmatic hernia, facial defects, and nail hypoplasia with short distal fifth phalanges. This is the second report of congenital diaphragmatic hernia in trisomy 22. This case demonstrates the importance of karyotyping malformed fetuses or newborns, even if a nonchromosome syndrome seems identifiable on clinical grounds. To date, at least 10 cases of Fryns syndrome have been reported without chromosome analysis. 32 refs., 2 figs.

  16. Effects of nanotopography on stem cell phenotypes

    PubMed Central

    Ravichandran, Rajeswari; Liao, Susan; Ng, Clarisse CH; Chan, Casey K; Raghunath, Michael; Ramakrishna, Seeram

    2009-01-01

    Stem cells are unspecialized cells that can self renew indefinitely and differentiate into several somatic cells given the correct environmental cues. In the stem cell niche, stem cell-extracellular matrix (ECM) interactions are crucial for different cellular functions, such as adhesion, proliferation, and differentiation. Recently, in addition to chemical surface modifications, the importance of nanometric scale surface topography and roughness of biomaterials has increasingly becoming recognized as a crucial factor for cell survival and host tissue acceptance in synthetic ECMs. This review describes the influence of nanotopography on stem cell phenotypes. PMID:21607108

  17. The Changing Phenotype of Inflammatory Bowel Disease

    PubMed Central

    Sheehan, Donal; Shanahan, Fergus

    2016-01-01

    It is widely known that there have been improvements in patient care and an increased incidence of Inflammatory Bowel Disease (IBD) worldwide in recent decades. However, less well known are the phenotypic changes that have occurred; these are discussed in this review. Namely, we discuss the emergence of obesity in patients with IBD, elderly onset disease, mortality rates, colorectal cancer risk, the burden of medications and comorbidities, and the improvement in surgical treatment with a decrease in surgical rates in recent decades. PMID:28050166

  18. The genotype-phenotype map of an evolving digital organism.

    PubMed

    Fortuna, Miguel A; Zaman, Luis; Ofria, Charles; Wagner, Andreas

    2017-02-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable.

  19. The genotype-phenotype map of an evolving digital organism

    PubMed Central

    Zaman, Luis; Wagner, Andreas

    2017-01-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable. PMID:28241039

  20. Semaphorin 3A Shifts Adipose Mesenchymal Stem Cells towards Osteogenic Phenotype and Promotes Bone Regeneration In Vivo

    PubMed Central

    Liu, Xiangwei; Tan, Naiwen; Zhou, Yuchao; Zhou, Xueying; Chen, Hui; Wei, Hongbo; Chen, Ji; Xu, Xiaoru; Zhang, Sijia

    2016-01-01

    Adipose mesenchymal stem cells (ASCs) are considered as the promising seed cells for bone regeneration. However, the lower osteogenic differentiation capacity limits its therapeutic efficacy. Identification of the key molecules governing the differences between ASCs and BMSCs would shed light on manipulation of ASCs towards osteogenic phenotype. In this study, we screened semaphorin family members in ASCs and BMSCs and identified Sema3A as an osteogenic semaphorin that was significantly and predominantly expressed in BMSCs. The analyses in vitro showed that the overexpression of Sema3A in ASCs significantly enhanced the expression of bone-related genes and extracellular matrix calcium deposition, while decreasing the expression of adipose-related genes and thus lipid droplet formation, resembling a BMSCs phenotype. Furthermore, Sema3A modified ASCs were then engrafted into poly(lactic-co-glycolic acid) (PLGA) scaffolds to repair the critical-sized calvarial defects in rat model. As expected, Sema3A modified ASCs encapsulation significantly promoted new bone formation with higher bone volume fraction and bone mineral density. Additionally, Sema3A was found to simultaneously increase multiple Wnt related genes and thus activating Wnt pathway. Taken together, our study here identifies Sema3A as a critical gene for osteogenic phenotype and reveals that Sema3A-modified ASCs would serve as a promising candidate for bettering bone defect repair. PMID:27721834

  1. High-throughput discovery of novel developmental phenotypes.

    PubMed

    Dickinson, Mary E; Flenniken, Ann M; Ji, Xiao; Teboul, Lydia; Wong, Michael D; White, Jacqueline K; Meehan, Terrence F; Weninger, Wolfgang J; Westerberg, Henrik; Adissu, Hibret; Baker, Candice N; Bower, Lynette; Brown, James M; Caddle, L Brianna; Chiani, Francesco; Clary, Dave; Cleak, James; Daly, Mark J; Denegre, James M; Doe, Brendan; Dolan, Mary E; Edie, Sarah M; Fuchs, Helmut; Gailus-Durner, Valerie; Galli, Antonella; Gambadoro, Alessia; Gallegos, Juan; Guo, Shiying; Horner, Neil R; Hsu, Chih-Wei; Johnson, Sara J; Kalaga, Sowmya; Keith, Lance C; Lanoue, Louise; Lawson, Thomas N; Lek, Monkol; Mark, Manuel; Marschall, Susan; Mason, Jeremy; McElwee, Melissa L; Newbigging, Susan; Nutter, Lauryl M J; Peterson, Kevin A; Ramirez-Solis, Ramiro; Rowland, Douglas J; Ryder, Edward; Samocha, Kaitlin E; Seavitt, John R; Selloum, Mohammed; Szoke-Kovacs, Zsombor; Tamura, Masaru; Trainor, Amanda G; Tudose, Ilinca; Wakana, Shigeharu; Warren, Jonathan; Wendling, Olivia; West, David B; Wong, Leeyean; Yoshiki, Atsushi; MacArthur, Daniel G; Tocchini-Valentini, Glauco P; Gao, Xiang; Flicek, Paul; Bradley, Allan; Skarnes, William C; Justice, Monica J; Parkinson, Helen E; Moore, Mark; Wells, Sara; Braun, Robert E; Svenson, Karen L; de Angelis, Martin Hrabe; Herault, Yann; Mohun, Tim; Mallon, Ann-Marie; Henkelman, R Mark; Brown, Steve D M; Adams, David J; Lloyd, K C Kent; McKerlie, Colin; Beaudet, Arthur L; Bućan, Maja; Murray, Stephen A

    2016-09-22

    Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.

  2. High-throughput discovery of novel developmental phenotypes

    PubMed Central

    Dickinson, Mary E.; Flenniken, Ann M.; Ji, Xiao; Teboul, Lydia; Wong, Michael D.; White, Jacqueline K.; Meehan, Terrence F.; Weninger, Wolfgang J.; Westerberg, Henrik; Adissu, Hibret; Baker, Candice N.; Bower, Lynette; Brown, James M.; Caddle, L. Brianna; Chiani, Francesco; Clary, Dave; Cleak, James; Daly, Mark J.; Denegre, James M.; Doe, Brendan; Dolan, Mary E.; Edie, Sarah M.; Fuchs, Helmut; Gailus-Durner, Valerie; Galli, Antonella; Gambadoro, Alessia; Gallegos, Juan; Guo, Shiying; Horner, Neil R.; Hsu, Chih-wei; Johnson, Sara J.; Kalaga, Sowmya; Keith, Lance C.; Lanoue, Louise; Lawson, Thomas N.; Lek, Monkol; Mark, Manuel; Marschall, Susan; Mason, Jeremy; McElwee, Melissa L.; Newbigging, Susan; Nutter, Lauryl M.J.; Peterson, Kevin A.; Ramirez-Solis, Ramiro; Rowland, Douglas J.; Ryder, Edward; Samocha, Kaitlin E.; Seavitt, John R.; Selloum, Mohammed; Szoke-Kovacs, Zsombor; Tamura, Masaru; Trainor, Amanda G; Tudose, Ilinca; Wakana, Shigeharu; Warren, Jonathan; Wendling, Olivia; West, David B.; Wong, Leeyean; Yoshiki, Atsushi; MacArthur, Daniel G.; Tocchini-Valentini, Glauco P.; Gao, Xiang; Flicek, Paul; Bradley, Allan; Skarnes, William C.; Justice, Monica J.; Parkinson, Helen E.; Moore, Mark; Wells, Sara; Braun, Robert E.; Svenson, Karen L.; de Angelis, Martin Hrabe; Herault, Yann; Mohun, Tim; Mallon, Ann-Marie; Henkelman, R. Mark; Brown, Steve D.M.; Adams, David J.; Lloyd, K.C. Kent; McKerlie, Colin; Beaudet, Arthur L.; Bucan, Maja; Murray, Stephen A.

    2016-01-01

    Approximately one third of all mammalian genes are essential for life. Phenotypes resulting from mouse knockouts of these genes have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5000 knockout mouse lines, we have identified 410 lethal genes during the production of the first 1751 unique gene knockouts. Using a standardised phenotyping platform that incorporates high-resolution 3D imaging, we identified novel phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes identified in our screen, thus providing a novel dataset that facilitates prioritization and validation of mutations identified in clinical sequencing efforts. PMID:27626380

  3. On a modified electrodynamics.

    PubMed

    Reiss, H R

    2012-09-01

    A modification of electrodynamics is proposed, motivated by previously unremarked paradoxes that can occur in the standard formulation. It is shown by specific examples that gauge transformations exist that radically alter the nature of a problem, even while maintaining the values of many measurable quantities. In one example, a system with energy conservation is transformed to a system where energy is not conserved. The second example possesses a ponderomotive potential in one gauge, but this important measurable quantity does not appear in the gauge-transformed system. A resolution of the paradoxes comes from noting that the change in total action arising from the interaction term in the Lagrangian density cannot always be neglected, contrary to the usual assumption. The problem arises from the information lost by employing an adiabatic cutoff of the field. This is not necessary. Its replacement by a requirement that the total action should not change with a gauge transformation amounts to a supplementary condition for gauge invariance that can be employed to preserve the physical character of the problem. It is shown that the adiabatic cutoff procedure can also be eliminated in the construction of quantum transition amplitudes, thus retaining consistency between the way in which asymptotic conditions are applied in electrodynamics and in quantum mechanics. The 'gauge-invariant electrodynamics' of Schwinger is shown to depend on an ansatz equivalent to the condition found here for maintenance of the ponderomotive potential in a gauge transformation. Among the altered viewpoints required by the modified electrodynamics, in addition to the rejection of the adiabatic cutoff, is the recognition that the electric and magnetic fields do not completely determine a physical problem, and that the electromagnetic potentials supply additional information that is required for completeness of electrodynamics.

  4. Nominal Modifiers in Mandarin Chinese.

    ERIC Educational Resources Information Center

    Hou, John Y.

    In the surface structure of Chinese nominal modifiers (quantifiers, determiners, adjectives, measure phrase, relative clause, etc.) may occur either before or after a modified noun. In most of the transformational studies of Chinese syntax (e.g. Cheng 1966; Hashimoto 1966; Mei 1972; Tai 1973; Teng 1974), it has been assumed that such NP's have the…

  5. Wide spectrum of NR5A1-related phenotypes in 46,XY and 46,XX individuals.

    PubMed

    Domenice, Sorahia; Zamboni Machado, Aline; Moraes Ferreira, Frederico; Ferraz-de-Souza, Bruno; Marcondes Lerario, Antonio; Lin, Lin; Yumie Nishi, Mirian; Lisboa Gomes, Nathalia; Evelin da Silva, Thatiana; Barbosa Silva, Rosana; Vieira Correa, Rafaela; Ribeiro Montenegro, Luciana; Narciso, Amanda; Maria Frade Costa, Elaine; C Achermann, John; Bilharinho Mendonca, Berenice

    2016-12-01

    Steroidogenic factor 1 (NR5A1, SF-1, Ad4BP) is a transcriptional regulator of genes involved in adrenal and gonadal development and function. Mutations in NR5A1 have been among the most frequently identified genetic causes of gonadal development disorders and are associated with a wide phenotypic spectrum. In 46,XY individuals, NR5A1-related phenotypes may range from disorders of sex development (DSD) to oligo/azoospermia, and in 46,XX individuals, from 46,XX ovotesticular and testicular DSD to primary ovarian insufficiency (POI). The most common 46,XY phenotype is atypical or female external genitalia with clitoromegaly, palpable gonads, and absence of Müllerian derivatives. Notably, an undervirilized external genitalia is frequently seen at birth, while spontaneous virilization may occur later, at puberty. In 46,XX individuals, NR5A1 mutations are a rare genetic cause of POI, manifesting as primary or secondary amenorrhea, infertility, hypoestrogenism, and elevated gonadotropin levels. Mothers and sisters of 46,XY DSD patients carrying heterozygous NR5A1 mutations may develop POI, and therefore require appropriate counseling. Moreover, the recurrent heterozygous p.Arg92Trp NR5A1 mutation is associated with variable degrees of testis development in 46,XX patients. A clear genotype-phenotype correlation is not seen in patients bearing NR5A1 mutations, suggesting that genetic modifiers, such as pathogenic variants in other testis/ovarian-determining genes, may contribute to the phenotypic expression. Here, we review the published literature on NR5A1-related disease, and discuss our findings at a single tertiary center in Brazil, including ten novel NR5A1 mutations identified in 46,XY DSD patients. The ever-expanding phenotypic range associated with NR5A1 variants in XY and XX individuals confirms its pivotal role in reproductive biology, and should alert clinicians to the possibility of NR5A1 defects in a variety of phenotypes presenting with gonadal dysfunction

  6. Rare phenotypes in the understanding of autoimmunity.

    PubMed

    Zeissig, Yvonne; Petersen, Britt-Sabina; Franke, Andre; Blumberg, Richard S; Zeissig, Sebastian

    2016-11-01

    The study of rare phenotypes has a long history in the description of autoimmune disorders. First Mendelian syndromes of idiopathic tissue destruction were defined more than 100 years ago and were later revealed to result from immune-mediated reactivity against self. In the past two decades, continuous advances in sequencing technology and particularly the advent of next-generation sequencing have allowed to define the genetic basis of an ever-growing number of Mendelian forms of autoimmunity. This has provided unique insight into the molecular pathways that govern immunological homeostasis and that are indispensable for the prevention of self-reactive immune-mediated tissue damage and 'horror autotoxicus'. Here we will discuss selected examples of past and recent investigations into rare phenotypes of autoimmunity that have delineated pathways critical for central and peripheral control of the adaptive immune system. We will outline the implications of these findings for rare and common forms of autoimmunity and will discuss the benefits and potential pitfalls of the integration of next-generation sequencing into algorithms for clinical diagnostics. Because of the concise nature of this review, we will focus on syndromes caused by defects in the control of adaptive immunity as innate immune-mediated autoinflammatory disorders have been covered in excellent recent reviews on Mendelian and polygenic forms of autoimmunity.

  7. Neuroendocrine-immune circuits, phenotypes, and interactions.

    PubMed

    Ashley, Noah T; Demas, Gregory E

    2017-01-01

    Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions.

  8. Phenotypic variability of TRPV4 related neuropathies

    PubMed Central

    Evangelista, Teresinha; Bansagi, Boglarka; Pyle, Angela; Griffin, Helen; Douroudis, Konstantinos; Polvikoski, Tuomo; Antoniadi, Thalia; Bushby, Kate; Straub, Volker; Chinnery, Patrick F.; Lochmüller, Hanns; Horvath, Rita

    2015-01-01

    Mutations in the transient receptor potential vanilloid 4 (TRPV4) gene have been associated with autosomal dominant skeletal dysplasias and peripheral nervous system syndromes (PNSS). PNSS include Charcot–Marie–Tooth disease (CMT) type 2C, congenital spinal muscular atrophy and arthrogryposis and scapuloperoneal spinal muscular atrophy. We report the clinical, electrophysiological and muscle biopsy findings in two unrelated patients with two novel heterozygous missense mutations in the TRPV4 gene. Whole exome sequencing was carried out on genomic DNA using Illumina TruseqTM 62Mb exome capture. Patient 1 harbours a de novo c.805C > T (p.Arg269Cys) mutation. Clinically, this patient shows signs of both scapuloperoneal spinal muscular atrophy and skeletal dysplasia. Patient 2 harbours a novel c.184G > A (p.Asp62Asn) mutation. While the clinical phenotype is compatible with CMT type 2C with the patient's muscle harbours basophilic inclusions. Mutations in the TRPV4 gene have a broad phenotypic variability and disease severity and may share a similar pathogenic mechanism with Heat Shock Protein related neuropathies. PMID:25900305

  9. Phenotype and function of nasal dendritic cells

    PubMed Central

    Lee, Haekyung; Ruane, Darren; Law, Kenneth; Ho, Yan; Garg, Aakash; Rahman, Adeeb; Esterházy, Daria; Cheong, Cheolho; Goljo, Erden; Sikora, Andrew G.; Mucida, Daniel; Chen, Benjamin; Govindraj, Satish; Breton, Gaëlle; Mehandru, Saurabh

    2015-01-01

    Intranasal vaccination generates immunity across local, regional and distant sites. However, nasal dendritic cells (DC), pivotal for the induction of intranasal vaccine- induced immune responses, have not been studied in detail. Here, using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of “classical” DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were FLT3 ligand-responsive and displayed unique phenotypic and functional characteristics including the ability to present antigen, induce an allogeneic T cell response and migrate in response to LPS or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1+ DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1+ and BDCA-3hi DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic and functional properties of nasal DCs and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis. PMID:25669151

  10. Gingival Tissue Transcriptomes Identify Distinct Periodontitis Phenotypes

    PubMed Central

    Kebschull, M.; Demmer, R.T.; Grün, B.; Guarnieri, P.; Pavlidis, P.; Papapanou, P.N.

    2014-01-01

    The currently recognized principal forms of periodontitis—chronic and aggressive—lack an unequivocal, pathobiology-based foundation. We explored whether gingival tissue transcriptomes can serve as the basis for an alternative classification of periodontitis. We used cross-sectional whole-genome gene expression data from 241 gingival tissue biopsies obtained from sites with periodontal pathology in 120 systemically healthy nonsmokers with periodontitis, with available data on clinical periodontal status, subgingival microbial profiles, and serum IgG antibodies to periodontal microbiota. Adjusted model-based clustering of transcriptomic data using finite mixtures generated two distinct clusters of patients that did not align with the current classification of chronic and aggressive periodontitis. Differential expression profiles primarily related to cell proliferation in cluster 1 and to lymphocyte activation and unfolded protein responses in cluster 2. Patients in the two clusters did not differ with respect to age but presented with distinct phenotypes (statistically significantly different whole-mouth clinical measures of extent/severity, subgingival microbial burden by several species, and selected serum antibody responses). Patients in cluster 2 showed more extensive/severe disease and were more often male. The findings suggest that distinct gene expression signatures in pathologic gingival tissues translate into phenotypic differences and can provide a basis for a novel classification. PMID:24646639

  11. Syndactyly: phenotypes, genetics and current classification.

    PubMed

    Malik, Sajid

    2012-08-01

    Syndactyly is one of the most common hereditary limb malformations depicting the fusion of certain fingers and/or toes. It may occur as an isolated entity or a component of more than 300 syndromic anomalies. Syndactylies exhibit great inter- and intra-familial clinical variability. Even within a subject, phenotype can be unilateral or bilateral and symmetrical or asymmetrical. At least nine non-syndromic syndactylies with additional sub-types have been characterized. Most of the syndactyly types are inherited as autosomal dominant but two autosomal recessive and an X-linked recessive entity have also been described. Whereas the underlying genes/mutations for types II-1, III, IV, V, and VII have been worked out, the etiology and molecular basis of the other syndactyly types remain unknown. In this communication, based on an overview of well-characterized isolated syndactylies, their cardinal phenotypes, inheritance patterns, and clinical and genetic heterogeneities, a 'current classification scheme' is presented. Despite considerable progress in the understanding of syndactyly at clinical and molecular levels, fundamental questions regarding the disturbed developmental mechanisms leading to fused digits, remain to be answered.

  12. Phenotypic plasticity can potentiate rapid evolutionary change.

    PubMed

    Behera, Narayan; Nanjundiah, Vidyanand

    2004-01-21

    Using a computational model of string-like haploid genotypes, we verify the conjecture (J. Theor. Biol. 188 (1997) 153) that phenotypic plasticity can speed up evolution. The corresponding real-life situation was realized by Waddington in experiments carried out on the fruit fly Drosophila. Waddington found that after selecting for an environmentally induced trait over a number of generations, a new, true-breeding phenotype resulted that was absent in the starting population. The phenomenon, termed 'genetic assimilation', continues to attract interest because of the rapidity of the effect and because of its seemingly Lamarckian implications. By making use of a genetic algorithm-based approach developed previously, we show that conventional Darwinian selection acting on regulatory genes can account for genetic assimilation. The essential assumption in our model is that a structural gene can be in either of three allelic states. These correspond to its being (a) 'on' or 'off' constitutively or (b) in a plastic state in which the probability that it is 'on' or 'off' is influenced by regulatory loci in a dosage-dependent manner.

  13. Phenotypic Landscape of a Bacterial Cell

    PubMed Central

    Nichols, Robert J.; Sen, Saunak; Choo, Yoe Jin; Beltrao, Pedro; Zietek, Matylda; Chaba, Rachna; Lee, Sueyoung; Kazmierczak, Krystyna M.; Lee, Karis J.; Wong, Angela; Shales, Michael; Lovett, Susan; Winkler, Malcolm E.; Krogan, Nevan J.; Typas, Athanasios; Gross, Carol A.

    2011-01-01

    Summary The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs. PMID:21185072

  14. Ocean acidification challenges copepod phenotypic plasticity

    NASA Astrophysics Data System (ADS)

    Vehmaa, Anu; Almén, Anna-Karin; Brutemark, Andreas; Paul, Allanah; Riebesell, Ulf; Furuhagen, Sara; Engström-Öst, Jonna

    2016-11-01

    Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton) are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia sp. in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg-hatching success, adult female size and adult female antioxidant capacity (ORAC) as a function of acidification (fCO2 ˜ 365-1231 µatm) and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal whether transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female size. In addition, we found signs of a possible threshold at high fCO2, above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg-hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon < 55 µm) or quality (C : N) weakens the transgenerational effects. However, females with high-ORAC-produced eggs with high hatching success. Overall, these results indicate that Acartia sp. could be affected by projected near-future CO2 levels.

  15. Senescence-like Phenotypes in Human Nevi

    PubMed Central

    Joselow, Andrew; Lynn, Darren; Terzian, Tamara; Box, Neil F.

    2016-01-01

    Summary Cellular senescence is an irreversible arrest of cell proliferation at the G1 stage of the cell cycle in which cells become refractory to growth stimuli. Senescence is a critical and potent defense mechanism that mammalian cells have to suppress tumors. While there are many ways to induce a senescence response, oncogene-induced senescence (OIS) remains key to inhibiting progression of cells that have acquired oncogenic mutations. In primary cells in culture, OIS induces a set of measurable phenotypic and behavioral changes, in addition to cell cycle exit. Senescence-associated β-Galactosidase (SA-β-Gal) activity is a main hallmark of senescent cells, along with morphological changes that may depend on the oncogene that is activated, or on the primary cell type. Characteristic cellular changes of senescence include increased size, flattening, multi-nucleation, and extensive vacuolation. At the molecular level, tumor suppressor genes such as p53 and p16INK4a may play a role in initiation or maintenance of OIS. Activation of a DNA damage response and a senescence-associated secretory phenotype could delineate the onset of senescence. Despite advances in our understanding of how OIS suppresses some tumor types, the in vivo role of OIS in melanocytic nevi and melanoma remains poorly understood and not validated. In an effort to stimulate research in this field, we review in this chapter the known markers of senescence and provide experimental protocols for their identification by immunofluorescent staining in melanocytic nevi and malignant melanoma. PMID:27812879

  16. Rare phenotypes in the understanding of autoimmunity

    PubMed Central

    Zeissig, Yvonne; Petersen, Britt-Sabina; Franke, Andre; Blumberg, Richard S; Zeissig, Sebastian

    2017-01-01

    The study of rare phenotypes has a long history in the description of autoimmune disorders. First Mendelian syndromes of idiopathic tissue destruction were defined more than 100 years ago and were later revealed to result from immune-mediated reactivity against self. In the past two decades, continuous advances in sequencing technology and particularly the advent of next-generation sequencing have allowed to define the genetic basis of an ever-growing number of Mendelian forms of autoimmunity. This has provided unique insight into the molecular pathways that govern immunological homeostasis and that are indispensable for the prevention of self-reactive immune-mediated tissue damage and ‘horror autotoxicus’. Here we will discuss selected examples of past and recent investigations into rare phenotypes of autoimmunity that have delineated pathways critical for central and peripheral control of the adaptive immune system. We will outline the implications of these findings for rare and common forms of autoimmunity and will discuss the benefits and potential pitfalls of the integration of next-generation sequencing into algorithms for clinical diagnostics. Because of the concise nature of this review, we will focus on syndromes caused by defects in the control of adaptive immunity as innate immune-mediated autoinflammatory disorders have been covered in excellent recent reviews on Mendelian and polygenic forms of autoimmunity. PMID:27562064

  17. A vestibular phenotype for Waardenburg syndrome?

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Pesznecker, S. C.; Allen, K.; Gianna, C.

    2001-01-01

    OBJECTIVE: To investigate vestibular abnormalities in subjects with Waardenburg syndrome. STUDY DESIGN: Retrospective record review. SETTING: Tertiary referral neurotology clinic. SUBJECTS: Twenty-two adult white subjects with clinical diagnosis of Waardenburg syndrome (10 type I and 12 type II). INTERVENTIONS: Evaluation for Waardenburg phenotype, history of vestibular and auditory symptoms, tests of vestibular and auditory function. MAIN OUTCOME MEASURES: Results of phenotyping, results of vestibular and auditory symptom review (history), results of vestibular and auditory function testing. RESULTS: Seventeen subjects were women, and 5 were men. Their ages ranged from 21 to 58 years (mean, 38 years). Sixteen of the 22 subjects sought treatment for vertigo, dizziness, or imbalance. For subjects with vestibular symptoms, the results of vestibuloocular tests (calorics, vestibular autorotation, and/or pseudorandom rotation) were abnormal in 77%, and the results of vestibulospinal function tests (computerized dynamic posturography, EquiTest) were abnormal in 57%, but there were no specific patterns of abnormality. Six had objective sensorineural hearing loss. Thirteen had an elevated summating/action potential (>0.40) on electrocochleography. All subjects except those with severe hearing loss (n = 3) had normal auditory brainstem response results. CONCLUSION: Patients with Waardenburg syndrome may experience primarily vestibular symptoms without hearing loss. Electrocochleography and vestibular function tests appear to be the most sensitive measures of otologic abnormalities in such patients.

  18. Phenotype-environment matching in sand fleas.

    PubMed

    Stevens, Martin; Broderick, Annette C; Godley, Brendan J; Lown, Alice E; Troscianko, Jolyon; Weber, Nicola; Weber, Sam B

    2015-08-01

    Camouflage is perhaps the most widespread anti-predator strategy in nature, found in numerous animal groups. A long-standing prediction is that individuals should have camouflage tuned to the visual backgrounds where they live. However, while several studies have demonstrated phenotype-environment associations, few have directly shown that this confers an improvement in camouflage, particularly with respect to predator vision. Here, we show that an intertidal crustacean, the sand flea (Hippa testudinaria), has coloration tuned to the different substrates on which it occurs when viewed by potential avian predators. Individual sand fleas from a small, oceanic island (Ascension) matched the colour and luminance of their own beaches more closely than neighbouring beaches to a model of avian vision. Based on past work, this phenotype-environment matching is likely to be driven through ontogenetic changes rather than genetic adaptation. Our work provides some of the first direct evidence that animal coloration is tuned to provide camouflage to prospective predators against a range of visual backgrounds, in a population of animals occurring over a small geographical range.

  19. Phenotypic Integration of Neurocranium and Brain

    PubMed Central

    RICHTSMEIER, JOAN T.; ALDRIDGE, KRISTINA; DeLEON, VALERIE B.; PANCHAL, JAYESH; KANE, ALEX A.; MARSH, JEFFREY L.; YAN, PENG; COLE, THEODORE M.

    2009-01-01

    Evolutionary history of Mammalia provides strong evidence that the morphology of skull and brain change jointly in evolution. Formation and development of brain and skull co-occur and are dependent upon a series of morphogenetic and patterning processes driven by genes and their regulatory programs. Our current concept of skull and brain as separate tissues results in distinct analyses of these tissues by most researchers. In this study, we use 3D computed tomography and magnetic resonance images of pediatric individuals diagnosed with premature closure of cranial sutures (craniosynostosis) to investigate phenotypic relationships between the brain and skull. It has been demonstrated previously that the skull and brain acquire characteristic dysmorphologies in isolated craniosynostosis, but relatively little is known of the developmental interactions that produce these anomalies. Our comparative analysis of phenotypic integration of brain and skull in premature closure of the sagittal and the right coronal sutures demonstrates that brain and skull are strongly integrated and that the significant differences in patterns of association do not occur local to the prematurely closed suture. We posit that the current focus on the suture as the basis for this condition may identify a proximate, but not the ultimate cause for these conditions. Given that premature suture closure reduces the number of cranial bones, and that a persistent loss of skull bones is demonstrated over the approximately 150 million years of synapsid evolution, craniosynostosis may serve as an informative model for evolution of the mammalian skull. PMID:16526048

  20. Developmental sculpting of social phenotype and plasticity.

    PubMed

    Sakata, Jon T; Crews, David

    2004-04-01

    Early developmental variables engender behavioral and neural variation, especially in species in which embryonic environment determines gonadal sex. In the leopard gecko, Eublepharis macularius, the incubation temperature of the egg (IncT) determines gonadal sex. Moreover, IncT affects the sexual differentiation of the individual and, consequently, within-sex variation. Individuals hatched from eggs incubated at an IncT that produces predominantly males are more masculinized than same-sex counterparts from IncTs that produce predominantly females. Here we review how gonadal sex and IncT interact to affect behavioral, endocrinological, and neural phenotype in the leopard gecko and influence phenotypic plasticity following hormone administration or social experience. We discuss the hormonal dependence of sex- and IncT-dependent behavioral and neural morphological and metabolic differences and highlight the parallels between IncT effects in geckos and intrauterine position effects in rodents. We argue that the leopard gecko is an important model of how the process of sex determination can affect sexual differentiation and of selection forces underlying the evolution of sex ratios.

  1. Angioedema Phenotypes: Disease Expression and Classification.

    PubMed

    Wu, Maddalena Alessandra; Perego, Francesca; Zanichelli, Andrea; Cicardi, Marco

    2016-10-01

    Due to marked heterogeneity of clinical presentations, comprehensive knowledge of angioedema phenotypes is crucial for correct diagnosis and choosing the appropriate therapeutic approach. One of the ways to a meaningful clinical distinction can be made between forms of angioedema occurring "with or without wheals." Angioedema with wheals (rash) is a hallmark of urticaria, either acute or chronic, spontaneous or inducible. Angioedema without wheals may still be manifested in about 10 % of patients with urticaria, but it may also occur as a separate entity. Several classifications of angioedema as part of urticaria were published over time, while a latest one, released in 2014 (HAWK group consensus, see below), provided a classification of all forms of "angioedema without wheals" distinct from urticaria, which will be the focus of the present review. At this time, the HAWK consensus classification is the best in terms of covering the pathophysiology, mediators involved, angioedema triggers, and clinical expression. According to this classification, three types of hereditary angioedema (genetic C1-INH deficiency, normal C1-INH with factor XII mutations, and unknown origin) and four types of acquired angioedema (C1-INH deficiency, related to ACE inhibitors intake, idiopathic histaminergic, and idiopathic non-histaminergic) are presented. We will review the distinctive clinical features of each phenotype in details.

  2. Amphibious fishes: evolution and phenotypic plasticity.

    PubMed

    Wright, Patricia A; Turko, Andy J

    2016-08-01

    Amphibious fishes spend part of their life in terrestrial habitats. The ability to tolerate life on land has evolved independently many times, with more than 200 extant species of amphibious fishes spanning 17 orders now reported. Many adaptations for life out of water have been described in the literature, and adaptive phenotypic plasticity may play an equally important role in promoting favourable matches between the terrestrial habitat and behavioural, physiological, biochemical and morphological characteristics. Amphibious fishes living at the interface of two very different environments must respond to issues relating to buoyancy/gravity, hydration/desiccation, low/high O2 availability, low/high CO2 accumulation and high/low NH3 solubility each time they traverse the air-water interface. Here, we review the literature for examples of plastic traits associated with the response to each of these challenges. Because there is evidence that phenotypic plasticity can facilitate the evolution of fixed traits in general, we summarize the types of investigations needed to more fully determine whether plasticity in extant amphibious fishes can provide indications of the strategies used during the evolution of terrestriality in tetrapods.

  3. Pediatric obesity phenotyping by magnetic resonance methods

    PubMed Central

    Shen, Wei; Liu, Haiying; Punyanitya, Mark; Chen, Jun; Heymsfield, Steven B.

    2007-01-01

    Purpose of review Accurate measurement of adiposity in obese children is required for characterizing the condition’s phenotype, severity, and treatment effects in vivo. Non-invasive and safe, magnetic resonance imaging and spectroscopy provide an important new approach for characterizing key aspects of pediatric obesity. This review focuses on recent advances in non-invasive magnetic resonance imaging and spectroscopy for quantifying total body and regional adiposity, mapping adipose tissue distribution, and evaluating selected metabolic disturbances in children. The aim is to provide an investigator-focused overview of magnetic resonance methods for use in the study of pediatric body composition and metabolism. Recent findings Whole body axial images can be rapidly acquired on most clinical magnetic resonance imaging scanners. The images can then be semi-automatically segmented into subcutaneous, visceral, and intramuscular adipose tissue. Specific pediatric studies of errors related to slice gap and number are available. The acquisition of scans in healthy and premature infants is now feasible with recent technological advances. Spectroscopic, Dixon, and other approaches can be used to quantify the lipid content of liver, skeletal muscle, and other organs. Protocol selection is based on factors such as subject age and cost. Particular attention should be directed towards identification of landmarks in growth studies. Recent advances promise to reduce the requirement of subjects to remain motionless for relatively long periods. Summary Magnetic resonance imaging and spectroscopy are safe, practical, and widely available methods for phenotyping adiposity in children that open new opportunities for metabolism and nutritional research. PMID:16205458

  4. Kernel methods for phenotyping complex plant architecture.

    PubMed

    Kawamura, Koji; Hibrand-Saint Oyant, Laurence; Foucher, Fabrice; Thouroude, Tatiana; Loustau, Sébastien

    2014-02-07

    The Quantitative Trait Loci (QTL) mapping of plant architecture is a critical step for understanding the genetic determinism of plant architecture. Previous studies adopted simple measurements, such as plant-height, stem-diameter and branching-intensity for QTL mapping of plant architecture. Many of these quantitative traits were generally correlated to each other, which give rise to statistical problem in the detection of QTL. We aim to test the applicability of kernel methods to phenotyping inflorescence architecture and its QTL mapping. We first test Kernel Principal Component Analysis (KPCA) and Support Vector Machines (SVM) over an artificial dataset of simulated inflorescences with different types of flower distribution, which is coded as a sequence of flower-number per node along a shoot. The ability of discriminating the different inflorescence types by SVM and KPCA is illustrated. We then apply the KPCA representation to the real dataset of rose inflorescence shoots (n=1460) obtained from a 98 F1 hybrid mapping population. We find kernel principal components with high heritability (>0.7), and the QTL analysis identifies a new QTL, which was not detected by a trait-by-trait analysis of simple architectural measurements. The main tools developed in this paper could be use to tackle the general problem of QTL mapping of complex (sequences, 3D structure, graphs) phenotypic traits.

  5. Phenotypic landscape of a bacterial cell.

    PubMed

    Nichols, Robert J; Sen, Saunak; Choo, Yoe Jin; Beltrao, Pedro; Zietek, Matylda; Chaba, Rachna; Lee, Sueyoung; Kazmierczak, Krystyna M; Lee, Karis J; Wong, Angela; Shales, Michael; Lovett, Susan; Winkler, Malcolm E; Krogan, Nevan J; Typas, Athanasios; Gross, Carol A

    2011-01-07

    The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs.

  6. Heliconia phenotypic diversity based on qualitative descriptors.

    PubMed

    Guimarães, W N R; Martins, L S S; Castro, C E F; Carvalho Filho, J L S; Loges, V

    2014-04-17

    The aim of this study was to characterize Heliconia genotypes phenotypically using 26 qualitative descriptors. The evaluations were conducted in five flowering stems per clump in three replicates of 22 Heliconia genotypes. Data were subjected to multivariate analysis, the Mahalanobis dissimilarity measure was estimated, and the dendrogram was generated using the nearest neighbor method. From the values generated by the dissimilarity matrix and the clusters formed among the Heliconia genotypes studied, the phenotypic characterizations that best differentiated the genotypes were: pseudostem and wax green tone (light or dark green), leaf-wax petiole, the petiole hair, cleft margin at the base of the petiole, midrib underside shade of green, wax midrib underside, color sheet (light or dark green), unequal lamina base, torn limb, inflorescence-wax, position of inflorescence, bract leaf in apex, twisting of the rachis, and type of bloom. These results will be applied in the preparation of a catalog for Heliconia descriptors, in the selection of different genotypes with most promising characteristics for crosses, and for the characterization of new genotypes to be introduced in germplasm collections.

  7. Allelic variations at the haploid TBX1 locus do not influence the cardiac phenotype in cases of 22q11 microdeletion.

    PubMed

    Voelckel, Marie-Antoinette; Girardot, Lydie; Giusiano, Bernard; Levy, Nicolas; Philip, Nicole

    2004-01-01

    Microdeletion at the 22q11 locus is characterised by a high clinical variability. Congenital heart defects (CHD) are the most life-threatening manifestations of the syndrome and affect approximately 50% of patients carrying the deleted chromosome 22. The causes of this phenotype variability remain unknown although several hypotheses have been raised. It has been suggested that allelic variations at the haploid locus could modify the phenotypic expression. Regarding this hypothesis, TBX1 was thought to be a major candidate to the cardiac phenotype or its severity in patients carrying the 22q11 microdeletion. A mutational screening was performed in this gene, in a series of 39 deleted patients, with and without CHD. The results indicate that mutations in TBX1 are not likely to be involved in the cardiac phenotype observed in del22q11 patients.

  8. Standardization in generating and reporting genetically modified rodent malaria parasites: the RMgmDB database.

    PubMed

    Khan, Shahid M; Kroeze, Hans; Franke-Fayard, Blandine; Janse, Chris J

    2013-01-01

    Genetically modified Plasmodium parasites are central gene function reagents in malaria research. The Rodent Malaria genetically modified DataBase (RMgmDB) ( www.pberghei.eu ) is a manually curated Web - based repository that contains information on genetically modified rodent malaria parasites. It provides easy and rapid access to information on the genotype and phenotype of genetically modified mutant and reporter parasites. Here, we provide guidelines for generating and describing rodent malaria parasite mutants. Standardization in describing mutant genotypes and phenotypes is important not only to enhance publication quality but also to facilitate cross-linking and mining data from multiple sources, and should permit information derived from mutant parasites to be used in integrative system biology approaches. We also provide guidelines on how to submit information to RMgmDB on non-published mutants, mutants that do not exhibit a clear phenotype, as well as negative attempts to disrupt/mutate genes. Such information helps to prevent unnecessary duplication of experiments in different laboratories, and can provide indirect evidence that these genes are essential for blood-stage development.

  9. Social-Cognition and the Broad Autism Phenotype: Identifying Genetically Meaningful Phenotypes

    ERIC Educational Resources Information Center

    Losh, Molly; Piven, Joseph

    2007-01-01

    Background: Strong evidence from twin and family studies suggests that the genetic liability to autism may be expressed through personality and language characteristics qualitatively similar, but more subtly expressed than those defining the full syndrome. This study examined behavioral features of this "broad autism phenotype" (BAP) in relation…

  10. Phenotypic variability in ARCA2 and identification of a core ataxic phenotype with slow progression

    PubMed Central

    2013-01-01

    Autosomal recessive cerebellar ataxia 2 (ARCA2) is a recently identified recessive ataxia due to ubiquinone deficiency and biallelic mutations in the ADCK3 gene. The phenotype of the twenty-one patients reported worldwide varies greatly. Thus, it is difficult to decide which ataxic patients are good candidates for ADCK3 screening without evidence of ubiquinone deficiency. We report here the clinical and molecular data of 10 newly diagnosed patients from seven families and update the disease history of four additional patients reported in previous articles to delineate the clinical spectrum of ARCA2 phenotype and to provide a guide to the molecular diagnosis. First signs occurred before adulthood in all 14 patients. Cerebellar atrophy appeared in all instances. The progressivity and severity of ataxia varied greatly, but no patients had the typical inexorable ataxic course that characterizes other childhood-onset recessive ataxias. The ataxia was frequently associated with other neurological signs. Importantly, stroke-like episodes contributed to significant deterioration of the neurological status in two patients. Ubidecarenone therapy markedly improved the movement disorders, including ataxia, in two other patients. The 7 novel ADCK3 mutations found in the 10 new patients were two missense and five truncating mutations. There was no apparent correlation between the genotype and the phenotype. Our series reveals that the clinical spectrum of ARCA2 encompasses a range of ataxic phenotypes. On one end, it may manifest as a pure ataxia with very slow progressivity and, on the other end, as a severe infantile encephalopathy with cerebellar atrophy. The phenotype of most patients, however, lies in between. It is characterized by a very slowly progressive or apparently stable ataxia associated with other signs of central nervous system involvement. We suggest undergoing the molecular analysis of ADCK3 in patients with this phenotype and in those with cerebellar atrophy

  11. Hlf is a genetic modifier of epilepsy caused by voltage-gated sodium channel mutations.

    PubMed

    Hawkins, Nicole A; Kearney, Jennifer A

    2016-01-01

    Mutations in voltage-gated sodium channel genes cause several types of human epilepsies. Often, individuals with the same sodium channel mutation exhibit diverse phenotypes. This suggests that factors beyond the primary mutation influence disease severity, including genetic modifiers. Mouse epilepsy models with voltage-gated sodium channel mutations exhibit strain-dependent phenotype variability, supporting a contribution of genetic modifiers in epilepsy. The Scn2a(Q54) (Q54) mouse model has a strain-dependent epilepsy phenotype. Q54 mice on the C57BL/6J (B6) strain exhibit delayed seizure onset and improved survival compared to [B6xSJL/J]F1.Q54 mice. We previously mapped two dominant modifier loci that influence Q54 seizure susceptibility and identified Hlf (hepatic leukemia factor) as a candidate modifier gene at one locus. Hlf and other PAR bZIP transcription factors had previously been associated with spontaneous seizures in mice thought to be caused by down-regulation of the pyridoxine pathway. An Hlf targeted knockout mouse model was used to evaluate the effect of Hlf deletion on Q54 phenotype severity. Hlf(KO/KO);Q54 double mutant mice exhibited elevated frequency and reduced survival compared to Q54 controls. To determine if direct modulation of the pyridoxine pathway could alter the Q54 phenotype, mice were maintained on a pyridoxine-deficient diet for 6 weeks. Dietary pyridoxine deficiency resulted in elevated seizure frequency and decreased survival in Q54 mice compared to control diet. To determine if Hlf could modify other epilepsies, Hlf(KO/+) mice were crossed with the Scn1a(KO/+) Dravet syndrome mouse model to examine the effect on premature lethality. Hlf(KO/+);Scn1a(KO/+) offspring exhibited decreased survival compared to Scn1a(KO/+) controls. Together these results demonstrate that Hlf is a genetic modifier of epilepsy caused by voltage-gated sodium channel mutations and that modulation of the pyridoxine pathway can also influence phenotype

  12. Mox: a novel modifier of the tomato Xa locus.

    PubMed

    Peterson, P W; Yoder, J I

    1995-01-01

    We have isolated a novel mutation that caused variegated leaf color in a tomato plant which had multiple maize Ac transposable elements and the tomato Xa allele. Xa is a previously characterized semi-dominant mutation that causes tomato leaves to be bright yellow when heterozygous (Xa/xa+). The mutation responsible for the new phenotype was named Mox (Modifier of Xa). The Mox mutation modified the Xa/xa+ yellow leaf phenotype in two ways: it compensated for the Xa allele resulting in a plant with a wildtype green color, and it caused somatic variegation which appeared as white and yellow sectors on the green background. Somatic variegation was visible only if the plant contained both the Mox and Xa loci. Genetic studies indicated that the Mox locus was linked in repulsion to Xa and that the Mox locus was genetically transmitted at a reduced frequency through the male gamete. Molecular characterization of the Ac elements in lines segregating for Mox identified an Ac insertion that appeared to cosegregate with Mox variegation. We propose a model in which the Mox mutation consists of a duplication of the xa+ allele and subsequent Ac-induced breakage of the duplicated region causes variegation.

  13. Molecular identification of four phenotypes of human Demodex in China.

    PubMed

    Hu, Li; Zhao, Ya-E; Cheng, Juan; Ma, Jun-Xian

    2014-07-01

    Traditional classification of Demodex mites by hosts and phenotypic characteristics is defective because of environmental influences. In this study, we proposed molecular identification of four phenotypes of two human Demodex species based on mitochondrial cox1 fragments for the first time. Mites collected from sufferers' facial skin were classified into four phenotypes: phenotype A-C with finger-like terminus, and phenotype D with cone-like terminus. The results of molecular data showed that cox1 sequences were all 429 bp. Divergences, genetic distances and transition/transversion ratios among the three phenotypes with finger-like terminus were 0.0-3.0%, 0.000-0.031, and 6/3-5/0, respectively, in line with intraspecific differences. However, those measures between the phenotype with cone-like terminus and phenotypes with finger-like terminus were 19.6-20.5%, 0.256-0.271, and 0.58 (31/53)-0.66 (35/53), respectively, reaching interspecific level. Phylogenetic trees also showed that the three phenotypes with finger-like terminus clustered as one clade, and the phenotype with cone-like terminus formed another one. Therefore, we conclude that mitochondrial cox1 sequence is a good marker for identification of two human Demodex species. Molecular data indicate no subspecies differentiation. Terminus is an effective character for species identification. Mites with finger-like terminus are Demodex folliculorum, and those with cone-like terminus are Demodex brevis.

  14. On the value of the phenotypes in the genomic era.

    PubMed

    Gonzalez-Recio, O; Coffey, M P; Pryce, J E

    2014-12-01

    Genetic improvement programs around the world rely on the collection of accurate phenotypic data. These phenotypes have an inherent value that can be estimated as the contribution of an additional record to genetic gain. Here, the contribution of phenotypes to genetic gain was calculated using traditional progeny testing (PT) and 2 genomic selection (GS) strategies that, for simplicity, included either males or females in the reference population. A procedure to estimate the theoretical economic contribution of a phenotype to a breeding program is described for both GS and PT breeding programs through the increment in genetic gain per unit of increase in estimated breeding value reliability obtained when an additional phenotypic record is added. The main factors affecting the value of a phenotype were the economic value of the trait, the number of phenotypic records already available for the trait, and its heritability. Furthermore, the value of a phenotype was affected by several other factors, including the cost of establishing the breeding program and the cost of phenotyping and genotyping. The cost of achieving a reliability of 0.60 was assessed for different reference populations for GS. Genomic reference populations of more sires with small progeny group sizes (e.g., 20 equivalent daughters) had a lower cost than those reference populations with either large progeny group sizes for fewer genotyped sires, or female reference populations, unless the heritability was large and the cost of phenotyping exceeded a few hundred dollars; then, female reference populations were preferable from an economic perspective.

  15. Multidimensional Clinical Phenotyping of an Adult Cystic Fibrosis Patient Population

    PubMed Central

    Conrad, Douglas J.; Bailey, Barbara A.

    2015-01-01

    Background Cystic Fibrosis (CF) is a multi-systemic disease resulting from mutations in the Cystic Fibrosis Transmembrane Regulator (CFTR) gene and has major manifestations in the sino-pulmonary, and gastro-intestinal tracts. Clinical phenotypes were generated using 26 common clinical variables to generate classes that overlapped quantiles of lung function and were based on multiple aspects of CF systemic disease. Methods The variables included age, gender, CFTR mutations, FEV1% predicted, FVC% predicted, height, weight, Brasfield chest xray score, pancreatic sufficiency status and clinical microbiology results. Complete datasets were compiled on 211 subjects. Phenotypes were identified using a proximity matrix generated by the unsupervised Random Forests algorithm and subsequent clustering by the Partitioning around Medoids (PAM) algorithm. The final phenotypic classes were then characterized and compared to a similar dataset obtained three years earlier. Findings Clinical phenotypes were identified using a clustering strategy that generated four and five phenotypes. Each strategy identified 1) a low lung health scores phenotype, 2) a younger, well-nourished, male-dominated class, 3) various high lung health score phenotypes that varied in terms of age, gender and nutritional status. This multidimensional clinical phenotyping strategy identified classes with expected microbiology results and low risk clinical phenotypes with pancreatic sufficiency. Interpretation This study demonstrated regional adult CF clinical phenotypes using non-parametric, continuous, ordinal and categorical data with a minimal amount of subjective data to identify clinically relevant phenotypes. These studies identified the relative stability of the phenotypes, demonstrated specific phenotypes consistent with published findings and identified others needing further study. PMID:25822311

  16. Towards causally cohesive genotype–phenotype modelling for characterization of the soft-tissue mechanics of the heart in normal and pathological geometries

    PubMed Central

    Nordbø, Øyvind; Gjuvsland, Arne B.; Nermoen, Anders; Land, Sander; Niederer, Steven; Lamata, Pablo; Lee, Jack; Smith, Nicolas P.; Omholt, Stig W.; Vik, Jon Olav

    2015-01-01

    A scientific understanding of individual variation is key to personalized medicine, integrating genotypic and phenotypic information via computational physiology. Genetic effects are often context-dependent, differing between genetic backgrounds or physiological states such as disease. Here, we analyse in silico genotype–phenotype maps (GP map) for a soft-tissue mechanics model of the passive inflation phase of the heartbeat, contrasting the effects of microstructural and other low-level parameters assumed to be genetically influenced, under normal, concentrically hypertrophic and eccentrically hypertrophic geometries. For a large number of parameter scenarios, representing mock genetic variation in low-level parameters, we computed phenotypes describing the deformation of the heart during inflation. The GP map was characterized by variance decompositions for each phenotype with respect to each parameter. As hypothesized, the concentric geometry allowed more low-level parameters to contribute to variation in shape phenotypes. In addition, the relative importance of overall stiffness and fibre stiffness differed between geometries. Otherwise, the GP map was largely similar for the different heart geometries, with little genetic interaction between the parameters included in this study. We argue that personalized medicine can benefit from a combination of causally cohesive genotype–phenotype modelling, and strategic phenotyping that captures effect modifiers not explicitly included in the mechanistic model. PMID:25833237

  17. Examining the sex- and circadian dependency of a learning phenotype in mice with glycine transporter 1 deletion in two Pavlovian conditioning paradigms.

    PubMed

    Dubroqua, Sylvain; Boison, Detlev; Feldon, Joram; Möhler, Hanns; Yee, Benjamin K

    2011-09-01

    Behavioural characterisation of transgenic mice has been instrumental in search of therapeutic targets for the modulation of cognitive function. However, little effort has been devoted to phenotypic characterisation across environmental conditions and genomic differences such as sex and strain, which is essential to translational research. The present study is an effort in this direction. It scrutinised the stability and robustness of the phenotype of enhanced Pavlovian conditioning reported in mice with forebrain neuronal deletion of glycine transporter 1 by evaluating the possible presence of sex and circadian dependency, and its consistency across aversive and appetitive conditioning paradigms. The Pavlovian phenotype was essentially unaffected by the time of testing between the two circadian phases, but it was modified by sex in both conditioning paradigms. We observed that the effect size of the phenotype was strongest in female mice tested during the dark phase in the aversive paradigm. Critically, the presence of the phenotype in female mutants was accompanied by an increase in resistance to extinction. Similarly, enhanced conditioned responding once again emerged solely in female mutants in the appetitive conditioning experiment, which was again associated with an increased resistance to extinction across days, but male mutants exhibited an opposite trend towards facilitation of extinction. The present study has thus added hitherto unknown qualifications and specifications of a previously reported memory enhancing phenotype in this mouse line by identifying the determinants of the magnitude and direction of the expressed phenotype. This in-depth comparative approach is of value to the interpretation of behavioural findings in general.

  18. Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation.

    PubMed

    Moon, Clara; Baldridge, Megan T; Wallace, Meghan A; Burnham, Carey-Ann D; Virgin, Herbert W; Stappenbeck, Thaddeus S

    2015-05-07

    The proliferation of genetically modified mouse models has exposed phenotypic variation between investigators and institutions that has been challenging to control. In many cases, the microbiota is the presumed cause of the variation. Current solutions to account for phenotypic variability include littermate and maternal controls or defined microbial consortia in gnotobiotic mice. In conventionally raised mice, the microbiome is transmitted from the dam. Here we show that microbially driven dichotomous faecal immunoglobulin-A (IgA) levels in wild-type mice within the same facility mimic the effects of chromosomal mutations. We observe in multiple facilities that vertically transmissible bacteria in IgA-low mice dominantly lower faecal IgA levels in IgA-high mice after co-housing or faecal transplantation. In response to injury, IgA-low mice show increased damage that is transferable by faecal transplantation and driven by faecal IgA differences. We find that bacteria from IgA-low mice degrade the secretory component of secretory IgA as well as IgA itself. These data indicate that phenotypic comparisons between mice must take into account the non-chromosomal hereditary variation between different breeders. We propose faecal IgA as one marker of microbial variability and conclude that co-housing and/or faecal transplantation enables analysis of progeny from different dams.

  19. Rapid and label-free microfluidic neutrophil purification and phenotyping in diabetes mellitus.

    PubMed

    Hou, Han Wei; Petchakup, Chayakorn; Tay, Hui Min; Tam, Zhi Yang; Dalan, Rinkoo; Chew, Daniel Ek Kwang; Li, King Ho Holden; Boehm, Bernhard O

    2016-07-06

    Advanced management of dysmetabolic syndromes such as diabetes will benefit from a timely mechanistic insight enabling personalized medicine approaches. Herein, we present a rapid microfluidic neutrophil sorting and functional phenotyping strategy for type 2 diabetes mellitus (T2DM) patients using small blood volumes (fingerprick ~100 μL). The developed inertial microfluidics technology enables single-step neutrophil isolation (>90% purity) without immuno-labeling and sorted neutrophils are used to characterize their rolling behavior on E-selectin, a critical step in leukocyte recruitment during inflammation. The integrated microfluidics testing methodology facilitates high throughput single-cell quantification of neutrophil rolling to detect subtle differences in speed distribution. Higher rolling speed was observed in T2DM patients (P < 0.01) which strongly correlated with neutrophil activation, rolling ligand P-selectin glycoprotein ligand 1 (PSGL-1) expression, as well as established cardiovascular risk factors (cholesterol, high-sensitive C-reactive protein (CRP) and HbA1c). Rolling phenotype can be modulated by common disease risk modifiers (metformin and pravastatin). Receiver operating characteristics (ROC) and principal component analysis (PCA) revealed neutrophil rolling as an important functional phenotype in T2DM diagnostics. These results suggest a new point-of-care testing methodology, and neutrophil rolling speed as a functional biomarker for rapid profiling of dysmetabolic subjects in clinical and patient-oriented settings.

  20. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8+ T cell responses

    PubMed Central

    Precopio, Melissa L.; Betts, Michael R.; Parrino, Janie; Price, David A.; Gostick, Emma; Ambrozak, David R.; Asher, Tedi E.; Douek, Daniel C.; Harari, Alexandre; Pantaleo, Giuseppe; Bailer, Robert; Graham, Barney S.; Roederer, Mario; Koup, Richard A.

    2007-01-01

    Vaccinia virus immunization provides lifelong protection against smallpox, but the mechanisms of this exquisite protection are unknown. We used polychromatic flow cytometry to characterize the functional and phenotypic profile of CD8+ T cells induced by vaccinia virus immunization in a comparative vaccine trial of modified vaccinia virus Ankara (MVA) versus Dryvax immunization in which protection was assessed against subsequent Dryvax challenge. Vaccinia virus–specific CD8+ T cells induced by both MVA and Dryvax were highly polyfunctional; they degranulated and produced interferon γ, interleukin 2, macrophage inflammatory protein 1β, and tumor necrosis factor α after antigenic stimulation. Responding CD8+ T cells exhibited an unusual phenotype (CD45RO−CD27intermediate). The unique phenotype and high degree of polyfunctionality induced by vaccinia virus also extended to inserted HIV gene products of recombinant NYVAC. This quality of the CD8+ T cell response may be at least partially responsible for the profound efficacy of these vaccines in protection against smallpox and serves as a benchmark against which other vaccines can be evaluated. PMID:17535971

  1. Changes in rat soleus muscle phenotype consecutive to a growth in hypergravity followed by normogravity.

    PubMed

    Picquet, F; Bouet, V; Cochon, L; Lacour, M; Falempin, M

    2005-07-01

    It has been demonstrated that a long-term stay in hypergravity (HG: 2G) modified the phenotype and the contractile properties of rat soleus muscle. The ability of this muscle to contract was drastically reduced, which is a sign of anticipated aging. Consequently, our aim was to determine whether rats conceived, born, and reared in hypergravity showed adaptative capacities in normogravity (NG: 1G). This study was performed on rats divided into two series: the first was reared in HG until 100 days and was submitted to normogravity until 115 to 220 postnatal days (HG-NG rats); the second was made up of age paired groups reared in normogravity (NG rats). The contractile, morphological, and phenotypical properties of soleus muscle were studied. Our results showed that the NG rats were characterized by coexpressions of slow and fast myosin, respectively, 76.5 and 23.5% at 115 days. During their postnatal maturation, the fast isoform was gradually replaced by slow myosin. At 220 days, the relative proportions were respectively 91.05% and 8.95%. From 115 to 220 days, the HG-NG rats expressed 100% of slow myosin isoform and they presented a slower contractile behavior compared with their age-matched groups; at 115 days, the whole muscle contraction time was increased by 35%, and by 15%, at 220 days. Our study underlined the importance of gravity in the muscular development and suggested the existence of critical periods in muscle phenotype installation.

  2. Genetic variation for phenotypically invariant traits detected in teosinte: implications for the evolution of novel forms.

    PubMed

    Lauter, Nick; Doebley, John

    2002-01-01

    How new discrete states of morphological traits evolve is poorly understood. One possibility is that single-gene changes underlie the evolution of new discrete character states and that evolution is dependent on the occurrence of new single-gene mutations. Another possibility is that multiple-gene changes are required to elevate an individual or population above a threshold required to produce the new character state. A prediction of the latter model is that genetic variation for the traits should exist in natural populations in the absence of phenotypic variation. To test this idea, we studied traits that are phenotypically invariant within teosinte and for which teosinte is discretely different from its near relative, maize. By employing a QTL mapping strategy to analyze the progeny of a testcross between an F(1) of two teosintes and a maize inbred line, we identified cryptic genetic variation in teosinte for traits that are invariant in teosinte. We argue that such cryptic genetic variation can contribute to the evolution of novelty when reconfigured to exceed the threshold necessary for phenotypic expression or by acting to modify or stabilize the effects of major mutations.

  3. New ΦBT1 site-specific integrative vectors with neutral phenotype in Streptomyces.

    PubMed

    Gonzalez-Quiñonez, Nathaly; López-García, María Teresa; Yagüe, Paula; Rioseras, Beatriz; Pisciotta, Annalisa; Alduina, Rosa; Manteca, Ángel

    2016-03-01

    Integrative plasmids are one of the best options to introduce genes in low copy and in a stable form into bacteria. The ΦC31-derived plasmids constitute the most common integrative vectors used in Streptomyces. They integrate at different positions (attB and pseudo-attB sites) generating different mutations. The less common ΦBT1-derived vectors integrate at the unique attB site localized in the SCO4848 gene (S. coelicolor genome) or their orthologues in other streptomycetes. This work demonstrates that disruption of SCO4848 generates a delay in spore germination. SCO4848 is co-transcribed with SCO4849, and the spore germination phenotype is complemented by SCO4849. Plasmids pNG1-4 were created by modifying the ΦBT1 integrative vector pMS82 by introducing a copy of SCO4849 under the control of the promoter region of SCO4848. pNG2 and pNG4 also included a copy of the P ermE * in order to facilitate gene overexpression. pNG3 and pNG4 harboured a copy of the bla gene (ampicillin resistance) to facilitate selection in E. coli. pNG1-4 are the only integrative vectors designed to produce a neutral phenotype when they are integrated into the Streptomyces genome. The experimental approach developed in this work can be applied to create phenotypically neutral integrative plasmids in other bacteria.

  4. Phenotypic and Genetic Effects of Contrasting Ethanol Environments on Physiological and Developmental Traits in Drosophila melanogaster

    PubMed Central

    Castañeda, Luis E.; Nespolo, Roberto F.

    2013-01-01

    A central problem in evolutionary physiology is to understand the relationship between energy metabolism and fitness-related traits. Most attempts to do so have been based on phenotypic correlations that are not informative for the evolutionary potential of natural populations. Here, we explored the effect of contrasting ethanol environments on physiological and developmental traits, their genetic (co)variances and genetic architecture in Drosophila melanogaster. Phenotypic and genetic parameters were estimated in two populations (San Fernando and Valdivia, Chile), using a half-sib family design where broods were split into ethanol-free and ethanol-supplemented conditions. Our findings show that metabolic rate, body mass and development times were sensitive (i.e., phenotypic plasticity) to ethanol conditions and dependent on population origin. Significant heritabilities were found for all traits, while significant genetic correlations were only found between larval and total development time and between development time and metabolic rate for flies of the San Fernando population developed in ethanol-free conditions. Posterior analyses indicated that the G matrices differed between ethanol conditions for the San Fernando population (mainly explained by differences in genetic (co)variances of developmental traits), whereas the Valdivia population exhibited similar G matrices between ethanol conditions. Our findings suggest that ethanol-free environment increases the energy available to reduce development time. Therefore, our results indicate that environmental ethanol could modify the process of energy allocation, which could have consequences on the evolutionary response of natural populations of D. melanogaster. PMID:23505567

  5. Rapid and label-free microfluidic neutrophil purification and phenotyping in diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Hou, Han Wei; Petchakup, Chayakorn; Tay, Hui Min; Tam, Zhi Yang; Dalan, Rinkoo; Chew, Daniel Ek Kwang; Li, King Ho Holden; Boehm, Bernhard O.

    2016-07-01

    Advanced management of dysmetabolic syndromes such as diabetes will benefit from a timely mechanistic insight enabling personalized medicine approaches. Herein, we present a rapid microfluidic neutrophil sorting and functional phenotyping strategy for type 2 diabetes mellitus (T2DM) patients using small blood volumes (fingerprick ~100 μL). The developed inertial microfluidics technology enables single-step neutrophil isolation (>90% purity) without immuno-labeling and sorted neutrophils are used to characterize their rolling behavior on E-selectin, a critical step in leukocyte recruitment during inflammation. The integrated microfluidics testing methodology facilitates high throughput single-cell quantification of neutrophil rolling to detect subtle differences in speed distribution. Higher rolling speed was observed in T2DM patients (P < 0.01) which strongly correlated with neutrophil activation, rolling ligand P-selectin glycoprotein ligand 1 (PSGL-1) expression, as well as established cardiovascular risk factors (cholesterol, high-sensitive C-reactive protein (CRP) and HbA1c). Rolling phenotype can be modulated by common disease risk modifiers (metformin and pravastatin). Receiver operating characteristics (ROC) and principal component analysis (PCA) revealed neutrophil rolling as an important functional phenotype in T2DM diagnostics. These results suggest a new point-of-care testing methodology, and neutrophil rolling speed as a functional biomarker for rapid profiling of dysmetabolic subjects in clinical and patient-oriented settings.

  6. Rapid and label-free microfluidic neutrophil purification and phenotyping in diabetes mellitus

    PubMed Central

    Hou, Han Wei; Petchakup, Chayakorn; Tay, Hui Min; Tam, Zhi Yang; Dalan, Rinkoo; Chew, Daniel Ek Kwang; Li, King Ho Holden; Boehm, Bernhard O.

    2016-01-01

    Advanced management of dysmetabolic syndromes such as diabetes will benefit from a timely mechanistic insight enabling personalized medicine approaches. Herein, we present a rapid microfluidic neutrophil sorting and functional phenotyping strategy for type 2 diabetes mellitus (T2DM) patients using small blood volumes (fingerprick ~100 μL). The developed inertial microfluidics technology enables single-step neutrophil isolation (>90% purity) without immuno-labeling and sorted neutrophils are used to characterize their rolling behavior on E-selectin, a critical step in leukocyte recruitment during inflammation. The integrated microfluidics testing methodology facilitates high throughput single-cell quantification of neutrophil rolling to detect subtle differences in speed distribution. Higher rolling speed was observed in T2DM patients (P < 0.01) which strongly correlated with neutrophil activation, rolling ligand P-selectin glycoprotein ligand 1 (PSGL-1) expression, as well as established cardiovascular risk factors (cholesterol, high-sensitive C-reactive protein (CRP) and HbA1c). Rolling phenotype can be modulated by common disease risk modifiers (metformin and pravastatin). Receiver operating characteristics (ROC) and principal component analysis (PCA) revealed neutrophil rolling as an important functional phenotype in T2DM diagnostics. These results suggest a new point-of-care testing methodology, and neutrophil rolling speed as a functional biomarker for rapid profiling of dysmetabolic subjects in clinical and patient-oriented settings. PMID:27381673

  7. Phenotypic variation in a family with partial androgen insensitivity syndrome explained by differences in 5alpha dihydrotestosterone availability.

    PubMed

    Boehmer, A L; Brinkmann, A O; Nijman, R M; Verleun-Mooijman, M C; de Ruiter, P; Niermeijer, M F; Drop, S L

    2001-03-01

    Mutations in the androgen receptor (AR) gene result in a wide range of phenotypes of the androgen insensitivity syndrome (AIS). Inter- and intrafamilial differences in the phenotypic expression of identical AR mutations are known, suggesting modifying factors in establishing the phenotype. Two 46,XY siblings with partial AIS sharing the same AR gene mutation, R846H, but showing very different phenotypes are studied. Their parents are first cousins. One sibling with grade 5 AIS was raised as a girl; the other sibling with grade 3 AIS was raised as a boy. In both siblings serum levels of hormones were measured; a sex hormone-binding globulin (SHBG) suppression test was completed; and mutation analysis of the AR gene, Scatchard, and SDS-PAGE analysis of the AR protein was performed. Furthermore, 5alpha-reductase 2 expression and activity in genital skin fibroblasts were investigated, and the 5alpha-reductase 2 gene was sequenced. The decrease in SHBG serum levels in a SHBG suppression test did not suggest differences in androgen sensitivity as the cause of the phenotypic variation. Also, androgen binding characteristics of the AR, AR expression levels, and the phosphorylation pattern of the AR on hormone binding were identical in both siblings. However, 5alpha-reductase 2 activity was normal in genital skin fibroblasts from the phenotypic male patient but undetectable in genital skin fibroblasts from the phenotypic female patient. The lack of 5alpha-reductase 2 activity was due to absent or reduced expression of 5alpha-reductase 2 in genital skin fibroblasts from the phenotypic female patient. Exon and flanking intron sequences of the 5alpha-reductase 2 gene showed no mutations in either sibling. Additional intragenic polymorphic marker analysis gave no evidence for different inherited alleles for the 5alpha-reductase 2 gene in the two siblings. Therefore, the absent or reduced expression of 5alpha-reductase 2 is likely to be additional to the AIS. Distinct phenotypic

  8. Hereditary deafness and phenotyping in humans.

    PubMed

    Bitner-Glindzicz, Maria

    2002-01-01

    Hereditary deafness has proved to be extremely heterogeneous genetically with more than 40 genes mapped or cloned for non-syndromic dominant deafness and 30 for autosomal recessive non-syndromic deafness. In spite of significant advances in the understanding of the molecular basis of hearing loss, identifying the precise genetic cause in an individual remains difficult. Consequently, it is important to exclude syndromic causes of deafness by clinical and special investigation and to use all available phenotypic clues for diagnosis. A clinical approach to the aetiological investigation of individuals with hearing loss is suggested, which includes ophthalmology review, renal ultrasound scan and neuro-imaging of petrous temporal bone. Molecular screening of the GJB2 (Connexin 26) gene should be undertaken in all cases of non-syndromic deafness where the cause cannot be identified, since it is a common cause of recessive hearing impairment, the screening is straightforward, and the phenotype unremarkable. By the same token, mitochondrial inheritance of hearing loss should be considered in all multigeneration families, particularly if there is a history of exposure to aminoglycoside antibiotics, since genetic testing of specific mitochondrial genes is technically feasible. Most forms of non-syndromic autosomal recessive hearing impairment cause a prelingual hearing loss, which is generally severe to profound and not associated with abnormal radiology. Exceptions to this include DFNB2 (MYO7A), DFNB8/10 (TMPRSS3) and DFNB16 (STRC) where age of onset may sometimes be later on in childhood, DFNB4 (SLC26A4) where there may be dilated vestibular aqueducts and endolymphatic sacs, and DFNB9 (OTOF) where there may also be an associated auditory neuropathy. Unusual phenotypes in autosomal dominant forms of deafness, include low frequency hearing loss in DFNA1 (HDIA1) and DFNA6/14/38 (WFS1), mid-frequency hearing loss in DFNA8/12 (TECTA), DFNA13 (COL11A2) and vestibular symptoms

  9. Quantitative Assessment of Eye Phenotypes for Functional Genetic Studies Using Drosophila melanogaster

    PubMed Central

    Iyer, Janani; Wang, Qingyu; Le, Thanh; Pizzo, Lucilla; Grönke, Sebastian; Ambegaokar, Surendra S.; Imai, Yuzuru; Srivastava, Ashutosh; Troisí, Beatriz Llamusí; Mardon, Graeme; Artero, Ruben; Jackson, George R.; Isaacs, Adrian M.; Partridge, Linda; Lu, Bingwei; Kumar, Justin P.; Girirajan, Santhosh

    2016-01-01

    About two-thirds of the vital genes in the Drosophila genome are involved in eye development, making the fly eye an excellent genetic system to study cellular function and development, neurodevelopment/degeneration, and complex diseases such as cancer and diabetes. We developed a novel computational method, implemented as Flynotyper software (http://flynotyper.sourceforge.net), to quantitatively assess the morphological defects in the Drosophila eye resulting from genetic alterations affecting basic cellular and developmental processes. Flynotyper utilizes a series of image processing operations to automatically detect the fly eye and the individual ommatidium, and calculates a phenotypic score as a measure of the disorderliness of ommatidial arrangement in the fly eye. As a proof of principle, we tested our method by analyzing the defects due to eye-specific knockdown of Drosophila orthologs of 12 neurodevelopmental genes to accurately document differential sensitivities of these genes to dosage alteration. We also evaluated eye images from six independent studies assessing the effect of overexpression of repeats, candidates from peptide library screens, and modifiers of neurotoxicity and developmental processes on eye morphology, and show strong concordance with the original assessment. We further demonstrate the utility of this method by analyzing 16 modifiers of sine oculis obtained from two genome-wide deficiency screens of Drosophila and accurately quantifying the effect of its enhancers and suppressors during eye development. Our method will complement existing assays for eye phenotypes, and increase the accuracy of studies that use fly eyes for functional evaluation of genes and genetic interactions. PMID:26994292

  10. Snail1 is required for the maintenance of the pancreatic acinar phenotype

    PubMed Central

    Loubat-Casanovas, Jordina; Peña, Raúl; Gonzàlez, Núria; Alba-Castellón, Lorena; Rosell, Santi; Francí, Clara; Navarro, Pilar; de Herreros, Antonio García

    2016-01-01

    The Snail1 transcriptional factor is required for correct embryonic development, yet its expression in adult animals is very limited and its functional roles are not evident. We have now conditionally inactivated Snail1 in adult mice and analyzed the phenotype of these animals. Snail1 ablation rapidly altered pancreas structure: one month after Snail1 depletion, acinar cells were markedly depleted, and pancreas accumulated adipose tissue. Snail1 expression was not detected in the epithelium but was in pancreatic mesenchymal cells (PMCs). Snail1 ablation in cultured PMCs downregulated the expression of several β-catenin/Tcf-4 target genes, modified the secretome of these cells and decreased their ability to maintain acinar markers in cultured pancreas cells. Finally, Snail1 deficiency modified the phenotype of pancreatic tumors generated in transgenic mice expressing c-myc under the control of the elastase promoter. Specifically, Snail1 depletion did not significantly alter the size of the tumors but accelerated acinar-ductal metaplasia. These results demonstrate that Snail1 is expressed in PMCs and plays a pivotal role in maintaining acinar cells within the pancreas in normal and pathological conditions. PMID:26735179

  11. Modified Nanodiamonds for Detoxification

    NASA Astrophysics Data System (ADS)

    Gibson, Natalie Marie

    essential for interacting with charged molecules, like OTA. Furthermore, the increased ZPs lead to improved colloidal stabilities over a wide range of pH, which is important for their interaction in the GI tract. While the dyes and OTA illustrated primarily electrostatic adsorption mechanisms, neutrally charged AfB1's adsorption was predominantly based upon the aggregate size of the ND substrate. In addition to mycotoxins, fluorescent dyes, including propidium iodide, pyranine and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), were initially utilized during methodological development. Fluorescent dye investigations helped assesses the adsorption mechanisms of NDs and demonstrated the significance of electrostatic interactions. Beyond electrostatic adsorption mechanisms, surface functional groups were also responsible for the amount of dye adsorbed, as was also true in OTA adsorption. Therefore, surface characterization was carried out for several ND samples by FTIR, TOF-SIMS and TDMS analysis. Final results of our studies show that our modified NDs perform better than yeast cells walls and other NDs but comparable to activated charcoal in the adsorption of AfB1, and outperform clay minerals in OTA studies. Moreover, it was demonstrated that adsorption can be maintained in a wide range of pH, thereby, increasing the possibility of NDs use in mycotoxins enterosorbent applications.

  12. [From the genotype to the phenotype].

    PubMed

    Parreira, L

    1999-02-01

    The growing knowledge of the molecular anatomy of the human genome and the mechanisms of the gene expression, together with recent advances in molecular epidemiology, have nurtured an entirely different view of the complex relationships between genes and phenotype. This review begins with a brief description of the different types of molecular lesion that may occur in a particular gene sequence as well as the biological consequences that they originate. Then, a "molecular view" of various concepts of classical genetics is presented: dominance and recessiveness are discussed as a problem of cellular homeostasis whereas gene penetrance and expressivity are viewed as problems of variability, gene connectivity and functional pleiotropism. Based on these concepts a few final remarks focus on the relationship between genes and the environment and its enormous impact in the genesis of polygenic and multifactorial disorders.

  13. Phenotypic Correlates of HIV-1 Macrophage Tropism

    PubMed Central

    Arrildt, Kathryn T.; LaBranche, Celia C.; Joseph, Sarah B.; Dukhovlinova, Elena N.; Graham, William D.; Ping, Li-Hua; Schnell, Gretja; Sturdevant, Christa B.; Kincer, Laura P.; Mallewa, Macpherson; Heyderman, Robert S.; Van Rie, Annelies; Cohen, Myron S.; Spudich, Serena; Price, Richard W.; Montefiori, David C.

    2015-01-01

    ABSTRACT HIV-1 is typically CCR5 using (R5) and T cell tropic (T-tropic), targeting memory CD4+ T cells throughout acute and chronic infections. However, viruses can expand into alternative cells types. Macrophage-tropic (M-tropic) HIV-1 variants have evolved to infect macrophages, which have only low levels of surface CD4. Most M-tropic variants have been isolated from the central nervous system during late-stage chronic infection. We used the HIV-1 env genes of well-defined, subject-matched M-tropic and T-tropic viruses to characterize the phenotypic features of the M-tropic Env protein. We found that, compared to T-tropic viruses, M-tropic viruses infect monocyte-derived macrophages (MDMs) on average 28-fold more efficiently, use low-density CD4 more efficiently, have increased sensitivity to soluble CD4 (sCD4), and show trends toward sensitivity to some CD4 binding site antibodies but no difference in sensitivity to antibodies targeting the CD4-bound conformation. M-tropic viruses also displayed a trend toward resistance to neutralization by monoclonal antibodies targeting the V1/V2 region of Env, suggesting subtle changes in Env protein conformation. The paired M- and T-tropic viruses did not differ in autologous serum neutralization, temperature sensitivity, entry kinetics, intrinsic infectivity, or Env protein incorporation. We also examined viruses with modestly increased CD4 usage. These variants have significant sensitivity to sCD4 and may represent evolutionary intermediates. CD4 usage is strongly correlated with infectivity of MDMs over a wide range of CD4 entry phenotypes. These data suggest that emergence of M-tropic HIV-1 includes multiple steps in which a phenotype of increased sensitivity to sCD4 and enhanced CD4 usage accompany subtle changes in Env conformation. IMPORTANCE HIV-1 typically replicates in CD4+ T cells. However, HIV-1 can evolve to infect macrophages, especially within the brain. Understanding how CCR5-using macrophage-tropic viruses

  14. Endothelial Plasticity: Shifting Phenotypes through Force Feedback

    PubMed Central

    Krenning, Guido; Barauna, Valerio G.; Krieger, José E.; Harmsen, Martin C.; Moonen, Jan-Renier A. J.

    2016-01-01

    The endothelial lining of the vasculature is exposed to a large variety of biochemical and hemodynamic stimuli with different gradients throughout the vascular network. Adequate adaptation requires endothelial cells to be highly plastic, which is reflected by the remarkable heterogeneity of endothelial cells in tissues and organs. Hemodynamic forces such as fluid shear stress and cyclic strain are strong modulators of the endothelial phenotype and function. Although endothelial plasticity is essential during development and adult physiology, proatherogenic stimuli can induce adverse plasticity which contributes to disease. Endothelial-to-mesenchymal transition (EndMT), the hallmark of endothelial plasticity, was long thought to be restricted to embryonic development but has emerged as a pathologic process in a plethora of diseases. In this perspective we argue how shear stress and cyclic strain can modulate EndMT and discuss how this is reflected in atherosclerosis and pulmonary arterial hypertension. PMID:26904133

  15. [Neuhauser syndrome: the facial dysmorphic phenotype].

    PubMed

    Aviña-Fierro, Jorge Arturo; Hernández-Aviña, Daniel Alejandro

    2016-01-01

    Neuhauser syndrome is an extremely rare genetic disease, most cases are sporadic by spontaneous mutation, but there are cases of autosomal recessive genetic transmission; the specific cause is unknown and has no diagnostic test. The disease is clinically characterized by primary megalocornea, congenital hypotonia, mental retardation of varying degree and delayed psychomotor development. The diagnosis in childhood is usually performed by oculo-neurological criteria. The patients have a peculiar face by specific craniofacial anomalies: round face, wide prominent forehead, hypertelorism, broad nasal bridge, bulbous nose, wide philtrum nasolabial wide, thin elongated mouth, big and protuded ear "cup", jaw undersized (micrognathia) and abnormal posterior positioning of the mandible (retrognathia).The use of facial dysmorphism helps to delineate the phenotype and achieve the punctuation required for the diagnosis, allowing early management and prevention of complications.

  16. The actin cytoskeleton in endothelial cell phenotypes

    PubMed Central

    Prasain, Nutan; Stevens, Troy

    2009-01-01

    Endothelium forms a semi-permeable barrier that separates blood from the underlying tissue. Barrier function is largely determined by cell-cell and cell-matrix adhesions that define the limits of cell borders. Yet, such cell-cell and cell-matrix tethering is critically reliant upon the nature of adherence within the cell itself. Indeed, the actin cytoskeleton fulfills this essential function, to provide a strong, dynamic intracellular scaffold that organizes integral membrane proteins with the cell’s interior, and responds to environmental cues to orchestrate appropriate cell shape. The actin cytoskeleton is comprised of three distinct, but interrelated structures, including actin cross-linking of spectrin within the membrane skeleton, the cortical actin rim, and actomyosin-based stress fibers. This review addresses each of these actin-based structures, and discusses cellular signals that control the disposition of actin in different endothelial cell phenotypes. PMID:19028505

  17. Do convergent developmental mechanisms underlie convergent phenotypes?

    NASA Technical Reports Server (NTRS)

    Wray, Gregory A.

    2002-01-01

    Convergence is a pervasive evolutionary process, affecting many aspects of phenotype and even genotype. Relatively little is known about convergence in developmental processes, however, nor about the degree to which convergence in development underlies convergence in anatomy. A switch in the ecology of sea urchins from feeding to nonfeeding larvae illustrates how convergence in development can be associated with convergence in anatomy. Comparisons to more distantly related taxa, however, suggest that this association may be limited to relatively close phylogenetic comparisons. Similarities in gene expression during development provide another window into the association between convergence in developmental processes and convergence in anatomy. Several well-studied transcription factors exhibit likely cases of convergent gene expression in distantly related animal phyla. Convergence in regulatory gene expression domains is probably more common than generally acknowledged, and can arise for several different reasons. Copyright 2002 S. Karger AG, Basel.

  18. Phenotyping common beans for adaptation to drought

    PubMed Central

    Beebe, Stephen E.; Rao, Idupulapati M.; Blair, Matthew W.; Acosta-Gallegos, Jorge A.

    2013-01-01

    Common beans (Phaseolus vulgaris L.) originated in the New World and are the grain legume of greatest production for direct human consumption. Common bean production is subject to frequent droughts in highland Mexico, in the Pacific coast of Central America, in northeast Brazil, and in eastern and southern Africa from Ethiopia to South Africa. This article reviews efforts to improve common bean for drought tolerance, referring to genetic diversity for drought response, the physiology of drought tolerance mechanisms, and breeding strategies. Different races of common bean respond differently to drought, with race Durango of highland Mexico being a major source of genes. Sister species of P. vulgaris likewise have unique traits, especially P. acutifolius which is well adapted to dryland conditions. Diverse sources of tolerance may have different mechanisms of plant response, implying the need for different methods of phenotyping to recognize the relevant traits. Practical considerations of field management are discussed including: trial planning; water management; and field preparation. PMID:23507928

  19. Phenotyping transgenic wheat for drought resistance.

    PubMed

    Saint Pierre, Carolina; Crossa, José L; Bonnett, David; Yamaguchi-Shinozaki, Kazuko; Reynolds, Matthew P

    2012-03-01

    Realistic experimental protocols to screen for drought adaptation in controlled conditions are crucial if high throughput phenotyping is to be used for the identification of high performance lines, and is especially important in the evaluation of transgenes where stringent biosecurity measures restrict the frequency of open field trials. Transgenic DREB1A-wheat events were selected under greenhouse conditions by evaluating survival and recovery under severe drought (SURV) as well as for water use efficiency (WUE). Greenhouse experiments confirmed the advantages of transgenic events in recovery after severe water stress. Under field conditions, the group of transgenic lines did not generally outperform the controls in terms of grain yield under water deficit. However, the events selected for WUE were identified as lines that combine an acceptable yield-even higher yield (WUE-11) under well irrigated conditions-and stable performance across the different environments generated by the experimental treatments.

  20. CRB1: one gene, many phenotypes.

    PubMed

    Ehrenberg, Miriam; Pierce, Eric A; Cox, Gerald F; Fulton, Anne B

    2013-01-01

    Mutations in the CRB1 gene cause severe retinal degenerations, which may present as Leber congenital amaurosis, early onset retinal dystrophy, retinitis pigmentosa, or cone-rod dystrophy. Some clinical features should alert the ophthalmologist to the possibility of CRB1 disease. These features are nummular pigmentation of the retina, atrophic macula, retinal degeneration associated with Coats disease, and a unique form of retinitis pigmentosa named para-arteriolar preservation of the retinal pigment epithelium (PPRPE). Retinal degenerations associated with nanophthalmos and hyperopia, or with keratoconus, can serve as further clinical cues to mutations in CRB1. Despite this, no clear genotype-phenotype relationship has been established in CRB1 disease. In CRB1-disease, as in other inherited retinal degenerations (IRDs), it is essential to diagnose the specific disease-causing gene for the disease as genetic therapy has progressed considerably in the last few years and might be applicable.

  1. Rare phenotypes in domestic animals: unique resources for multiple applications.

    PubMed

    Leroy, G; Besbes, B; Boettcher, P; Hoffmann, I; Capitan, A; Baumung, R

    2016-04-01

    Preservation of specific and inheritable phenotypes of current or potential future importance is one of the main purposes of conservation of animal genetic resources. In this review, we investigate the issues behind the characterisation, utilisation and conservation of rare phenotypes, considering their multiple paths of relevance, variable levels of complexity and mode of inheritance. Accurately assessing the rarity of a given phenotype, especially a complex one, is not a simple task, because it requires the phenotypic and genetic characterisation of a large number of animals and populations and remains dependent of the scale of the study. Once characterised, specific phenotypes may contribute to various purposes (adaptedness, production, biological model, aesthetics, etc.) with adequate introgression programmes, which justifies the consideration of (real or potential) existence of such characteristics in in situ or ex situ conservation strategies. Recent biotechnological developments (genomic and genetic engineering) will undoubtedly bring important changes to the way phenotypes are characterised, introgressed and managed.

  2. Cluster Analysis and Clinical Asthma Phenotypes

    PubMed Central

    Shaw, Dominic E.; Berry, Michael A.; Thomas, Michael; Brightling, Christopher E.; Wardlaw, Andrew J.

    2014-01-01

    Rationale Heterogeneity in asthma expression is multidimensional, including variability in clinical, physiologic, and pathologic parameters. Classification requires consideration of these disparate domains in a unified model. Objectives To explore the application of a multivariate mathematical technique, k-means cluster analysis, for identifying distinct phenotypic groups. Methods We performed k-means cluster analysis in three independent asthma populations. Clusters of a population managed in primary care (n = 184) with predominantly mild to moderate disease, were compared with a refractory asthma population managed in secondary care (n = 187). We then compared differences in asthma outcomes (exacerbation frequency and change in corticosteroid dose at 12 mo) between clusters in a third population of 68 subjects with predominantly refractory asthma, clustered at entry into a randomized trial comparing a strategy of minimizing eosinophilic inflammation (inflammation-guided strategy) with standard care. Measurements and Main Results Two clusters (early-onset atopic and obese, noneosinophilic) were common to both asthma populations. Two clusters characterized by marked discordance between symptom expression and eosinophilic airway inflammation (early-onset symptom predominant and late-onset inflammation predominant) were specific to refractory asthma. Inflammation-guided management was superior for both discordant subgroups leading to a reduction in exacerbation frequency in the inflammation-predominant cluster (3.53 [SD, 1.18] vs. 0.38 [SD, 0.13] exacerbation/patient/yr, P = 0.002) and a dose reduction of inhaled corticosteroid in the symptom-predominant cluster (mean difference, 1,829 μg beclomethasone equivalent/d [95% confidence interval, 307–3,349 μg]; P = 0.02). Conclusions Cluster analysis offers a novel multidimensional approach for identifying asthma phenotypes that exhibit differences in clinical response to treatment algorithms. PMID:18480428

  3. Phenotype heterogeneity in cancer cell populations

    NASA Astrophysics Data System (ADS)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  4. Glucose metabolic phenotype of pancreatic cancer

    PubMed Central

    Chan, Anthony KC; Bruce, Jason IE; Siriwardena, Ajith K

    2016-01-01

    AIM: To construct a global “metabolic phenotype” of pancreatic ductal adenocarcinoma (PDAC) reflecting tumour-related metabolic enzyme expression. METHODS: A systematic review of the literature was performed using OvidSP and PubMed databases using keywords “pancreatic cancer” and individual glycolytic and mitochondrial oxidative phosphorylation (MOP) enzymes. Both human and animal studies investigating the oncological effect of enzyme expression changes and inhibitors in both an in vitro and in vivo setting were included in the review. Data reporting changes in enzyme expression and the effects on PDAC cells, such as survival and metastatic potential, were extracted to construct a metabolic phenotype. RESULTS: Seven hundred and ten papers were initially retrieved, and were screened to meet the review inclusion criteria. 107 unique articles were identified as reporting data involving glycolytic enzymes, and 28 articles involving MOP enzymes in PDAC. Data extraction followed a pre-defined protocol. There is consistent over-expression of glycolytic enzymes and lactate dehydrogenase in keeping with the Warburg effect to facilitate rapid adenosine-triphosphate production from glycolysis. Certain isoforms of these enzymes were over-expressed specifically in PDAC. Altering expression levels of HK, PGI, FBA, enolase, PK-M2 and LDA-A with metabolic inhibitors have shown a favourable effect on PDAC, thus identifying these as potential therapeutic targets. However, the Warburg effect on MOP enzymes is less clear, with different expression levels at different points in the Krebs cycle resulting in a fundamental change of metabolite levels, suggesting that other essential anabolic pathways are being stimulated. CONCLUSION: Further characterisation of the PDAC metabolic phenotype is necessary as currently there are few clinical studies and no successful clinical trials targeting metabolic enzymes. PMID:27022229

  5. Immune cell phenotype and function in sepsis

    PubMed Central

    Rimmelé, Thomas; Payen, Didier; Cantaluppi, Vincenzo; Marshall, John; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A.

    2015-01-01

    Cells of the innate and adaptive immune systems play a critical role in the host response to sepsis. Moreover, their accessibility for sampling and their capacity to respond dynamically to an acute threat increases the possibility that leukocytes might serve as a measure of a systemic state of altered responsiveness in sepsis. The working group of the 14th Acute Dialysis Quality Initiative (ADQI) conference sought to obtain consensus on the characteristic functional and phenotypic changes in cells of the innate and adaptive immune system in the setting of sepsis. Techniques for the study of circulating leukocytes were also reviewed and the impact on cellular phenotypes and leukocyte function of non extracorporeal treatments and extracorporeal blood purification therapies proposed for sepsis was analyzed. A large number of alterations in the expression of distinct neutrophil and monocyte surface markers have been reported in septic patients. The most consistent alteration seen in septic neutrophils is their activation of a survival program that resists apoptotic death. Reduced expression of HLA-DR is a characteristic finding on septic monocytes but monocyte antimicrobial function does not appear to be significantly altered in sepsis. Regarding adaptive immunity, sepsis-induced apoptosis leads to lymphopenia in patients with septic shock and it involves all types of T cells (CD4, CD8 and Natural Killer) except T regulatory cells, thus favoring immunosuppression. Finally, numerous promising therapies targeting the host immune response to sepsis are under investigation. These potential treatments can have an effect on the number of immune cells, the proportion of cell subtypes and the cell function. PMID:26529661

  6. [Evaluation of phenotypic methods for the detection of KPC carbapenemases in Klebsiella pneumoniae].

    PubMed

    Nicola, Federico G; Nievas, Jimena; Smayevsky, Jorgelina

    2012-01-01

    We evaluated phenotypic methods for the detection of kPc carbapenemases in 44 clinical isolates of K. pneumoniae having reduced susceptibility to carbapenems, 30 of which were kPc-positive and 14 kPc-negative. Both the agar dilution and disk diffusion methods were performed for imipenem, meropenem and ertapenem. The following phenotypic methods were assayed: the double disk synergy test, using boronic acid or clavulanic acid as inhibitors, "combined" disks of carbapenem plus inhibitor (boronic acid, clavulanic acid and both boronic plus clavulanic acid), by using a pre-diffusion technique and the modified Hodge test. The double disk diffusion test using boronic acid could detect all kPc-positive isolates, but adjustment of disk distance was necessary for achieving such performance. The simulation of combined disks by our pre-diffusion technique detected all kPcpositive strains for all 3 carbapenems when using boronic acid as inhibitor, clavulanic acid was less susceptible and specific as compared with boronic acid. The modified Hodge test using any carbapenem was clearly positive for all kPc-producing isolates. This test was negative for all kPc-negative strains when imipenem or meropenem were used, but 2/14 isolates yielded a weak positive result when using ertapenem. By measuring the enhanced growth of E. coli aTcc 25922 observed in this test, we could objectively discriminate true-positive (= 8 mm) from false-positive results (< 5 mm). Our results show that the use of phenotypic methods is effective for the rapid detection of kPc producers in K. pneumoniae isolates with reduced susceptibility to carbapenems.

  7. Modified polymers for gas chromatography

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Christensen, W.; Mayer, L.

    1979-01-01

    Polymeric materials are modified to serve as stationary phase in chromatographic columns used for separation of atmospheric gases. Materials simplify and improve separation of atmospheric gases in terms of time, quantity of material needed, and sharpness of separation.

  8. Phenotype accessibility and noise in random threshold gene regulatory networks.

    PubMed

    Pinho, Ricardo; Garcia, Victor; Feldman, Marcus W

    2014-01-01

    Evolution requires phenotypic variation in a population of organisms for selection to function. Gene regulatory processes involved in organismal development affect the phenotypic diversity of organisms. Since only a fraction of all possible phenotypes are predicted to be accessed by the end of development, organisms may evolve strategies to use environmental cues and noise-like fluctuations to produce additional phenotypic diversity, and hence to enhance the speed of adaptation. We used a generic model of organismal development --gene regulatory networks-- to investigate how different levels of noise on gene expression states (i.e. phenotypes) may affect access to new, unique phenotypes, thereby affecting phenotypic diversity. We studied additional strategies that organisms might adopt to attain larger phenotypic diversity: either by augmenting their genome or the number of gene expression states. This was done for different types of gene regulatory networks that allow for distinct levels of regulatory influence on gene expression or are more likely to give rise to stable phenotypes. We found that if gene expression is binary, increasing noise levels generally decreases phenotype accessibility for all network types studied. If more gene expression states are considered, noise can moderately enhance the speed of discovery if three or four gene expression states are allowed, and if there are enough distinct regulatory networks in the population. These results were independent of the network types analyzed, and were robust to different implementations of noise. Hence, for noise to increase the number of accessible phenotypes in gene regulatory networks, very specific conditions need to be satisfied. If the number of distinct regulatory networks involved in organismal development is large enough, and the acquisition of more genes or fine tuning of their expression states proves costly to the organism, noise can be useful in allowing access to more unique phenotypes.

  9. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    DTIC Science & Technology

    2015-07-01

    AWARD NUMBER: W81XWH-14-1-0115 TITLE: Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas PRINCIPAL INVESTIGATOR: Kyuson Yun...of Origin and Cancer Stem Cell Phenotype in Medulloblastomas 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0115 5c. PROGRAM ELEMENT NUMBER 6...some oncogene function in determining molecular phenotypes. To test this hypothesis, we proposed to transform neural stem cells (NSCs) and neural

  10. Genetic Regulation of Phenotypic Plasticity and Canalisation in Yeast Growth.

    PubMed

    Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu

    2016-01-01

    The ability of a genotype to show diverse phenotypes in different environments is called phenotypic plasticity. Phenotypic plasticity helps populations to evade extinctions in novel environments, facilitates adaptation and fuels evolution. However, most studies focus on understanding the genetic basis of phenotypic regulation in specific environments. As a result, while it's evolutionary relevance is well established, genetic mechanisms regulating phenotypic plasticity and their overlap with the environment specific regulators is not well understood. Saccharomyces cerevisiae is highly sensitive to the environment, which acts as not just external stimulus but also as signalling cue for this unicellular, sessile organism. We used a previously published dataset of a biparental yeast population grown in 34 diverse environments and mapped genetic loci regulating variation in phenotypic plasticity, plasticity QTL, and compared them with environment-specific QTL. Plasticity QTL is one whose one allele exhibits high plasticity whereas the other shows a relatively canalised behaviour. We mapped phenotypic plasticity using two parameters-environmental variance, an environmental order-independent parameter and reaction norm (slope), an environmental order-dependent parameter. Our results show a partial overlap between pleiotropic QTL and plasticity QTL such that while some plasticity QTL are also pleiotropic, others have a significant effect on phenotypic plasticity without being significant in any environment independently. Furthermore, while some plasticity QTL are revealed only in specific environmental orders, we identify large effect plasticity QTL, which are order-independent such that whatever the order of the environments, one allele is always plastic and the other is canalised. Finally, we show that the environments can be divided into two categories based on the phenotypic diversity of the population within them and the two categories have differential regulators of

  11. Relational Machine Learning for Electronic Health Record-Driven Phenotyping

    PubMed Central

    Peissig, Peggy L.; Costa, Vitor Santos; Caldwell, Michael D.; Rottscheit, Carla; Berg, Richard L.; Mendonca, Eneida A.; Page, David

    2014-01-01

    Objective Electronic health records (EHR) offer medical and pharmacogenomics research unprecedented opportunities to identify and classify patients at risk. EHRs are collections of highly inter-dependent records that include biological, anatomical, physiological, and behavioral observations. They comprise a patient’s clinical phenome, where each patient has thousands of date-stamped records distributed across many relational tables. Development of EHR computer-based phenotyping algorithms require time and medical insight from clinical experts, who most often can only review a small patient subset representative of the total EHR records, to identify phenotype features. In this research we evaluate whether relational machine learning (ML) using Inductive Logic Programming (ILP) can contribute to addressing these issues as a viable approach for EHR-based phenotyping. Methods Two relational learning ILP approaches and three well-known WEKA (Waikato Environment for Knowledge Analysis) implementations of non-relational approaches (PART, J48, and JRIP) were used to develop models for nine phenotypes. International Classification of Diseases, Ninth Revision (ICD-9) coded EHR data were used to select training cohorts for the development of each phenotypic model. Accuracy, precision, recall, F-Measure, and Area Under the Receiver Operating Characteristic (AUROC) curve statistics were measured for each phenotypic model based on independent manually verified test cohorts. A two-sided binomial distribution test (sign test) compared the five ML approaches across phenotypes for statistical significance. Results We developed an approach to automatically label training examples using ICD-9 diagnosis codes for the ML approaches being evaluated. Nine phenotypic models for each MLapproach were evaluated, resulting in better overall model performance in AUROC using ILP when compared to PART (p=0.039), J48 (p=0.003) and JRIP (p=0.003). Discussion ILP has the potential to improve

  12. Topology of modified helical gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Zhang, J.; Handschuh, R. F.; Coy, J. J.

    1989-01-01

    The topology of several types of modified surfaces of helical gears is proposed. The modified surfaces allow absorption of a linear or almost linear function of transmission errors. These errors are caused by gear misalignment and an improvement of the contact of gear tooth surfaces. Principles and corresponding programs for computer aided simulation of meshing and contact of gears have been developed. The results of this investigation are illustrated with numerical examples.

  13. Food Allergy - Basic Mechanisms and Applications to Identifying Risks Associated with Plant Incorporated Pesticides and Other Genetically Modified Crops

    EPA Science Inventory

    Food allergy is a relatively new concern for toxicologists as a result of the incorporation of novel proteins into food crops in order to promote resistance to pests and other stresses, improve nutrition, or otherwise modify the phenotype. Food allergy can manifest as inflammatio...

  14. The landscape of microbial phenotypic traits and associated genes

    PubMed Central

    Brbić, Maria; Piškorec, Matija; Vidulin, Vedrana; Kriško, Anita; Šmuc, Tomislav; Supek, Fran

    2016-01-01

    Bacteria and Archaea display a variety of phenotypic traits and can adapt to diverse ecological niches. However, systematic annotation of prokaryotic phenotypes is lacking. We have therefore developed ProTraits, a resource containing ∼545 000 novel phenotype inferences, spanning 424 traits assigned to 3046 bacterial and archaeal species. These annotations were assigned by a computational pipeline that associates microbes with phenotypes by text-mining the scientific literature and the broader World Wide Web, while also being able to define novel concepts from unstructured text. Moreover, the ProTraits pipeline assigns phenotypes by drawing extensively on comparative genomics, capturing patterns in gene repertoires, codon usage biases, proteome composition and co-occurrence in metagenomes. Notably, we find that gene synteny is highly predictive of many phenotypes, and highlight examples of gene neighborhoods associated with spore-forming ability. A global analysis of trait interrelatedness outlined clusters in the microbial phenotype network, suggesting common genetic underpinnings. Our extended set of phenotype annotations allows detection of 57 088 high confidence gene-trait links, which recover many known associations involving sporulation, flagella, catalase activity, aerobicity, photosynthesis and other traits. Over 99% of the commonly occurring gene families are involved in genetic interactions conditional on at least one phenotype, suggesting that epistasis has a major role in shaping microbial gene content. PMID:27915291

  15. Automated tools for phenotype extraction from medical records.

    PubMed

    Yetisgen-Yildiz, Meliha; Bejan, Cosmin A; Vanderwende, Lucy; Xia, Fei; Evans, Heather L; Wurfel, Mark M

    2013-01-01

    Clinical research studying critical illness phenotypes relies on the identification of clinical syndromes defined by consensus definitions. Historically, identifying phenotypes has required manual chart review, a time and resource intensive process. The overall research goal of C ritical I llness PH enotype E xt R action (deCIPHER) project is to develop automated approaches based on natural language processing and machine learning that accurately identify phenotypes from EMR. We chose pneumonia as our first critical illness phenotype and conducted preliminary experiments to explore the problem space. In this abstract, we outline the tools we built for processing clinical records, present our preliminary findings for pneumonia extraction, and describe future steps.

  16. Phenotypes in phylogeography: Species’ traits, environmental variation, and vertebrate diversification

    PubMed Central

    Bell, Rayna C.; Mason, Nicholas A.

    2016-01-01

    Almost 30 y ago, the field of intraspecific phylogeography laid the foundation for spatially explicit and genealogically informed studies of population divergence. With new methods and markers, the focus in phylogeography shifted to previously unrecognized geographic genetic variation, thus reducing the attention paid to phenotypic variation in those same diverging lineages. Although phenotypic differences among lineages once provided the main data for studies of evolutionary change, the mechanisms shaping phenotypic differentiation and their integration with intraspecific genetic structure have been underexplored in phylogeographic studies. However, phenotypes are targets of selection and play important roles in species performance, recognition, and diversification. Here, we focus on three questions. First, how can phenotypes elucidate mechanisms underlying concordant or idiosyncratic responses of vertebrate species evolving in shared landscapes? Second, what mechanisms underlie the concordance or discordance of phenotypic and phylogeographic differentiation? Third, how can phylogeography contribute to our understanding of functional phenotypic evolution? We demonstrate that the integration of phenotypic data extends the reach of phylogeography to explain the origin and maintenance of biodiversity. Finally, we stress the importance of natural history collections as sources of high-quality phenotypic data that span temporal and spatial axes. PMID:27432983

  17. The division of labor: genotypic versus phenotypic specialization.

    PubMed

    Wahl, L M

    2002-07-01

    A model of the division of labor in simple evolving systems is explored to compare two strategies evident in natural populations: phenotypic specialization (such as differentiation by regulated gene expression) and genotypic specialization (such as co-infection by complementary covirus populations). While genotypic specialization is vulnerable to the chance extinction of an essential specialist type and to parasitism, phenotypic specialization is able to overcome these hurdles. When simple spatial effects are included, phenotypic specialization has further benefits, protecting against destructive dynamic patterns. Many of the advantages of phenotypic specialization, however, can only be realized when a high degree of relatedness within groups is ensured.

  18. Cancer cells exhibit clonal diversity in phenotypic plasticity

    PubMed Central

    2017-01-01

    Phenotypic heterogeneity in cancers is associated with invasive progression and drug resistance. This heterogeneity arises in part from the ability of cancer cells to switch between phenotypic states, but the dynamics of this cellular plasticity remain poorly understood. Here we apply DNA barcodes to quantify and track phenotypic plasticity across hundreds of clones in a population of cancer cells exhibiting epithelial or mesenchymal differentiation phenotypes. We find that the epithelial-to-mesenchymal cell ratio is highly variable across the different clones in cancer cell populations, but remains stable for many generations within the progeny of any single clone—with a heritability of 0.89. To estimate the effects of combination therapies on phenotypically heterogeneous tumours, we generated quantitative simulations incorporating empirical data from our barcoding experiments. These analyses indicated that combination therapies which alternate between epithelial- and mesenchymal-specific treatments eventually select for clones with increased phenotypic plasticity. However, this selection could be minimized by increasing the frequency of alternation between treatments, identifying designs that may minimize selection for increased phenotypic plasticity. These findings establish new insights into phenotypic plasticity in cancer, and suggest design principles for optimizing the effectiveness of combination therapies for phenotypically heterogeneous tumours. PMID:28202626

  19. Cancer cells exhibit clonal diversity in phenotypic plasticity.

    PubMed

    Mathis, Robert Austin; Sokol, Ethan S; Gupta, Piyush B

    2017-02-01

    Phenotypic heterogeneity in cancers is associated with invasive progression and drug resistance. This heterogeneity arises in part from the ability of cancer cells to switch between phenotypic states, but the dynamics of this cellular plasticity remain poorly understood. Here we apply DNA barcodes to quantify and track phenotypic plasticity across hundreds of clones in a population of cancer cells exhibiting epithelial or mesenchymal differentiation phenotypes. We find that the epithelial-to-mesenchymal cell ratio is highly variable across the different clones in cancer cell populations, but remains stable for many generations within the progeny of any single clone-with a heritability of 0.89. To estimate the effects of combination therapies on phenotypically heterogeneous tumours, we generated quantitative simulations incorporating empirical data from our barcoding experiments. These analyses indicated that combination therapies which alternate between epithelial- and mesenchymal-specific treatments eventually select for clones with increased phenotypic plasticity. However, this selection could be minimized by increasing the frequency of alternation between treatments, identifying designs that may minimize selection for increased phenotypic plasticity. These findings establish new insights into phenotypic plasticity in cancer, and suggest design principles for optimizing the effectiveness of combination therapies for phenotypically heterogeneous tumours.

  20. Phenotypic Tests for the Detection of β-Lactamase-Producing Enterobacteriaceae Isolated from Different Environments.

    PubMed

    de Oliveira, Daniele V; Van Der Sand, Sueli T

    2016-07-01

    Some bacteria from the Enterobacteriaceae family are showing a significant capability to disseminate β-lactams resistance mechanisms among them, and these same mechanisms can be carried out from the hospital environment to superficial water. The aim of this study was to evaluate different phenotypic methods for the detection β-lactamases production by enterobacteria isolated from the anthropogenic environment: hospital wastewater and from a stream that cross the city of Porto Alegre. The applied tests were the modified Hodge test (MHT) and phenotypic tests with the following inhibitors: carbapenemase-phenylboronic acid (APB), metallo-β-lactamase-EDTA, AmpC β-lactamase-cloxacillin, and the confirmatory test for extended-spectrum β-lactamase (ESBL)-clavulanic acid. For this evaluation, 131 isolates were initially subjected to antibiogram using the following antimicrobials: cefotaxime (30 µg), cefpodoxime (10 μg), ceftazidime (30 µg), ertapenem (10 μg), meropenem (10 μg), and aztreonam (30 μg). After this first screening, 62 isolates showed a profile resistance for at least one antimicrobial. These isolates were subjected to all phenotypic tests. Of those, 40 isolates were positive for at least one phenotypic test. In MHT test, one isolate was positive and five were with inconclusive results. The results achieved with the inhibitors are as follows: APB 25/40 positive strains; EDTA 8/40 positive strains; and with CLOXA 2/40 positive strains. ESBL production was observed for 34/40 strains. This assessment shows a high level of bacteria which can produce enzymes that inactivate β-lactams present in the different environment like the stream waters and from the hospital settings.

  1. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data

    PubMed Central

    Koscielny, Gautier; Yaikhom, Gagarine; Iyer, Vivek; Meehan, Terrence F.; Morgan, Hugh; Atienza-Herrero, Julian; Blake, Andrew; Chen, Chao-Kung; Easty, Richard; Di Fenza, Armida; Fiegel, Tanja; Grifiths, Mark; Horne, Alan; Karp, Natasha A.; Kurbatova, Natalja; Mason, Jeremy C.; Matthews, Peter; Oakley, Darren J.; Qazi, Asfand; Regnart, Jack; Retha, Ahmad; Santos, Luis A.; Sneddon, Duncan J.; Warren, Jonathan; Westerberg, Henrik; Wilson, Robert J.; Melvin, David G.; Smedley, Damian; Brown, Steve D. M.; Flicek, Paul; Skarnes, William C.; Mallon, Ann-Marie; Parkinson, Helen

    2014-01-01

    The International Mouse Phenotyping Consortium (IMPC) web portal (http://www.mousephenotype.org) provides the biomedical community with a unified point of access to mutant mice and rich collection of related emerging and existing mouse phenotype data. IMPC mouse clinics worldwide follow rigorous highly structured and standardized protocols for the experimentation, collection and dissemination of data. Dedicated ‘data wranglers’ work with each phenotyping center to collate data and perform quality control of data. An automated statistical analysis pipeline has been developed to identify knockout strains with a significant change in the phenotype parameters. Annotation with biomedical ontologies allows biologists and clinicians to easily find mouse strains with phenotypic traits relevant to their research. Data integration with other resources will provide insights into mammalian gene function and human disease. As phenotype data become available for every gene in the mouse, the IMPC web portal will become an invaluable tool for researchers studying the genetic contributions of genes to human diseases. PMID:24194600

  2. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data.

    PubMed

    Koscielny, Gautier; Yaikhom, Gagarine; Iyer, Vivek; Meehan, Terrence F; Morgan, Hugh; Atienza-Herrero, Julian; Blake, Andrew; Chen, Chao-Kung; Easty, Richard; Di Fenza, Armida; Fiegel, Tanja; Grifiths, Mark; Horne, Alan; Karp, Natasha A; Kurbatova, Natalja; Mason, Jeremy C; Matthews, Peter; Oakley, Darren J; Qazi, Asfand; Regnart, Jack; Retha, Ahmad; Santos, Luis A; Sneddon, Duncan J; Warren, Jonathan; Westerberg, Henrik; Wilson, Robert J; Melvin, David G; Smedley, Damian; Brown, Steve D M; Flicek, Paul; Skarnes, William C; Mallon, Ann-Marie; Parkinson, Helen

    2014-01-01

    The International Mouse Phenotyping Consortium (IMPC) web portal (http://www.mousephenotype.org) provides the biomedical community with a unified point of access to mutant mice and rich collection of related emerging and existing mouse phenotype data. IMPC mouse clinics worldwide follow rigorous highly structured and standardized protocols for the experimentation, collection and dissemination of data. Dedicated 'data wranglers' work with each phenotyping center to collate data and perform quality control of data. An automated statistical analysis pipeline has been developed to identify knockout strains with a significant change in the phenotype parameters. Annotation with biomedical ontologies allows biologists and clinicians to easily find mouse strains with phenotypic traits relevant to their research. Data integration with other resources will provide insights into mammalian gene function and human disease. As phenotype data become available for every gene in the mouse, the IMPC web portal will become an invaluable tool for researchers studying the genetic contributions of genes to human diseases.

  3. Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster

    PubMed Central

    Mouchel-Vielh, Emmanuèle; De Castro, Sandra; Peronnet, Frédérique

    2016-01-01

    Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to

  4. Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster.

    PubMed

    Gibert, Jean-Michel; Mouchel-Vielh, Emmanuèle; De Castro, Sandra; Peronnet, Frédérique

    2016-08-01

    Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to

  5. Candida albicans the chameleon: Transitions and interactions between multiple phenotypic states confer phenotypic plasticity

    PubMed Central

    Scaduto, Christine M.

    2015-01-01

    The ability of microbial cells to exist in multiple states is a ubiquitous property that promotes adaptation and survival. This phenomenon has been extensively studied in the opportunistic pathogen Candida albicans, which can transition between multiple phenotypic states in response to environmental signals. C. albicans normally exists as a commensal in the human body, but can also cause debilitating mucosal infections or life-threatening systemic infections. The ability to switch between cellular forms contributes to C. albicans’ capacity to infect different host niches, and strictly regulates the program of sexual mating. We review the unique properties associated with different phenotypic states, as well as how interactions between cells in different states can further augment microbial behavior. PMID:26189047

  6. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap.

    PubMed

    Großkinsky, Dominik K; Svensgaard, Jesper; Christensen, Svend; Roitsch, Thomas

    2015-09-01

    Plants are affected by complex genome×environment×management interactions which determine phenotypic plasticity as a result of the variability of genetic components. Whereas great advances have been made in the cost-efficient and high-throughput analyses of genetic information and non-invasive phenotyping, the large-scale analyses of the underlying physiological mechanisms lag behind. The external phenotype is determined by the sum of the complex interactions of metabolic pathways and intracellular regulatory networks that is reflected in an internal, physiological, and biochemical phenotype. These various scales of dynamic physiological responses need to be considered, and genotyping and external phenotyping should be linked to the physiology at the cellular and tissue level. A high-dimensional physiological phenotyping across scales is needed that integrates the precise characterization of the internal phenotype into high-throughput phenotyping of whole plants and canopies. By this means, complex traits can be broken down into individual components of physiological traits. Since the higher resolution of physiological phenotyping by 'wet chemistry' is inherently limited in throughput, high-throughput non-invasive phenotyping needs to be validated and verified across scales to be used as proxy for the underlying processes. Armed with this interdisciplinary and multidimensional phenomics approach, plant physiology, non-invasive phenotyping, and functional genomics will complement each other, ultimately enabling the in silico assessment of responses under defined environments with advanced crop models. This will allow generation of robust physiological predictors also for complex traits to bridge the knowledge gap between genotype and phenotype for applications in breeding, precision farming, and basic research.

  7. Plastin 3 Expression Does Not Modify Spinal Muscular Atrophy Severity in the ∆7 SMA Mouse.

    PubMed

    McGovern, Vicki L; Massoni-Laporte, Aurélie; Wang, Xueyong; Le, Thanh T; Le, Hao T; Beattie, Christine E; Rich, Mark M; Burghes, Arthur H M

    2015-01-01

    Spinal muscular atrophy is caused by loss of the SMN1 gene and retention of SMN2. The SMN2 copy number inversely correlates with phenotypic severity and is a modifier of disease outcome. The SMN2 gene essentially differs from SMN1 by a single nucleotide in exon 7 that modulates the incorporation of exon 7 into the final SMN transcript. The majority of the SMN2 transcripts lack exon 7 and this leads to a SMN protein that does not effectively oligomerize and is rapidly degraded. However the SMN2 gene does produce some full-length SMN and the SMN2 copy number along with how much full-length SMN the SMN2 gene makes correlates with severity of the SMA phenotype. However there are a number of discordant SMA siblings that have identical haplotypes and SMN2 copy number yet one has a milder form of SMA. It has been suggested that Plastin3 (PLS3) acts as a sex specific phenotypic modifier where increased expression of PLS3 modifies the SMA phenotype in females. To test the effect of PLS3 overexpression we have over expressed full-length PLS3 in SMA mice. To ensure no disruption of functionality or post-translational processing of PLS3 we did not place a tag on the protein. PLS3 protein was expressed under the Prion promoter as we have shown previously that SMN expression under this promoter can rescue SMA mice. High levels of PLS3 mRNA were expressed in motor neurons along with an increased level of PLS3 protein in total spinal cord, yet there was no significant beneficial effect on the phenotype of SMA mice. Specifically, neither survival nor the fundamental electrophysiological aspects of the neuromuscular junction were improved upon overexpression of PLS3 in neurons.

  8. Plastin 3 Expression Does Not Modify Spinal Muscular Atrophy Severity in the ∆7 SMA Mouse

    PubMed Central

    Wang, Xueyong; Le, Thanh T.; Le, Hao T.; Beattie, Christine E.; Rich, Mark M.; Burghes, Arthur H. M.

    2015-01-01

    Spinal muscular atrophy is caused by loss of the SMN1 gene and retention of SMN2. The SMN2 copy number inversely correlates with phenotypic severity and is a modifier of disease outcome. The SMN2 gene essentially differs from SMN1 by a single nucleotide in exon 7 that modulates the incorporation of exon 7 into the final SMN transcript. The majority of the SMN2 transcripts lack exon 7 and this leads to a SMN protein that does not effectively oligomerize and is rapidly degraded. However the SMN2 gene does produce some full-length SMN and the SMN2 copy number along with how much full-length SMN the SMN2 gene makes correlates with severity of the SMA phenotype. However there are a number of discordant SMA siblings that have identical haplotypes and SMN2 copy number yet one has a milder form of SMA. It has been suggested that Plastin3 (PLS3) acts as a sex specific phenotypic modifier where increased expression of PLS3 modifies the SMA phenotype in females. To test the effect of PLS3 overexpression we have over expressed full-length PLS3 in SMA mice. To ensure no disruption of functionality or post-translational processing of PLS3 we did not place a tag on the protein. PLS3 protein was expressed under the Prion promoter as we have shown previously that SMN expression under this promoter can rescue SMA mice. High levels of PLS3 mRNA were expressed in motor neurons along with an increased level of PLS3 protein in total spinal cord, yet there was no significant beneficial effect on the phenotype of SMA mice. Specifically, neither survival nor the fundamental electrophysiological aspects of the neuromuscular junction were improved upon overexpression of PLS3 in neurons. PMID:26134627

  9. Familial aggregation of candidate phenotypes for borderline personality disorder.

    PubMed

    Ruocco, Anthony C; Hudson, James I; Zanarini, Mary C; Gunderson, John G

    2015-01-01

    Borderline personality disorder (BPD) and its core Diagnostic and Statistical Manual of Mental Disorders (DSM) factor-analytically derived phenotypes aggregate in families. To potentially inform future conceptualizations of BPD, this study examined the familial aggregation and co-aggregation with BPD of 3 additional candidate phenotypes for BPD psychopathology: anxiousness, aggressiveness, and cognitive dysregulation. Participants included 347 probands (126 with BPD, 128 without BPD, and 93 with major depressive disorder) and 814 parents and siblings of probands. All participants completed diagnostic assessments and scales assessing the candidate phenotypes. The familial aggregation of phenotypes (correlation of level of phenotype between family members), the familial co-aggregation of phenotypes with BPD (correlation of phenotype with BPD between family members), and the within-individual correlation of phenotypes with BPD were assessed. All 3 candidate phenotypes showed high levels of familial aggregation (rs = .14 - .53, ps < .001), the magnitudes of which were comparable with DSM-based core sectors of psychopathology. Anxiousness and cognitive dysregulation showed strong within-individual associations with BPD (rs = .55 and .46, respectively; ps < .001) and substantial familial co-aggregation with BPD (rs = .12 and .13, respectively; ps ≤ .002). In contrast, aggressiveness showed a weak within-individual association with BPD (r = .11, p = .12) and little familial co-aggregation with BPD (r = .05, p = .21). These findings suggest that anxiousness and cognitive dysregulation are promising phenotypes for BPD psychopathology that move beyond factor-analytically based conceptualizations. In contrast, aggressiveness was only weakly related to BPD, suggesting that this phenotype may not represent an essential feature of this disorder.

  10. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities

    PubMed Central

    Chong, Jessica X.; Buckingham, Kati J.; Jhangiani, Shalini N.; Boehm, Corinne; Sobreira, Nara; Smith, Joshua D.; Harrell, Tanya M.; McMillin, Margaret J.; Wiszniewski, Wojciech; Gambin, Tomasz; Coban Akdemir, Zeynep H.; Doheny, Kimberly; Scott, Alan F.; Avramopoulos, Dimitri; Chakravarti, Aravinda; Hoover-Fong, Julie; Mathews, Debra; Witmer, P. Dane; Ling, Hua; Hetrick, Kurt; Watkins, Lee; Patterson, Karynne E.; Reinier, Frederic; Blue, Elizabeth; Muzny, Donna; Kircher, Martin; Bilguvar, Kaya; López-Giráldez, Francesc; Sutton, V. Reid; Tabor, Holly K.; Leal, Suzanne M.; Gunel, Murat; Mane, Shrikant; Gibbs, Richard A.; Boerwinkle, Eric; Hamosh, Ada; Shendure, Jay; Lupski, James R.; Lifton, Richard P.; Valle, David; Nickerson, Deborah A.; Bamshad, Michael J.

    2015-01-01

    Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families. PMID:26166479

  11. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities.

    PubMed

    Chong, Jessica X; Buckingham, Kati J; Jhangiani, Shalini N; Boehm, Corinne; Sobreira, Nara; Smith, Joshua D; Harrell, Tanya M; McMillin, Margaret J; Wiszniewski, Wojciech; Gambin, Tomasz; Coban Akdemir, Zeynep H; Doheny, Kimberly; Scott, Alan F; Avramopoulos, Dimitri; Chakravarti, Aravinda; Hoover-Fong, Julie; Mathews, Debra; Witmer, P Dane; Ling, Hua; Hetrick, Kurt; Watkins, Lee; Patterson, Karynne E; Reinier, Frederic; Blue, Elizabeth; Muzny, Donna; Kircher, Martin; Bilguvar, Kaya; López-Giráldez, Francesc; Sutton, V Reid; Tabor, Holly K; Leal, Suzanne M; Gunel, Murat; Mane, Shrikant; Gibbs, Richard A; Boerwinkle, Eric; Hamosh, Ada; Shendure, Jay; Lupski, James R; Lifton, Richard P; Valle, David; Nickerson, Deborah A; Bamshad, Michael J

    2015-08-06

    Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families.

  12. Congenital Cataract in Gpr161vl/vl Mice Is Modified by Proximal Chromosome 15

    PubMed Central

    Li, Bo I.; Ababon, Myka R.; Matteson, Paul G.; Lin, Yong; Nanda, Vikas; Millonig, James H.

    2017-01-01

    The morphology and severity of human congenital cataract varies even among individuals with the same mutation, suggesting that genetic background modifies phenotypic penetrance. The spontaneous mouse mutant, vacuolated lens (vl), arose on the C3H/HeSnJ background. The mutation disrupts secondary lens fiber development by E16.5, leading to full penetrance of congenital cataract. The vl locus was mapped to a frameshift deletion in the orphan G protein-coupled receptor, Gpr161, which is expressed in differentiating lens fiber cells. When Gpr161vl/vl C3H mice are crossed to MOLF/EiJ mice an unexpected rescue of cataract is observed, suggesting that MOLF modifiers affect cataract penetrance. Subsequent QTL analysis mapped three modifiers (Modvl3-5: Modifier of vl) and in this study we characterized Modvl4 (Chr15; LOD = 4.4). A Modvl4MOLF congenic was generated and is sufficient to rescue congenital cataract and the lens fiber defect at E16.5. Additional phenotypic analysis on three subcongenic lines narrowed down the interval from 55 to 15Mb. In total only 18 protein-coding genes and 2 micro-RNAs are in this region. Fifteen of the 20 genes show detectable expression in the E16.5 eye. Subsequent expression studies in Gpr161vl/vl and subcongenic E16.5 eyes, bioinformatics analysis of C3H/MOLF polymorphisms, and the biological relevancy of the genes in the interval identified three genes (Cdh6, Ank and Trio) that likely contribute to the rescue of the lens phenotype. These studies demonstrate that modification of the Gpr161vl/vl cataract phenotype is likely due to genetic variants in at least one of three closely linked candidate genes on proximal Chr15. PMID:28135291

  13. Chemical Genetic Screens for TDP-43 Modifiers and ALS Drug Discovery

    DTIC Science & Technology

    2013-10-01

    AD_________________ Award Number: W81XWH-11-1-0573 TITLE: Chemical Genetic Screens for TDP-43...15 Sept. 2012 – 14 Sept. 2013 4. TITLE AND SUBTITLE Chemical Genetic Screens for TDP-43 Modifiers and ALS Drug Discovery 5a. CONTRACT NUMBER...phenotypes in three unique in vivo genetic models of ALS that we have recently generated. Our new, functionally validated models are worms (C

  14. Congenital Cataract in Gpr161vl/vl Mice Is Modified by Proximal Chromosome 15.

    PubMed

    Li, Bo I; Ababon, Myka R; Matteson, Paul G; Lin, Yong; Nanda, Vikas; Millonig, James H

    2017-01-01

    The morphology and severity of human congenital cataract varies even among individuals with the same mutation, suggesting that genetic background modifies phenotypic penetrance. The spontaneous mouse mutant, vacuolated lens (vl), arose on the C3H/HeSnJ background. The mutation disrupts secondary lens fiber development by E16.5, leading to full penetrance of congenital cataract. The vl locus was mapped to a frameshift deletion in the orphan G protein-coupled receptor, Gpr161, which is expressed in differentiating lens fiber cells. When Gpr161vl/vl C3H mice are crossed to MOLF/EiJ mice an unexpected rescue of cataract is observed, suggesting that MOLF modifiers affect cataract penetrance. Subsequent QTL analysis mapped three modifiers (Modvl3-5: Modifier of vl) and in this study we characterized Modvl4 (Chr15; LOD = 4.4). A Modvl4MOLF congenic was generated and is sufficient to rescue congenital cataract and the lens fiber defect at E16.5. Additional phenotypic analysis on three subcongenic lines narrowed down the interval from 55 to 15Mb. In total only 18 protein-coding genes and 2 micro-RNAs are in this region. Fifteen of the 20 genes show detectable expression in the E16.5 eye. Subsequent expression studies in Gpr161vl/vl and subcongenic E16.5 eyes, bioinformatics analysis of C3H/MOLF polymorphisms, and the biological relevancy of the genes in the interval identified three genes (Cdh6, Ank and Trio) that likely contribute to the rescue of the lens phenotype. These studies demonstrate that modification of the Gpr161vl/vl cataract phenotype is likely due to genetic variants in at least one of three closely linked candidate genes on proximal Chr15.

  15. What is influencing the phenotype of the common homozygous polymerase-γ mutation p.Ala467Thr?

    PubMed Central

    Neeve, Vivienne C. M.; Samuels, David C.; Bindoff, Laurence A.; van den Bosch, Bianca; Van Goethem, Gert; Smeets, Hubert; Lombès, Anne; Jardel, Claude; Hirano, Michio; DiMauro, Salvatore; De Vries, Maaike; Smeitink, Jan; Smits, Bart W.; de Coo, Ireneus F. M.; Saft, Carsten; Klopstock, Thomas; Keiling, Bianca-Cortina; Czermin, Birgit; Abicht, Angela; Lochmüller, Hanns; Hudson, Gavin; Gorman, Grainne G.; Turnbull, Doug M.; Taylor, Robert W.; Holinski-Feder, Elke; Chinnery, Patrick F.

    2012-01-01

    Polymerase-γ (POLG) is a major human disease gene and may account for up to 25% of all mitochondrial diseases in the UK and in Italy. To date, >150 different pathogenic mutations have been described in POLG. Some mutations behave as both dominant and recessive alleles, but an autosomal recessive inheritance pattern is much more common. The most frequently detected pathogenic POLG mutation in the Caucasian population is c.1399G>A leading to a p.Ala467Thr missense mutation in the linker domain of the protein. Although many patients are homozygous for this mutation, clinical presentation is highly variable, ranging from childhood-onset Alpers-Huttenlocher syndrome to adult-onset sensory ataxic neuropathy dysarthria and ophthalmoparesis. The reasons for this are not clear, but familial clustering of phenotypes suggests that modifying factors may influence the clinical manifestation. In this study, we collected clinical, histological and biochemical data from 68 patients carrying the homozygous p.Ala467Thr mutation from eight diagnostic centres in Europe and the USA. We performed DNA analysis in 44 of these patients to search for a genetic modifier within POLG and flanking regions potentially involved in the regulation of gene expression, and extended our analysis to other genes affecting mitochondrial DNA maintenance (POLG2, PEO1 and ANT1). The clinical presentation included almost the entire phenotypic spectrum of all known POLG mutations. Interestingly, the clinical presentation was similar in siblings, implying a genetic basis for the phenotypic variability amongst homozygotes. However, the p.Ala467Thr allele was present on a shared haplotype in each affected individual, and there was no correlation between the clinical presentation and genetic variants in any of the analysed nuclear genes. Patients with mitochondrial DNA haplogroup U developed epilepsy significantly less frequently than patients with any other mitochondrial DNA haplotype. Epilepsy was reported

  16. What is influencing the phenotype of the common homozygous polymerase-γ mutation p.Ala467Thr?

    PubMed

    Neeve, Vivienne C M; Samuels, David C; Bindoff, Laurence A; van den Bosch, Bianca; Van Goethem, Gert; Smeets, Hubert; Lombès, Anne; Jardel, Claude; Hirano, Michio; Dimauro, Salvatore; De Vries, Maaike; Smeitink, Jan; Smits, Bart W; de Coo, Ireneus F M; Saft, Carsten; Klopstock, Thomas; Keiling, Bianca-Cortina; Czermin, Birgit; Abicht, Angela; Lochmüller, Hanns; Hudson, Gavin; Gorman, Grainne G; Turnbull, Doug M; Taylor, Robert W; Holinski-Feder, Elke; Chinnery, Patrick F; Horvath, Rita

    2012-12-01

    Polymerase-γ (POLG) is a major human disease gene and may account for up to 25% of all mitochondrial diseases in the UK and in Italy. To date, >150 different pathogenic mutations have been described in POLG. Some mutations behave as both dominant and recessive alleles, but an autosomal recessive inheritance pattern is much more common. The most frequently detected pathogenic POLG mutation in the Caucasian population is c.1399G>A leading to a p.Ala467Thr missense mutation in the linker domain of the protein. Although many patients are homozygous for this mutation, clinical presentation is highly variable, ranging from childhood-onset Alpers-Huttenlocher syndrome to adult-onset sensory ataxic neuropathy dysarthria and ophthalmoparesis. The reasons for this are not clear, but familial clustering of phenotypes suggests that modifying factors may influence the clinical manifestation. In this study, we collected clinical, histological and biochemical data from 68 patients carrying the homozygous p.Ala467Thr mutation from eight diagnostic centres in Europe and the USA. We performed DNA analysis in 44 of these patients to search for a genetic modifier within POLG and flanking regions potentially involved in the regulation of gene expression, and extended our analysis to other genes affecting mitochondrial DNA maintenance (POLG2, PEO1 and ANT1). The clinical presentation included almost the entire phenotypic spectrum of all known POLG mutations. Interestingly, the clinical presentation was similar in siblings, implying a genetic basis for the phenotypic variability amongst homozygotes. However, the p.Ala467Thr allele was present on a shared haplotype in each affected individual, and there was no correlation between the clinical presentation and genetic variants in any of the analysed nuclear genes. Patients with mitochondrial DNA haplogroup U developed epilepsy significantly less frequently than patients with any other mitochondrial DNA haplotype. Epilepsy was reported

  17. Study of the Aminoglycoside Subsistence Phenotype of Bacteria Residing in the Gut of Humans and Zoo Animals

    PubMed Central

    Bello González, Teresita de J.; Zuidema, Tina; Bor, Gerrit; Smidt, Hauke; van Passel, Mark W. J.

    2016-01-01

    Recent studies indicate that next to antibiotic resistance, bacteria are able to subsist on antibiotics as a carbon source. Here we evaluated the potential of gut bacteria from healthy human volunteers and zoo animals to subsist on antibiotics. Nine gut isolates of Escherichia coli and Cellulosimicrobium sp. displayed increases in colony forming units (CFU) during incubations in minimal medium with only antibiotics added, i.e., the antibiotic subsistence phenotype. Furthermore, laboratory strains of E. coli and Pseudomonas putida equipped with the aminoglycoside 3′ phosphotransferase II gene also displayed the subsistence phenotype on aminoglycosides. In order to address which endogenous genes could be involved in these subsistence phenotypes, the broad-range glycosyl-hydrolase inhibiting iminosugar deoxynojirimycin (DNJ) was used. Addition of DNJ to minimal medium containing glucose showed initial growth retardation of resistant E. coli, which was rapidly recovered to normal growth. In contrast, addition of DNJ to minimal medium containing kanamycin arrested resistant E. coli growth, suggesting that glycosyl-hydrolases were involved in the subsistence phenotype. However, antibiotic degradation experiments showed no reduction in kanamycin, even though the number of CFUs increased. Although antibiotic subsistence phenotypes are readily observed in bacterial species, and are even found in susceptible laboratory strains carrying standard resistance genes, we conclude there is a discrepancy between the observed antibiotic subsistence phenotype and actual antibiotic degradation. Based on these results we can hypothesize that aminoglycoside modifying enzymes might first inactivate the antibiotic (i.e., by acetylation of amino groups, modification of hydroxyl groups by adenylation and phosphorylation respectively), before the subsequent action of catabolic enzymes. Even though we do not dispute that antibiotics could be used as a single carbon source, our observations

  18. PhenoVar: a phenotype-driven approach in clinical genomics for the diagnosis of polymalformative syndromes

    PubMed Central

    2014-01-01

    Background We propose a phenotype-driven analysis of encrypted exome data to facilitate the widespread implementation of exome sequencing as a clinical genetic screening test. Twenty test-patients with varied syndromes were selected from the literature. For each patient, the mutation, phenotypic data, and genetic diagnosis were available. Next, control exome-files, each modified to include one of these twenty mutations, were assigned to the corresponding test-patients. These data were used by a geneticist blinded to the diagnoses to test the efficiency of our software, PhenoVar. The score assigned by PhenoVar to any genetic diagnosis listed in OMIM (Online Mendelian Inheritance in Man) took into consideration both the patient’s phenotype and all variations present in the corresponding exome. The physician did not have access to the individual mutations. PhenoVar filtered the search using a cut-off phenotypic match threshold to prevent undesired discovery of incidental findings and ranked the OMIM entries according to diagnostic score. Results When assigning the same weight to all variants in the exome, PhenoVar predicted the correct diagnosis in 10/20 patients, while in 15/20 the correct diagnosis was among the 4 highest ranked diagnoses. When assigning a higher weight to variants known, or bioinformatically predicted, to cause disease, PhenoVar’s yield increased to 14/20 (18/20 in top 4). No incidental findings were identified using our cut-off phenotypic threshold. Conclusion The phenotype-driven approach described could render widespread use of ES more practical, ethical and clinically useful. The implications about novel disease identification, advancement of complex diseases and personalized medicine are discussed. PMID:24884844

  19. Stellar oscillations in modified gravity

    NASA Astrophysics Data System (ADS)

    Sakstein, Jeremy

    2013-12-01

    Starting from the equations of modified gravity hydrodynamics, we derive the equations of motion governing linear, adiabatic, radial perturbations of stars in scalar-tensor theories. There are two new features: first, the eigenvalue equation for the period of stellar oscillations is modified such that the eigenfrequencies are always larger than predicted by general relativity. Second, the general relativity condition for stellar instability is altered so that the adiabatic index can fall below 4/3 before unstable modes appear. Stars are more stable in modified gravity theories. Specializing to the case of chameleonlike theories, we investigate these effects numerically using both polytropic Lane-Emden stars and models coming from modified gravity stellar structure simulations. We find that the change in the oscillation period of Cepheid star models can be as large as 30% for order-one matter couplings and the change in the inferred distance using the period-luminosity relation can be up to three times larger than if one had only considered the modified equilibrium structure. We discuss the implications of these results for recent and upcoming astrophysical tests and estimate that previous methods can produce new constraints such that the modifications are screened in regions of Newtonian potential of O(10-8).

  20. Model selection for modified gravity.

    PubMed

    Kitching, T D; Simpson, F; Heavens, A F; Taylor, A N

    2011-12-28

    In this article, we review model selection predictions for modified gravity scenarios as an explanation for the observed acceleration of the expansion history of the Universe. We present analytical procedures for calculating expected Bayesian evidence values in two cases: (i) that modified gravity is a simple parametrized extension of general relativity (GR; two nested models), such that a Bayes' factor can be calculated, and (ii) that we have a class of non-nested models where a rank-ordering of evidence values is required. We show that, in the case of a minimal modified gravity parametrization, we can expect large area photometric and spectroscopic surveys, using three-dimensional cosmic shear and baryonic acoustic oscillations, to 'decisively' distinguish modified gravity models over GR (or vice versa), with odds of ≫1:100. It is apparent that the potential discovery space for modified gravity models is large, even in a simple extension to gravity models, where Newton's constant G is allowed to vary as a function of time and length scale. On the time and length scales where dark energy dominates, it is only through large-scale cosmological experiments that we can hope to understand the nature of gravity.

  1. Phenotypic characterization of glioblastoma identified through shape descriptors

    NASA Astrophysics Data System (ADS)

    Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew

    2016-03-01

    This paper proposes quantitatively describing the shape of glioblastoma (GBM) tissue phenotypes as a set of shape features derived from segmentations, for the purposes of discriminating between GBM phenotypes and monitoring tumor progression. GBM patients were identified from the Cancer Genome Atlas, and quantitative MR imaging data were obtained from the Cancer Imaging Archive. Three GBM tissue phenotypes are considered including necrosis, active tumor and edema/invasion. Volumetric tissue segmentations are obtained from registered T1˗weighted (T1˗WI) postcontrast and fluid-attenuated inversion recovery (FLAIR) MRI modalities. Shape features are computed from respective tissue phenotype segmentations, and a Kruskal-Wallis test was employed to select features capable of classification with a significance level of p < 0.05. Several classifier models are employed to distinguish phenotypes, where a leave-one-out cross-validation was performed. Eight features were found statistically significant for classifying GBM phenotypes with p <0.05, orientation is uninformative. Quantitative evaluations show the SVM results in the highest classification accuracy of 87.50%, sensitivity of 94.59% and specificity of 92.77%. In summary, the shape descriptors proposed in this work show high performance in predicting GBM tissue phenotypes. They are thus closely linked to morphological characteristics of GBM phenotypes and could potentially be used in a computer assisted labeling system.

  2. Puerto Rican Phenotype: Understanding Its Historical Underpinnings and Psychological Associations

    ERIC Educational Resources Information Center

    Lopez, Irene

    2008-01-01

    The following is a historically informed review of Puerto Rican phenotype. Geared toward educating psychologists, this review discusses how various psychological issues associated with phenotype may have arisen as a result of historical legacies and policies associated with race and racial mixing. It discusses how these policies used various…

  3. The Down Syndrome Behavioural Phenotype: Taking a Developmental Approach

    ERIC Educational Resources Information Center

    Fidler, Deborah; Most, David; Philofsky, Amy

    2009-01-01

    Individuals with Down syndrome are predisposed to show a specific behavioural phenotype, or a pattern of strengths and challenges in functioning across different domains of development. It is argued that a developmental approach to researching the Down syndrome behavioural phenotype, including an examination of the dynamic process of the unfolding…

  4. Multitrait mixed modeling and categorical data analyses of phenotypic variances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative and categorical data were digitally recorded, measured or scored on whole canopies; single plants, leaves, and siliques; and on random seed samples of 224 genotypes in a phenotyping nursery of Brassica napus. They were used to (1) develop a pyramiding phenotyping model based on multitra...

  5. Phenotypic Transition as a Survival Strategy of Glioma.

    PubMed

    Ichikawa, Tomotsugu; Otani, Yoshihiro; Kurozumi, Kazuhiko; Date, Isao

    2016-07-15

    Malignant glioma is characterized by rapid proliferation, invasion into surrounding central nervous system tissues, and aberrant vascularization. There is increasing evidence that shows gliomas are more complex than previously thought, as each tumor comprises considerable intratumoral heterogeneity with mixtures of genetically and phenotypically distinct subclones. Heterogeneity within and across tumors is recognized as a critical factor that limits therapeutic progress for malignant glioma. Recent genotyping and expression profiling of gliomas has allowed for the creation of classification schemes that assign tumors to subtypes based on similarity to defined expression signatures. Also, malignant gliomas frequently shift their biological features upon recurrence and progression. The ability of glioma cells to resist adverse conditions such as hypoxia and metabolic stress is necessary for sustained tumor growth and strongly influences tumor behaviors. In general, glioma cells are in one of two phenotypic categories: higher proliferative activity with angiogenesis, or higher migratory activity with attenuated proliferative ability. Further, they switch phenotypic categories depending on the situation. To date, a multidimensional approach has been employed to clarify the mechanisms of phenotypic shift of glioma. Various molecular and signaling pathways are involved in phenotypic shifts of glioma, possibly with crosstalk between them. In this review, we discuss molecular and phenotypic heterogeneity of glioma cells and mechanisms of phenotypic shifts in regard to the glioma proliferation, angiogenesis, and invasion. A better understanding of the molecular mechanisms that underlie phenotypic shifts of glioma may provide new insights into targeted therapeutic strategies.

  6. [Research progress on the phenotype informative SNP in forensic science].

    PubMed

    Liu, Yu-Xuan; Hu, Qing-Qing; Ma, Hong-Du; Huang, Dai-Xin

    2014-10-01

    Single nucleotide polymorphism (SNP) refers to the single base sequence variation in specific location of the human genome. Phenotype informative SNP has gradually become one of the research hot spots in forensic science. In this paper, the forensic research situation and application prospect of phenotype informative SNP in the characteristics of hair, eye and skin color, height, and facial feature are reviewed.

  7. Modeling Phenotypes of Tuberous Sclerosis in the Mouse

    DTIC Science & Technology

    2006-02-01

    other proteins in this pathological progression, and to evaluate relevant therapeutic interventions such as rapamycin. 15. SUBJECT TERMS MOUSE...whether rapamycin treatment corrects this dysregulation, and whether phenotypes seen in the mice are abrogated by breeding pertinent MMP knockout...induction by doxycycline (Figure 7), this approach did not yield a phenotype, at least after 6 months of doxycycline treatment . Thus, as our

  8. The differential view of genotype–phenotype relationships

    PubMed Central

    Orgogozo, Virginie; Morizot, Baptiste; Martin, Arnaud

    2015-01-01

    An integrative view of diversity and singularity in the living world requires a better understanding of the intricate link between genotypes and phenotypes. Here we re-emphasize the old standpoint that the genotype–phenotype (GP) relationship is best viewed as a connection between two differences, one at the genetic level and one at the phenotypic level. As of today, predominant thinking in biology research is that multiple genes interact with multiple environmental variables (such as abiotic factors, culture, or symbionts) to produce the phenotype. Often, the problem of linking genotypes and phenotypes is framed in terms of genotype and phenotype maps, and such graphical representations implicitly bring us away from the differential view of GP relationships. Here we show that the differential view of GP relationships is a useful explanatory framework in the context of pervasive pleiotropy, epistasis, and environmental effects. In such cases, it is relevant to view GP relationships as differences embedded into differences. Thinking in terms of differences clarifies the comparison between environmental and genetic effects on phenotypes and helps to further understand the connection between genotypes and phenotypes. PMID:26042146

  9. Monozygotic twins with trisomy 18: a report of discordant phenotype.

    PubMed Central

    Schlessel, J S; Brown, W T; Lysikiewicz, A; Schiff, R; Zaslav, A L

    1990-01-01

    The predicted incidence of liveborn monozygotic trisomy 18 twins is one per million births. The first case of liveborn monozygotic trisomy 18 twins was reported in 1989 and we report a second case in which striking phenotypic discordance existed. The probability of monozygotic trisomy 18 twinning and the mechanisms for phenotypic discordance in trisomic twins is discussed. Images PMID:2246775

  10. Hormone signaling and phenotypic plasticity in nematode development and evolution.

    PubMed

    Sommer, Ralf J; Ogawa, Akira

    2011-09-27

    Phenotypic plasticity refers to the ability of an organism to adopt different phenotypes depending on environmental conditions. In animals and plants, the progression of juvenile development and the formation of dormant stages are often associated with phenotypic plasticity, indicating the importance of phenotypic plasticity for life-history theory. Phenotypic plasticity has long been emphasized as a crucial principle in ecology and as facilitator of phenotypic evolution. In nematodes, several examples of phenotypic plasticity have been studied at the genetic and developmental level. In addition, the influence of different environmental factors has been investigated under laboratory conditions. These studies have provided detailed insight into the molecular basis of phenotypic plasticity and its ecological and evolutionary implications. Here, we review recent studies on the formation of dauer larvae in Caenorhabditis elegans, the evolution of nematode parasitism and the generation of a novel feeding trait in Pristionchus pacificus. These examples reveal a conserved and co-opted role of an endocrine signaling module involving the steroid hormone dafachronic acid. We will discuss how hormone signaling might facilitate life-history and morphological evolution.

  11. A Comprehensive Evaluation of Disease Phenotype Networks for Gene Prioritization

    PubMed Central

    Li, Jianhua; Lin, Xiaoyan; Teng, Yueyang; Qi, Shouliang; Xiao, Dayu; Zhang, Jianying; Kang, Yan

    2016-01-01

    Identification of disease-causing genes is a fundamental challenge for human health studies. The phenotypic similarity among diseases may reflect the interactions at the molecular level, and phenotype comparison can be used to predict disease candidate genes. Online Mendelian Inheritance in Man (OMIM) is a database of human genetic diseases and related genes that has become an authoritative source of disease phenotypes. However, disease phenotypes have been described by free text; thus, standardization of phenotypic descriptions is needed before diseases can be compared. Several disease phenotype networks have been established in OMIM using different standardization methods. Two of these networks are important for phenotypic similarity analysis: the first and most commonly used network (mimMiner) is standardized by medical subject heading, and the other network (resnikHPO) is the first to be standardized by human phenotype ontology. This paper comprehensively evaluates for the first time the accuracy of these two networks in gene prioritization based on protein–protein interactions using large-scale, leave-one-out cross-validation experiments. The results show that both networks can effectively prioritize disease-causing genes, and the approach that relates two diseases using a logistic function improves prioritization performance. Tanimoto, one of four methods for normalizing resnikHPO, generates a symmetric network and it performs similarly to mimMiner. Furthermore, an integration of these two networks outperforms either network alone in gene prioritization, indicating that these two disease networks are complementary. PMID:27415759

  12. Phenotype switching is a natural consequence of Staphylococcus aureus replication.

    PubMed

    Edwards, Andrew M

    2012-10-01

    The pathogen Staphylococcus aureus undergoes phenotype switching in vivo from its normal colony phenotype (NCP) to a slow-growing, antibiotic-resistant small-colony-variant (SCV) phenotype that is associated with persistence in host cells and tissues. However, it is not clear whether phenotype switching is the result of a constitutive process that is selected for under certain conditions or is triggered by particular environmental stimuli. Examination of cultures of diverse S. aureus strains in the absence of selective pressure consistently revealed a small gentamicin-resistant SCV subpopulation that emerged during exponential-phase NCP growth and increased in number until NCP stationary phase. Treatment of replicating bacteria with the antibiotic gentamicin, which inhibited NCP but not SCV replication, resulted in an initial decrease in SCV numbers, demonstrating that SCVs arise as a consequence of NCP replication. However, SCV population expansion in the presence of gentamicin was reestablished by selection of phenotype-stable SCVs and subsequent SCV replication. In the absence of selective pressure, however, phenotype switching was bidirectional and occurred at a high frequency during NCP replication, resulting in SCV turnover. In summary, these data demonstrate that S. aureus phenotype switching occurs via a constitutive mechanism that generates a dynamic, antibiotic-resistant subpopulation of bacteria that can revert to the parental phenotype. The emergence of SCVs can therefore be considered a normal part of the S. aureus life cycle and provides an insurance policy against exposure to antibiotics that would otherwise eliminate the entire population.

  13. Digital imaging analysis to assess scar phenotype.

    PubMed

    Smith, Brian J; Nidey, Nichole; Miller, Steven F; Moreno Uribe, Lina M; Baum, Christian L; Hamilton, Grant S; Wehby, George L; Dunnwald, Martine

    2014-01-01

    In order to understand the link between the genetic background of patients and wound clinical outcomes, it is critical to have a reliable method to assess the phenotypic characteristics of healed wounds. In this study, we present a novel imaging method that provides reproducible, sensitive, and unbiased assessments of postsurgical scarring. We used this approach to investigate the possibility that genetic variants in orofacial clefting genes are associated with suboptimal healing. Red-green-blue digital images of postsurgical scars of 68 patients, following unilateral cleft lip repair, were captured using the 3dMD imaging system. Morphometric and colorimetric data of repaired regions of the philtrum and upper lip were acquired using ImageJ software, and the unaffected contralateral regions were used as patient-specific controls. Repeatability of the method was high with intraclass correlation coefficient score > 0.8. This method detected a very significant difference in all three colors, and for all patients, between the scarred and the contralateral unaffected philtrum (p ranging from 1.20(-05) to 1.95(-14) ). Physicians' clinical outcome ratings from the same images showed high interobserver variability (overall Pearson coefficient = 0.49) as well as low correlation with digital image analysis results. Finally, we identified genetic variants in TGFB3 and ARHGAP29 associated with suboptimal healing outcome.

  14. Racial Differences in CT Phenotypes in COPD

    PubMed Central

    Hansel, Nadia N.; Washko, George R.; Foreman, Marilyn G.; Han, MeiLan K.; Hoffman, Eric A.; DeMeo, Dawn L.; Barr, R. Graham; Van Beek, Edwin J.R.; Kazerooni, Ella A.; Wise, Robert A.; Brown, Robert H.; Black-Shinn, Jennifer; Hokanson, John E.; Hanania, Nicola A.; Make, Barry; Silverman, Edwin K.; Crapo, James D.; Dransfield, Mark T.

    2015-01-01

    Background Whether African Americans (AA) are more susceptible to COPD than non-Hispanic Whites (NHW) and whether racial differences in disease phenotype exist is controversial. The objective is to determine racial differences in the extent of emphysema and airway remodeling in COPD. Methods First, 2,500 subjects enrolled in the COPDGene study were used to evaluate racial differences in quantitative CT (QCT) parameters of % emphysema, air trapping and airway wall thickness. Independent variables studied included race, age, gender, education, BMI, pack-years, smoking status, age at smoking initiation, asthma, previous work in dusty job, CT scanner and center of recruitment. Results Of the 1,063 subjects with GOLD Stage II-IV COPD, 200 self-reported as AA. AAs had a lower mean % emphysema (13.1 % vs. 16.1%, p = 0.005) than NHW and proportionately less emphysema in the lower lung zones. After adjustment for covariates, there was no statistical difference by race in air trapping or airway wall thickness. Measured QCT parameters were more predictive of poor functional status in NHWs compared to AAs. Conclusions AAs have less emphysema than NHWs but the same degree of airway disease. Additional factors not easily assessed by current QCT techniques may account for the poor functional status in AAs. PMID:23413893

  15. Turner phenotype in mother and daughter.

    PubMed

    Muasher, S; Baramki, T A; Diggs, E S

    1980-12-01

    Two females are described, mother and daughter, who had the Turner phenotype and spontaneous sexual development. The mother is short and had ovulatory menstrual cycles, normal breast development, X-chromatin negative buccal smear, 45,X chromosomal pattern in her peripheral blood lymphocytes, and 45,X/46,X,r(X) mosaicism in her skin, with the majority of the cells (85%) showing X monosomy. She had a successful uncomplicated pregnancy at the age of 25 years. The daughter is short and had spontaneous sexual development, including menstruation at the age of 15 years. Her buccal smear was X-chromatin negative and karyotypes from peripheral blood lymphocytes and skin fibroblasts showed a 45,X chromosome constitution. Her menstrual cycles are irregular and, most probably, anovulatory. She has a horseshoe kidney. Six women with a 45, X chromosome complement are known to have delivered normal infants with no chromosomal abnormality. Five children with 45,X mosaicism have been born to mothers with 45,X mosaicism; all had a 46,XX cell line as well. This is the first report of a 45,X female born to a mother with mosaicism composed of 2 abnormal cell lines, 1 with X monosomy and 1 with a ring X chromosome.

  16. Ameloblastoma Phenotypes Reflected in Distinct Transcriptome Profiles

    PubMed Central

    Hu, Shijia; Parker, Joel; Divaris, Kimon; Padilla, Ricardo; Murrah, Valerie; Wright, John Timothy

    2016-01-01

    Ameloblastoma is a locally invasive benign neoplasm derived from odontogenic epithelium and presents with diverse phenotypes yet to be characterized molecularly. High recurrence rates of 50–80% with conservative treatment in some sub-types warrants radical surgical resections resulting in high morbidity. The objective of the study was to characterize the transcriptome of ameloblastoma and identify relevant genes and molecular pathways using normal odontogenic tissue (human “dentome”) for comparison. Laser capture microdissection was used to obtain neoplastic epithelial tissue from 17 tumors which were examined using the Agilent 44 k whole genome microarray. Ameloblastoma separated into 2 distinct molecular clusters that were associated with pre-secretory ameloblast and odontoblast. Within the pre-secretory cluster, 9/10 of samples were of the follicular type while 6/7 of the samples in the odontoblast cluster were of the plexiform type (p < 0.05). Common pathways altered in both clusters included cell-cycle regulation, inflammatory and MAPkinase pathways, specifically known cancer-driving genes such as TP53 and members of the MAPkinase pathways. The pre-secretory ameloblast cluster exhibited higher activation of inflammatory pathways while the odontoblast cluster showed greater disturbances in transcription regulators. Our results are suggestive of underlying inter-tumor molecular heterogeneity of ameloblastoma sub-types and have implications for the use of tailored treatment. PMID:27491308

  17. Phenotypic expansion of DGKE-associated diseases.

    PubMed

    Westland, Rik; Bodria, Monica; Carrea, Alba; Lata, Sneh; Scolari, Francesco; Fremeaux-Bacchi, Veronique; D'Agati, Vivette D; Lifton, Richard P; Gharavi, Ali G; Ghiggeri, Gian Marco; Sanna-Cherchi, Simone

    2014-07-01

    Atypical hemolytic uremic syndrome (aHUS) is usually characterized by uncontrolled complement activation. The recent discovery of loss-of-function mutations in DGKE in patients with aHUS and normal complement levels challenged this observation. DGKE, encoding diacylglycerol kinase-ε, has not been implicated in the complement cascade but hypothetically leads to a prothrombotic state. The discovery of this novel mechanism has potential implications for the treatment of infants with aHUS, who are increasingly treated with complement blocking agents. In this study, we used homozygosity mapping and whole-exome sequencing to identify a novel truncating mutation in DGKE (p.K101X) in a consanguineous family with patients affected by thrombotic microangiopathy characterized by significant serum complement activation and consumption of the complement fraction C3. Aggressive plasma infusion therapy controlled systemic symptoms and prevented renal failure, suggesting that this treatment can significantly affect the natural history of this aggressive disease. Our study expands the clinical phenotypes associated with mutations in DGKE and challenges the benefits of complement blockade treatment in such patients. Mechanistic studies of DGKE and aHUS are, therefore, essential to the design of appropriate therapeutic strategies in patients with DGKE mutations.

  18. Phenotypic Expansion of DGKE-Associated Diseases

    PubMed Central

    Westland, Rik; Bodria, Monica; Carrea, Alba; Lata, Sneh; Scolari, Francesco; Fremeaux-Bacchi, Veronique; D’Agati, Vivette D.; Lifton, Richard P.; Gharavi, Ali G.; Ghiggeri, Gian Marco

    2014-01-01

    Atypical hemolytic uremic syndrome (aHUS) is usually characterized by uncontrolled complement activation. The recent discovery of loss-of-function mutations in DGKE in patients with aHUS and normal complement levels challenged this observation. DGKE, encoding diacylglycerol kinase-ε, has not been implicated in the complement cascade but hypothetically leads to a prothrombotic state. The discovery of this novel mechanism has potential implications for the treatment of infants with aHUS, who are increasingly treated with complement blocking agents. In this study, we used homozygosity mapping and whole-exome sequencing to identify a novel truncating mutation in DGKE (p.K101X) in a consanguineous family with patients affected by thrombotic microangiopathy characterized by significant serum complement activation and consumption of the complement fraction C3. Aggressive plasma infusion therapy controlled systemic symptoms and prevented renal failure, suggesting that this treatment can significantly affect the natural history of this aggressive disease. Our study expands the clinical phenotypes associated with mutations in DGKE and challenges the benefits of complement blockade treatment in such patients. Mechanistic studies of DGKE and aHUS are, therefore, essential to the design of appropriate therapeutic strategies in patients with DGKE mutations. PMID:24511134

  19. Phenotypic assortative mating in segregation analysis.

    PubMed

    Hasstedt, S J

    1995-01-01

    A model of phenotypic assortative mating was developed for application in segregation analysis. The model assumed a constant spouse correlation across the range of a quantitative trait or the liability to a discrete trait. Four traits were analyzed to evaluate: 1) the feasibility of applying likelihood analysis to pedigree data in order to distinguish between assortative mating and shared environmental effects as the source of spouse correlation; and 2) the impact on segregation analysis of the failure to account for either assortative mating or shared environmental effects, as appropriate. Height ratio (the ratio of sitting to standing height) and eye color comprised the traits for which the observed spouse correlation reflected assortative mating; serum cholesterol and peptic ulcers (with genotypes defined by the ABO blood group) comprised the traits for which the observed spouse correlation reflected shared environmental effects. For all four traits the test statistics agreed with the known cause of spouse correlation; however, significance was not attained for height ratio or serum cholesterol. The ability to distinguish between the causes of spouse correlation in pedigree data presumably depends on trait and sample characteristics which remain to be delineated. Despite significant spouse correlation, its omission from the segregation analysis model did not undermine the inference of major locus inheritance for any of the four traits. However, the lack of an impact for these traits does not preclude an impact for other traits of ignoring the appropriate spouse correlation in segregation analysis.

  20. Clinical phenotypes in adult patients with bronchiectasis.

    PubMed

    Aliberti, Stefano; Lonni, Sara; Dore, Simone; McDonnell, Melissa J; Goeminne, Pieter C; Dimakou, Katerina; Fardon, Thomas C; Rutherford, Robert; Pesci, Alberto; Restrepo, Marcos I; Sotgiu, Giovanni; Chalmers, James D

    2016-04-01

    Bronchiectasis is a heterogeneous disease. This study aimed at identifying discrete groups of patients with different clinical and biological characteristics and long-term outcomes.This was a secondary analysis of five European databases of prospectively enrolled adult outpatients with bronchiectasis. Principal component and cluster analyses were performed using demographics, comorbidities, and clinical, radiological, functional and microbiological variables collected during the stable state. Exacerbations, hospitalisations and mortality during a 3-year follow-up were recorded. Clusters were externally validated in an independent cohort of patients with bronchiectasis, also investigating inflammatory markers in sputum.Among 1145 patients (median age 66 years; 40% male), four clusters were identified driven by the presence of chronic infection with Pseudomonas aeruginosaor other pathogens and daily sputum: "Pseudomonas" (16%), "Other chronic infection" (24%), "Daily sputum" (33%) and "Dry bronchiectasis" (27%). Patients in the four clusters showed significant differences in terms of quality of life, exacerbations, hospitalisations and mortality during follow-up. In the validation cohort, free neutrophil elastase activity, myeloperoxidase activity and interleukin-1β levels in sputum were significantly different among the clusters.Identification of four clinical phenotypes in bronchiectasis could favour focused treatments in future interventional studies designed to alter the natural history of the disease.

  1. A pleiotropic model of phenotypic evolution.

    PubMed

    Tanaka, Y

    1998-01-01

    A pleiotropic model is presented for deriving the equilibrium genetic variance by mutation and stabilizing selection and the long-term genetic responses to directional selection in the case where mutations have pleiotropic effects on fitness itself (direct deleterious effect) and on a quantitative trait (phenotypic effect). The equilibrium genetic variance is derived as a general form of the rare-alleles models, i.e., [formula: see text], where n is the number of loci, mu is the per-locus mutation rate, alpha 2 is the variance of new mutations, V(s) is the measure of stabilizing selection, and s(u) is the selection coefficient on mutations by direct deleterious effect. The genetic responses to directional selection is calculated based on the assumption that the genetic variance is kept at an equilibrium by mutation and stabilizing selection but without directional selection, and the directional selection starts to operate on the target trait. The evolutionary rate at the t-th generation after the introduction of the directional selection is [formula: see text], where i is the directional selection intensity, and s(T) is the total selection coefficient on mutations, i.e., [formula: see text]. The selection limit is [formula: see text], where V(m) is the mutational variance (2n mu alpha 2). The pleiotropic effects of genes reduce both the evolutionary rate and the selection limit.

  2. Malignant histiocytosis. A phenotypic and genotypic investigation.

    PubMed Central

    Cattoretti, G.; Villa, A.; Vezzoni, P.; Giardini, R.; Lombardi, L.; Rilke, F.

    1990-01-01

    Ten cases of malignant histiocytosis (MH) were evaluated for clinical and histopathologic features, phenotype, and rearrangement of T cell receptor (TCR) beta, gamma, and alpha and immunoglobulin (Ig) genes (7/10). All cases were HLA-DR+ and CD30-positive. Four cases had molecular evidence of T cell lineage such as TCR beta, gamma, and alpha rearrangements, and one additional case synthesized the cytoplasmic TCR beta chain. The remaining five cases did not show unequivocal T, B, natural killer (NK) cell, or macrophagic origin, and three of them had germline TCR and Ig genes. Ultrastructural analysis was not helpful for the definition of the cell lineage. Most myelomonocytic markers (MAC387, CD13, CD14, CD64, CD68) were either negative on the MH cells or were expressed on cells with rearranged TCR gene. Precursor (CD34, CD7) and NK (CD16, CD56, and CD57) cell markers were not found. The lineage of a number of cases of MH remains unresolved. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:2349962

  3. Digital imaging analysis to assess scar phenotype

    PubMed Central

    Smith, Brian J.; Nidey, Nichole; Miller, Steven F.; Moreno, Lina M.; Baum, Christian L.; Hamilton, Grant S.; Wehby, George L.; Dunnwald, Martine

    2015-01-01

    In order to understand the link between the genetic background of patients and wound clinical outcomes, it is critical to have a reliable method to assess the phenotypic characteristics of healed wounds. In this study, we present a novel imaging method that provides reproducible, sensitive and unbiased assessments of post-surgical scarring. We used this approach to investigate the possibility that genetic variants in orofacial clefting genes are associated with suboptimal healing. Red-green-blue (RGB) digital images of post-surgical scars of 68 patients, following unilateral cleft lip repair, were captured using the 3dMD image system. Morphometric and colorimetric data of repaired regions of the philtrum and upper lip were acquired using ImageJ software and the unaffected contralateral regions were used as patient-specific controls. Repeatability of the method was high with interclass correlation coefficient score > 0.8. This method detected a very significant difference in all three colors, and for all patients, between the scarred and the contralateral unaffected philtrum (P ranging from 1.20−05 to 1.95−14). Physicians’ clinical outcome ratings from the same images showed high inter-observer variability (overall Pearson coefficient = 0.49) as well as low correlation with digital image analysis results. Finally, we identified genetic variants in TGFB3 and ARHGAP29 associated with suboptimal healing outcome. PMID:24635173

  4. Phenotyping Cowpeas for Adaptation to Drought

    PubMed Central

    Hall, Anthony E.

    2012-01-01

    Methods for phenotyping cowpeas for adaptation to drought are reviewed. Key factors involve achieving optimal time of flowering and cycle length, and appropriate morphology for different types of cultivars as they relate to their utilization for dry grain, hay, and fresh pea production. Strong resistance to vegetative-stage drought is available and should be incorporated. The extreme ability of extra-early erect cowpea cultivars to escape terminal drought should be exploited in zones with very short rainfall seasons. In zones with the possibility of limited rainfall in the middle of the growing season, resistance to mid-season drought, and the delayed-leaf-senescence trait can be valuable. Breeding for water-use efficiency, deeper rooting, and heat tolerance are discussed. Diseases and pests that influence adaptation to drought are considered. Resistance to the organism causing ashy stem blight disease should be incorporated because this disease can destroy cowpea seedlings under hot, dry soil conditions. The value of varietal intercrops with contrasting types of cowpea cultivars in enhancing adaptation to drought is described. Implications of cowpea/cereal rotations for cowpea breeding are discussed. Breeding strategies for enhancing cowpea adaptation to drought are described. PMID:22654769

  5. The spatial patterns of directional phenotypic selection.

    PubMed

    Siepielski, Adam M; Gotanda, Kiyoko M; Morrissey, Michael B; Diamond, Sarah E; DiBattista, Joseph D; Carlson, Stephanie M

    2013-11-01

    Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection.

  6. Discovery of rare variants for complex phenotypes.

    PubMed

    Kosmicki, Jack A; Churchhouse, Claire L; Rivas, Manuel A; Neale, Benjamin M

    2016-06-01

    With the rise of sequencing technologies, it is now feasible to assess the role rare variants play in the genetic contribution to complex trait variation. While some of the earlier targeted sequencing studies successfully identified rare variants of large effect, unbiased gene discovery using exome sequencing has experienced limited success for complex traits. Nevertheless, rare variant association studies have demonstrated that rare variants do contribute to phenotypic variability, but sample sizes will likely have to be even larger than those of common variant association studies to be powered for the detection of genes and loci. Large-scale sequencing efforts of tens of thousands of individuals, such as the UK10K Project and aggregation efforts such as the Exome Aggregation Consortium, have made great strides in advancing our knowledge of the landscape of rare variation, but there remain many considerations when studying rare variation in the context of complex traits. We discuss these considerations in this review, presenting a broad range of topics at a high level as an introduction to rare variant analysis in complex traits including the issues of power, study design, sample ascertainment, de novo variation, and statistical testing approaches. Ultimately, as sequencing costs continue to decline, larger sequencing studies will yield clearer insights into the biological consequence of rare mutations and may reveal which genes play a role in the etiology of complex traits.

  7. Phenotyping cowpeas for adaptation to drought.

    PubMed

    Hall, Anthony E

    2012-01-01

    Methods for phenotyping cowpeas for adaptation to drought are reviewed. Key factors involve achieving optimal time of flowering and cycle length, and appropriate morphology for different types of cultivars as they relate to their utilization for dry grain, hay, and fresh pea production. Strong resistance to vegetative-stage drought is available and should be incorporated. The extreme ability of extra-early erect cowpea cultivars to escape terminal drought should be exploited in zones with very short rainfall seasons. In zones with the possibility of limited rainfall in the middle of the growing season, resist