Science.gov

Sample records for modified laser etching

  1. Laser-assisted dry etching of III-nitride wide band gap semiconductor materials

    NASA Astrophysics Data System (ADS)

    Leonard, Robert Tyler

    Laser assisted dry etching is a materials processing technique capable of producing highly anisotropic etch features with precise etch depth control and little contamination. The technique is simple: laser radiation is combined with a gaseous chemical etchant to remove material in pattern selected regions. The advantages of laser etching include the removal of etch products with photonic energy instead of ion bombardment, potential of projected patterning to combine growth and etching in situ without exposure to air, production of distinct sidewall etch features for device structures, and precise control of etching with a highly directional pulsed laser energy source. The use of pulsed laser radiation allows for pulsed etch depth control, ultimately resulting in atomic layer control. Laser assisted dry HCl etching of GaN, AlGaN and InGaN optical device materials was first demonstrated in our laboratory at North Carolina State University in a modified UHV vacuum chamber and ArF (193nm) excimer laser. Effective masking materials of Al and SiOsb2 were determined to be resistant to laser heating and HCl environment for laser etching. The process variables of laser intensity and HCl pressure were found to be dominant with the necessary condition that no etching occurs without both the excimer laser and HCl present. Successful laser etching of GaN, AlGaN, and InGaN was demonstrated indicating that deep etch features with distinct sidewall features are possible with this technique. Laser etching of a III-Nitride quantum well double heterostructure resulted in no degradation of the photoluminescence response. Also, reduction of etch damage with laser etching may be possible in comparison to ion etching. Finally, a proposed model for the etching mechanism includes the photothermal release of nitrogen from the GaN surface resulting in a Ga-rich surface which is removed by the HCl etchant.

  2. Laser-driven fusion etching process

    DOEpatents

    Ashby, C.I.H.; Brannon, P.J.; Gerardo, J.B.

    1987-08-25

    The surfaces of solids are etched by a radiation-driven chemical reaction. The process involves exposing a substrate coated with a layer of a reactant material on its surface to radiation, e.g., a laser, to induce localized melting of the substrate which results in the occurrence of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic substrates, e.g., LiNbO/sub 3/, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  3. Laser-driven fusion etching process

    DOEpatents

    Ashby, Carol I. H.; Brannon, Paul J.; Gerardo, James B.

    1989-01-01

    The surfaces of solid ionic substrates are etched by a radiation-driven chemical reaction. The process involves exposing an ionic substrate coated with a layer of a reactant material on its surface to radiation, e.g. a laser, to induce localized melting of the substrate which results in the occurrance of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic salt substrates, e.g., a solid inorganic salt such as LiNbO.sub.3, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  4. Photoinduced laser etching of a diamond surface

    SciTech Connect

    Kononenko, V V; Komlenok, M S; Pimenov, S M; Konov, V I

    2007-11-30

    Nongraphitising ablation of the surface of a natural diamond single crystal irradiated by nanosecond UV laser pulses is studied experimentally. For laser fluences below the diamond graphitisation threshold, extremely low diamond etching rates (less than 1nm/1000 pulses) are obtained and the term nanoablation is used just for this process. The dependence of the nanoablation rate on the laser fluence is studied for samples irradiated both in air and in oxygen-free atmosphere. The effect of external heating on the nanoablation rate is analysed and a photochemical mechanism is proposed for describing it. (interaction of laser radiation with matter. laser plasma)

  5. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

    PubMed Central

    Li, Lin-Jie; Kim, So-Nam

    2016-01-01

    PURPOSE In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P<.05). Furthermore, ALP expression levels of MSLA and LAT surfaces were significantly higher than expression levels of LT surface-adherent cells at 7, 14, and 21 days, respectively (P<.05). However, ALP expression levels between MSLA and LAT surface were equal at 7, 14, and 21 days (P>.05). CONCLUSION This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies. PMID:27350860

  6. Laser etching of polymer masked leadframes

    NASA Astrophysics Data System (ADS)

    Ho, C. K.; Man, H. C.; Yue, T. M.; Yuen, C. W.

    1997-02-01

    A typical electroplating production line for the deposition of silver pattern on copper leadframes in the semiconductor industry involves twenty to twenty five steps of cleaning, pickling, plating, stripping etc. This complex production process occupies large floor space and has also a number of problems such as difficulty in the production of rubber masks and alignment, generation of toxic fumes, high cost of water consumption and sometimes uncertainty on the cleanliness of the surfaces to be plated. A novel laser patterning process is proposed in this paper which can replace many steps in the existing electroplating line. The proposed process involves the application of high speed laser etching techniques on leadframes which were protected with polymer coating. The desired pattern for silver electroplating is produced by laser ablation of the polymer coating. Excimer laser was found to be most effective for this process as it can expose a pattern of clean copper substrate which can be silver plated successfully. Previous working of Nd:YAG laser ablation showed that 1.06 μm radiation was not suitable for this etching process because a thin organic and transparent film remained on the laser etched region. The effect of excimer pulse frequency and energy density upon the removal rate of the polymer coating was studied.

  7. Laser etching: A new technology to identify Florida grapefruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laser labeling of fruits and vegetables is an alternative means to label produce. Low energy CO2 laser beam etches the surface showing the contrasting underlying layer. These etched surfaces can promote water loss and potentially allowing for pathogen entry. The long term effects of laser labeling o...

  8. Er:YAG laser radiation etching of enamel

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinkova, Helena; Krejsa, Otakar; Hamal, Karel; Kubelka, Jiri; Prochazka, Stanislav

    1996-12-01

    This study compares the effects of acid treatment and Er:YAG laser radiation on the enamel. The permanent human molars were used. Oval cavities in the buccal surface were prepared and the edges of cavities were irradiated by Er:YAG radiation. The energy of laser was 105 mJ and repetition rate 1 Hz. The radiation was focused by CaF2 lens and the sample was placed in the focus. Ten samples were etched by 35 percent phosphoric acid during 60 s. Than cavities were filled with composite resin following manufacturers directions. By laser etching the structure enamel in section was rougher. The optimal connection between the enamel and composite resin was achieved in 75 percent by acid etching and in 79.2 percent by Er:YAG laser etching. Er:YAG laser etching could be alternative method for etching of enamel.

  9. Etching of fused silica fiber by metallic laser-induced backside wet etching technique

    NASA Astrophysics Data System (ADS)

    Vass, Cs.; Kiss, B.; Kopniczky, J.; Hopp, B.

    2013-08-01

    The tip of multimode fused silica fiber (core diameter: 550 μm) was etched by metallic laser-induced backside wet etching (M-LIBWE) method. Frequency doubled, Q-switched Nd:YAG laser (λ = 532 nm; τFWHM = 8 ns) was used as laser source. The laser beam was coupled into the fiber by a fused silica lens with a focal length of 1500 mm. The other tip of the fiber was dipped into liquid gallium metallic absorber. The etching threshold fluence was measured to be 475 mJ/cm2, while the highest fluence, which resulted etching without breaking the fiber, was 1060 mJ/cm2. The progress of etching was followed by optical microscopy, and the etch rate was measured to be between 20 and 37 nm/pulse depending on the applied laser energy. The surface morphologies of the etched tips were studied by scanning electron microscopy. A possible application of the structured fibers was also tested.

  10. Orthodontic bonding to acid- or laser-etched prebleached enamel

    PubMed Central

    Ozdemir, Fulya; Cakan, Umut; Gonul, Nese

    2013-01-01

    Objective Bonding forces of brackets to enamel surfaces may be affected by the procedures used for bleaching and enamel etching. The aim of this study was to investigate the bonding strength of orthodontic brackets to laser-etched surfaces of bleached teeth. Methods In a nonbleached control group, acid etching (group A) or Er:YAG laser application (group B) was performed prior to bracket bonding (n = 13 in each group). Similar surface treatments were performed at 1 day (groups C and D; n = 13 in each subgroup) or at 3 weeks (groups E and F; n = 13 in each subgroup) after 38% hydrogen peroxide bleaching in another set of teeth. The specimens were debonded after thermocycling. Results Laser etching of bleached teeth resulted in clinically unacceptable low bonding strength. In the case of acid-etched teeth, waiting for 3 weeks before attachment of brackets to the bleached surfaces resulted in similar, but not identical, bond strength values as those obtained with nonbleached surfaces. However, in the laser-etched groups, the bonding strength after 3 weeks was the same as that for the nonbleached group. Conclusions When teeth bleached with 38% hydrogen peroxide are meant to be bonded immediately, acid etching is preferable. PMID:23814709

  11. Analysis of machining characteristics in electrochemical etching using laser masking

    NASA Astrophysics Data System (ADS)

    Shin, Hong Shik; Chung, Do Kwan; Park, Min Soo; Chu, Chong Nam

    2011-12-01

    Electrochemical etching using laser masking (EELM), which is a combination of laser beam irradiation for masking and electrochemical etching, allows the micro fabrication of stainless steel without photolithography technology. The EELM process can produce various micro patterns and multilayered structures. In this study, the machining characteristics of EELM were investigated. Changes in characteristics of recast layer formation and the protective effect of the recast layer according to the laser masking conditions and electrochemical etching conditions were investigated by field emission scanning electron microscopy (FE-SEM), focused ion beam (FIB) and X-ray photoelectron spectroscopy (XPS). The oxidized recast layer with a thickness of 500 nm was verified to yield a superior protective effect during electrochemical etching and good form accuracy. Finally, micro patterns and structures were fabricated by EELM.

  12. Laser etching technique using bubble jet impact for glass substrates

    NASA Astrophysics Data System (ADS)

    Weng, Tsu-Shien; Tsai, Chwan-Huei

    2015-03-01

    The purpose of this paper is to propose a new laser etching technique using bubble jet impact for glass substrates. An Nd:YAG laser is applied to the backside of the substrate which is partially submerged in water. A metal plate is placed below the glass substrate. The metal vaporizes the water and generates a turbulent bubble flow. The bubble nozzle is proposed to enhance the impact of the bubble jet. The glass surface will first be softened, and then expelled by the shock wave resulting from the jet impact. The phenomena of bubble nucleation, growth, collapse, and jet impact were studied in this paper. The formation of the etching cavity can be divided into three types: double-petal, triple-petal, and four-petal. The etching pits expanded and combined to form a complete cavity. The needed laser power does not exceed 5 W. The proposed laser etching method was successfully demonstrated for etching a cavity of 5-20 µm in depth and 50-250 µm in diameter. The bubble jet of the small nozzle diameter is well concentrated, creating a strong jet impact on the glass surface. A greater nozzle depth can enhance the impact of the bubble jet. The proposed etching technique has great potential to provide an improved solution for the micro-machining of glass.

  13. Femtosecond laser etching of dental enamel for bracket bonding.

    PubMed

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  14. In Vitro Evaluation of Microleakage Around Orthodontic Brackets Using Laser Etching and Acid Etching Methods

    PubMed Central

    Toodehzaeim, Mohammad Hossein; Yassaei, Sogra; Karandish, Maryam; Farzaneh, Sedigeh

    2014-01-01

    Objective: path of microleakage between the enamel and adhesive potentially allows microbial ingress that may consequently cause enamel decalcification. The aim of this study was to compare microleakage of brackets bonded either by laser or acid etching techniques. Materials and Method: The specimens were 33 extracted premolars that were divided into three groups as the acid etching group (group 1), laser etching with Er:YAG at 100 mJ and 15 Hz for 15s (group 2), and laser etching with Er:YAG at 140 mJ and 15 Hz for 15s (group 3). After photo polymerization, the teeth were subjected to 500 thermal cycles. Then the specimens were sealed with nail varnish, stained with 2% methylen blue for 24hs, sectioned, and examined under a stereomicroscope. They were scored for marginal microleakage that occurred between the adhesive-enamel and bracket-adhesive interfaces from the occlusal and gingival margins. Data were analyzed with the Kruskal- Wallis test. Results: For the adhesive-enamel and bracket-adhesive surfaces, significant differences were not observed between the three groups. Conclusion: According to this study, the Er:YAG laser with 1.5 and 2.1 watt settings may be used as an adjunctive for preparing the surface for orthodontic bracket bonding. PMID:25628661

  15. Investigation of Acid-Etched CO2 Laser Ablated Enamel Surfaces Using Polarization Sensitive Optical Coherence Tomography

    PubMed Central

    Nahm, Byung J.; Kang, Hobin; Chan, Kenneth; Fried, Daniel

    2012-01-01

    A carbon dioxide laser operating at the highly absorbed wavelength of 9.3μm with a pulse duration of 10–15μs is ideally suited for caries removal and caries prevention. The enamel thermally modified by the laser has enhanced resistance to acid dissolution. This is an obvious advantage for caries prevention; however, it is often necessary to etch the enamel surface to increase adhesion to composite restorative materials and such surfaces may be more resistant to etching. The purpose of the study was to non-destructively measure the susceptibility of laser-ablated enamel surfaces to acid dissolution before and after acid-etching using Polarization Sensitive Optical Coherence Tomography (PS-OCT). PS-OCT was used to acquire images of bovine enamel surfaces after exposure to laser irradiation at ablative fluence, acid-etching, and a surface softened dissolution model. The integrated reflectivity from lesion and the lesion depth were measured using PS-OCT. Samples were also sectioned for examination by Polarized Light Microscopy (PLM). PS-OCT images showed that acid-etching greatly accelerated the formation of subsurface lesions on both laser-irradiated and non-irradiated surfaces (P<0.05). A 37.5% phosphoric acid etch removed the laser modified enamel layer after 5–10 seconds. PMID:23539418

  16. Investigation of acid-etched CO2 laser ablated enamel surfaces using polarization sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nahm, Byung J.; Kang, Hobin; Chan, Kenneth; Fried, Daniel

    2012-01-01

    A carbon dioxide laser operating at the highly absorbed wavelength of 9.3μm with a pulse duration of 10-15μs is ideally suited for caries removal and caries prevention. The enamel thermally modified by the laser has enhanced resistance to acid dissolution. This is an obvious advantage for caries prevention; however, it is often necessary to etch the enamel surface to increase adhesion to composite restorative materials and such surfaces may be more resistant to etching. The purpose of the study was to non-destructively measure the susceptibility of laser-ablated enamel surfaces to acid dissolution before and after acid-etching using Polarization Sensitive Optical Coherence Tomography (PS-OCT). PS-OCT was used to acquire images of bovine enamel surfaces after exposure to laser irradiation at ablative fluence, acid-etching, and a surface softened dissolution model. The integrated reflectivity from lesion and the lesion depth were measured using PS-OCT. Samples were also sectioned for examination by Polarized Light Microscopy (PLM). PS-OCT images showed that acid-etching greatly accelerated the formation of subsurface lesions on both laser-irradiated and non-irradiated surfaces (P<0.05). A 37.5% phosphoric acid etch removed the laser modified enamel layer after 5-10 seconds.

  17. Three-dimensional nanostructures by direct laser etching of Si

    NASA Astrophysics Data System (ADS)

    Müllenborn, M.; Dirac, H.; Petersen, J. W.

    1995-02-01

    Nanostructures have been machined into Si by a high-resolution laser direct write system. The Si substrate is locally heated above its melting point by a continuous-wave laser and rapidly etched by dry Cl 2 gas. If the solid-to-liquid transition is adjusted to occur only at the peak of the temperature profile, the melt size is significantly smaller than the diffraction-limited spot size. This can translate to extremely small etched features because of the high selectivity of the etching process for liquid Si compared to crystalline Si. By using objectives with a high numerical aperture, 488 nm as well as 351 nm light from an Ar ion laser, and X/Y/Z translation stages for moving the substrate instead of steering the beam, we have achieved line widths below 200 nm combined with very high scanning accuracy and speed. The resolution limit for Si machining is determined by the selectivity of the chemical reaction rather than the laser spot size. Interfacing to computer-aided design (CAD) software allows us to remove layer by layer of a truly three-dimensional nanostructure.

  18. Bond strengths of all-ceramics: acid vs laser etching.

    PubMed

    Gökçe, B; Ozpinar, B; Dündar, M; Cömlekoglu, E; Sen, B H; Güngör, M A

    2007-01-01

    Various applications of dental lasers on dental materials have been proposed for surface modifications. This study evaluated whether laser etching could be an alternative to hydrofluoric acid (HF) etching. One hundred and ten lithia-based all-ceramic specimens (Empress 2) (R: 4 mm, h: 4 mm) were prepared and divided into five groups (n = 22/group). The untreated specimens served as the control, while one of the experimental groups was treated with 9.5% HF for 30 seconds. Three remaining test groups were treated with different laser (Er:YAG laser wavelength:2940 nm, OpusDent) power settings: 300 mJ, 600 mJ and 900 mJ. Ten specimens in each group were luted to the other 10 specimens by a dual-curing cement (Variolink II), and shear-bond strength (SBS) tests were performed (Autograph, crosshead speed: 0.5 mm/minute). The results were statistically analyzed (Kruskal Wallis and Mann Whitney-U, alpha = .05). Mean SBS (MPa) were 31.9 +/- 4.0, 41.4 +/- 4.3, 42.8 +/- 6.2, 29.2 +/- 4.5 and 27.4 +/- 3.8 for the control and HF, 300, 600 and 900 mJ groups, respectively. SEM evaluations revealed different surface morphologies depending on the laser parameters. The differences between HF acid and 300 mJ, when compared with the control, 600 and 900 mJ groups, were significant (p < .05). The 300 mJ laser group exhibited the highest shear-bond strength values, indicating that laser etching could also be used for surface treatments.

  19. 21 CFR 179.43 - Carbon dioxide laser for etching food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbon dioxide laser for etching food. 179.43... § 179.43 Carbon dioxide laser for etching food. Carbon dioxide laser light may be safely used for... consists of a carbon dioxide laser designed to emit pulsed infrared radiation with a wavelength of...

  20. Shear bond strength of orthodontic brackets after acid-etched and erbium-doped yttrium aluminum garnet laser-etched

    PubMed Central

    Alavi, Shiva; Birang, Reza; Hajizadeh, Fatemeh

    2014-01-01

    Background: Laser ablation has been suggested as an alternative method to acid etching; however, previous studies have obtained contrasting results. The purpose of this study was to compare the shear bond strength (SBS) and fracture mode of orthodontic brackets that are bonded to enamel etched with acid and erbium-doped yttrium aluminum garnet (Er:YAG) laser. Materials and Methods: In this experimental in vitro study, buccal surfaces of 15 non-carious human premolars were divided into mesial and distal regions. Randomly, one of the regions was etched with 37% phosphoric acid for 15 s and another region irradiated with Er:YAG laser at 100 mJ energy and 20 Hz frequency for 20 s. Stainless steel brackets were then bonded using Transbond XT, following which all the samples were stored in distilled water for 24 h and then subjected to 500 thermal cycles. SBS was tested by a chisel edge, mounted on the crosshead of universal testing machine. After debonding, the teeth were examined under ×10 magnification and adhesive remnant index (ARI) score determined. SBS and ARI scores of the two groups were then compared using t-test and Mann-Whitney U test. Significant level was set at P < 0.05. Results: The mean SBS of the laser group (16.61 ± 7.7 MPa) was not significantly different from that of the acid-etched group (18.86 ± 6.09 MPa) (P = 0.41). There was no significant difference in the ARI scores between two groups (P = 0.08). However, in the laser group, more adhesive remained on the brackets, which is not suitable for orthodontic purposes. Conclusion: Laser etching at 100 mJ energy produced bond strength similar to acid etching. Therefore, Er:YAG laser may be an alternative method for conventional acid-etching. PMID:25097641

  1. Chemical and structural changes of quartz surfaces due to structuring by laser-induced backside wet etching.

    PubMed

    Kopitkovas, G; Deckert, V; Lippert, T; Raimondi, F; Schneider, C W; Wokaun, A

    2008-06-14

    Various physical and chemical processes which are involved in laser-induced backside wet etching are investigated. The surface of quartz etched by the laser-induced backside wet etching using a XeCl excimer laser at various fluences is analyzed by Raman microscopy, X-ray photoelectron spectroscopy and fiber-tip attenuated total-reflection Fourier-transform infrared spectroscopy. The investigations reveal the formation of a high amount of amorphous carbon deposits at low laser fluences, which strongly adhere to the quartz surface. Combining X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy reveals that the quartz is also chemically and structurally modified due to a loss of oxygen and by a change of the quartz polymorph at intermediate and high laser fluences. These modification and their differences for different fluences are explained by the etching mechanisms itself, i.e. different magnitudes of temperature and pressure jumps. The results show clearly which conditions for etching must be applied to machine high-quality structures, e.g. micro-optical elements in quartz.

  2. 21 CFR 179.43 - Carbon dioxide laser for etching food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Carbon dioxide laser for etching food. 179.43... FOOD Radiation and Radiation Sources § 179.43 Carbon dioxide laser for etching food. Carbon dioxide... conditions: (a) The radiation source consists of a carbon dioxide laser designed to emit pulsed...

  3. Etching of enamel for direct bonding with a thulium fiber laser

    NASA Astrophysics Data System (ADS)

    Kabaş Sarp, Ayşe S.; Gülsoy, Murat

    2011-03-01

    Background: Laser etching of enamel for direct bonding can decrease the risk of surface enamel loss and demineralization which are the adverse effects of acid etching technique. However, in excess of +5.5°C can cause irreversible pulpal responses. In this study, a 1940- nm Thulium Fiber Laser in CW mode was used for laser etching. Aim: Determination of the suitable Laser parameters of enamel surface etching for direct bonding of ceramic brackets and keeping that intrapulpal temperature changes below the threshold value. Material and Method: Polycrystalline ceramic orthodontic brackets were bonded on bovine teeth by using 2 different kinds of etching techniques: Acid and Laser Etching. In addition to these 3 etched groups, there was also a group which was bonded without etching. Brackets were debonded with a material testing machine. Breaking time and the load at the breaking point were measured. Intrapulpal temperature changes were recorded by a K-type Thermocouple. For all laser groups, intrapulpal temperature rise was below the threshold value of 5.5°C. Results and Conclusion: Acid-etched group ( 11.73 MPa) significantly required more debonding force than 3- second- irradiated ( 5.03 MPa) and non-etched groups ( 3.4 MPa) but the results of acid etched group and 4- second- irradiated group (7.5 MPa) showed no significant difference. Moreover, 4- second irradiated group was over the minimum acceptable value for clinical use. Also, 3- second lasing caused a significant reduction in time according to acid-etch group. As a result, 1940- nm laser irradiation is a promising method for laser etching.

  4. Laser etching of enamel for direct bonding with an Er,Cr:YSGG hydrokinetic laser system.

    PubMed

    Uşümez, Serdar; Orhan, Metin; Uşümez, Aslihan

    2002-12-01

    Irradiation of enamel with laser energy changes the physical and chemical characteristics of the enamel surface, and these alterations hold promise for the conditioning of enamel for bonding procedures. This laboratory study examined the influence of laser irradiation of enamel at 2 different power settings with an erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) hydrokinetic laser system (Millennium System, Biolase Technology, Inc; San Clemente, Calif) on the shear bond strength of orthodontic appliances and compared these with that of acid-etching. The prepared surfaces of 40 noncarious, intact, extracted premolars were exposed to laser energy: 20 teeth at 2-W setting (5.6 J/cm(2)) and 20 teeth at 1-W setting (2.7 J/cm(2)) of the commercial laser unit. Twenty teeth were etched with 37% orthophosphoric acid. Brackets were bonded with an orthodontic no-mix adhesive, and shear bond strength was determined with a universal testing machine. Data were analyzed with Kruskal-Wallis and Mann-Whitney U tests. Etched and restored surfaces of an acid-etched tooth and a 2-W laser-irradiated tooth were examined with scanning electron microscopy (SEM). Laser treatment under 2 W resulted in bond strengths of 7.11 +/- 4.56 megapascals (MPa), which was not significantly different from that of acid etching (8.23 +/- 2.30 MPa). Laser irradiation at 1 W resulted in bond strengths of 5.64 +/- 3.19 MPa, which was significantly different from that of acid etching (P <.05). However, large SD and coefficient of variation values of both laser groups made reliability of this method as an enamel conditioner questionable. Scanning electron microscopy studies of the restored irradiated surfaces showed good surface characteristics, whereas the lased surface was still more irregular than the restored acid-etched sample. Although laser devices are effectively used in some other areas of dentistry, enamel conditioning with an Er,Cr:YSGG laser cannot be considered a successful

  5. Laser etching of enamel for direct bonding with an Er,Cr:YSGG hydrokinetic laser system.

    PubMed

    Uşümez, Serdar; Orhan, Metin; Uşümez, Aslihan

    2002-12-01

    Irradiation of enamel with laser energy changes the physical and chemical characteristics of the enamel surface, and these alterations hold promise for the conditioning of enamel for bonding procedures. This laboratory study examined the influence of laser irradiation of enamel at 2 different power settings with an erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) hydrokinetic laser system (Millennium System, Biolase Technology, Inc; San Clemente, Calif) on the shear bond strength of orthodontic appliances and compared these with that of acid-etching. The prepared surfaces of 40 noncarious, intact, extracted premolars were exposed to laser energy: 20 teeth at 2-W setting (5.6 J/cm(2)) and 20 teeth at 1-W setting (2.7 J/cm(2)) of the commercial laser unit. Twenty teeth were etched with 37% orthophosphoric acid. Brackets were bonded with an orthodontic no-mix adhesive, and shear bond strength was determined with a universal testing machine. Data were analyzed with Kruskal-Wallis and Mann-Whitney U tests. Etched and restored surfaces of an acid-etched tooth and a 2-W laser-irradiated tooth were examined with scanning electron microscopy (SEM). Laser treatment under 2 W resulted in bond strengths of 7.11 +/- 4.56 megapascals (MPa), which was not significantly different from that of acid etching (8.23 +/- 2.30 MPa). Laser irradiation at 1 W resulted in bond strengths of 5.64 +/- 3.19 MPa, which was significantly different from that of acid etching (P <.05). However, large SD and coefficient of variation values of both laser groups made reliability of this method as an enamel conditioner questionable. Scanning electron microscopy studies of the restored irradiated surfaces showed good surface characteristics, whereas the lased surface was still more irregular than the restored acid-etched sample. Although laser devices are effectively used in some other areas of dentistry, enamel conditioning with an Er,Cr:YSGG laser cannot be considered a successful

  6. Mid-infrared spatial filter fabrication using laser chemical etching

    NASA Astrophysics Data System (ADS)

    Drouet D'Aubigny, Christian Y.; Walker, Christopher K.; Golish, Dathon R.

    2004-10-01

    Feedhorns like those commonly used in radio-telescope and radio communication equipment couple very efficiently (>98%) to the fundamental Gaussian mode (TEM00). High order modes are not propagated through a single-mode hollow metallic waveguides. It follows that a back to back feedhorn design joined with a small length of single-mode waveguide can be used as a very high throughput spatial filter. Laser micro machining provides a mean of scaling successful waveguide and quasi-optical components to far and mid infrared wavelengths. A laser micro machining system optimized for THz and far IR applications has been in operation at Steward Observatory for several years and produced devices designed to operate at λ=60μm. A new laser micromachining system capable of producing mid-infrared devices will soon be operational. These proceedings review metallic hollow waveguide spatial filtering theory, feedhorn designs as well as laser chemical etching and the design of a new high-NA UV laser etcher capable of sub-micron resolution to fabricate spatial filters for use in the mid-infrared.

  7. Modifying of etching anisotropy of silicon substrates by surface active agents

    NASA Astrophysics Data System (ADS)

    Rola, Krzysztof; Zubel, Irena

    2011-04-01

    The influence of alcohol additives on etch rate anisotropy of Si(hkl) planes has been studied. The etching processes were carried out in 3 and 5 M KOH aqueous solutions saturated and non-saturated with alcohols. Isopropanol, 1-propanol and tert-butanol were examined. It has been showed that the etching process cannot be controlled only by the surface tension of the solution. Saturation of the etching solution with alcohols modifies etch rate anisotropy, lowering the ratio of the etch rate of (110) and vicinal planes to the etch rate of (100) plane. The morphology of Si(hkl) planes etched in 3 M KOH solution saturated with tert-butyl alcohol has been studied in detail. Smooth (331) and (221) planes have been achieved in this solution. The (100) plane turned out to be densely covered by hillocks, opposite to the (100) plane etched in weak-alkaline solution saturated with isopropanol. To explain this phenomenon, the mechanism of hillocks formation on Si(100) surface has been proposed.

  8. Modifying of etching anisotropy of silicon substrates by surface active agents

    NASA Astrophysics Data System (ADS)

    Rola, Krzysztof P.; Zubel, Irena

    2011-04-01

    The influence of alcohol additives on etch rate anisotropy of Si( hkl) planes has been studied. The etching processes were carried out in 3 and 5 M KOH aqueous solutions saturated and non-saturated with alcohols. Isopropanol, 1-propanol and tert-butanol were examined. It has been showed that the etching process cannot be controlled only by the surface tension of the solution. Saturation of the etching solution with alcohols modifies etch rate anisotropy, lowering the ratio of the etch rate of (110) and vicinal planes to the etch rate of (100) plane. The morphology of Si( hkl) planes etched in 3 M KOH solution saturated with tert-butyl alcohol has been studied in detail. Smooth (331) and (221) planes have been achieved in this solution. The (100) plane turned out to be densely covered by hillocks, opposite to the (100) plane etched in weak-alkaline solution saturated with isopropanol. To explain this phenomenon, the mechanism of hillocks formation on Si(100) surface has been proposed.

  9. Laser illuminated etched track scattering (LITES) dosimetry system.

    PubMed

    Moore, M E; Gepford, H J; Hermes, R E; Hertel, N E; Devine, R T

    2002-01-01

    Los Alamos National Labs (LANL) has developed an etched track foil (CR-39) reader for neutron dose between 0 and 50.0 mSv. Currently, the US Department of Energy mandates general employee annual exposure not to exceed 50.0 mSv (5 rem). At LANL, due to a non-linear response at higher exposures. accepted practice only uses an Autoscan 60 system up to 3 mSv. The LITES system, however, has demonstrated linear response to 50 mSv, where the proprietary design measures the amount of laser light scattered by the etched tracks, proportional to dose. A collection of calibrated foils was counted by an Autoscan 60 and the LITES prototype, and the Autoscan 60 showed good linearity when counting exposure up to about 15 mSv, but not for higher exposures. From 0 to 50 mSv, the Autoscan 60 had a correlation coefficient of R2 = 0.941 and the LITES system had R2 = 0.991. PMID:12382702

  10. Nanograss and nanostructure formation on silicon using a modified deep reactive ion etching

    SciTech Connect

    Mehran, M.; Mohajerzadeh, S.; Sanaee, Z.; Abdi, Y.

    2010-05-17

    Silicon nanograss and nanostructures are realized using a modified deep reactive ion etching technique on both plane and vertical surfaces of a silicon substrate. The etching process is based on a sequential passivation and etching cycle, and it can be adjusted to achieve grassless high aspect ratio features as well as grass-full surfaces. The incorporation of nanostructures onto vertically placed parallel fingers of an interdigital capacitive accelerometer increases the total capacitance from 0.45 to 30 pF. Vertical structures with features below 100 nm have been realized.

  11. Laser etching of austenitic stainless steels for micro-structural evaluation

    NASA Astrophysics Data System (ADS)

    Baghra, Chetan; Kumar, Aniruddha; Sathe, D. B.; Bhatt, R. B.; Behere, P. G.; Afzal, Mohd

    2015-06-01

    Etching is a key step in metallography to reveal microstructure of polished specimen under an optical microscope. A conventional technique for producing micro-structural contrast is chemical etching. As an alternate, laser etching is investigated since it does not involve use of corrosive reagents and it can be carried out without any physical contact with sample. Laser induced etching technique will be beneficial especially in nuclear industry where materials, being radioactive in nature, are handled inside a glove box. In this paper, experimental results of pulsed Nd-YAG laser based etching of few austenitic stainless steels such as SS 304, SS 316 LN and SS alloy D9 which are chosen as structural material for fabrication of various components of upcoming Prototype Fast Breeder Reactor (PFBR) at Kalpakkam India were reported. Laser etching was done by irradiating samples using nanosecond pulsed Nd-YAG laser beam which was transported into glass paneled glove box using optics. Experiments were carried out to understand effect of laser beam parameters such as wavelength, fluence, pulse repetition rate and number of exposures required for etching of austenitic stainless steel samples. Laser etching of PFBR fuel tube and plug welded joint was also carried to evaluate base metal grain size, depth of fusion at welded joint and heat affected zone in the base metal. Experimental results demonstrated that pulsed Nd-YAG laser etching is a fast and effortless technique which can be effectively employed for non-contact remote etching of austenitic stainless steels for micro-structural evaluation.

  12. Visible luminescence from laser-induced stain- and dry etched silicon

    SciTech Connect

    Dimova-Malinovska, D.; Tzolov, M.; Malinowski, N.

    1996-12-31

    Light emitting silicon has been prepared by Ar laser (514.5 nm) induced stain etching and Nd:YAG impulse (532 nm) laser irradiation in air. Photoluminescence (PL), IR and XPS spectra have been studied. The intensity and position of the PL depend on the power or the energy and the duration of laser beam treatment during the etching. Correlation between the PL and chemical bonding is discussed.

  13. A Comparison of Shear Bond Strengths of Metal and Ceramic Brackets using Conventional Acid Etching Technique and Er:YAG Laser Etching

    PubMed Central

    Yassaei, Sogra; Fekrazad, Reza; Shahraki, Neda; Goldani Moghadam, Mahdjoube

    2014-01-01

    Background and aims. The aim of this study was to compare shear bond strength (SBS) of metal and ceramic brackets bonded to enamel using acid versus Er:YAG laser etching. Materials and methods. Eighty premolars were divided into 4 groups: AM (acid etching/ metal brackets), AC (acid etching/ ceramic brackets), LM (laser etching/ metal brackets) and LC (laser etching/ ceramic brackets). Enamel condition-ing was done using acid in AC and AM and Er:YAG laser in LC and LM. Brackets were debonded with a Dartec machine and the SBSs were determined. Adhesive remnant index was evaluated under a stereomicroscope. Two additional teeth were conditioned with acid and laser for scanning electron microscopy examination. Comparisons of SBS value were done by ANOVA test. Results. statistical analyses showed that SBSs of acid groups were significantly higher than that of laser groups, but dif-ferences between SBS values of AC/ AM and LC/LM were not significant. SEM examination revealed different etching pattern. Conclusion. Low power Er:YAG laser etching offers clinically acceptable SBS which besides its other superiorities to acid etching can be an appropriate alternative for bonding of ceramic brackets. PMID:25024836

  14. Temporal development of optically etched gratings: a new method of investigating laser-induced damage.

    PubMed

    Cutter, M A; Key, P Y; Little, V I

    1974-06-01

    An optical etching technique for producing small diffraction gratings, in which a thin metallic film set at an angle to the axis of a ruby laser cavity acted as a Q-switch in the operation of that laser, was previously reported. Here we report a comprehensive investigation of the formation of such etched gratings by the effect of laser light on a thin film external to the laser cavity. A time resolved investigation has been made of the development of such gratings in a number of metallic films, and the effect of film thickness, incident laser intensity, and angular orientation of the film has been studied. PMID:20126205

  15. Enamel resistance to demineralization following Er:YAG laser etching for bonding orthodontic brackets

    PubMed Central

    Ahrari, Farzaneh; Poosti, Maryam; Motahari, Pourya

    2012-01-01

    Background: Several studies have shown that laser-etching of enamel for bonding orthodontic brackets could be an appropriate alternative for acid conditioning, since a potential advantage of laser could or might be caries prevention. This study compared enamel resistance to demineralization following etching with acid phosphoric or Er:YAG laser for bonding orthodontic brackets. Materials and Methods: Fifty sound human premolars were divided into two equal groups. In the first group, enamel was etched with 37% phosphoric acid for 15 seconds. In the second group, Er:YAG laser (wavelength, 2 940 nm; 300 mJ/pulse, 10 pulses per second, 10 seconds) was used for tooth conditioning. The teeth were subjected to 4-day PH-cycling process to induce caries-like lesions. The teeth were then sectioned and the surface area of the lesion was calculated in each microphotographs and expressed in pixel. The total surface of each specimen was 196 608 pixels. Results: Mean lesion areas were 7 171 and 7532 pixels for Laser-etched and Acid-etched groups, respectively. The two sample t-test showed that there was no significant difference in lesion area between the two groups (P = 0.914). Conclusion: Although Er:YAG laser seems promising for etching enamel before bonding orthodontic brackets, it does not reduce enamel demineralization when exposed to acid challenge. PMID:23162591

  16. Microtensile bond strength of a resin-based fissure sealant to Er,Cr:YSGG laser-etched primary enamel.

    PubMed

    Sungurtekin-Ekci, Elif; Oztas, Nurhan

    2016-05-01

    The aim of this study was to evaluate the effect of Er,Cr:YSGG laser pre-treatment alone, or associated with acid-etching, on the microtensile bond strength of a resin-based fissure sealant to primary enamel. Twenty-five human primary molars were randomly divided into five groups including (1) 35 % acid etching, (2) 2.5-W laser etching, (3) 3.5-W laser etching, (4) 2.5-W laser etching + acid etching, and (5) 3.5-W laser etching + acid etching. Er,Cr:YSGG laser was used at a wavelength of 2.780 nm and pulse duration of 140-200 μs with a repetition rate of 20 Hz. Following surface pre-treatment, the fissure sealant (ClinPro™, 3M Dental Products) was applied. Each tooth was sectioned and subjected to microtensile testing. Kruskal-Wallis test was used for statistical analysis. The level of significance was set at p < 0.05. The microtensile bond strength values of group 1 were significantly higher than those of group 2, while no statistically significant difference was detected between groups 1, 3, 4, and 5. It was concluded that 3.5-W laser etching produced results comparable to conventional acid etching technique, whereas 2.5-W laser etching was not able to yield adequate bonding performance.

  17. Evaluation of shear bond strength of orthodontic brackets bonded with Er-YAG laser etching

    PubMed Central

    Raji, S. Hamid; Birang, Reza; Majdzade, Fateme; Ghorbanipour, Reza

    2012-01-01

    Background: Based on contradictory findings concerning the use of lasers for enamel etching, the purpose of this study was to investigate the shear bond strength of teeth prepared for bonding with Er-YAG laser etching and compare them with phosphoric acid etching. Materials and Methods: In this in vitro study forty – eight premolars, extracted for orthodontic purposes were randomly divided in to three groups. Thirty-two teeth were exposed to laser energy for 25 s: 16 teeth at 100 mj setting and 16 teeth at 150 mj setting. Sixteen teeth were etched with 37% phosphoric acid. The shear bond strength of bonded brackets with the Transbond XT adhesive system was measured with the Zwick testing machine. Descriptive statistics, Kolmogorov–Smirnov test, of homogeneity of variances, one- way analysis of variances and Tukey's test and Kruskal Wallis were used to analyze the data. Results: The mean shear bond strength of the teeth lased with 150 mj was 12.26 ± 4.76 MPa, which was not significantly different from the group with acid etching (15.26 ± 4.16 MPa). Irradiation with 100 mj resulted in mean bond strengths of 9.05 ± 3.16 MPa, which was significantly different from that of acid etching (P < 0.001). Conclusions: laser etching at 150 and 100 mj was adequate for bond strength but the failure pattern of brackets bonded with laser etching is dominantly at adhesive – enamel interface and is not safe for enamel during debonding. PMID:23087733

  18. A laser dry etch process for smooth continuous relief structures in InP

    NASA Astrophysics Data System (ADS)

    Weber, H.; Matz, R.; Weimann, G.

    1996-11-01

    A laser induced etch process is described which uses a pulsed 248 nm KrF excimer laser and Cl2 atmosphere for the fabrication of monolithic continuously curved reliefs in InP substrate. In a bakeable processing chamber with low base pressure a wide range of laser fluences is available for damage-free etching. Especially, by photothermal heating far above the melting point, mirrorlike smooth surfaces are obtained. The etch rate characteristics are correlated to the maximum surface temperature reached during the laser pulse. The etch rate is independent of pressure and gas flux in the ranges 0.1 10 mbar and 20 300 sccm, respectively. It increases, however, with the background substrate temperature. Etch rates of up to 3.6 nm/pulse or 4.3 lm/min are possible at 20 Hz pulse repetition rate without visible surface damage. The process exhibits a smooth increase of the etch rate from 1 to 3 nm/pulse between 200 and 300 mJ/cm2, which could be used for making curved reliefs by optical transmission variations on the projection mask.

  19. Reaction ion etching process for improving laser damage resistance of fused silica optical surface.

    PubMed

    Sun, Laixi; Liu, Hongjie; Huang, Jin; Ye, Xin; Xia, Handing; Li, Qingzhi; Jiang, Xiaodong; Wu, Weidong; Yang, Liming; Zheng, Wanguo

    2016-01-11

    Laser induced damage of fused silica optics occurs primarily on optical surface or subsurface resulting from various defects produced during polishing/grinding process. Many new kinds of surface treatment processes are explored to remove or control the defects on fused silica surface. In this study, we report a new application of reaction ion etching (RIE)-based surface treatment process for manufacture of high quality fused silica optics. The influence of RIE processes on laser damage resistance as a function of etching depth and the evolution of typical defects which are associated with laser damage performance were investigated. The results show that the impurity element defects and subsurface damage on the samples surface were efficiently removed and prevented. Pure silica surface with relatively single-stable stoichiometry and low carbon atomic concentration was created during the etching. The laser damage resistance of the etched samples increased dramatically. The increase of roughness and ODC point defect with deeper etching are believed to be the main factors to limit further increase of the damage resistance of fused silica. The study is expected to contribute to the development of fused silica optics with high resistance to laser induced degradation in the future. PMID:26832251

  20. Improving UV laser damage threshold of fused silica optics by wet chemical etching technique

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Li, Yaguo; Yuan, Zhigang; Wang, Jian; Xu, Qiao; Yang, Wei

    2015-07-01

    Fused silica is widely used in high-power laser systems because of its good optical performance and mechanical properties. However, laser damage initiation and growth induced by 355 nm laser illumination in optical elements have become a bottleneck in the development of high energy laser system. In order to improve the laser-induced damage threshold (LIDT), the fused silica optics were treated by two types of HF-based etchants: 1.7%wt. HF acid and buffer oxide etchant (BOE: the mixture of 0.4%wt. HF and 12%wt. NH4F), respectively, for varied etching time. Damage testing shows that both the etchants increase the damage threshold at a certain depth of material removal, but further removal of material lowers the LIDT markedly. The etching rates of both etchants keep steady in our processing procedure, ~58 μg/min and ~85 μg/min, respectively. The micro-surface roughness (RMS and PV) increases as etching time extends. The hardness (H) and Young's modulus (E) of the fused silica etched for diverse time, measured by nano-indenter, show no solid evidence that LIDT can be related to hardness or Young's modulus.

  1. Laser surface pretreatment of 100Cr6 bearing steel - Hardening effects and white etching zones

    NASA Astrophysics Data System (ADS)

    Buling, Anna; Sändker, Hendrik; Stollenwerk, Jochen; Krupp, Ulrich; Hamann-Steinmeier, Angela

    2016-08-01

    In order to achieve a surface pretreatment of the bearing steel 100Cr6 (1-1.5 wt.% Cr) a laser-based process was used. The obtained modification may result in an optimization of the adhesive properties of the surface with respect to an anticorrosion polymer coating on the basis of PEEK (poly-ether-ether-ketone), which is applied on the steel surface by a laser melting technique. This work deals with the influence of the laser-based pretreatment regarding the surface microstructure and the micro-hardness of the steel, which has been examined by scanning electron microscopy (SEM), light microscopy and automated micro-hardness testing. The most suitable parameter set for the laser-based pretreatment leads to the formation of very hard white etching zones (WEZ) with a thickness of 23 μm, whereas this pretreatment also induces topographical changes. The occurrence of the white etching zones is attributed to near-surface re-austenitization and rapid quenching. Moreover, dark etching zones (DEZ) with a thickness of 32 μm are found at the laser path edges as well as underneath the white etching zones (WEZ). In these areas, the hardness is decreased due to the formation of oxides as a consequence of re-tempering.

  2. Effects of wet etch processing on laser-induced damage of fused silica surfaces

    SciTech Connect

    Battersby, C.L.; Kozlowski, M.R.; Sheehan, L.M.

    1998-12-22

    Laser-induced damage of transparent fused silica optical components by 355 nm illumination occurs primarily at surface defects produced during the grinding and polishing processes. These defects can either be surface defects or sub-surface damage.Wet etch processing in a buffered hydrogen fluoride (HF) solution has been examined as a tool for characterizing such defects. A study was conducted to understand the effects of etch depth on the damage threshold of fused silica substrates. The study used a 355 nm, 7.5 ns, 10 Hz Nd:YAG laser to damage test fused silica optics through various wet etch processing steps. Inspection of the surface quality was performed with Nomarski microscopy and Total Internal Reflection Microscopy. The damage test data and inspection results were correlated with polishing process specifics. The results show that a wet etch exposes subsurface damage while maintaining or improving the laser damage performance. The benefits of a wet etch must be evaluated for each polishing process.

  3. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces

    SciTech Connect

    Suratwala, T I; Miller, P E; Bude, J D; Steele, R A; Shen, N; Monticelli, M V; Feit, M D; Laurence, T A; Norton, M A; Carr, C W; Wong, L L

    2010-02-23

    The effect of various HF-based etching processes on the laser damage resistance of scratched fused silica surfaces has been investigated. Conventionally polished and subsequently scratched fused silica plates were treated by submerging in various HF-based etchants (HF or NH{sub 4}F:HF at various ratios and concentrations) under different process conditions (e.g., agitation frequencies, etch times, rinse conditions, and environmental cleanliness). Subsequently, the laser damage resistance (at 351 or 355 nm) of the treated surface was measured. The laser damage resistance was found to be strongly process dependent and scaled inversely with scratch width. The etching process was optimized to remove or prevent the presence of identified precursors (chemical impurities, fracture surfaces, and silica-based redeposit) known to lead to laser damage initiation. The redeposit precursor was reduced (and hence the damage threshold was increased) by: (1) increasing the SiF{sub 6}{sup 2-} solubility through reduction in the NH4F concentration and impurity cation impurities, and (2) improving the mass transport of reaction product (SiF{sub 6}{sup 2-}) (using high frequency ultrasonic agitation and excessive spray rinsing) away from the etched surface. A 2D finite element crack-etching and rinsing mass transport model (incorporating diffusion and advection) was used to predict reaction product concentration. The predictions are consistent with the experimentally observed process trends. The laser damage thresholds also increased with etched amount (up to {approx}30 {micro}m), which has been attributed to: (1) etching through lateral cracks where there is poor acid penetration, and (2) increasing the crack opening resulting in increased mass transport rates. With the optimized etch process, laser damage resistance increased dramatically; the average threshold fluence for damage initiation for 30 {micro}m wide scratches increased from 7 to 41 J/cm{sup 2}, and the statistical

  4. Fabrication of dry etched and subsequently passivated laser facets in GaAs/AlGaAs

    SciTech Connect

    Deichsel, Eckard; Franz, Gerhard

    2004-09-01

    The aging behavior of edge emitting laser diodes based on GaAs/AlGaAs is investigated by comparing devices with facets that are alternatively cleaved or dry etched and consecutively treated with H{sub 2}S. In this work we demonstrate that an in situ exposure to H{sub 2}S gas is not sufficient to prevent ageing but an additional plasma treatment is rather required to obtain comparable ageing results to lasers with cleaved facets.

  5. Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses

    SciTech Connect

    Yu Xiaoming; Zeng Bin; Liao Yang; He Fei; Cheng Ya; Xu Zhizhan; Sugioka, Koji; Midorikawa, Katsumi

    2011-03-01

    We report on experimental study on chemical etch selectivity of fused silica irradiated by femtosecond laser with either linear or circular polarization in a wide range of pulse energies. The relationships between the etch rates and pulse energies are obtained for different polarization states, which can be divided into three different regions. A drop of the etch rate for high pulse energy region is observed and the underlying mechanism is discussed. The advantage of using circularly polarized laser is justified owing to its unique capability of providing a 3D isotropic etch rate.

  6. Bond strength of composite to dentin: effect of acid etching and laser irradiation through an uncured self-etch adhesive system

    NASA Astrophysics Data System (ADS)

    Castro, F. L. A.; Carvalho, J. G.; Andrade, M. F.; Saad, J. R. C.; Hebling, J.; Lizarelli, R. F. Z.

    2014-08-01

    This study evaluated the effect on micro-tensile bond strength (µ-TBS) of laser irradiation of etched/unetched dentin through an uncured self-etching adhesive. Dentinal surfaces were treated with Clearfil SE Bond Adhesive (CSE) either according to the manufacturer’s instructions (CSE) or without applying the primer (CSE/NP). The dentin was irradiated through the uncured adhesive, using an Nd:YAG laser at 0.75 or 1 W power settings. The adhesive was cured, composite crowns were built up, and the teeth were sectioned into beams (0.49 mm2) to be stressed under tension. Data were analyzed using one-way ANOVA and Tukey statistics (α = 5%). Dentin of the fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). The results showed that non-etched irradiated surfaces presented higher µ-TBS than etched and irradiated surfaces (p < 0.05). Laser irradiation alone did not lead to differences in µ-TBS (p > 0.05). SEM showed solidification globules on the surfaces of the specimens. The interfaces were similar on irradiated and non-irradiated surfaces. Laser irradiation of dentin through the uncured adhesive did not lead to higher µ-TBS when compared to the suggested manufacturer’s technique. However, this treatment brought benefits when performed on unetched dentin, since bond strengths were higher when compared to etched dentin.

  7. Operational specifications of the laser illuminated track etch scattering dosemeter reader.

    PubMed

    Moore, M E; Gepford, H J; Hoffman, J M; McKeever, R J; Devine, R T

    2006-01-01

    The personnel dosimetry operations team at the Los Alamos National Laboratory (LANL) has accepted the laser illuminated track etch scattering (LITES) dosemeter reader into its suite of radiation dose measurement instruments. The LITES instrument transmits coherent light from a He-Ne laser through the pertinent track etch foil and a photodiode measures the amount of light scattered by the etched tracks. A small beam stop blocks the main laser light, while a lens refocuses the scattered light into the photodiode. Three stepper motors in the current LITES system are used to position a carousel that holds 36 track etch dosemeters (TEDs). Preliminary work with the LITES system demonstrated the device had a linear response in counting foils subjected to exposures up to 50 mSv (5.0 rem). The United States Department of Energy requires that the annual general employee dose not exceed 50 mSv (5.0 rem). On a regular basis, LANL uses the Autoscan-60 reader system (Thermo Electron Corp.) for counting track etch dosemeters. However, LANL uses a 15 h etch process for CR-39 dosemeters, and this produces more and larger track etch pits than the 6 h etch used by many institutions. Therefore, LANL only uses the Autoscan-60 for measuring neutron dose equivalent up to exposure levels of approximately 3 mSv (300 mrem). The LITES system has a measured lower limit of detection of approximately 0.6 mSv (60 mrem), and it has a correlation coefficient of R (2) = 0.99 over an exposure range up to 500 mSv (50.0 rem). A series of blind studies were done using three methods: the Autoscan-60 system, manual counting by optical microscope and the LITES instrument. A collection of track etch dosemeters of unknown neutron dose equivalent (NDE) were analysed using the three methods, and the performance coefficient (PC) was calculated when the NDE became known. The Autoscan-60 and optical microscope methods had a combined PC = 0.171, and the LITES instrument had a PC = 0.194, where a PC less than or

  8. Retention of Proteins and Metalloproteins in Open Tubular Capillary Electrochromatography with Etched Chemically Modified Columns

    PubMed Central

    Pesek, Joseph J.; Matyska, Maria T.; Salgotra, Vasudha

    2010-01-01

    Etched chemically modified capillaries with two different bonded groups (pentyl and octadecyl) are compared for their migration behavior of several common proteins and metalloproteins as well as metalloproteinases. Migration times, efficiency and peak shape are evaluated over the pH range of 2.1 to 8.1 to determine any effects of the bonded group on the electrochromatographic behavior of these compounds. One goal was to determine if the relative hydrophobicity of the stationary phase has a significant effect on proteins in the open tubular format of capillary electrochromatography as it does in HPLC. Reproducibility of the migration times is also investigated. PMID:18850653

  9. Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices

    NASA Astrophysics Data System (ADS)

    LoTurco, S.; Osellame, R.; Ramponi, R.; Vishnubhatla, K. C.

    2013-08-01

    We report on the fabrication of 3D buried micro-structures in fused silica glass using the selective chemical etching along femtosecond laser irradiated zones. Specifically, we have exploited a novel approach combining two different etching agents in successive steps. The widely used hydrofluoric acid solution, which provides fast volume removal, and potassium hydroxide solution, which exhibits high selectivity, are used to fabricate microfluidic structures. We demonstrate that this hybrid approach takes advantage of both of the individual etchants’ special characteristics and facilitates prototyping and fabrication of complex geometries for microfluidic devices.

  10. Shear bond strength of self-etching adhesive systems to Er:YAG-laser-prepared dentin.

    PubMed

    Brulat, Nathalie; Rocca, Jean-Paul; Leforestier, Eric; Fiorucci, Gilbert; Nammour, Samir; Bertrand, Marie-France

    2009-01-01

    This study was conducted to compare the shear bond strengths of composite resin bonded to Er:YAG laser or bur-prepared dentin surfaces using three self-etching adhesive systems. The occlusal surfaces of 120 human third molars were ground flat to expose dentin. The dentin was prepared using either a carbide bur or an Er:YAG laser at 350 mJ/pulse and 10 Hz (fluence, 44.5 J/cm(2)). Three different self-etching adhesive systems were applied: iBond, Xeno III and Clearfil SE Bond. Rods of composite resin were bonded to dentin surfaces and shear bond tests were carried out. Both dentin surfaces after debonding and resin rods were observed using a scanning electron microscope. When the Xeno III was used, no difference was observed on shear bond strength values when bur and Er:YAG laser were compared. When using iBond and Clearfil SE Bond, bond strength values measured on Er:YAG-laser-prepared surfaces were lower than those observed on bur-prepared surfaces. The absence of smear layer formation during the preparation of the dentin by the Er:YAG laser did not improve the adhesion values of self-etching adhesive systems.

  11. Effects of thermo-plasmonics on laser-induced backside wet etching of silicate glass

    NASA Astrophysics Data System (ADS)

    Tsvetkov, M. Yu; Yusupov, V. I.; Minaev, N. V.; Timashev, P. S.; Golant, K. M.; Bagratashvili, V. N.

    2016-10-01

    The thermo-plasmonic effect (heat deposition via absorption of laser light by metal nanoparticles) is applied to substantially enhance the effectiveness and controllability of the microstructure formation by laser-induced backside wet etching (LIBWE). Experiments were carried out with silicate glass plates using a pulsed 527 nm wavelength laser and an aqueous solution of AgNO3 as a precursor of the Ag nanoparticles. Mechanisms of such thermo-plasmonic LIBWE (TP-LIBWE) versions are considered. They involve: laser-induced photo-thermal reducing of silver (Ag) and self-assembling of Ag nanoparticles in water and the water/glass interface; fast laser-induced overheating of a water and glass surface through the thermo-plasmonic effect; formation of highly reactive supercritical water that causes glass etching and crater formation; generation of steam-gas bubbles in a liquid. It is significant that the emergence of the Marangoni convection results in bubble retention in the focal point at the interface and the accumulation of nanoparticles on the surface of the laser-induced crater, as this facilitates the movement of the bubbles with captured Ag particles from the fluid volume in the crater region, and accelerates the formation of the area of strong ‘surface absorption’ of laser energy. All these mechanisms provide a highly efficient and reproducible process for laser microstructure formation on the surface of glass using a novel TP-LIBWE technique.

  12. Influence of the confinement on laser-induced dry etching at the rear side of fused silica

    NASA Astrophysics Data System (ADS)

    Pan, Yunxiang; Ehrhardt, Martin; Lorenz, Pierre; Han, Bing; Hopp, Bela; Vass, Csaba; Ni, Xiaowu; Zimmer, Klaus

    2016-04-01

    Laser-induced etching at the rear side of transparent material enables high-quality machining results. However, the mechanism is still not completely recognized which would allow further optimization. Therefore, multi-pulsed laser-induced backside dry etching with different thick photoresist films was studied experimentally for air (MP-LIBDE) and water confinements (cMP-LIBDE). The water confinement causes differences in photoresist ablation morphology and etching rate in dependence on laser fluence, film thickness and pulse number. Owing to the water confinement, the extent of photoresist film spallation and the etching rate slope difference in low and high fluence ranges are reduced. In particular, the etching rate of cMP-LIBDE keeps constant with different film thicknesses in contrast to MP-LIBDE. Two effects that are related to the water confinement, mechanical confinement and heat transfer alterations, are analysed and discussed in relation to the differences between MP-LIBDE and cMP-LIBDE.

  13. III-Nitride Blue Laser Diode with Photoelectrochemically Etched Current Aperture

    NASA Astrophysics Data System (ADS)

    Megalini, Ludovico

    Group III-nitride is a remarkable material system to make highly efficient and high-power optoelectronics and electronic devices because of the unique electrical, physical, chemical and structural properties it offers. In particular, InGaN-based blue Laser Diodes (LDs) have been successfully employed in a variety of applications ranging from biomedical and military devices to scientific instrumentation and consumer electronics. Recently their use in highly efficient Solid State Lighting (SSL) has been proposed because of their superior beam quality and higher efficiency at high input power density. Tremendous advances in research of GaN semi-polar and non-polar crystallographic planes have led both LEDs and LDs grown on these non-basal planes to rival with, and with the promise to outperform, their equivalent c-plane counterparts. However, still many issues need to be addressed, both related to material growth and device fabrication, including a lack of conventional wet etching techniques. GaN and its alloys with InN and AlN have proven resistant essentially to all known standard wet etching techniques, and the predominant etching methods rely on chlorine-based dry etching (RIE). These introduce sub-surface damage which can degrade the electrical properties of the epitaxial structure and reduce the reliability and lifetime of the final device. Such reasons and the limited effectiveness of passivation techniques have so far suggested to etch the LD ridges before the active region, although it is well-known that this can badly affect the device performance, especially in narrow stripe width LDs, because the gain guiding obtained in the planar configuration is weak and the low index step and high lateral current leakage result in devices with threshold current density higher than devices whose ridge is etched beyond the active region. Moreover, undercut etching of III-nitride layers has proven even more challenging, with limitations in control of the lateral etch

  14. Crackless linear through-wafer etching of Pyrex glass using liquid-assisted CO2 laser processing

    NASA Astrophysics Data System (ADS)

    Chung, C. K.; Sung, Y. C.; Huang, G. R.; Hsiao, E. J.; Lin, W. H.; Lin, S. L.

    2009-03-01

    Pyrex glass etching is an important technology for the microfluid application to lab-on-a-chip devices, but suffers from very low etching rate and mask-requiring process in conventional HF/BOE wet or plasma dry etching as well as thermal induced crack surface by CO2 laser processing. In this paper, we applied the liquid-assisted laser processing (LALP) method for linear through-wafer deep etching of Pyrex glass without mask materials to obtain a crackless surface at very fast etching rates up to 25 μm/s for a 20 mm long trench. The effect of laser scanning rate and water depth on the etching of the 500 μm thick Pyrex glass immersed in liquid water was investigated. The smooth surface without cracks can be achieved together with the much reduced height of bulge via an appropriate parameter control. A mechanism of thermal stress reduction in water and shear-force-enhanced debris removal is discussed. The quality improvement of glass etching using LALP is due to the cooling effect of the water to reduce the temperature gradient for a crackless surface and natural convection during etching to carry away the debris for diminishing bulge formation.

  15. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOEpatents

    Copley, Stephen M.; Tao, Hongyi; Todd-Copley, Judith A.

    1991-01-01

    A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.

  16. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOEpatents

    Copley, S.M.; Tao, H.; Todd-Copley, J.A.

    1991-06-11

    A process is disclosed for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength. 1 figure.

  17. Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector.

    PubMed

    Fuchs, Peter; Friedl, Jochen; Höfling, Sven; Koeth, Johannes; Forchel, Alfred; Worschech, Lukas; Kamp, Martin

    2012-02-13

    We report the fabrication of single mode quantum cascade lasers using a shallow-etched distributed Bragg reflector as frequency selective element. Quasi-continuous single mode tuning over 15 cm-1 at room temperature and 25 cm-1 via temperature tuning at Peltier temperatures is demonstrated. The behavior of both electro-optic and spectral characteristics under variation of the segment currents is analyzed, showing a maximum peak output power at room temperature of 600 mW. Thermal crosstalk between the laser segments is investigated. The spectral resolution of a gas absorption experiment is determined to be better than 0.0078 cm-1.

  18. Atomic layer deposition modified track-etched conical nanochannels for protein sensing.

    PubMed

    Wang, Ceming; Fu, Qibin; Wang, Xinwei; Kong, Delin; Sheng, Qian; Wang, Yugang; Chen, Qiang; Xue, Jianming

    2015-08-18

    Nanopore-based devices have recently become popular tools to detect biomolecules at the single-molecule level. Unlike the long-chain nucleic acids, protein molecules are still quite challenging to detect, since the protein molecules are much smaller in size and usually travel too fast through the nanopore with poor signal-to-noise ratio of the induced transport signals. In this work, we demonstrate a new type of nanopore device based on atomic layer deposition (ALD) Al2O3 modified track-etched conical nanochannels for protein sensing. These devices show very promising properties of high protein (bovine serum albumin) capture rate with well time-resolved transport signals and excellent signal-to-noise ratio for the transport events. Also, a special mechanism involving transient process of ion redistribution inside the nanochannel is proposed to explain the unusual biphasic waveshapes of the current change induced by the protein transport.

  19. Shear Bond Strength of an Etch-and-rinse Adhesive to Er:YAG Laser- and/or Phosphoric Acid-treated Dentin

    PubMed Central

    Davari, Abdolrahim; Sadeghi, Mostafa; Bakhshi, Hamid

    2013-01-01

    Background and aims. Er:YAG laser irradiation has been claimed to improve the adhesive properties of dentin; therefore, it has been proposed as an alternative to acid etching. The aim of this in vitro study was to investigate the shear bond strength of an etch-and-rinse adhesive system to dentin surfaces following Er:YAG laser and/or phosphoric acid etching. Materials and methods. The roots of 75 sound maxillary premolars were sectioned below the CEJ and the crowns were embedded in auto-polymerizing acrylic resin with the buccal surfaces facing up. The buccal surfaces were ground using a diamond bur and polished until the dentin was exposed; the samples were randomly divided into five groups (n=15) according to the surface treatment: (1) acid etching; (2) laser etching; (3) laser etching followed by acid etching; (4) acid etching followed by laser etching and (5) no acid etching and no laser etching (control group). Composite resin rods (Point 4, Kerr Co) were bonded to treated dentin surfaces with an etch-and-rise adhesive system (Optibond FL, Kerr Co) and light-cured.After storage for two weeks at 37°C and 100% humidity and then thermocycling, bond strength was measured with a Zwick Universal Testing Machine at a crosshead speed of 1 mm/min. Data was analyzed using parametric and non-parametric tests (P<0.05). Results. Mean shear bond strength for acid etching (20.1±1.8 MPa) and acid+laser (15.6±3.5 MPa) groups were significantly higher than those for laser+acid (15.6±3.5 MPa), laser etching (14.1±3.4 MPa) and control (8.1±2.1 MPa) groups. However, there were no significant differences between acid etching and acid+laser groups, and between laser+acid and laser groups. Conclusion. When the cavity is prepared by bur, it is not necessary to etch the dentin surface by Er:YAG laser following acid etching and acid etching after laser etching. PMID:23875083

  20. Laser micromachined and acid-etched Fabry-Perot cavities in silica fibres

    NASA Astrophysics Data System (ADS)

    Machavaram, V. R.; Tuck, C. J.; Teagle, M. C.; Badcock, R. A.; Fernando, G. F.

    2006-01-01

    This paper reports on two techniques for creating Fabry-Perot cavities in conventional single- and multi-mode optical fibres. The authors have reported previously on the design and fabrication of extrinsic fibre Fabry-Perot interferometric multi-functional sensors. Here, the authors report on two novel techniques for creating intrinsic fibre optic sensors based on the Fabry-Perot etalon. The first technique involved the use of hydrofluoric acid to preferentially etch the core of the optical fibre. This technique is simple to carry out and provides a cost-effective means for manufacturing intrinsic fibre Fabry-Perot sensors. In the second technique, a 157 nm excimer laser along with a custom-designed beam delivery system was used to ablate (micro-machine) near-paralleled walled cavities through the diameter of the optical fibre (outer diameter of 125 μm). The paper details the experimental methodology and the associated instrumentation for the two techniques. The acid etched and laser ablated cavities were characterised using a 3-D surface profiler, optical and scanning electron microscopy. The feasibility of using these cavities as intrinsic fibre Fabry-Perot strain sensors is demonstrated. This was achieved by surface-mounting the acid etched cavities on to composite tensile test specimens. The output from the optical fibre devices was compared with surface-mounted electrical resistance strain gauges.

  1. Comparison of shear bond strength of composite resin to enamel surface with laser etching versus acid etching: An in vitro evaluation

    PubMed Central

    Hoshing, Upendra A; Patil, Suvarna; Medha, Ashish; Bandekar, Siddhesh Dattatray

    2014-01-01

    Introduction: The aim of the study is in vitro evaluation of the shear bond strength of composite resin bonded to enamel which is pretreated using acid etchant and Er,Cr:Ysgg. Materials and Methods: 40 extracted human teeth were divided in two groups of 20 each (Groups A and B). In Group A, prepared surface of enamel was etched using 37% phosphoric acid (Scotchbond, 3M). In Group B, enamel was surface treated by a an Er, Cr: YSGG laser system (Waterlase MD, Biolase Technology Inc., San Clemente, CA, USA) operating at a wavelength of 2,780 nm and having a pulse duration of 140-200 microsecond with a repetition rate of 20 Hz and 40 Hz. Bonding agent ((Scotchbond Multipurpose, 3M) was applied over the test areas on 20 samples of Groups A and B each, and light cured. Composite resin (Ceram X duo Nanoceramic restorative, Densply) was applied onto the test areas as a 3 × 3 mm diameter bid, and light cured. The samples were tested for shear bond strength. Results: Mean shear bond strength for acid-etched enamel (26.41 ± 0.66MPa, range 25.155 to 27.150 MPa) was significantly higher (P < 0.01) than for laser-etched enamel (16.23 ± 0.71MPa, range 15.233 to 17.334 MPa). Conclusions: For enamel surface, mean shear bond strength of bonded composite obtained after laser etching were significantly lower than those obtained after acid etching. PMID:25125842

  2. Micro-fabricated packed gas chromatography column based on laser etching technology.

    PubMed

    Sun, J H; Guan, F Y; Zhu, X F; Ning, Z W; Ma, T J; Liu, J H; Deng, T

    2016-01-15

    In this work, a micro packed gas chromatograph column integrated with a micro heater was fabricated by using laser etching technology (LET) for analyzing environmental gases. LET is a powerful tool to etch deep well-shaped channels on the glass wafer, and it is the most effective way to increase depth of channels. The fabricated packed GC column with a length of over 1.6m, to our best knowledge, which is the longest so far. In addition, the fabricated column with a rectangular cross section of 1.2mm (depth) × 0.6mm (width) has a large aspect ratio of 2:1. The results show that the fabricated packed column had a large sample capacity, achieved a separation efficiency of about 5800 plates/m and eluted highly symmetrical Gaussian peaks. PMID:26726935

  3. Micro-fabricated packed gas chromatography column based on laser etching technology.

    PubMed

    Sun, J H; Guan, F Y; Zhu, X F; Ning, Z W; Ma, T J; Liu, J H; Deng, T

    2016-01-15

    In this work, a micro packed gas chromatograph column integrated with a micro heater was fabricated by using laser etching technology (LET) for analyzing environmental gases. LET is a powerful tool to etch deep well-shaped channels on the glass wafer, and it is the most effective way to increase depth of channels. The fabricated packed GC column with a length of over 1.6m, to our best knowledge, which is the longest so far. In addition, the fabricated column with a rectangular cross section of 1.2mm (depth) × 0.6mm (width) has a large aspect ratio of 2:1. The results show that the fabricated packed column had a large sample capacity, achieved a separation efficiency of about 5800 plates/m and eluted highly symmetrical Gaussian peaks.

  4. Chemically assisted ion beam etching of laser diode facets on nonpolar and semipolar orientations of GaN

    NASA Astrophysics Data System (ADS)

    Kuritzky, L. Y.; Becerra, D. L.; Saud Abbas, A.; Nedy, J.; Nakamura, S.; DenBaars, S. P.; Cohen, D. A.

    2016-07-01

    We demonstrate a vertical (<1° departure) and smooth (2.0 nm root mean square line-edge roughness (LER)) etch by chemically assisted Ar ion beam etching (CAIBE) in Cl2 chemistry that is suitable for forming laser diode (LD) facets on nonpolar and semipolar oriented III-nitride devices. The etch profiles were achieved with photoresist masks and optimized CAIBE chamber conditions including the platen tilt angle and Cl2 flow rate. Co-loaded studies showed similar etch rates of ˜60 nm min-1 for (20\\bar{2}\\bar{1}),(20\\bar{2}1), and m-plane orientations. The etched surfaces of LD facets on these orientations are chemically dissimilar (Ga-rich versus N-rich), but were visually indistinguishable, thus confirming the negligible orientation dependence of the etch. Continuous-wave blue LDs were fabricated on the semipolar (20\\bar{2}\\bar{1}) plane to compare CAIBE and reactive ion etch (RIE) facet processes. The CAIBE process resulted in LDs with lower threshold current densities due to reduced parasitic mirror loss compared with the RIE process. The LER, degree of verticality, and model of the 1D vertical laser mode were used to calculate a maximum uncoated facet reflection of 17% (94% of the nominal) for the CAIBE facet. The results demonstrate the suitability of CAIBE for forming high quality facets for high performance nonpolar and semipolar III-N LDs.

  5. Chemically assisted ion beam etching of laser diode facets on nonpolar and semipolar orientations of GaN

    NASA Astrophysics Data System (ADS)

    Kuritzky, L. Y.; Becerra, D. L.; Saud Abbas, A.; Nedy, J.; Nakamura, S.; DenBaars, S. P.; Cohen, D. A.

    2016-07-01

    We demonstrate a vertical (<1° departure) and smooth (2.0 nm root mean square line-edge roughness (LER)) etch by chemically assisted Ar ion beam etching (CAIBE) in Cl2 chemistry that is suitable for forming laser diode (LD) facets on nonpolar and semipolar oriented III-nitride devices. The etch profiles were achieved with photoresist masks and optimized CAIBE chamber conditions including the platen tilt angle and Cl2 flow rate. Co-loaded studies showed similar etch rates of ∼60 nm min‑1 for (20\\bar{2}\\bar{1}),(20\\bar{2}1), and m-plane orientations. The etched surfaces of LD facets on these orientations are chemically dissimilar (Ga-rich versus N-rich), but were visually indistinguishable, thus confirming the negligible orientation dependence of the etch. Continuous-wave blue LDs were fabricated on the semipolar (20\\bar{2}\\bar{1}) plane to compare CAIBE and reactive ion etch (RIE) facet processes. The CAIBE process resulted in LDs with lower threshold current densities due to reduced parasitic mirror loss compared with the RIE process. The LER, degree of verticality, and model of the 1D vertical laser mode were used to calculate a maximum uncoated facet reflection of 17% (94% of the nominal) for the CAIBE facet. The results demonstrate the suitability of CAIBE for forming high quality facets for high performance nonpolar and semipolar III-N LDs.

  6. Patterning of graphene on silicon-on-insulator waveguides through laser ablation and plasma etching

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Ciuk, Tymoteusz; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Van Put, Steven; Van Steenberge, Geert; Baert, Kitty; Terryn, Herman; Thienpont, Hugo; Vermeulen, Nathalie

    2016-05-01

    We present the use of femtosecond laser ablation for the removal of monolayer graphene from silicon-on-insulator (SOI) waveguides, and the use of oxygen plasma etching through a metal mask to peel off graphene from the grating couplers attached to the waveguides. Through Raman spectroscopy and atomic force microscopy, we show that the removal of graphene is successful with minimal damage to the underlying SOI waveguides. Finally, we employ both removal techniques to measure the contribution of graphene to the loss of grating-coupled graphene-covered SOI waveguides using the cut-back method. This loss contribution is measured to be 0.132 dB/μm.

  7. Quantum cascade laser based monitoring of CF2 radical concentration as a diagnostic tool of dielectric etching plasma processes

    NASA Astrophysics Data System (ADS)

    Hübner, M.; Lang, N.; Zimmermann, S.; Schulz, S. E.; Buchholtz, W.; Röpcke, J.; van Helden, J. H.

    2015-01-01

    Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF2 radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF2 radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm-1. We measured Doppler-resolved ro-vibrational absorption lines and determined absolute densities using transitions in the ν3 fundamental band of CF2 with the aid of an improved simulation of the line strengths. We found that the CF2 radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.

  8. Fabrication of InGaAs/InP DBR laser with butt-coupled passive waveguide utilizing selective wet etching

    NASA Astrophysics Data System (ADS)

    Mi, Junping; Yu, Hongyan; Yuan, Lijun; Liang, Song; Kan, Qiang; Pan, Jiaoqing

    2014-11-01

    We investigated the etching process especially for the integrated InGaAs/InP multiquantum-well laser. Two different ways of etching process were demonstrated, which are RIE followed by selective wet etching and selective wet etching only. The latter one showed ideal interface between active region and passive waveguide after regrowth. This etching process is simpler and more effective than the first one. Using this process, we also fabricated a 1.79-μm DBR laser with 350-μm active region and 400-μm passive waveguide. The output power and threshold current and were demonstrated as a function of temperature. The wavelength tuning characters were investigated with current and temperature changes. It is demonstrated that this etching process can be successfully used to fabricate integrated photonic devices with InGaAs/InP materials and the DBR laser can be a candidate for gas sensing system due to the single mode and large tuning range.

  9. Scalable shape-controlled fabrication of curved microstructures using a femtosecond laser wet-etching process.

    PubMed

    Bian, Hao; Yang, Qing; Chen, Feng; Liu, Hewei; Du, Guangqing; Deng, Zefang; Si, Jinhai; Yun, Feng; Hou, Xun

    2013-07-01

    Materials with curvilinear surface microstructures are highly desirable for micro-optical and biomedical devices. However, realization of such devices efficiently remains technically challenging. This paper demonstrates a facile and flexible method to fabricate curvilinear microstructures with controllable shapes and dimensions. The method composes of femtosecond laser exposures and chemical etching process with the hydrofluoric acid solutions. By fixed-point and step-in laser irradiations followed by the chemical treatments, concave microstructures with different profiles such as spherical, conical, bell-like and parabola were fabricated on silica glasses. The convex structures were replicated on polymers by the casting replication process. In this work, we used this technique to fabricate high-quality microlens arrays and high-aspect-ratio microwells which can be used in 3D cell culture. This approach offers several advantages such as high-efficient, scalable shape-controllable and easy manipulations.

  10. Laser desorption/ionization mass spectrometry of lipids using etched silver substrates.

    PubMed

    Schnapp, Andreas; Niehoff, Ann-Christin; Koch, Annika; Dreisewerd, Klaus

    2016-07-15

    Silver-assisted laser desorption/ionization mass spectrometry can be used for the analysis of small molecules. For example, adduct formation with silver cations enables the molecular analysis of long-chain hydrocarbons, which are difficult to ionize via conventional matrix-assisted laser desorption ionization (MALDI). Here we used highly porous silver foils, produced by etching with nitric acid, as sample substrates for LDI mass spectrometry. As model system for the analysis of complex lipid mixtures, cuticular extracts of fruit flies (Drosophila melanogaster) and worker bees (Apis mellifera) were investigated. The mass spectra obtained by spotting extract onto the etched silver substrates demonstrate the sensitive detection of numerous lipid classes such as long-chain saturated and unsaturated hydrocarbons, fatty acyl alcohols, wax esters, and triacylglycerols. MS imaging of cuticular surfaces with a lateral resolution of a few tens of micrometers became possible after blotting, i.e., after transferring lipids by physical contact with the substrate. The examples of pheromone-producing male hindwings of the squinting bush brown butterfly (Bicyclus anynana) and a fingermark are shown. Because the substrates are also easy to produce, they provide a viable alternative to colloidal silver nanoparticles and other so far described silver substrates.

  11. Oxide Etch Behavior in an Inductively Coupled C4F8 Discharge Characterized by Diode Laser Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Anderson, Harold; Barela, Marcus; Courtin, Geoff; Waters, Karla

    2001-10-01

    This study reports on oxide and photoresist etch characteristics in an inductively coupled GEC Reference Cell as a function of reactor source power, bias power and pressure using C4F8. Diode laser absorption spectroscopy (DLAS) has shown that C4F8 is largely dissociated to form C2F4, CF2 and CF in the discharge. Over an oxide surface, CF2 and CF are consumed in the oxide etch process, but only when the bias power is sufficient to keep the oxide surface clean through energetic ion bombardment. For C4F8, this transition occurs at 60 eV (75 W bias power) in the GEC Cell. At higher bias powers (125 W) where oxide etching is fast ( 600 nm/min.), CF2 appears to be the key radical for the etch process since 50 percent (2.7-3.0 mTorr in a 15 mTorr C4F8 discharge) is consumed. These values were obtained by comparing the CF2 concentrations over non-reactive wafer surfaces versus blanket oxide wafer surfaces undergoing etching. CF is shown to display a similar trend, but its concentration is an order of magnitude less than CF2, and consequently cannot account on a mass basis for the amount of reactants necessary to balance the amount of etch products. Over a PR surface, neither CF2 nor CF concentrations vary as a function of PR etch rate. Consequently, they do not appear to be involved in the PR etch mechanism. However, PR etching is also critically dependent on bias power. PR films etch presumably due to energetic ion bombardment that degrades the PR film, making it liable to attack by fluorine.

  12. Laser Gyro Temperature Compensation Using Modified RBFNN

    PubMed Central

    Ding, Jicheng; Zhang, Jian; Huang, Weiquan; Chen, Shuai

    2014-01-01

    To overcome the effect of temperature on laser gyro zero bias and to stabilize the laser gyro output, this study proposes a modified radial basis function neural network (RBFNN) based on a Kohonen network and an orthogonal least squares (OLS) algorithm. The modified method, which combines the pattern classification capability of the Kohonen network and the optimal choice capacity of OLS, avoids the random selection of RBFNN centers and improves the compensation accuracy of the RBFNN. It can quickly and accurately identify the effect of temperature on laser gyro zero bias. A number of comparable identification and compensation tests on a variety of temperature-changing situations are completed using the multiple linear regression (MLR), RBFNN and modified RBFNN methods. The test results based on several sets of gyro output in constant and changing temperature conditions demonstrate that the proposed method is able to overcome the effect of randomly selected RBFNN centers. The running time of the method is about 60 s shorter than that of traditional RBFNN under the same test conditions, which suggests that the calculations are reduced. Meanwhile, the compensated gyro output accuracy using the modified method is about 7.0 × 10−4 °/h; comparatively, the traditional RBFNN is about 9.0 × 10−4 °/h and the MLR is about 1.4 × 10−3 °/h. PMID:25302814

  13. Shear bond strength of resin cement to an acid etched and a laser irradiated ceramic surface

    PubMed Central

    Motro, Pelin Fatma Karagoz; Yurdaguven, Haktan

    2013-01-01

    PURPOSE To evaluate the effects of hydrofluoric acid etching and Er,Cr:YSGG laser irradiation on the shear bond strength of resin cement to lithium disilicate ceramic. MATERIALS AND METHODS Fifty-five ceramic blocks (5 mm × 5 mm × 2 mm) were fabricated and embedded in acrylic resin. Their surfaces were finished with 1000-grit silicon carbide paper. The blocks were assigned to five groups: 1) 9.5% hydrofluoric-acid etching for 60 s; 2-4), 1.5-, 2.5-, and 6-W Er,Cr:YSGG laser applications for 60 seconds, respectively; and 5) no treatment (control). One specimen from each group was examined using scanning electron microscopy. Ceramic primer (Rely X ceramic primer) and adhesive (Adper Single Bond) were applied to the ceramic surfaces, followed by resin cement to bond the composite cylinders, and light curing. Bonded specimens were stored in distilled water at 37℃ for 24 hours. Shear bond strengths were determined by a universal testing machine at 1 mm/min crosshead speed. Data were analyzed using Kruskal-Wallis and Mann-Whitney U-tests (α=0.05). RESULTS Adhesion was significantly stronger in Group 2 (3.88 ± 1.94 MPa) and Group 3 (3.65 ± 1.87 MPa) than in Control group (1.95 ± 1.06 MPa), in which bonding values were lowest (P<.01). No significant difference was observed between Group 4 (3.59 ± 1.19 MPa) and Control group. Shear bond strength was highest in Group 1 (8.42 ± 1.86 MPa; P<.01). CONCLUSION Er,Cr:YSGG laser irradiation at 1.5 and 2.5 W increased shear bond strengths between ceramic and resin cement compared with untreated ceramic surfaces. Irradiation at 6 W may not be an efficient ceramic surface treatment technique. PMID:23755333

  14. Laser marking on soda-lime glass by laser-induced backside wet etching with two-beam interference

    NASA Astrophysics Data System (ADS)

    Nakazumi, Tomoka; Sato, Tadatake; Narazaki, Aiko; Niino, Hiroyuki

    2016-09-01

    For crack-free marking of glass materials, a beam-scanning laser-induced backside wet etching (LIBWE) process by a beam spot with a fine periodic structure was examined. The fine periodic structure was produced within a beam spot by means of a Mach-Zehnder interferometer incorporated to the optical setup for the beam-scanning LIBWE. A fine structure with a period of 9 µm was observed within the microstructures with a diameter of ca. 40 µm fabricated by a laser shot under double-beam irradiation, and they could be homogeneously fabricated within an area of 800  ×  800 µm. The area filled with the microstructures, including fine periodic structures, could be observed in high contrast under a diffuse, on-axis illumination that was used in commercial QR code readers.

  15. Laser marking on soda-lime glass by laser-induced backside wet etching with two-beam interference

    NASA Astrophysics Data System (ADS)

    Nakazumi, Tomoka; Sato, Tadatake; Narazaki, Aiko; Niino, Hiroyuki

    2016-09-01

    For crack-free marking of glass materials, a beam-scanning laser-induced backside wet etching (LIBWE) process by a beam spot with a fine periodic structure was examined. The fine periodic structure was produced within a beam spot by means of a Mach–Zehnder interferometer incorporated to the optical setup for the beam-scanning LIBWE. A fine structure with a period of 9 µm was observed within the microstructures with a diameter of ca. 40 µm fabricated by a laser shot under double-beam irradiation, and they could be homogeneously fabricated within an area of 800  ×  800 µm. The area filled with the microstructures, including fine periodic structures, could be observed in high contrast under a diffuse, on-axis illumination that was used in commercial QR code readers.

  16. Single-mode Fabry-Perot laser with deeply etched slanted double trenches

    NASA Astrophysics Data System (ADS)

    Li, Xun; Zhu, Zhongshu; Xi, Yanping; Han, Lin; Ke, Cheng; Pan, Yue; Huang, Weiping

    2015-08-01

    This work proposed and demonstrated a single-mode Fabry-Perot (FP) laser structure with a pair of deeply etched slanted trenches inside the cavity. We implemented the proposed mode selection scheme in conventional 1310 nm InAlGaAs/InP strained-layer multiple-quantum-well ridge waveguide FP laser diodes and obtained single-mode operation with a side-mode suppression ratio (SMSR) as high as 35 dB . The single-mode yield was approximately 55%, and other device performance measures such as the threshold and the slope efficiency were not greatly affected. Additionally, temperature cycling and aging tests show no exceptional disadvantages when compared with the performance of conventional FP lasers. Fiber-optic transmission tests show that the proposed device can send directly modulated 2.5 Gbps and 6.25 Gbps optical signals for distances of over 50 km in standard single-mode fiber. Thus, as a cost-effective solution, this device is promising as a replacement for conventional distributed feedback laser diodes in specific applications where single-mode operation is indispensable but precise control of the lasing wavelength and/or very high SMSR (e.g., > 40 dB ) are not required.

  17. Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces.

    PubMed

    Hao, Bian; Liu, Hewei; Chen, Feng; Yang, Qing; Qu, Pubo; Du, Guangqing; Si, Jinhai; Wang, Xianhua; Hou, Xun

    2012-06-01

    This work reveals a cost-efficient and flexible approach to various microlens arrays on polymers, which is essential to micro-optics elements. An 800-nm femtosecond laser is employed to control the hydrofluoric (HF) acid etching process on silica glasses, and concave microstructures with smooth curved surfaces are produced by this method. Then, the micro-structured glass templates can serve as molds for replicating microlenses on polymers. In this paper, a high-ordered microlens array with over 16,000 hexagonal-shaped lenses is fabricated on poly (dimethyl siloxane) [PDMS], and its perfect light-gathering ability and imaging performance are demonstrated. The flexibility of this method is demonstrated by successful preparation of several concave molds with different patterns which are difficult to be obtained by other methods. This technique provides a new route to small-scaled, smooth and curved surfaces which is widely used in micro-optics, biochemical analysis and superhydrophobic interface. PMID:22714321

  18. Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching.

    PubMed

    Tong, Siyu; Bian, Hao; Yang, Qing; Chen, Feng; Deng, Zefang; Si, Jinhai; Hou, Xun

    2014-11-17

    Large-scale high quality microlens arrays (MLAs) play an important role in enhancing the imaging quality of CCD and CMOS as well as the light extraction efficiency of LEDs and OLEDs. To meet the requirement in MLAs' wide application areas, a rapid fabrication method to fabricate large-scale MLAs with high quality, high fill factor and high uniformity is needed, especially on the glass substrate. In this paper, we present a simple and cost-efficient approach to the development of both concave and convex large-scale microlens arrays (MLAs) by using femtosecond laser wet etching method and replication technique. A large-scale high quality square-shaped microlens array with 512 × 512 units was fabricated.The unit size is 20 × 20 μm² on the whole scale of 1 × 1 cm². Its perfect uniformity and optical performance are demonstrated. PMID:25402166

  19. Comparison of bond strength and surface morphology of dental enamel for acid and Nd-YAG laser etching

    NASA Astrophysics Data System (ADS)

    Parmeswearan, Diagaradjane; Ganesan, Singaravelu; Ratna, P.; Koteeswaran, D.

    1999-05-01

    Recently, laser pretreatment of dental enamel has emerged as a new technique in the field of orthodontics. However, the changes in the morphology of the enamel surface is very much dependent on the wavelength of laser, emission mode of the laser, energy density, exposure time and the nature of the substance absorbing the energy. Based on these, we made a comparative in vitro study on laser etching with acid etching with reference to their bond strength. Studies were conducted on 90 freshly extracted, non carious, human maxillary or mandibular anteriors and premolars. Out of 90, 60 were randomly selected for laser irradiation. The other 30 were used for conventional acid pretreatment. The group of 60 were subjected to Nd-YAG laser exposure (1060 nm, 10 Hz) at differetn fluences. The remaining 30 were acid pretreated with 30% orthophosphoric acid. Suitable Begg's brackets were selected and bound to the pretreated surface and the bond strength were tested using Instron testing machine. The bond strength achieved through acid pretreatment is found to be appreciably greater than the laser pretreated tooth. Though the bond strength achieved through the acid pretreated tooth is found to be significantly greater than the laser pretreated specimens, the laser pretreatement is found to be successful enough to produce a clinically acceptable bond strength of > 0.60 Kb/mm. Examination of the laser pre-treated tooth under SEM showed globule formation which may produce the mechanical interface required for the retention of the resin material.

  20. Measuring the GVD of transparent solvents and creation of laser-etched holographic mirrors

    NASA Astrophysics Data System (ADS)

    Scarborough, Timothy; Strohaber, James; Petersen, Chad; Uiterwaal, Cornelis

    2008-05-01

    We report experimental values of the group velocity dispersion (GVD) of water and methanol at 800 nm. These values were measured by sending 50-fs, 800-nm pulses with various amounts of chirp through a cell filled with a solution of fluorescein in these solvents and recording the production of visible 2-photon fluorescence light using a commercial digital camera. This simple setup also gives information on the duration of our pulses and has allowed us to identify behavior consistent with the presence of third-order spectral phase in the pulse. Additionally, we introduce a simple and practical method[1] to create ultrashort, intense optical vortices (`donut modes') for applications using high-intensity lasers. A laser-etching process is used to encode a holographic grating onto laser-quality gold mirrors, which can withstand intensities of up to 10^12W/cm^2. With new methods for angular dispersion compensation[2], optical vortices can be produced with intensities ˜10^11W/cm^2. [1] Strohaber J, Scarborough T, and Uiterwaal C J G J Appl. Opt. 46 8583 (2007) [2] Strohaber J, Petersen C, and Uiterwaal C J G J Opt. Lett. 32 2387 (2007)

  1. Femtosecond laser structuring of silver-containing glass: Silver redistribution, selective etching, and surface topology engineering

    SciTech Connect

    Desmoulin, Jean-Charles; Petit, Yannick; Cardinal, Thierry; Canioni, Lionel; Dussauze, Marc; Lahaye, Michel; Gonzalez, Hernando Magallanes; Brasselet, Etienne

    2015-12-07

    Femtosecond direct laser writing in silver-containing phosphate glasses allows for the three-dimensional (3D) implementation of complex photonic structures. Sample translation along or perpendicular to the direction of the beam propagation has been performed, which led to the permanent formation of fluorescent structures, either corresponding to a tubular shape or to two parallel planes at the vicinity of the interaction voxel, respectively. These optical features are related to significant modifications of the local material chemistry. Indeed, silver depletion areas with a diameter below 200 nm were evidenced at the center of the photo-produced structures while photo-produced luminescence properties are attributed to the formation of silver clusters around the multiphoton interaction voxel. The laser-triggered oxidation-reduction processes and the associated photo-induced silver redistribution are proposed to be at the origin of the observed original 3D luminescent structures. Thanks to such material structuring, surface engineering has been also demonstrated. Selective surface chemical etching of the glass has been obtained subsequently to laser writing at the location of the photo-produced structures, revealing features with nanometric depth profiles and radial dimensions strongly related to the spatial distributions of the silver clusters.

  2. Femtosecond laser structuring of silver-containing glass: Silver redistribution, selective etching, and surface topology engineering

    NASA Astrophysics Data System (ADS)

    Desmoulin, Jean-Charles; Petit, Yannick; Canioni, Lionel; Dussauze, Marc; Lahaye, Michel; Gonzalez, Hernando Magallanes; Brasselet, Etienne; Cardinal, Thierry

    2015-12-01

    Femtosecond direct laser writing in silver-containing phosphate glasses allows for the three-dimensional (3D) implementation of complex photonic structures. Sample translation along or perpendicular to the direction of the beam propagation has been performed, which led to the permanent formation of fluorescent structures, either corresponding to a tubular shape or to two parallel planes at the vicinity of the interaction voxel, respectively. These optical features are related to significant modifications of the local material chemistry. Indeed, silver depletion areas with a diameter below 200 nm were evidenced at the center of the photo-produced structures while photo-produced luminescence properties are attributed to the formation of silver clusters around the multiphoton interaction voxel. The laser-triggered oxidation-reduction processes and the associated photo-induced silver redistribution are proposed to be at the origin of the observed original 3D luminescent structures. Thanks to such material structuring, surface engineering has been also demonstrated. Selective surface chemical etching of the glass has been obtained subsequently to laser writing at the location of the photo-produced structures, revealing features with nanometric depth profiles and radial dimensions strongly related to the spatial distributions of the silver clusters.

  3. Pulsed laser-assisted focused electron-beam-induced etching of titanium with XeF2: enhanced reaction rate and precursor transport.

    PubMed

    Noh, J H; Fowlkes, J D; Timilsina, R; Stanford, M G; Lewis, B B; Rack, P D

    2015-02-25

    In order to enhance the etch rate of electron-beam-induced etching, we introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. The evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. The increased etch rate is attributed to photothermally enhanced Ti-F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone. PMID:25629708

  4. Pulsed laser-assisted focused electron-beam-induced etching of titanium with XeF2: enhanced reaction rate and precursor transport.

    PubMed

    Noh, J H; Fowlkes, J D; Timilsina, R; Stanford, M G; Lewis, B B; Rack, P D

    2015-02-25

    In order to enhance the etch rate of electron-beam-induced etching, we introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. The evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. The increased etch rate is attributed to photothermally enhanced Ti-F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.

  5. Pulsed Laser-Assisted Focused Electron-Beam-Induced Etching of Titanium with XeF 2 : Enhanced Reaction Rate and Precursor Transport

    DOE PAGESBeta

    Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; Stanford, M. G.; Lewis, B. B.; Rack, P. D.

    2015-01-28

    We introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing; we do this in order to enhance the etch rate of electron-beam-induced etching. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. Moreover, the evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. Finally, the increased etch rate is attributed to photothermally enhancedmore » Ti–F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.« less

  6. Pulsed Laser-Assisted Focused Electron-Beam-Induced Etching of Titanium with XeF 2 : Enhanced Reaction Rate and Precursor Transport

    SciTech Connect

    Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; Stanford, M. G.; Lewis, B. B.; Rack, P. D.

    2015-01-28

    We introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing; we do this in order to enhance the etch rate of electron-beam-induced etching. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. Moreover, the evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. Finally, the increased etch rate is attributed to photothermally enhanced Ti–F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.

  7. The Effect of Laser-Etched Surface Design on Soft Tissue Healing of Two Different Implant Abutment Systems: An Experimental Study in Dogs.

    PubMed

    Neiva, Rodrigo; Tovar, Nick; Jimbo, Ryo; Gil, Luiz F; Goldberg, Paula; Barbosa, Joao Pm; Lilin, Thomas; Coelho, Paulo G

    2016-01-01

    This study describes the early soft tissue morphology around two different implant systems that received either smooth or laser-etched abutments in a beagle dog model. Implants were placed in the healed mandibular molar region of eight beagle dogs and allowed to heal for 7 weeks. When the most apical aspect of the junctional epithelium (JE) was above or within the upper half of the laser-etched region, fibers were oriented perpendicular to the abutment surface. In contrast, JE positioned within the lower half of the laser-etched region or within or below the implant-abutment gap level presented fibers oriented parallel to the abutment surface. PMID:27560671

  8. InGaN/GaN DFB laser diodes at 434 nm with deeply etched sidewall gratings

    NASA Astrophysics Data System (ADS)

    Slight, Thomas J.; Odedina, Opeoluwa; Meredith, Wyn; Docherty, Kevin E.; Kelly, Anthony E.

    2016-02-01

    We report on deeply etched sidewall grating DFB lasers in the InGaN/GaN material system emitting at a single wavelength around 434 nm. GaN lasers have a wide range of applications in communications, displays and storage. The availability of a single wavelength device with a good side mode suppression ratio (SMSR) would allow further applications to be addressed such as sources for laser cooling and Fraunhofer line operation for solar background free communications. Sidewall etched gratings have the advantage of fabrication with no need for overgrowth and have been demonstrated in a range of other material systems and wavelengths. Importantly for GaN based devices, this design has the potential to minimise fabrication induced damage to the epi structure. We investigated two laser designs, one with 80 % duty-cycle 3rd order gratings and another with 39th order partial gratings. Simulation of the 2D waveguide sections was carried out to find the optimal grating width. For fabrication, the laser ridge and gratings were patterned in a single step using electron beam lithography and ICP etched to a depth of 500 nm. Contact metal was deposited and the sample thinned and cleaved into 1 mm long cavities. The as-cleaved 3rd order lasers emit in the pulsed regime with a SMSR of 20 dB and a peak single-mode output power of 40 mW. The output power is similar to that of parallel processed FP lasers. The 39th order lasers also exhibit narrow spectral width at an output power of 10 mW.

  9. Evaluation of the Bond Strength of Resin Cements Used to Lute Ceramics on Laser-Etched Dentin

    PubMed Central

    Duzdar, Lale; Oksuz, Mustafa; Tanboga, Ilknur

    2014-01-01

    Abstract Objective: The purpose of this study was to investigate the shear bond strength (SBS) of two different adhesive resin cements used to lute ceramics on laser-etched dentin. Background data: Erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation has been claimed to improve the adhesive properties of dentin, but results to date have been controversial, and its compatibility with existing adhesive resin cements has not been conclusively determined. Materials and methods: Two adhesive cements, one “etch-and-rinse” [Variolink II (V)] and one “self-etch” [Clearfil Esthetic Cement (C)] luting cement, were used to lute ceramic blocks (Vita Celay Blanks, Vita) onto dentin surfaces. In total, 80 dentin specimens were distributed randomly into eight experimental groups according to the dentin surface-etching technique used Er,Cr:YSGG laser and Er:YAG laser: (1) 37% orthophosphoric acid+V (control group), (2) Er,Cr:YSGG laser+V, (3) Er,Cr:YSGG laser+acid+V, (4) Er:YAG laser+V, (5) Er:YAG laser+acid+V, (6) C, (7) Er,Cr:YSGG laser+C, and (8) Er:YAG laser+C. Following these applications, the ceramic discs were bonded to prepared surfaces and were shear loaded in a universal testing machine until fracture. SBS was recorded for each group in MPa. Shear test values were evaluated statistically using the Mann–Whitney U test. Results: No statistically significant differences were evident between the control group and the other groups (p>0.05). The Er,Cr:YSGG laser+A+V group demonstrated significantly higher SBS than did the Er,Cr:YSGG laser+V group (p=0.034). The Er,Cr:YSGG laser+C and Er:YAG laser+C groups demonstrated significantly lower SBS than did the C group (p<0.05). Conclusions: Dentin surfaces prepared with lasers may provide comparable ceramic bond strengths, depending upon the adhesive cement used. PMID:24992276

  10. Operational specifications of the L.I.T.E.S. (Laser Illuminated Track Etch Scattering) dosemeter reader.

    SciTech Connect

    Moore, M. E.; Devine, R. T.; Gepford, H. J.; McKeever, R. J.; Hoffman, J. M.

    2004-01-01

    The Personnel Dosimetry Operations Team at the Los Alamos National Laboratory (LANL) has accepted the LITES dosimeter reader into its suite of radiation dose measurement instruments. The LITES instrument transmits coherent light from a HeNe laser through the pertinent track etch foil and a photodiode measures the amount of light scattered by the etched tracks. A small beam stop blocks the main laser light, while a lens refocuses the scattered light into the photodiode. Three stepper motors in the current LITES system are used to position a carousel that holds 36 track etch dosimeters. Preliminary work with the LITES system demonstrated the device had a linear response in counting foils subjected to exposures up to 50 mSv (5.0 rem). The United States Department of Energy requires that annual general employee dose not exceed 50 mSv (5.0 rem). On a regular basis, LANL uses the Autoscan 60 reader system (Thermo Electron Corp.) for counting track etch dosimeters. However, LANL uses a 15 hour etch process for CR39 dosimeters, and this produces more and larger track etch pits than the 6 hour etch used by many institutions. Therefore, LANL only uses the Autoscan 60 for measuring neutron dose equivalent up to exposure levels of about 3 mSv (300 mrem). The LITES system has a measured lower limit of detection (LLD) of about 0.6 mSv (60 mrem), and it has a correlation coefficient of R{sup 2} = 0.99 over an exposure range up to 500 mSv (50.0 rem). A series of blind studies were done using three methods: the Autoscan 60 system, manual counting by optical microscope, and the LITES instrument. A collection of track etch dosimeters of unknown NDE (neutron dose equivalent) were analyzed using the three methods, and the (PC) performance coefficient was calculated when the NDE became known. The Autoscan 60 and optical microscope methods had a combined PC = 0.171, and the LITES instrument had a PC = 0.194, where a PC less than or equal to 0.300 is considered satisfactory.

  11. Etching, micro hardness and laser damage threshold studies of a nonlinear optical material L-valine

    NASA Astrophysics Data System (ADS)

    Anbuchezhiyan, M.; Ponnusamy, S.; Muthamizhchelvan, C.; Kanakam, C. C.; Singh, S. P.; Pal, P. K.; Datta, P. K.

    2012-04-01

    A nonlinear optical crystal of L-valine was grown from an aqueous solution containing a small amount of phosphoric acid by the slow evaporation method. The grown crystal was characterized by a single crystal X-ray diffraction to determine the unit cell parameters. The powder X-ray diffraction analysis also confirmed the lattice parameters to be a = 9.6687(7) Å, b = 5.2709(4) Å, c = 12.0371(10) Å and β = 90.805(4)°. The results of the Inductively Coupled Plasma Optical Emission Spectrometry (ICPOES) indicate the presence of a small amount of phosphorus in the grown crystal. The Vickers micro hardness test was performed to study the mechanical strength of the crystals. Chemical etching studies were carried out to analyze the dislocation structure. The laser damaged threshold of the grown crystal was measured to be 11.11 GW/cm2 for 10 ns pulse at 1064 nm, which is higher than that of the standard nonlinear optical crystals like KDP. Second harmonic generation of the grown crystals was also 1.44 times that of KDP.

  12. Responsivity uniformity enhancements for Backside-Illuminated Charge-Coupled Devices (BICCDs) by excimer laser-assisted etching

    NASA Astrophysics Data System (ADS)

    Russell, Stephen D.; Sexton, Douglas A.

    1991-05-01

    BICCDs are solid-state electronic imaging devices which read out image charges from wells in an array of pixels. The substrate below the pixel array is typically thinned by chemically etching (100)-oriented silicon using a potassium hydroxide (KOH) etch. The potassium hydroxide anisotropically etches to the (111) crystallographic plane in silicon, leaving smooth sidewalls at an angle of 54.7 deg to the image plane. This smooth surface acts as a mirror to reflect extraneous light onto the image plane of the BICCD, causing spurious images and reducing the responsivity uniformity (RU) of the devices. We have developed a noncontact excimer laser-assisted process to promote a chemical reaction between a halocarbon ambient and the silicon. The laser-assisted chemical reaction results in a roughened (textured) surface which behaves as a light sink. The use of a nonreactive ambient allows us to texture the sidewalls of prepackaged and pretested devices. The sidewalls of fully functional BICCD die have been textured in a Freon-115 (chloropentafluoroethane) ambient by directing 5000 pulses with laser fluence of about 0.75 J/sq cm upon them. The RU of the devices as well as the background level (fat-zero) are dramatically improved.

  13. Silicon structuring by etching with liquid chlorine and fluorine precursors using femtosecond laser pulses

    SciTech Connect

    Radu, C.; Simion, S.; Zamfirescu, M.; Ulmeanu, M.; Enculescu, M.; Radoiu, M.

    2011-08-01

    The aim of this study is to investigate the micrometer and submicrometer scale structuring of silicon by liquid chlorine and fluorine precursors with 200 fs laser pulses working at both fundamental (775 nm) and frequency doubled (387 nm) wavelengths. The silicon surface was irradiated at normal incidence by immersing the Si (111) substrates in a glass container filled with liquid chlorine (CCl{sub 4}) and fluorine (C{sub 2}Cl{sub 3}F{sub 3}) precursors. We report that silicon surfaces develop an array of spikes with single step irradiation processes at 775 nm and equally at 387 nm. When irradiating the Si surface with 400 pulses at 330 mJ/cm{sup 2} laser fluence and a 775 nm wavelength, the average height of the formed Si spikes in the case of fluorine precursors is 4.2 {mu}m, with a full width at half maximum of 890 nm. At the same irradiation wavelength chlorine precursors develop Si spikes 4 {mu}m in height and with a full width at half maximum of 2.3 {mu}m with irradiation of 700 pulses at 560 mJ/cm{sup 2} laser fluence. Well ordered areas of submicrometer spikes with an average height of about 500 nm and a width of 300 nm have been created by irradiation at 387 nm by chlorine precursors, whereas the fluorine precursors fabricate spikes with an average height of 700 nm and a width of about 200 nm. Atomic force microscopy and scanning electron microscopy of the surface show that the formation of the micrometer and sub-micrometer spikes involves a combination of capillary waves on the molten silicon surface and laser-induced etching of silicon, at both 775 nm and 387 nm wavelength irradiation. The energy-dispersive x-ray measurements indicate the presence of chlorine and fluorine precursors on the structured surface. The fluorine precursors create a more ordered area of Si spikes at both micrometer and sub-micrometer scales. The potential use of patterned Si substrates with gradient topography as model scaffolds for the systematic exploration of the role of 3D

  14. Laser-induced particle size tuning and structural transformations in germanium nanoparticles prepared by stain etching and colloidal synthesis route

    SciTech Connect

    Karatutlu, Ali E-mail: ali.karatutlu@bou.edu.tr; Seker, Isa

    2015-12-28

    In this study, with the aid of Raman measurements, we have observed transformations in small (∼3 nm and ∼10 nm) free-standing Ge nanoparticles under laser light exposure. The nanoparticles were obtained by the chemical stain etching of a monocrystalline Ge wafer and of Ge powder and by colloidal synthesis route. We found that the transformation path depends on laser power and exposure time. At relatively low values of the laser power (2 mW) over a period of 100 min, the Raman signal indicates transformation of the sample from a nanocrystaline to bulk-like state, followed by partial oxidation and finally a conversion of the entire sample into alpha-quartz type GeO{sub 2}. However, when the laser power is set at 60 mW, we observed a heat release during an explosive crystallization of the nanocrystalline material into bulk Ge without noticeable signs of oxidation. Together with the transmission electron microscopy measurements, these results suggest that the chemical stain etching method for the preparation of porous Ge may not be a top-down process as has been widely considered, but a bottom up one. Systematic studies of the laser exposure on Ge nanoparticles prepared by colloidal synthesis results in the fact that the explosive crystallisation is common for H-terminated and partially disordered Ge nanoparticles regardless of its particle size. We suggest possible bio-medical applications for the observed phenomena.

  15. Laser-induced particle size tuning and structural transformations in germanium nanoparticles prepared by stain etching and colloidal synthesis route

    NASA Astrophysics Data System (ADS)

    Karatutlu, Ali; Little, William; Ersoy, Osman; Zhang, Yuanpeng; Seker, Isa; Sapelkin, Andrei

    2015-12-01

    In this study, with the aid of Raman measurements, we have observed transformations in small (˜3 nm and ˜10 nm) free-standing Ge nanoparticles under laser light exposure. The nanoparticles were obtained by the chemical stain etching of a monocrystalline Ge wafer and of Ge powder and by colloidal synthesis route. We found that the transformation path depends on laser power and exposure time. At relatively low values of the laser power (2 mW) over a period of 100 min, the Raman signal indicates transformation of the sample from a nanocrystaline to bulk-like state, followed by partial oxidation and finally a conversion of the entire sample into alpha-quartz type GeO2. However, when the laser power is set at 60 mW, we observed a heat release during an explosive crystallization of the nanocrystalline material into bulk Ge without noticeable signs of oxidation. Together with the transmission electron microscopy measurements, these results suggest that the chemical stain etching method for the preparation of porous Ge may not be a top-down process as has been widely considered, but a bottom up one. Systematic studies of the laser exposure on Ge nanoparticles prepared by colloidal synthesis results in the fact that the explosive crystallisation is common for H-terminated and partially disordered Ge nanoparticles regardless of its particle size. We suggest possible bio-medical applications for the observed phenomena.

  16. Microleakage in Class V cavities with self-etching adhesive system and conventional rotatory or laser Er,Cr:YSGG

    PubMed Central

    Arnabat, J; España-Tost, T

    2012-01-01

    Objective: To analyse microleakage in Class V cavity preparation with Er;Cr:YSGG at different parameters using a self-etching adhesive system. Background: Several studies reported microleakage around composite restorations when cavity preparation is done or treated by Er;Cr:YSGG laser. We want to compare different energy densities in order to obtain the best parameters, when using a self-etching adhesive system. Methods: A class V preparations was performed in 120 samples of human teeth were divided in 3 groups: (1) Preparation using the burr. (2) Er;Cr:YSGG laser preparation with high energy 4W, 30 Hz, 50% Water 50% Air and (3) Er;Cr:YSGG laser preparation lower energy 1.5 W, 30 Hz, 30% Water 30% Air. All the samples were restored with self-etching adhesive system and hybrid composite. Thermocycling (5000 cycles) and immersed in 0.5% fuchsin. The restorations were sectioned and evaluated the microleakage with a stereomicroscope. Results: Lower energy laser used for preparation showed significant differences in enamel and dentin. To group 3, the microleakage in the enamel was less, whilst the group 1, treated with the turbine, showed less microleakage at dentin level. Group 2 showed the highest microleakage at dentin/cement level. Conclusion: Burr preparation gives the lowest microleakage at cement/dentin level, whilst Er;Cr:YSGG laser at lower power has the low energy obtains lowest microleakage at enamel. On the contrary high-energy settings produce inferior results in terms of microleakage. PMID:24511195

  17. Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica.

    PubMed

    Shi, Feng; Zhong, Yaoyu; Dai, Yifan; Peng, Xiaoqiang; Xu, Mingjin; Sui, Tingting

    2016-09-01

    Surface damage precursor evolution has great influence on laser-induced damage threshold improvement of fused silica surface during Ion beam etching. In this work, a series of ion sputtering experiment are carried out to obtain the evolutions of damage precursors (dot-form microstructures, Polishing-Induced Contamination, Hertz scratches, and roughness). Based on ion sputtering theory, surface damage precursor evolutions are analyzed. The results show that the dot-form microstructures will appear during ion beam etching. But as the ion beam etching depth goes up, the dot-form microstructures can be mitigated. And ion-beam etching can broaden and passivate the Hertz scratches without increasing roughness value. A super-smooth surface (0.238nm RMS) can be obtained finally. The relative content of Fe and Ce impurities both significantly reduce after ion beam etching. The laser-induced damage threshold of fused silica is improved by 34% after ion beam etching for 800nm. Research results can be a reference on using ion beam etching process technology to improve laser-induced damage threshold of fused silica optics. PMID:27607688

  18. Modifying the surface charge of single track-etched conical nanopores in polyimide

    NASA Astrophysics Data System (ADS)

    Ali, M.; Schiedt, B.; Healy, K.; Neumann, R.; Ensinger, W.

    2008-02-01

    Chemical modification of nanopore surfaces is of great interest as it means that the surface composition is no longer fixed by the choice of substrate material, even to the point where large biomolecules can be attached to the pore walls. Controlling nanopore transport characteristics is one important application of surface modification which is very relevant given the significant interest in sensors based on the transport of ions and molecules through nanopores. Reported here is a method to change the surface charge polarity of single track-etched conical nanopores in polyimide, which also has the potential to attach more complex molecules to the carboxyl groups on the nanopore walls. These carboxyl groups were converted into terminal amino groups, first by activation with N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) followed by the covalent coupling of ethylenediamine. This results in a changed surface charge polarity. Regeneration of a carboxyl-terminated surface was also possible, by reaction of the amino groups with succinic anhydride. The success of these reactions was confirmed by measurements of the pore's pH sensitive current-voltage (I-V) characteristics before and after the chemical modification, which depend on surface charge. The permselectivity of the pores also changed accordingly with the modification.

  19. Characterization and adsorption properties of diatomaceous earth modified by hydrofluoric acid etching.

    PubMed

    Tsai, Wen-Tien; Lai, Chi-Wei; Hsien, Kuo-Jong

    2006-05-15

    This work was a study of the chemical modification of diatomaceous earth (DE) using hydrofluoric acid (HF) solution. Under the experimental conditions investigated, it was found that HF under controlled conditions significantly etched inward into the interior of the existing pore structure in the clay mineral due to its high content of silica, leaving a framework possessing a larger BET surface area (ca. 10 m2 g(-1)) in comparison with that (ca. 4 m2 g(-1)) of its precursor (i.e., DE). Further, the results indicated that the HF concentration is a more determining factor in creating more open pores than other process parameters (temperature, holding time, and solid/liquid ratio). This observation was also in close agreement with the examinations by the silicon analysis, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption kinetics and the adsorption isotherm of methylene blue onto the resulting clay adsorbent can be well described by a pseudo-second-order reaction model and the Freundlich model, respectively.

  20. Comparison of tensile bond strengths of four one-bottle self-etching adhesive systems with Er:YAG laser-irradiated dentin.

    PubMed

    Jiang, Qianzhou; Chen, Minle; Ding, Jiangfeng

    2013-12-01

    This study aimed to investigate the interaction of current one-bottle self-etching adhesives and Er:YAG laser with dentin using a tensile bond strength (TBS) test and scanning electron microscopy (SEM) in vitro. Two hundred and thirteen dentin discs were randomly distributed to the Control Group using bur cutting and to the Laser Group using an Er:YAG laser (200 mJ, VSP, 20 Hz). The following adhesives were investigated: one two-step total-etch adhesive [Prime & Bond NT (Dentsply)] and four one-step self-etch adhesives [G-Bond plus (GC), XENO V (Dentsply), iBond Self Etch (Heraeus) and Adper Easy One (3 M ESPE)]. Samples were restored with composite resin, and after 24-hour storage in distilled water, subjected to the TBS test. For morphological analysis, 12 dentin specimens were prepared for SEM. No significant differences were found between the control group and laser group (p = 0.899); dentin subjected to Prime & Bond NT, XENOV and Adper Easy One produced higher TBS. In conclusion, this study indicates that Er:YAG laser-prepared dentin can perform as well as bur on TBS, and some of the one-step one-bottle adhesives are comparable to the total-etch adhesives in TBS on dentin.

  1. Quantum cascade laser based monitoring of CF{sub 2} radical concentration as a diagnostic tool of dielectric etching plasma processes

    SciTech Connect

    Hübner, M.; Lang, N.; Röpcke, J.; Helden, J. H. van; Zimmermann, S.; Schulz, S. E.; Buchholtz, W.

    2015-01-19

    Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF{sub 2} radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF{sub 2} radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm{sup −1}. We measured Doppler-resolved ro-vibrational absorption lines and determined absolute densities using transitions in the ν{sub 3} fundamental band of CF{sub 2} with the aid of an improved simulation of the line strengths. We found that the CF{sub 2} radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.

  2. Evaluation of Self-Etching Adhesive and Er:YAG Laser Conditioning on the Shear Bond Strength of Orthodontic Brackets

    PubMed Central

    Contreras-Bulnes, Rosalía; Scougall-Vilchis, Rogelio J.; Rodríguez-Vilchis, Laura E.; Centeno-Pedraza, Claudia; Olea-Mejía, Oscar F.; Alcántara-Galena, María del Carmen Z.

    2013-01-01

    The purpose of this study was to evaluate the shear bond strength, the adhesive remnant index scores, and etch surface of teeth prepared for orthodontic bracket bonding with self-etching primer and Er:YAG laser conditioning. One hundred and twenty bovine incisors were randomly divided into four groups. In Group I (Control), the teeth were conditioned with 35% phosphoric acid for 15 seconds. In Group II the teeth were conditioned with Transbond Plus SEP (5 sec); III and IV were irradiated with the Er:YAG 150 mJ (11.0 J/cm2), 150 mJ (19.1 J/cm2), respectively, at 7–12 Hz with water spray. After surface preparation, upper central incisor stainless steel brackets were bonded with Transbond Plus Color Change Adhesive. The teeth were stored in water at 37°C for 24 hours and shear bond strengths were measured, and adhesive remnant index (ARI) was determined. The conditioned surface was observed under a scanning electron microscope. One-way ANOVA and chi-square test were used. Group I showed the significantly highest values of bond strength with a mean value of 8.2 megapascals (MPa). The lesser amount of adhesive remnant was found in Group III. The results of this study suggest that Er:YAG laser irradiation could not be an option for enamel conditioning. PMID:24228014

  3. Controllable high-throughput high-quality femtosecond laser-enhanced chemical etching by temporal pulse shaping based on electron density control.

    PubMed

    Zhao, Mengjiao; Hu, Jie; Jiang, Lan; Zhang, Kaihu; Liu, Pengjun; Lu, Yongfeng

    2015-01-01

    We developed an efficient fabrication method of high-quality concave microarrays on fused silica substrates based on temporal shaping of femtosecond (fs) laser pulses. This method involves exposures of fs laser pulse trains followed by a wet etching process. Compared with conventional single pulses with the same processing parameters, the temporally shaped fs pulses can enhance the etch rate by a factor of 37 times with better controllability and higher quality. Moreover, we demonstrated the flexibility of the proposed method in tuning the profile of the concave microarray structures by changing the laser pulse delay, laser fluence, and pulse energy distribution ratio. Micro-Raman spectroscopy was conducted to elucidate the stronger modification induced by the fs laser pulse trains in comparison with the single pulses. Our calculations show that the controllability is due to the effective control of localized transient free electron densities by temporally shaping the fs pulses. PMID:26307148

  4. Atomic diffusion in laser surface modified AISI H13 steel

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-07-01

    This paper presents a laser surface modification process of AISI H13 steel using 0.09 and 0.4 mm of laser spot sizes with an aim to increase surface hardness and investigate elements diffusion in laser modified surface. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, pulse repetition frequency (PRF), and overlap percentage. The hardness properties were tested at 981 mN force. Metallographic study and energy dispersive X-ray spectroscopy (EDXS) were performed to observe presence of elements and their distribution in the sample surface. Maximum hardness achieved in the modified surface was 1017 HV0.1. Change of elements composition in the modified layer region was detected in the laser modified samples. Diffusion possibly occurred for C, Cr, Cu, Ni, and S elements. The potential found for increase in surface hardness represents an important method to sustain tooling life. The EDXS findings signify understanding of processing parameters effect on the modified surface composition.

  5. Comparison of Shear Bond Strength of Orthodontic Brackets Bonded to Enamel Prepared By Er:YAG Laser and Conventional Acid-Etching

    PubMed Central

    Hosseini, M.H.; Namvar, F.; Chalipa, J.; Saber, K.; Chiniforush, N.; Sarmadi, S.; Mirhashemi, A.H.

    2012-01-01

    Introduction: The purpose of this study was to compare shear bond strength (SBS) of orthodontic brackets bonded to enamel prepared by Er:YAG laser with two different powers and conventional acid-etching. Materials and Methods: Forty-five human premolars extracted for orthodontic purposes were randomly assigned to three groups based on conditioning method: Group 1- conventional etching with 37% phosphoric acid; Group 2- irradiation with Er:YAG laser at 1 W; and Group 3- irradiation with Er:YAG laser at 1.5 W. Metal brackets were bonded on prepared enamel using a light-cured composite. All groups were subjected to thermocycling process. Then, the specimens mounted in auto-cure acryle and shear bond strength were measured using a universal testing machine with a crosshead speed of 0.5 mm per second. After debonding, the amount of resin remaining on the teeth was determined using the adhesive remnant index (ARI) scored 1 to 5. One-way analysis of variance was used to compare shear bond strengths and the Kruskal-Wallis test was performed to evaluate differences in the ARI for different etching types. Results: The mean and standard deviation of conventional acid-etch group, 1W laser group and 1.5W laser group was 3.82 ± 1.16, 6.97 ± 3.64 and 6.93 ± 4.87, respectively. Conclusion: The mean SBS obtained with an Er:YAG laser operated at 1W or 1.5W is approximately similar to that of conventional etching. However, the high variability of values in bond strength of irradiated enamel should be considered to find the appropriate parameters for applying Er:YAG laser as a favorable alternative for surface conditioning. PMID:22924098

  6. Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching.

    PubMed

    Brodoceanu, D; Alhmoud, H Z; Elnathan, R; Delalat, B; Voelcker, N H; Kraus, T

    2016-02-19

    We present an elegant route for the fabrication of ordered arrays of vertically-aligned silicon nanowires with tunable geometry at controlled locations on a silicon wafer. A monolayer of transparent microspheres convectively assembled onto a gold-coated silicon wafer acts as a microlens array. Irradiation with a single nanosecond laser pulse removes the gold beneath each focusing microsphere, leaving behind a hexagonal pattern of holes in the gold layer. Owing to the near-field effects, the diameter of the holes can be at least five times smaller than the laser wavelength. The patterned gold layer is used as catalyst in a metal-assisted chemical etching to produce an array of vertically-aligned silicon nanowires. This approach combines the advantages of direct laser writing with the benefits of parallel laser processing, yielding nanowire arrays with controlled geometry at predefined locations on the silicon surface. The fabricated VA-SiNW arrays can effectively transfect human cells with a plasmid encoding for green fluorescent protein. PMID:26778665

  7. Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Brodoceanu, D.; Alhmoud, H. Z.; Elnathan, R.; Delalat, B.; Voelcker, N. H.; Kraus, T.

    2016-02-01

    We present an elegant route for the fabrication of ordered arrays of vertically-aligned silicon nanowires with tunable geometry at controlled locations on a silicon wafer. A monolayer of transparent microspheres convectively assembled onto a gold-coated silicon wafer acts as a microlens array. Irradiation with a single nanosecond laser pulse removes the gold beneath each focusing microsphere, leaving behind a hexagonal pattern of holes in the gold layer. Owing to the near-field effects, the diameter of the holes can be at least five times smaller than the laser wavelength. The patterned gold layer is used as catalyst in a metal-assisted chemical etching to produce an array of vertically-aligned silicon nanowires. This approach combines the advantages of direct laser writing with the benefits of parallel laser processing, yielding nanowire arrays with controlled geometry at predefined locations on the silicon surface. The fabricated VA-SiNW arrays can effectively transfect human cells with a plasmid encoding for green fluorescent protein.

  8. Characterization and biocompatibility of a titanium dental implant with a laser irradiated and dual-acid etched surface.

    PubMed

    Hsu, Shan-Hui; Liu, Bai-Shuan; Lin, Wen-Hung; Chiang, Heng-Chieh; Huang, Shih-Ching; Cheng, Shih-Shyong

    2007-01-01

    The biological properties of commercial pure titanium (cp-Ti) dental implants can be improved by surface treatment. In this study, the cp-Ti surfaces were prepared to enable machined surfaces (TM) to be compared to the machined, sandblasted, laser irradiated and dual-acid etched surfaces (TA). The surface elements and roughness were characterized. The biocompatibility was evaluated by cell and organ culture in vitro. The removal torque was measured in rabbit implantation. Surface characterization revealed that TA surface was more oxidized than TM surface. The TA surface had micrometric, beehive-like coarse concaves. The average roughness (2.28 mum) was larger than that typical of acid-etched surfaces. Extracts of both materials were not cytotoxic to bone cells. The morphology of cells attached on the TA surface was superior to that on the TM surface. TA promoted cell migration and repaired damaged bones more effectively in organ culture. The formation of bone-like nodules on TA disk exceeded that on TM disk. Rabbit tibia implantation also proved that TA implant had greater removal torque value. These results suggested that TA had good osteoconductivity and was a potential material for dental implantation. PMID:17264387

  9. Periodic nanostructuring of Er/Yb-codoped IOG1 phosphate glass by using ultraviolet laser-assisted selective chemical etching

    SciTech Connect

    Pappas, C.; Pissadakis, S.

    2006-12-01

    The patterning of submicron period ({approx_equal}500 nm) Bragg reflectors in the Er/Yb-codoped IOG1 Schott, phosphate glass is demonstrated. A high yield patterning technique is presented, wherein high volume damage is induced into the glass matrix by exposure to intense ultraviolet 213 nm, 150 ps Nd:YAG laser radiation and, subsequently, a chemical development in potassium hydroxide (KOH)/ethylenediamine tetra-acetic acid (EDTA) aqueous solution selectively etches the exposed areas. The electronic changes induced by the 213 nm ultraviolet irradiation are examined by employing spectrophotometric measurements, while an estimation of the refractive index changes recorded is provided by applying Kramers-Kronig transformation to the absorption change data. In addition, real time diffraction efficiency measurements were obtained during the formation of the volume damage grating. After the exposure, the growth of the relief grating pattern in time was measured at fixed time intervals and the dependence of the grating depth on the etching time and exposure conditions is presented. The gratings fabricated are examined by atomic and scanning electron microscopies to reveal the relief topology of the structures. Gratings with average depth of 120 nm and excellent surface quality were fabricated by exposing the IOG1 phosphate glass to 36 000 pulses of 208 mJ/cm{sup 2} energy density, followed by developing in the KOH/EDTA agent for 6 min.

  10. Etching and Growth of GaAs

    NASA Technical Reports Server (NTRS)

    Seabaugh, A. C.; Mattauch, R., J.

    1983-01-01

    In-place process for etching and growth of gallium arsenide calls for presaturation of etch and growth melts by arsenic source crystal. Procedure allows precise control of thickness of etch and newly grown layer on substrate. Etching and deposition setup is expected to simplify processing and improve characteristics of gallium arsenide lasers, high-frequency amplifiers, and advanced integrated circuits.

  11. Influence of different Er,Cr:YSGG laser parameters on long-term dentin bond strength of self-etch adhesive.

    PubMed

    Yildirim, Tahsin; Ayar, Muhammet Kerim; Yesilyurt, Cemal

    2015-12-01

    The aim of the present study was to evaluate the effects of erbium, chromium: yattrium-scandium-gallium-garnet (Er,Cr:YSGG) laser frequency on microtensile bond strength (μTBS) of a self-etch adhesive to dentin after 15-month water storage. The Er,Cr:YSGG laser can safely be used on dental hard tissue. However, no study has compared the effects of Er,Cr:YSGG laser parameters and aging by water storage on the bonding effectiveness of self-etch adhesives to dentin. Thirty-five bovine teeth were randomly assigned to the following seven groups (n = 5): group I (diamond bur with high-speed handpiece (control)), group II (Er,Cr:YSGG laser 3 W/50 Hz), group III (Er,Cr:YSGG laser 3 W/35 Hz), group IV (Er,Cr:YSGG laser 3 W/20 Hz), group V (Er,Cr:YSGG laser 6 W/50 Hz), group VI (Er,Cr:YSGG laser 6 W/35 Hz), and group VII (Er,Cr:YSGG laser 6 W/20 Hz). Clearfil SE Bond was applied to the prepared dentin, and the composites were placed and cured. Resin-dentin sticks with an approximate cross-sectional area of 0.8 mm(2) were obtained, and bond strength tests were performed at 24 h and 15 months of water storage after bonding. Data were analyzed with Kruskal-Wallis and Mann-Whitney U tests (p < 0.05). Laser irradiation resulted in significantly lower bond strengths when compared to bur treating. Fifteen-month water storage reduced bond strength for all groups. There was no significant difference among the effects of different laser frequencies on bond strength. It can be concluded that Er,Cr:YSGG laser used at the tested parameters may alter the dentin bond durability of self-etch adhesive. PMID:26498449

  12. Laser-Modified Surface Enhances Osseointegration and Biomechanical Anchorage of Commercially Pure Titanium Implants for Bone-Anchored Hearing Systems

    PubMed Central

    Omar, Omar; Simonsson, Hanna; Palmquist, Anders; Thomsen, Peter

    2016-01-01

    Osseointegrated implants inserted in the temporal bone are a vital component of bone-anchored hearing systems (BAHS). Despite low implant failure levels, early loading protocols and simplified procedures necessitate the application of implants which promote bone formation, bone bonding and biomechanical stability. Here, screw-shaped, commercially pure titanium implants were selectively laser ablated within the thread valley using an Nd:YAG laser to produce a microtopography with a superimposed nanotexture and a thickened surface oxide layer. State-of-the-art machined implants served as controls. After eight weeks’ implantation in rabbit tibiae, resonance frequency analysis (RFA) values increased from insertion to retrieval for both implant types, while removal torque (RTQ) measurements showed 153% higher biomechanical anchorage of the laser-modified implants. Comparably high bone area (BA) and bone-implant contact (BIC) were recorded for both implant types but with distinctly different failure patterns following biomechanical testing. Fracture lines appeared within the bone ~30–50 μm from the laser-modified surface, while separation occurred at the bone-implant interface for the machined surface. Strong correlations were found between RTQ and BIC and between RFA at retrieval and BA. In the endosteal threads, where all the bone had formed de novo, the extracellular matrix composition, the mineralised bone area and osteocyte densities were comparable for the two types of implant. Using resin cast etching, osteocyte canaliculi were observed directly approaching the laser-modified implant surface. Transmission electron microscopy showed canaliculi in close proximity to the laser-modified surface, in addition to a highly ordered arrangement of collagen fibrils aligned parallel to the implant surface contour. It is concluded that the physico-chemical surface properties of laser-modified surfaces (thicker oxide, micro- and nanoscale texture) promote bone bonding

  13. Improved patterning of ITO coated with gold masking layer on glass substrate using nanosecond fiber laser and etching

    NASA Astrophysics Data System (ADS)

    Tan, Nguyen Ngoc; Hung, Duong Thanh; Anh, Vo Tran; BongChul, Kang; HyunChul, Kim

    2015-05-01

    In this paper, an indium-tin oxide (ITO) thin-film patterning method for higher pattern quality and productivity compared to the short-pulsed laser direct writing method is presented. We sputtered a thin ITO layer on a glass substrate, and then, plated a thin gold layer onto the ITO layer. The combined structure of the three layers (glass-ITO-gold) was patterned using laser-induced plasma generated by an ytterbium pulsed fiber laser (λ = 1064 nm). The results showed that the process parameters of 50 mm/s in scanning speed, 14 ns pulse duration, and a repetition rate of 7.5 kHz represented optimum conditions for the fabrication of ITO channels. Under these conditions, a channel 23.4 μm wide and 20 nm deep was obtained. However, built-up spikes (∼15 nm in height) resulted in a decrease in channel quality, and consequently, short circuit occurred at some patterned positions. These built-up spikes were completely removed by dipping the ITO layer into an etchant (18 wt.% HCl). A gold masking layer on the ITO surface was found to increase the channel surface quality without any decrease in ITO thickness. Moreover, the effects of repetition rate, scanning speed, and etching characteristics on surface quality were investigated.

  14. Modified Phasemeter for a Heterodyne Laser Interferometer

    NASA Technical Reports Server (NTRS)

    Loya, Frank M.

    2010-01-01

    Modifications have been made in the design of instruments of the type described in "Digital Averaging Phasemeter for Heterodyne Interferometry". A phasemeter of this type measures the difference between the phases of the unknown and reference heterodyne signals in a heterodyne laser interferometer. The phasemeter design lacked immunity to drift of the heterodyne frequency, was bandwidth-limited by computer bus architectures then in use, and was resolution-limited by the nature of field-programmable gate arrays (FPGAs) then available. The modifications have overcome these limitations and have afforded additional improvements in accuracy, speed, and modularity. The modifications are summarized.

  15. Suppression of side-etching in C{sub 2}H{sub 6}/H{sub 2}/O{sub 2} reactive ion etching for the fabrication of an InGaAsP/InP P-substrate buried-heterostructure laser diode

    SciTech Connect

    Sugimoto, Hiroshi; Isu, Toshiro; Tada, Hitoshi; Miura, Takeshi; Shiba, Tetsuo; Kimura, Tadashi; Takemoto, Akira

    1993-12-01

    A reactive ion etching (RIE) technique using a C{sub 2}H{sub 6}, H{sub 2}, and O{sub 2} mixture was applied to the fabrication of InGaAsP/InP (P-substrate) partially inverted buried heterostructure laser diodes, which have been commercially produced for their superior characteristics. The addition of O{sub 2} suppressed side etching and made it possible to fabricate ridge mesa structures for the laser diodes with a height of 4 {mu}m and a width of 1{mu}m with superior controllability. The effects of O{sub 2} addition were investigated by Auger electron spectroscopy and a mechanism suppressing side etching was examined. The characteristics including lifetime of the laser diodes fabricated by the RIE technique were as excellent as those of laser diodes fabricated by wet etching.

  16. Single-ended output GaAs/AlGaAs single quantum well laser with a dry-etched corner reflector

    NASA Technical Reports Server (NTRS)

    Hagberg, M.; Larsson, A.; Eng, S. T.

    1990-01-01

    GaAs/AlGaAs single quantum well lasers with integrated corner reflectors have been fabricated using chemically assisted ion beam etching. The air-GaAs interface is internally totally reflecting, and no coherent radiation is transmitted through the corner reflector. The corner reflector laser was compared with a conventional Fabry-Perot laser cleaved from the same wafer. An 11-percent reduction in threshold current and a reduction of the far-field angle from 4.4 deg to 0.7 deg was measured.

  17. In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies

    PubMed Central

    Daood, Umer; Swee Heng, Chan; Neo Chiew Lian, Jennifer; Fawzy, Amr S

    2015-01-01

    To modify two-step experimental etch-and-rinse dentin adhesive with different concentrations of riboflavin and to study its effect on the bond strength, degree of conversion, along with resin infiltration within the demineralized dentin substrate, an experimental adhesive-system was modified with different concentrations of riboflavin (m/m, 0, 1%, 3%, 5% and 10%). Dentin surfaces were etched with 37% phosphoric acid, bonded with respective adhesives, restored with restorative composite–resin, and sectioned into resin–dentin slabs and beams to be stored for 24 h or 9 months in artificial saliva. Micro-tensile bond testing was performed with scanning electron microscopy to analyse the failure of debonded beams. The degree of conversion was evaluated with Fourier transform infrared spectroscopy (FTIR) at different time points along with micro-Raman spectroscopy analysis. Data was analyzed with one-way and two-way analysis of variance followed by Tukey's for pair-wise comparison. Modification with 1% and 3% riboflavin increased the micro-tensile bond strength compared to the control at 24 h and 9-month storage with no significant differences in degree of conversion (P<0.05). The most predominant failure mode was the mixed fracture among all specimens except 10% riboflavin-modified adhesive specimens where cohesive failure was predominant. Raman analysis revealed that 1% and 3% riboflavin adhesives specimens showed relatively higher resin infiltration. The incorporation of riboflavin in the experimental two-step etch-and-rinse adhesive at 3% (m/m) improved the immediate bond strengths and bond durability after 9-month storage in artificial saliva without adversely affecting the degree of conversion of the adhesive monomers and resin infiltration. PMID:25257880

  18. In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies.

    PubMed

    Daood, Umer; Swee Heng, Chan; Neo Chiew Lian, Jennifer; Fawzy, Amr S

    2015-06-26

    To modify two-step experimental etch-and-rinse dentin adhesive with different concentrations of riboflavin and to study its effect on the bond strength, degree of conversion, along with resin infiltration within the demineralized dentin substrate, an experimental adhesive-system was modified with different concentrations of riboflavin (m/m, 0, 1%, 3%, 5% and 10%). Dentin surfaces were etched with 37% phosphoric acid, bonded with respective adhesives, restored with restorative composite-resin, and sectioned into resin-dentin slabs and beams to be stored for 24 h or 9 months in artificial saliva. Micro-tensile bond testing was performed with scanning electron microscopy to analyse the failure of debonded beams. The degree of conversion was evaluated with Fourier transform infrared spectroscopy (FTIR) at different time points along with micro-Raman spectroscopy analysis. Data was analyzed with one-way and two-way analysis of variance followed by Tukey's for pair-wise comparison. Modification with 1% and 3% riboflavin increased the micro-tensile bond strength compared to the control at 24 h and 9-month storage with no significant differences in degree of conversion (P<0.05). The most predominant failure mode was the mixed fracture among all specimens except 10% riboflavin-modified adhesive specimens where cohesive failure was predominant. Raman analysis revealed that 1% and 3% riboflavin adhesives specimens showed relatively higher resin infiltration. The incorporation of riboflavin in the experimental two-step etch-and-rinse adhesive at 3% (m/m) improved the immediate bond strengths and bond durability after 9-month storage in artificial saliva without adversely affecting the degree of conversion of the adhesive monomers and resin infiltration.

  19. Modifying molecule-surface scattering by ultrashort laser pulses

    SciTech Connect

    Khodorkovsky, Yuri; Averbukh, Ilya Sh.; Manson, J. R.

    2011-11-15

    In recent years it has become possible to align molecules in free space using ultrashort laser pulses. Here we explore two schemes for controlling molecule-surface scattering processes and which are based on laser-induced molecular alignment. In the first scheme, a single ultrashort nonresonant laser pulse is applied to a molecular beam hitting the surface. This pulse modifies the angular distribution of the incident molecules and causes the scattered molecules to rotate with a preferred sense of rotation (clockwise or counterclockwise). In the second scheme, two properly delayed laser pulses are applied to a molecular beam composed of two chemically close molecular species (isotopes, or nuclear-spin isomers). As the result of the double-pulse excitation, these species are selectively scattered to different angles after the collision with the surface. These effects may provide new means for the analysis and separation of molecular mixtures.

  20. Laser Doppler velocimetry using a modified computer mouse

    NASA Astrophysics Data System (ADS)

    Zaron, Edward D.

    2016-10-01

    A computer mouse has been modified for use as a low-cost laser Doppler interferometer and used to measure the two-component fluid velocity of a flowing soap film. The mouse sensor contains two vertical cavity surface emitting lasers, photodiodes, and signal processing hardware integrated into a single package, approximately 1 cm2 in size, and interfaces to a host computer via a standard USB port. Using the principle of self-mixing interferometry, whereby laser light re-enters the laser cavity after being scattered from a moving target, the Doppler shift and velocity of scatterers dispersed in the flow are measured. Observations of the boundary layer in a turbulent soap film channel flow demonstrate the capabilities of the sensor.

  1. Effects of texturization due to chemical etching and laser on the optical properties of multicrystalline silicon for applications in solar cells

    NASA Astrophysics Data System (ADS)

    Vera, D.; Mass, J.; Manotas, M.; Cabanzo, R.; Mejia, E.

    2016-02-01

    In this work we carried out the texturization of surfaces of multicrystalline silicon type-p in order to decrease the reflection of light on the surface, using the chemical etching method and then a treatment with laser. In the first method, it was immersed in solutions of HF:HNO3:H2O, HF:HNO3:CH3COOH, HF:HNO3:H3PO4, in the proportion 14:01:05, during 30 seconds, 1, 2 and 3 minutes. Subsequently with a laser (ND:YAG) grids were generated beginning with parallel lines separated 50μm. The samples were analyzed by means of diffuse spectroscopy (UV-VIS) and scanning electron micrograph (SEM) before and after the laser treatment. The lowest result of reflectance obtained by HF:HNO3:H2O during 30 seconds, was of 15.5%. However, after applying the treatment with laser the reflectance increased to 17.27%. On the other hand, the samples treated (30 seconds) with acetic acid and phosphoric acid as diluents gives as a result a decrease in the reflectance values after applying the laser treatment from 21.97% to 17.79% and from 27.73% to 20.03% respectively. The above indicates that in some cases it is possible to decrease the reflectance using jointly the method of chemical etching and then a laser treatment.

  2. Rapid 2D incoherent mirror fabrication by laser interference lithography and wet etching for III-V MQW solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Freundlich, Alex

    2016-03-01

    Optimization of non-planar antireflective coating and back- (or front-) surface texturing are widely studied as advanced light management approach to further reduce the reflection losses and increase the sunlight absorption path in solar cells. Rear reflectors have been developed from coherent mirrors to incoherent mirrors in order to further increase light path, which can significantly improve the efficiency and allow for much thinner devices. A Lambertian surface, which has the most random texture, can theoretically raise the light path to 4n2 times that of a smooth surface. It's a challenge however to fabricate ideal Lambertian texture, especially in a fast and low cost way. In this work, a method is developed to overcome this challenge that combines the use of laser interference lithography (LIL) and selective wet etching. This approach allows for a rapid (10 min) wafer scale (3 inch wafer) texture processing with sub-wavelength (nano)-scale control of the pattern and the pitch. The technique appears as being particularly attractive for the development of ultrathin III-V devices, or in overcoming the weak sub-bandgap absorption in devices incorporating quantum dots or quantum wells. The structure of the device is demonstrated, without affecting active layers.

  3. Topography-based surface tension gradients to facilitate water droplet movement on laser-etched copper substrates.

    PubMed

    Sommers, A D; Brest, T J; Eid, K F

    2013-09-24

    This paper describes a method for creating a topography-based gradient on a metallic surface to help mitigate problems associated with condensate retention. The gradient was designed to promote water droplet migration toward a specified region on the surface which would serve as the primary conduit for drainage using only the roughness of the surface to facilitate the movement of the droplets. In this work, parallel microchannels having a fixed land width but variable spacing were etched into copper substrates to create a surface tension gradient along the surface of the copper. The surfaces were fabricated using a 355 nm Nd:YVO4 laser system and then characterized using spray testing techniques and water droplet (2-10 μL) injection via microsyringe. The distances that individual droplets traveled on the gradient surface were also measured using a goniometer and CCD camera and were found to be between 0.5 and 1.5 mm for surfaces in a horizontal orientation. Droplet movement was spontaneous and did not require the use of chemical coatings. The theoretical design and construction of surface tension gradients were also explored in this work by calculating the minimum gradient needed for droplet movement on a horizontal surface using Wenzel's model of wetting. The results of this study suggest that microstructural patterning could be used to help reduce condensate retention on metallic fins such as those used in heat exchangers in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) applications. PMID:23971937

  4. Topography-based surface tension gradients to facilitate water droplet movement on laser-etched copper substrates.

    PubMed

    Sommers, A D; Brest, T J; Eid, K F

    2013-09-24

    This paper describes a method for creating a topography-based gradient on a metallic surface to help mitigate problems associated with condensate retention. The gradient was designed to promote water droplet migration toward a specified region on the surface which would serve as the primary conduit for drainage using only the roughness of the surface to facilitate the movement of the droplets. In this work, parallel microchannels having a fixed land width but variable spacing were etched into copper substrates to create a surface tension gradient along the surface of the copper. The surfaces were fabricated using a 355 nm Nd:YVO4 laser system and then characterized using spray testing techniques and water droplet (2-10 μL) injection via microsyringe. The distances that individual droplets traveled on the gradient surface were also measured using a goniometer and CCD camera and were found to be between 0.5 and 1.5 mm for surfaces in a horizontal orientation. Droplet movement was spontaneous and did not require the use of chemical coatings. The theoretical design and construction of surface tension gradients were also explored in this work by calculating the minimum gradient needed for droplet movement on a horizontal surface using Wenzel's model of wetting. The results of this study suggest that microstructural patterning could be used to help reduce condensate retention on metallic fins such as those used in heat exchangers in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) applications.

  5. Uniform nano-ripples on the sidewall of silicon carbide micro-hole fabricated by femtosecond laser irradiation and acid etching

    SciTech Connect

    Khuat, Vanthanh; Chen, Tao; Gao, Bo; Si, Jinhai Ma, Yuncan; Hou, Xun

    2014-06-16

    Uniform nano-ripples were observed on the sidewall of micro-holes in silicon carbide fabricated by 800-nm femtosecond laser and chemical selective etching. The morphology of the ripple was analyzed using scanning electronic microscopy. The formation mechanism of the micro-holes was attributed to the chemical reaction of the laser affected zone with mixed solution of hydrofluoric acid and nitric acid. The formation of nano-ripples on the sidewall of the holes could be attributed to the standing wave generated in z direction due to the interference between the incident wave and the reflected wave.

  6. Fabrication of HfO2 patterns by laser interference nanolithography and selective dry etching for III-V CMOS application

    PubMed Central

    2011-01-01

    Nanostructuring of ultrathin HfO2 films deposited on GaAs (001) substrates by high-resolution Lloyd's mirror laser interference nanolithography is described. Pattern transfer to the HfO2 film was carried out by reactive ion beam etching using CF4 and O2 plasmas. A combination of atomic force microscopy, high-resolution scanning electron microscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy microanalysis was used to characterise the various etching steps of the process and the resulting HfO2/GaAs pattern morphology, structure, and chemical composition. We show that the patterning process can be applied to fabricate uniform arrays of HfO2 mesa stripes with tapered sidewalls and linewidths of 100 nm. The exposed GaAs trenches were found to be residue-free and atomically smooth with a root-mean-square line roughness of 0.18 nm after plasma etching. PACS: Dielectric oxides 77.84.Bw, Nanoscale pattern formation 81.16.Rf, Plasma etching 52.77.Bn, Fabrication of III-V semiconductors 81.05.Ea PMID:21711946

  7. A novel approach to pseudopodia proteomics: excimer laser etching, two-dimensional difference gel electrophoresis, and confocal imaging

    PubMed Central

    Mimae, Takahiro; Ito, Akihiko; Hagiyama, Man; Nakanishi, Jun; Hosokawa, Yoichiroh; Okada, Morihito; Murakami, Yoshinori; Kondo, Tadashi

    2014-01-01

    Pseudopodia are actin-rich ventral cellular protrusions shown to facilitate the migration and metastasis of tumor cells. Here, we present a novel approach to perform pseudopodia proteomics. Tumor cells growing on porous membranes extend pseudopodia into the membrane pores. In our method, cell bodies are removed by horizontal ablation at the basal cell surface with the excimer laser while pseudopodia are left in the membrane pores. For protein expression profiling, whole cell and pseudopodia proteins are extracted with a lysis buffer, labeled with highly sensitive fluorescent dyes, and separated by two-dimensional gel electrophoresis. Proteins with unique expression patterns in pseudopodia are identified by mass spectrometry. The effects of the identified proteins on pseudopodia formation are evaluated by measuring the pseudopodia length in cancer cells with genetically modified expression of target proteins using confocal imaging. This protocol allows global identification of pseudopodia proteins and evaluation of their functional significance in pseudopodia formation within one month. PMID:25309719

  8. Effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of sand-blasted, large grit, acid-etched implants

    PubMed Central

    Lee, Ji-Hun; Kwon, Young-Hyuk; Herr, Yeek; Shin, Seung-Il

    2011-01-01

    Purpose The present study was performed to evaluate the effect of erbium-doped: yttrium, aluminium and garnet (Er:YAG) laser irradiation on sand-blasted, large grit, acid-etched (SLA) implant surface microstructure according to varying energy levels and application times of the laser. Methods The implant surface was irradiated by the Er:YAG laser under combined conditions of 100, 140, or 180 mJ/pulse and an application time of 1 minute, 1.5 minutes, or 2 minutes. Scanning electron microscopy (SEM) was used to examine the surface roughness of the specimens. Results All experimental conditions of Er:YAG laser irradiation, except the power setting of 100 mJ/pulse for 1 minute and 1.5 minutes, led to an alteration in the implant surface. SEM evaluation showed a decrease in the surface roughness of the implants. However, the difference was not statistically significant. Alterations of implant surfaces included meltdown and flattening. More extensive alterations were present with increasing laser energy and application time. Conclusions To ensure no damage to their surfaces, it is recommended that SLA implants be irradiated with an Er:YAG laser below 100 mJ/pulse and 1.5 minutes for detoxifying the implant surfaces. PMID:21811689

  9. Phantom Study of a New Laser-Etched Needle for Improving Visibility During Ultrasonography-Guided Lumbar Medial Branch Access With Novices

    PubMed Central

    2016-01-01

    Objective To compare the visibility and procedural parameters between a standard spinal needle and a new laser-etched needle (LEN) in real-time ultrasonography guided lumbar medial branch access in a phantom of the lumbosacral spine. Methods We conducted a prospective single-blinded observational study at a rehabilitation medicine center. A new model of LEN was manufactured with a standard 22-gauge spinal needle and a laser etching machine. Thirty-two inexperienced polyclinic medical students performed ultrasonography-guided lumbar medial branch access using both a standard spinal needle and a LEN with scanning protocol. The outcomes included needle visibility score, needle elapsed time, first-pass success rate, and number of needle sticks. Results The LEN received significantly better visibility scores and shorter needle elapsed time compared to the standard spinal needle. First-pass success rate and the number of needle sticks were not significantly different between needles. Conclusion A new LEN is expected to offer better visibility and enable inexperienced users to perform an ultrasonography-guided lumbar medial branch block more quickly. However, further study of variables may be necessary for clinical application. PMID:27606263

  10. Phantom Study of a New Laser-Etched Needle for Improving Visibility During Ultrasonography-Guided Lumbar Medial Branch Access With Novices

    PubMed Central

    2016-01-01

    Objective To compare the visibility and procedural parameters between a standard spinal needle and a new laser-etched needle (LEN) in real-time ultrasonography guided lumbar medial branch access in a phantom of the lumbosacral spine. Methods We conducted a prospective single-blinded observational study at a rehabilitation medicine center. A new model of LEN was manufactured with a standard 22-gauge spinal needle and a laser etching machine. Thirty-two inexperienced polyclinic medical students performed ultrasonography-guided lumbar medial branch access using both a standard spinal needle and a LEN with scanning protocol. The outcomes included needle visibility score, needle elapsed time, first-pass success rate, and number of needle sticks. Results The LEN received significantly better visibility scores and shorter needle elapsed time compared to the standard spinal needle. First-pass success rate and the number of needle sticks were not significantly different between needles. Conclusion A new LEN is expected to offer better visibility and enable inexperienced users to perform an ultrasonography-guided lumbar medial branch block more quickly. However, further study of variables may be necessary for clinical application.

  11. Thermal poling induced second-order nonlinearity in femtosecond- laser-modified fused silica

    SciTech Connect

    An Honglin; Fleming, Simon; McMillen, Benjamin W.; Chen, Kevin P.; Snoke, David

    2008-08-11

    Thermal poling was utilized to induce second-order nonlinearity in regions of fused silica modified by 771 nm femtosecond laser pulses. With second-harmonic microscopy, it was found that the nonlinearity in the laser-modified region was much lower than that in nonmodified regions. This is attributed to a more rigid glass network after irradiation by the femtosecond laser pulses and/or lack of mobile alkali ions. Measurement of the distribution of chemical elements in the femtosecond-laser-modified region in a soda lime glass revealed a lower level of sodium ions.

  12. Surface characterizations of laser modified biomedical grade NiTi shape memory alloys.

    PubMed

    Pequegnat, A; Michael, A; Wang, J; Lian, K; Zhou, Y; Khan, M I

    2015-05-01

    Laser processing of shape memory alloys (SMAs) promises to enable the multifunctional capabilities needed for medical device applications. Prior to clinical implementation, the surface characterisation of laser processed SMA is essential in order to understand any adverse biological interaction that may occur. The current study systematically investigated two Ni-49.8 at.% Ti SMA laser processed surface finishes, including as-processed and polished, while comparing them to a chemically etched parent material. Spectrographic characterisation of the surface included; X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), and Raman spectroscopy. Corrosion performance and Ni ion release were also assessed using potentiodynamic cyclic polarization testing and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. Results showed that surface defects, including increased roughness, crystallinity and presence of volatile oxide species, overshadowed any possible performance improvements from an increased Ti/Ni ratio or inclusion dissolution imparted by laser processing. However, post-laser process mechanical polishing was shown to remove these defects and restore the performance, making it comparable to chemically etched NiTi material.

  13. Surface characterizations of laser modified biomedical grade NiTi shape memory alloys.

    PubMed

    Pequegnat, A; Michael, A; Wang, J; Lian, K; Zhou, Y; Khan, M I

    2015-05-01

    Laser processing of shape memory alloys (SMAs) promises to enable the multifunctional capabilities needed for medical device applications. Prior to clinical implementation, the surface characterisation of laser processed SMA is essential in order to understand any adverse biological interaction that may occur. The current study systematically investigated two Ni-49.8 at.% Ti SMA laser processed surface finishes, including as-processed and polished, while comparing them to a chemically etched parent material. Spectrographic characterisation of the surface included; X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), and Raman spectroscopy. Corrosion performance and Ni ion release were also assessed using potentiodynamic cyclic polarization testing and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. Results showed that surface defects, including increased roughness, crystallinity and presence of volatile oxide species, overshadowed any possible performance improvements from an increased Ti/Ni ratio or inclusion dissolution imparted by laser processing. However, post-laser process mechanical polishing was shown to remove these defects and restore the performance, making it comparable to chemically etched NiTi material. PMID:25746282

  14. The Effect of Er,Cr:YSGG Laser Irradiation on the Push-Out Bond Strength of RealSeal Self-Etch Sealer

    PubMed Central

    Ehsani, Sara; Etemadi, Ardavan; Ghorbanzadeh, Abdollah; Sabet, Yazdan; Nosrat, Ali

    2013-01-01

    Abstract Objective: The aim of this study was to evaluate the effect of an erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser on the push-out bond strength of RealSeal Self-Etch (SE) sealer. Background data: Various methods are used for smear layer removal in endodontics, such as the application of Er,Cr:YSGG lasers. This laser system may influence the bond strength of resin-based sealers. Methods: Sixty single-rooted extracted teeth were selected. After root canal preparation, samples were divided into two experimental groups and one positive control group (n=20 per group). In group 1, the smear layer was removed by irrigation with ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite (NaOCl). In group 2, the smear layer was removed using a 2.78 μm Er,Cr:YSGG laser with radial firing tips (RFT3) (parameters: 1.5W, 140 μs, 20 Hz, and 15% water to 15% air ratio), moving at 2 mm/sec in an apico-coronal direction. Group 3 served as a positive control group. Five specimens from each group were selected for scanning electron microscope (SEM) observation. The remaining 45 roots were obturated with RealSeal SE/Resilon and subjected to push-out tests. Data were analyzed using one way analysis of variance (ANOVA) and Tamhane's test. Results: The results showed no significant difference between push-out bond strength of root canal fillings in the EDTA+NaOCl group and the 1.5W laser group (p>0.05). The positive control group showed the lowest push-out bond strength. Conclusions: The results of the present study indicate that the application of an Er,Cr:YSGG laser with radial firing tips did not adversely affect the push-out bond strength of RealSeal SE sealer to dentin. PMID:24206400

  15. Scanning laser microscopy of reactive ion etching induced n-type conversion in vacancy-doped p-type HgCdTe

    NASA Astrophysics Data System (ADS)

    Siliquini, J. F.; Dell, J. M.; Musca, C. A.; Faraone, L.

    1997-06-01

    Laser-beam-induced-current measurements have been used to characterize the extent of reactive ion etching (RIE) induced type conversion in vacancy-doped p-type Hg0.69Cdoverflow="scroll">0.31Te. The technique allows the spatial extent of RIE induced type conversion to be determined and the donor level concentration profile within the n-type converted region to be estimated. For the RIE processing conditions used (410 mT, CH4/Hoverflow="scroll">2, 0.4 W/cm2) and an etch depth of 0.2 μm, n-type conversion extending ˜1.5 μm into the semiconductor was observed. The simple and powerful approach developed in this work is of general application to the study of semiconductor junctions, and can be applied to a range of processing techniques used in the formation of p-n junctions in HgCdTe (e.g., epitaxially grown heterojunctions, ion implantation, ion milling and Hg in-diffusion).

  16. Direct photo-etching of poly(methyl methacrylate) using focused extreme ultraviolet radiation from a table-top laser-induced plasma source

    SciTech Connect

    Barkusky, Frank; Peth, Christian; Bayer, Armin; Mann, Klaus

    2007-06-15

    In order to perform material interaction studies with intense extreme ultraviolet (EUV) radiation, a Schwarzschild mirror objective coated with Mo/Si multilayers was adapted to a compact laser-based EUV plasma source (pulse energy 3 mJ at {lambda}=13.5 nm, plasma diameter {approx}300 {mu}m). By 10x demagnified imaging of the plasma a pulse energy density of {approx}75 mJ/cm{sup 2} at a pulse length of 6 ns can be achieved in the image plane of the objective. As demonstrated for poly(methyl methacrylate) (PMMA), photoetching of polymer surfaces is possible at this EUV fluence level. This paper presents first results, including a systematic determination of PMMA etching rates under EUV irradiation. Furthermore, the contribution of out-of-band radiation to the surface etching of PMMA was investigated by conducting a diffraction experiment for spectral discrimination from higher wavelength radiation. Imaging of a pinhole positioned behind the plasma accomplished the generation of an EUV spot of 1 {mu}m diameter, which was employed for direct writing of surface structures in PMMA.

  17. High yield fabrication of low threshold single-mode GaAs/AlGaAs semiconductor ring lasers using metallic etch masks.

    PubMed

    Dutta, Neilanjan; Murakowski, Janusz A; Shi, Shouyuan; Prather, Dennis W

    2010-05-24

    We demonstrate a novel high yield fabrication process for single-mode ridge-waveguide GaAs/AlGaAs ring lasers with significantly lower threshold currents than previously reported for similar devices. In this fabrication process, the ridge waveguide structure is patterned using a metallic etch mask, which survives ensuing fabrication steps to form a continuous metallic cover over the entire resonator structure. This metallic cover improves the uniformity of electrical contact between the resonator structure and the metallic biasing layer deposited at the conclusion of the fabrication process. This leads to optimum electrical pumping of the fabricated devices. This fabrication process also allows for the passivation of the ridge-waveguide device sidewalls and separation of the metallic biasing layer from the optical mode.

  18. 2-μm single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography

    NASA Astrophysics Data System (ADS)

    Cheng-Ao, Yang; Yu, Zhang; Yong-Ping, Liao; Jun-Liang, Xing; Si-Hang, Wei; Li-Chun, Zhang; Ying-Qiang, Xu; Hai-Qiao, Ni; Zhi-Chuan, Niu

    2016-02-01

    We report a type-I GaSb-based laterally coupled distributed-feedback (LC-DFB) laser with shallow-etched gratings operating a continuous wave at room temperature without re-growth process. Second-order Bragg gratings are fabricated alongside the ridge waveguide by interference lithography. Index-coupled LC-DFB laser with a cavity of 1500 μm achieves single longitudinal mode continuous-wave operation at 20 °C with side mode suppression ratio (SMSR) as high as 24 dB. The maximum single mode continuous-wave output power is about 10 mW at room temperature (uncoated facet). A low threshold current density of 230 A/cm2 is achieved with differential quantum efficiency estimated to be 93 mW/A. The laser shows a good wavelength stability against drive current and working temperature. Project supported by the National Key Basic Research Program of China (Grant Nos. 2014CB643903 and 2013CB932904), the National Special Funds for the Development of Major Research Equipment and Instruments, China (Grant No. 2012YQ140005), the National Natural Science Foundation of China (Grant Nos. 61435012, 61274013, 61306088, and 61290303), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB01010200).

  19. Examination of femtosecond laser matter interaction in multipulse regime for surface nanopatterning of vitreous substrates.

    PubMed

    Varkentina, Nadezda; Cardinal, Thierry; Moroté, Fabien; Mounaix, Patrick; André, Pascal; Deshayes, Yannick; Canioni, Lionel

    2013-12-01

    The paper presents our results on laser micro- and nanostructuring of sodium aluminosilicate glass for the permanent storage purposes and photonics applications. Surface structuring is realized by fs laser irradiation followed by the subsequent etching in a potassium hydroxide (10M@80 °C) for 1 to 10 minutes. As the energy deposited is lower than the damage and/or ablation threshold, the chemical etching permits to produce small craters in the laser modified region. The laser parameters dependent interaction regimes are revealed by microscopic analysis (SEM and AFM). The influence of etching time on craters formation is investigated under different incident energies, number of pulses and polarization states. PMID:24514460

  20. Rapid analysis of genetically modified organisms by in-house developed capillary electrophoresis chip and laser-induced fluorescence system.

    PubMed

    Obeid, Pierre J; Christopoulos, Theodore K; Ioannou, Penelope C

    2004-03-01

    A microfabricated, inexpensive, reusable glass capillary electrophoresis chip and a laser-induced fluorescence system were developed in-house for the rapid DNA-based analysis of genetically modified organisms (GMOs). The 35S promoter sequence of cauliflower mosaic virus and the terminator of the nopaline synthase (NOS) gene from Agrobacterium tumefaciens were both detected since they are present in most genetically modified organisms. The detection of genetically modified soybean in the presence of unaltered soybean was chosen as a model. Lectin, a plant-specific gene, was also detected for confirmation of the integrity of extracted DNA. The chip was composed of two glass plates, each 25 x 76 mm, thermally bonded together to form a closed structure. Photomasks with cross-topology were prepared rapidly by using polymeric material instead of chrome plates. The widths of the injection and separation channels were 30 and 70 microm, respectively, the effective separation length 4.5 cm. The glass slide was etched to a depth of 30 microm for both the injection and separation channel. The cost of the chip was less than 1 $ and required 2 days for photomask preparation and microfabrication. The separation and detection of polymerase chain reaction-amplified NOS, 35S, and lectin sequences (180, 195, and 181 bp, respectively) was completed in less than 60 s. As low as 0.1% GMO content was detectable by the proposed system after 35 and 40 amplification cycles for 35S and NOS, respectively, using 25 ng of extracted DNA as starting material. This corresponds to only 20 genome copies of genetically modified soybean.

  1. Laser-modified electron scattering from a slowly ionising atom

    NASA Technical Reports Server (NTRS)

    Fiordilino, E.; Mittleman, M. H.

    1983-01-01

    When an electron scatters from an atom in the presence of a laser field which is resonant with an atomic transition, off-shell effects enter into the cross section. These only become significant at higher laser intensities where the atom may also be ionised by the laser. Cross-sections are obtained for electron-atom scattering in which these off-shell effects appear and in which the slow ionisation of the atom by the laser is included. Experiments are suggested in which simplifications can occur and which still retain these 'exotic' effects.

  2. Etching of glass microchips with supercritical water.

    PubMed

    Karásek, Pavel; Grym, Jakub; Roth, Michal; Planeta, Josef; Foret, František

    2015-01-01

    A novel method of etching channels in glass microchips with the most tunable solvent, water, was tested as an alternative to common hydrogen fluoride-containing etchants. The etching properties of water strongly depend on temperature and pressure, especially in the vicinity of the water critical point. The chips were etched at the subcritical, supercritical and critical temperature of water, and the resulting channel shape, width, depth and surface morphology were studied by scanning electron microscopy and 3D laser profilometry. Channels etched with the hot water were compared with the chips etched with standard hydrogen fluoride-containing solution. Depending on the water pressure and temperature, the silicate dissolved from the glass could be re-deposited on the channel surface. This interesting phenomenon is described together with the conditions necessary for its utilization. The results illustrate the versatility of pure water as a glass etching and surface morphing agent.

  3. An investigation of phase transformation and crystallinity in laser surface modified H13 steel

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-03-01

    This paper presents a laser surface modification process of AISI H13 tool steel using 0.09, 0.2 and 0.4 mm size of laser spot with an aim to increase hardness properties. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). X-ray diffraction analysis (XRD) was conducted to measure crystallinity of the laser-modified surface. X-ray diffraction patterns of the samples were recorded using a Bruker D8 XRD system with Cu K α ( λ=1.5405 Å) radiation. The diffraction patterns were recorded in the 2 θ range of 20 to 80°. The hardness properties were tested at 981 mN force. The laser-modified surface exhibited reduced crystallinity compared to the un-processed samples. The presence of martensitic phase was detected in the samples processed using 0.4 mm spot size. Though there was reduced crystallinity, a high hardness was measured in the laser-modified surface. Hardness was increased more than 2.5 times compared to the as-received samples. These findings reveal the phase source of the hardening mechanism and grain composition in the laser-modified surface.

  4. Correlation between surface chemistry and ion energy dependence of the etch yield in multicomponent oxides etching

    SciTech Connect

    Berube, P.-M.; Poirier, J.-S.; Margot, J.; Stafford, L.; Ndione, P. F.; Chaker, M.; Morandotti, R.

    2009-09-15

    The influence of surface chemistry in plasma etching of multicomponent oxides was investigated through measurements of the ion energy dependence of the etch yield. Using pulsed-laser-deposited Ca{sub x}Ba{sub (1-x)}Nb{sub 2}O{sub 6} (CBN) and SrTiO{sub 3} thin films as examples, it was found that the etching energy threshold shifts toward values larger or smaller than the sputtering threshold depending on whether or not ion-assisted chemical etching is the dominant etching pathway and whether surface chemistry is enhancing or inhibiting desorption of the film atoms. In the case of CBN films etched in an inductively coupled Cl{sub 2} plasma, it is found that the chlorine uptake is inhibiting the etching reaction, with the desorption of nonvolatile NbCl{sub 2} and BaCl{sub 2} compounds being the rate-limiting step.

  5. Dry etching method for compound semiconductors

    DOEpatents

    Shul, Randy J.; Constantine, Christopher

    1997-01-01

    A dry etching method. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators.

  6. Dry etching method for compound semiconductors

    DOEpatents

    Shul, R.J.; Constantine, C.

    1997-04-29

    A dry etching method is disclosed. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators. 1 fig.

  7. Morphological Changes of Human Dentin after Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) and Carbon Dioxide (CO2) Laser Irradiation and Acid-etch Technique: An Scanning Electron Microscopic (SEM) Evaluation

    PubMed Central

    Shahabi, Sima; Chiniforush, Nasim; Juybanpoor, Nasrin

    2013-01-01

    Introduction: The aim of this study was to investigate the morphological changes of human dentin after Erbium-Doped Yttrium Aluminum Garnet (Er:YAG), Carbon Dioxide(CO2) laser-irradiation and acid-etching by means of scanning electron microscopic (SEM) Methods: 9 extracted human third molars were used in this study. The teeth were divided in three groups: first group, CO2 laser with power of 1.5 w and frequency of 80 Hz; second group, Er:YAG laser with output power of 1.5 W frequency of 10 Hz, very short pulse with water and air spray was applied; and third group, samples were prepared by acid-etching 37% for 15 sec and rinsed with air-water spray for 20 sec. Then, the samples were prepared for SEM examination. Results: Melting and cracks can be observed in CO2 laser but in Er:YAG laser cleanedablated surfaces and exposed dentinal tubules, without smear layer was seen. Conclusion: It can be concluded that Er:YAG laser can be an alternative technique for surface treatment and can be considered as safe as the conventional methods. But CO2 laser has some thermal side effects which make this device unsuitable for this purpose. PMID:25606306

  8. Crystallographic and morphological textures in laser surface modified alumina ceramic

    NASA Astrophysics Data System (ADS)

    Harimkar, Sandip P.; Dahotre, Narendra B.

    2006-07-01

    Laser surface modification is an advanced technique for improving the surface performance of alumina ceramics in refractory and abrasive machining applications. Surface performance is expected to be greatly influenced by the crystallographic and morphological textures of surface grains generated during rapid solidification associated with laser processing. In this study, an investigation of the evolution of crystallographic and morphological textures during laser surface modifications of alumina ceramic was carried out using a 4kW Nd:YAG laser with fluences in the range of 458-726J/cm2. In these regimes of laser surface processing, the formation of equilibrium α-alumina was found to be assisted by catalytic sites provided by the substrate. Microstructure evolution was explored in terms of the development of crystallographic and morphological (size and shape) textures of surface grains as a function of laser processing parameters. The interdependence of crystallographic and morphological textures of the surface grains is discussed within the framework of faceted growth model suggesting that the formation of crystal shapes is governed by the relative velocities of certain crystallographic facets. Also, the effect of thermal aspects of laser processing on the morphology of the surface grains is discussed from the viewpoint of existing solidification theories.

  9. Metal etching composition

    NASA Technical Reports Server (NTRS)

    Otousa, Joseph E. (Inventor); Thomas, Clark S. (Inventor); Foster, Robert E. (Inventor)

    1991-01-01

    The present invention is directed to a chemical etching composition for etching metals or metallic alloys. The composition includes a solution of hydrochloric acid, phosphoric acid, ethylene glycol, and an oxidizing agent. The etching composition is particularly useful for etching metal surfaces in preparation for subsequent fluorescent penetrant inspection.

  10. Dry etching of metallization

    NASA Technical Reports Server (NTRS)

    Bollinger, D.

    1983-01-01

    The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.

  11. Chemical etching of nitinol stents.

    PubMed

    Katona, Bálint; Bognár, Eszter; Berta, Balázs; Nagy, Péter; Hirschberg, Kristóf

    2013-01-01

    At present the main cause of death originates from cardiovascular diseases. Primarily the most frequent cause is vessel closing thus resulting in tissue damage. The stent can help to avoid this. It expands the narrowed vessel section and allows free blood flow. The good surface quality of stents is important. It also must have adequate mechanical characteristics or else it can be damaged which can easily lead to the fracture of the implant. Thus, we have to consider the importance of the surface treatment of these implants. In our experiments the appropriate design was cut from a 1.041 mm inner diameter and 0.100 mm wall thickness nitinol tube by using Nd:YAG laser device. Then, the stent was subjected to chemical etching. By doing so, the burr created during the laser cutting process can be removed and the surface quality refined. In our research, we changed the time of chemical etching and monitored the effects of this parameter. The differently etched stents were subjected to microscopic analysis, mass measurement and in vivo environment tests. The etching times that gave suitable surface and mechanical features were identified.

  12. Using femtosecond lasers to modify sizes of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    da Silva Cordeiro, Thiago; Almeida de Matos, Ricardo; Silva, Flávia Rodrigues de Oliveira; Vieira, Nilson D.; Courrol, Lilia C.; Samad, Ricardo E.

    2016-04-01

    Metallic nanoparticles are important on several scientific, medical and industrial areas. The control of nanoparticles characteristics has fundamental importance to increase the efficiency on the processes and applications in which they are employed. The metallic nanoparticles present specific surface plasmon resonances (SPR). These resonances are related with the collective oscillations of the electrons presents on the metallic nanoparticle. The SPR is determined by the potential defined by the nanoparticle size and geometry. There are several methods of producing gold nanoparticles, including the use of toxic chemical polymers. We already reported the use of natural polymers, as for example, the agar-agar, to produce metallic nanoparticles under xenon lamp irradiation. This technique is characterized as a "green" synthesis because the natural polymers are inoffensive to the environment. We report a technique to produce metallic nanoparticles and change its geometrical and dimensional characteristics using a femtosecond laser. The 1 ml initial solution was irradiate using a laser beam with 380 mW, 1 kHz and 40 nm of bandwidth centered at 800 nm. The setup uses an Acousto-optic modulator, Dazzler, to change the pulses spectral profiles by introduction of several orders of phase, resulting in different temporal energy distributions. The use of Dazzler has the objective of change the gold nanoparticles average size by the changing of temporal energy distributions of the laser pulses incident in the sample. After the laser irradiation, the gold nanoparticles average diameter were less than 15 nm.

  13. Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.

    SciTech Connect

    Xu, Z.

    2012-04-03

    Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

  14. Modified Laser and Thermos cell calculations on microcomputers

    SciTech Connect

    Shapiro, A.; Huria, H.C.

    1987-01-01

    In the course of designing and operating nuclear reactors, many fuel pin cell calculations are required to obtain homogenized cell cross sections as a function of burnup. In the interest of convenience and cost, it would be very desirable to be able to make such calculations on microcomputers. In addition, such a microcomputer code would be very helpful for educational course work in reactor computations. To establish the feasibility of making detailed cell calculations on a microcomputer, a mainframe cell code was compiled and run on a microcomputer. The computer code Laser, originally written in Fortran IV for the IBM-7090 class of mainframe computers, is a cylindrical, one-dimensional, multigroup lattice cell program that includes burnup. It is based on the MUFT code for epithermal and fast group calculations, and Thermos for the thermal calculations. There are 50 fast and epithermal groups and 35 thermal groups. Resonances are calculated assuming a homogeneous system and then corrected for self-shielding, Dancoff, and Doppler by self-shielding factors. The Laser code was converted to run on a microcomputer. In addition, the Thermos portion of Laser was extracted and compiled separately to have available a stand alone thermal code.

  15. Modeling Wet Chemical Etching of Surface Flaws on Fused Silica

    SciTech Connect

    Feit, M D; Suratwala, T I; Wong, L L; Steele, W A; Miller, P E; Bude, J D

    2009-10-28

    Fluoride-based wet chemical etching of fused silica optical components is useful to open up surface fractures for diagnostic purposes, to create surface topology, and as a possible mitigation technique to remove damaged material. To optimize the usefulness of etching , it is important to understand how the morphology of etched features changes as a function of the amount of material removed. In this study, we present two geometric etch models that describe the surface topology evolution as a function of the amount etched. The first model, referred to as the finite-difference etch model, represents the surface as an array of points in space where at each time-step the points move normal to the local surface. The second model, referred to as the surface area-volume model, more globally describes the surface evolution relating the volume of material removed to the exposed surface area. These etch models predict growth and coalescence of surface fractures such as those observed on scratches and ground surfaces. For typical surface fractures, simulations show that the transverse growth of the cracks at long etch times scales with the square root of etch time or the net material removed in agreement with experiment. The finite-difference etch model has also been applied to more complex structures such as the etching of a CO{sub 2} laser-mitigated laser damage site. The results indicate that etching has little effect on the initial morphology of this site implying little change in downstream scatter and modulation characteristics upon exposure to subsequent high fluence laser light. In the second part of the study, the geometric etch model is expanded to include fluid dynamics and mass transport. This later model serves as a foundation for understanding related processes such as the possibility of redeposition of etch reaction products during the etching, rinsing or drying processes.

  16. Performance of a nitrogen laser with a modified electrode configuration and gas flow arrangement

    NASA Astrophysics Data System (ADS)

    Itagi, V. V.; Pawar, B. H.; Itagi, S.

    1980-10-01

    A Blumlein discharge N2 laser with modified electrode structure and gas flow arrangement is described. The compact nitrogen laser has a brass anode and hacksaw blade cathode, with the nitrogen flow across the electrodes and the Blumlein line formed by copper and aluminum sheets, with polyester as the dielectric. Output power is measured as a function of pressure, voltage and flow rate, and the trend of the power output towards saturation could be due to a nonlinear dependence of the excitation cross section on the electron temperature, which depends on the charging voltage. The laser can pump some dyes to amplified spontaneous emission and can trigger spark gaps.

  17. Feasibility of atomic layer etching of polymer material based on sequential O{sub 2} exposure and Ar low-pressure plasma-etching

    SciTech Connect

    Vogli, Evelina; Metzler, Dominik; Oehrlein, Gottlieb S.

    2013-06-24

    We describe controlled, self-limited etching of a polystyrene polymer using a composite etching cycle consisting of sequential deposition of a thin reactive layer from precursors produced from a polymer-coated electrode within the etching chamber, modification using O{sub 2} exposure, and subsequent low-pressure Ar plasma etching, which removes the oxygen-modified deposited reactive layer along with Almost-Equal-To 0.1 nm unmodified polymer. Deposition prevents net etching of the unmodified polymer during the etching step and enables self-limited etch rates of 0.1 nm/cycle.

  18. On the modified active region design of interband cascade lasers

    SciTech Connect

    Motyka, M.; Ryczko, K.; Dyksik, M.; Sęk, G.; Misiewicz, J.; Weih, R.; Dallner, M.; Kamp, M.; Höfling, S.

    2015-02-28

    Type II InAs/GaInSb quantum wells (QWs) grown on GaSb or InAs substrates and designed to be integrated in the active region of interband cascade lasers (ICLs) emitting in the mid infrared have been investigated. Optical spectroscopy, combined with band structure calculations, has been used to probe their electronic properties. A design with multiple InAs QWs has been compared with the more common double W-shaped QW and it has been demonstrated that it allows red shifting the emission wavelength and enhancing the transition oscillator strength. This can be beneficial for the improvements of the ICLs performances, especially when considering their long-wavelength operation.

  19. Thermal Conductivity Based on Modified Laser Flash Measurement

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2005-01-01

    The laser flash method is a standard method for thermal diffusivity measurement. It employs single-pulse heating of one side of a thin specimen and measures the temperature response of the other side. The thermal diffusivity of the specimen can be obtained based on a one-dimensional transient heat transfer analysis. This paper reports the development of a theory that includes a transparent reference layer with known thermal property attached to the back of sample. With the inclusion of heat conduction from the sample to the reference layer in the theoretical analysis, the thermal conductivity and thermal diffusivity of sample can be extracted from the temperature response data. Furthermore, a procedure is established to select two points from the data to calculate these properties. The uncertainty analysis indicates that this method can be used with acceptable levels of uncertainty.

  20. Laser-modified charge-transfer processes in He2++H collisions

    NASA Astrophysics Data System (ADS)

    Liu, C. L.; He, B.; Zou, S. Y.; Wang, J. G.

    2016-10-01

    Laser-modified electron capture processes are studied for the He2++H collision system in the low projectile energy region by solving the time-dependent Schrödinger equation. An obvious enhancement of the total and dominant state-selective charge-transfer cross sections are observed with respect to laser-free and weaker laser cases for low projectile energy. The influence of the laser pulse phase upon the cross sections is also studied and the reduction of the cross section is observed at some pulse phases with the increasing of the projectile energy. The time evolution for the dynamics of the collision system is analyzed in order to explore the dependence of the cross sections upon the pulse phase.

  1. Laser-Modified Black Titanium Oxide Nanospheres and Their Photocatalytic Activities under Visible Light.

    PubMed

    Chen, Xing; Zhao, Dongxu; Liu, Kewei; Wang, Chunrui; Liu, Lei; Li, Binghui; Zhang, Zhenzhong; Shen, Dezhen

    2015-07-29

    A facile pulse laser ablation approach for preparing black titanium oxide nanospheres, which could be used as photocatalysts under visible light, is proposed. The black titanium oxide nanospheres are prepared by pulsed-laser irradiation of pure titanium oxide in suspended aqueous solution. The crystalline phases, morphology, and optical properties of the obtained nanospheres are characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), and UV-vis-NIR diffuse reflectance spectroscopy. It is shown that high-energy laser ablation of titanium oxide suspended solution benefited the formation of Ti(3+) species and surface disorder on the surface of the titanium oxide nanospheres. The laser-modified black titanium oxide nanospheres could absorb the full spectrum of visible light, thus exhibiting good photocatalytic performance under visible light.

  2. Corrosion resistance of the AISI 304, 316 and 321 stainless steel surfaces modified by laser

    NASA Astrophysics Data System (ADS)

    Szubzda, B.; Antończak, A.; Kozioł, P.; Łazarek, Ł.; Stępak, B.; Łęcka, K.; Szmaja, A.; Ozimek, M.

    2016-02-01

    The article presents the analysis results of the influence of laser fluence on physical and chemical structure and corrosion resistance of stainless steel surfaces modified by irradiating with nanosecond-pulsed laser. The study was carried out for AISI 304, AISI 316 and AISI 321 substrates using Yb:glass fiber laser. All measurements were made for samples irradiated in a broad range of accumulated fluence (10÷400 J/cm2). The electrochemical composition (by EDX) and surface morphology (by SEM) of the prepared surfaces were carried out. Finally, corrosion resistance was analyzed by a potentiodynamic electrochemical test. The obtained results showed very high corrosion resistance for samples made by fluency of values lower than 100 J/cm2. In this case, higher values of corrosion potentials and breakdown potentials were observed. A correlation between corrosion phenomena, the range of laser power (fluence) and the results of chemical and structural tests were also found.

  3. Alkaline etch system qualification

    SciTech Connect

    Goldammer, S.E.; Pemberton, S.E.; Tucker, D.R.

    1997-04-01

    Based on the data from this qualification activity, the Atotech etch system, even with minimum characterization, was capable of etching production printed circuit products as good as those from the Chemcut system. Further characterization of the Atotech system will improve its etching capability. In addition to the improved etch quality expected from further characterization, the Atotech etch system has additional features that help reduce waste and provide for better consistency in the etching process. The programmable logic controller and computer will allow operators to operate the system manually or from pre-established recipes. The evidence and capabilities of the Atotech system made it as good as or better than the Chemcut system for etching WR products. The Printed Wiring Board Engineering Department recommended that the Atotech system be released for production. In December 1995, the Atotech system was formerly qualified for production.

  4. Osteoblast cell response to a CO 2 laser modified polymeric material

    NASA Astrophysics Data System (ADS)

    Waugh, D. G.; Lawrence, J.; Brown, E. M.

    2012-02-01

    Lasers are an efficient technology, which can be applied for the surface treatment of polymeric biomaterials to enhance insufficient surface properties. That is, the surface chemistry and topography of biomaterials can be modulated to increase the biofunctionality of that material. By employing CO 2 laser patterning and whole area processing of nylon 6,6 this paper details how the surface properties were significantly modified. Samples, which had undergone whole area processing, followed the current theory in which the advancing contact angle, θ, with water decreased and the polar component, γp, increased upon an increase in surface roughness. For the patterned samples it was observed that θ increased and γP decreased. This did not follow the current theory and can be explained by a mixed-state wetting regime. By seeding osteoblast cells onto the samples for 24 h and 4 days the laser surface treatment gave rise to modulated cell response. For the laser whole area processing, θ and γP correlated with the observed cell count and cover density. Owed to the wetting regime, the patterned samples did not give rise to any correlative trend. As a result, CO 2 laser whole area processing is more likely to allow one to predict biofunctionality prior to cell seeding. Moreover, for all samples, cell differentiation was evidenced. On account of this and the modulation in cell response, it has been shown that laser surface treatment lends itself to changing the biofunctional properties of nylon 6,6.

  5. Dentin bond strength after ablation using a CO2 laser operating at high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Hedayatollahnajafi, Saba; Staninec, Michal; Watanabe, Larry; Lee, Chulsung; Fried, Daniel

    2009-02-01

    Pulsed CO2 lasers show great promise for the rapid and efficient ablation of dental hard tissues. Our objective was to demonstrate that CO2 lasers operated at high repetition rates can be used for the rapid removal of dentin without excessive thermal damage and without compromising adhesion to restorative materials. Human dentin samples (3x3mm2) were rapidly ablated with a pulsed CO2 laser operating at a wavelength of 9.3-µm, pulse repetition rate of 300-Hz and an irradiation intensity of 18-J/cm2. The bond strength to composite was determined by the modified single plane shear test. There were 8 test groups each containing 10 blocks: negative control (non-irradiated non-etched), positive control (non-irradiated acid-etched), and six laser treated groups (three etched and three non-etched sets). The first and second etched and non-etched sets were ablated at a speed of 25 mm/sec and 50 mm/sec with water, respectively. The third set was also ablated at 50 mm/sec without application of water during laser irradiation. Minimal thermal damage was observed on the dentin surfaces for which water cooling was applied. Bond strengths exceeded 20 MPa for laser treated surfaces that were acid-etched after ablation (25-mm/sec: 29.9-MPa, 50-mm/sec: 21.3-MPa). The water-cooled etched laser groups all produced significantly stronger bonds than the negative control (p<0.001) and a lower bond strength than the positive control (p<0.05). These measurements demonstrate that dentin surfaces can be rapidly ablated by a CO2 lasers with minimal peripheral thermal damage. Additional studies are needed to determine if a lower bond strength than the acid-etched control samples is clinically significant where durability of these bonded restoration supersedes high bond strength.

  6. Alternative process for thin layer etching: Application to nitride spacer etching stopping on silicon germanium

    SciTech Connect

    Posseme, N. Pollet, O.; Barnola, S.

    2014-08-04

    Silicon nitride spacer etching realization is considered today as one of the most challenging of the etch process for the new devices realization. For this step, the atomic etch precision to stop on silicon or silicon germanium with a perfect anisotropy (no foot formation) is required. The situation is that none of the current plasma technologies can meet all these requirements. To overcome these issues and meet the highly complex requirements imposed by device fabrication processes, we recently proposed an alternative etching process to the current plasma etch chemistries. This process is based on thin film modification by light ions implantation followed by a selective removal of the modified layer with respect to the non-modified material. In this Letter, we demonstrate the benefit of this alternative etch method in term of film damage control (silicon germanium recess obtained is less than 6 A), anisotropy (no foot formation), and its compatibility with other integration steps like epitaxial. The etch mechanisms of this approach are also addressed.

  7. Preparation of platinum modified titanium dioxide nanoparticles with the use of laser ablation in water.

    PubMed

    Siuzdak, K; Sawczak, M; Klein, M; Nowaczyk, G; Jurga, S; Cenian, A

    2014-08-01

    We report on the preparation method of nanocrystalline titanium dioxide modified with platinum by using nanosecond laser ablation in liquid (LAL). Titania in the form of anatase crystals has been prepared in a two-stage process. Initially, irradiation by laser beam of a titanium metal plate fixed in a glass container filled with deionized water was conducted. After that, the ablation process was continued, with the use of a platinum target placed in a freshly obtained titania colloid. In this work, characterization of the obtained nanoparticles, based on spectroscopic techniques--Raman, X-ray photoelectron and UV-vis reflectance spectroscopy--is given. High resolution transmission electron microscopy was used to describe particle morphology. On the basis of photocatalytic studies we observed the rate of degradation process of methylene blue (MB) (a model organic pollution) in the presence of Pt modified titania in comparison to pure TiO2--as a reference case. Physical and chemical mechanisms of the formation of platinum modified titania are also discussed here. Stable colloidal suspensions containing Pt modified titanium dioxide crystalline anatase particles show an almost perfect spherical shape with diameters ranging from 5 to 30 nm. The TiO2 nanoparticles decorated with platinum exhibit much higher (up to 30%) photocatalytic activity towards the degradation of MB under UV illumination than pure titania.

  8. In vitro mesenchymal stem cell response to a CO2 laser modified polymeric material.

    PubMed

    Waugh, D G; Hussain, I; Lawrence, J; Smith, G C; Cosgrove, D; Toccaceli, C

    2016-10-01

    With an ageing world population it is becoming significantly apparent that there is a need to produce implants and platforms to manipulate stem cell growth on a pharmaceutical scale. This is needed to meet the socio-economic demands of many countries worldwide. This paper details one of the first ever studies in to the manipulation of stem cell growth on CO2 laser surface treated nylon 6,6 highlighting its potential as an inexpensive platform to manipulate stem cell growth on a pharmaceutical scale. Through CO2 laser surface treatment discrete changes to the surfaces were made. That is, the surface roughness of the nylon 6,6 was increased by up to 4.3μm, the contact angle was modulated by up to 5° and the surface oxygen content increased by up to 1atom %. Following mesenchymal stem cell growth on the laser treated samples, it was identified that CO2 laser surface treatment gave rise to an enhanced response with an increase in viable cell count of up to 60,000cells/ml when compared to the as-received sample. The effect of surface parameters modified by the CO2 laser surface treatment on the mesenchymal stem cell response is also discussed along with potential trends that could be identified to govern the mesenchymal stem cell response. PMID:27287173

  9. ECR, ICP, and RIE plasma etching of GaN

    SciTech Connect

    Shul, R.J.; McClellan, G.B.; Rieger, D.J.; Hafich, M.J.

    1996-06-01

    The group III-nitrides continue to generate interest due to their wide band gaps and high dielectric constants. These materials have made significant impact on the compound semiconductor community as blue and ultraviolet light emitting diodes (LEDs). Realization of more advanced devices; including lasers and high temperature electronics, requires dry etch processes which are well controlled, smooth, highly anisotropic and have etch rates exceeding 0.5 {mu}m/min. In this paper, we compare electron cyclotron resonance (ECR), inductively coupled plasma (ICP), and reactive ion etch (RIE) etch results for GaN. These are the first ICP etch results reported for GaN. We also report ECR etch rates for GaN as a function of growth technique.

  10. Thermal Property Measurement of Semiconductor Melt using Modified Laser Flash Method

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalla N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2003-01-01

    This study further developed standard laser flash method to measure multiple thermal properties of semiconductor melts. The modified method can determine thermal diffusivity, thermal conductivity, and specific heat capacity of the melt simultaneously. The transient heat transfer process in the melt and its quartz container was numerically studied in detail. A fitting procedure based on numerical simulation results and the least root-mean-square error fitting to the experimental data was used to extract the values of specific heat capacity, thermal conductivity and thermal diffusivity. This modified method is a step forward from the standard laser flash method, which is usually used to measure thermal diffusivity of solids. The result for tellurium (Te) at 873 K: specific heat capacity 300.2 Joules per kilogram K, thermal conductivity 3.50 Watts per meter K, thermal diffusivity 2.04 x 10(exp -6) square meters per second, are within the range reported in literature. The uncertainty analysis showed the quantitative effect of sample geometry, transient temperature measured, and the energy of the laser pulse.

  11. Effect of laser power on the microstructural behaviour and strength of modified laser deposited Ti6Al4V+Cu alloy for medical application

    NASA Astrophysics Data System (ADS)

    Erinosho, Mutiu F.; Akinlabi, Esther T.

    2016-03-01

    The excellent biocompatibility property of Grade 5 titanium alloy has made its desirability largely increasing in the field of biomedical. The titanium alloy (Ti6Al4V) was modified with the addition of 3 weight percent (wt %) copper via a laser deposition process using the Ytterbium fiber laser with a wavelength of 1.047 μm. Therefore, this paper presents the effect of laser power on the microstructural behaviour and strength of the modified Ti6Al4V+Cu alloy. The laser powers were varied between 600 W and 1600 W respectively while all other parameters such as the scanning speed, powder flow rates and gas flow rates were kept constant. The melt pool and width of the deposited alloy increases as the laser power was increased. The α-lamella was observed to be finer at low laser power, and towards the fusion zone, Widmanstettan structures were fused and become smaller; and showing an evidence of α-martensite phases. The strength of the modified alloy was derived from the hardness values. The strength was observed to increase initially to a point as the laser power increases and afterwards decreased as the laser power was further increased. The improved Ti6Al4V+Cu alloy can be anticipated for biomedical application.

  12. Design of a silicon avalanche photodiode pixel with integrated laser diode using back-illuminated crystallographically etched silicon-on-sapphire with monolithically integrated microlens for dual-mode passive and active imaging arrays

    NASA Astrophysics Data System (ADS)

    Stern, Alvin G.

    2010-08-01

    There is a growing need in scientific research applications for dual-mode, passive and active 2D and 3D LADAR imaging methods. To fill this need, an advanced back-illuminated silicon avalanche photodiode (APD) design is presented using a novel silicon-on-sapphire substrate incorporating a crystalline aluminum nitride (AlN) antireflective layer between the silicon and R-plane sapphire. This allows integration of a high quantum efficiency silicon APD with a gallium nitride (GaN) laser diode in each pixel. The pixel design enables single photon sensitive, solid-state focal plane arrays (FPAs) with wide dynamic range, supporting passive and active imaging capability in a single FPA. When (100) silicon is properly etched with TMAH solution, square based pyramidal frustum or mesa arrays result with the four mesa sidewalls of the APD formed by (111) silicon planes that intersect the (100) planes at a crystallographic angle, φ c = 54.7°. The APD device is fabricated in the mesa using conventional silicon processing technology. The GaN laser diode is fabricated by epitaxial growth inside of an inverted, etched cavity in the silicon mesa. Microlenses are fabricated in the thinned, and AR-coated sapphire substrate. The APDs share a common, front-side anode contact, and laser diodes share a common cathode. A low resistance (Al) or (Cu) metal anode grid fills the space between pixels and also inhibits optical crosstalk. SOS-APD arrays are flip-chip bump-bonded to CMOS readout ICs to produce hybrid FPAs. The square 27 μm emitter-detector pixel achieves SNR > 1 in active detection mode for Lambert surfaces at 1,000 meters.

  13. Laser Spot Tracking Based on Modified Circular Hough Transform and Motion Pattern Analysis

    PubMed Central

    Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan

    2014-01-01

    Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas–Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development. PMID:25350502

  14. Modified Laser Flash Method for Thermal Properties Measurements and the Influence of Heat Convection

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2003-01-01

    The study examined the effect of natural convection in applying the modified laser flash method to measure thermal properties of semiconductor melts. Common laser flash method uses a laser pulse to heat one side of a thin circular sample and measures the temperature response of the other side. Thermal diffusivity can be calculations based on a heat conduction analysis. For semiconductor melt, the sample is contained in a specially designed quartz cell with optical windows on both sides. When laser heats the vertical melt surface, the resulting natural convection can introduce errors in calculation based on heat conduction model alone. The effect of natural convection was studied by CFD simulations with experimental verification by temperature measurement. The CFD results indicated that natural convection would decrease the time needed for the rear side to reach its peak temperature, and also decrease the peak temperature slightly in our experimental configuration. Using the experimental data, the calculation using only heat conduction model resulted in a thermal diffusivity value is about 7.7% lower than that from the model with natural convection. Specific heat capacity was about the same, and the difference is within 1.6%, regardless of heat transfer models.

  15. Laser spectroscopy for totally non-intrusive detection of oxygen in modified atmosphere food packages

    NASA Astrophysics Data System (ADS)

    Cocola, L.; Fedel, M.; Poletto, L.; Tondello, G.

    2015-04-01

    A device for measuring the oxygen concentration inside packages in modified atmosphere working in a completely non-intrusive way has been developed and tested. The device uses tunable diode laser spectroscopy in a geometry similar to a short distance LIDAR: A laser beam is sent through the top film of a food package, and the absorption is measured by detecting the light scattered by the bottom of the container or by a portion of the food herein contained. The device can operate completely in a contactless way from the package, and the distances of absorption both outside and inside the package are measured with a triangulation system. The performances of the device have been tested for various types of containers, and absolute values for the oxygen concentration have been compared with standard albeit destructive measurements.

  16. Laser surface and subsurface modification of sapphire using femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Eberle, G.; Schmidt, M.; Pude, F.; Wegener, K.

    2016-08-01

    Two methods to process sapphire using femtosecond laser pulses are demonstrated, namely ablation (surface), and in-volume laser modification followed by wet etching (subsurface). Firstly, the single and multipulse ablation threshold is determined and compared with previous literature results. A unique application of ablation is demonstrated by modifying the entrance aperture of water jet orifices. Laser ablation exhibits advantages in terms of geometric flexibility and resolution, however, defects in the form of edge outbreaks and poor surface quality are evident. Secondly, the role of material transformation, polarisation state and formation of multi-focus structures after in-volume laser modification is investigated in order to explain their influence during the wet etching process. Laser scanning and electron microscopy as well as electron backscatter diffraction measurements supported by ion beam polishing are used to better understand quality and laser-material interactions of the two demonstrated methods of processing.

  17. Electron and laser beam-induced current measurements of diamond-like carbon films modified by scanning probe method

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigehiro; Han, Younggun; Choi, Woon; Tomokage, Hajime

    2013-03-01

    A nitrogen-doped diamond-like carbon (DLC) film deposited on n-type silicon is modified by applying an electric field in a vacuum between a tungsten tip and the DLC film surface using a scanning probe field emission current method. The resistance decreases and a Schottky barrier is formed between the modified DLC and the silicon surface, while micro-Raman measurements show a slight nano-crystalline graphitization. The electron beam induced current from the modified area is measured without any metal contact deposition. An infrared laser beam with a wavelength of 1400 nm is scanned across the backside of the silicon, and the induced current from the DLC modified area is measured. It is shown that both infrared laser and electron beam induced current measurements were possible for the modified DLC film on silicon structures.

  18. Laser Modified ZnO/CdSSe Core-Shell Nanowire Arrays for Micro-Steganography and Improved Photoconduction

    NASA Astrophysics Data System (ADS)

    Lu, Junpeng; Liu, Hongwei; Zheng, Minrui; Zhang, Hongji; Lim, Sharon Xiaodai; Tok, Eng Soon; Sow, Chorng Haur

    2014-09-01

    Arrays of ZnO/CdSSe core/shell nanowires with shells of tunable band gaps represent a class of interesting hybrid nanomaterials with unique optical and photoelectrical properties due to their type II heterojunctions and chemical compositions. In this work, we demonstrate that direct focused laser beam irradiation is able to achieve localized modification of the hybrid structure and chemical composition of the nanowire arrays. As a result, the photoresponsivity of the laser modified hybrid is improved by a factor of ~3. A 3D photodetector with improved performance is demonstrated using laser modified nanowire arrays overlaid with monolayer graphene as the top electrode. Finally, by controlling the power of the scanning focused laser beam, micropatterns with different fluorescence emissions are created on a substrate covered with nanowire arrays. Such a pattern is not apparent when imaged under normal optical microscopy but the pattern becomes readily revealed under fluorescence microscopy i.e. a form of Micro-Steganography is achieved.

  19. Laser modified ZnO/CdSSe core-shell nanowire arrays for Micro-Steganography and improved photoconduction.

    PubMed

    Lu, Junpeng; Liu, Hongwei; Zheng, Minrui; Zhang, Hongji; Lim, Sharon Xiaodai; Tok, Eng Soon; Sow, Chorng Haur

    2014-01-01

    Arrays of ZnO/CdSSe core/shell nanowires with shells of tunable band gaps represent a class of interesting hybrid nanomaterials with unique optical and photoelectrical properties due to their type II heterojunctions and chemical compositions. In this work, we demonstrate that direct focused laser beam irradiation is able to achieve localized modification of the hybrid structure and chemical composition of the nanowire arrays. As a result, the photoresponsivity of the laser modified hybrid is improved by a factor of ~3. A 3D photodetector with improved performance is demonstrated using laser modified nanowire arrays overlaid with monolayer graphene as the top electrode. Finally, by controlling the power of the scanning focused laser beam, micropatterns with different fluorescence emissions are created on a substrate covered with nanowire arrays. Such a pattern is not apparent when imaged under normal optical microscopy but the pattern becomes readily revealed under fluorescence microscopy i.e. a form of Micro-Steganography is achieved.

  20. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  1. The structure and photoconductivity of SiGe/Si epitaxial layers modified by single-pulse laser radiation

    NASA Astrophysics Data System (ADS)

    Ivlev, G. D.; Kazuchits, N. M.; Prakopyeu, S. L.; Rusetsky, M. S.; Gaiduk, P. I.

    2014-12-01

    The effect of nanosecond pulses of ruby laser radiation on the structural state and morphology of the epitaxial layers of a SiO0.5Ge0.5 solid solution on silicon with the initiation of a crystal-melt phase transition has been studied by electron microscopy. Data on the photoelectric parameters of the laser-modified layers having a cellular structure owing to the segregation of germanium during the solidification of the binary melt have been derived.

  2. Antibiofilm activity of sandblasted and laser-modified titanium against microorganisms isolated from peri-implantitis lesions.

    PubMed

    Drago, Lorenzo; Bortolin, Monica; De Vecchi, Elena; Agrappi, Serse; Weinstein, Roberto L; Mattina, Roberto; Francetti, Luca

    2016-10-01

    Infections due to biofilm-producing microorganisms are one of the main causes for the failure of dental implants. Increasing efforts have been made in order to develop new strategies to prevent biofilm formation. In this study, the biofilm development on a newly designed laser-modified titanium implant surface was evaluated and compared to that on conventional sandblasted titanium used in implant dentistry. The amount of biofilm produced by Staphylococcus aureus, Pseudomonas aeruginosa and Porphyromonas gingivalis isolated from peri-implantitis was assessed by a semi-quantitative spectrophotometric method and by confocal laser scanning microscopy. Results showed a lower biofilm production on laser-modified surface compared to the sandblasted one. In particular, a significantly lower total volume of the biomass was observed on laser-modified surface, while no significant changes in live/dead bacteria percentages were noticed between materials. Modifying the topography of the conventional implant surface with laser ablation could represent a promising approach for inhibiting biofilm formation. PMID:27240314

  3. Comparison of Modified-ETDRS and Mild Macular Grid Laser Photocoagulation Strategies for Diabetic Macular Edema

    PubMed Central

    2008-01-01

    Purpose To compare two laser photocoagulation techniques for treatment of diabetic macular edema (DME): modified-ETDRS direct/grid photocoagulation (mETDRS) and a, potentially milder, but potentially more extensive, mild macular grid (MMG) laser technique in which small mild burns are placed throughout the macula, whether or not edema is present, and microaneurysms are not treated directly. Methods 263 subjects (mean age 59 years) with previously untreated DME were randomly assigned to receive laser photocoagulation by mETDRS (N=162 eyes) or MMG (N=161 eyes) technique. Visual acuity, fundus photographs and OCT measurements were obtained at baseline and after 3.5, 8, and 12 months. Treatment was repeated if DME persisted. Main Outcome Measure Change in OCT measures at 12-months follow up. Results From baseline to 12 months, among eyes with baseline central subfield thickness ≥ 250 microns, central subfield thickening decreased by an average of 88 microns in the mETDRS group and decreased by 49 microns in the MMG group (adjusted mean difference: 33 microns, 95% confidence interval 5 to 61 microns, P=0.02). Weighted inner zone thickening by OCT decreased by 42 and 28 microns, respectively (adjusted mean difference: 14 microns, 95% confidence interval 1 to 27 microns, P=0.04), maximum retinal thickening (maximum of the central and four inner subfields) decreased by 66 and 39 microns, respectively (adjusted mean difference: 27 microns, 95% confidence interval 6 to 47 microns, P=0.01), and retinal volume decreased by 0.8 and 0.4 mm3, respectively (adjusted mean difference: 0.3 mm3, 95% confidence interval 0.02 to 0.53 mm3, P=0.03). At 12 months, the mean change in visual acuity was 0 letters in the mETDRS group and 2 letters worse in the MMG group (adjusted mean difference: 2 letters, 95% confidence interval −0.5 to 5 letters, P=0.10). Conclusions At 12 months after treatment, the MMG technique is less effective at reducing OCT measured retinal thickening than the

  4. Ion beam sputter etching

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1986-01-01

    An ion beam etching process which forms extremely high aspect ratio surface microstructures using thin sputter masks is utilized in the fabrication of integrated circuits. A carbon rich sputter mask together with unmasked portions of a substrate is bombarded with inert gas ions while simultaneous carbon deposition occurs. The arrival of the carbon deposit is adjusted to enable the sputter mask to have a near zero or even slightly positive increase in thickness with time while the unmasked portions have a high net sputter etch rate.

  5. Microstructure and physical properties of laser Zn modified amorphous-nanocrystalline coating on a titanium alloy

    NASA Astrophysics Data System (ADS)

    Li, Jia-Ning; Gong, Shui-Li; Shi, Yi-Ning; Suo, Hong-Bo; Wang, Xi-Chang; Deng, Yun-Hua; Shan, Fei-Hu; Li, Jian-Quan

    2014-02-01

    A Zn modified amorphous-nanocrystalline coating was fabricated on a Ti-6Al-4V alloy by laser cladding of the Co-Ti-B4C-Zn-Y2O3 mixed powders. Such coating was researched by means of a scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM), etc. Experimental results indicated that the Co5Zn21 and TiB2 nanocrystalline phases were produced through in situ metallurgical reactions, which blocked the motion of dislocation, and TiB2 grew along (010), (111) and (024). The Co5Zn21 nanocrystals were produced attached to the ceramics, which mainly consisted of the Co nanoparticles embedded in a heterogeneous zinc, and had varied crystalline orientations.

  6. Chlorine-based plasma etching of GaN

    SciTech Connect

    Shul, R.J.; Briggs, R.D.; Pearton, S.J.; Vartuli, C.B.; Abernathy, C.R.; Lee, J.W.; Constantine, C.; Baratt, C.

    1997-02-01

    The wide band gap group-III nitride materials continue to generate interest in the semiconductor community with the fabrication of green, blue, and ultraviolet light emitting diodes (LEDs), blue lasers, and high temperature transistors. Realization of more advanced devices requires pattern transfer processes which are well controlled, smooth, highly anisotropic and have etch rates exceeding 0.5 {micro}m/min. The utilization of high-density chlorine-based plasmas including electron cyclotron resonance (ECR) and inductively coupled plasma (ICP) systems has resulted in improved GaN etch quality over more conventional reactive ion etch (RIE) systems.

  7. Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures

    DOEpatents

    Fischer, Arthur J.; Tsao, Jeffrey Y.; Wierer, Jr., Jonathan J.; Xiao, Xiaoyin; Wang, George T.

    2016-03-01

    Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.

  8. Chemical downstream etching of tungsten

    SciTech Connect

    Blain, M.G.; Jarecki, R.L.; Simonson, R.J.

    1998-07-01

    The downstream etching of tungsten and tungsten oxide has been investigated. Etching of chemical vapor deposited tungsten and e-beam deposited tungsten oxide samples was performed using atomic fluorine generated by a microwave discharge of argon and NF{sub 3}. Etching was found to be highly activated with activation energies approximated to be 6.0{plus_minus}0.5thinspkcal/mol and 5.4{plus_minus}0.4thinspkcal/mol for W and WO{sub 3}, respectively. In the case of F etching of tungsten, the addition of undischarged nitric oxide (NO) directly into the reaction chamber results in the competing effects of catalytic etch rate enhancement and the formation of a nearly stoichiometric WO{sub 3} passivating tungsten oxide film, which ultimately stops the etching process. For F etching of tungsten oxide, the introduction of downstream NO reduces the etch rate. {copyright} {ital 1998 American Vacuum Society.}

  9. Anisotropic Ta{sub 2}O{sub 5} waveguide etching using inductively coupled plasma etching

    SciTech Connect

    Muttalib, Muhammad Firdaus A. Chen, Ruiqi Y.; Pearce, Stuart J.; Charlton, Martin D. B.

    2014-07-01

    Smooth and vertical sidewall profiles are required to create low loss rib and ridge waveguides for integrated optical device and solid state laser applications. In this work, inductively coupled plasma (ICP) etching processes are developed to produce high quality low loss tantalum pentoxide (Ta{sub 2}O{sub 5}) waveguides. A mixture of C{sub 4}F{sub 8} and O{sub 2} gas are used in combination with chromium (Cr) hard mask for this purpose. In this paper, the authors make a detailed investigation of the etch process parameter window. Effects of process parameters such as ICP power, platen power, gas flow, and chamber pressure on etch rate and sidewall slope angle are investigated. Chamber pressure is found to be a particularly important factor, which can be used to tune the sidewall slope angle and so prevent undercut.

  10. Multiple-mask chemical etching

    NASA Technical Reports Server (NTRS)

    Cannon, D. L.

    1969-01-01

    Multiple masking techniques use lateral etching to reduce the total area of the high etch-rate oxide exposed to the chemical etchant. One method uses a short-term etch to remove the top layer from the silicon oxide surface, another acts before the top layer is grown.

  11. Etching fission tracks in zircons

    USGS Publications Warehouse

    Naeser, C.W.

    1969-01-01

    A new technique has been developed whereby fission tracks can be etched in zircon with a solution of sodium hydroxide at 220??C. Etching time varied between 15 minutes and 5 hours. Colored zircon required less etching time than the colorless varieties.

  12. High-Density Plasma Etching of Group-III Nitride Films for Device Application

    SciTech Connect

    Baca, A.G.; Crawford, M.H.; Han, J.; Lester, L.F.; Pearton, S.J.; Ren, F.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-02-17

    As III-V nitride device structures become more complicated and design rules shrink, well-controlled etch processes are necessary. Due to limited wet chemical etch results for the group-III nitrides, a significant amount of effort has been devoted to the development of dry etch processing. Dry etch development was initially focused on mesa structures where high etch rates, anisotropic profiles, smooth sidewalls, and equi-rate etching of dissimilar materials were required. For example, commercially available LEDs and laser facets for GaN-based laser diodes have been patterned using reactive ion etching (RIE). With the recent interest in high power, high temperature electronic devices, etch characteristics may also require smooth surface morphology, low plasma-induced damage, and selective etching of one layer over another. The principal criteria for any plasma etch process is its utility in the fabrication of a device. In this study, we will report plasma etch results for the group-III nitrides and their application to device structures.

  13. A Comparative Study of Microleakage on Dental Surfaces Bonded with Three Self-Etch Adhesive Systems Treated with the Er:YAG Laser and Bur.

    PubMed

    Sanhadji El Haddar, Youssef; Cetik, Sibel; Bahrami, Babak; Atash, Ramin

    2016-01-01

    Aim. This study sought to compare the microleakage of three adhesive systems in the context of Erbium-YAG laser and diamond bur cavity procedures. Cavities were restored with composite resin. Materials and Methods. Standardized Class V cavities were performed in 72 extracted human teeth by means of diamond burs or Er-YAG laser. The samples were randomly divided into six groups of 12, testing three adhesive systems (Clearfil s(3) Bond Plus, Xeno® Select, and Futurabond U) for each method used. Cavities were restored with composite resin before thermocycling (methylene blue 2%, 24 h). The slices were prepared using a microtome. Optical microscope photography was employed to measure the penetration. Results. No statistically significant differences in microleakage were found in the use of bur or laser, nor between adhesive systems. Only statistically significant values were observed comparing enamel with cervical walls (p < 0.001). Conclusion. It can be concluded that the Er:YAG laser is as efficient as diamond bur concerning microleakage values in adhesive restoration procedures, thus constituting an alternative tool for tooth preparation. PMID:27419128

  14. A Comparative Study of Microleakage on Dental Surfaces Bonded with Three Self-Etch Adhesive Systems Treated with the Er:YAG Laser and Bur

    PubMed Central

    Sanhadji El Haddar, Youssef; Cetik, Sibel; Bahrami, Babak; Atash, Ramin

    2016-01-01

    Aim. This study sought to compare the microleakage of three adhesive systems in the context of Erbium-YAG laser and diamond bur cavity procedures. Cavities were restored with composite resin. Materials and Methods. Standardized Class V cavities were performed in 72 extracted human teeth by means of diamond burs or Er-YAG laser. The samples were randomly divided into six groups of 12, testing three adhesive systems (Clearfil s3 Bond Plus, Xeno® Select, and Futurabond U) for each method used. Cavities were restored with composite resin before thermocycling (methylene blue 2%, 24 h). The slices were prepared using a microtome. Optical microscope photography was employed to measure the penetration. Results. No statistically significant differences in microleakage were found in the use of bur or laser, nor between adhesive systems. Only statistically significant values were observed comparing enamel with cervical walls (p < 0.001). Conclusion. It can be concluded that the Er:YAG laser is as efficient as diamond bur concerning microleakage values in adhesive restoration procedures, thus constituting an alternative tool for tooth preparation. PMID:27419128

  15. A Comparative Study of Microleakage on Dental Surfaces Bonded with Three Self-Etch Adhesive Systems Treated with the Er:YAG Laser and Bur.

    PubMed

    Sanhadji El Haddar, Youssef; Cetik, Sibel; Bahrami, Babak; Atash, Ramin

    2016-01-01

    Aim. This study sought to compare the microleakage of three adhesive systems in the context of Erbium-YAG laser and diamond bur cavity procedures. Cavities were restored with composite resin. Materials and Methods. Standardized Class V cavities were performed in 72 extracted human teeth by means of diamond burs or Er-YAG laser. The samples were randomly divided into six groups of 12, testing three adhesive systems (Clearfil s(3) Bond Plus, Xeno® Select, and Futurabond U) for each method used. Cavities were restored with composite resin before thermocycling (methylene blue 2%, 24 h). The slices were prepared using a microtome. Optical microscope photography was employed to measure the penetration. Results. No statistically significant differences in microleakage were found in the use of bur or laser, nor between adhesive systems. Only statistically significant values were observed comparing enamel with cervical walls (p < 0.001). Conclusion. It can be concluded that the Er:YAG laser is as efficient as diamond bur concerning microleakage values in adhesive restoration procedures, thus constituting an alternative tool for tooth preparation.

  16. Anti-tumor response induced by immunologically modified carbon nanotubes and laser irradiation using rat mammary tumor model

    NASA Astrophysics Data System (ADS)

    Acquaviva, Joseph T.; Hasanjee, Aamr M.; Bahavar, Cody F.; Zhou, Fefian; Liu, Hong; Howard, Eric W.; Bullen, Liz C.; Silvy, Ricardo P.; Chen, Wei R.

    2015-03-01

    Laser immunotherapy (LIT) is being developed as a treatment modality for metastatic cancer which can destroy primary tumors and induce effective systemic anti-tumor responses by using a targeted treatment approach in conjunction with the use of a novel immunoadjuvant, glycated chitosan (GC). In this study, Non-invasive Laser Immunotherapy (NLIT) was used as the primary treatment mode. We incorporated single-walled carbon nanotubes (SWNTs) into the treatment regimen to boost the tumor-killing effect of LIT. SWNTs and GC were conjugated to create a completely novel, immunologically modified carbon nanotube (SWNT-GC). To determine the efficacy of different laser irradiation durations, 5 minutes or 10 minutes, a series of experiments were performed. Rats were inoculated with DMBA-4 cancer cells, a highly aggressive metastatic cancer cell line. Half of the treatment group of rats receiving laser irradiation for 10 minutes survived without primary or metastatic tumors. The treatment group of rats receiving laser irradiation for 5 minutes had no survivors. Thus, Laser+SWNT-GC treatment with 10 minutes of laser irradiation proved to be effective at reducing tumor size and inducing long-term anti-tumor immunity.

  17. Dry etching technologies for the advanced binary film

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Yoshimori, Tomoaki; Azumano, Hidehito; Muto, Makoto; Nonaka, Mikio

    2011-11-01

    ABF (Advanced Binary Film) developed by Hoya as a photomask for 32 (nm) and larger specifications provides excellent resistance to both mask cleaning and 193 (nm) excimer laser and thereby helps extend the lifetime of the mask itself compared to conventional photomasks and consequently reduces the semiconductor manufacturing cost [1,2,3]. Because ABF uses Ta-based films, which are different from Cr film or MoSi films commonly used for photomask, a new process is required for its etching technology. A patterning technology for ABF was established to perform the dry etching process for Ta-based films by using the knowledge gained from absorption layer etching for EUV mask that required the same Ta-film etching process [4]. Using the mask etching system ARES, which is manufactured by Shibaura Mechatronics, and its optimized etching process, a favorable CD (Critical Dimension) uniformity, a CD linearity and other etching characteristics were obtained in ABF patterning. Those results are reported here.

  18. Optical data recording by laser pulses in liquid-crystal cells with an azo-modified surface

    SciTech Connect

    Serak, S V; Agashkov, A V; Reshetnyak, V Yu

    2001-03-31

    The effect of trans-cis photoisomerisation of azofragments of a polymer film on the molecular reorientation of a liquid crystal is studied. It is shown that, using nanosecond laser pulses, one can perform both the reversible and static data recording in liquid-crystal cells with an azo-modified surface. The rise time of the reorientation is measured by the methods of dynamic holography to be about {approx} 30 {mu}s, and the grating efficiency achieves 15 %. (laser applications and other topics in quantum electronics)

  19. Synthesis of oxidation resistant lead nanoparticle films by modified pulsed laser ablation

    SciTech Connect

    Shin, Eunsung; Murray, P. Terrence; Subramanyam, Guru; Malik, Hans K.; Schwartz, Kenneth L.

    2012-07-30

    Thin layers of lead nanoparticles have been produced by a modified pulsed laser ablation (PLA) process in which smaller nanoparticles were swept out of the ablation chamber by a stream of flowing Ar. Large ({mu}m-sized) particles, which are usually deposited during the standard PLA process, were successfully eliminated from the deposit. The nanoparticles deposited on room temperature substrates were well distributed, and the most probable particle diameter was in the order of 30 nm. Since lead is highly reactive, the nanoparticles formed in Ar were quickly oxidized upon exposure to air. A small partial pressure of H{sub 2}S gas was subsequently added to the effluent, downstream from the ablation chamber, and this resulted in the formation of nanoparticle deposits that were surprisingly oxidation resistant. The properties of the nanoparticle films (as determined by transmission electron microscopy, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and conductivity measurements) are reported, and the mechanism of the oxidation retardation process is discussed.

  20. Laser micromachining of chemically altered polymers

    SciTech Connect

    Lippert, T.

    1998-08-01

    During the last decade laser processing of polymers has become an important field of applied and fundamental research. One of the most promising proposals, to use laser ablation as dry etching technique in photolithography, has not yet become an industrial application. Many disadvantages of laser ablation, compared to conventional photolithography, are the result of the use of standard polymers. These polymers are designed for totally different applications, but are compared to the highly specialized photoresist. A new approach to laser polymer ablation will be described; the development of polymers, specially designed for high resolution laser ablation. These polymers have photolabile groups in the polymer backbone, which decompose upon laser irradiation or standard polymers are modified for ablation at a specific irradiation wavelength. The absorption maximum can be tailored for specific laser emissino lines, e.g. 351, 308 and 248 nm lines of excimer lasers. The authors show that with this approach many problems associated with the application of laser ablation for photolithography can be solved. The mechanism of ablation for these photopolymers is photochemical, whereas for most of the standard polymers this mechanism is photothermal. The photochemical decomposition mechanism results in high resolution ablation with no thermal damage at the edges of the etched structures. In addition there are no redeposited ablation products or surface modifications of the polymer after ablation.

  1. Laser micromachining of chemically altered polymers

    NASA Astrophysics Data System (ADS)

    Lippert, Thomas K.

    1998-06-01

    During the last decade laser processing of polymers has become an important field of applied and fundamental research. One of the most promising proposal, to use laser ablation as dry etching technique in photolithography, has not yet become an industrial application. Many disadvantages of laser ablation, compared to conventional photolithography, are the result of the use of standard polymers. These polymers are designed for totally different applications, but are compared to the highly specialized photoresist. A new approach to laser polymer ablation will be described; the development of polymers, specially designed for high resolution laser ablation. These polymers have photolabile groups in the polymer backbone, which decompose upon laser irradiation or standard polymers are modified for ablation at a specific irradiation wavelength. The absorption maximum can be tailored for specific laser emission lines, e.g. 351, 308 and 248 nm lines of excimer lasers. We will show that with this approach many problems associated with the application of laser ablation for photolithography can be solved. The mechanism of ablation for these photopolymers is photochemical, whereas for most of the standard polymers this mechanism is photothermal. The photochemical decomposition mechanism results in high resolution ablation with no thermal damage at the edges of the etched structures. In addition there are not redeposited ablation products or surface modifications of the polymer after ablation.

  2. Investigation of electrochemical etch differences in AlGaAs heterostructures using Cl{sub 2} ion beam assisted etching

    SciTech Connect

    Anglin, Kevin Goodhue, William D.; Swint, Reuel B.; Porter, Jeanne

    2015-03-15

    A deeply etched, anisotropic 45° and 90° mirror technology is developed for Al{sub x}Ga{sub 1−x}As heterostructures using a Cl{sub 2} ion beam assisted etching system. When etching vertically, using a conductive low-erosion Ni mask, electrochemical etch differences between layers with various Al mole fractions caused nonuniform sidewall profiles not seen in semi-insulating GaAs test samples. These variations, based on alloy composition, were found to be negligible when etching at a 45°. A Si{sub 3}N{sub 4}-Ni etch mask is designed in order to electrically isolate charge buildup caused by the incoming Ar{sup +} ion beam to the Ni layer, preventing conduction to the underlying epitaxial layers. This modification produced smoothly etched facets, up to 8 μm in depth, enabling fabrication of substrate–surface-emitting slab-coupled optical waveguide lasers and other optoelectronic devices.

  3. Selective Etching of Semiconductor Glassivation

    NASA Technical Reports Server (NTRS)

    Casper, N.

    1982-01-01

    Selective etching technique removes portions of glassivation on a semi-conductor die for failure analysis or repairs. A periodontal needle attached to a plastic syringe is moved by a microprobe. Syringe is filled with a glass etch. A drop of hexane and vacuum pump oil is placed on microcircuit die and hexane is allowed to evaporate leaving a thin film of oil. Microprobe brings needle into contact with area of die to be etched.

  4. Analysis of micro-structural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy

    SciTech Connect

    Matthews, M; Vignes, R; Cooke, J; Yang, S; Stolken, J

    2009-12-15

    Fused silica micro-structural changes associated with localized 10.6 {micro}m CO{sub 2} laser heating are reported. Spatially-resolved shifts in the high-frequency asymmetric stretch transverse-optic (TO) phonon mode of SiO{sub 2} were measured using confocal Raman microscopy, allowing construction of axial fictive temperature (T{sub f}) maps for various laser heating conditions. A Fourier conduction-based finite element model was employed to compute on-axis temperature-time histories, and, in conjunction with a Tool-Narayanaswamy form for structural relaxation, used to fit T{sub f}(z) profiles to extract relaxation parameters. Good agreement between the calculated and measured T{sub f} was found, yielding reasonable values for relaxation time and activation enthalpy in the laser-modified silica.

  5. Laser Modified ZnO/CdSSe Core-Shell Nanowire Arrays for Micro-Steganography and Improved Photoconduction

    PubMed Central

    Lu, Junpeng; Liu, Hongwei; Zheng, Minrui; Zhang, Hongji; Lim, Sharon Xiaodai; Tok, Eng Soon; Sow, Chorng Haur

    2014-01-01

    Arrays of ZnO/CdSSe core/shell nanowires with shells of tunable band gaps represent a class of interesting hybrid nanomaterials with unique optical and photoelectrical properties due to their type II heterojunctions and chemical compositions. In this work, we demonstrate that direct focused laser beam irradiation is able to achieve localized modification of the hybrid structure and chemical composition of the nanowire arrays. As a result, the photoresponsivity of the laser modified hybrid is improved by a factor of ~3. A 3D photodetector with improved performance is demonstrated using laser modified nanowire arrays overlaid with monolayer graphene as the top electrode. Finally, by controlling the power of the scanning focused laser beam, micropatterns with different fluorescence emissions are created on a substrate covered with nanowire arrays. Such a pattern is not apparent when imaged under normal optical microscopy but the pattern becomes readily revealed under fluorescence microscopy i.e. a form of Micro-Steganography is achieved. PMID:25213321

  6. Improvement of photocatalytic activity of brookite titanium dioxide nanorods by surface modification using chemical etching

    NASA Astrophysics Data System (ADS)

    Zhang, Linjie; Menendez-Flores, Victor M.; Murakami, Naoya; Ohno, Teruhisa

    2012-05-01

    Surface morphology of brookite titanium dioxide (TiO2) nanorods was modified by chemical etching with aqueous hydrogen (H2O2)-ammonia (NH3) or sulfuric acid (H2SO4) solution. The brookite nanorods after chemical etching were characterized by TEM, SAED, FE-SEM, XRD and specific surface area measurements. Brookite nanorods after chemical etching with H2O2-NH3 solution exposed new crystal faces in the tips, and nanorods with sharper tips were observed. On the other hand, etching with H2SO4 at 200 °C induced morphological changes in the tip faces and broadened the angle between tip faces as a result of dissolution along the [0 0 1] direction, though brookite nanorods were only slightly etched after etching with H2SO4 at room temperature. Photocatalytic activity of brookite nanorods was tested by toluene decomposition in gas phase under ultraviolet irradiation. Brookite nanorods etched with H2O2-NH3 solution showed higher photocatalytic activity than that of brookite nanorods before etching. In the case of H2SO4 etching at 200 °C, brookite nanorods after etching exhibited lower photocatalytic activity. One reason for this may be that the formation of newly exposed crystal faces by H2O2-NH3 etching improved separation of redox sites due to their strong oxidation ability.

  7. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  8. Laser based microstructuring of polymer optical fibers for sensors optimization

    NASA Astrophysics Data System (ADS)

    Athanasekos, Loukas; Vasileiadis, Miltiadis; El Sachat, Alexandros; Vainos, Nikolaos A.; Riziotis, Christos

    2015-03-01

    Microstructuring of Polymer Optical Fibers-POF through surface modification with UV excimer laser radiation has been performed and studied. The laser modified surface cavities on fibers act as material receptors of exact volume allowing highly controllable and repeatable structures. The effect of Laser writing conditions on different etching characteristics of cladding and core materials of the fibres are presented. Ablated structures on the fibres are examined for optimised sensors' response characteristics. As a case study humidity and ammonia sensors are demonstrated by employing sensitive block copolymer materials on suitably micromachined segments of fibres.

  9. Photoluminescence of etched SiC nanowires

    NASA Astrophysics Data System (ADS)

    Stewart, Polite D., Jr.; Rich, Ryan; Zerda, T. W.

    2010-10-01

    SiC nanowires were produced from carbon nanotubes and nanosize silicon powder in a tube furnace at temperatures between 1100^oC and 1350^oC. SiC nanowires had average diameter of 30 nm and very narrow size distribution. The compound possesses a high melting point, high thermal conductivity, and excellent wear resistance. The surface of the SiC nanowires after formation is covered by an amorphous layer. The composition of that layer is not fully understood, but it is believed that in addition to amorphous SiC it contains various carbon and silicon compounds, and SiO2. The objective of the research was to modify the surface structure of these SiC nanowires. Modification of the surface was done using the wet etching method. The etched nanowires were then analyzed using Fourier Transform Infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and photoluminescence (PL). FTIR and TEM analysis provided valid proof that the SiC nanowires were successfully etched. Also, the PL results showed that the SiC nanowire core did possess a fluorescent signal.

  10. Surface Modification of Nitinol by Chemical and Electrochemical Etching

    NASA Astrophysics Data System (ADS)

    Yang, Zhendi; Wei, Xiaojin; Cao, Peng; Gao, Wei

    2013-07-01

    In this paper, Nitinol, an equiatomic binary alloy of nickel and titanium, was surface modified for its potential biomedical applications by chemical and electrochemical etching. The main objective of the surface modification is to reduce the nickel content on the surface of Nitinol and simultaneously to a rough surface microstructure. As a result, better biocompatibility and better cell attachment would be achieved. The effect of the etching parameters was investigated, using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometry (EDX) and X-ray photoelectron spectrometry (XPS). The corrosion property of modified Nitinol surfaces was investigated by electrochemical work station. After etching, the Ni content in the surface layer has been reduced and the oxidation of Ti has been enhanced.

  11. On treatment of ultra-low-k SiCOH in CF4 plasmas: correlation between the concentration of etching products and etching rate

    NASA Astrophysics Data System (ADS)

    Lang, N.; Zimmermann, S.; Zimmermann, H.; Macherius, U.; Uhlig, B.; Schaller, M.; Schulz, S. E.; Röpcke, J.

    2015-04-01

    Low-pressure rf plasmas have been applied for etching of ultra-low-k SiCOH wafers using an Oxford Plasmalab System 100. In pure CF4 plasmas, SiCOH layers have been etched for different power values. Using quantum cascade laser absorption spectroscopy in the mid-infrared spectral range, the correlation of online and in situ measured concentrations of two etching products, CO and SiF4, with the ex situ determined etching rates has been studied. The concentration of SiF4 was found to range between 0.6 and 1.4 × 1013 molecules cm-3. In contrast the concentrations of CO were measured to be only about 50 % of the SiF4 density with 7 × 1012 molecules cm-3 in maximum. The production rate of SiF4, determined from the time behavior of its concentration after plasma ignition, was found to be between 1 and 5 × 1012 cm-3 s-1. The etching rates varied between 2 and 7 nm s-1. Both parameters increase nearly linearly with the applied rf power. It was found that for power values of up to 1.1 kW, the etching rate depends nearly linearly on the in situ monitored concentrations of both etching products. Therefore, the concentration of the etching products can be directly used as a measure of the etching rate.

  12. Selective photochemical dry etching of compound semiconductors: Enhanced control through secondary electronic properties

    SciTech Connect

    Ashby, C.I.H.

    1988-01-01

    When laser-driven etching of a semiconductor requires direct participation of photogenerated carriers, the etching quantum yield will be sensitive to the electronic properties of a specific semiconductor material. The band-gap energy of the semiconductor determines the minimum photon energy needed for carrier-driven etching since sub-gap photons do not generate free carriers. However, only those free carriers that reach the reacting surface contribute to etching and the ultimate carrier flux to the surface is controlled by more subtle electronic properties than the lowest-energy band gap. For example, the initial depth of carrier generation and the probability of carrier recombination between the point of generation and the surface profoundly influence the etching quantum yield. Appropriate manipulation of process parameters can provide additional reaction control based on such secondary electronic properties. Applications to selective dry etching of GaAs and related materials are discussed here. 17 refs., 7 figs.

  13. Water-assisted CO(2) laser ablated glass and modified thermal bonding for capillary-driven bio-fluidic application.

    PubMed

    Chung, C K; Chang, H C; Shih, T R; Lin, S L; Hsiao, E J; Chen, Y S; Chang, E C; Chen, C C; Lin, C C

    2010-02-01

    The glass-based microfluidic chip has widely been applied to the lab-on-a-chip for clotting tests. Here, we have demonstrated a capillary driven flow chip using the water-assisted CO(2) laser ablation for crackless fluidic channels and holes as well as the modified low-temperature glass bonding with assistance of adhesive polymer film at 300 degrees Celsius. Effect of water depth on the laser ablation of glass quality was investigated. The surface hydrophilic property of glass and polymer film was measured by static contact angle method for hydrophilicity examination in comparison with the conventional polydimethylsiloxane (PDMS) material. Both low-viscosity deionized water and high-viscosity whole blood were used for testing the capillary-driving flow behavior. The preliminary coagulation testing in the Y-channel chip was also performed using whole blood and CaCl(2) solution. The water-assisted CO(2) laser processing can cool down glass during ablation for less temperature gradient to eliminate the crack. The modified glass bonding can simplify the conventional complex fabrication procedure of glass chips, such as high-temperature bonding, long consuming time and high cost. Moreover, the developed fluidic glass chip has the merit of hydrophilic behavior conquering the problem of traditional hydrophobic recovery of polymer fluidic chips and shows the ability to drive high-viscosity bio-fluids.

  14. Compression of picosecond pulses from diode lasers using a modified grating-pair compressor.

    PubMed

    Kuznetsov, M; Wiesenfeld, J M; Radzihovsky, L R

    1990-02-01

    Optical pulses from gain-switched diode lasers were compressed using a grating-pair compressor containing an internal telescope. Original pulses of 20-30 psec were compressed to 5-7 psec, with the largest compression factor ~5. Diode-laser pulse compression is well modeled by transmission of Gaussian pulses with excess bandwidth through a dispersive system. PMID:19759750

  15. Modified Surface Having Low Adhesion Properties to Mitigate Insect Residue Adhesion

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J., Jr. (Inventor); Smith, Joseph G., Jr. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)

    2016-01-01

    A process to modify a surface to provide reduced adhesion surface properties to mitigate insect residue adhesion. The surface may include the surface of an article including an aircraft, an automobile, a marine vessel, all-terrain vehicle, wind turbine, helmet, etc. The process includes topographically and chemically modifying the surface by applying a coating comprising a particulate matter, or by applying a coating and also topographically modifying the surface by various methods, including but not limited to, lithographic patterning, laser ablation and chemical etching, physical vapor phase deposition, chemical vapor phase deposition, crystal growth, electrochemical deposition, spin casting, and film casting.

  16. Submicron patterned metal hole etching

    DOEpatents

    McCarthy, Anthony M.; Contolini, Robert J.; Liberman, Vladimir; Morse, Jeffrey

    2000-01-01

    A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.

  17. Optical properties of carbon nanostructures produced by laser irradiation on chemically modified multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Santiago, Enrique Vigueras; López, Susana Hernández; Camacho López, Marco A.; Contreras, Delfino Reyes; Farías-Mancilla, Rurik; Flores-Gallardo, Sergio G.; Hernández-Escobar, Claudia A.; Zaragoza-Contreras, E. Armando

    2016-10-01

    This research focused on the nanosecond (Nd: YAG-1064 nm) laser pulse effect on the optical and morphological properties of chemically modified multi-walled carbon nanotubes (MWCNT). Two suspensions of MWCNT in tetrahydrofuran (THF) were prepared, one was submitted to laser pulses for 10 min while the other (blank) was only mechanically homogenized during the same time. Following the laser irradiation, the suspension acquired a yellow-amber color, in contrast to the black translucent appearance of the blank. UV-vis spectroscopy confirmed this observation, showing the blank a higher absorption. Additionally, photoluminescence measurements exhibited a broad blue-green emission band both in the blank and irradiated suspension when excited at 369 nm, showing the blank a lower intensity. However, a modification in the excitation wavelength produced a violet to green tuning in the irradiated suspension, which did not occur in the blank. Lastly, the electron microscopy analysis of the treated nanotubes showed the abundant formation of amorphous carbon, nanocages, and nanotube unzipping, exhibiting the intense surface modification produced by the laser pulse. Nanotube surface modification and the coexistence with the new carbon nanostructures were considered as the conductive conditions for optical properties modification.

  18. In vivo remineralization of acid-etched enamel in non-brushing areas as influenced by fluoridated orthodontic adhesive and toothpaste.

    PubMed

    Praxedes-Neto, Otávio José; Borges, Boniek Castillo Dutra; Florêncio-Filho, Cícero; Farias, Arthur Costa Rodrigues; Drennan, John; De Lima, Kenio Costa

    2012-07-01

    This study aimed to evaluate the in vivo remineralization of acid-etched enamel in non-brushing areas as influenced by fluoridated orthodontic adhesive and toothpaste. One hundred and twenty teeth from 30 volunteers were selected. The teeth were assigned to four treatments: no treatment (negative control); 37% phosphoric acid-etching (PAE) (positive control); PAE + resin-modified glass ionomer cement (RMGIC); and, PAE + composite resin. Patients brushed teeth with fluoridated (n = 15) or non-fluoridated (n = 15) toothpastes, so that etched enamel was protected with screens and it was not in contact with the brush bristles. Remineralization was evaluated by means of laser fluorescence (LF), environmental scanning electronic microscopy, and energy dispersive spectrometry after extraction. The LF means were compared by means of Wilcoxon and Mann Whitney tests. Environmental scanning electron microscopy scores were compared among the groups using a Kruskal Wallis test, whereas the Ca/P ratio was evaluated by means of an Analysis of Variance with subparcels (treatments) and Tukey's post-hoc test. There were no statistically significant differences between the tooth pastes and between the orthodontic adhesives evaluated. Most teeth presented only partial enamel remineralization. Therefore, the fluoride released by the RMGIC was not enough to cause increased crystal regrowth in the acid-etched enamel. The use of fluoridated toothpaste did not provide positive additional effect.

  19. Between-cycle laser system for depressurization and resealing of modified design nuclear fuel assemblies

    DOEpatents

    Bradley, John G.

    1982-01-01

    A laser beam is used to puncture fuel cladding for release of contained pressurized fission gas from plenum sections or irradiated fuel pins. Exhausted fission gases are collected and trapped for safe disposal. The laser beam, adjusted to welding mode, is subsequently used to reseal the puncture holes. The fuel assembly is returned to additional irradiation or, if at end of reactivity lifetime, is routed to reprocess. The fuel assembly design provides graded cladding lengths, by rows or arrays, such that the cladding of each component fuel element of the assembly is accessible to laser beam reception.

  20. Shapes of laser radiation pulses modified by nonlinear scattering in aqueous suspension of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mikheeva, G. M.; Mogileva, T. N.; Okotrub, A. V.; Vanyukov, V. V.

    2010-03-01

    An improved scheme of z-scanning was used to study the parameters of nanosecond 1064-nm laser radiation pulses scattered at right angle under the conditions of optical limiting in an aqueous suspension of purified carbon nanotubes (CNTs). CNTs were synthesized by the electric-arc evaporation of graphite. It is established that the amplitude, shape, duration, and temporal position of the peak of scattered light pulses significantly depend on the laser radiation power density. The results agree with the mechanism of thermoinduced nonlinear scattering that is operative during the optical limiting of laser pulses in CNT suspensions.

  1. Modified diglycol-amides for actinide separation: solvent extraction and time-resolved laser fluorescence spectroscopy complexation studies

    SciTech Connect

    Wilden, A.; Modolo, G.; Lange, S.; Sadowski, F.; Bosbach, D.; Beele, B.B.; Panak, P.J.; Skerencak-Frech, A.; Geist, A.; Iqbal, M.; Verboom, W.

    2013-07-01

    In this work, the back-bone of the diglycolamide-structure of the TODGA extractant was modified by adding one or two methyl groups to the central methylene carbon-atoms. The influence of these structural modifications on the extraction behavior of trivalent actinides and lanthanides and other fission products was studied in solvent extraction experiments. The addition of methyl groups to the central methylene carbon atoms leads to reduced distribution ratios, also for Sr(II). This reduced extraction efficiency for Sr(II) is beneficial for process applications, as the co-extraction of Sr(II) can be avoided, resulting in an easier process design. The use of these modified diglycol-amides in solvent extraction processes is discussed. Furthermore, the complexation of Cm(III) and Eu(III) to the ligands was studied using Time-Resolved-Laser-Fluorescence-Spectroscopy (TRLFS). The complexes were characterized by slope analysis and conditional stability constants were determined.

  2. INL Internship:Modification of Metal Contaminants on Oxide Surfaces Modified by Laser Irradiation

    SciTech Connect

    Michael J. Hansen; Robert Fox; Les Manner

    2006-08-01

    This project focuses on obtaining the optimal laser parameters needed for enhancing metal contaminants on cement, granite, and marble. The various parameters of the laser tested include the fluence, wavelength, and frequency. A chelating study was also performed in order to increase the volatility of cobalt. In the following paper each experiment is described in detail. No results are included in this report because their release is not approved and they could eventually become classified.

  3. Controlled in situ etch-back

    NASA Technical Reports Server (NTRS)

    Mattauch, R. J.; Seabaugh, A. C. (Inventor)

    1981-01-01

    A controlled in situ etch-back technique is disclosed in which an etch melt and a growth melt are first saturated by a source-seed crystal and thereafter etch-back of a substrate takes place by the slightly undersaturated etch melt, followed by LPE growth of a layer by the growth melt, which is slightly supersaturated.

  4. Dynamic Pattern Formation in Electron-Beam-Induced Etching.

    PubMed

    Martin, Aiden A; Bahm, Alan; Bishop, James; Aharonovich, Igor; Toth, Milos

    2015-12-18

    We report highly ordered topographic patterns that form on the surface of diamond, span multiple length scales, and have a symmetry controlled by the precursor gas species used in electron-beam-induced etching (EBIE). The pattern formation dynamics reveals an etch rate anisotropy and an electron energy transfer pathway that is overlooked by existing EBIE models. We, therefore, modify established theory such that it explains our results and remains universally applicable to EBIE. The patterns can be exploited in controlled wetting, optical structuring, and other emerging applications that require nano- and microscale surface texturing of a wide band-gap material. PMID:26722926

  5. Treatment of lumbar disc herniation by percutaneous laser disc decompression (PLDD) and modified PLDD

    NASA Astrophysics Data System (ADS)

    Chi, Xiao fei; Li, Hong zhi; Wu, Ru zhou; Sui, Yun xian

    2005-07-01

    Objective: To study the micro-invasive operative method and to compare the effect of treatment of PLDD and modified PLDD for Lumbar Disc Herniation. Method: Vaporized part of the nucleus pulposus in single or multiple point after acupuncture into lumbar disc, to reach the purpose of the decompression of the lumbar disc. Result: Among the 19 cases of the regular PLDD group, the excellent and good rate was 63.2%, and among the 40 cases of the modified PLDD group, the excellent and good rate was 82.5%. Conclusion: The modified PLDD has good effect on the treatment for lumbar disc herniation.

  6. Physical properties and microstructural performance of Sn modified laser amorphous-nanocrystals reinforced coating

    NASA Astrophysics Data System (ADS)

    Li, Jia-Ning; Gong, Shui-Li

    2013-01-01

    An amorphous-nanocrystals reinforced composite coating was fabricated on TA15 titanium alloy substrate by laser alloying of Al-Sn-B4C-SiC-TiN-Y2O3 mixed powders, which greatly improved the wear resistance of substrate. Experimental results indicated that Al-Sn nanocrystalline phases were produced through in situ metallurgical reactions, which blocked the motion of dislocation. The productions of the eutectics, such as Ti-Si greatly promoted the formation of amorphous phases in such coating. Compared with the substrate, higher wear resistance of laser alloying coating was mainly ascribed to the hard phase, amorphous-nanocrystalline phases and fine grain strengthening. This research provided essential theoretical and experimental basis to promote the application of laser alloying technique in modern aviation industry.

  7. Dry Ice Etches Terrain

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Every year seasonal carbon dioxide ice, known to us as 'dry ice,' covers the poles of Mars. In the south polar region this ice is translucent, allowing sunlight to pass through and warm the surface below. The ice then sublimes (evaporates) from the bottom of the ice layer, and carves channels in the surface.

    The channels take on many forms. In the subimage shown here (figure 1) the gas from the dry ice has etched wide shallow channels. This region is relatively flat, which may be the reason these channels have a different morphology than the 'spiders' seen in more hummocky terrain.

    Observation Geometry Image PSP_003364_0945 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Apr-2007. The complete image is centered at -85.4 degrees latitude, 104.0 degrees East longitude. The range to the target site was 251.5 km (157.2 miles). At this distance the image scale is 25.2 cm/pixel (with 1 x 1 binning) so objects 75 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel . The image was taken at a local Mars time of 06:57 PM and the scene is illuminated from the west with a solar incidence angle of 75 degrees, thus the sun was about 15 degrees above the horizon. At a solar longitude of 219.6 degrees, the season on Mars is Northern Autumn.

  8. Modified femtosecond laser inscription method for tailored grating sensors in encapsulated silica and low-loss polymer optical fibres

    NASA Astrophysics Data System (ADS)

    Kalli, Kyriacos; Lacraz, Amedee; Theodosiou, Andreas; Kofinas, Marios

    2016-05-01

    There is great interest in the development of flexible wavelength filters and optical fibre sensors, such as Bragg and superstructure gratings, grating arrays and chirped gratings in glass and polymer optical fibres. A major hurdle is the development of an inscription method that should offer flexibility and reliability and be generally applicable to all optical fibre types. With this in mind we have developed a novel femtosecond laser inscription method; plane-by-plane inscription, whereby a 3D-index change of controlled length across the fibre core, width along the fibre axis and depth is written into the optical fibre. We apply this method for the inscription of various grating types in coated silica and low- loss CYTOP polymer optical fibres. The plane-by-plane method allows for multiple and overlapping gratings in the fibre core. Moreover, we demonstrate that this novel fibre Bragg grating inscription technique can be used to modify and add versatility to an existing, encapsulated optical fibre pressure sensor. The femtosecond laser is operated in the green or the near infra-red, based on the material properties under laser modification.

  9. Nonlinear theory of intense laser-plasma interactions modified by vacuum polarization effects

    SciTech Connect

    Chen, Wenbo; Bu, Zhigang; Li, Hehe; Luo, Yuee; Ji, Peiyong

    2013-07-15

    The classical nonlinear theory of laser-plasma interactions is corrected by taking account of the vacuum polarization effects. A set of wave equations are obtained by using the Heisenberg-Euler Lagrangian density and the derivative correction with the first-order quantum electrodynamic effects. A model more suitable to formulate the interactions of ultra-strong lasers and high-energy-density plasmas is developed. In the result, some environments in which the effects of vacuum polarization will be enhanced are discussed.

  10. Corrosion and wear properties of laser surface modified NiTi with Mo and ZrO 2

    NASA Astrophysics Data System (ADS)

    Ng, K. W.; Man, H. C.; Yue, T. M.

    2008-08-01

    Because of its biocompatibility, superelasticity and shape memory characteristics, NiTi alloys have been gaining immense interest in the medical field. However, there is still concern on the corrosion resistance of this alloy if it is going to be implanted in the human body for a long time. Titanium is not toxic but nickel is carcinogenic and is implicated in various reactions including allergic response and degeneration of muscle tissue. Debris from wear and the subsequent release of Ni + ions due to corrosion in the body system are fatal issues for long-term application of this alloy in the human body. This paper reports the corrosion and wear properties of laser surface modified NiTi using Mo and ZrO 2 as surface alloying elements, respectively. The modified layers which are free from microcracks and porosity, act as both physical barrier to nickel release and enhance the bulk properties, such as hardness, wear resistance, and corrosion resistance. The electrochemical performance of the surface modified alloy was studied in Hanks' solution. Electrochemical impedance spectroscopy was measured.

  11. Optical characteristics of modified fiber tips in single fiber, laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Oberg, P. Ake; Cai, Hongming; Rohman, Hakan; Larsson, Sven-Erik

    1994-02-01

    Percutaneous laser Doppler flowmetry (LDF) and bipolar surface electromyography (EMG) were used simultaneously for measurement of skeletal muscle (trapezius) perfusion in relation to static load and fatigue. On-line computer (386 SX) processing of the LDF- and EMG- signals made possible interpretation of the relationship between the perfusion and the activity of the muscle. The single fiber laser Doppler technique was used in order to minimize the trauma. A ray-tracing program was developed in the C language by which the optical properties of the fiber and fiber ends could be simulated. Isoirradiance graphs were calculated for three fiber end types and the radiance characteristics were measured for each fiber end. The three types of fiber-tips were evaluated and compared in flow model measurements.

  12. Comparative Evaluation of the Etching Pattern of Er,Cr:YSGG & Acid Etching on Extracted Human Teeth-An ESEM Analysis

    PubMed Central

    Mazumdar, Dibyendu; Ranjan, Shashi; Krishna, Naveen Kumar; Kole, Ravindra; Singh, Priyankar; Lakiang, Deirimika; Jayam, Chiranjeevi

    2016-01-01

    Introduction Etching of enamel and dentin surfaces increases the surface area of the substrate for better bonding of the tooth colored restorative materials. Acid etching is the most commonly used method. Recently, hard tissue lasers have been used for this purpose. Aim The aim of the present study was to evaluate and compare the etching pattern of Er,Cr:YSGG and conventional etching on extracted human enamel and dentin specimens. Materials and Methods Total 40 extracted non-diseased teeth were selected, 20 anterior and 20 posterior teeth each for enamel and dentin specimens respectively. The sectioned samples were polished by 400 grit Silicon Carbide (SiC) paper to a thickness of 1.0 ± 0.5 mm. The enamel and dentin specimens were grouped as: GrE1 & GrD1 as control specimens, GrE2 & GrD2 were acid etched and GrE3 & GrD3 were lased. Acid etching was done using Conditioner 36 (37 % phosphoric acid) according to manufacturer instructions. Laser etching was done using Er,Cr:YSGG (Erbium, Chromium : Ytrium Scandium Gallium Garnet) at power settings of 3W, air 70% and water 20%. After surface treatment with assigned agents the specimens were analyzed under ESEM (Environmental Scanning Electron Microscope) at X1000 and X5000 magnification. Results Chi Square and Student “t” statistical analysis was used to compare smear layer removal and etching patterns between GrE2-GrE3. GrD2 and GrD3 were compared for smear layer removal and diameter of dentinal tubule opening using the same statistical analysis. Chi-square test for removal of smear layer in any of the treated surfaces i.e., GrE2-E3 and GrD2-D3 did not differ significantly (p>0.05). While GrE2 showed predominantly type I etching pattern (Chi-square=2.78, 0.05

    0.10) and GrE3 showed type III etching (Chi-square=4.50, p<0.05). The tubule diameters were measured using GSA (Gesellschaft fur Softwareentwicklung und Analytik, Germany) image analyzer and the ‘t’ value of student ‘t’ test was 18.10 which was a

  13. Acute effects of vascular modifying agents in solid tumors assessed by noninvasive laser Doppler flowmetry and near infrared spectroscopy.

    PubMed

    Kragh, Michael; Quistorff, Bjørn; Horsman, Michael R; Kristjansen, Paul E G

    2002-01-01

    The potential of noninvasive laser Doppler flowmetry (LDF) and near infrared spectroscopy (NIRS) to detect acute effects of different vascular-modifying agents on perfusion and blood volume in tumors was evaluated. C3H mouse mammary carcinomas (approximately 200 mm(3)) in the rear foot of CDF1 mice were treated with flavone acetic acid (FAA, 150 mg/kg), 5,6-dimethylxanthenone-4-acetic acid (DMXAA, 20 mg/kg), combretastatin A-4 disodium phosphate (CA4DP, 250 mg/kg), hydralazine (HDZ, 5 mg/kg), or nicotinamide (NTA, 500 mg/kg). Tumor perfusion before and after treatment was evaluated by noninvasive LDF, using a 41 degrees C heated custom-built LDF probe with four integrated laser/receiver units, and tumor blood volume was estimated by NIRS, using light guide coupled reflectance measurements at 800+/-10 nm. FAA, DMXAA, CA4DP, and HDZ significantly decreased tumor perfusion by 50%, 47%, 73%, and 78%, respectively. In addition, FAA, DMXAA, and HDZ significantly reduced the blood volume within the tumor, indicating that these compounds to some degree shunted blood from the tumor to adjacent tissue, HDZ being most potent. CA4DP caused no change in the tumor blood volume, indicating that the mechanism of action of CA4DP was vascular shut down with the blood pool trapped in the tumor. NTA caused no change in either tumor perfusion or tumor blood volume. We conclude that noninvasive LDF and NIRS can determine acute effects of vascular modifying agents on tumor perfusion and blood volume.

  14. Probe microloading effect of in-situ etch in EPROM stack-gate process

    NASA Astrophysics Data System (ADS)

    Chiou, Jang Ming; Pan, Sheng Liang; Ching, Kai Ming; Chang, Bi-Jiang; Lu, Kuo-Liang

    1998-08-01

    An unpredictable significant microloading effect occurs between array and low photoresist ratio area when C2F6Cl2 and HBr are used as etch gas to define EPROM stack gate. Although we have examined etch time for array is enough, much poly residue still exist on those test keys with low photoresist ratio areas that lead to failure of electric parameter. On array area, polymer formed from C2F6 reactant gas trends to accumulate upon side-wall. Oppositely on the low photoresist area, there is almost not nay side-wall that can offer the medium absorbed by polymer. It will fall down and deposits upon poly surface. That will be a barrier. In the beginning, sufficient etch time often result from under- etch issue. We have modified etch time to get best optimal condition. Now, this issue does not occur any more.

  15. Controlled fabrication of silicon nanowires via nanosphere lithograph and metal assisted chemical etching.

    PubMed

    Sun, Bo; Shi, Tielin; Sheng, Wenjun; Liao, Guanglan

    2013-08-01

    We investigated the controlled fabrication of uniform vertical aligned silicon nanowires with desired length, diameter and location by combining nanosphere lithograph and metal assisted chemical etching techniques. The close-packed polystyrene nanospheres array was obtained by self-assemble technique, followed by reactive ion etching to acquire a non-close-packed monolayer template. Subsequently, the template was used to create a metal film with nanoholes array, which enable the controlled fabrication of ordered silicon nanowires via metal assisted chemical etching technique. By adjusting the monolayer of polystyrene nanospheres and the conditions for the metal assisted chemical etching, we obtained uniform distributed silicon nanowires with desired morphology. The aspect ratio of the silicon nanowires can reach to about 86:1. Furthermore, we have obtained the double-layer silicon nanowires by slight modifying the process. The influences of various conditions during etching were also discussed for improving the controlled fabrication.

  16. Two-year clinical trial of a universal adhesive in total-etch and self-etch mode in non-carious cervical lesions☆

    PubMed Central

    Lawson, Nathaniel C.; Robles, Augusto; Fu, Chin-Chuan; Lin, Chee Paul; Sawlani, Kanchan; Burgess, John O.

    2016-01-01

    Objectives To compare the clinical performance of Scotchbond™ Universal Adhesive used in self- and total-etch modes and two-bottle Scotchbond™ Multi-purpose Adhesive in total-etch mode for Class 5 non-carious cervical lesions (NCCLs). Methods 37 adults were recruited with 3 or 6 NCCLs (>1.5 mm deep). Teeth were isolated, and a short cervical bevel was prepared. Teeth were restored randomly with Scotchbond Universal total-etch, Scotchbond Universal self-etch or Scotchbond Multi-purpose followed with a composite resin. Restorations were evaluated at baseline, 6, 12 and 24 months for marginal adaptation, marginal discoloration, secondary caries, and sensitivity to cold using modified USPHS Criteria. Patients and evaluators were blinded. Logistic and linear regression models using a generalized estimating equation were applied to evaluate the effects of time and adhesive material on clinical assessment outcomes over the 24 month follow-up period. Kaplan–Meier method was used to compare the retention between adhesive materials. Results Clinical performance of all adhesive materials deteriorated over time for marginal adaptation, and discoloration (p <0.0001). Both Scotchbond Universal self-etch and Scotchbond Multi-purpose materials were more than three times as likely to contribute to less satisfying performance in marginal discoloration over time than Scotchbond Universal total-etch. The retention rates up to 24 months were 87.6%, 94.9% and 100% for Scotchbond Multi-purpose and Scotchbond Universal self-etch and total-etch, respectively. Conclusions Scotchbond Universal in self- and total- etch modes performed similar to or better than Scotchbond Multipurpose, respectively. Clinical significance 24 month evaluation of a universal adhesive indicates acceptable clinical performance, particularly in a total-etch mode. PMID:26231300

  17. Plasma Etching Improves Solar Cells

    NASA Technical Reports Server (NTRS)

    Bunyan, S. M.

    1982-01-01

    Etching front surfaces of screen-printed silicon photovoltaic cells with sulfur hexafluoride plasma found to increase cell performance while maintaining integrity of screen-printed silver contacts. Replacement of evaporated-metal contacts with screen-printed metal contacts proposed as one way to reduce cost of solar cells for terrestrial applications.

  18. Inductively Coupled Plasma Etching of III-V Antimonides in BCl(3)/Ar and Cl(2)/Ar

    SciTech Connect

    Leavitt, R.P.; Lester, L.F.; Shul, R.J.; Willison, C.G.; Zhang, L.

    1998-11-04

    Inductively coupled plasma (ICP) etching characteristics of GaSb and AIGaAsSb have been investigated in BC13/Ar and Clz/Ar plasmas. The etch rates and selectivity between GaSb and AIGaAsSb are reported as functions of plasma chemistry, ICP power, RF self-bias, and chamber pressure. It is found that physical sputtering resorption of the etch products plays a dominant role in BC13/Ar ICP etching, while in Clz/Ar plasma, the chemical reaction dominates the etching. GaSb etch rates exceeding 2 ~rnhnin are achieved in Clz/Ar plasmas with smooth surfaces and anisotropic profiles. In BC13/Ar plasmas, etch rates of 5100 Mmin and 4200 Mmin are obtained for GaSb and AIGaAsSb, respectively. The surfaces of both GaSb and AIGaAsSb etched in BC13/Ar plasmas remain smooth and stoichiometric over the entire range of plasma conditions investigated. This result is attributed to effective removal of etch products by physical sputtering. For a wide range of plasma conditions, the selectivity between GaSb and AIGaAsSb is close to unity, which is desirable for fabricating etched mirrors and gratings for Sb-based mid-IR laser diodes.

  19. Apparatus for edge etching of semiconductor wafers

    NASA Technical Reports Server (NTRS)

    Casajus, A.

    1986-01-01

    A device for use in the production of semiconductors, characterized by etching in a rapidly rotating etching bath is described. The fast rotation causes the surface of the etching bath to assume the form of a paraboloid of revolution, so that the semiconductor wafer adjusted at a given height above the resting bath surface is only attacked by etchant at the edges.

  20. Nanoscrews: Asymmetrical Etching of Silver Nanowires.

    PubMed

    Tan, Rachel Lee Siew; Chong, Wen Han; Feng, Yuhua; Song, Xiaohui; Tham, Chu Long; Wei, Jun; Lin, Ming; Chen, Hongyu

    2016-08-31

    World's smallest screws with helical threads are synthesized via mild etching of Ag nanowires. With detailed characterization, we show that this nanostructure arises not from the transformation of the initial lattice, but the result of a unique etching mode. Three-dimensional printed models are used to illustrate the evolution of etch pits, from which a possible mechanism is postulated. PMID:27513181

  1. Semiconductor etching by hyperthermal neutral beams

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K. (Inventor); Giapis, Konstantinos P. (Inventor)

    1999-01-01

    An at-least dual chamber apparatus and method in which high flux beams of fast moving neutral reactive species are created, collimated and used to etch semiconductor or metal materials from the surface of a workpiece. Beams including halogen atoms are preferably used to achieve anisotropic etching with good selectivity at satisfactory etch rates. Surface damage and undercutting are minimized.

  2. Optimal conditions for the preparation of superhydrophobic surfaces on al substrates using a simple etching approach

    NASA Astrophysics Data System (ADS)

    Ruan, Min; Li, Wen; Wang, Baoshan; Luo, Qiang; Ma, Fumin; Yu, Zhanlong

    2012-07-01

    Many methods have been proposed to develop the fabrication techniques for superhydrophobic surfaces. However, such techniques are still at their infant stage and suffer many shortcomings. In this paper, the superhydrophobic surfaces on an Al substrate were prepared by a simple etching method. Effects of etching time, modifiers, and modification concentration and time were investigated, and optimal conditions for the best superhydrophobicity were studied. It was demonstrated that for etching the aluminum plate in Beck's dislocation, if the etching time was 15 s, modifier was Lauric acid-ethanol solution, and modification concentration and time was 5% and 1.5 h, respectively, the surface exhibited a water contact angle as high as 167.5° and a contact angle hysteresis as low as 2.3°.

  3. Precision Laser Annealing of Focal Plane Arrays

    SciTech Connect

    Bender, Daniel A.; DeRose, Christopher; Starbuck, Andrew Lea; Verley, Jason C.; Jenkins, Mark W.

    2015-09-01

    We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing window over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. Modeling results for laser annealing in Si are also presented.

  4. Cryogenic electron beam induced chemical etching.

    PubMed

    Martin, Aiden A; Toth, Milos

    2014-11-12

    Cryogenic cooling is used to enable efficient, gas-mediated electron beam induced etching (EBIE) in cases where the etch rate is negligible at room and elevated substrate temperatures. The process is demonstrated using nitrogen trifluoride (NF3) as the etch precursor, and Si, SiO2, SiC, and Si3N4 as the materials volatilized by an electron beam. Cryogenic cooling broadens the range of precursors that can be used for EBIE, and enables high-resolution, deterministic etching of materials that are volatilized spontaneously by conventional etch precursors as demonstrated here by NF3 and XeF2 EBIE of silicon. PMID:25333843

  5. Spotlight on lasers. A look at potential benefits

    SciTech Connect

    Zakariasen, K.L.; MacDonald, R.; Boran, T. )

    1991-07-01

    Before lasers can be highly integrated into clinical practice, further research must prove the efficacy, efficiency, consistency and safety of this new technology. Currently, increased caries prevention and rapid laser etching are two potential benefits of laser technology.

  6. Ion-beam-assisted etching of diamond

    NASA Technical Reports Server (NTRS)

    Efremow, N. N.; Geis, M. W.; Flanders, D. C.; Lincoln, G. A.; Economou, N. P.

    1985-01-01

    The high thermal conductivity, low RF loss, and inertness of diamond make it useful in traveling wave tubes operating in excess of 500 GHz. Such use requires the controlled etching of type IIA diamond to produce grating like structures tens of micrometers deep. Previous work on reactive ion etching with O2 gave etching rates on the order of 20 nm/min and poor etch selectivity between the masking material (Ni or Cr) and the diamond. An alternative approach which uses a Xe(+) beam and a reactive gas flux of NO2 in an ion-beam-assisted etching system is reported. An etching rate of 200 nm/min was obtained with an etching rate ratio of 20 between the diamond and an aluminum mask.

  7. Plasmoids for etching and deposition

    NASA Astrophysics Data System (ADS)

    Pothiraja, Ramasamy; Bibinov, Nikita; Awakowicz, Peter

    2014-11-01

    In this manuscript we show fascinating properties of plasmoids, which are known to be self-sustained plasma entities, and can exist without being in contact with any power supply. Plasmoids are produced in a filamentary discharge in a Ar/CH4 mixture with a high production rate of about 105 s-1. It is observed that plasmoids etch the solid amorphous hydrocarbon film with high efficiency. Energy density of the plasmoid, which is estimated on the basis of glowing area of plasmoids in the photographic image and sublimation enthalpy of the etched hydrocarbon film, amounts to about 90 J m-3. This value is much lower than the energy density of observed ball lightning (natural plasmoid). A very surprising property is an attraction between plasmoids, and the formation of plasmoid-groups. Because of this attractive force, carbon material, which is collected in plasmoids by etching of the hydrocarbon film or by propagation through a methane/argon gas mixture, is compressed into crystals.

  8. Microstructuring of Si(100) by light induced dry etching in the VUV

    NASA Astrophysics Data System (ADS)

    Streller, U.; Krabbe, A.; Raaf, H.; Schwentner, N.

    1998-02-01

    Light-induced dry etching of Si(100) in the VUV range using synchrotron radiation (SR) and a halogen-containing gas (XeF2) has been investigated with respect to selectivity, anisotropy, quantum efficiency, optimal wavelength, spatial resolution and quality of the photochemical etching processes. Microstructuring of Si with XeF2can be optimized to achieve etched structures in the sub-micrometre range by increasing the contrast in choosing a wavelength with minimal unselective etching. The strength of unselective etching is strongly wavelength dependent and follows the XeF2gas phase absorption coefficient. Fragments from dissociation of the XeF2reach the Si surface and thus cause unselective etching. Optimal dry etching occurs for wavelengths around 120 nm because the selectivity is high due to an excitation of a surface layer and also the quantum efficiency is very large. An efficiency of 10 removed Si atoms per incoming photon, which exceeds that in the visible spectral range by more than four orders of magnitude, combined with the higher spatial resolution at 120 nm compared to the conventional excimer laser and I-line wavelengths and the availability of optical materials for imaging present a perspective for generating line densities in the Gbit range.

  9. Laser labeling, a safe technology to label produce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laser labeling of fruits and vegetables is an alternative means to label produce. Low energy CO2 laser beams etch the surface showing the contrasting underlying layer. These etched surfaces can promote water loss and potentially allow for entry of decay organisms. The long-term effects of laser labe...

  10. In-Plasma Photo-Assisted Etching

    NASA Astrophysics Data System (ADS)

    Economou, Demetre

    2015-09-01

    A methodology to precisely control the ion energy distribution (IED) on a substrate allowed the study of silicon etching as a function of ion energy at near-threshold energies. Surprisingly, a substantial etching rate was observed, independent of ion energy, when the ion energy was below the ion-assisted etching threshold (~ 16 eV for etching silicon with chlorine plasma). Careful experiments led to the conclusion that this ``sub-threshold'' etching was due to photons, predominately at wavelengths <1700 Å. Among the plasmas investigated, photo-assisted etching (PAE) was lowest in Br2/Ar gas mixtures and highest in HBr/Cl2/Ar. Above threshold etching rates scaled with the square root of ion energy. PAE rates scaled with the product of surface halogen coverage (measured by X-ray photoelectron spectroscopy) and Ar emission intensity (7504 Å). Scanning electron and atomic force microscopy (SEM and AFM) revealed that photo-etched surfaces were very rough, quite likely due to the inability of the photo-assisted process to remove contaminants from the surface. In-plasma PAE may be be a complicating factor for processes that require low ion energies, such as atomic layer etching. On the other hand PAE could produce sub-10 nm high aspect ratio (6:1) features by highly selective plasma etching to transfer nascent nanopatterns in silicon. Work supported by DOE Plasma Science Center and NSF.

  11. Etching method for photoresists or polymers

    NASA Technical Reports Server (NTRS)

    Lerner, Narcinda R. (Inventor); Wydeven, Theodore J., Jr. (Inventor)

    1991-01-01

    A method for etching or removing polymers, photoresists, and organic contaminants from a substrate is disclosed. The method includes creating a more reactive gas species by producing a plasma discharge in a reactive gas such as oxygen and contacting the resulting gas species with a sacrificial solid organic material such as polyethylene or polyvinyl fluoride, reproducing a highly reactive gas species, which in turn etches the starting polymer, organic contaminant, or photoresist. The sample to be etched is located away from the plasma glow discharge region so as to avoid damaging the substrate by exposure to high energy particles and electric fields encountered in that region. Greatly increased etching rates are obtained. This method is highly effective for etching polymers such as polyimides and photoresists that are otherwise difficult or slow to etch downstream from an electric discharge in a reactive gas.

  12. Etching radical controlled gas chopped deep reactive ion etching

    DOEpatents

    Olynick, Deidre; Rangelow, Ivo; Chao, Weilun

    2013-10-01

    A method for silicon micromachining techniques based on high aspect ratio reactive ion etching with gas chopping has been developed capable of producing essentially scallop-free, smooth, sidewall surfaces. The method uses precisely controlled, alternated (or chopped) gas flow of the etching and deposition gas precursors to produce a controllable sidewall passivation capable of high anisotropy. The dynamic control of sidewall passivation is achieved by carefully controlling fluorine radical presence with moderator gasses, such as CH.sub.4 and controlling the passivation rate and stoichiometry using a CF.sub.2 source. In this manner, sidewall polymer deposition thicknesses are very well controlled, reducing sidewall ripples to very small levels. By combining inductively coupled plasmas with controlled fluorocarbon chemistry, good control of vertical structures with very low sidewall roughness may be produced. Results show silicon features with an aspect ratio of 20:1 for 10 nm features with applicability to nano-applications in the sub-50 nm regime. By comparison, previous traditional gas chopping techniques have produced rippled or scalloped sidewalls in a range of 50 to 100 nm roughness.

  13. Selective etching of silicon carbide films

    DOEpatents

    Gao, Di; Howe, Roger T.; Maboudian, Roya

    2006-12-19

    A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.

  14. Controlled ion implant damage profile for etching

    DOEpatents

    Arnold, Jr., George W.; Ashby, Carol I. H.; Brannon, Paul J.

    1990-01-01

    A process for etching a material such as LiNbO.sub.3 by implanting ions having a plurality of different kinetic energies in an area to be etched, and then contacting the ion implanted area with an etchant. The various energies of the ions are selected to produce implant damage substantially uniformly throughout the entire depth of the zone to be etched, thus tailoring the vertical profile of the damaged zone.

  15. Dry etching technologies for reflective multilayer

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori

    2012-11-01

    We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.

  16. Method for dry etching of transition metals

    DOEpatents

    Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

    1998-09-29

    A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

  17. Method for dry etching of transition metals

    DOEpatents

    Ashby, Carol I. H.; Baca, Albert G.; Esherick, Peter; Parmeter, John E.; Rieger, Dennis J.; Shul, Randy J.

    1998-01-01

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  18. A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Qiao, Lingling; He, Fei; Wang, Chen; Cheng, Ya; Sugioka, Koji; Midorikawa, Katsumi

    2011-01-01

    We report on the integration of microlens and microfluidic channels in fused silica glass chip using femtosecond laser micromachining. The main process includes three procedures: (1) femtosecond laser scanning for forming a hemispherical surface and a Y-shaped channel in the fused silica glass; (2) chemical etching of the sample for removal of the modified areas; and (3) oxyhydrogen (OH) flame polish for smoothening the surface of the microlens. In addition, we demonstrate that the fabricated microlens exhibits good imaging performance with a 5× magnification, showing great potential in future lab-on-a-chip applications.

  19. Optical and electrical diagnostics of fluorocarbon plasma etching processes

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul

    1999-05-01

    This article reviews recent work concerning the role of CF and CF2 radicals in etching and polymerization processes occurring in capacitively coupled radio-frequency plasmas in fluorocarbon gases used for the selective etching of SiO2 layers in microelectronic device fabrication. Laser-induced fluorescence (LIF) was used to determine time-resolved axial concentration profiles of these species in continuous and pulse-modulated CF4 and C2F6 plasmas. Calibration techniques, including broad-band UV absorption spectroscopy, were developed to put the LIF measurements on an absolute scale. A novel technique was used to determine the ion flux to the reactor walls in these polymerizing environments. The mass distribution of the ions arriving at the reactor walls was determined using a quadrupole mass spectrometer. It was found that CFx radicals are produced predominantly by the reflection of neutralized and dissociated CFx+ ions at the powered electrode surface. When the fluorine atom concentration is high, the CFx radicals are destroyed effectively by recombination catalysed by the reactor walls. When the fluorine atom concentration is lowered, the CF2 concentration rises markedly, and it participates in gas-phase oligomerization processes, forming large CxFy molecules and, after ionization, large CxFy+ ions. These species appear to be the true polymer precursors. This mechanism explains the well known correlation between high CF2 concentrations, polymer deposition and SiO2 over Si etch selectivity.

  20. The effect of Er:YAG laser irradiation on hydroxyapatite-coated implants and fluoride-modified TiO2-blasted implant surfaces: a microstructural analysis.

    PubMed

    Shin, Seung-Il; Lee, Eun-Kwon; Kim, Jeong-Hyun; Lee, Ji-Hun; Kim, Sun-Hee; Kwon, Young-Hyuk; Herr, Yeek; Chung, Jong-Hyuk

    2013-05-01

    The purpose of this study was to evaluate the microscopic changes and surface roughness on hydroxyapatite (HA)-coated implants following exposure to different powers and durations of Er:YAG laser irradiation in order to determine the proper pulse energy level and irradiation time. Ten HA-coated implants and ten fluoride-modified TiO2 implants were used. The implants were divided into a control (one implant) and test group (nine implants) for each implant type. Implants in the test groups were sub-divided into three groups (three implants per group) based on the applied laser pulse energy and irradiation time. The measurement of surface roughness was performed on all implants in the test groups using a white light interferometer before and after laser irradiation. R a values were recorded and compared in order to evaluate changes in surface roughness. For HA-coated implants, the R a values increased in all test groups after laser irradiation. However, mean R a values in the fluoride-modified TiO2-blasted implant test group were decreased after irradiation. There was no statistical difference. Scanning electron microscope analysis revealed surface alterations in both the HA-coated and fluoridated TiO2-blasted implants irradiated for 1.5 min at 100 mJ/pulse, 10 Hz. When the pulse energy and irradiation time increased, greater surface alterations, including surface flattening and microfractures, were observed. In conclusion, the results of the current study suggest that no changes could be observed in both HA-coated implants and fluoride-modified TiO2-blasted implants after irradiation at an intensity of 100 mJ/pulse, 10 Hz for 1 min performed to achieve surface detoxification.

  1. Etching study of poled lithium tantalate crystal using wet etching technique with ultrasonic assistance

    NASA Astrophysics Data System (ADS)

    Gao, Z. D.; Wang, Q. J.; Zhang, Y.; Zhu, S. N.

    2008-02-01

    Utilizing the difference in etching rates of the positive and negative domains in an acid solution, domain pattern can be fabricated on the polarity surface of a congruent lithium tantalate crystal. Our results show that the ultrasonic agitation can improve the etching rate. An enhanced factor up to six was realized under a 50 W of ultrasonic power in a mixture with volumetric ratio of HF to H 2SO 4 at 1:2. The dependences of etching morphology on etching time and etching etchant for congruent lithium tantalate crystal were studied. The technique is applicable to fabricating three-dimensional microstructures on the surface of ferroelectric crystals.

  2. Etching with electron beam generated plasmas

    SciTech Connect

    Leonhardt, D.; Walton, S.G.; Muratore, C.; Fernsler, R.F.; Meger, R.A.

    2004-11-01

    A modulated electron beam generated plasma has been used to dry etch standard photoresist materials and silicon. Oxygen-argon mixtures were used to etch organic resist material and sulfur hexafluoride mixed with argon or oxygen was used for the silicon etching. Etch rates and anisotropy were determined with respect to gas compositions, incident ion energy (from an applied rf bias) and plasma duty factor. For 1818 negative resist and i-line resists the removal rate increased nearly linearly with ion energy (up to 220 nm/min at 100 eV), with reasonable anisotropic pattern transfer above 50 eV. Little change in etch rate was seen as gas composition went from pure oxygen to 70% argon, implying the resist removal mechanism in this system required the additional energy supplied by the ions. With silicon substrates at room temperature, mixtures of argon and sulfur hexafluoride etched approximately seven times faster (1375 nm/min) than mixtures of oxygen and sulfur hexafluoride ({approx}200 nm/min) with 200 eV ions, the difference is attributed to the passivation of the silicon by involatile silicon oxyfluoride (SiO{sub x}F{sub y}) compounds. At low incident ion energies, the Ar-SF{sub 6} mixtures showed a strong chemical (lateral) etch component before an ion-assisted regime, which started at {approx}75 eV. Etch rates were independent of the 0.5%-50% duty factors studied in this work.

  3. Simulation of Etching Profiles Using Level Sets

    NASA Technical Reports Server (NTRS)

    Hwang, Helen; Govindan, T. R.; Meyyappan, M.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Using plasma discharges to etch trenches and via holes in substrates is an important process in semiconductor manufacturing. Ion enhanced etching involves both neutral fluxes, which are isotropic, and ion fluxes, which are anisotropic. The angular distributions for the ions determines the degree of vertical etch, while the amount of the neutral fluxes determines the etch rate. We have developed a 2D profile evolution simulation which uses level set methods to model the plasma-substrate interface. Using level sets instead of traditional string models avoids the use of complicated delooping algorithms. The simulation calculates the etch rate based on the fluxes and distribution functions of both ions and neutrals. We will present etching profiles of Si substrates in low pressure (10s mTorr) Ar/Cl2 discharges for a variety of incident ion angular distributions. Both ion and neutral re-emission fluxes are included in the calculation of the etch rate, and their contributions to the total etch profile will be demonstrated. In addition, we will show RIE lag effects as a function of different trench aspect ratios. (For sample profiles, please see http://www.ipt.arc.nasa.gov/hwangfig1.html)

  4. Note: electrochemical etching of sharp iridium tips.

    PubMed

    Lalanne, Jean-Benoît; Paul, William; Oliver, David; Grütter, Peter H

    2011-11-01

    We describe an etching procedure for the production of sharp iridium tips with apex radii of 15-70 nm, as determined by scanning electron microscopy, field ion microscopy, and field emission measurements. A coarse electrochemical etch followed by zone electropolishing is performed in a relatively harmless calcium chloride solution with high success rate.

  5. Graphene nanoribbons: Relevance of etching process

    SciTech Connect

    Simonet, P. Bischoff, D.; Moser, A.; Ihn, T.; Ensslin, K.

    2015-05-14

    Most graphene nanoribbons in the experimental literature are patterned using plasma etching. Various etching processes induce different types of defects and do not necessarily result in the same electronic and structural ribbon properties. This study focuses on two frequently used etching techniques, namely, O{sub 2} plasma ashing and O{sub 2 }+ Ar reactive ion etching (RIE). O{sub 2} plasma ashing represents an alternative to RIE physical etching for sensitive substrates, as it is a more gentle chemical process. We find that plasma ashing creates defective graphene in the exposed trenches, resulting in instabilities in the ribbon transport. These are probably caused by more or larger localized states at the edges of the ashed device compared to the RIE defined device.

  6. Mechanisms of Hydrocarbon Based Polymer Etch

    NASA Astrophysics Data System (ADS)

    Lane, Barton; Ventzek, Peter; Matsukuma, Masaaki; Suzuki, Ayuta; Koshiishi, Akira

    2015-09-01

    Dry etch of hydrocarbon based polymers is important for semiconductor device manufacturing. The etch mechanisms for oxygen rich plasma etch of hydrocarbon based polymers has been studied but the mechanism for lean chemistries has received little attention. We report on an experimental and analytic study of the mechanism for etching of a hydrocarbon based polymer using an Ar/O2 chemistry in a single frequency 13.56 MHz test bed. The experimental study employs an analysis of transients from sequential oxidation and Ar sputtering steps using OES and surface analytics to constrain conceptual models for the etch mechanism. The conceptual model is consistent with observations from MD studies and surface analysis performed by Vegh et al. and Oehrlein et al. and other similar studies. Parameters of the model are fit using published data and the experimentally observed time scales.

  7. Surface modification of Ti dental implants by Nd:YVO 4 laser irradiation

    NASA Astrophysics Data System (ADS)

    Braga, Francisco J. C.; Marques, Rodrigo F. C.; Filho, Edson de A.; Guastaldi, Antonio C.

    2007-09-01

    Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO 2 or TiO 2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO 4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases αTi, βTi, Ti 6O, Ti 3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters. The aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process.

  8. Aspect ratio dependent etching lag reduction in deep silicon etch processes

    SciTech Connect

    Lai, S.L.; Johnson, D.; Westerman, R.

    2006-07-15

    Microelectromechanical system (MEMS) device fabrication often involves three dimensional structures with high aspect ratios. Moreover, MEMS designs require structures with different dimensions and aspect ratios to coexist on a single microchip. There is a well-documented aspect ratio dependent etching (ARDE) effect in deep silicon etching processes. For features with different dimensions etched simultaneously, the ARDE effect causes bigger features to be etched at faster rates. In practice, ARDE effect has many undesired complications to MEMS device fabrication. This article presents a physical model to describe the time division multiplex (TDM) plasma etch processes and thereafter the experimental results on ARDE lag reduction. The model breaks individual plasma etch cycles in the TDM plasma etch processes into polymer deposition, polymer removal, and spontaneous silicon etching stages. With the insights gained from the model and control over the passivation and etch steps, it has been demonstrated that ARDE lag can be controlled effectively. Experiments have shown that a normal ARDE lag can be changed to an inverse ARDE lag. Under optimized conditions, the ARDE lag is reduced to below 2%-3% for trenches with widths ranging from 2.5 to 100 {mu}m, while maintaining good etch profile in trenches with different dimensions. Such results are achieved at etch rates exceeding 2 {mu}m/min.

  9. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    SciTech Connect

    Dang, Z. Y.; Breese, M. B. H.; Lin, Y.; Tok, E. S.; Vittone, E.

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

  10. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    NASA Astrophysics Data System (ADS)

    Dang, Z. Y.; Breese, M. B. H.; Lin, Y.; Tok, E. S.; Vittone, E.

    2014-05-01

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

  11. Tin removal from extreme ultraviolet collector optics by inductively coupled plasma reactive ion etching

    SciTech Connect

    Shin, H.; Srivastava, S. N.; Ruzic, D. N.

    2008-05-15

    Tin (Sn) has the advantage of delivering higher conversion efficiency compared to other fuel materials (e.g., Xe or Li) in an extreme ultraviolet (EUV) source, a necessary component for the leading next generation lithography. However, the use of a condensable fuel in a lithography system leads to some additional challenges for maintaining a satisfactory lifetime of the collector optics. A critical issue leading to decreased mirror lifetime is the buildup of debris on the surface of the primary mirror that comes from the use of Sn in either gas discharge produced plasma (GDPP) or laser produced plasma (LPP). This leads to a decreased reflectivity from the added material thickness and increased surface roughness that contributes to scattering. Inductively coupled plasma reactive ion etching with halide ions is one potential solution to this problem. This article presents results for etch rate and selectivity of Sn over SiO{sub 2} and Ru. The Sn etch rate in a chlorine plasma is found to be much higher (of the order of hundreds of nm/min) than the etch rate of other materials. A thermally evaporated Sn on Ru sample was prepared and cleaned using an inductively coupled plasma etching method. Cleaning was confirmed using several material characterization techniques. Furthermore, a collector mock-up shell was then constructed and etching was performed on Sn samples prepared in a Sn EUV source using an optimized etching recipe. The sample surface before and after cleaning was analyzed by atomic force microscopy, x-ray photoelectron spectroscopy, and Auger electron spectroscopy. The results show the dependence of etch rate on the location of Sn samples placed on the collector mock-up shell.

  12. Control and reduction of post-metal etch corrosion effects due to airborne molecular contamination

    NASA Astrophysics Data System (ADS)

    Morilla, Carmen; Prieto, Pilar; Barbado, Francisco

    2001-04-01

    Ionic contamination in microelectronic circuitry can have a detrimental effect on device reliability and yield. Post- aluminum etch corrosion has been considered a critical issue in dry plasma etching of aluminum. In this work, we review the actions taken to reduce the amount of defects due to Cl- induced corrosion in the metal lines at our manufacturing line in Lucent Technologies Madrid. Two approaches were followed in a parallel way: on one side manufacturing procedures were modified to reduce at the minimum the exposure of the unprotected metal lines to the clean room environment thus it is avoided any metal corrosion caused by a possible environmental contamination. The second working line was to improve the resistance to corrosion of the post-etched metal. With this aim, our efforts were focused on the passivation step just after the metal etch and prior the photoresist strip. The influence of several parameter settings of the passivation plasma on the resistance of the etched metal to corrosion has been studied. Accelerated corrosion tests were used to monitor the intrinsic metallization susceptibility of corrosion and chlorine and fluorine residuals content in the wafer were measured using ion-chromatography. It was found that a modification in the pressure, plasma power or duration of the passivation step could have a beneficial impact on the amount of chlorine residues left on the metal lines after etch and consequently an enhancement of their resistance to corrosion.

  13. Study of microstructure and silicon segregation in cast iron using color etching and electron microprobe analysis

    SciTech Connect

    Vazehrad, S.; Diószegi, A.

    2015-06-15

    An investigation on silicon segregation of lamellar, compacted and nodular graphite iron was carried out by applying a selective, immersion color etching and a modified electron microprobe to study the microstructure. The color etched micrographs of the investigated cast irons by revealing the austenite phase have provided data about the chronology and mechanism of microstructure formation. Moreover, electron microprobe has provided two dimensional segregation maps of silicon. A good agreement was found between the segregation profile of silicon in the color etched microstructure and the silicon maps achieved by electron microprobe analysis. However, quantitative silicon investigation was found to be more accurate than color etching results to study the size of the eutectic colonies. - Highlights: • Sensitivity of a color etchant to silicon segregation is quantitatively demonstrated. • Si segregation measurement by EMPA approved the results achieved by color etching. • Color etched micrographs provided data about solidification mechanism in cast irons. • Austenite grain boundaries were identified by measuring the local Si concentration.

  14. Silver ion mediated shape control of platinum nanoparticles: Removal of silver by selective etching leads to increased catalytic activity

    SciTech Connect

    Grass, Michael E.; Yue, Yao; Habas, Susan E.; Rioux, Robert M.; Teall, Chelsea I.; Somorjai, G.A.

    2008-01-09

    A procedure has been developed for the selective etching of Ag from Pt nanoparticles of well-defined shape, resulting in the formation of elementally-pure Pt cubes, cuboctahedra, or octahedra, with a largest vertex-to-vertex distance of {approx}9.5 nm from Ag-modified Pt nanoparticles. A nitric acid etching process was applied Pt nanoparticles supported on mesoporous silica, as well as nanoparticles dispersed in aqueous solution. The characterization of the silica-supported particles by XRD, TEM, and N{sub 2} adsorption measurements demonstrated that the structure of the nanoparticles and the mesoporous support remained conserved during etching in concentrated nitric acid. Both elemental analysis and ethylene hydrogenation indicated etching of Ag is only effective when [HNO{sub 3}] {ge} 7 M; below this concentration, the removal of Ag is only {approx}10%. Ethylene hydrogenation activity increased by four orders of magnitude after the etching of Pt octahedra that contained the highest fraction of silver. High-resolution transmission electron microscopy of the unsupported particles after etching demonstrated that etching does not alter the surface structure of the Pt nanoparticles. High [HNO{sub 3}] led to the decomposition of the capping agent, polyvinylpyrollidone (PVP); infrared spectroscopy confirmed that many decomposition products were present on the surface during etching, including carbon monoxide.

  15. Conjunctive effects of the 5HT(2) receptor antagonist, sarpogrelate, on thrombolysis with modified tissue plasminogen activator in different laser-induced thrombosis models.

    PubMed

    Yamashita, T; Kitamori, K; Hashimoto, M; Watanabe, S; Giddings, J C; Yamamoto, J

    2000-01-01

    The effect of the serotonin (5HT(2)) receptor antagonist, sarpogrelate, was compared with that of the selective thrombin inhibitor, argatroban, in modified tissue plasminogen activator (mt-PA)-induced thrombolysis using two laser-induced thrombosis models reflecting different levels of vascular endothelial cell damage. Bolus intravenous infusions of mt-PA (0.1, 0.2, 0.4 mg/kg) induced thrombolysis in a dose-dependent manner. Sarpogrelate (4.7 mg/kg b.i. + 1.0 mg/kg/h i.v.) given together with mt-PA (0.2 mg/kg b.i.) optimally enhanced thrombolysis (p < 0.05) in a helium-neon laser-induced model where endothelial damage was minimal but not in an argon laser model where desquamation of endothelial cells was recognized. In contrast, argatroban (0.5 mg/kg b.i. + 0.1 mg/kg/h i.v.) given with mt-PA (0.2 mg/kg b.i.) significantly enhanced thrombolysis in both laser models. The findings indicate that the effectiveness of sarpogrelate in thrombolytic therapy might depend on the extent of vascular damage. PMID:11357001

  16. Plasma chemical modification of track-etched membrane surface layer for improvement of their biomedical properties

    NASA Astrophysics Data System (ADS)

    Kravets, Liubov I.; Ryazantseva, Tatyana V.

    2013-12-01

    The morphological and clinical studies of poly(ethylene terephthalate) track-etched membrane modified by plasma of non-polymerizing gases as drainage materials for antiglaucomatous operations were performed. It was demonstrated their compatibility with eye tissues. Moreover, it was shown that a new drainage has a good lasting hypotensive effect and can be used as operation for refractory glaucoma surgery.

  17. The effect of inductively-coupled-plasma reactive ion etching power on the etching rate and the surface roughness of a sapphire substrate.

    PubMed

    Chang, Chun-Ming; Shiao, Ming-Hua; Yang, Chin-Tien; Cheng, Chung-Ta; Hsueh, Wen-Jeng

    2014-10-01

    In this study, patterned sapphire substrates are fabricated using nanosphere lithography (NSL) and inductively-coupled-plasma reactive ion etching (ICP-RIE). Polystyrene nanospheres of approximately 600 nm diameter are self-assembled on c-plane sapphire substrates by spin-coating. The diameter of the polystyrene nanospheres is modified to adjust the etching mask pitch cycle using oxygen plasma in the ICP-RIE system. A nickel thin film mask of 100 nm thickness is deposited by electron-beam evaporation on a substrate covered with treated nanospheres. The sapphire substrate is then etched in an inductively coupled plasma system using BCl3/Ar gas, to fabricate a structure with a periodic sub-micron hole array with different sidewall intervals. The DC bias voltage, the sapphire etching rate, the surface roughness, are studied as a function of the ICP and the RF power. Different sub-micron hole arrays with spacing cycles of 89 nm, 139 nm and 167 nm are successfully fabricated on the sapphire substrate, using suitable etching parameters. PMID:25942926

  18. Plasma etching in a multipolar discharge

    NASA Astrophysics Data System (ADS)

    Wicker, T. E.; Mantei, T. D.

    1985-03-01

    Etching of silicon and SiO2 has been investigated in a dc plasma discharge confined by a multipolar surface magnetic field layer. The reactive plasma is produced by primary ionizing electrons drawn from heated tungsten filaments and confined by permanent magnets. Electrical probe measurements show that a uniform high-density plasma (1010-1011 cm-3) is sustained in SF6-O2 at very low pressure (0.2-2.0×10-3 Torr). Substrates are biased independently of plasma production by a low-frequency alternating voltage (0-400 V) applied to the substrate through a blocking capacitor. Anisotropic profiles are etched into Si in SF6-20% O2 with etch rates in excess of 1 μm/min at 2×10-3 Torr. The etch rate increases with increasing primary electron current (up to 3 A) and energy (up to 60 eV), gas pressure (up to 2.0×10-3 Torr), substrate bias voltage, and the addition of up to 20% O2. For higher ionizing electron energies (>60 eV) and higher gas pressure (>2.0×10-3 Torr), etching is partially blocked by residue formation. The etch anisotropy depends mainly on substrate bias, increasing for higher values of bias voltage. The Si:SiO2 etch selectivity is typically 10-20, becoming large with decreasing substrate bias and plasma ion density.

  19. Nanoparticle-based etching of silicon surfaces

    DOEpatents

    Branz, Howard; Duda, Anna; Ginley, David S.; Yost, Vernon; Meier, Daniel; Ward, James S.

    2011-12-13

    A method (300) of texturing silicon surfaces (116) such to reduce reflectivity of a silicon wafer (110) for use in solar cells. The method (300) includes filling (330, 340) a vessel (122) with a volume of an etching solution (124) so as to cover the silicon surface 116) of a wafer or substrate (112). The etching solution (124) is made up of a catalytic nanomaterial (140) and an oxidant-etchant solution (146). The catalytic nanomaterial (140) may include gold or silver nanoparticles or noble metal nanoparticles, each of which may be a colloidal solution. The oxidant-etchant solution (146) includes an etching agent (142), such as hydrofluoric acid, and an oxidizing agent (144), such as hydrogen peroxide. Etching (350) is performed for a period of time including agitating or stirring the etching solution (124). The etch time may be selected such that the etched silicon surface (116) has a reflectivity of less than about 15 percent such as 1 to 10 percent in a 350 to 1000 nanometer wavelength range.

  20. Fe-catalyzed etching of graphene layers

    NASA Astrophysics Data System (ADS)

    Cheng, Guangjun; Calizo, Irene; Hight Walker, Angela; PML, NIST Team

    We investigate the Fe-catalyzed etching of graphene layers in forming gas. Fe thin films are deposited by sputtering onto mechanically exfoliated graphene, few-layer graphene (FLG), and graphite flakes on a Si/SiO2 substrate. When the sample is rapidly annealed in forming gas, particles are produced due to the dewetting of the Fe thin film and those particles catalyze the etching of graphene layers. Monolayer graphene and FLG regions are severely damaged and that the particles catalytically etch channels in graphite. No etching is observed on graphite for the Fe thin film annealed in nitrogen. The critical role of hydrogen indicates that this graphite etching process is catalyzed by Fe particles through the carbon hydrogenation reaction. By comparing with the etched monolayer and FLG observed for the Fe film annealed in nitrogen, our Raman spectroscopy measurements identify that, in forming gas, the catalytic etching of monolayer and FLG is through carbon hydrogenation. During this process, Fe particles are catalytically active in the dissociation of hydrogen into hydrogen atoms and in the production of hydrogenated amorphous carbon through hydrogen spillover.

  1. Etch Characteristics of GaN using Inductively Coupled Cl{sub 2} Plasma Etching

    SciTech Connect

    Rosli, Siti Azlina; Aziz, A. Abdul

    2008-05-20

    In this study, the plasma characteristics and GaN etch properties of inductively coupled Cl{sub 2}/Ar plasmas were investigated. It has shown that the results of a study of inductively coupled plasma (ICP) etching of gallium nitride by using Cl{sub 2}/Ar is possible to meet the requirement (anisotropy, high etch rate and high selectivity), simultaneously. We have investigated the etching rate dependency on the percentage of Argon in the gas mixture, the total pressure and DC voltage. We found that using a gas mixture with 20 sccm of Ar, the optimum etch rate of GaN was achieved. The etch rate were found to increase with voltage, attaining a maximum rate 2500 A/min at -557 V. The addition of an inert gas, Ar is found to barely affect the etch rate. Surface morphology of the etched samples was verified by scanning electron microscopy and atomic force microscopy. It was found that the etched surface was anisotropic and the smoothness of the etched surface is comparable to that of polished wafer.

  2. Dynamics of ion-assisted etching

    NASA Astrophysics Data System (ADS)

    Sebel, Petrus Gerardus Maria

    In this thesis a study is presented on the fundamentals of ion-assisted etching of silicon. The research was performed in the Atomic Physics and Quantum Electronics Group (AQT/B) of the Physics Department at the Eindhoven University of Technology. Etching is a key technique in the production process of integrated circuits. Industrial etching is usually done in a plasma reactor. However, to unravel the detailed mechanisms determining the etch process, a different approach was chosen. In this scheme, well defined beams of XeF2 and Ar + ions are directed towards the Si sample in an ultra-high vacuum (UHV) setup. In this way the relevant ingredients of a plasma (neutrals and ions) are simulated. The etching reaction is monitored by a quadruple mass spectrometer (QMS) which detects the desorption of non-reacted XeF2 and the main reaction products SiF4 and SiF2. We conclude that we have obtained a detailed microscopic picture of the etching of silicon by beams of neutrals and ions. However, there is still a gap between beam etching and plasma etching. To bridge this gap an ellipsometer has been added to our setup, because it is a common non-invasive diagnostic tool used in a plasma reactor. In addition, also a sample exchange mechanism was installed to facilitate the frequent exchange of samples. The first ellipsometric results of spontaneous etching show the construction of a reaction layer followed by surface roughening. The XeF2 dose needed to build the reaction layer as derived from the ellipsometric results is in good agreement with results from the mass spectrometer. Additional experiments have to be performed to obtain a full understanding of the roughening of the surface, but a first link between microscopic and macroscopic features has been established. (Abstract shortened by UMI.)

  3. [Lasers].

    PubMed

    Passeron, T

    2012-11-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  4. Lasers.

    PubMed

    Passeron, T

    2012-12-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  5. Method of sputter etching a surface

    DOEpatents

    Henager, Jr., Charles H.

    1984-01-01

    The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion.

  6. Method of sputter etching a surface

    DOEpatents

    Henager, C.H. Jr.

    1984-02-14

    The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion. 4 figs.

  7. Microstructure performance and formation mechanism of laser alloying rare earth oxides modified nanocrystalline layer on TA7

    NASA Astrophysics Data System (ADS)

    Ma, Qingyu; Gao, Xun; Li, Jianquan

    2016-03-01

    Nanoscale particles (NP) were observed in a Ni60-Ag-Si3N4-Y2O3 laser alloying (LA) layer on a TA7 titanium alloy, NP usually locate on the grain boundaries, which are able to block the motion of dislocation in a certain extent. Such layer mainly consisted of γ-Ni, TiN, γ-(Fe, Ni), TiAg and lots of amorphous phases. The wear resistance of such layer with laser scanning speed 3 mm/s was better than that of a LA layer with 6 mm/s, which was mainly ascribed to an uniform microstructure and less defect of layer. The high laser scanning speed made the existing time of laser molten pool be shorter than before, favoring the formation of a fine microstructure. However, the defects, such as pores were produced in LA layer (higher scanning speed), decreasing the wear resistance.

  8. Modification of Structure and Strength Properties of Permanent Joints Under Laser Beam Welding with Application of Nanopowder Modifiers

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Orishich, A. M.; Malikov, A. G.; Ovcharenko, V. E.

    2016-08-01

    In the paper we present the results of experimental study of specially prepared nanosize metal-ceramic compositions impact upon structure, microhardness and mechanical properties of permanent joints produced by laser-beam welding of steel and titanium alloy plates.

  9. A Simulation of Laser Ablation During the Laser Pulse

    NASA Astrophysics Data System (ADS)

    Suzuki, Motoyuki; Ventzek, Peter L. G.; Sakai, Y.; Date, H.; Tagashira, H.; Kitamori, K.

    1996-10-01

    Charge damage considerations in plasma assisted etching are prompting the development of neutral beam sources. Already, anisotropic etching of has been demonstrated by neutral beams generated by exhausting heated ecthing gases into vacuum via a nozzle. Laser ablation of condensed etching gases may also be an attractive alternative means of generating neutral beams. Laser ablation coupled with electrical breakdown of the ablation plume may afford some degree of control over a neutral beam's dissociation fraction and ion content. Results from a Monte Carlo simulation of the laser ablation plume as it expands into vacuum at time-scales during the laser pulse will be presented. The model includes both heavy particle interactions and photochemistry. In particular, the influence of the initial particle angular distribution on the beam spread will be demonstrated as will the relationship between laser beam energy and initial ionization and dissociation fraction.

  10. Laser labeling, a safe technology to label produce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Labeling of the produce has gained marked attention in recent years. Laser labeling technology involves the etching of required information on the surface using a low energy CO2 laser beam. The etching forms alphanumerical characters by pinhole dot matrix depressions. These openings can lead to wat...

  11. R2O3 (R = La, Y) modified erbium activated germanate glasses for mid-infrared 2.7 μm laser materials

    PubMed Central

    Cai, Muzhi; Zhou, Beier; Wang, Fengchao; Wei, Tao; Tian, Ying; Zhou, Jiajia; Xu, Shiqing; Zhang, Junjie

    2015-01-01

    Er3+ activated germanate glasses modified by La2O3 and Y2O3 with good thermal stability were prepared. 2.7 μm fluorescence was observed and corresponding radiative properties were investigated. A detailed discussion of J–O parameters has been carried out based on absorption spectra and Judd–Ofelt theory. The peak emission cross sections of La2O3 and Y2O3 modified germanate glass are (14.3 ± 0.10) × 10−21 cm2 and (15.4 ± 0.10) × 10−21 cm2, respectively. Non-radiative relaxation rate constants and energy transfer coefficients of 4I11/2 and 4I13/2 levels have been obtained and discussed to understand the 2.7 μm fluorescence behavior. Moreover, the energy transfer processes of 4I11/2 and 4I13/2 level were quantitatively analyzed according to Dexter’s theory and Inokuti–Hirayama model. The theoretical calculations are in good agreement with the observed 2.7 μm fluorescence phenomena. Results demonstrate that the Y2O3 modified germanate glass, which possesses more excellent spectroscopic properties than La2O3 modified germanate glass, might be an attractive candidate for mid-infrared laser. PMID:26279092

  12. R2O3 (R = La, Y) modified erbium activated germanate glasses for mid-infrared 2.7 μm laser materials

    NASA Astrophysics Data System (ADS)

    Cai, Muzhi; Zhou, Beier; Wang, Fengchao; Wei, Tao; Tian, Ying; Zhou, Jiajia; Xu, Shiqing; Zhang, Junjie

    2015-08-01

    Er3+ activated germanate glasses modified by La2O3 and Y2O3 with good thermal stability were prepared. 2.7 μm fluorescence was observed and corresponding radiative properties were investigated. A detailed discussion of J-O parameters has been carried out based on absorption spectra and Judd-Ofelt theory. The peak emission cross sections of La2O3 and Y2O3 modified germanate glass are (14.3 ± 0.10) × 10-21 cm2 and (15.4 ± 0.10) × 10-21 cm2, respectively. Non-radiative relaxation rate constants and energy transfer coefficients of 4I11/2 and 4I13/2 levels have been obtained and discussed to understand the 2.7 μm fluorescence behavior. Moreover, the energy transfer processes of 4I11/2 and 4I13/2 level were quantitatively analyzed according to Dexter’s theory and Inokuti-Hirayama model. The theoretical calculations are in good agreement with the observed 2.7 μm fluorescence phenomena. Results demonstrate that the Y2O3 modified germanate glass, which possesses more excellent spectroscopic properties than La2O3 modified germanate glass, might be an attractive candidate for mid-infrared laser.

  13. Synergistic etch rates during low-energetic plasma etching of hydrogenated amorphous carbon

    SciTech Connect

    Hansen, T. A. R.; Weber, J. W.; Colsters, P. G. J.; Mestrom, D. M. H. G.; Sanden, M. C. M. van de; Engeln, R.

    2012-07-01

    The etch mechanisms of hydrogenated amorphous carbon thin films in low-energetic (<2 eV) high flux plasmas are investigated with spectroscopic ellipsometry. The results indicate a synergistic effect for the etch rate between argon ions and atomic hydrogen, even at these extremely low kinetic energies. Ion-assisted chemical sputtering is the primary etch mechanism in both Ar/H{sub 2} and pure H{sub 2} plasmas, although a contribution of swift chemical sputtering to the total etch rate is not excluded. Furthermore, ions determine to a large extent the surface morphology during plasma etching. A high influx of ions enhances the etch rate and limits the surface roughness, whereas a low ion flux promotes graphitization and leads to a large surface roughness (up to 60 nm).

  14. Carrier-lifetime-controlled selective etching process for semiconductors using photochemical etching

    DOEpatents

    Ashby, Carol I. H.; Myers, David R.

    1992-01-01

    The minority carrier lifetime is significantly much shorter in semiconductor materials with very high impurity concentrations than it is in semiconductor materials with lower impurity concentration levels. This phenomenon of reduced minority carrier lifetime in semiconductor materials having high impurity concentration is utilized to advantage for permitting highly selective semiconductor material etching to be achieved using a carrier-driven photochemical etching reaction. Various means may be employed for increasing the local impurity concentration level in specific near-surface regions of a semiconductor prior to subjecting the semiconductor material to a carrier-driven photochemical etching reaction. The regions having the localized increased impurity concentration form a self-aligned mask inhibiting photochemical etching at such localized regions while the adjacent regions not having increased impurity concentrations are selectively photochemically etched. Liquid- or gas-phase etching may be performed.

  15. Anisotropic etching of monocrystalline silicon under subcritical conditions

    NASA Astrophysics Data System (ADS)

    Gonzalez-Pereyra, Nestor Gabriel

    Sub- and supercritical fluids remain an underexploited resource for materials processing. Around its critical point a common compound such as water behaves like a different substance exhibiting changes in its properties that modify its behavior as a solvent and unlock reaction paths not viable in other conditions. In the subcritical region water's properties can be directed by controlling temperature and pressure. Water and silicon are two of the most abundant, versatile, environmentally non-harmful, and simplest substances on Earth. They are among the most researched and best-known substances. Both are ubiquitous and essential for present-day world. Silicon is fundamental in semiconductor fabrication, microelectromechanical systems, and photovoltaic cells. Wet etching of silicon is a fabrication strategy shared by these three applications. Processing of silicon requires large amounts of water, often involving dangerous and environmentally hazardous chemicals. Yet, minimal knowledge is available on the ways high temperature water interacts with crystalline silicon. The purpose of this project is to identify and implement a method for the modification of monocrystalline silicon surfaces with three important characteristics: 1) requires minimal amounts of added chemicals, 2) controllability of morphological features formed, 3) reduced processing time. This will be accomplished by subjecting crystalline silicon to diluted alkaline solutions working in the subcritical region of water. This approach allows for variations on surface morphologies and etching rates by adapting the reactions conditions, with focus on composition and temperature of the solutions used. The work reported discusses the techniques used for producing surfaces with a variety of morphologies that ultimately allowed to create patterns and textures on silicon wafers, using highly diluted alkaline solutions that can be used for photovoltaic applications. These morphologies were created with a

  16. Black Germanium fabricated by reactive ion etching

    NASA Astrophysics Data System (ADS)

    Steglich, Martin; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2016-09-01

    A reactive ion etching technique for the preparation of statistical "Black Germanium" antireflection surfaces, relying on self-organization in a Cl2 etch chemistry, is presented. The morphology of the fabricated Black Germanium surfaces is the result of a random lateral distribution of pyramidal etch pits with heights around (1450 ± 150) nm and sidewall angles between 80° and 85°. The pyramids' base edges are oriented along the <110> crystal directions of Germanium, indicating a crystal anisotropy of the etching process. In the Vis-NIR, the tapered Black Germanium surface structure suppresses interface reflection to <2.5 % for normal incidence and still to <6 % at an angle of incidence of 70°. The presented Black Germanium might find applications as low-cost AR structure in optoelectronics and IR optics.

  17. Epoxy bond and stop etch fabrication method

    DOEpatents

    Simmons, Jerry A.; Weckwerth, Mark V.; Baca, Wes E.

    2000-01-01

    A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

  18. Symphony and cacophony in ion track etching: how to control etching results

    NASA Astrophysics Data System (ADS)

    Fink, D.; Kiv, A.; Cruz, S. A.; Muñoz H., G.; Vacík, J.

    2012-07-01

    In general, etching of two identical ion-irradiated polymer foils in the same vessel with the same etchant for the same times does not lead to identical track shapes in both foils. In contrast, the track shapes, the etching speeds, and consequently also the etchant consumption of the two foils diverge increasingly with increasing etching times, unless this is prevented by forceful external equilibration of the system. This tendency toward divergence of a system of multiple ion tracks originates from its lack of self-synchronization during etching. A theory has been developed for this case that also shows general applicability to other diverging effects in human life.

  19. Method for anisotropic etching in the manufacture of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Cross, Jon B. (Inventor)

    1993-01-01

    Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by hyperthermal atomic oxygen beams (translational energies of 0.2 to 20 eV, preferably 1 to 10 eV). Etching with hyperthermal oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask protected areas.

  20. Method for anisotropic etching in the manufacture of semiconductor devices

    DOEpatents

    Koontz, Steven L.; Cross, Jon B.

    1993-01-01

    Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by atomic oxygen beams (translational energies of 0.2-20 eV, preferably 1-10 eV). Etching with hyperthermal (kinetic energy>1 eV) oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask-protected areas.

  1. Process for etching mixed metal oxides

    DOEpatents

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  2. Process for etching mixed metal oxides

    DOEpatents

    Ashby, Carol I. H.; Ginley, David S.

    1994-01-01

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  3. Metal assisted anodic etching of silicon.

    PubMed

    Lai, Chang Quan; Zheng, Wen; Choi, W K; Thompson, Carl V

    2015-07-01

    Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P(+)-type and N(+)-type Si wafers and a wide range of nanostructure morphologies were observed, including solid Si nanowires, porous Si nanowires, a porous Si layer without Si nanowires, and porous Si nanowires on a thick porous Si layer. Formation of wires was the result of selective etching at the Au-Si interface. It was found that when the anodic contact was made through P-type or P(+)-type Si, regular anodic etching due to electronic hole injection leads to formation of porous silicon simultaneously with metal assisted anodic etching. When the anodic contact was made through N-type or N(+)-type Si, generation of electronic holes through processes such as impact ionization and tunnelling-assisted surface generation were required for etching. In addition, it was found that metal assisted anodic etching of Si with the anodic contact made through the patterned Au film essentially reproduces the phenomenology of metal assisted chemical etching (MACE), in which holes are generated through metal assisted reduction of H2O2 rather than current flow. These results clarify the linked roles of electrical and chemical processes that occur during electrochemical etching of Si. PMID:26059556

  4. Plasma/Neutral-Beam Etching Apparatus

    NASA Technical Reports Server (NTRS)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  5. In vitro fibroblast and pre-osteoblastic cellular responses on laser surface modified Ti-6Al-4V.

    PubMed

    Chikarakara, Evans; Fitzpatrick, Patricia; Moore, Eric; Levingstone, Tanya; Grehan, Laura; Higginbotham, Clement; Vázquez, Mercedes; Bagga, Komal; Naher, Sumsun; Brabazon, Dermot

    2014-12-29

    The success of any implant, dental or orthopaedic, is driven by the interaction of implant material with the surrounding tissue. In this context, the nature of the implant surface plays a direct role in determining the long term stability as physico-chemical properties of the surface affect cellular attachment, expression of proteins, and finally osseointegration. Thus to enhance the degree of integration of the implant into the host tissue, various surface modification techniques are employed. In this work, laser surface melting of titanium alloy Ti-6Al-4V was carried out using a CO2 laser with an argon gas atmosphere. Investigations were carried out to study the influence of laser surface modification on the biocompatibility of Ti-6Al-4V alloy implant material. Surface roughness, microhardness, and phase development were recorded. Initial knowledge of these effects on biocompatibility was gained from examination of the response of fibroblast cell lines, which was followed by examination of the response of osteoblast cell lines which is relevant to the applications of this material in bone repair. Biocompatibility with these cell lines was analysed via Resazurin cell viability assay, DNA cell attachment assay, and alamarBlue metabolic activity assay. Laser treated surfaces were found to preferentially promote cell attachment, higher levels of proliferation, and enhanced bioactivity when compared to untreated control samples. These results demonstrate the tremendous potential of this laser surface melting treatment to significantly improve the biocompatibility of titanium implants in vivo.

  6. Plasma etching: Yesterday, today, and tomorrow

    SciTech Connect

    Donnelly, Vincent M.; Kornblit, Avinoam

    2013-09-15

    The field of plasma etching is reviewed. Plasma etching, a revolutionary extension of the technique of physical sputtering, was introduced to integrated circuit manufacturing as early as the mid 1960s and more widely in the early 1970s, in an effort to reduce liquid waste disposal in manufacturing and achieve selectivities that were difficult to obtain with wet chemistry. Quickly, the ability to anisotropically etch silicon, aluminum, and silicon dioxide in plasmas became the breakthrough that allowed the features in integrated circuits to continue to shrink over the next 40 years. Some of this early history is reviewed, and a discussion of the evolution in plasma reactor design is included. Some basic principles related to plasma etching such as evaporation rates and Langmuir–Hinshelwood adsorption are introduced. Etching mechanisms of selected materials, silicon, silicon dioxide, and low dielectric-constant materials are discussed in detail. A detailed treatment is presented of applications in current silicon integrated circuit fabrication. Finally, some predictions are offered for future needs and advances in plasma etching for silicon and nonsilicon-based devices.

  7. Investigations of Wafer Scale Etching with Xenon Difluoride

    NASA Astrophysics Data System (ADS)

    Chen, K. N.; Hoivik, N.; Lin, C. Y.; Young, A.; Ieong, M.; Shahidi, G.

    2006-03-01

    A good and uniform bulk silicon wafer etching method can be applied to the wafer thinning process in MEMS and 3D applications. In this study, the use of a Xenon Difluoride (XeF2) gas-phase etching system, operating at room temperature, has been investigated for bulk silicon wafer thinning. We investigated the Si-wafer surface morphology and profile following each XeF2 etching process cycle. Theoretical results are used to compare with the experimental results as well. A clean wafer surface by proper surface treatments is significant to achieve a uniform surface profile and morphology for XeF2 etching. A proper design of etching cycle with nitrogen ambient during etching is necessary to achieve the fastest and uniform silicon etching rate. The silicon etching rate is reported as a function of etching pressure, nitrogen pressure, and etching duration.

  8. Investigation of Nitride Morphology After Self-Aligned Contact Etch

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Keil, J.; Helmer, B. A.; Chien, T.; Gopaladasu, P.; Kim, J.; Shon, J.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Self-Aligned Contact (SAC) etch has emerged as a key enabling technology for the fabrication of very large-scale memory devices. However, this is also a very challenging technology to implement from an etch viewpoint. The issues that arise range from poor oxide etch selectivity to nitride to problems with post etch nitride surface morphology. Unfortunately, the mechanisms that drive nitride loss and surface behavior remain poorly understood. Using a simple langmuir site balance model, SAC nitride etch simulations have been performed and compared to actual etched results. This approach permits the study of various etch mechanisms that may play a role in determining nitride loss and surface morphology. Particle trajectories and fluxes are computed using Monte-Carlo techniques and initial data obtained from double Langmuir probe measurements. Etched surface advancement is implemented using a shock tracking algorithm. Sticking coefficients and etch yields are adjusted to obtain the best agreement between actual etched results and simulated profiles.

  9. Wavelength Dependence of UV Effect on Etch Rate and Noise in CR-39

    NASA Astrophysics Data System (ADS)

    Wiesner, Micah; Traynor, Nathan; McLean, James; Padalino, Stephen; Sangster, Craig; McCluskey, Michelle

    2014-10-01

    The use of CR-39 plastic as a SSNTD is an effective technique for recovering data in high-energy particle experiments including inertial confinement fusion. To reveal particle tracks after irradiation, CR-39 is chemically etched at elevated temperatures with NaOH, producing signal pits at the nuclear track sites that are measurable by an optical microscope. CR-39 pieces also exhibit etch-induced noise, either surface roughness or pit-like features not caused by nuclear particles, which negatively affects the ability of observers to distinguish actual pits. When CR-39 is exposed to high intensity UV light after nuclear irradiation and before etching, an increase in etch rates and pit diameters is observed. UV exposure can also increase noise, which in the extreme can distort the shapes of particle pits. Analyzing the effects of different wavelengths in the UV spectrum we have determined that light of the wavelength 255 nm increases etch rates and pit diameters while causing less background noise than longer UV wavelengths. Preliminary research indicates that heating CR-39 to elevated temperatures (~80 °C) during UV exposure also improves the signal-to-noise ratio for this process. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  10. Laser labeling and its effect on the storage quality of citrus fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Etching the required information on the skins of fruits and vegetables is an alternative way to label produce. A low energy CO2 laser beam etches the outermost layer of the epidermis revealing the contrasting underneath layer while forming alphanumerical characters. These etched areas represent brea...

  11. An interatomic potential for reactive ion etching of Si by Cl ions

    NASA Astrophysics Data System (ADS)

    Hanson, D. E.; Kress, J. D.; Voter, A. F.

    1999-03-01

    An interatomic potential has been developed to describe the dynamics of Si/Cl systems, with particular relevance to reactive ion etching of Si by energetic Cl ions. We have modified the Stillinger-Weber (SW) potential of Feil et al. by adding two new terms: (1) an embedding term that corrects for the variation in Si-Cl bond strength as a function of the number of neighbors, and (2) a four-body term to describe the variation of the Si-Si bond strength as a function of the number of neighbors of each Si atom and the atom types (a bond order correction). Calculated Si etch rates obtained from molecular dynamics simulations using the new potential are in better agreement with recent experimental results than those obtained with the unmodified potential. Predictions of the stoichiometry of the etch products are also markedly different between the two potentials.

  12. An interatomic potential for reactive ion etching of Si by Cl ions

    SciTech Connect

    Hanson, D.E.; Kress, J.D.; Voter, A.F.

    1999-03-01

    An interatomic potential has been developed to describe the dynamics of Si/Cl systems, with particular relevance to reactive ion etching of Si by energetic Cl ions. We have modified the Stillinger{endash}Weber (SW) potential of Feil {ital et al.} by adding two new terms: (1) an embedding term that corrects for the variation in Si{endash}Cl bond strength as a function of the number of neighbors, and (2) a four-body term to describe the variation of the Si{endash}Si bond strength as a function of the number of neighbors of each Si atom and the atom types (a bond order correction). Calculated Si etch rates obtained from molecular dynamics simulations using the new potential are in better agreement with recent experimental results than those obtained with the unmodified potential. Predictions of the stoichiometry of the etch products are also markedly different between the two potentials. {copyright} {ital 1999 American Institute of Physics.}

  13. Microfabrication techniques for semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Tamanuki, Takemasa; Tadokoro, T.; Morito, Ken; Koyama, Fumio; Iga, Kenichi

    1991-03-01

    Several important techniques for fabricating micro-cavity semiconductor lasers including surface emitting lasers have been developed. Reactive ion beam etch (RIBE) for GaA1As and GaInAsP is employed and its condition for vertical fine etch under low damages and removal of residual damages are made clear. Passivation by sulfur is introduced to the fabrication process. Regrowth techniques for DII structures by LPE and MOCVD has been established. Some device applications are discussed. 1. MICRO-ETCHING PROCESS Micro-cavity lasers including a vertical cavity surface emitting laser1 are attracting the research interest for optical parallel processing and parallel light wave systems. In order to realize micron-order or sub-micron laserdevices the technology of micro-fabrication must be established. In this study the total fabrication technology has been almost completed. First fine and low damage etching condition by ultrahigh vacuum background RIBE using a Cl2 gas has been made clear. We have found an isotropic etching condition for the vertical side wall formation and good mask traceability i. e. the acceleration voltage is 500 V and substrate temperature is 150 C with a 5000A thickness Si02 mask. Residual damages induced on the surface and the side wall are characterized by photo-luminescence and making stripe lasers. Figure 1 is the histogram of the nominal threshold current density for (a) oxide-defined stripe lasers (b) RIBE etched and LPE regrown BH-lasers using an LPE grown DII wafer (LPE/LPE) and (c) RIBE etched

  14. Etching rate control of mask material for XeF2 etching using UV exposure

    NASA Astrophysics Data System (ADS)

    Sugano, Koji; Tabata, Osamu

    2001-09-01

    A new technique to control etching rates of mask materials during XeF2 etching was proposed. By exposing Si sample with SiO2 and Si3N4 as mask materials to UV light of 3 W/cm2 during XeF2 etching, the etching rates of SiO2 and Si3N4 were dramatically increased from 2.52 angstrom/pulse to 42.0 angstrom/pulse and from 27.3 angstrom/pulse to 403 angstrom/pulse, respectively. This new technique allows us to remove the mask material selectively and change the mask pattern by UV light exposure during in- situ etching process without additional photolithography step and opens a new silicon micromachining process for 3- dimensional fabrication. The multi-step Si structure was successfully realized by this technique.

  15. Plasma characteristics and etch uniformity in CF4 magnetron etching using an annular permanent magnet

    NASA Astrophysics Data System (ADS)

    Kinoshita, Haruhisa; Ishida, Toshimasa; Ohno, Seigo

    1987-11-01

    Etch characteristics of SiO2 and Si obtained by magnetron etching using an annular permanent magnet were analyzed. From these analyses, etch characteristics were found to be classified into three regimes. Remarkable enhancements in SiO2 etch rate, 25-40 times, were observed at constant Vrf by applying magnetic field of 150 G. Ion densities over the cathode were found to be distributed linearly along the E×B drift direction. Such an ion density distribution will be formed by the repeated process (ionization→ion bombardment→electron emission and drift→ionization). Etch distribution can be averaged and flattened to a uniformity of below ±2% by the magnetic field being rotated in 90° steps.

  16. Polymer etching in the oxygen afterglow - Increased etch rates with increased reactor loading

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Wydeven, T.

    1989-01-01

    Reactor loading has an effect on the etch rate (rate of decrease of film thickness) of films of polyvinylfluoride (Tedlar) and polyethylene exposed in the afterglow of an RF discharge in oxygen. The etch rate is found to increase with the total surface area of the polymer exposed in the reactor. The etch rates of polypyromellitimide (Kapton H) and polystyrene under these conditions are very low. However, the etch rate of these polymers is greatly enhanced by adding either Tedlar or polyethylene to the reactor. A kinetic model is proposed based on the premise that the oxygen atoms produced by the RF discharge react with Tedlar or polyethylene to produce a much more reactive species, which dominates the etching of the polymers studied.

  17. Two modes of surface roughening during plasma etching of silicon: Role of ionized etch products

    SciTech Connect

    Nakazaki, Nobuya Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2014-12-14

    Atomic- or nanometer-scale surface roughening has been investigated during Si etching in inductively coupled Cl{sub 2} plasmas, as a function of rf bias power or ion incident energy E{sub i}, by varying feed gas flow rate, wafer stage temperature, and etching time. The experiments revealed two modes of surface roughening which occur depending on E{sub i}: one is the roughening mode at low E{sub i} < 200–300 eV, where the root-mean-square (rms) roughness of etched surfaces increases with increasing E{sub i}, exhibiting an almost linear increase with time during etching (t < 20 min). The other is the smoothing mode at higher E{sub i}, where the rms surface roughness decreases substantially with E{sub i} down to a low level < 0.4 nm, exhibiting a quasi-steady state after some increase at the initial stage (t < 1 min). Correspondingly, two different behaviors depending on E{sub i} were also observed in the etch rate versus √(E{sub i}) curve, and in the evolution of the power spectral density distribution of surfaces. Such changes from the roughening to smoothing modes with increasing E{sub i} were found to correspond to changes in the predominant ion flux from feed gas ions Cl{sub x}{sup +} to ionized etch products SiCl{sub x}{sup +} caused by the increased etch rates at increased E{sub i}, in view of the results of several plasma diagnostics. Possible mechanisms for the formation and evolution of surface roughness during plasma etching are discussed with the help of Monte Carlo simulations of the surface feature evolution and classical molecular dynamics simulations of etch fundamentals, including stochastic roughening and effects of ion reflection and etch inhibitors.

  18. Dry etched SiO2 Mask for HgCdTe Etching Process

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.

    2016-09-01

    A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.

  19. Patterning enhancement techniques by reactive ion etch

    NASA Astrophysics Data System (ADS)

    Honda, Masanobu; Yatsuda, Koichi

    2012-03-01

    The root causes of issues in state-of-the-arts resist mask are low plasma tolerance in etch and resolution limit in lithography. This paper introduces patterning enhancement techniques (PETs) by reactive ion etch (RIE) that solve the above root causes. Plasma tolerance of resist is determined by the chemical structure of resin. We investigated a hybrid direct current (DC) / radio frequency (RF) RIE to enhance the plasma tolerance with several gas chemistries. The DC/RF hybrid RIE is a capacitive coupled plasma etcher with a superimposed DC voltage, which generates a ballistic electron beam. We clarified the mechanism of resist modification, which resulted in higher plasma tolerance[1]. By applying an appropriate gas to DC superimposed (DCS) plasma, etch resistance and line width roughness (LWR) of resist were improved. On the other hand, RIE can patch resist mask. RIE does not only etch but also deposits polymer onto the sidewall with sedimentary type gases. In order to put the deposition technique by RIE in practical use, it is very important to select an appropriate gas chemistry, which can shrink CD and etch BARC. By applying this new technique, we successfully fabricated a 35-nm hole pattern with a minimum CD variation.

  20. Plasma etching a ceramic composite. [evaluating microstructure

    NASA Technical Reports Server (NTRS)

    Hull, David R.; Leonhardt, Todd A.; Sanders, William A.

    1992-01-01

    Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiC(sub W)) in a matrix of silicon nitride (Si3N4), glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si3N4 grain size by removing the glass phase. However, the latter obscures the porosity. Neither technique allows the SiC(sub W) to be distinguished from the Si3N4. Plasma etching with CF4 + 4 percent O2 selectively attacks the Si3N4 grains, leaving SiC(sub W) and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si3N4, allowing Si3N4 grains to be distinguished from SiC(sub W) by back scattered electron imaging.

  1. Pulsed plasma etching for semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Economou, Demetre J.

    2014-07-01

    Power-modulated (pulsed) plasmas have demonstrated several advantages compared to continuous wave (CW) plasmas. Specifically, pulsed plasmas can result in a higher etching rate, better uniformity, and less structural, electrical or radiation (e.g. vacuum ultraviolet) damage. Pulsed plasmas can also ameliorate unwanted artefacts in etched micro-features such as notching, bowing, micro-trenching and aspect ratio dependent etching. As such, pulsed plasmas may be indispensable in etching of the next generation of micro-devices with a characteristic feature size in the sub-10 nm regime. This work provides an overview of principles and applications of pulsed plasmas in both electropositive (e.g. argon) and electronegative (e.g. chlorine) gases. The effect of pulsing the plasma source power (source pulsing), the electrode bias power (bias pulsing), or both source and bias power (synchronous pulsing), on the time evolution of species densities, electron energy distribution function and ion energy and angular distributions on the substrate is discussed. The resulting pulsed plasma process output (etching rate, uniformity, damage, etc) is compared, whenever possible, to that of CW plasma, under otherwise the same or similar conditions.

  2. Modified Truncated Cone Target Hyperthermal Atomic Oxygen Test Results

    NASA Technical Reports Server (NTRS)

    Vaughn, J. A.; Kamenetsky, R. R.; Finckenor, M. M.

    1999-01-01

    The modified truncated cone target is a docking target planned for use on the International Space Station. The current design consists of aluminum treated with a black dye anodize, then crosshairs are laser etched for a silvery color. Samples of the treated aluminum were exposed to laboratory simulation of atomic oxygen and ultraviolet radiation to determine if significant degradation might occur. Durability was evaluated based on the contrast ratio between the black and silvery white areas of the target. Degradation of optical properties appeared to level off after an initial period of exposure to atomic oxygen. The sample that was not alodined according to MIL-C-5541, type 1A, performed better than alodined samples.

  3. Copper-assisted, anti-reflection etching of silicon surfaces

    SciTech Connect

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  4. Studying post-etching silicon crystal defects on 300mm wafer by automatic defect review AFM

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Taylor, Patrick A.; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2016-03-01

    Single crystal silicon wafers are the fundamental elements of semiconductor manufacturing industry. The wafers produced by Czochralski (CZ) process are very high quality single crystalline materials with known defects that are formed during the crystal growth or modified by further processing. While defects can be unfavorable for yield for some manufactured electrical devices, a group of defects like oxide precipitates can have both positive and negative impacts on the final device. The spatial distribution of these defects may be found by scattering techniques. However, due to limitations of scattering (i.e. light wavelength), many crystal defects are either poorly classified or not detected. Therefore a high throughput and accurate characterization of their shape and dimension is essential for reviewing the defects and proper classification. While scanning electron microscopy (SEM) can provide high resolution twodimensional images, atomic force microscopy (AFM) is essential for obtaining three-dimensional information of the defects of interest (DOI) as it is known to provide the highest vertical resolution among all techniques [1]. However AFM's low throughput, limited tip life, and laborious efforts for locating the DOI have been the limitations of this technique for defect review for 300 mm wafers. To address these limitations of AFM, automatic defect review AFM has been introduced recently [2], and is utilized in this work for studying DOI on 300 mm silicon wafer. In this work, we carefully etched a 300 mm silicon wafer with a gaseous acid in a reducing atmosphere at a temperature and for a sufficient duration to decorate and grow the crystal defects to a size capable of being detected as light scattering defects [3]. The etched defects form a shallow structure and their distribution and relative size are inspected by laser light scattering (LLS). However, several groups of defects couldn't be properly sized by the LLS due to the very shallow depth and low

  5. Effects of etching time on alpha tracks in Solid state Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Crust, Simon

    2013-04-01

    Inhalation of radon gas is thought to be the cause of about 1100 lung cancer related deaths each year in the UK (1). Radon concentrations can be monitored using Solid State Nuclear Track Detectors (SSNTDs) as the natural decay of radon results in alpha particles which form tracks in the detectors and these tracks can be etched in order to enable microscopic analysis. We have previously shown that confocal microscopy can be used for 3D visualisation of etched SSNTDs (2, 3). The aim of the study was to examine the effect of etching time on the appearance of alpha tracks in SSNTDs. Six SSNTDs were placed in a chamber with a luminous dial watch for a fixed period. The detectors were etched for between 30 minutes and 4.5 hours using 6M NaOH at a temperature of 90oC. A 'LEXT' OLS4000 confocal laser scanning microscope (Olympus Corporation, Japan) was used to acquire 2D and 3D image datasets of CR-39 plastic SSNTDs. Confocal microscope 3D images were acquired using a x50 or x100 objective lens. Data were saved as images and also spreadsheet files with height measurements. Software was written using MATLAB (The MathWorks Inc., USA) to analyse the height data. Comparing the 30 minute and 4 hour etching time detectors, we observed that there were marked differences in track area; the lower the etching time the smaller the track area. The degree to which etching may prevent visualising adjacent tracks also requires further study as it is possible that etching could result in some tracks being subsumed in other tracks. On the other hand if there is too little etching, track sizes would be reduced and hence could be more difficult to image; thus there is a balance required to obtain suitable measurement accuracy. (1) Gray A, Read S, McGale P and Darby S. Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them. BMJ 2009; 338: a3110. (2) Wertheim D, Gillmore G, Brown L, and Petford N. A new method of imaging particle tracks in

  6. Solderability enhancement of copper through chemical etching

    SciTech Connect

    Stevenson, J.O.; Guilinger, T.R.; Hosking, F.M.; Yost, F.G.; Sorensen, N.R.

    1995-05-01

    Sandia National Laboratories has established a Cooperative Research and Development Agreement with consortium members of the National Center for Manufacturing Sciences (NCMS) to develop fundamental generic technology in the area of printed wiring board materials and surface finishes. Improved solderability of copper substrates is an important component of the Sandia-NCMS program. The authors are investigating the effects of surface roughness on the wettability and solderability behavior of several different types of copper board finishes. In this paper, the authors present roughness and solderability characterizations for a variety of chemically-etched copper substrates. Initial testing on six chemical etches demonstrate that surface roughness can be greatly enhanced through chemical etching. Noticeable improvements in solder wettability were observed to accompany increases in roughness. A number of different algorithms and measures of roughness were used to gain insight into surface morphologies that lead to improved solderability.

  7. SERS detection of protein biochip fabricated by etching polystyrene template

    NASA Astrophysics Data System (ADS)

    Li, Zhishi; Ruan, Weidong; Song, Wei; Xue, Xiangxin; Mao, Zhu; Ji, Wei; Zhao, Bing

    2011-11-01

    In this study, a nanoscale protein chip is prepared by using an etched polystyrene (PS) template. This protein chip can be directly used for immunoassay, with the help of Surface Enhanced Raman Scattering (SERS) spectra. Some glass slides submerged in aldehyde is initially prepared, modified with antibodies, human immunoglobulin G (IgG). Then PS arrays are self-assembled on these slides with the Langmuir-Blodgett method. The PS template pattern is transferred to the human IgG substrate using an etching process—slides are exposed to O 2 plasma for 90 s. The PS nanoparticles are then washed away using phosphate buffered saline solution. Next, the slides are dipped into bovine serum albumin solution to ensure that the anti IgG would bond only to the human IgG. At this moment, a patterned protein chip is obtained. When used for protein detection, the protein chip could be immersed into labeled specificity antigen solution. Here we chose fluorescein isothiocyanate anti-human IgG. After washing, only bonded antigens remain. Fluorescence microscopy and SERS is used to characterize the samples. The SERS spectra intensity shows liner correlation with the concentration of anti-human IgG. All the experiments are conducted in a phosphate buffered saline solution at 37 °C for 2 h.

  8. Analytical model of plasma-chemical etching in planar reactor

    NASA Astrophysics Data System (ADS)

    Veselov, D. S.; Bakun, A. D.; Voronov, Yu A.; Kireev, V. Yu; Vasileva, O. V.

    2016-09-01

    The paper discusses an analytical model of plasma-chemical etching in planar diode- type reactor. Analytical expressions of etch rate and etch anisotropy were obtained. It is shown that etch anisotropy increases with increasing the ion current and ion energy. At the same time, etch selectivity of processed material decreases as compared with the mask. Etch rate decreases with the distance from the centre axis of the reactor. To decrease the loading effect, it is necessary to reduce the wafer temperature and pressure in the reactor, as well as increase the gas flow rate through the reactor.

  9. Radicals Are Required for Thiol Etching of Gold Particles.

    PubMed

    Dreier, Timothy A; Ackerson, Christopher J

    2015-08-01

    Etching of gold with an excess of thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is unclear. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initiator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process.

  10. Radicals are required for thiol etching of gold particles

    PubMed Central

    Dreier, Timothy A.

    2016-01-01

    Etching of gold with excess thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is opaque. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process. PMID:26089294

  11. Stability and on-off chaotic states mechanisms of semiconductor lasers with optical injection on the new modified rate equation model

    NASA Astrophysics Data System (ADS)

    Mengue, A. D.; Essimbi, B. Z.

    2012-02-01

    In this paper, we consider the modified single-mode rate equations for a semiconductor laser (SCL) subjected to optical injection. In addition to the well-known control parameters of this kind of system, a new control one, namely the effective gain coefficient (EGC), interferes especially with its nonlinear dynamics. A stability analysis reveals that the unstable locking regions are drastically influenced by EGC, and this can contribute towards improving its accuracy. The generation and destruction of chaotic states through the period-doubling bifurcation route lead to the strengthening of these states. Furthermore, various phenomena such as intermittency bifurcation around the period windows, the general behavior of the SCL systems at the onset of the quasi-periodic regime near the coherence collapse regime and the nonlinear dynamic route sequences to the limit value of the EGC were studied with regard to the impact of this new control parameter.

  12. Environmentally benign semiconductor processing for dielectric etch

    NASA Astrophysics Data System (ADS)

    Liao, Marci Yi-Ting

    Semiconductor processing requires intensive usage of chemicals, electricity, and water. Such intensive resource usage leaves a large impact on the environment. For instance, in Silicon Valley, the semiconductor industry is responsible for 80% of the hazardous waste sites contaminated enough to require government assistance. Research on environmentally benign semiconductor processing is needed to reduce the environmental impact of the semiconductor industry. The focus of this dissertation is on the environmental impact of one aspect of semiconductor processing: patterning of dielectric materials. Plasma etching of silicon dioxide emits perfluorocarbons (PFCs) gases, like C2F6 and CF4, into the atmosphere. These gases are super global warming/greenhouse gases because of their extremely long atmospheric lifetimes and excellent infrared absorption properties. We developed the first inductively coupled plasma (ICP) abatement device for destroying PFCs downstream of a plasma etcher. Destruction efficiencies of 99% and 94% can be obtained for the above mentioned PFCs, by using O 2 as an additive gas. Our results have lead to extensive modeling in academia as well as commercialization of the ICP abatement system. Dielectric patterning of hi-k materials for future device technology brings different environment challenges. The uncertainty of the hi-k material selection and the patterning method need to be addressed. We have evaluated the environmental impact of three different dielectric patterning methods (plasma etch, wet etch and chemical-mechanical polishing), as well as, the transistor device performances associated with the patterning methods. Plasma etching was found to be the most environmentally benign patterning method, which also gives the best device performance. However, the environmental concern for plasma etching is the possibility of cross-contamination from low volatility etch by-products. Therefore, mass transfer in a plasma etcher for a promising hi

  13. Monitoring Cluster Ions Derived from Aptamer-Modified Gold Nanofilms under Laser Desorption/Ionization for the Detection of Circulating Tumor Cells.

    PubMed

    Chiu, Wei-Jane; Ling, Tsung-Kai; Chiang, Hai-Pang; Lin, Han-Jia; Huang, Chih-Ching

    2015-04-29

    In this paper, we describe the use of pulsed laser desorption/ionization mass spectrometry (LDI-MS) for the detection of tumor cells through the analysis of gold cluster ions [Aun](+) from aptamer-modified gold nanofilms (Au NFs). We observed not only the transformation of the Au NFs into gold nanoparticles (Au NPs) but also the formation of gaseous gold cluster ions ([Au(n)](+); n = 1-5) under irradiation with a nanosecond pulsed laser. The size and density of the formed Au NPs and the abundance of [Au(n)](+) ions were both highly dependent on the thickness of the Au NFs (10-100 nm). Thin Au NFs tended to form highly dense Au NPs on the substrate and favored the desorption and ionization of gold cluster ions. The signal intensities of the [Au(n)](+) species, monitoring using mass spectrometry, decreased upon increasing the thickness of the Au NF from 10 to 100 nm and after modification with thiolated DNA. Furthermore, we found that Au NFs modified with mucin1-binding aptamer (AptMUC1-Au NFs) could selectively enrich MCF-7 cells (human breast adenocarcinoma cell line) in blood samples; coupled with LDI-MS analysis of the [Au(n)](+) ions, we could detect MCF-7 cells selectively in blood samples at abundances as low as 10 cells. This approach offers the advantages of high sensitivity, selectivity, and throughput for the detection of circulating tumor cells, and has great potential for use as a powerful analytical platform for clinical diagnoses of tumor metastasis.

  14. Systematically controlling Kapitza conductance via chemical etching

    NASA Astrophysics Data System (ADS)

    Duda, John C.; Hopkins, Patrick E.

    2012-03-01

    We measure the thermal interface conductance between thin aluminum films and silicon substrates via time-domain thermoreflectance from 100 to 300 K. The substrates are chemically etched prior to aluminum deposition, thereby offering a means of controlling interface roughness. We find that conductance can be systematically varied by manipulating roughness. In addition, transmission electron microscopy confirms the presence of a conformal oxide for all roughnesses, which is then taken into account via a thermal resistor network. This etching process provides a robust technique for tuning the efficiency of thermal transport while alleviating the need for laborious materials growth and/or processing.

  15. Capabilities of the 3-axes modified FP42 Deckel milling machine. R program, laser engineering and materials

    SciTech Connect

    Villarreal, E.

    1991-05-01

    This report is a technical guide containing information on the design and performance of the modified FP42 Deckel milling machine (MFD id. no. M362) and associated tooling used in conjunction with the Deckel. The main modification consists of an aluminum head assembly bolted to the Deckel headstock. The head assembly supports two milling spindles. The spindles may be oriented in the X, Y and Z coordinate axes. The associated tooling includes a tool set station and precision workpiece clamping base.

  16. Multichamber reactive ion etching processing for III-V optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Rothman, Mark A.; Thompson, John A.; Armiento, Craig A.

    1991-03-01

    A multistep reactive ion etching (RIE) process sequence has been developed for fabrication of optoelectronic devices in 111-V semiconductor materials. This process was developed in a multichamber RIlE system that has been adapted to use a different etch chemistry in each of the four chambers as well as robotic handling of small pieces of ITT-V materials. This system has been used to fabricate ridge waveguide lasers based on the TnPJTnGaAsP material system. The etch sequence consists of the following steps: SiNX patterning in an SF6 plasma photoresist removal in an plasma ridge formation in the InP and InGaAsP epitaxial layers using a CH4/H2/Ar plasma and polymer removal using an 0 2 plasma. Laser interferometry and emission spectroscopy techniques were used to establish endpoints for many of these process steps. Laser arrays with threshold currents as low as 22 mA have been routinely fabricated using this process.

  17. Nanometer scale high-aspect-ratio trench etching at controllable angles using ballistic reactive ion etching

    SciTech Connect

    Cybart, Shane; Roediger, Peter; Ulin-Avila, Erick; Wu, Stephen; Wong, Travis; Dynes, Robert

    2012-11-30

    We demonstrate a low pressure reactive ion etching process capable of patterning nanometer scale angled sidewalls and three dimensional structures in photoresist. At low pressure the plasma has a large dark space region where the etchant ions have very large highly-directional mean free paths. Mounting the sample entirely within this dark space allows for etching at angles relative to the cathode with minimal undercutting, resulting in high-aspect ratio nanometer scale angled features. By reversing the initial angle and performing a second etch we create three-dimensional mask profiles.

  18. Infrared ion spectroscopy in a modified quadrupole ion trap mass spectrometer at the FELIX free electron laser laboratory

    NASA Astrophysics Data System (ADS)

    Martens, Jonathan; Berden, Giel; Gebhardt, Christoph R.; Oomens, Jos

    2016-10-01

    We report on modifications made to a Paul-type quadrupole ion trap mass spectrometer and discuss its application in infrared ion spectroscopy experiments. Main modifications involve optical access to the trapped ions and hardware and software coupling to a variety of infrared laser sources at the FELIX infrared free electron laser laboratory. In comparison to previously described infrared ion spectroscopy experiments at the FELIX laboratory, we find significant improvements in efficiency and sensitivity. Effects of the trapping conditions of the ions on the IR multiple photon dissociation spectra are explored. Enhanced photo-dissociation is found at lower pressures in the ion trap. Spectra obtained under reduced pressure conditions are found to more closely mimic those obtained in the high-vacuum conditions of an Fourier transform ion cyclotron resonance mass spectrometer. A gas-mixing system is described enabling the controlled addition of a secondary gas into helium buffer gas flowing into the trap and allows for ion/molecule reactions in the trap. The electron transfer dissociation (ETD) option of the mass spectrometer allows for IR structure characterization of ETD-generated peptide dissociation products.

  19. Domain observation of potassium-modified NaNbO3 epitaxial films by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Fujii, Ichiro; Wada, Takahiro

    2016-10-01

    Domain structures of (K x Na1- x )NbO3 (x = 0, 0.005, 0.11, 0.18, and 0.30) epitaxial films prepared on SrRuO3/(001) SrTiO3 substrates by pulsed laser deposition were observed by confocal laser scanning microscopy. It was found that the films consisted of stripe domains with in-plane polarization directions at x = 0, mixtures of line and stripe domains with in-plane and out-of-plane polarization directions at x = 0.005 and 0.11, and stripe domains with out-of-plane polarization directions at x = 0.18 and 0.30. After an electric field was applied to the films in the out-of-plane direction, some domains with in-plane polarization directions were changed to domains with out-of-plane polarization directions at x = 0-0.11. It was confirmed that the change in the domain structure of the films with x was consistent with the change in the remanent polarization of their polarization-electric field (P-E) loops.

  20. Integration and optimization of the DUV ALTA pattern generation system using a CAR process with the Tetra photomask etch system

    NASA Astrophysics Data System (ADS)

    Buxbaum, Alex H.; Fuller, Scott E.; Montgomery, Warren; Ungureit, Michael E.

    2003-12-01

    Etec Systems, the Mask Business Group of Applied Materials, is in a unique position within the mask making industry - Etec has the opportunity to integrate individual parts of the overall mask manufacturing process to provide a more complete solution. Here we present the integration of the DUV ALTA laser pattern generator and the TetraTM photomask etch system with advanced CAR resist processes. Dry etch process effects of flow, overetch, and oxygen content (in a Cl2/O2/He plasma) are discussed for the baseline POR resist in terms of etch rate, selectivity, etch bias, CD uniformity and micro-loading; the optimized etch process space was then implemented for advanced CAR resists. Iso-dense bias, football pattern loading and other pattern transfer results influencing mask manufactureability are also presented. Within the synthesis and optimization of the pattern generation system, process, and dry etch sub 13 nm range process uniformity has been achieved. The integrated ALTA / Tetra / Advanced-CAR solution set is characterized on both Etec test patterns and customer demonstrations.

  1. Mechanism for low-etching resistance and surface roughness of ArF photoresist during plasma irradiation

    SciTech Connect

    Jinnai, Butsurin; Koyama, Koji; Kato, Keisuke; Yasuda, Atsushi; Momose, Hikaru; Samukawa, Seiji

    2009-03-01

    ArF excimer laser lithography was introduced to fabricate nanometer-scale devices and uses chemically amplified photoresist polymers including photoacid generators (PAGs). Because plasma-etching processes cause serious problems related to the use of ArF photoresists, such as line-edge roughness and low etching selectivity, we have to understand the interaction between plasma and ArF photoresist polymers. Investigating the effects of surface temperature and the irradiation species from plasma, we have found that ion irradiation by itself did not drastically increase the roughness or etching rate of ArF photoresist films unless it was combined with ultraviolet/vacuum ultraviolet (UV/VUV) photon irradiation. The structures of ArF photoresist polymers were largely unchanged by ion irradiation alone but were destroyed by combinations of ion and UV/VUV-photon irradiation. Our results suggested that PAG-mediated deprotection induced by UV/VUV-photon irradiation was amplified at surface temperatures above 100 deg. C. The etching rate and surface roughness of plasma-etched ArF photoresists are affected by the irradiation species and surface temperature during plasma etching. UV/VUV-photon irradiation plays a particularly important role in the interaction between plasma and ArF photoresist polymers.

  2. A modified false vocal fold flap for functional reconstruction after frontolateral partial laryngectomy: a comparison with conventional open resection and laser cordectomy

    PubMed Central

    Lorenz, Kai J.; Kohnle, Roland; Maier, Heinz

    2013-01-01

    Objective: To describe a modified flap technique (MFT) involving the use of a false vocal fold flap for glottic reconstruction and the removal of arytenoid cartilage and to compare it with conventional frontolateral partial laryngectomy (FLPL) and laser cordectomy (LC). Methods: Twenty-eight MFT, 13 FLPL and 12 LC patients completed a standardised questionnaire for assessing aspiration, respiration, quality of life, and subjective voice quality. We analysed vocal function in terms of roughness, breathiness and hoarseness, measured voice range profiles, and performed videoendoscopy. Results: No patient reported respiratory problems. Aspiration occurred in 33.3% (MFT), 41.6% (FLPL) and 16.6% (LC). Voice quality was rated as good/satisfactory by 17 MFT patients (62%), satisfactory/sufficient by 69% of FLKT patients, and sufficient/poor by 75% of LC patients. Conclusions: The modified false vocal fold flap effectively covers defects and creates a neocord that ensures good phonatory rehabilitation and has positive effects on postoperative quality of life. PMID:26504705

  3. Antifungal activity of Ag:hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates

    NASA Astrophysics Data System (ADS)

    Eraković, S.; Janković, A.; Ristoscu, C.; Duta, L.; Serban, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Socol, M.; Iordache, O.; Dumitrescu, I.; Luculescu, C. R.; Janaćković, Dj.; Miškovic-Stanković, V.

    2014-02-01

    Hydroxyapatite (HA) is a widely used biomaterial for implant thin films, largely recognized for its excellent capability to chemically bond to hard tissue inducing the osteogenesis without immune response from human tissues. Nowadays, intense research efforts are focused on development of antimicrobial HA doped thin films. In particular, HA doped with Ag (Ag:HA) is expected to inhibit the attachment of microbes and contamination of metallic implant surface. We herewith report on nano-sized HA and Ag:HA thin films synthesized by pulsed laser deposition on pure Ti and Ti modified with 100 nm diameter TiO2 nanotubes (fabricated by anodization of Ti plates) substrates. The HA-based thin films were characterized by SEM, AFM, EDS, FTIR, and XRD. The cytotoxic activity was tested with HEp2 cells against controls. The antifungal efficiency of the deposited layers was tested against the Candida albicans and Aspergillus niger strains. The Ti substrates modified with TiO2 nanotubes covered with Ag:HA thin films showed the highest antifungal activity.

  4. Plasma etching of the Group-III nitrides

    SciTech Connect

    Shul, R.; Pearton, S.J.; Abernathy, C.R.

    1996-01-01

    In reactive ion etching (RIE) of GaN, the ion bombardment can damage the material, so it is necessary to develop plasma etch processes. This paper reports etching of GaN in an ECR (electron cyclotron resonance) etch system using both the ECR/RIE mode and the RIE-only mode. Group III (Ga, In, Al) nitride ECR etching is reviewed as a function of plasma chemistry, power, temperature, and pressure; as the ECR microwave power increased, the ion density and etch rates increased, with the etch rate increasing the most for InN. GaN etch rates > 6500 {angstrom}/min have been observed in the ECR/RIE mode. 2 figs, 6 refs.

  5. Transferring resist microlenses into silicon by reactive ion etching

    NASA Astrophysics Data System (ADS)

    Eisner, Martin; Schwider, Johannes

    1996-10-01

    Reactive ion etching (RIE) is known as an effective technique for high precision anisotropic etching with a minimum loss of the critical dimensions provided by the photoresist or other masking materials. RIE can also be used to transfer continuous forms such as spherical resist microlenses into substrate materials (e.g., quartz glass or silicon). The form of the lenses can be considerably controlled by changing the etch rate ratio between resist and the substrate. This was achieved by varying the etch gas compound, especially the amount of oxygen, during the etching or by changing the applied power. Measured etch rates for silicon are given to demonstrate the possibilities of lens shaping. The surface roughness of the etched lenses was one of the main problems. The roughness could be minimized by adding helium to the etch gases for heat removal and by increasing the resist rinse time after the wet chemical development.

  6. Etch Profile Simulation Using Level Set Methods

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Etching and deposition of materials are critical steps in semiconductor processing for device manufacturing. Both etching and deposition may have isotropic and anisotropic components, due to directional sputtering and redeposition of materials, for example. Previous attempts at modeling profile evolution have used so-called "string theory" to simulate the moving solid-gas interface between the semiconductor and the plasma. One complication of this method is that extensive de-looping schemes are required at the profile corners. We will present a 2D profile evolution simulation using level set theory to model the surface. (1) By embedding the location of the interface in a field variable, the need for de-looping schemes is eliminated and profile corners are more accurately modeled. This level set profile evolution model will calculate both isotropic and anisotropic etch and deposition rates of a substrate in low pressure (10s mTorr) plasmas, considering the incident ion energy angular distribution functions and neutral fluxes. We will present etching profiles of Si substrates in Ar/Cl2 discharges for various incident ion energies and trench geometries.

  7. Spinner For Etching Of Semiconductor Wafers

    NASA Technical Reports Server (NTRS)

    Lombardi, Frank

    1989-01-01

    Simple, inexpensive apparatus coats semiconductor wafers uniformly with hydrofluoric acid for etching. Apparatus made in part from small commercial electric-fan motor. Features bowl that collects acid. Silicon wafer placed on platform and centered on axis; motor switched on. As wafer spins, drops of hydrofluoric acid applied from syringe. Centrifugal force spreads acid across wafer in fairly uniform sheet.

  8. Technique for etching monolayer and multilayer materials

    DOEpatents

    Bouet, Nathalie C. D.; Conley, Raymond P.; Divan, Ralu; Macrander, Albert

    2015-10-06

    A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi.sub.2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF.sub.3, Cl.sub.2, and O.sub.2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.

  9. Etching and structural changes in nitrogen plasma immersion ion implanted polystyrene films

    NASA Astrophysics Data System (ADS)

    Gan, B. K.; Bilek, M. M. M.; Kondyurin, A.; Mizuno, K.; McKenzie, D. R.

    2006-06-01

    Plasma immersion ion implantation (PIII), with nitrogen ions of energy 20 keV in the fluence range of 5 × 1014-2 × 1016 ions cm-2, is used to modify 100 nm thin films of polystyrene on silicon wafer substrates. Ellipsometry is used to study changes in thickness with etching and changes in optical constants. Two distinctly different etch rates are observed as the polymer structure is modified. FTIR spectroscopy data reveals the structural changes, including changes in aromatic and aliphatic groups and oxidation and carbonisation processes, occurring in the polystyrene film as a function of the ion fluence. The transformation to a dense amorphous carbon-like material was observed to progress through an intermediate structural form containing a high concentration of Cdbnd C and Cdbnd O bonds.

  10. Optimization of Track Etched Makrofol Etching Conditions for Short-term Exposure Duration

    NASA Astrophysics Data System (ADS)

    Moreno, V.; Font, Ll.

    Exposure time of nuclear track detectors at humid environments is normally limited to a few weeks because filter used to avoid humidity is not completely waterproof and, after several months, some parts of detector start to degrade. In other really extreme measurement conditions, like high aerosol content, high or low temperatures, etc., the exposure time also requires a reduction. Then detector detection limit becomes a problem, unless radon concentrations were high. In those cases where radon levels are not high enough a better detection efficiency is required. In our laboratory we use passive detectors based on the track etched Makrofol DE foil covered with aluminized Mylar and they are analyzed by means of an electrochemical etching. Our standard etching conditions allow analyzing detectors generally exposed for periods between three and six months. We have optimized our etching conditions to reduce the exposure time down to a month for common radon concentration values.

  11. Anodic etching of p-type cubic silicon carbide

    NASA Technical Reports Server (NTRS)

    Harris, G. L.; Fekade, K.; Wongchotigul, K.

    1992-01-01

    p-Type cubic silicon carbide was anodically etched using an electrolyte of HF:HCl:H2O. The etching depth was determined versus time with a fixed current density of 96.4 mA/sq cm. It was found that the etching was very smooth and very uniform. An etch rate of 22.7 nm/s was obtained in a 1:1:50 HF:HCl:H2O electrolyte.

  12. Multilayer Badges Indicate Depths Of Ion Sputter Etches

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.; Garvin, H. L.

    1994-01-01

    Multilayer badges devised to provide rapid, in-place indications of ion sputter etch rates. Badges conceived for use in estimating ion erosion of molybdenum electrodes used in inert-gas ion thrustors. Concept adapted to measure ion erosion in industrial sputter etching processes used for manufacturing of magnetic, electronic, and optical devices. Badge etched when bombarded by energetic ions. Badge layers exposed using mask. Contrast between layers facilitates counting of layers to determine etch depth.

  13. High index contrast polysiloxane waveguides fabricated by dry etching

    SciTech Connect

    Madden, S. J.; Zhang, M. Y.; Choi, D.-Y.; Luther-Davies, B.; Charters, R.

    2009-05-15

    The authors demonstrate the production of low loss enhanced index contrast waveguides by reactive ion etching of IPG trade mark sign polysiloxane thin films. The use of a silica mask and CHF{sub 3}/O{sub 2} etch gas led to large etch selectivity between the silica and IPG trade mark sign of >20 and etch rates of >100 nm/min. This work indicates that compact optical circuits could be successfully fabricated for telecommunication applications using polysiloxane films.

  14. Controlling the relative rates of adlayer formation and removal during etching in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Fuller, Nicholas Colvin Masi

    Laser desorption (LD) of the adlayer coupled with laser induced fluorescence (LIF) and plasma induced emission (PIE) of desorbed adsorbates is used to investigate the relative rates of chlorination and sputtering during the etching of Si in inductively coupled Cl2-Ar plasmas. Such an analysis is a two-fold process: surface analysis and plasma characterization. Surface analysis of Si etching using LD-LIF and LD-PIE techniques combined with etch rate measurements have revealed that the coverage of SiCl2 and etch rate increases and coverage of Si decreases abruptly for a chlorine fraction of 75% and ion energy of 80 eV. The precise Cl2 fraction for which these abrupt changes occur increases with an increase in ion energy. These changes may be caused by local chemisorption-induced reconstruction of Si <100>. Furthermore, the chlorination and sputtering rates are increased by ˜ an order of magnitude as the plasma is changed from Ar-dominant to Cl-dominant. Characterization of the plasma included determination of the dominant ion in Cl2 plasmas using LIF and a Langmuir probe and measurement of the absolute densities of Cl2, Cl, Cl+, and At + in Cl2-Ar discharges using optical emission actinometry. These studies reveal that Cl+ is the dominant positive ion in the H-mode and the dissociation of Cl2 to Cl increases with an increase in Ar fraction due to an increase in electron temperature. Furthermore, for powers exceeding 600 W, the neutral to ion flux ratio is strongly dependent on Cl2 fraction and is attributed mostly to the decrease in Cl density. Such dependence of the flux ratio on Cl2 fraction is significant in controlling chlorination and sputtering rates not only for Si etching, but for etching other key technological materials. ICP O2 discharges were also studied for low-kappa polymeric etch applications. These studies reveal that the electron temperature is weakly dependent on rf power and O2 dissociation is low (˜2%) at the maximum rf power density of 5.7 Wcm

  15. Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Shim, Jae-Hyun; Lee, Sanghun

    2016-08-01

    Surface-modified graphite for application as an anode material in lithium ion batteries was obtained by etching with KOH under mild conditions without high-temperature annealing. The surface of the etched graphite is covered with many nano-sized pores that act as entrances for lithium ions during the charging process. As compared with pristine graphite and other references such as pitch-coated or etched graphite samples with annealing, our non-annealed etched graphite exhibits excellent electrochemical properties, particularly at fast charging rates of over 2.5 C. While avoidance of the trade-off between increase of irreversible capacity and good rate capability has previously been a main concern in highly porous carbonaceous materials, we show that the slightly larger surface area created by the etching does not induce a significant increase of irreversible capacity. This study shows that it is important to limit the size of pores to the nanometer scale for excellent battery performance, which is possible by etching under relatively mild conditions.

  16. Facile transition from hydrophilicity to superhydrophilicity and superhydrophobicity on aluminum alloy surface by simple acid etching and polymer coating

    NASA Astrophysics Data System (ADS)

    Liu, Wenyong; Sun, Linyu; Luo, Yuting; Wu, Ruomei; Jiang, Haiyun; Chen, Yi; Zeng, Guangsheng; Liu, Yuejun

    2013-09-01

    The transition from the hydrophilic surface to the superhydrophilic and superhydrophobic surface on aluminum alloy via hydrochloric acid etching and polymer coating was investigated by contact angle (CA) measurements and scanning electron microscope (SEM). The effects of etching and polymer coating on the surface were discussed. The results showed that a superhydrophilic surface was facilely obtained after acid etching for 20 min and a superhydrophobic surface was readily fabricated by polypropylene (PP) coating after acid etching. When the etching time was 30 min, the CA was up to 157̊. By contrast, two other polymers of polystyrene (PS) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after acid etching. The results showed that the CA was up to 159̊ by coating PP-g-MAH, while the CA was only 141̊ by coating PS. By modifying the surface with the silane coupling agent before PP coating, the durability and solvent resistance performance of the superhydrophobic surface was further improved. The micro-nano concave-convex structures of the superhydrophilic surface and the superhydrophobic surface were further confirmed by scanning electron microscope (SEM). Combined with the natural hydrophilicity of aluminum alloy, the rough micro-nano structures of the surface led to the superhydrophilicity of the aluminum alloy surface, while the rough surface structures led to the superhydrophobicity of the aluminum alloy surface by combination with the material of PP with the low surface free energy.

  17. Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Shim, Jae-Hyun; Lee, Sanghun

    2016-08-01

    Surface-modified graphite for application as an anode material in lithium ion batteries was obtained by etching with KOH under mild conditions without high-temperature annealing. The surface of the etched graphite is covered with many nano-sized pores that act as entrances for lithium ions during the charging process. As compared with pristine graphite and other references such as pitch-coated or etched graphite samples with annealing, our non-annealed etched graphite exhibits excellent electrochemical properties, particularly at fast charging rates of over 2.5 C. While avoidance of the trade-off between increase of irreversible capacity and good rate capability has previously been a main concern in highly porous carbonaceous materials, we show that the slightly larger surface area created by the etching does not induce a significant increase of irreversible capacity. This study shows that it is important to limit the size of pores to the nanometer scale for excellent battery performance, which is possible by etching under relatively mild conditions.

  18. Dopant Selective Reactive Ion Etching of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Okojie, Robert (Inventor)

    2016-01-01

    A method for selectively etching a substrate is provided. In one embodiment, an epilayer is grown on top of the substrate. A resistive element may be defined and etched into the epilayer. On the other side of the substrate, the substrate is selectively etched up to the resistive element, leaving a suspended resistive element.

  19. CR-39 track etching and blow-up method

    DOEpatents

    Hankins, Dale E.

    1987-01-01

    This invention is a method of etching tracks in CR-39 foil to obtain uniformly sized tracks. The invention comprises a step of electrochemically etching the foil at a low frequency and a "blow-up" step of electrochemically etching the foil at a high frequency.

  20. One-year clinical evaluation of the bonding effectiveness of a one-step, self-etch adhesive in noncarious cervical lesion therapy.

    PubMed

    Faye, Babacar; Sarr, Mouhamed; Bane, Khaly; Aidara, Adjaratou Wakha; Niang, Seydina Ousmane; Kane, Abdoul Wakhabe

    2015-01-01

    This study evaluated the one-year clinical performance of a one-step, self-etch adhesive (Optibond All-in-One, Kerr, CA, USA) combined with a composite (Herculite XRV Ultra, Kerr Hawe, CA, USA) to restore NCCLs with or without prior acid etching. Restorations performed by the same practitioner were evaluated at baseline and after 3, 6, and 12 months using modified USPHS criteria. At 6 months, the recall rate was 100%. The retention rate was 84.2% for restorations with prior acid etching, but statistically significant differences were observed between baseline and 6 months. Without acid etching, the retention rate was 77%, and no statistically significant difference was noted between 3 and 6 months. Marginal integrity (93.7% with and 87.7% without acid etching) and discoloration (95.3% with and 92.9% without acid etching) were scored as Alpha or Bravo, with better results after acid etching. After one year, the recall rate was 58.06%. Loss of pulp vitality, postoperative sensitivity, or secondary caries were not observed. After one year retention rate was of 90.6% and 76.9% with and without acid conditioning. Optibond All-in-One performs at a satisfactory clinical performance level for restoration of NCCLs after 12 months especially after acid etching. PMID:25810720

  1. One-Year Clinical Evaluation of the Bonding Effectiveness of a One-Step, Self-Etch Adhesive in Noncarious Cervical Lesion Therapy

    PubMed Central

    Faye, Babacar; Sarr, Mouhamed; Bane, Khaly; Aidara, Adjaratou Wakha; Niang, Seydina Ousmane; Kane, Abdoul Wakhabe

    2015-01-01

    This study evaluated the one-year clinical performance of a one-step, self-etch adhesive (Optibond All-in-One, Kerr, CA, USA) combined with a composite (Herculite XRV Ultra, Kerr Hawe, CA, USA) to restore NCCLs with or without prior acid etching. Restorations performed by the same practitioner were evaluated at baseline and after 3, 6, and 12 months using modified USPHS criteria. At 6 months, the recall rate was 100%. The retention rate was 84.2% for restorations with prior acid etching, but statistically significant differences were observed between baseline and 6 months. Without acid etching, the retention rate was 77%, and no statistically significant difference was noted between 3 and 6 months. Marginal integrity (93.7% with and 87.7% without acid etching) and discoloration (95.3% with and 92.9% without acid etching) were scored as Alpha or Bravo, with better results after acid etching. After one year, the recall rate was 58.06%. Loss of pulp vitality, postoperative sensitivity, or secondary caries were not observed. After one year retention rate was of 90.6% and 76.9% with and without acid conditioning. Optibond All-in-One performs at a satisfactory clinical performance level for restoration of NCCLs after 12 months especially after acid etching. PMID:25810720

  2. Streamlined etch integration with a unique neutral layer for self-assembled block copolymers (BCPs)

    NASA Astrophysics Data System (ADS)

    Hockey, Mary Ann; Xu, Kui; Wang, Yubao; Guerrero, Douglas J.; Calderas, Eric

    2014-03-01

    A multifunctional hardmask neutral layer (HM NL) was developed to improve etch resistance capabilities, enhance reflectance control, and match the surface energy properties required for polystyrene block copolymers (PS-b-PMMA). This HM NL minimizes the number of substrate deposition steps required in graphoepitaxy directed self-assembly (DSA) process flows. A separate brush layer is replaced by incorporating neutral layer properties into the hardmask to achieve microphase separation of BCP during thermal annealing. The reflection control and etch resistance capabilities are inherent in the chemical composition, thus eliminating the need for separate thin film layers to address absorbance and etch criteria. We initially demonstrated successful implementation of the HM NL using conventional PS-b-PMMA. A series of BCP formulations were synthesized with L0 values ranging from 28 nm to 17 nm to test the versatility of the HM NL. Quality "fingerprint" patterns or microphase separation using 230°-250°C annealing for 3-5 minutes was achieved for an array of modified BCP materials. The HM NL had water contact angles at 78°-80° and polarities in the 5-6 dyne/cm range. The scope of BCP platform compositions evaluated consists of a 20° water contact angle variance and a 10-dyne/cm range in polarities. All BCP derivatives were coated directly onto the HM NL followed by thermal annealing followed by SEM analysis for effective "fingerprint" patterns. We offer a simplified alternative path for high etch resistance in a graphoepitaxy DSA flow employing a single-layer hardmask for etch resistance demonstrated to be compatible with diverse BCP-modified chemical formulations.

  3. Photoelectrochemical etching of epitaxial InGaN thin films: Self-limited kinetics and nanostructuring

    DOE PAGESBeta

    Xiao, Xiaoyin; Fischer, Arthur J.; Coltrin, Michael E.; Lu, Ping; Koleske, Daniel D.; Wang, George T.; Polsky, Ronen; Tsao, Jeffrey Y.

    2014-10-22

    We report here the characteristics of photoelectrochemical (PEC) etching of epitaxial InGaN semiconductor thin films using narrowband lasers with linewidth less than ~1 nm. In the initial stages of PEC etching, when the thin film is flat, characteristic voltammogram shapes are observed. At low photo-excitation rates, voltammograms are S-shaped, indicating the onset of a voltage-independent rate-limiting process associated with electron-hole-pair creation and/or annihilation. At high photo-excitation rates, voltammograms are superlinear in shape, indicating, for the voltage ranges studied here, a voltage-dependent rate-limiting process associated with surface electrochemical oxidation. As PEC etching proceeds, the thin film becomes rough at the nanoscale,more » and ultimately evolves into an ensemble of nanoparticles. As a result, this change in InGaN film volume and morphology leads to a characteristic dependence of PEC etch rate on time: an incubation time, followed by a rise, then a peak, then a slow decay.« less

  4. Photoelectrochemical etching of epitaxial InGaN thin films: Self-limited kinetics and nanostructuring

    SciTech Connect

    Xiao, Xiaoyin; Fischer, Arthur J.; Coltrin, Michael E.; Lu, Ping; Koleske, Daniel D.; Wang, George T.; Polsky, Ronen; Tsao, Jeffrey Y.

    2014-10-22

    We report here the characteristics of photoelectrochemical (PEC) etching of epitaxial InGaN semiconductor thin films using narrowband lasers with linewidth less than ~1 nm. In the initial stages of PEC etching, when the thin film is flat, characteristic voltammogram shapes are observed. At low photo-excitation rates, voltammograms are S-shaped, indicating the onset of a voltage-independent rate-limiting process associated with electron-hole-pair creation and/or annihilation. At high photo-excitation rates, voltammograms are superlinear in shape, indicating, for the voltage ranges studied here, a voltage-dependent rate-limiting process associated with surface electrochemical oxidation. As PEC etching proceeds, the thin film becomes rough at the nanoscale, and ultimately evolves into an ensemble of nanoparticles. As a result, this change in InGaN film volume and morphology leads to a characteristic dependence of PEC etch rate on time: an incubation time, followed by a rise, then a peak, then a slow decay.

  5. Plasma etching of SiO2 using remote-type pin-to-plate dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Park, Jae Beom; Kyung, Se Jin; Yeom, Geun Young

    2008-10-01

    Atmospheric pressure plasma etching of SiO2 was examined using a modified remote-type dielectric barrier discharge (DBD), called "pin-to-plate DBD." The effect of adding four gases CF4, C4F8, O2, and Ar to the base gas mixture containing N2 (60 slm) (slm denotes standard liters per minute)/NF3 (600 SCCM) (SCCM denotes cubic centimeter per minute at STP) on the SiO2 etch characteristics was investigated. The results showed that the SiO2 etch rate decreased continuously with increasing C4F8 (200-800 SCCM) addition, whereas the SiO2 etch rate increased with increasing CF4 (1-10 slm) addition up to 7 slm CF4. This increase in the SiO2 etch rate up to 7 slm CF4 was attributed to the effective removal of Si in SiO2 by F atoms through the removal of oxygen in SiO2 by carbon in the CFX in the plasma. However, the decrease in SiO2 etch rate with further increases in CF4 flow rate above 7 slm was attributed to the formation of a thick C-F polymer layer on the SiO2 surface. A SiO2 etch rate of approximately 243 nm/min was obtained with a gas mixture of N2 (60 slm)/NF3 (600 SCCM)/CF4 (7 slm), and an input voltage and operating frequency to the source of 10 kV and 30 kHz, respectively. The addition of 200 SCCM Ar to the above gas mixture increased the SiO2 etch rate to approximately 263 nm/min. This is possibly due to the increased ionization and dissociation of reactive species through penning ionization of Ar.

  6. Modified laser-annealing process for improving the quality of electrical P-N junctions and devices

    DOEpatents

    Wood, Richard F.; Young, Rosa T.

    1984-01-01

    The invention is a process for producing improved electrical-junction devices. The invention is applicable, for example, to a process in which a light-sensitive electrical-junction device is produced by (1) providing a body of crystalline semiconductor material having a doped surface layer, (2) irradiating the layer with at least one laser pulse to effect melting of the layer, (3) permitting recrystallization of the melted layer, and (4) providing the resulting body with electrical contacts. In accordance with the invention, the fill-factor and open-circuit-voltage parameters of the device are increased by conducting the irradiation with the substrate as a whole at a selected elevated temperature, the temperature being selected to effect a reduction in the rate of the recrystallization but insufficient to effect substantial migration of impurities within the body. In the case of doped silicon substrates, the substrate may be heated to a temperature in the range of from about 200.degree. C. to 500.degree. C.

  7. Modified multiscale sample entropy computation of laser speckle contrast images and comparison with the original multiscale entropy algorithm

    NASA Astrophysics Data System (ADS)

    Humeau-Heurtier, Anne; Mahé, Guillaume; Abraham, Pierre

    2015-12-01

    Laser speckle contrast imaging (LSCI) enables a noninvasive monitoring of microvascular perfusion. Some studies have proposed to extract information from LSCI data through their multiscale entropy (MSE). However, for reaching a large range of scales, the original MSE algorithm may require long recordings for reliability. Recently, a novel approach to compute MSE with shorter data sets has been proposed: the short-time MSE (sMSE). Our goal is to apply, for the first time, the sMSE algorithm in LSCI data and to compare results with those given by the original MSE. Moreover, we apply the original MSE algorithm on data of different lengths and compare results with those given by longer recordings. For this purpose, synthetic signals and 192 LSCI regions of interest (ROIs) of different sizes are processed. Our results show that the sMSE algorithm is valid to compute the MSE of LSCI data. Moreover, with time series shorter than those initially proposed, the sMSE and original MSE algorithms give results with no statistical difference from those of the original MSE algorithm with longer data sets. The minimal acceptable length depends on the ROI size. Comparisons of MSE from healthy and pathological subjects can be performed with shorter data sets than those proposed until now.

  8. Reactive sputter etching of magnetic materials in an HCl plasma

    SciTech Connect

    Heijman, M.G.J.

    1988-12-01

    In an rf low-pressure HCl plasma NiZn and MnZn ferrite etch up to five times as fast as in an otherwise comparable Ar sputter etch process. Selectivity towards Al/sub 2/O/sub 3/ as an etch mask is of order 10. No redeposited material and very little trenching are seen. The etched slopes have a steepness up to 70/sup 0/, resulting from redeposition and enhanced etching on the sidewalls. This is shown by experiments and by computer simulations.

  9. Research on wet etching at MEMS torsion mirror optical switch

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wang, Jifeng; Luo, Yuan

    2002-10-01

    Etching is a very important technique at MEMS micromachining. There are two kinds of etching processing, the one is wet etching and the other is dry etching. In this paper, wet selective etching with KOH and tetramethyl ammonium hydroxide (TMAH) etchants is researched in order to make a torsion mirror optical switch. The experiments results show that TMAH with superphosphate is more suitable at MEMS torsion mirror optical switch micromachining than KOH, and it also has good compatibility with IC processing. Also our experiments results show some different with other reported research data. More work will be done to improve the yield rate of MEMS optical switch.

  10. ICP etching of GaAs via hole contacts

    SciTech Connect

    Shul, R.J.; Baca, A.G.; Briggs, R.D.; McClellan, G.B.; Pearton, S.J.; Constantine, C.

    1996-09-01

    Deep etching of GaAs is a critical process step required for many device applications including fabrication of through-substrate via holes for monolithic microwave integrated circuits (MMICs). Use of high-density plasmas, including inductively coupled plasmas (ICP), offers an alternative approach to etching vias as compared to more conventional parallel plate reactive ion etch systems. This paper reports ICP etching of GaAs vias at etch rates of about 5.3 {mu}m/min with via profiles ranging from highly anistropic to conical.

  11. Chemically assisted ion beam etching of polycrystalline and (100)tungsten

    NASA Technical Reports Server (NTRS)

    Garner, Charles

    1987-01-01

    A chemically assisted ion-beam etching technique is described which employs an ion beam from an electron-bombardment ion source and a directed flux of ClF3 neutrals. This technique enables the etching of tungsten foils and films in excess of 40 microns thick with good anisotropy and pattern definition over areas of 30 sq mm, and with a high degree of selectivity. (100) tungsten foils etched with this process exhibit preferred-orientation etching, while polycrystalline tungsten films exhibit high etch rates. This technique can be used to pattern the dispenser cathode surfaces serving as electron emitters in traveling-wave tubes to a controlled porosity.

  12. Bone growth enhancement in vivo on press-fit titanium alloy implants with acid etched microtexture.

    PubMed

    Daugaard, Henrik; Elmengaard, Brian; Bechtold, Joan E; Soballe, Kjeld

    2008-11-01

    Early bone ongrowth secures long-term fixation of primary implants inserted without cement. Implant surfaces roughened with a texture on the micrometer scale are known to be osseoconductive. The aim of this study was to evaluate the bone formation at the surface of acid etched implants modified on the micro-scale. We compared implants with a nonparticulate texture made by chemical milling (hydrofluoric acid, nitric acid) (control) with implants that had a dual acid etched (hydrofluoric acid, hydrochloric acid) microtexture surface superimposed on the primary chemically milled texture. We used an experimental joint replacement model with cylindrical titanium implants (Ti-6Al-4V) inserted paired and press-fit in cancellous tibia metaphyseal bone of eight canines for 4 weeks and evaluated by histomorphometric quantification. A significant twofold median increase was seen for bone ongrowth on the acid etched surface [median, 36.1% (interquartile range, 24.3-44.6%)] compared to the control [18.4% (15.6-20.4%)]. The percentage of fibrous tissue at the implant surface and adjacent bone was significantly less for dual acid textured implants compared with control implants. These results show that secondary roughening of titanium alloy implant surface by dual acid etching increases bone formation at the implant bone interface. PMID:18186059

  13. Bone growth enhancement in vivo on press-fit titanium alloy implants with acid etched microtexture

    PubMed Central

    Daugaard, Henrik; Elmengaard, Brian; Bechtold, Joan E.; Soballe, Kjeld

    2013-01-01

    Early bone ongrowth secures long-term fixation of primary implants inserted without cement. Implant surfaces roughened with a texture on the micrometer scale are known to be osseoconductive. The aim of this study was to evaluate the bone formation at the surface of acid etched implants modified on the micro-scale. We compared implants with a nonparticulate texture made by chemical milling (hydrofluoric acid, nitric acid) (control) with implants that had a dual acid etched (hydrofluoric acid, hydrochloric acid) microtexture surface superimposed on the primary chemically milled texture. We used an experimental joint replacement model with cylindrical titanium implants (Ti-6Al-4V) inserted paired and press-fit in cancellous tibia metaphyseal bone of eight canines for 4 weeks and evaluated by histomorphometric quantification. A significant twofold median increase was seen for bone ongrowth on the acid etched surface [median, 36.1% (interquartile range, 24.3–44.6%)] compared to the control [18.4% (15.6–20.4%)]. The percentage of fibrous tissue at the implant surface and adjacent bone was significantly less for dual acid textured implants compared with control implants. These results show that secondary roughening of titanium alloy implant surface by dual acid etching increases bone formation at the implant bone interface. PMID:18186059

  14. Chemical etching of deformation sub-structures in quartz

    NASA Astrophysics Data System (ADS)

    Wegner, M. W.; Christie, J. M.

    1983-02-01

    Chemical etching of dislocations has been studied in natural and synthetic quartz single crystals, in deformed synthetic quartz and in naturally and experimentally deformed quartzites. The ability of different etchants to produce polished or preferentially etched surfaces on quartz is described. Dislocation etching was achieved on all crystal planes examined by using a saturated solution of ammonium bifluoride as the etchant. Appropriate etching times were determined for etching quartzites for grain size, subgrain boundaries, deformation lamellae, dislocations and twins. Growth and polished surfaces of synthetic single crystal quartz were similarly etched and dislocation etch pits, characteristic of various orientations were found. The use of ammonium bifluoride proved to be expecially advantageous for the basal plane, producing a polished surface with etch pits, suitable for dislocation etch pit counting. “Double” etch pits have been found on Dauphiné twin boundaries on the basal plane and the first order prism, using this etchant. Slip lines and deformation bands were suitably etched on deformed synthetic crystal surfaces for identification of the slip planes. Other acidic etchants have been explored and their application to the study of deformation structures in quartz crystals is discussed.

  15. Si etching with reactive neutral beams of very low energy

    SciTech Connect

    Hara, Yasuhiro; Hamagaki, Manabu; Mise, Takaya; Iwata, Naotaka; Hara, Tamio

    2014-12-14

    A Si etching process has been investigated with reactive neutral beams (NBs) extracted using a low acceleration voltage of less than 100 V from CF{sub 4} and Ar mixed plasmas. The etched Si profile shows that the etching process is predominantly anisotropic. The reactive NB has a constant Si etching rate in the acceleration voltage range from 20 V to 80 V. It is considered that low-energy NBs can trigger Si etching because F radicals adsorb onto the Si surface and weaken Si–Si bonds. The etching rate per unit beam flux is 33 times higher than that with Ar NB. These results show that the low-energy reactive NB is useful for damage-free high speed Si etching.

  16. Properties of TNF-1 track etch detector

    NASA Astrophysics Data System (ADS)

    Ogura, K.; Asano, M.; Yasuda, N.; Yoshida, M.

    2001-12-01

    We have developed a new plastic track etch detector labeled TNF-1, which is the copolymer of CR-39 monomer with N-isopropylacrylamide (NIPAAm). It was found that copoly(CR-39/NIPAAm/ antioxidant) composed in weight ratio of 99/1/0.01 is highly sensitive to low linear energy transfer (LET) particles in the region below 10 keV/μm of LET 200 eV. TNF-1 is the most sensitive plastic track etch detector reported so far and is able to record normally incident protons up to the energy of 27 MeV. This paper gives results of our studies on the track responses of TNF-1 as well as the brief results obtained by the performance tests of TNF-1 in various dosimetric experiments such as space radiation dosimetry, dosimetry for heavy ion cancer therapy and neutron dosimetry. These results are compared with the results obtained for CR-39 track detectors.

  17. Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers.

    PubMed

    Ye, Hui; Li, Yaguo; Zhang, Qinghua; Wang, Wei; Yuan, Zhigang; Wang, Jian; Xu, Qiao

    2016-04-10

    HF-based (hydrofluoric acid) chemical etching has been a widely accepted technique to improve the laser damage performance of fused silica optics and ensure high-power UV laser systems at designed fluence. Etching processes such as acid concentration, composition, material removal amount, and etching state (etching with additional acoustic power or not) may have a great impact on the laser-induced damage threshold (LIDT) of treated sample surfaces. In order to find out the effects of these factors, we utilized the Taguchi method to determine the etching conditions that are helpful in raising the LIDT. Our results show that the most influential factors are concentration of etchants and the material etched away from the viewpoint of damage performance of fused silica optics. In addition, the additional acoustic power (∼0.6  W·cm-2) may not benefit the etching rate and damage performance of fused silica. Moreover, the post-cleaning procedure of etched samples is also important in damage performances of fused silica optics. Different post-cleaning procedures were, thus, experiments on samples treated under the same etching conditions. It is found that the "spraying + rinsing + spraying" cleaning process is favorable to the removal of etching-induced deposits. Residuals on the etched surface are harmful to surface roughness and optical transmission as well as laser damage performance. PMID:27139869

  18. Shapes of agglomerates in plasma etching reactors

    SciTech Connect

    Huang, F.Y.; Kushner, M.J.

    1997-05-01

    Dust particle contamination of wafers in reactive ion etching (RIE) plasma tools is a continuing concern in the microelectronics industry. It is common to find that particles collected on surfaces or downstream of the etch chamber are agglomerates of smaller monodisperse spherical particles. The shapes of the agglomerates vary from compact, high fractal dimension structures to filamentary, low fractal dimension structures. These shapes are important with respect to the transport of particles in RIE tools under the influence electrostatic and ion drag forces, and the possible generation of polarization forces. A molecular dynamics simulation has been developed to investigate the shapes of agglomerates in plasma etching reactors. We find that filamentary, low fractal dimension structures are generally produced by smaller ({lt}100s nm) particles in low powered plasmas where the kinetic energy of primary particles is insufficient to overcome the larger Coulomb repulsion of a compact agglomerate. This is analogous to the diffusive regime in neutral agglomeration. Large particles in high powered plasmas generally produce compact agglomerates of high fractal dimension, analogous to ballistic agglomeration of neutrals. {copyright} {ital 1997 American Institute of Physics.}

  19. Etching of moldavities under natural conditions

    NASA Technical Reports Server (NTRS)

    Knobloch, V.; Knoblochova, Z.; Urbanec, Z.

    1983-01-01

    The hypothesis that a part of the lechatellierites which originated by etching from a basic moldavite mass became broken off after deposition of moldavite in the sedimentation layer is advanced. Those found close to the original moldavite were measured for statistical averaging of length. The average length of lechatelierite fibers per cubic mm of moldavite mass volume was determined by measurement under a microscope in toluene. The data were used to calculate the depth of the moldavite layer that had to be etched to produce the corresponding amount of lechatelierite fragments. The calculations from five "fields" of moldavite surface, where layers of fixed lechatelierite fragments were preserved, produced values of 2.0, 3.1, 3.5, 3.9 and 4.5. Due to inadvertent loss of some fragments the determined values are somewhat lower than those found in references. The difference may be explained by the fact that the depth of the layer is only that caused by etching after moldavite deposition.

  20. ZERODUR: bending strength data for etched surfaces

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter; Leys, Antoine; Carré, Antoine; Kerz, Franca; Westerhoff, Thomas

    2014-07-01

    In a continuous effort since 2007 a considerable amount of new data and information has been gathered on the bending strength of the extremely low thermal expansion glass ceramic ZERODUR®. By fitting a three parameter Weibull distribution to the data it could be shown that for homogenously ground surfaces minimum breakage stresses exist lying much higher than the previously applied design limits. In order to achieve even higher allowable stress values diamond grain ground surfaces have been acid etched, a procedure widely accepted as strength increasing measure. If surfaces are etched taking off layers with thickness which are comparable to the maximum micro crack depth of the preceding grinding process they also show statistical distributions compatible with a three parameter Weibull distribution. SCHOTT has performed additional measurement series with etch solutions with variable composition testing the applicability of this distribution and the possibility to achieve further increase of the minimum breakage stress. For long term loading applications strength change with time and environmental media are important. The parameter needed for prediction calculations which is combining these influences is the stress corrosion constant. Results from the past differ significantly from each other. On the basis of new investigations better information will be provided for choosing the best value for the given application conditions.

  1. Pattern inspection of etched multilayer EUV mask

    NASA Astrophysics Data System (ADS)

    Iida, Susumu; Hirano, Ryoichi; Amano, Tsuyoshi; Watanabe, Hidehiro

    2015-10-01

    Patterned mask inspection for an etched multilayer (ML) EUV mask was investigated. In order to optimize the mask structure from the standpoint of not only a pattern inspection by using a projection electron microscope (PEM), but also by considering the other fabrication processes using electron beam (EB) techniques such as CD metrology and mask repair, we employed a conductive layer between the ML and substrate. By measuring the secondary electron emission coefficients (SEECs) of the candidate materials for conductive layer, we evaluated the image contrast and the influence of charging effect. In the cases of 40-pair-ML, 16 nm sized extrusion and intrusion defects were found to be detectable more than 10 sigma in hp 44 nm, 40 nm, and 32 nm line and space (L/S) patterns. Reducing 40-pair-ML to 20-pair-ML degraded the image contrast and the defect detectability. However, by selecting B4C as a conductive layer, 16 nm sized defects remained detectable. These defects were also detected after the etched part was refilled with Si. Moreover, the simulation shows a high sensitivity for detecting the residual-type defects (etching residues). A double layer structure with 2.5-nm-thik B4C on metal film used as a conductive layer was found to have sufficient conductivity and also was found to be free from the surface charging effect and influence of native oxide.

  2. A comparative study of shear bond strength of orthodontic bracket after acid-etched and Er:YAG treatment on enamel surface

    NASA Astrophysics Data System (ADS)

    Leão, Juliana C.; Mota, Cláudia C. B. O.; Cassimiro-silva, Patricia F.; Gomes, Anderson S. L.

    2016-02-01

    This study aimed to evaluate the shear bond strength (SBS) of teeth prepared for orthodontic bracket bonding with 37% phosphoric acid and Er:YAG laser. Forty bovine incisors were divided into two groups. In Group I, the teeth were conditioned with 37% phosphoric acid and brackets were bonded with Transbond XT; in Group II, the teeth were irradiated with Er:YAG and bonding with Transbond XT. After SBS test, the adhesive remnant index was determined. Adhesion to dental hard tissues after Er:YAG laser etching was inferior to that obtained after acid etching but exceeded what is believed to be clinically sufficient strength, and therefore can be used in patients.

  3. Bond strength between resin composite and etched and non-etched glass ionomer.

    PubMed

    Zanata, R L; Navarro, M F; Ishikiriama, A; da Silva e Souza Júnior, M H; Delazari, R C

    1997-01-01

    The authors evaluated, in vitro, the effects of etching glass ionomer cements prior to the application of a bonding agent and a resin composite on the bond strength of the glass ionomer/resin composite interface. Six glass ionomer cements were tested using the same bonding agent/resin composite system (Scotchbond Multipurpose/Z 100). For each material, 16 specimens were prepared and divided into two groups. Eight of the specimens were not etched while eight were etched with 37% phosphoric acid for 15 seconds. All the materials were used according to the manufacturers' instructions. Glass ionomer cylinders were prepared and were mounted in an assembly apparatus and the bonding agent/resin composite transferred to a demarcated area on the cement surface. The specimens were stored for 24 hours in distilled water at 37 degrees C and thermocycled. After thermocycling, the specimens were placed in a testing machine and a shear load applied with a knife-edged rod at the glass ionomer/resin composite interface. The shear bond strength was calculated and expressed in MPa. Data were analyzed by ANOVA and the Tukey-Kramer test. There were no significant differences among the shear bond strengths of the resin composite to etched and non-etched glass ionomer cements.

  4. Steady-state damage profiles due to reactive ion etching and ion-assisted etching

    SciTech Connect

    Davis, R.J.; Jha, P.

    1995-03-01

    Ion damage of materials due to reactive ion etching and ion-assisted etching is formulated as a dynamic problem involving the etch rate, damage creation due to ions, diffusion, and ion range effects. The differential equation is solved in the steady-state assuming an exponentially decreasing damage creation function. The ratio {ital D}/{ital a}{epsilon}, where {ital D} is the damage coefficient, {ital a} the inherent depth of ion damage, and {epsilon} the etch rate is shown to be an important parameter determining the steady-state damage profile. Results are examined for situations in which the parameter is much less than or much greater than unity, corresponding to range- and diffusion-dominated profiles, respectively. In both situations, steady-state damage profiles will be quite sensitive to the etch rate of the surface. We suggest some experiments which may elucidate the separate contributions of ion channeling and diffusion to observed damage depth profiles. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}

  5. Etching characteristics of LiNbO{sub 3} in reactive ion etching and inductively coupled plasma

    SciTech Connect

    Ren, Z.; Yu, S.; Heard, P. J.; Marshall, J. M.; Thomas, P. A.

    2008-02-01

    The etching characteristics of congruent LiNbO{sub 3} single crystals including doped LiNbO{sub 3} and proton-changed LiNbO{sub 3} have been studied in reactive ion etching (RIE) and inductively coupled plasma (ICP) etching tools, using different recipes of gas mixtures. The effects of parameters including working pressure, RIE power, and ICP power are investigated and analyzed by measurement of etching depth, selectivity, uniformity, etched surface state, and sidewall profile by means of focused ion beam etching, energy-dispersive x-ray analysis, secondary ion mass spectroscopy, scanning electron microscopy, and surface profilometry. The effects of a sample carrier wafer coating have also been investigated. Optimized processes with high etching rates, good mask selectivity, and a near-vertical profile have been achieved. Ridge waveguides on proton-exchanged LiNbO{sub 3} have been fabricated and optically measured.

  6. Laser patterning of laminated structures for electroplating

    DOEpatents

    Mayer, Steven T.; Evans, Leland B.

    1993-01-01

    A process for laser patterning of a substrate so that it can be subsequently electroplated or electrolessly plated. The process utilizes a laser to treat an inactive (inert) layer formed over an active layer to either combine or remove the inactive layer to produce a patterned active layer on which electrodeposition can occur. The process is carried out by utilizing laser alloying and laser etching, and involves only a few relatively high yield steps and can be performed on a very small scale.

  7. Plasma etching of single fine particle trapped in Ar plasma by optical tweezers

    NASA Astrophysics Data System (ADS)

    Ito, T.; Koga, K.; Yamashita, D.; Kamataki, K.; Itagaki, N.; Uchida, G.; Shiratani, M.

    2014-06-01

    Physical and chemical interactions between plasmas and nano-featured surfaces are one important issue in the plasma processing. Here we optically trap single fine particle levitated at plasma/sheath boundary with an infrared laser to realize in-situ analysis of such interactions. We have measured time evolution of the diameter of the single fine particle in Ar plasma. The trapped particle was etched at an etching rate of 1 nm/min in Ar plasma. We also obtained a Raman peak at around 2950 cm-1 corresponding to C-H bonds in the single fine particle in Ar plasma. The results open a new possibility to observe directly interactions between plasma and single fine particle.

  8. Influence of pH, bleaching agents, and acid etching on surface wear of bovine enamel

    PubMed Central

    Soares, Ana Flávia; Bombonatti, Juliana Fraga Soares; Alencar, Marina Studart; Consolmagno, Elaine Cristina; Honório, Heitor Marques; Mondelli, Rafael Francisco Lia

    2016-01-01

    ABSTRACT Development of new materials for tooth bleaching justifies the need for studies to evaluate the changes in the enamel surface caused by different bleaching protocols. Objective The aim of this study was to evaluate the bovine dental enamel wear in function of different bleaching gel protocols, acid etching and pH variation. Material and Methods Sixty fragments of bovine teeth were cut, obtaining a control and test areas. In the test area, one half received etching followed by a bleaching gel application, and the other half, only the bleaching gel. The fragments were randomly divided into six groups (n=10), each one received one bleaching session with five hydrogen peroxide gel applications of 8 min, activated with hybrid light, diode laser/blue LED (HL) or diode laser/violet LED (VHL) (experimental): Control (C); 35% Total Blanc Office (TBO35HL); 35% Lase Peroxide Sensy (LPS35HL); 25% Lase Peroxide Sensy II (LPS25HL); 15% Lase Peroxide Lite (LPL15HL); and 10% hydrogen peroxide (experimental) (EXP10VHL). pH values were determined by a pHmeter at the initial and final time periods. Specimens were stored, subjected to simulated brushing cycles, and the superficial wear was determined (μm). ANOVA and Tukey´s tests were applied (α=0.05). Results The pH showed a slight decrease, except for Group LPL15HL. Group LPS25HL showed the highest degree of wear, with and without etching. Conclusion There was a decrease from the initial to the final pH. Different bleaching gels were able to increase the surface wear values after simulated brushing. Acid etching before bleaching increased surface wear values in all groups. PMID:27008254

  9. NiCr etching in a reactive gas

    SciTech Connect

    Ritter, J.; Boucher, R.; Morgenroth, W.; Meyer, H. G.

    2007-05-15

    The authors have etched NiCr through a resist mask using Cl/Ar based chemistry in an electron cyclotron resonance etch system. The optimum gas mixture and etch parameters were found for various ratios of Ni to Cr, based on the etch rate, redeposits, and the etch ratio to the mask. The introduction of O{sub 2} into the chamber, which is often used in the etching of Cr, served to both increase and decrease the etch rate depending explicitly on the etching parameters. Etch rates of >50 nm min{sup -1} and ratios of >1 (NiCr:Mask) were achieved for NiCr (80:20). Pattern transfer from the mask into the NiCr was achieved with a high fidelity and without redeposits for a Cl/Ar mix of 10% Ar (90% Cl{sub 2}) at an etch rate of {approx_equal}50 nm min{sup -1} and a ratio of 0.42 (NiCr:ZEP 7000 e-beam mask)

  10. Ultrathin Films of VO2 on r-Cut Sapphire Achieved by Postdeposition Etching.

    PubMed

    Yamin, Tony; Wissberg, Shai; Cohen, Hagai; Cohen-Taguri, Gili; Sharoni, Amos

    2016-06-15

    The metal-insulator transition (MIT) properties of correlated oxides thin films, such as VO2, are dramatically affected by strain induced at the interface with the substrate, which usually changes with deposition thickness. For VO2 grown on r-cut sapphire, there is a minimum deposition thickness required for a significant MIT to appear, around 60 nm. We show that in these thicker films an interface layer develops, which accompanies the relaxation of film strain and enhanced electronic transition. If these interface dislocations are stable at room temperature, we conjectured, a new route opens to control thickness of VO2 films by postdeposition thinning of relaxed films, overcoming the need for thickness-dependent strain-engineered substrates. This is possible only if thinning does not alter the films' electronic properties. We find that wet etching in a dilute NaOH solution can effectively thin the VO2 films, which continue to show a significant MIT, even when etched to 10 nm, for which directly deposited films show nearly no transition. The structural and chemical composition were not modified by the etching, but the grain size and film roughness were, which modified the hysteresis width and magnitude of the MIT resistance change.

  11. Simulation of low-angle forward-reflected neutral beam for chargeup-free Si etching

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jin; Wang, Soon Jung; Lee, Jae Koo; Haing Lee, Do; Yeom, Geun Young

    2003-10-01

    As a device size shrinks toward nano-scale, a charge-up damage by using ion induced etching is a very serious problem. A neutral beam etching is one of the most popular techniques to reduce the charge-up damage. We have performed a neutral beam simulation[1] by a modified XOOPIC code, in order to obtain neutral energy and angle distributions. The neutral beam is generated by collisions between ions produced by an ion-gun and low angle reflectors. The ion-gun is composed of several grids with voltages applied. Positive ions are accelerated toward low angle reflectors by the potential between grids. We have optimized the condition of the ion-gun for high ion flux and better directionality. It is applied to the neutral beam simulation in order to calculate neutral beam characteristics such as neutral flux, energy and angle distributions which have an influence upon etch rate. As low energy neutral beam is used for Si etching, the ion-gun using two grids has low ion flux and broad angle distribution. Therefore, we propose a three-grid ion-gun which has one additional grid with positive voltage. The ion flux from the three-grid ion-gun is about three times larger than that from the two-grid ion-gun. Etch profile is calculated from neutral beam by the three-grid ion-gun at a shallow Si trench. It is verified by comparison with experiment. This work is supported by the national program for Tera-level nanodevices in Korea Ministry of Science and Technology. [1] M.S. Hur, S.J. Kim, H.S. Lee, J.K. Lee, and G.Y. Yeom, ¡°Particle in Cell Simulation of a Neutral Beam Source for Materials Processing¡+/-, IEEE Trans. Plasma Science 30 (1) 110 (2002)

  12. Effect of acid etching of glass ionomer cement surface on the microleakage of sandwich restorations.

    PubMed

    Bona, Alvaro Della; Pinzetta, Caroline; Rosa, Vinícius

    2007-06-01

    The purposes of this study were to evaluate the sealing ability of different glass ionomer cements (GICs) used for sandwich restorations and to assess the effect of acid etching of GIC on microleakage at GIC-resin composite interface. Forty cavities were prepared on the proximal surfaces of 20 permanent human premolars (2 cavities per tooth), assigned to 4 groups (n=10) and restored as follows: Group CIE - conventional GIC (CI) was applied onto the axial and cervical cavity walls, allowed setting for 5 min and acid etched (E) along the cavity margins with 35% phosphoric acid for 15 s, washed for 30 s and water was blotted; the adhesive system was applied and light cured for 10 s, completing the restoration with composite resin light cured for 40 s; Group CIN - same as Group CIE, except for acid etching of the CI surface; Group RME - same as CIE, but using a resin modified GIC (RMGIC); Group RMN - same as Group RME, except for acid etching of the RMGIC surface. Specimens were soaked in 1% methylene blue dye solution at 24 degrees C for 24 h, rinsed under running water for 1 h, bisected longitudinally and dye penetration was measured following the ISO/TS 11405-2003 standard. Results were statistically analyzed by Kruskal-Wallis and chi-square tests (a=0.05). Dye penetration scores were as follow: CIE - 2.5; CIN - 2.5; RME - 0.9; and RMN - 0.6. The results suggest that phosphoric acid etching of GIC prior to the placement of composite resin does not improve the sealing ability of sandwich restorations. The RMGIC was more effective in preventing dye penetration at the GIC-resin composite-dentin interfaces than CI.

  13. Electrolytic Transport Through Cylindrical Etched Pores in Polyethylene Terepthalate Track-Etched Membrane

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Chakarvarti, S. K.

    In the present work, electrolytic transport phenomena is studied for different electrolytes (LiCl, NaCl, KCl of different concentrations) at room temperature (25 ± 2°C) through etched pores with different diameters having cylindrical shape in track-etched membranes of polyethylene terepthalate (PET) with pore density of the order of 106/cm2. Electric potential has been used as the driving force. It has been observed that electrolytic transport through pores is different for different electrolytes, depending strongly on size of cations and is independent of size of anions. In the case of cylindrical pores, there has not been found appreciable change in forward and backward resistances.

  14. Chemical etching and EDAX analysis of beryllium-free nickel-chromium ceramo-metal alloy.

    PubMed

    Atta, O M; Mosleh, I E; Shehata, M T

    1995-10-01

    A chemical etching technique is described for producing etch patterns in beryllium-free nickel chromium ceramo-metal alloy. Disc-shaped samples were chemically etched, evaluated with SEM and analysed by the EDAX technique. Scanning electron micrographs revealed, profound retentive cavities. The EDAX analysis provided a comprehensive interpretation of the etch mechanism. The obtained results show that the developed chemical etching has the potential to produce a highly retentive etched surface with less problematic and less technique sensitive than electrolytic etching.

  15. Effect of Ag/Au bilayer assisted etching on the strongly enhanced photoluminescence and visible light photocatalysis by Si nanowire arrays.

    PubMed

    Ghosh, Ramesh; Imakita, Kenji; Fujii, Minoru; Giri, P K

    2016-03-21

    We report on the strongly enhanced photoluminescence (PL) and visible light photocatalysis by arrays of vertically aligned single crystalline Si nanowires (NWs) grown by Ag/Au bilayer assisted etching. High resolution FESEM and TEM imaging reveals that the Si NWs are decorated with ultra-small size arbitrary shaped Si nanocrystals (NCs) due to the lateral etching of the NWs. A strong broad band and tunable visible to near-infrared (NIR) photoluminescence (PL) in the range 1.3-2.4 eV are observed for these Si NWs/NCs at room temperature, depending on the etching conditions. Our studies reveal that the visible-NIR PL intensity is about two orders of magnitude higher and it exhibits faster decay dynamics in the bilayer assisted etching case as compared to the Ag or Au single layer etching case. The enhanced PL in the bimetal case is attributed to the longer length and higher density of the Si NWs/NCs, surface plasmon resonance enhanced absorption by residual bimetal NPs and the enhanced radiative recombination rate. Studies on the time evolution of PL spectral features with laser exposure under ambient conditions and laser power dependence reveal that both the quantum confinement of carriers in Si NCs and the nonbridging oxygen hole defects in the SiOx layer contribute to the tunable PL. Interestingly, Si NWs grown by Ag/Au bilayer assisted etching exhibit enhanced photocatalytic degradation of methylene blue in comparison to Si NWs grown by single layer Ag or Au assisted etching. The Schottky barrier present between bimetallic NPs and nanoporous Si NWs with Si-H bonds facilitates the photocatalytic activity by efficient separation of photogenerated e-h pairs. Our results demonstrate the superiority of the Si NW array grown by bilayer assisted etching for their cutting edge applications in optoelectronics and environmental cleaning.

  16. Pulse-biased etching of Si3N4-layer in capacitively-coupled plasmas for nano-scale patterning of multi-level resist structures.

    PubMed

    Lee, Hyelim; Kim, Sechan; Choi, Gyuhyun; Lee, Nae-Eung

    2014-12-01

    Pulse-biased plasma etching of various dielectric layers is investigated for patterning nano-scale, multi-level resist (MLR) structures composed of multiple layers via dual-frequency, capacitively-coupled plasmas (CCPs). We compare the effects of pulse and continuous-wave (CW) biasing on the etch characteristics of a Si3N4 layer in CF4/CH2F2/O2/Aretch chemistries using a dual-frequency, superimposed CCP system. Pulse-biasing conditions using a low-frequency power source of 2 MHz were varied by controlling duty ratio, period time, power, and the gas flow ratio in the plasmas generated by the 27.12 MHz high-frequency power source. Application of pulse-biased plasma etching significantly affected the surface chemistry of the etched Si3N4 surfaces, and thus modified the etching characteristics of the Si3N4 layer. Pulse-biased etching was successfully applied to patterning of the nano-scale line and space pattern of Si3N4 in the MLR structure of KrF photoresist/bottom anti-reflected coating/SiO2/amorphous carbon layer/Si3N4. Pulse-biased etching is useful for tuning the patterning of nano-scale dielectric hard-mask layers in MLR structures. PMID:25971085

  17. Effect of acid etching on bond strength of nanoionomer as an orthodontic bonding adhesive

    PubMed Central

    Khan, Saba; Verma, Sanjeev K.; Maheshwari, Sandhya

    2015-01-01

    Aims: A new Resin Modified Glass Ionomer Cement known as nanoionomer containing nanofillers of fluoroaluminosilicate glass and nanofiller 'clusters' has been introduced. An in-vitro study aimed at evaluating shear bond strength (SBS) and adhesive remnant index (ARI) of nanoionomer under etching/unetched condition for use as an orthodontic bonding agent. Material and Methods: A total of 75 extracted premolars were used, which were divided into three equal groups of 25 each: 1-Conventional adhesive (Enlight Light Cure, SDS, Ormco, CA, USA) was used after and etching with 37% phosphoric acid for 30 s, followed by Ortho Solo application 2-nanoionomer (Ketac™ N100, 3M, ESPE, St. Paul, MN, USA) was used after etching with 37% phosphoric acid for 30 s 3-nanoionomer was used without etching. The SBS testing was performed using a digital universal testing machine (UTM-G-410B, Shanta Engineering). Evaluation of ARI was done using scanning electron microscopy. The SBS were compared using ANOVA with post-hoc Tukey test for intergroup comparisons and ARI scores were compared with Chi-square test. Results: ANOVA (SBS, F = 104.75) and Chi-square (ARI, Chi-square = 30.71) tests revealed significant differences between groups (P < 0.01). The mean (SD) SBS achieved with conventional light cure adhesive was significantly higher (P < 0.05) (10.59 ± 2.03 Mpa, 95% CI, 9.74-11.41) than the nanoionomer groups (unetched 4.13 ± 0.88 Mpa, 95% CI, 3.79-4.47 and etched 9.32 ± 1.87 Mpa, 95% CI, 8.58-10.06). However, nanoionomer with etching, registered SBS in the clinically acceptable range of 5.9–7.8 MPa, as suggested by Reynolds (1975). The nanoionomer groups gave significantly lower ARI values than the conventional adhesive group. Conclusion: Based on this in-vitro study, nanoionomer with etching can be successfully used as an orthodontic bonding agent leaving less adhesive remnant on enamel surface, making cleaning easier. However, in-vivo studies are needed to confirm the validity

  18. Reduction of etched AlGaAs sidewall roughness by oxygen-enhanced wet thermal oxidation

    NASA Astrophysics Data System (ADS)

    Liang, D.; Hall, D. C.

    2007-08-01

    The authors demonstrate that the oxidation smoothing of sidewall roughness of dry-etched Al0.3Ga0.7As ridge structures is enabled through a modified wet thermal oxidation process which involves the addition of dilute amounts of O2 to the water vapor ambient. High magnification cross-section and top-view scanning electron microscope imagings both before and after oxide removal clearly show a substantial reduction of photolithography- and dry-etching-induced sidewall roughness (from σ ˜100nm down to σ ˜1-2nm), occurring only with the participation of added O2. The smoothing process provides means to realize high-index-contrast GaAs-based optical waveguides with both low bend and scattering losses.

  19. Spray etching 2 µm features in 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sudipta; Ujihara, Motoki; Lee, Dong Gun; Chen, Jerry; Lei, Stanley; Carman, Greg P.

    2006-12-01

    304 stainless steel samples were patterned with either a photoresist (PR) mask or a silicon nitride (Si3Ni4) mask and then subjected to either wet immersion etching or spray etching techniques with ferric chloride (FeCl3). The silicon nitride mask provides much better adhesion to the stainless steel substrate resulting in less undercut compared to the PR mask. When a silicon nitride mask was subjected to spray etching, better adhesion and less undercut enabled features as small as 1.8 µm with an etch depth of 5.6 µm. This is an order of magnitude smaller than current spray etching techniques (20-50 µm) used in the steel industry. This procedure will allow spray etching features for batch fabrication for a variety of metals including steels, aluminum, nickel-based alloys and copper-based alloys with microscale resolution.

  20. Experiment and Results on Plasma Etching of SRF cavities

    SciTech Connect

    Upadhyay, Janardan; Im, Do; Peshl, J.; Vuskovic, Leposova; Popovic, Svetozar; Valente, Anne-Marie; Phillips, H. Lawrence

    2015-09-01

    The inner surfaces of SRF cavities are currently chemically treated (etched or electropolished) to achieve the state of the art RF performance. We designed an apparatus and developed a method for plasma etching of the inner surface for SRF cavities. The process parameters (pressure, power, gas concentration, diameter and shape of the inner electrode, temperature and positive dc bias at inner electrode) are optimized for cylindrical geometry. The etch rate non-uniformity has been overcome by simultaneous translation of the gas point-of-entry and the inner electrode during the processing. A single cell SRF cavity has been centrifugally barrel polished, chemically etched and RF tested to establish a baseline performance. This cavity is plasma etched and RF tested afterwards. The effect of plasma etching on the RF performance of this cavity will be presented and discussed.

  1. Reduction of oxide microtrenching by electron beam assisted etching

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Shaw, D. M.; Collins, G. J.

    2000-10-01

    High density plasma etching of submicron wide oxide trenches often results in non-ideal etched features. For example, microtrenching is the result of higher etch rate near the side wall as compared to the center of the trench. Herein, we apply a previously reported[1] high energy (100 - 900 eV) electron beam directed at the etching wafer surface to reduce microtrenching during the etching of 0.5 micron wide silicon dioxide (SiO2) trench patterns in an inductively coupled fluorocarbon plasma. The directed electron beam neutralizes the positive charge buildup at the bottom of the trench and reduces the microtrench formation. Scanning Electron Microscopy (SEM) images of features etched with and without the electron beam show that the electron beam is effective in reducing microtrenching. [1] D. M. Shaw, M. Watanabe, G. J. Collins, and H. Sugai, Jpn. J. Appl. Phys. 38, 87 (1999).

  2. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanisms and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  3. Etched-multilayer phase shifting masks for EUV lithography

    DOEpatents

    Chapman, Henry N.; Taylor, John S.

    2005-04-05

    A method is disclosed for the implementation of phase shifting masks for EUV lithography. The method involves directly etching material away from the multilayer coating of the mask, to cause a refractive phase shift in the mask. By etching into the multilayer (for example, by reactive ion etching), rather than depositing extra material on the top of the multilayer, there will be minimal absorption loss associated with the phase shift.

  4. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  5. Decontamination of metals using chemical etching

    DOEpatents

    Lerch, Ronald E.; Partridge, Jerry A.

    1980-01-01

    The invention relates to chemical etching process for reclaiming contaminated equipment wherein a reduction-oxidation system is included in a solution of nitric acid to contact the metal to be decontaminated and effect reduction of the reduction-oxidation system, and includes disposing a pair of electrodes in the reduced solution to permit passage of an electrical current between said electrodes and effect oxidation of the reduction-oxidation system to thereby regenerate the solution and provide decontaminated equipment that is essentially radioactive contamination-free.

  6. Anisotropic etching of Al by a directed Cl2 flux

    NASA Technical Reports Server (NTRS)

    Efremow, N. N.; Geis, M. W.; Mountain, R. W.; Lincoln, G. A.; Randall, J. N.

    1986-01-01

    A new Al etching technique is described that uses an ion beam from a Kaufman ion source and a directed Cl2 flux. The ion beam is used primarily to remove the native oxide and to allow the Cl2 to spontaneously react with the Al film forming volatile Al2Cl6. By controlling both the flux equivalent pressure of Cl2 and the ion beam current, this etching technique makes possible the anisotropic etching of Al with etch rates from 100 nm/min to nearly 10 microns/min with a high degree of selectivity.

  7. Influence of track-etching on polycarbonate membrane permittivity

    NASA Astrophysics Data System (ADS)

    Allaeys, J.-F.; Marcilhac, B.; Mage, J.-C.

    2007-06-01

    The complex dielectric permittivity of track-etched polycarbonate (PC) membranes is measured and compared with raw polymer membranes. Membranes at different steps of the track-etching process are compared. Dielectric loss is a key factor for microwave nanowired substrate devices, and better knowledge of the materials is necessary for choosing the most suited polymer for applications. Our experimental data on track-etched and raw PC are similar, and the PC dielectric loss at every track-etching step is lower than the raw polyimide dielectric loss.

  8. Physics and chemistry of complex oxide etching and redeposition control

    NASA Astrophysics Data System (ADS)

    Margot, Joëlle

    2012-10-01

    Since its introduction in the 1970s, plasma etching has become the universal method for fine-line pattern transfer onto thin films and is anticipated to remain so in foreseeable future. Despite many success stories, plasma etching processes fail to meet the needs for several of the newest materials involved in advanced devices for photonic, electronic and RF applications like ferroelectrics, electro-optic materials, high-k dielectrics, giant magnetoresistance materials and unconventional conductors. In this context, the work achieved over the last decade on the etching of multicomponent oxides thin films such as barium strontium titanate (BST), strontium titanate (STO) and niobate of calcium and barium (CBN) will be reviewed. These materials present a low reactivity with usual etching gases such as fluorinated and chlorinated gases, their etching is mainly governed by ion sputtering and reactive gases sometimes interact with surface materials to form compounds that inhibit etching. The etching of platinum will also be presented as an example of unconventional conductor materials for which severe redeposition limits the achievable etching quality. Finally, it will be shown how simulation can help to understand the etching mechanisms and to define avenues for higher quality patterning.

  9. Molecular Dynamics Simulations Of Nanometer-Scale Feature Etch

    SciTech Connect

    Vegh, J. J.; Graves, D. B.

    2008-09-23

    Molecular dynamics (MD) simulations have been carried out to examine fundamental etch limitations. Beams of Ar{sup +}, Ar{sup +}/F and CF{sub x}{sup +} (x = 2,3) with 2 nm diameter cylindrical confinement were utilized to mimic 'perfect' masks for small feature etching in silicon. The holes formed during etch exhibit sidewall damage and passivation as a result of ion-induced mixing. The MD results predict a minimum hole diameter of {approx}5 nm after post-etch cleaning of the sidewall.

  10. Influence of pH on the quantum-size-controlled photoelectrochemical etching of epitaxial InGaN quantum dots

    DOE PAGESBeta

    Xiao, Xiaoyin; Lu, Ping; Fischer, Arthur J.; Coltrin, Michael E.; Wang, George T.; Koleske, Daniel D.; Tsao, Jeffrey Y.

    2015-11-18

    Illumination by a narrow-band laser has been shown to enable photoelectrochemical (PEC) etching of InGaN thin films into quantum dots with sizes controlled by the laser wavelength. Here, we investigate and elucidate the influence of solution pH on such quantum-size-controlled PEC etch process. We find that although a pH above 5 is often used for PEC etching of GaN-based materials, oxides (In2O3 and/or Ga2O3) form which interfere with quantum dot formation. Furthermore, at pH below 3, however, oxide-free QDs with self-terminated sizes can be successfully realized.

  11. Influence of pH on the quantum-size-controlled photoelectrochemical etching of epitaxial InGaN quantum dots

    SciTech Connect

    Xiao, Xiaoyin; Lu, Ping; Fischer, Arthur J.; Coltrin, Michael E.; Wang, George T.; Koleske, Daniel D.; Tsao, Jeffrey Y.

    2015-11-18

    Illumination by a narrow-band laser has been shown to enable photoelectrochemical (PEC) etching of InGaN thin films into quantum dots with sizes controlled by the laser wavelength. Here, we investigate and elucidate the influence of solution pH on such quantum-size-controlled PEC etch process. We find that although a pH above 5 is often used for PEC etching of GaN-based materials, oxides (In2O3 and/or Ga2O3) form which interfere with quantum dot formation. Furthermore, at pH below 3, however, oxide-free QDs with self-terminated sizes can be successfully realized.

  12. Estimation of electron temperature and density of the decay plasma in a laser-assisted discharge plasma extreme ultraviolet source by using a modified Stark broadening method

    SciTech Connect

    Zhu Qiushi; Muto, Takahiro; Yamada, Junzaburo; Kishi, Nozomu; Watanabe, Masato; Okino, Akitoshi; Horioka, Kazuhiko; Hotta, Eiki

    2011-12-15

    In order to investigate the plasma expansion behaviors and the electrical recovery process after the maximum implosion in our tin fueled laser-assisted discharge plasma (LDP) 13.5 nm EUV source, we developed and evaluated a cost-efficient spectroscopic method to determine the electron temperature T{sub e} and density n{sub e} simultaneously, by using Stark broadenings of two Sn II isolated lines (5s{sup 2}4f{sup 2}F{sup o}{sub 5/2} - 5s{sup 2}5d{sup 2}D{sub 3/2} 558.9 nm and 5s{sup 2}6d{sup 2}D{sub 5/2} - 5s{sup 2}6p{sup 2}P{sup o}{sub 3/2} 556.2 nm) spontaneously emitted from the plasma. The spatial-resolved evolutions of T{sub e} and n{sub e} of the expansion plasma over 50 to 900 ns after the maximum implosion were obtained using this modified Stark broadening method. According to the different n{sub e} decay characteristics along the Z-pinch axis, the expansion velocity of the electrons was estimated as {approx}1.2 x 10{sup 4} ms{sup -1} from the plasma shell between the electrodes towards the cathode and the anode. The decay time constant of n{sub e} was measured as 183 {+-} 24 ns. Based on the theories of plasma adiabatic expansion and electron-impact ionization, the minimum time-span that electrical recovery between the electrodes needs in order to guarantee the next succeeding regular EUV-emitting discharge was estimated to be 70.5 {mu}s. Therefore, the maximum repetition rate of our LDP EUV source is {approx}14 kHz, which enables the output to reach 125 W/(2{pi}sr).

  13. Raman mapping analysis for removal of surface secondary phases of CZTS films using chemical etching

    NASA Astrophysics Data System (ADS)

    Wei, Zhengfei; Newman, Michael J.; Tsoi, Wing C.; Watson, Trystan M.

    2016-09-01

    Raman spectroscopy has been widely used as a non-destructive surface characterization method for the Cu2ZnSnS4 (CZTS) thin films. Secondary phases, which often co-exist with CZTS, are detrimental to the device performance. In this work, removal of the secondary phases using sodium sulfide (Na2S) aqueous solution etching in various time durations was investigated. Raman scattering mapping provides a direct visualization of phase distribution in CZTS-based materials on a relatively large scale (1 mm × 10 mm). Both as-grown and etched CZTS absorber layers were examined by Raman spectroscopy with a 532 nm excitation laser light in the range of 50-500 cm-1. A clear reduction of the secondary phases (mainly SnS) at the surface after etching was confirmed by Raman spectroscopy and scanning electron microscopy. Room temperature photoluminescence (PL) reveals a pronounced correlation between the amount of secondary phases and photoluminescence peak position. The PL spectra of the regions with more Sn-rich secondary phases show clearly a shift to high wavelength of the peak position, in comparison with regions with less Sn-rich secondary phases. These observed PL changes could be due to Sn-rich defects which may cause recombination processes.

  14. Aspect-ratio-dependent etching of polymers as interlayer dielectrics

    NASA Astrophysics Data System (ADS)

    Kim, Gusung

    2000-08-01

    The reactive ion etching of the polymer has been studied in CF4-O2, SF6, and N2 plasmas to understand the contributions of aspect-ratio dependent etching (ARDE), an anisotropic etch profiles, and the etch rate for one of low-k polymers, Divinyl bis-benzocyclobutene (BCB, silicon containing spin-on polymer). A new experimental process (Type B) was implemented to determine the ARDE in which the AR remains constant during the entire experiment. These samples showed the uniform etch rate for all trenches. However, in conventional structure (Type A), using a SiO2 hardmask for patterning, ARDE phenomena can be observed. In the range of 30--35% CF4 in O2, BCB shows the maximum etch rate, and this coincides with the maximum in the oxygen concentration. Complete anisotropic profiles can be obtained at low pressure where the fluorine atom concentration is low. The highest etch rates are achieved at the higher pressures where fluorine and oxygen atom concentrations are high, but with an increase in the amount of profile tapering in Type A. In Type B samples, etching gives increased undercutting and bowing with an increase in pressure. At low pressure, the sidewall profile is vertical regardless of the aspect ratio of the pattern. No oxide is exposed to the CF4-O2 plasma and undercutting occurs with an increase of fluorine concentration. In large trenches, polymer residue and micromasking phenomena were observed in both cases. Specifically, the surface roughness of etched BCB in CF 4-O2 was much higher than in SF6 and N2. Lateral etching of the BCB, mask erosion and faceting of the hardmask were more prominently observed with SF6. SF6 produces a very clean surface and no residue at the bottom of a trench. In N2 plasma, the etch rate of BCB is very low due to physical ion bombardment and trenches are formed by mask erosion and micro-trenching.

  15. Beam Simulation Studies of Plasma-Surface Interactions in Fluorocarbon Etching of Silicon and Silicon Dioxide

    NASA Astrophysics Data System (ADS)

    Gray, David C.

    1992-01-01

    A molecular beam apparatus has been constructed which allows the synthesis of dominant species fluxes to a wafer surface during fluorocarbon plasma etching. These species include atomic F as the primary etchant, CF _2 as a potential polymer forming precursor, and Ar^{+} or CF _{rm x}^{+} type ions. Ionic and neutral fluxes employed are within an order of magnitude of those typical of fluorocarbon plasmas and are well characterized through the use of in -situ probes. Etching yields and product distributions have been measured through the use of in-situ laser interferometry and line-of-sight mass spectrometry. XPS studies of etched surfaces were performed to assess surface chemical bonding states and average surface stoichiometry. A useful design guide was developed which allows optimal design of straight -tube molecular beam dosers in the collisionally-opaque regime. Ion-enhanced surface reaction kinetics have been studied as a function of the independently variable fluxes of free radicals and ions, as well as ion energy and substrate temperature. We have investigated the role of Ar ^{+} ions in enhancing the chemistries of F and CF_2 separately, and in combination on undoped silicon and silicon dioxide surfaces. We have employed both reactive and inert ions in the energy range most relevant to plasma etching processes, 20-500 eV, through the use of Kaufman and ECR type ion sources. The effect of increasing ion energy on the etching of fluorine saturated silicon and silicon dioxide surfaces was quantified through extensions of available low energy physical sputtering theory. Simple "site"-occupation models were developed for the quantification of the ion-enhanced fluorine etching kinetics in these systems. These models are suitable for use in topography evolution simulators (e.g. SAMPLE) for the predictive modeling of profile evolution in non-depositing fluorine-based plasmas such as NF_3 and SF_6. (Copies available exclusively from MIT Libraries, Rm. 14

  16. Development of Localized Plasma Etching System for Failure Analyses in Semiconductor Devices: (3)
    Etching-Monitoring Using Quadrupole Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Takahashi, Satoshi; Horie, Tomoyuki; Shirayama, Yuya; Yokosuka, Shuntaro; Kashimura, Kenta; Hayashi, Akihiro; Iwase, Chikatsu; Shimbori, Shun'ichiro; Tokumoto, Hiroshi; Naitoh, Yasuhisa; Shimizu, Tetsuo

    Quadrupole mass spectrometry (QMS) has been applied to monitor the etching processes in a localized plasma etching system. An inward plasma was employed for etching in which the etching gas was discharged in the narrow gap between the etched sample and the entrance of an evacuating capillary tube. As the etching products are immediately evacuated through the capillary, a QMS system equipped at the capillary exit is able to analyze the products without any loss in concentration via diffusion into the chamber. Two kinds of samples, thermally grown SiO2 on Si and spin-coated polyimide film on Si, were etched, and the chemical species in the evacuated etching gas were analyzed with QMS, which enables monitoring of the composition of the surface being etched. Samples of thermal SiO2 were etched with CF4 plasma. The peak height of the SiF3+ signal during the SiO2 etching was lower than that observed during etching of the silicon substrate, leading to endpoint detection. The endpoint detection of the polyimide film etching was conducted using two etching gases: pure O2 and pure CF4. When O2 was used, the endpoint was detected by the decrease of the mass peak attributed to CO. When CF4 was employed, the plasma was able to etch both the polyimide film and Si substrate. Then the endpoint was detected by the increase of the mass peak of SiF3+ produced by the etching of the Si substrate.

  17. Focused electron-beam-induced etching of silicon dioxide

    SciTech Connect

    Randolph, S.J.; Fowlkes, J.D.; Rack, P.D.

    2005-08-01

    Focused electron-beam (FEB)-induced etching of silicon dioxide with xenon difluoride has been investigated as a selective nanoscale etching technique. In order to gain an understanding of the parameters that control etch rate and etch efficiency, the effects of beam current, beam energy, and scan rate conditions on the FEB process were examined. High etch rates were obtained for low beam energy, high beam current, and high scan rates. Experimental results also indicated that the FEB etch process is governed by the electron-stimulated desorption of oxygen from the SiO{sub 2} matrix, and subsequently rate limited by XeF{sub 2} availability. Based on experimental evidence and existing literature, a simple, two-step model was introduced to qualitatively describe the etch mechanism. The model involves a cyclical process, which is initiated by the reduction of a surface layer of SiO{sub 2} to elemental silicon. The exposed silicon surface is then removed by a chemical-mediated etch reaction.

  18. Physical mechanisms for anisotropic plasma etching of cesium iodide

    SciTech Connect

    Yang Xiaoji; Hopwood, Jeffrey A.

    2004-11-01

    The physical mechanisms for the interaction between a reactive plasma and a cesium iodide surface are investigated. Under conditions of ion bombardment and elevated substrate temperature, CsI is found to sputter etch slowly (15 nm/min). If atomic fluorine, fluorocarbon radicals, of SF{sub x} radicals are present in the discharge, however, CsI is reactively etched at substantially higher rates (up to 200 nm/min). The roles of plasma radicals and energetic ion bombardment are investigated by first exposing the surface to plasma radicals and then bombarding the surface with argon ions. The optical emission from Cs and I atoms is found to correlate with the etch rate of CsI and is used as an in situ monitor of radical-enhanced etching. Small surface exposures to CF{sub x}, SF{sub x}, and F radicals are shown to enhance the etch rate of CsI. If the exposure of the CsI surface is increased, however, these same radical species act as etch inhibitors. A simple model for reactive etching of CsI is proposed, and this model is shown to compare reasonably well with experimental etch rates.

  19. Differential etching of chalcogenides for infrared photonic waveguide structures

    SciTech Connect

    Riley, Brian J.; Sundaram, S. K.; Johnson, Bradley R.; Saraf, Laxmikant V.

    2007-10-10

    Chemical etching rates for two different chalcogenide glass compositions (As2S3 and As24S38Se38) were studied using sodium hydroxide based etchant solutions. Etching was performed using a variation of standard photolithographic masking and wet-etching techniques. Variations in etch rate with NaOH concentration and glass composition were observed. The depth of etch was characterized using an optical profilometer. Etch rate differences as large as three orders of magnitude between these two glasses were observed at low NaOH concentration (0.053 M). We present a single variable etch rate curve of etch depth per time (nm/s) versus NaOH overall solution concentration (in M) for these two different chalcogenide glasses (As2S3 and As24S38Se38). This technology shows promise for fabricating highly asymmetrical photonic structures and has potential applications in fabricating novel photonic bandgap (PBG) structures that will function in the long-wave infrared (LWIR) regime.

  20. Orthodox etching of HVPE-grown GaN

    SciTech Connect

    Weyher, J.L.; Lazar, S.; Macht, L.; Liliental-Weber, Z.; Molnar,R.J.; Muller, S.; Nowak, G.; Grzegory, I.

    2006-08-10

    Orthodox etching of HVPE-grown GaN in molten eutectic of KOH + NaOH (E etch) and in hot sulfuric and phosphoric acids (HH etch) is discussed in detail. Three size grades of pits are formed by the preferential E etching at the outcrops of threading dislocations on the Ga-polar surface of GaN. Using transmission electron microscopy (TEM) as the calibration tool it is shown that the largest pits are formed on screw, intermediate on mixed and the smallest on edge dislocations. This sequence of size does not follow the sequence of the Burgers values (and thus the magnitude of the elastic energy) of corresponding dislocations. This discrepancy is explained taking into account the effect of decoration of dislocations, the degree of which is expected to be different depending on the lattice deformation around the dislocations, i.e. on the edge component of the Burgers vector. It is argued that the large scatter of optimal etching temperatures required for revealing all three types of dislocations in HVPE-grown samples from different sources also depends upon the energetic status of dislocations. The role of kinetics for reliability of etching in both etches is discussed and the way of optimization of the etching parameters is shown.

  1. A geometric etch-stop technology for bulk micromachining

    NASA Astrophysics Data System (ADS)

    Amir Parviz, Babak; Najafi, Khalil

    2001-05-01

    This paper describes a new fabrication method for the simultaneous creation of multi-level single-crystalline silicon structures, each with a different thickness. The method combines deep dry etching and wet anisotropic etching of silicon in order to avoid multiple back-side alignment steps and timed etches. The levels are defined in a single lithographic step from the front side. The fabrication involves etching of deep trenches from the front side of the wafer followed by a refill and etch back process. The final structure is defined by maskless wet etching of the bulk silicon. The progress of the anisotropic wet etch is impeded by the geometric pattern at the bottom of the trenches, and thus structures with various thickness ranging from ten to a few hundred micrometres can be implemented. The effect of various design parameters, such as trench geometry, refill material and reactive ion etching lag, are discussed and design rules are established. The capabilities of the method are demonstrated by the fabrication of a number of devices, such as 1200×1200×3.5 µm diaphragms supported by a 40 µm thick rim and (1800×10×3 µm) embedded hot-wire anemometers suspended by a 0.2 µm thick dielectric bridge.

  2. Reactive ion etched substrates and methods of making and using

    DOEpatents

    Rucker, Victor C.; Shediac, Rene; Simmons, Blake A.; Havenstrite, Karen L.

    2007-08-07

    Disclosed herein are substrates comprising reactive ion etched surfaces and specific binding agents immobilized thereon. The substrates may be used in methods and devices for assaying or isolating analytes in a sample. Also disclosed are methods of making the reactive ion etched surfaces.

  3. Focused electron-beam-induced etching of silicon dioxide

    NASA Astrophysics Data System (ADS)

    Randolph, S. J.; Fowlkes, J. D.; Rack, P. D.

    2005-08-01

    Focused electron-beam (FEB)-induced etching of silicon dioxide with xenon difluoride has been investigated as a selective nanoscale etching technique. In order to gain an understanding of the parameters that control etch rate and etch efficiency, the effects of beam current, beam energy, and scan rate conditions on the FEB process were examined. High etch rates were obtained for low beam energy, high beam current, and high scan rates. Experimental results also indicated that the FEB etch process is governed by the electron-stimulated desorption of oxygen from the SiO2 matrix, and subsequently rate limited by XeF2 availability. Based on experimental evidence and existing literature, a simple, two-step model was introduced to qualitatively describe the etch mechanism. The model involves a cyclical process, which is initiated by the reduction of a surface layer of SiO2 to elemental silicon. The exposed silicon surface is then removed by a chemical-mediated etch reaction.

  4. Evaluation of bond strength of orthodontic brackets without enamel etching

    PubMed Central

    Boruziniat, Alireza; Motaghi, Shiva; Moghaddas, Mohmmadjavad

    2015-01-01

    Background To compare the shear bond strength of brackets with and without enamel etching. Material and Methods In this study, 60 sound premolars were randomly divided into four different groups: 1- TXE group: Enamel etching+Transbond XT adhesive+ Transbond XT composite. 2- TXS group: Transbond plus self-etch adhesive+ Transbond XT composite. 3- PQ1E group: Enamel etching+ PQ1 adhesive+ Transbond XT composite. 4- PQ1 group: PQ1 adhesive+ Transbond XT composite. The shear bond strengths of brackets were evaluated using universal testing machine at cross head speed of 0.5 mm/min. The Adhesive Remnant Index (ARI) was also measured. One-way ANOVA, Tukey’s post hoc, Kruskal-wallis and Mann-Witney U test were used for data analysis. Results There was a significant difference between etched and unetched groups respect to SBS and ARI (p<0.05), however; no significant difference was observed between unetched group and self-etch adhesive group (p>> 0.05). The shear bond strength of PQ1 group was the least but in acceptable range and its ARI was less than other groups. Conclusions PQ1 adhesive can be used for bracket bonding without enamel etching with adequate bond strength and minimal ARI. Key words:Bracket, shear bond strength, filled-adhesive, self-etch adhesive. PMID:26535100

  5. Sputtered gold mask for deep chemical etching of silicon

    NASA Technical Reports Server (NTRS)

    Pisciotta, B. P.; Gross, C.; Olive, R. S.

    1975-01-01

    Sputtered mask resists chemical attack from acid and has adherence to withstand prolonged submergence in etch solution without lifting from silicon surface. Even under prolonged etch conditions with significant undercutting, gold mask maintained excellent adhesion to silicon surface and imperviousness to acid.

  6. Investigation on femtosecond laser-assisted microfabrication in silica glasses

    NASA Astrophysics Data System (ADS)

    Liu, Hewei; Chen, Feng; Yang, Qing; Si, Jinhai; Hou, Xun

    2010-11-01

    Fabrication of microstructures embedded in silica glasses using a femtosecond (fs)-laser-assisted chemical etching technique is systematically studied in this work. By scanning the laser pulses inside samples followed by the treatment of 5%-diluted hydrofluoric (HF) acid, groups of straight channels are fabricated and the relationship between the etching rate and processing parameters, including laser power, scanning speed, scanning time and laser polarization, is demonstrated. Based on the optimization of these parameters, complicated microstructures such as channels, cavities and their combinations are manufactured. The work has great potential applications in microelectromechanical systems, biomedical detection and chemical analysis.

  7. Development and implementation of a system for reading nuclear etched tracks in PADC (CR-39) using coherent light scattering

    NASA Astrophysics Data System (ADS)

    Gepford, Heather Jean (Haahr)

    One of the most effective neutron dosimetry techniques for neutrons with energies greater than 100 keV uses solid-state nuclear track detectors to monitor the passage of neutron induced charged particle tracks in a solid material such as the polymer CR-39. A new method, which employs coherent light scattering as a measure of neutron dose, was investigated in this work. Los Alamos National Laboratory developed the Laser Illuminated Track Etch Scattering (LANL-LITES) system, which quantifies the total scattered light produced by tracks in etched CR-39 dosimeters. An extension of that technique was developed at Georgia Tech by combining the principles of LANL-LITES with those used by J. E. Groetz at Universite de Franche-Compte resulting in the Differential Angle Laser Illuminated Track Etch Scattering (DALITES) system. The purpose of this thesis was to develop a system that uses coherent light scattering by nuclear etched tracks to ascertain personnel neutron doses. The research included validation of the LANL-LITES system response, evaluation of the potential for using the DALITES system to obtain neutron quality data from etched CR-39 dosimeters, and development of a theoretical model describing the angular light scattering distribution from neutron-induced proton tracks in CR-39. The results of this study verify the validity of a linear response of scattered light intensity to dose equivalent for dosimeters irradiated up to 50 mSv using the LANL-LITES system and theoretically establishes the potential for extraction of neutron quality information from CR-39 dosimeters using the DALITES methodology.

  8. Correction for etch proximity: new models and applications

    NASA Astrophysics Data System (ADS)

    Granik, Yuri

    2001-09-01

    Short-range etch proximity effects increase intra-die CD variability and degrade the IC performance and yield. Tight control of the etch bias is an increasingly critical factor in realizing the ITRS technology nodes. The 2000 technology nodes revision added a new category, the post-etch 'physical' gate length metric, that is 9 - 17% smaller than 'in-resist' gate length. We present new etch proximity correction methods and models designed to reduce negative impact of etch-induced CD variability and increase uniformity of the controlled over- etching. Resolution Enhancement Technologies (RET) design correction methods typically employ 'lumped' process models. We found that an alternative methodology based upon separation of the process factors and the related models may yield better accuracy, performance, and better suit the design and process optimization flows. The contributions from the reticle, the optics, the wafer, and etch are individually determined and then used either separately or in aggregation for the most flexible and optimum correction of their respective contributions. The etch corrections are based on the Variable Etch Bias model (VEB model). This semi-empirical model requires experimental CD information to be collected from the test patterns under fixed process conditions (point-process model). It demonstrates excellent fit to the early experimental CD-SEM data gathered to date, which spans a variety of layout features and process conditions. The VEB model works in conjunction with CalibreR software system's Variable Threshold Resist-Extended (VTR-E) model, however the etching is modeled separately from the optics and the resist processing. This yields better understanding and more accurate explanation of the experiments than those that are produced by the 'lumped' process modeling. The VEB model explains etch- induced bias in terms of the following three proximity characteristics or variables: effective trench width (or pattern separation), pattern

  9. Investigation and simulation of XeF2 isotropic etching of silicon

    NASA Astrophysics Data System (ADS)

    Bahreyni, Behraad; Shafai, C.

    2002-11-01

    Trenching and loading phenomena observed on XeF2-etched (100) silicon wafers are explained in this article. Trenching refers to deeper etching at the side of an etch feature with respect to the middle of the feature. Loading is the reduction in etch depth that adjacent etched regions impose on their respective etch profiles. These two phenomena are especially recognized at locations where the substrate is etched through large mask openings. Both phenomena were reported by other groups, but no explanation was given for them. A novel model explaining these phenomena is developed in this article, and the etching process is simulated in software. The results are compared to several etched samples with varying mask aperture size and etch depth. Good agreement is found between simulated profiles and actual measured etch profiles at given mean-free paths. Furthermore, our simulator predicts that the reaction probability between etchant and substrate molecules influences surface roughness of the etched regions.

  10. UV-photoassisted etching of GaN in KOH

    SciTech Connect

    Cho, H.; Donovan, S.M.; Abernathy, C.R.; Lambers, E.S.; Pearton, S.J.; Auh, K.H.; Han, J.; Shul, R.J.

    1999-03-01

    The etch rate of GaN under ultraviolet-assisted photoelectrochemical conditions in KOH solutions is found to be a strong function of illumination intensity, solution molarity, sample bias, and material doping level. At low e-h pair generation rates, grain boundaries are selectively etched, while at higher illumination intensities etch rates for unintentionally doped (n {approximately} 3 {times} 10{sup 16} cm{sup {minus}3}) GaN are {ge} 1,000 {angstrom} {center_dot} min{sup {minus}1}. The etching is diffusion-limited under the conditions with an activation energy of {approximately} 0.8 kCal{center_dot}mol{sup {minus}1}. The etched surfaces are rough, but retain their stoichiometry.

  11. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  12. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, Carol I. H.; Dishman, James L.

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  13. Effects of plasma etching solar cell front surfaces

    SciTech Connect

    Taylor, W.E.; Bunyan, S.M.; Olson, C.E.

    1980-01-01

    A front surface plasma etch with Freon 14+8% O/sub 2/ or sulfur hexafluoride (SF/sub 6/) was found to improve terrestrial solar cell output. SEM studies of these samples revealed surface pitting on Freon 14 etched samples. About 50% of the improvement from Freon etched samples can be attributed to the light capturing effects of surface pits. Output increases from SF/sub 6/ plasma etched cells were found to be comparable with Freon etched cells after subtraction of the light trapping effects. The excess output improvement might be attributed to reduced junction depth or removal of near surface lattice damage. Investigations attempting to identify the cause are described. 1 ref.

  14. Consideration of VT5 etch-based OPC modeling

    NASA Astrophysics Data System (ADS)

    Lim, ChinTeong; Temchenko, Vlad; Kaiser, Dieter; Meusel, Ingo; Schmidt, Sebastian; Schneider, Jens; Niehoff, Martin

    2008-03-01

    Including etch-based empirical data during OPC model calibration is a desired yet controversial decision for OPC modeling, especially for process with a large litho to etch biasing. While many OPC software tools are capable of providing this functionality nowadays; yet few were implemented in manufacturing due to various risks considerations such as compromises in resist and optical effects prediction, etch model accuracy or even runtime concern. Conventional method of applying rule-based alongside resist model is popular but requires a lot of lengthy code generation to provide a leaner OPC input. This work discusses risk factors and their considerations, together with introduction of techniques used within Mentor Calibre VT5 etch-based modeling at sub 90nm technology node. Various strategies are discussed with the aim of better handling of large etch bias offset without adding complexity into final OPC package. Finally, results were presented to assess the advantages and limitations of the final method chosen.

  15. Radical surface interactions in industrial silicon plasma etch reactors

    NASA Astrophysics Data System (ADS)

    Cunge, G.; Vempaire, D.; Ramos, R.; Touzeau, M.; Joubert, O.; Bodard, P.; Sadeghi, N.

    2010-06-01

    Silicon etching in Cl2-based plasmas is an important step for the fabrication of IC circuits but the plasma surface interactions involved in this process remain poorly understood. Based on the developments in plasma and reactor wall diagnostics, this paper reviews the recent progress in the understanding of radicals' interactions with surfaces during silicon etching processes. X-ray photoelectron spectroscopy analysis of the reactor walls shows that during Si etching in Cl2/O2 plasmas, the initial Al2O3 chamber walls are coated with a thin SiOCl layer. Broadband absorption spectroscopy with UV light emitting diodes is used to measure the densities of SiClX radicals (X = 0-2) and Cl2 molecules in steady state plasmas running with the chamber walls coated with different materials. To estimate the surface sticking/recombination probability of these radicals on different surfaces, we have performed time-resolved absorption measurements in the afterglow of pulsed discharges. Our work, in agreement with previous results, shows that the Cl2/Cl density ratio in the discharge is driven mainly by the chemical nature of the chamber walls explaining why process drifts are often observed in Cl2/O2 plasmas. The recombination coefficient of Cl atoms on SiOCl surfaces is about 0.007, while it is about 0.1 on clean walls (AlF3). Based on these results, we discuss the best strategy leading to reproducible process control, the present strategy being a systematic reactor cleaning/conditioning between wafers. The SiOCl layer deposition mechanism is then discussed in detail. The sticking coefficient of SiCl on this surface is near unity, while SiCl2 appears to be weakly reactive toward it. Therefore, SiCl (and SiCl+ ions) are the main vectors of Si deposition on the reactor walls, where their subsequent oxidization by O atoms leads to the formation of a SiOCl deposit. Furthermore, we show that SiCl reaction in the plasma volume with Cl2, through the exchange reaction SiCl + Cl2 → Si

  16. Atomic precision etch using a low-electron temperature plasma

    NASA Astrophysics Data System (ADS)

    Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.

    2016-03-01

    Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.

  17. In-situ diagnostics and characterization of etch by-product deposition on chamber walls during halogen etching of silicon

    NASA Astrophysics Data System (ADS)

    Rastgar, Neema; Sriraman, Saravanapriyan; Marsh, Ricky; Paterson, Alex

    2014-10-01

    Plasma etching is a critical technology for nanoelectronics fabrication, but the use of a vacuum chamber limits the number of in-situ, real-time diagnostics measurements that can be performed during an etch process. Byproduct deposition on chamber walls during etching can affect the run-to-run performance of an etch process if there is build-up or change of wall characteristics with time. Knowledge of chamber wall evolution and the composition of wall-deposited films are critical to understanding the performance of plasma etch processes, and an in-situ diagnostics measurement is useful for monitoring the chamber walls in real time. We report the use of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to perform in-situ diagnostics of a vacuum chamber's walls during plasma etching. Using ATR-FTIR, we are able to monitor the relative thickness and makeup of chamber wall deposits in real time. We then use this information to develop a chamber wall cleaning process in order to maintain reproducible etching conditions from wafer to wafer. In particular, we report mid-IR (4000-650 cm-1) absorption spectra of chamber wall-deposited silicon byproducts formed during halogen etching of silicon wafers.

  18. Optical diagnostic instrument for monitoring etch uniformity during plasma etching of polysilicon in a chlorine-helium plasma

    SciTech Connect

    Hareland, W.A.; Buss, R.J.

    1993-06-01

    Nonuniform etching is a serious problem in plasma processing of semiconductor materials and has important consequences in the quality and yield of microelectronic components. In many plasmas, etching occurs at a faster rate near the periphery of the wafer, resulting in nonuniform removal of specific materials over the wafer surface. This research was to investigate in situ optical diagnostic techniques for monitoring etch uniformity during plasma processing of microelectronic components. We measured 2-D images of atomic chlorine at 726 nm in a chlorine-helium plasma during plasma etching of polysilicon in a parallel-plate plasma etching reactor. The 3-D distribution of atomic chlorine was determined by Abel inversion of the plasma image. The experimental results showed that the chlorine atomic emission intensity is at a maximum near the outer radius of the plasma and decreases toward the center. Likewise, the actual etch rate, as determined by profilometry on the processed wafer, was approximately 20% greater near the edge of the wafer than at its center. There was a direct correlation between the atomic chlorine emission intensity and the etch rate of polysilicon over the wafer surface. Based on these analyses, 3-D imaging would be a useful diagnostic technique for in situ monitoring of etch uniformity on wafers.

  19. Influence of preliminary etching on the stability of bonds created by one-step self-etch bonding systems.

    PubMed

    Taschner, Michael; Nato, Fernando; Mazzoni, Annalisa; Frankenberger, Roland; Falconi, Mirella; Petschelt, Anselm; Breschi, Lorenzo

    2012-06-01

    We evaluated the effects of preliminary etching of dentine on the stability of the bond created by one-step self-etch adhesives under different storage conditions. Adper Easy Bond (3M ESPE) and iBond Self-Etch (iBond SE; Heraeus Kulzer) were applied with an etch-and-rinse (i.e. after preliminary phosphoric acid etching for 15 s) or a self-etch approach. Resin-dentine bonded specimens were sectioned perpendicularly to the adhesive interface according to the 'non-trimming technique'. Beams were stored in artificial saliva for 24 h, 6 months, or 1 yr at 37°C, or in 10% NaOCl for 5 h at room temperature, and then stressed until failure; the microtensile bond strengths were calculated. Interfacial nanoleakage of additional teeth was evaluated using light microscopy or transmission electron microscopy. Adper Easy Bond showed higher bond strength than iBond SE, regardless of the dentine treatment. Similar microtensile bond strength results were obtained for teeth subjected to artificial ageing in 10% NaOCl for 5 h at room temperature and for teeth stored in artificial saliva for 6 months at 37°C. The additional etching step increased the microtensile bond strength for Adper Easy Bond and iBond SE. This study supports the use of one-step adhesives on etched dentine because of the increased bond strength compared with their application onto smear-layer-covered dentine, regardless of storage conditions. PMID:22607341

  20. Bonding with self-etching primers--pumice or pre-etch? An in vitro study.

    PubMed

    Fitzgerald, Ian; Bradley, Gerard T; Bosio, Jose A; Hefti, Arthur F; Berzins, David W

    2012-04-01

    The purpose of this study was to compare the shear bond strengths (SBSs) of orthodontic brackets bonded with self-etching primer (SEP) using different enamel surface preparations. A two-by-two factorial study design was used. Sixty human premolars were harvested, cleaned, and randomly assigned to four groups (n = 15 per group). Teeth were bathed in saliva for 48 hours to form a pellicle. Treatments were assigned as follows: group 1 was pumiced for 10 seconds and pre-etched for 5 seconds with 37 per cent phosphoric acid before bonding with SEP (Transbond Plus). Group 2 was pumiced for 10 seconds before bonding. Group 3 was pre-etched for 5 seconds before bonding. Group 4 had no mechanical or chemical preparation before bonding. All teeth were stored in distilled water for 24 hours at 37°C before debonding. The SBS values and adhesive remnant index (ARI) score were recorded. The SBS values (± 1 SD) for groups 1-4 were 22.9 ± 6.6, 16.1 ± 7.3, 36.2 ± 8.2, and 13.1 ± 10.1 MPa, respectively. Two-way analysis of variance and subsequent contrasts showed statistically significant differences among treatment groups. ARI scores indicated the majority of adhesive remained on the bracket for all four groups. Pre-etching the bonding surface for 5 seconds with 37 per cent phosphoric acid, instead of pumicing, when using SEPs to bond orthodontic brackets, resulted in greater SBSs.

  1. E-beam inspection of EUV mask defects: To etch or not to etch?

    NASA Astrophysics Data System (ADS)

    Bonam, Ravi; Tien, Hung-Yu; Park, Chanro; Halle, Scott; Wang, Fei; Corliss, Daniel; Fang, Wei; Jau, Jack

    2014-04-01

    EUV Lithography is aimed to be inserted into mainstream production for sub-20nm pattern fabrication. Unlike conventional optical lithography, frequent defectivity monitors (adders, repeaters etc.) are required in EUV lithography. Due to sub-20nm pattern and defect dimensions e-beam inspection of critical pattern areas is essential for yield monitor. In previous work we showed sub-10nm defect detection sensitivity1 on patterned resist wafers. In this work we report 8-10× improvement in scan rates of etched patterns compared to resist patterns without loss in defect detection sensitivity. We observed good etch transfer of sub-10nm resist features. A combination of smart scan strategies with improved etched pattern scan rates can further improve throughput of e-beam inspection. An EUV programmed defect mask with Line/Space, Contact patterns was used to evaluate printability of defects and defect detection (Die-Die and Die-Database) capability of the e-beam inspection tool. Defect inspection tool parameters such as averaging, threshold value were varied to assess its detection capability and were compared to previously obtained results on resist patterns.

  2. Shear bond strength after Er:YAG laser radiation conditioning of enamel and dentin

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinkova, Helena; Dolezalova, Libuse; Kubelka, Jiri; Prochazka, Stanislav; Hamal, Karel; Krejsa, Otakar

    1997-12-01

    This study compares bond shear strength between hard dental tissues and composite resin filling material after a classical acid etching treatment procedure and Er:YAG laser surface conditioning. The retention of composite resin was evaluated for three cases: (1) the flat dental substrate without any conditioning, (2) the classical drilling machine prepared surface with acid etching and (3) the Er:YAG laser conditioning of enamel and dentin. None significant differences between bond shear strength of the classical drilling machine prepared surface with acid etching in comparison with the laser radiation conditioning were found.

  3. Laser ablation of maskant used in chemical milling process for aerospace applications

    NASA Astrophysics Data System (ADS)

    Leone, C.; Lopresto, V.; Memola Capece Minutolo, F.; de Iorio, I.; Rinaldi, N.

    2010-09-01

    Chemical etching is a non-traditional machining process where a chemical solution is used to remove unwanted material by dissolution. To shape the etched area, before the process, a chemical inert paint (maskant) is applied on the surface. Then the maskant is trimmed away and the uncovered area is subject to the etching. The maskant cut could be obtained mechanically or by laser ablation. In this work, the effect of process parameters, cutting speed and beam power, on interaction phenomena and defect formation in laser cutting of polymeric maskant is studied, using a 30W CO2 laser source.

  4. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    PubMed Central

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-01-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process. PMID:27484188

  5. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-08-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process.

  6. Adsorption of albumin, collagen, and fibronectin on the surface of poly(hydroxybutyrate-hydroxyvalerate) (PHB/HV) and of poly (epsilon-caprolactone) (PCL) films modified by an alkaline hydrolysis and of poly(ethylene terephtalate) (PET) track-etched membranes.

    PubMed

    Rouxhet, L; Duhoux, F; Borecky, O; Legras, R; Schneider, Y J

    1998-01-01

    The effect of alkaline hydrolysis on several surface properties of poly(hydroxybutyrate-hydroxyvalerate) (92/8) (PHB/HV) and poly(epsilon-caprolactone) (PCL) films and of poly(ethylene terephtalate) (PET) track-etched membranes have been characterized, as well as the adsorption of three proteins normally encountered by mammalian cells in vivo, namely albumin, collagen, and fibronectin. The water contact angle decreases and the number of -COOH functions accessible to a chemical reaction at the surface of PCL increases with alkaline hydrolysis. Analysis by atomic force microscopy pictures reveals a change in surface morphology. The modifications of surface properties are correlated with a two times increase of the adsorption of three radiolabelled proteins. The hydrolysis results in a slight increase in the water contact angle of one face of the PHB/HV film and a sharp increase in the number of -COOH functions. Important morphology changes are also induced. The adsorption of the radiolabelled proteins is almost 100 times higher on the hydrolyzed polymer than on the native surface. The increase in hydrophilicity of different PET batches correlates to an increase in the number of -COOH functions. Nevertheless, the surface chemical composition and rugosity are constant and no significant difference in the amount of radiolabelled fibronectin adsorbed on the different surfaces is detectable. In conclusion, the effect of hydrolysis on the surface properties of each of the polyesters studied as well as the proteins adsorption on the different surfaces are different. The results strongly support the hypothesis that, in the system studied, parameters other than hydrophilicity influence protein adsorption: the main parameters that might play a role are the total surface area accessible to the proteins, as well as the surface chemical composition. PMID:9860170

  7. Direct Visualization of Etching Trajectories in Metal-Assisted Chemical Etching of Si by the Chemical Oxidation of Porous Sidewalls.

    PubMed

    Yoon, Sung-Soo; Khang, Dahl-Young

    2015-09-29

    We demonstrate a simple method for the visualization of trajectories traced by noble metal nanoparticles during metal-assisted chemical etching (MaCE) of Si. The nanoporous Si layer formed around drilled pores is converted into SiO2 by simple chemical oxidation. Etch removal of the remaining Si using alkali hydroxide leaves SiO2 nanostructures that are the exact replica of those drilled pores or etching trajectories. The differences in etching characteristics between Ag and Au have been investigated using the proposed visualization method. The shape and chemical stability of metal nanoparticles used for MaCE have been found to be critical in determining etching paths. The proposed method would be very helpful in studying the fundamental mechanism of MaCE as well as in micro/nanostructuring of the Si surface for various applications. This approach can also be used for the generation of straight or helical SiO2 nanotubes.

  8. Energy dispersive X-ray spectroscopy analysis of Si sidewall surface etched by deep-reactive ion etching

    NASA Astrophysics Data System (ADS)

    Matsutani, Akihiro; Nishioka, Kunio; Sato, Mina

    2016-06-01

    We investigated the composition of a passivation film on a sidewall etched by deep-reactive ion etching (RIE) using SF6/O2 and C4F8 plasma, by energy-dispersive X-ray (EDX) spectroscopy. It was found that the compositions of carbon and fluorine in the passivation film on the etched sidewall depend on the width and depth of the etched trench. It is important to understand both the plasma behavior and the passivation film composition to carry out fabrication by deep-RIE. We consider that these results of the EDX analysis of an etched sidewall will be useful for understanding plasma behavior in order to optimize the process conditions of deep-RIE.

  9. Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology.

    PubMed

    Wang, Shunquan; Zhou, Changhe; Ru, Huayi; Zhang, Yanyan

    2005-07-20

    Polymer deposition is a serious problem associated with the etching of fused silica by use of inductively coupled plasma (ICP) technology, and it usually prevents further etching. We report an optimized etching condition under which no polymer deposition will occur for etching fused silica with ICP technology. Under the optimized etching condition, surfaces of the fabricated fused silica gratings are smooth and clean. Etch rate of fused silica is relatively high, and it demonstrates a linear relation between etched depth and working time. Results of the diffraction of gratings fabricated under the optimized etching condition match theoretical results well.

  10. Characterization of silicon isotropic etch by inductively coupled plasma etcher for microneedle array fabrication

    NASA Astrophysics Data System (ADS)

    Ji, Jing; Tay, Francis E. H.; Miao, Jianmin; Sun, Jianbo

    2006-04-01

    This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions.

  11. Hydrothermal Etching Treatment to Rutile TiO2 Nanorod Arrays for Improving the Efficiency of CdS-Sensitized TiO2 Solar Cells.

    PubMed

    Wan, Jingshu; Liu, Rong; Tong, Yuzhu; Chen, Shuhuang; Hu, Yunxia; Wang, Baoyuan; Xu, Yang; Wang, Hao

    2016-12-01

    Highly ordered TiO2 nanorod arrays (NRAs) were directly grown on an F:SnO2 (FTO) substrate without any seed layer by hydrothermal route. For a larger surface area, the second-step hydrothermal treatment in hydrochloric acid was carried out to the as-prepared TiO2 NRAs. The results showed that the center portion of the TiO2 nanorods were dissolved in the etching solution to form a nanocave at the initial etching process. As the etching time extended, the tip parts of the nanocave wall split into lots of nanowires with a reduced diameter, giving rise to a remarkable increase of specific surface area for the TiO2 NRAs. The TiO2 films after etching treatment were sensitized by CdS quantum dots (QDs) to fabricate quantum dot-sensitized solar cells (QDSSCs), which exhibited a significant improvement in the photocurrent density in comparison with that of the un-treated device, this mainly attributed to the enhancement of QD loading and diffused reflectance ability. Through modifying the etching TiO2 films with TiCl4, a relatively high power conversion efficiency (PCE) of 3.14 % was obtained after optimizing the etching time.

  12. Hydrothermal Etching Treatment to Rutile TiO2 Nanorod Arrays for Improving the Efficiency of CdS-Sensitized TiO2 Solar Cells

    NASA Astrophysics Data System (ADS)

    Wan, Jingshu; Liu, Rong; Tong, Yuzhu; Chen, Shuhuang; Hu, Yunxia; Wang, Baoyuan; Xu, Yang; Wang, Hao

    2016-01-01

    Highly ordered TiO2 nanorod arrays (NRAs) were directly grown on an F:SnO2 (FTO) substrate without any seed layer by hydrothermal route. For a larger surface area, the second-step hydrothermal treatment in hydrochloric acid was carried out to the as-prepared TiO2 NRAs. The results showed that the center portion of the TiO2 nanorods were dissolved in the etching solution to form a nanocave at the initial etching process. As the etching time extended, the tip parts of the nanocave wall split into lots of nanowires with a reduced diameter, giving rise to a remarkable increase of specific surface area for the TiO2 NRAs. The TiO2 films after etching treatment were sensitized by CdS quantum dots (QDs) to fabricate quantum dot-sensitized solar cells (QDSSCs), which exhibited a significant improvement in the photocurrent density in comparison with that of the un-treated device, this mainly attributed to the enhancement of QD loading and diffused reflectance ability. Through modifying the etching TiO2 films with TiCl4, a relatively high power conversion efficiency (PCE) of 3.14 % was obtained after optimizing the etching time.

  13. Microhardness, chemical etching, SEM, AFM and SHG studies of novel nonlinear optical crystal -L-threonine formate

    SciTech Connect

    Hanumantha Rao, Redrothu; Kalainathan, S.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Microhardness studies of novel LTF crystal reported first time in the literature. Black-Right-Pointing-Pointer Surface studies are done by AFM, chemical etching and SEM. Black-Right-Pointing-Pointer From SHG studies, it is known that LTF is potential NLO crystal. -- Abstract: The crystal L-threonine formate, an organic NLO crystal was synthesized from aqueous solution by slow evaporation technique. The grown crystal surface has been analyzed by scanning electron microscopy (SEM), chemical etching and atomic force microscopy (AFM). SEM analysis reveals pyramidal shaped minute crystallites on the growth surface. The etching study indicates the occurrence of etch pit patterns like striations and step like pattern. The mechanical properties of LTF crystals were evaluated by mechanical testing which reveals certain mechanical characteristics like elastic stiffness constant (C{sub 11}) and young's modulus (E). The Vickers and Knoop microhardness studies have been carried out on LTF crystals over a range of 10-50 g. Hardness anisotropy has been observed in accordance with the orientation of the crystal. AFM image shows major hillock on growth surface. The second harmonic generation (SHG) efficiency has been tested by the Kurtz powder technique using Nd:YAG laser and found to be about 1.21 times in comparison with standard potassium dihydrogen phosphate (KDP) crystals.

  14. Formation of nanostructured silicon surfaces by stain etching

    PubMed Central

    2014-01-01

    In this work, we report the fabrication of ordered silicon structures by chemical etching of silicon in vanadium oxide (V2O5)/hydrofluoric acid (HF) solution. The effects of the different etching parameters including the solution concentration, temperature, and the presence of metal catalyst film deposition (Pd) on the morphologies and reflective properties of the etched Si surfaces were studied. Scanning electron microscopy (SEM) was carried out to explore the morphologies of the etched surfaces with and without the presence of catalyst. In this case, the attack on the surfaces with a palladium deposit begins by creating uniform circular pores on silicon in which we distinguish the formation of pyramidal structures of silicon. Fourier transform infrared spectroscopy (FTIR) demonstrates that the surfaces are H-terminated. A UV-Vis-NIR spectrophotometer was used to study the reflectance of the structures obtained. A reflectance of 2.21% from the etched Si surfaces in the wavelength range of 400 to 1,000 nm was obtained after 120 min of etching while it is of 4.33% from the Pd/Si surfaces etched for 15 min. PMID:25435830

  15. Etching of oxynitride thin films using inductively coupled plasma

    SciTech Connect

    Kim, Byungwhan; Lee, Dukwoo; Kim, Nam Jung; Lee, Byung Teak

    2005-05-01

    In this study, silicon oxynitride (SiON) has been etched in a C{sub 2}F{sub 6} inductively coupled plasma. The process parameters examined include a radio frequency source power, bias power, pressure, and C{sub 2}F{sub 6} flow rate. For process optimization, a statistical experimental design was employed to investigate parameter effects under various plasma conditions. The etch rate increased almost linearly with increasing the source or bias power. Main effect analysis revealed that the etch rate is dominated by the source power. The C{sub 2}F{sub 6} flow rate exerted the least impact on both etch rate and profile angle. It was estimated that the C{sub 2}F{sub 6} effect is transparent only as the etchant is supplied sufficiently. Depending on the pressure levels, the etch rate varied in a complicated way. Parameter effects on the profile angle were very small and the profile angle varied between 83 deg. and 87 deg. for all etching experiments. In nearly all experiments, microtrenching was observed. The etch rate and profile angle, optimized at 1000 W source power, 30 W bias power, 6 mTorr pressure, and 60 sccm C{sub 2}F{sub 6} flow rate, are 434 nm/min and 86 deg., respectively.

  16. Feedback control of chlorine inductively coupled plasma etch processing

    SciTech Connect

    Lin Chaung; Leou, K.-C.; Shiao, K.-M.

    2005-03-01

    Feedback control has been applied to poly-Si etch processing using a chlorine inductively coupled plasma. Since the positive ion flux and ion energy incident upon the wafer surface are the key factors that influence the etch rate, the ion current and the root mean square (rms) rf voltage on the wafer stage, which are measured using an impedance meter connected to the wafer stage, are adopted as the controlled variables to enhance etch rate. The actuators are two 13.56 MHz rf power generators, which adjust ion density and ion energy, respectively. The results of closed-loop control show that the advantages of feedback control can be achieved. For example, with feedback control, etch rate variation under the transient chamber wall condition is reduced roughly by a factor of 2 as compared to the open-loop case. In addition, the capability of the disturbance rejection was also investigated. For a gas pressure variation of 20%, the largest etch rate variation is about 2.4% with closed-loop control as compared with as large as about 6% variation using open-loop control. Also the effect of ion current and rms rf voltage on etch rate was studied using 2{sup 2} factorial design whose results were used to derive a model equation. The obtained formula was used to adjust the set point of ion current and rf voltage so that the desired etch rate was obtained.

  17. UV-Photoassisted Etching of GaN in KOH

    SciTech Connect

    Abernathy, C.R.; Auh, K.H.; Cho, H.; Donovan, S.M.; Han, J.; Lambers, E.S.; Pearton, S.J.; Ren F.; Shul, R.J.

    1998-11-12

    The etch rate of GaN under W-assisted photoelectrochemical conditions in KOH solutions is found to be a strong function of illumination intensity, solution molarity, sample bias and material doping level. At low e-h pair generation rates, grain boundaries are selectively etched, while at higher illumination intensities etch rates for unintentionally doped (n - 3x 10^12Gcm-3) GaN are 2 1000 .min-l. The etching is diffusion limited under our conditions with an activation energy of - 0.8kCal.mol-1. The etched surfaces are rough, but retain their stoichiometry. PEC etching is found to selectively reveal grain boundaries in GaN under low light illumination conditions. At high lamp powers the rates increase with sample temperature and the application of bias to the PEC cell, while they go through a maximum with KOH solution molarity. The etching is diffusion-limited, producing rough surface morphologies that are suitable in a limited number of device fabrication steps. The surfaces however appear to remain relatively close to their stoichiometric composition.

  18. Porous silicon formation during Au-catalyzed etching

    SciTech Connect

    Algasinger, Michael; Bernt, Maximilian; Koynov, Svetoslav; Stutzmann, Martin

    2014-04-28

    The formation of “black” nano-textured Si during the Au-catalyzed wet-chemical etch process was investigated with respect to photovoltaic applications. Cross-sectional scanning electron microscopy (SEM) images recorded at different stages of the etch process exhibit an evolution of a two-layer structure, consisting of cone-like Si hillocks covered with a nano-porous Si (np-Si) layer. Optical measurements confirm the presence of a np-Si phase which appears after the first ∼10 s of the etch process and continuously increases with the etch time. Furthermore, the etch process was investigated on Si substrates with different doping levels (∼0.01–100 Ω cm). SEM images show a transition from the two-layer morphology to a structure consisting entirely of np-Si for higher doping levels (<0.1 Ω cm). The experimental results are discussed on the basis of the model of a local electrochemical etch process. A better understanding of the metal-catalyzed etch process facilitates the fabrication of “black” Si on various Si substrates, which is of significant interest for photovoltaic applications.

  19. Bindi Tattoo on Forehead: Success with Modified R-20 Technique Using Low Fluence Q-Switched Nd Yag Laser: A Case Report

    PubMed Central

    Zawar, Vijay; Sarda, Aarti; De, Abhishek

    2014-01-01

    Bindi tattoo on the forehead, is one of the cultural practice in Indian women from rural areas. Many patients are not pleased with the appearance of their tattoo and thus seek removal. The development of quality-switched lasers has revolutionized the removal of unwanted tattoos. However, despite multiple treatment sessions, the efficacy is often found to be limited. We herein report a case of green-blue bindi tattoo which failed to clear after 8 sessions of Q-switched Nd YAG laser. The tattoo significantly cleared with R-20 method using low fluence Q-switched Nd YAG Laser. R-20 technique seems to be an effective method of tattoo removal and might be a boon for patients who are reluctant to pursue laser treatment because of fear of expenditure, side effects and uncertainty of result. We report efficacy of R-20 technique for a bindi tattoo on forehead. PMID:24761103

  20. Rapid recipe formulation for plasma etching of new materials

    NASA Astrophysics Data System (ADS)

    Chopra, Meghali; Zhang, Zizhuo; Ekerdt, John; Bonnecaze, Roger T.

    2016-03-01

    A fast and inexpensive scheme for etch rate prediction using flexible continuum models and Bayesian statistics is demonstrated. Bulk etch rates of MgO are predicted using a steady-state model with volume-averaged plasma parameters and classical Langmuir surface kinetics. Plasma particle and surface kinetics are modeled within a global plasma framework using single component Metropolis Hastings methods and limited data. The accuracy of these predictions is evaluated with synthetic and experimental etch rate data for magnesium oxide in an ICP-RIE system. This approach is compared and superior to factorial models generated from JMP, a software package frequently employed for recipe creation and optimization.

  1. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P.; Wilson, William D.; Barbee, Jr., Troy W.; Lane, Stephen M.

    2004-11-16

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  2. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P.; Wilson, William D.; Barbee, Jr., Troy W.; Lane, Stephen M.

    2006-06-27

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  3. Metal-assisted chemical etch porous silicon formation method

    DOEpatents

    Li, Xiuling; Bohn, Paul W.; Sweedler, Jonathan V.

    2004-09-14

    A thin discontinuous layer of metal such as Au, Pt, or Au/Pd is deposited on a silicon surface. The surface is then etched in a solution including HF and an oxidant for a brief period, as little as a couple seconds to one hour. A preferred oxidant is H.sub.2 O.sub.2. Morphology and light emitting properties of porous silicon can be selectively controlled as a function of the type of metal deposited, Si doping type, silicon doping level, and/or etch time. Electrical assistance is unnecessary during the chemical etching of the invention, which may be conducted in the presence or absence of illumination.

  4. Structural and magnetic etch damage in CoFeB

    SciTech Connect

    Krayer, L.; Lau, J. W.; Kirby, B. J.

    2014-05-07

    A detailed understanding of the interfacial properties of thin films used in magnetic media is critical for the aggressive component scaling required for continued improvement in storage density. In particular, it is important to understand how common etching and milling processes affect the interfacial magnetism. We have used polarized neutron reflectometry and transmission electron microscopy to characterize the structural and magnetic properties of an ion beam etched interface of a CoFeB film. We found that the etching process results in a sharp magnetic interface buried under a nanometer scale layer of non-magnetic, compositionally distinct material.

  5. Cold laser machining of nickel-yttrium stabilised zirconia cermets: Composition dependence

    SciTech Connect

    Sola, D.

    2009-09-15

    Cold laser micromachining efficiency in nickel-yttrium stabilised zirconia cermets was studied as a function of cermet composition. Nickel oxide-yttrium stabilised zirconia ceramic plates obtained via tape casting technique were machined using 8-25 ns pulses of a Nd: YAG laser at the fixed wavelength of 1.064 {mu}m and a frequency of 1 kHz. The morphology of the holes, etched volume, drill diameter, shape and depth were evaluated as a function of the processing parameters such as pulse irradiance and of the initial composition. The laser drilling mechanism was evaluated in terms of laser-material interaction parameters such as beam absorptivity, material spallation and the impact on the overall process discussed. By varying the nickel oxide content of the composite the optical absorption (-value is greatly modified and significantly affected the drilling efficiency of the green state ceramic substrates and the morphology of the holes. Higher depth values and improved drilled volume upto 0.2 mm{sup 3} per pulse were obtained for substrates with higher optical transparency (lower optical absorption value). In addition, a laser beam self-focussing effect is observed for the compositions with less nickel oxide content. Holes with average diameter from 60 {mu}m to 110 {mu}m and upto 1 mm in depth were drilled with a high rate of 40 ms per hole while the final microstructure of the cermet obtained by reduction of the nickel oxide-yttrium stabilised zirconia composites remained unchanged.

  6. Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging

    SciTech Connect

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

  7. Evaluation of ASR potential of quartz-rich rocks by alkaline etching of polished rock sections

    NASA Astrophysics Data System (ADS)

    Šachlová, Šárka; Kuchařová, Aneta; Pertold, Zdeněk; Přikryl, Richard

    2015-04-01

    standard AMBT (folowing ASTM C1260). The etching experiment is regarded to be feasible method to quantify ASR potential of quartz- (resp. SiO2-) rich rocks. Employement of the method: (1) decreases potential error from less experienced operator; (2) minimizes the volume of the rock need to be analyzed; (3) enables to visualize microscopic features where ASR originates; and (4) enables to identify alkali-reactive components in the rocks. The main disadvatage of the method is regarded in the restriction to quartz- (resp. SiO2-) rich rocks. If other minerals are included in the rocks their role in ASR should be considered. These minerals can be excluded from the analysis in case they are not reactive and if their content is very low (e.g. accesory minerals). If the minerals contribute to ASR (e.g. albite, micas), these mineral phases should be included in the analysis. Then the application of PIA needs to be modified in respect to different grey shades of individual minerals.

  8. Osteoporotic bone microstructure by collagenase etching.

    PubMed Central

    Mackie, I G; Green, M; Clarke, H; Isaac, D H

    1989-01-01

    Collagenase etching has been used to show the microstructure of bone from patients suffering from primary osteoporosis. Both polished and unpolished surfaces of trabecular bone from femoral heads were treated with collagenase solution before study in the scanning electron microscope. The polished surfaces show the mineral component of this bone as small rounded units approximately 10-20 nm across, which aggregate to form a continuous phase of contiguous spheroidal particles approximately 100 nm across. Lamellations are clearly seen to be due to the removal of collagen fibres up to approximately 200 nm across, fibres in adjacent lamellae being arranged approximately perpendicular to each other. The unpolished surfaces also show small rounded units, which aggregate into rods of mineral approximately 100 nm across. Although these rods form a connected system, they are loosely packed, compatible with their being interspersed with the collagen fibres in vivo. This model for the detailed microstructure of bone is consistent with specimens from a number of other sources and shows no features unique to osteoporosis. Images PMID:2545170

  9. Ion orbits in plasma etching of semiconductors

    SciTech Connect

    Madziwa-Nussinov, Tsitsi G.; Arnush, Donald; Chen, Francis F.

    2008-01-15

    Fabrication of high-speed semiconductor circuits depends on etching submicron trenches and holes with straight walls, guided by sheath accelerated ions, which strike the substrate at a normal angle. Electrons accumulate at the nonconductive entrance of each trench, charging it negatively and preventing the penetration of electrons to the bottom of the trench. This 'electron shading' effect causes an ion charge at the bottom, which is well known to cause damage to thin oxide layers. In addition, the deflection of ions by electric fields in the trench can cause deformation of the trench shape. To study this effect, the ion orbits are computed self-consistently with their charging of the trench walls. It is found that (a) the orbits depend only on the electric fields at the entrance and are sensitive to changes in the shape of the photoresist layer there; (b) there is an 'ion shading' effect that protects part of the wall; and (c) the number of ions striking the wall is too small to cause any deformation thereof.

  10. Pattern inspection of etched multilayer EUV mask

    NASA Astrophysics Data System (ADS)

    Iida, Susumu; Hirano, Ryoichi; Amano, Tsuyoshi; Watanabe, Hidehiro

    2015-07-01

    Patterned mask inspection for an etched multilayer (ML) EUV mask was investigated. In order to optimize the mask structure from the standpoint of not only a pattern inspection by using a projection electron microscope (PEM), but also by considering the other fabrication processes using electron beam (EB) techniques such as CD metrology and mask repair, we employed a conductive layer between the ML and substrate. By measuring the secondary electron emission coefficients (SEECs) of the candidate materials for conductive layer, we evaluated the image contrast and the influence of charging effect. In the cases of 40-pair-ML, 16 nm sized extrusion and intrusion defects were found to be detectable more than 10 sigma in hp 44 nm, 40 nm, and 32 nm line and space (L/S) patterns. Reducing 40-pair-ML to 20-pair-ML degraded the image contrast and the defect detectability. However, by selecting B4C as a conductive layer, 16 nm sized defects remained detectable. A double layer structure with 2.5-nm-thik B4C on metal film used as a conductive layer was found to have sufficient conductivity and also was found to be free from the surface charging effect and influence of native oxide.

  11. Automated process control for plasma etching

    NASA Astrophysics Data System (ADS)

    McGeown, Margaret; Arshak, Khalil I.; Murphy, Eamonn

    1992-06-01

    This paper discusses the development and implementation of a rule-based system which assists in providing automated process control for plasma etching. The heart of the system is to establish a correspondence between a particular data pattern -- sensor or data signals -- and one or more modes of failure, i.e., a data-driven monitoring approach. The objective of this rule based system, PLETCHSY, is to create a program combining statistical process control (SPC) and fault diagnosis to help control a manufacturing process which varies over time. This can be achieved by building a process control system (PCS) with the following characteristics. A facility to monitor the performance of the process by obtaining and analyzing the data relating to the appropriate process variables. Process sensor/status signals are input into an SPC module. If trends are present, the SPC module outputs the last seven control points, a pattern which is represented by either regression or scoring. The pattern is passed to the rule-based module. When the rule-based system recognizes a pattern, it starts the diagnostic process using the pattern. If the process is considered to be going out of control, advice is provided about actions which should be taken to bring the process back into control.

  12. Reactive Ion Etching in a VHF Parallel Plate Reactor

    NASA Technical Reports Server (NTRS)

    Dahi, H.; Murnick, D. E.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    VHF (very high frequency) capacitive plasma reactors may allow development of new RIE (reactive ion etching) systems with high etch rates, excellent uniformity and anisotropy and low damage. High ion and radical fluxes can be obtained by raising the RF (radio frequency) frequency which increases plasma density dramatically at a fixed voltage. The effects of variation in frequency (25-120 MHz), pressure (10-250 mTorr), and flow rate (1-100 sccm) in a CF4 discharge have been investigated. The RF current versus voltage characteristics and spatially resolved optical emission are used as diagnostics. Experiments on etch rates, etch uniformity and anisotropy in silicon, silicon dioxide and silicon nitride will be discussed. Results of fluid model simulations are used to interpret the experimental data.

  13. Summary of Chalcogenide Glass Processing: Wet-Etching and Photolithography

    SciTech Connect

    Riley, Brian J.; Sundaram, S. K.; Johnson, Bradley R.; Saraf, Laxmikant V.

    2006-12-01

    This report describes a study designed to explore the different properties of two different chalcogenide materials, As2S3 and As24S38Se38, when subjected to photolithographic wet-etching techniques. Chalcogenide glasses are made by combining chalcogen elements S, Se, and Te with Group IV and/or V elements. The etchant was selected from the literature and was composed of sodium hydroxide, isopropyl alcohol, and deionized water and the types of chalcogenide glass for study were As2S3 and As24S38Se38. The main goals here were to obtain a single variable etch rate curve of etch depth per time versus NaOH overall solution concentration in M and to see the difference in etch rate between a given etchant when used on the different chalcogenide stoichiometries. Upon completion of these two goals, future studies will begin to explore creating complex, integrated photonic devices via these methods.

  14. Influence of doping on the etching of Si(111)

    NASA Astrophysics Data System (ADS)

    Winters, Harold F.; Haarer, D.

    1987-10-01

    Exposure of solid surfaces to reactive gases (or radicals) often leads to chemical reactions which produce volatile products. These are frequently called etching reactions. The example discussed in this paper involves the reaction of XeF2 with Si(111) to produce SiF4(gas). It will be shown that the etch rate depends strongly upon the concentration and type of dopant. It also depends upon the thickness of the fluorosilyl (SiFx) layer on the surface. The trends previously observed in plasma-assisted etching environments are shown to also occur in the XeF2-Si reaction. A simple model will be developed which indicates a strong correlation between the number of negative ions on the surface and the etch rate. The model is based upon some of the ideas originally proposed by Mott and Cabrera to describe oxide growth and on the Poisson-Boltzmann equation which describes the space charge at a semiconductor interface.

  15. Restoration of canine disocclusion by using etched porcelain onlays.

    PubMed

    Glaser, C G; Nagy, W W

    1991-03-01

    The restoration of a progressive delayed disocclusion on periodontally healthy canines by etched porcelain onlays has been presented as a suitable treatment alternative to interrupt bruxism and reverse destructive occlusal neuroses.

  16. Visible luminescence from silicon wafers subjected to stain etches

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Ksendzov, A.; Vasquez, R. P.

    1992-01-01

    Etching of Si in a variety of solutions is known to cause staining. These stain layers consist of porous material similar to that produced by anodic etching of Si in HF solutions. In this work, photoluminescence peaked in the red from stain-etched Si wafers of different dopant types, concentrations, and orientations produced in solutions of HF:HNO3:H2O was observed. Luminescence is also observed in stain films produced in solutions of NaNO2 in HF, but not in stain films produced in solutions of CrO3 in HF. The luminescence spectra are similar to those reported recently for porous Si films produced by anodic etching in HF solutions. However, stain films are much easier to produce, requiring no special equipment.

  17. Polishing of quartz by rapid etching in ammonium bifluoride.

    PubMed

    Vallin, Orjan; Danielsson, Rolf; Lindberg, Ulf; Thornell, Greger

    2007-07-01

    The etch rate and surface roughness of polished and lapped AT-cut quartz subjected to hot (90, 110, and 130 degrees C), concentrated (50, 65, 80 wt %) ammonium bi-fluoride have been investigated. Having used principal component analysis to verify experimental solidity and analyze data, we claim with confidence that this parameter space does not, as elsewhere stated, allow for a polishing effect or even a preserving setting. Etch rates were found to correlate well, and possibly logarithmically, with temperature except for the hottest etching applied to lapped material. Roughness as a function of temperature and concentration behaved well for the lapped material, but lacked systematic variation in the case of the polished material. At the lowest temperature, concentration had no effect on etch rate or roughness. Future efforts are targeted at temperatures and concentrations closer to the solubility limit.

  18. 6. Photocopy of etching (from collection of New Hampshire Historical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of etching (from collection of New Hampshire Historical Society, Concord, New Hampshire), post 1870 VIEW SOUTHEAST SHOWING WEST FRONT (ELEVATION) - Merchants' Exchange Block, 94-102 North Main Street, Concord, Merrimack County, NH

  19. Highly chemical reactive ion etching of gallium nitride

    SciTech Connect

    Karouta, F.; Jacobs, B.; Moerman, I.; Jacobs, K.; Weyher, J.L.; Porowski, S.; Crane, R.; Hageman, P.R.

    2000-07-01

    A highly chemical reactive ion etching process has been developed for MOVPE-grown GaN on sapphire. The key element for the enhancement of the chemical property during etching is the use of a fluorine containing gas in a chlorine based chemistry. In the perspective of using GaN substrates for homo-epitaxy of high quality GaN/AlGaN structures they have used the above described RIE process to smoothen Ga-polar GaN substrates. The RMS value, measured by AFM, went from 20 {angstrom} (after mechanical polishing) down to 4 {angstrom} after 6 minutes of RIE. Etching N-polar GaN resulted in a higher etch rate than Ga-polar materials (165 vs. 110 nm/min) but the resulting surface was quite rough and suffers from instability problems. Heat treatment and HCl dip showed a partial recovery of Schottky characteristics after RIE.

  20. Removal of field and embedded metal by spin spray etching

    DOEpatents

    Contolini, Robert J.; Mayer, Steven T.; Tarte, Lisa A.

    1996-01-01

    A process of removing both the field metal, such as copper, and a metal, such as copper, embedded into a dielectric or substrate at substantially the same rate by dripping or spraying a suitable metal etchant onto a spinning wafer to etch the metal evenly on the entire surface of the wafer. By this process the field metal is etched away completely while etching of the metal inside patterned features in the dielectric at the same or a lesser rate. This process is dependent on the type of chemical etchant used, the concentration and the temperature of the solution, and also the rate of spin speed of the wafer during the etching. The process substantially reduces the metal removal time compared to mechanical polishing, for example, and can be carried out using significantly less expensive equipment.

  1. Removal of field and embedded metal by spin spray etching

    DOEpatents

    Contolini, R.J.; Mayer, S.T.; Tarte, L.A.

    1996-01-23

    A process of removing both the field metal, such as copper, and a metal, such as copper, embedded into a dielectric or substrate at substantially the same rate by dripping or spraying a suitable metal etchant onto a spinning wafer to etch the metal evenly on the entire surface of the wafer. By this process the field metal is etched away completely while etching of the metal inside patterned features in the dielectric at the same or a lesser rate. This process is dependent on the type of chemical etchant used, the concentration and the temperature of the solution, and also the rate of spin speed of the wafer during the etching. The process substantially reduces the metal removal time compared to mechanical polishing, for example, and can be carried out using significantly less expensive equipment. 6 figs.

  2. 1. Photocopy of an early etching (Original in collection of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of an early etching (Original in collection of the Historical Society of Montana) BROADWAY AND JACKSON ELEVATIONS - Second Masonic Temple, Broadway & Jackson Streets, Helena, Lewis and Clark County, MT

  3. 157. Copy of Louis Rosenberg Etching (original in the Tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    157. Copy of Louis Rosenberg Etching (original in the Tower City Development Office) TERMINAL TOWER UNDER CONSTRUCTION, STEEL FRAMEWORK OF THE SOUTHWEST WING, VIEW WEST TO EAST - Terminal Tower Building, Cleveland Union Terminal, 50 Public Square, Cleveland, Cuyahoga County, OH

  4. Origin of electrical signals for plasma etching endpoint detection

    SciTech Connect

    Sobolewski, Mark A.

    2011-11-14

    Electrical signals are used for endpoint detection in plasma etching, but the origin of the electrical changes observed at endpoint is not known. They may be caused by changes in the gas-phase densities of etch products and reactants or by changes in substrate surface properties such as photoemitted or ion-induced electron yield. To investigate these effects, experiments were performed in an inductively coupled, rf-biased reactor, during CF{sub 4}/Ar etches of SiO{sub 2} films on Si wafers. The rf bias impedance was measured vs. time during etching, simultaneous with Langmuir probe measurements. At endpoint, a decrease in impedance coincided with increases in ion current and electron energy. The data, analyzed by a numerical model of the discharge, indicate that changes in electron emission yield were relatively insignificant or entirely absent. Thus the impedance change is not a surface effect but is, instead, predominantly or entirely a gas-phase phenomenon.

  5. Catalytic etching of synthetic diamond crystallites by iron

    NASA Astrophysics Data System (ADS)

    Ohashi, Tatsuya; Sugimoto, Wataru; Takasu, Yoshio

    2012-08-01

    For the expansion of the functionality of diamond crystallites by modification of surface morphology, catalytic etching of synthetic diamond crystallites at 1173 K by iron, which were loaded by the impregnation method using an aqueous solution of iron nitrate; in a streaming mixed gas (pH2=0.1   MPa, pN2=0.9   MPa), has been investigated by scanning electron microscopy (SEM) and Raman spectroscopy. The dependence of the crystal planes {1 1 1} and {1 0 0}, of the diamond crystallites and the loading amount of iron on the diamond on the etching behavior by iron particles, the morphology of the etch pits, and potential formation of iron carbide through the catalytic etching, were discussed.

  6. Photoluminescence from stain-etched polycrystalline Si thin films

    NASA Astrophysics Data System (ADS)

    Steckl, A. J.; Xu, J.; Mogul, H. C.

    1993-04-01

    Visible room-temperature photoluminescence has been observed from stain-etched polycrystalline Si thin films. Poly-Si thin films deposited on oxidized Si and quartz substrates became porous (PoSi) after stain-etching in a 1:3:5 solution of HF:HNO3:H2O. Under UV excitation, the stain-etched doped and undoped poly-Si films produce uniform orange-red (about 650 nm) luminescence very similar to that obtained from stain-etched crystalline Si substrates. Stained amorphous thin films did not exhibit photoluminescence. Luminescent patterns with sub-micrometer (about 0.6 micron) dimensions have been obtained for the first time from PoSi produced from poly-Si films.

  7. Stable Ion Beam Analysis (RBS and PIXE) Study of Photocatalytic Track-Etched Membranes

    NASA Astrophysics Data System (ADS)

    Rossouw, A.; Artoshina, O. V.; Nechaev, A. N.; Apel, P. Yu.; Petrik, L.; Perold, W. J.; Pineda-Vargas, C. A.

    2015-11-01

    In microfiltration, caking is a major problem. Organic molecules get absorbed on the track-etched membrane TM surface during water purification. This leads to a loss of efficiency and changes in TM selectivity. A solution devised to solve this problem is the creation of self-cleaning, low-absorptive TM coatings. The TM surface was modified by depositing a thin-film photocatalytic semiconductor, titanium dioxide (TiO2). Strong oxidizing agents appear on the TiO2 surface in the presence of water, dissolved oxygen and UV irradiation. This results in the mineralization of the organic compounds present, By applying the use of exotic beams in the material research, it becomes possible to investigate properties regarding the layer thickness, homogeneity and purity of the modified TMs, not otherwise attainable.

  8. Note: Electrochemical etching of cylindrical nanoprobes using a vibrating electrolyte

    SciTech Connect

    Wang, Yufeng; Zeng, Yongbin Qu, Ningsong; Zhu, Di

    2015-07-15

    An electrochemical etching process using a vibrating electrolyte of potassium hydroxide to prepare tungsten cylindrical nanotips is developed. The vibrating electrolyte eases the effects of a diffusion layer and extends the etching area, which aid in the production of cylindrical nanotips. Larger amplitudes and a vibration frequency of 35 Hz are recommended for producing cylindrical nanotips. Nanotips with a tip radius of approximately 43 nm and a conical angle of arctan 0.0216 are obtained.

  9. Advantages of p++ polysilicon etch stop layer versus p++ silicon

    NASA Astrophysics Data System (ADS)

    Charavel, Remy; Laconte, Jean; Raskin, Jean Pierre

    2003-04-01

    Boron highly doped silicon is now widely used as etch stop layer in MicroElectroMechanical Systems (MEMS) devices fabrication. The present paper shows the advantages of replacing the p++ Si etch stop layer by a p++ polysilicon layer. The etch rate of Tetramethylammoniunhydroxide (TMAH) is measured for LPCVD polysilicon and silicon doped with Boron at concentrations from 8.1018 up to 4.1020 atoms/cm3 which is the Boron solubility limit into Si. TMAH etch being often used during back-end process, selectivity to aluminium is usually needed. The etch selectivity of various TMAH solutions for p++ Si, p++ Poly and aluminium have been measured, from 25 % to 5 % TMAH pure and mixed with silicon powder and ammonium persulfate. Contrarily to silicon, polysilicon is etched isotropically in TMAH solution which constitutes a great advantage when cavities with vertical walls have to be opened. Although the polysilicon etch rate is higher than the silicon one, the selectivity (doped/undoped) is the same for the both materials, allowing identical uses. Another great advantage of polysilicon is that it can be deposited at any process step and does not require clever epitaxy steps or wafer bonding as for silicon. The surface roughness of the etched Poly region is considerably decreased with TMAH mixed with silicon powder and ammonium persulfate mixture compared to pure 25 % TMAH solution. The definition of buried masks in polysilicon layer through Boron implant is the main foreseen application. The p++ Poly buried mask brings solutions for the fabrication of self-aligned double gate MOS, microfluidic or optical networks in MEMS field.

  10. Structural, thermal, laser damage, photoconductivity, NLO and mechanical properties of modified vertical Bridgman method grown AgGa0.5In0.5Se2 single crystal

    NASA Astrophysics Data System (ADS)

    Vijayakumar, P.; Ramasamy, P.

    2016-08-01

    AgGa0.5In0.5Se2 single crystal was grown using modified vertical Bridgman method. The structural perfection of the AgGa0.5In0.5Se2 single crystal has been analyzed by high-resolution X-ray diffraction rocking curve measurements. The structural and compositional uniformities of AgGa0.5In0.5Se2 were studied using Raman scattering spectroscopy at room temperature. The FWHM of the Γ1 (W1) and Γ5L (Γ15) measured at different regions of the crystal confirms that the composition throughout its length is fairly uniform. Thermal properties of the as-grown crystal, including specific heat, thermal diffusivity and thermal conductivity have been investigated. The multiple shot surface laser damage threshold value was measured using Nd:YAG laser. Photoconductivity measurements with different temperatures have confirmed the positive photoconducting behavior. Second harmonic generation (SHG) on powder samples has been measured using the Kurtz and Perry technique and the results display that AgGa0.5In0.5Se2 is a phase-matchable NLO material. The hardness behavior has been measured using Vickers micro hardness measurement and the indentation size effect has been observed. The classical Meyer's law, propositional resistance model and modified propositional resistance model have been used to analyse the micro hardness behavior.

  11. Hydrogen Bubbles and Formation of Nanoporous Silicon during Electrochemical Etching

    SciTech Connect

    Saraf, Laxmikant V.; Baer, Donald R.; Wang, Zheming; Young, James S.; Engelhard, Mark H.; Thevuthasan, Suntharampillai

    2005-06-01

    Many nanoporous Si structures, including those formed by common electrochemical etching procedures, produce a uniformly etch nanoporous surface. If the electrochemical etch rate is slowed down, details of the etch process can be explored and process parameters may be varied to test hypotheses and obtain controlled nanoporous and defect structures. For example, after electrochemical etching of a heavily n-doped (R = 0.05-0.5 ? -cm) <100> silicon at a current density of 10 mA/cm? in buffer oxide etch (BOE) electrolyte solution defect craters, containing textured nanopores, were observed to occur in ring shaped patterns of rings. The defect craters apparently originate at the hydrogen-BOE bubble interface, which forms during hydrogen evolution in the reaction. The slower hydrogen evolution due to low current density allows sufficient bubble residence time so that a high defect density appears at the bubble edges where local reaction rates are highest. Current carrying Si-OH species are most likely responsible for the widening in the craters. Reducing the defect/doping density in silicon lowers the defect concentration and thereby the density of nanopores. Measurements of photoluminescence lifetime and intensity show a distinct feature when the low density of nanopores formed at ring edges are isolated from each other. Overall features observed in photoluminescence (PL), X-ray photoelectron spectroscopy (XPS) intensity strongly emphasize the role of surface oxide that influences these properties.

  12. Recouping etch rates in pulsed inductively coupled plasmas

    SciTech Connect

    Agarwal, Ankur; Stout, Phillip J.; Banna, Samer; Rauf, Shahid; Collins, Ken

    2011-01-15

    Pulsed rf plasmas are increasingly being employed for plasma etching at future technological nodes. Although the plasma uniformity usually improves with pulsing, the lower time-averaged power decreases the etch rate and the lower throughput is undesirable. It is therefore important to evaluate different strategies to restore higher etch rates while retaining the advantages of pulsed plasmas. In this work, the impact of varying pulsing modes in an inductively coupled plasma on plasma characteristics and feature profile evolution are discussed using the results from a two-dimensional reactor scale plasma model coupled to a Monte Carlo based feature profile model. Results are discussed for poly-Si etching in an Ar/Cl{sub 2} gas mixture. The consequences of source-only and bias-only pulsing modes on discharge characteristics, ion energy distributions (IEDs) to the wafer, and feature profile evolution are discussed. Although the etch depth rates were found to be higher for source-only pulsing compared to the synchronized (source and bias) pulsing mode, the higher ion energies in the afterglow period during source-only pulsing may also increase ion bombardment damage. Compensation of power may allow for increased etch depth rates while retaining the benefits of synchronized pulsing. Further, power compensation level can be varied to achieve fine tuning of the IEDs to the wafer.

  13. Bond strength with various etching times on young permanent teeth

    SciTech Connect

    Wang, W.N.; Lu, T.C. )

    1991-07-01

    Tensile bond strengths of an orthodontic resin cement were compared for 15-, 30-, 60-, 90-, or 120-second etching times, with a 37% phosphoric acid solution on the enamel surfaces of young permanent teeth. Fifty extracted premolars from 9- to 16-year-old children were used for testing. An orthodontic composite resin was used to bond the bracket directly onto the buccal surface of the enamel. The tensile bond strengths were tested with an Instron machine. Bond failure interfaces between bracket bases and teeth surfaces were examined with a scanning electron microscope and calculated with mapping of energy-dispersive x-ray spectrometry. The results of tensile bond strength for 15-, 30-, 60-, or 90-second etching times were not statistically different. For the 120-second etching time, the decrease was significant. Of the bond failures, 43%-49% occurred between bracket and resin interface, 12% to 24% within the resin itself, 32%-40% between resin and tooth interface, and 0% to 4% contained enamel fragments. There was no statistical difference in percentage of bond failure interface distribution between bracket base and resin, resin and enamel, or the enamel detachment. Cohesive failure within the resin itself at the 120-second etching time was less than at other etching times, with a statistical significance. To achieve good retention, to decrease enamel loss, and to reduce moisture contamination in the clinic, as well as to save chairside time, a 15-second etching time is suggested for teenage orthodontic patients.

  14. Etching of silicon surfaces using atmospheric plasma jets

    NASA Astrophysics Data System (ADS)

    Paetzelt, H.; Böhm, G.; Arnold, Th

    2015-04-01

    Local plasma-assisted etching of crystalline silicon by fine focused plasma jets provides a method for high accuracy computer controlled surface waviness and figure error correction as well as free form processing and manufacturing. We investigate a radio-frequency powered atmospheric pressure He/N2/CF4 plasma jet for the local chemical etching of silicon using fluorine as reactive plasma gas component. This plasma jet tool has a typical tool function width of about 0.5 to 1.8 mm and a material removal rate up to 0.068 mm3 min-1. The relationship between etching rate and plasma jet parameters is discussed in detail regarding gas composition, working distance, scan velocity and RF power. Surface roughness after etching was characterized using atomic force microscopy and white light interferometry. A strong smoothing effect was observed for etching rough silicon surfaces like wet chemically-etched silicon wafer backsides. Using the dwell-time algorithm for a deterministic surface machining by superposition of the local removal function of the plasma tool we show a fast and efficient way for manufacturing complex silicon structures. In this article we present two examples of surface processing using small local plasma jets.

  15. The grand challenges of plasma etching: a manufacturing perspective

    NASA Astrophysics Data System (ADS)

    Lee, Chris G. N.; Kanarik, Keren J.; Gottscho, Richard A.

    2014-07-01

    Plasma etching has been enabling nano-electronic fabrication since the 1980s; during this time, transistor size has shrunk by nearly two orders of magnitude, starting at 1.0 µm in the mid 80s to ˜0.01 µm today. The manufacturing of these devices requires overcoming a series of challenges, ranging from continuous innovation on device integration to extend Moore's law to breaking tradeoffs on the perennial challenge of aspect ratio-dependent etching. In this paper, we will review four key areas in etch manufacturing: uniformity, defects, surface precision and ‘sticky’/non-volatile etch materials. In the uniformity section, we will discuss the challenges for microscopic uniformity, such as localized feature dimension variations; macroscopic uniformity, such as performance at the extreme edge of the wafer; and repeatable uniformity, meaning wafer-to-wafer, lot-to-lot and chamber-to-chamber performance. While defect management is successful with in situ plasma cleans, one must be cognizant of the choice of clean chemistry. In surface precision, we look at the approach of atomic layer etching and how it can be successful in a manufacturing environment. Finally, in the non-volatile material section, we review technology drivers for DRAM (dynamic random access memory) and NAND flash memory in the microelectronics Si industry, with focus on the utilization of such materials and what it means to etch equipment manufacturers.

  16. Etching of germanium-tin using ammonia peroxide mixture

    SciTech Connect

    Dong, Yuan; Ong, Bin Leong; Wang, Wei; Gong, Xiao; Liang, Gengchiau; Yeo, Yee-Chia; Zhang, Zheng; Pan, Jisheng; Tok, Eng-Soon

    2015-12-28

    The wet etching of germanium-tin (Ge{sub 1-x}Sn{sub x}) alloys (4.2% < x < 16.0%) in ammonia peroxide mixture (APM) is investigated. Empirical fitting of the data points indicates that the etch depth of Ge{sub 1-x}Sn{sub x} is proportional to the square root of the etch time t and decreases exponentially with increasing x for a given t. In addition, X-ray photoelectron spectroscopy results show that increasing t increases the intensity of the Sn oxide peak, whereas no obvious change is observed for the Ge oxide peak. This indicates that an accumulation of Sn oxide on the Ge{sub 1-x}Sn{sub x} surface decreases the amount of Ge atoms exposed to the etchant, which accounts for the decrease in etch rate with increasing etch time. Atomic force microscopy was used to examine the surface morphologies of the Ge{sub 0.918}Sn{sub 0.082} samples. Both root-mean-square roughness and undulation periods of the Ge{sub 1-x}Sn{sub x} surface were observed to increase with increasing t. This work provides further understanding of the wet etching of Ge{sub 1-x}Sn{sub x} using APM and may be used for the fabrication of Ge{sub 1-x}Sn{sub x}-based electronic and photonic devices.

  17. Vapor etching of nuclear tracks in dielectric materials

    DOEpatents

    Musket, Ronald G.; Porter, John D.; Yoshiyama, James M.; Contolini, Robert J.

    2000-01-01

    A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

  18. Plasma etching of polymers like SU8 and BCB

    NASA Astrophysics Data System (ADS)

    Mischke, Helge; Gruetzner, Gabi; Shaw, Mark

    2003-01-01

    Polymers with high viscosity, like SU8 and BCB, play a dominant role in MEMS application. Their behavior in a well defined etching plasma environment in a RIE mode was investigated. The 40.68 MHz driven bottom electrode generates higher etch rates combined with much lower bias voltages by a factor of ten or a higher efficiency of the plasma with lower damaging of the probe material. The goal was to obtain a well-defined process for the removal and structuring of SU8 and BCB using fluorine/oxygen chemistry, defined using variables like electron density and collision rate. The plasma parameters are measured and varied using a production proven technology called SEERS (Self Excited Electron Resonance Spectroscopy). Depending on application and on Polymer several metals are possible (e.g., gold, aluminum). The characteristic of SU8 and BCB was examined in the case of patterning by dry etching in a CF4/O2 chemistry. Etch profile and etch rate correlate surprisingly well with plasma parameters like electron density and electron collision rate, thus allowing to define to adjust etch structure in situ with the help of plasma parameters.

  19. Controlled Layer-by-Layer Etching of MoS₂.

    PubMed

    Lin, TaiZhe; Kang, BaoTao; Jeon, MinHwan; Huffman, Craig; Jeon, JeaHoo; Lee, SungJoo; Han, Wei; Lee, JinYong; Lee, SeHan; Yeom, GeunYoung; Kim, KyongNam

    2015-07-29

    Two-dimensional (2D) metal dichalcogenides like molybdenum disulfide (MoS2) may provide a pathway to high-mobility channel materials that are needed for beyond-complementary metal-oxide-semiconductor (CMOS) devices. Controlling the thickness of these materials at the atomic level will be a key factor in the future development of MoS2 devices. In this study, we propose a layer-by-layer removal of MoS2 using the atomic layer etching (ALET) that is composed of the cyclic processing of chlorine (Cl)-radical adsorption and argon (Ar)(+) ion-beam desorption. MoS2 etching was not observed with only the Cl-radical adsorption or low-energy (<20 eV) Ar(+) ion-beam desorption steps; however, the use of sequential etching that is composed of the Cl-radical adsorption step and a subsequent Ar(+) ion-beam desorption step resulted in the complete etching of one monolayer of MoS2. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) indicated the removal of one monolayer of MoS2 with each ALET cycle; therefore, the number of MoS2 layers could be precisely controlled by using this cyclical etch method. In addition, no noticeable damage or etch residue was observed on the exposed MoS2.

  20. Etching of photoresist with an atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    West, Andrew; van der Schans, Marc; Xu, Cigang; Gans, Timo; Cooke, Mike; Wagenaars, Erik

    2014-10-01

    Low-pressure oxygen plasmas are commonly used in semiconductor industry for removing photoresist from the surface of processed wafers; a process known as plasma ashing or plasma stripping. The possible use of atmospheric-pressure plasmas instead of low-pressure ones for plasma ashing is attractive from the point of view of reduction in equipment costs and processing time. We present investigations of photoresist etching with an atmospheric-pressure plasma jet (APPJ) in helium gas with oxygen admixtures driven by radio-frequency power. In these experiments, the neutral, radical rich effluent of the APPJ is used for etching, avoiding direct contact between the active plasma and the sensitive wafer, while maintaining a high etch rate. Photoresist etch rates and etch quality are measured for a range of plasma operating parameters such as power input, driving frequency, flow rate and wafer temperature. Etch rates of up to 10 micron/min were achieved with modest input power (45 W) and gas flow rate (10 slm). Fourier Transform Infrared (FTIR) spectroscopy showed that the quality of the photoresist removal was comparable to traditional plasma ashing techniques. This work was supported by the UK Engineering and Physical Sciences Research Council Grant EP/K018388/1.