Sample records for modified linear theory

  1. A study of the limitations of linear theory methods as applied to sonic boom calculations

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.

    1990-01-01

    Current sonic boom minimization theories have been reviewed to emphasize the capabilities and flexibilities of the methods. Flexibility is important because it is necessary for the designer to meet optimized area constraints while reducing the impact on vehicle aerodynamic performance. Preliminary comparisons of sonic booms predicted for two Mach 3 concepts illustrate the benefits of shaping. Finally, for very simple bodies of revolution, sonic boom predictions were made using two methods - a modified linear theory method and a nonlinear method - for signature shapes which were both farfield N-waves and midfield waves. Preliminary analysis on these simple bodies verified that current modified linear theory prediction methods become inadequate for predicting midfield signatures for Mach numbers above 3. The importance of impulse is sonic boom disturbance and the importance of three-dimensional effects which could not be simulated with the bodies of revolution will determine the validity of current modified linear theory methods in predicting midfield signatures at lower Mach numbers.

  2. Linearization instability for generic gravity in AdS spacetime

    NASA Astrophysics Data System (ADS)

    Altas, Emel; Tekin, Bayram

    2018-01-01

    In general relativity, perturbation theory about a background solution fails if the background spacetime has a Killing symmetry and a compact spacelike Cauchy surface. This failure, dubbed as linearization instability, shows itself as non-integrability of the perturbative infinitesimal deformation to a finite deformation of the background. Namely, the linearized field equations have spurious solutions which cannot be obtained from the linearization of exact solutions. In practice, one can show the failure of the linear perturbation theory by showing that a certain quadratic (integral) constraint on the linearized solutions is not satisfied. For non-compact Cauchy surfaces, the situation is different and for example, Minkowski space having a non-compact Cauchy surface, is linearization stable. Here we study, the linearization instability in generic metric theories of gravity where Einstein's theory is modified with additional curvature terms. We show that, unlike the case of general relativity, for modified theories even in the non-compact Cauchy surface cases, there are some theories which show linearization instability about their anti-de Sitter backgrounds. Recent D dimensional critical and three dimensional chiral gravity theories are two such examples. This observation sheds light on the paradoxical behavior of vanishing conserved charges (mass, angular momenta) for non-vacuum solutions, such as black holes, in these theories.

  3. Tackling non-linearities with the effective field theory of dark energy and modified gravity

    NASA Astrophysics Data System (ADS)

    Frusciante, Noemi; Papadomanolakis, Georgios

    2017-12-01

    We present the extension of the effective field theory framework to the mildly non-linear scales. The effective field theory approach has been successfully applied to the late time cosmic acceleration phenomenon and it has been shown to be a powerful method to obtain predictions about cosmological observables on linear scales. However, mildly non-linear scales need to be consistently considered when testing gravity theories because a large part of the data comes from those scales. Thus, non-linear corrections to predictions on observables coming from the linear analysis can help in discriminating among different gravity theories. We proceed firstly by identifying the necessary operators which need to be included in the effective field theory Lagrangian in order to go beyond the linear order in perturbations and then we construct the corresponding non-linear action. Moreover, we present the complete recipe to map any single field dark energy and modified gravity models into the non-linear effective field theory framework by considering a general action in the Arnowitt-Deser-Misner formalism. In order to illustrate this recipe we proceed to map the beyond-Horndeski theory and low-energy Hořava gravity into the effective field theory formalism. As a final step we derived the 4th order action in term of the curvature perturbation. This allowed us to identify the non-linear contributions coming from the linear order perturbations which at the next order act like source terms. Moreover, we confirm that the stability requirements, ensuring the positivity of the kinetic term and the speed of propagation for scalar mode, are automatically satisfied once the viability of the theory is demanded at linear level. The approach we present here will allow to construct, in a model independent way, all the relevant predictions on observables at mildly non-linear scales.

  4. Feasibility of combining linear theory and impact theory methods for the analysis and design of high speed configurations

    NASA Technical Reports Server (NTRS)

    Brooke, D.; Vondrasek, D. V.

    1978-01-01

    The aerodynamic influence coefficients calculated using an existing linear theory program were used to modify the pressures calculated using impact theory. Application of the combined approach to several wing-alone configurations shows that the combined approach gives improved predictions of the local pressure and loadings over either linear theory alone or impact theory alone. The approach not only removes most of the short-comings of the individual methods, as applied in the Mach 4 to 8 range, but also provides the basis for an inverse design procedure applicable to high speed configurations.

  5. Nonlinear Large Deflection Theory with Modified Aeroelastic Lifting Line Aerodynamics for a High Aspect Ratio Flexible Wing

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Chaparro, Daniel

    2017-01-01

    This paper investigates the effect of nonlinear large deflection bending on the aerodynamic performance of a high aspect ratio flexible wing. A set of nonlinear static aeroelastic equations are derived for the large bending deflection of a high aspect ratio wing structure. An analysis is conducted to compare the nonlinear bending theory with the linear bending theory. The results show that the nonlinear bending theory is length-preserving whereas the linear bending theory causes a non-physical effect of lengthening the wing structure under the no axial load condition. A modified lifting line theory is developed to compute the lift and drag coefficients of a wing structure undergoing a large bending deflection. The lift and drag coefficients are more accurately estimated by the nonlinear bending theory due to its length-preserving property. The nonlinear bending theory yields lower lift and span efficiency than the linear bending theory. A coupled aerodynamic-nonlinear finite element model is developed to implement the nonlinear bending theory for a Common Research Model (CRM) flexible wing wind tunnel model to be tested in the University of Washington Aeronautical Laboratory (UWAL). The structural stiffness of the model is designed to give about 10% wing tip deflection which is large enough that could cause the nonlinear deflection effect to become significant. The computational results show that the nonlinear bending theory yields slightly less lift than the linear bending theory for this wind tunnel model. As a result, the linear bending theory is deemed adequate for the CRM wind tunnel model.

  6. A class of minimally modified gravity theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chunshan; Mukohyama, Shinji, E-mail: chunshan.lin@yukawa.kyoto-u.ac.jp, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp

    We investigate the Hamiltonian structure of a class of gravitational theories whose actions are linear in the lapse function. We derive the necessary and sufficient condition for a theory in this class to have two or less local physical degrees of freedom. As an application we then find several concrete examples of modified gravity theories in which the total number of local physical degrees of freedom in the gravity sector is two.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, Benjamin; Koyama, Kazuya, E-mail: benjamin.bose@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk

    We develop a code to produce the power spectrum in redshift space based on standard perturbation theory (SPT) at 1-loop order. The code can be applied to a wide range of modified gravity and dark energy models using a recently proposed numerical method by A.Taruya to find the SPT kernels. This includes Horndeski's theory with a general potential, which accommodates both chameleon and Vainshtein screening mechanisms and provides a non-linear extension of the effective theory of dark energy up to the third order. Focus is on a recent non-linear model of the redshift space power spectrum which has been shownmore » to model the anisotropy very well at relevant scales for the SPT framework, as well as capturing relevant non-linear effects typical of modified gravity theories. We provide consistency checks of the code against established results and elucidate its application within the light of upcoming high precision RSD data.« less

  8. Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo

    2018-04-01

    We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.

  9. A parametrisation of modified gravity on nonlinear cosmological scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombriser, Lucas, E-mail: llo@roe.ac.uk

    2016-11-01

    Viable modifications of gravity on cosmological scales predominantly rely on screening mechanisms to recover Einstein's Theory of General Relativity in the Solar System, where it has been well tested. A parametrisation of the effects of such modifications in the spherical collapse model is presented here for the use of modelling the modified nonlinear cosmological structure. The formalism allows an embedding of the different screening mechanisms operating in scalar-tensor theories through large values of the gravitational potential or its first or second derivatives as well as of linear suppression effects or more general transitions between modified and Einstein gravity limits. Eachmore » screening or suppression mechanism is parametrised by a time, mass, and environment dependent screening scale, an effective modified gravitational coupling in the fully unscreened limit that can be matched to linear theory, the exponent of a power-law radial profile of the screened coupling, determined by derivatives, symmetries, and potentials in the scalar field equation, and an interpolation rate between the screened and unscreened limits. Along with generalised perturbative methods, the parametrisation may be used to formulate a nonlinear extension to the linear parametrised post-Friedmannian framework to enable generalised tests of gravity with the wealth of observations from the nonlinear cosmological regime.« less

  10. New insights on the matter-gravity coupling paradigm.

    PubMed

    Delsate, Térence; Steinhoff, Jan

    2012-07-13

    The coupling between matter and gravity in general relativity is given by a proportionality relation between the stress tensor and the geometry. This is an oriented assumption driven by the fact that both the stress tensor and the Einstein tensor are divergenceless. However, general relativity is in essence a nonlinear theory, so there is no obvious reason why the coupling to matter should be linear. On another hand, modified theories of gravity usually affect the vacuum dynamics, yet keep the coupling to matter linear. In this Letter, we address the implications of consistent nonlinear gravity-matter coupling. The Eddington-inspired Born-Infeld theory recently introduced by Bañados and Ferreira provides an enlightening realization of such coupling modifications. We find that this theory coupled to a perfect fluid reduces to general relativity coupled to a nonlinearly modified perfect fluid, leading to an ambiguity between modified coupling and modified equation of state. We discuss observational consequences of this degeneracy and argue that such a completion of general relativity is viable from both an experimental and theoretical point of view through energy conditions, consistency, and singularity-avoidance perspectives. We use these results to discuss the impact of changing the coupling paradigm.

  11. Stability of thin shell wormholes with a modified Chaplygin gas in Einstein-Hoffman-Born-Infeld theory

    NASA Astrophysics Data System (ADS)

    Eid, A.

    2017-11-01

    In the framework of Darmois-Israel formalism, the dynamics of motion equations of spherically symmetric thin shell wormholes that are supported by a modified Chaplygin gas in Einstein-Hoffman-Born-Infeld theory are constructed. The stability analysis of a thin shell wormhole is also discussed using a linearized radial perturbation around static solutions at the wormhole throat. The existence of stable static solutions depends on the value of some parameters of dynamical shell.

  12. f(R) gravity on non-linear scales: the post-Friedmann expansion and the vector potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.B.; Bruni, M.; Koyama, K.

    2015-07-01

    Many modified gravity theories are under consideration in cosmology as the source of the accelerated expansion of the universe and linear perturbation theory, valid on the largest scales, has been examined in many of these models. However, smaller non-linear scales offer a richer phenomenology with which to constrain modified gravity theories. Here, we consider the Hu-Sawicki form of f(R) gravity and apply the post-Friedmann approach to derive the leading order equations for non-linear scales, i.e. the equations valid in the Newtonian-like regime. We reproduce the standard equations for the scalar field, gravitational slip and the modified Poisson equation in amore » coherent framework. In addition, we derive the equation for the leading order correction to the Newtonian regime, the vector potential. We measure this vector potential from f(R) N-body simulations at redshift zero and one, for two values of the f{sub R{sub 0}} parameter. We find that the vector potential at redshift zero in f(R) gravity can be close to 50% larger than in GR on small scales for |f{sub R{sub 0}}|=1.289 × 10{sup −5}, although this is less for larger scales, earlier times and smaller values of the f{sub R{sub 0}} parameter. Similarly to in GR, the small amplitude of this vector potential suggests that the Newtonian approximation is highly accurate for f(R) gravity, and also that the non-linear cosmological behaviour of f(R) gravity can be completely described by just the scalar potentials and the f(R) field.« less

  13. Nonlinear effective theory of dark energy

    NASA Astrophysics Data System (ADS)

    Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo

    2018-04-01

    We develop an approach to parametrize cosmological perturbations beyond linear order for general dark energy and modified gravity models characterized by a single scalar degree of freedom. We derive the full nonlinear action, focusing on Horndeski theories. In the quasi-static, non-relativistic limit, there are a total of six independent relevant operators, three of which start at nonlinear order. The new nonlinear couplings modify, beyond linear order, the generalized Poisson equation relating the Newtonian potential to the matter density contrast. We derive this equation up to cubic order in perturbations and, in a companion article [1], we apply it to compute the one-loop matter power spectrum. Within this approach, we also discuss the Vainshtein regime around spherical sources and the relation between the Vainshtein scale and the nonlinear scale for structure formation.

  14. Application of Statistical Learning Theory to Plankton Image Analysis

    DTIC Science & Technology

    2006-06-01

    linear distance interval from 1 to 40 pixels and two directions formula (horizontal & vertical, and diagonals), EF2 is EF with 7 ex- ponential distance...and four directions formula (horizontal, vertical and two diagonals). It is clear that exponential distance inter- val works better than the linear ...PSI - PS by Vincent, linear and pseudo opening and closing spectra, each has 40 elements, total feature length of 160. PS2 - PS modified from Mei- jster

  15. The gravitational wave stress–energy (pseudo)-tensor in modified gravity

    NASA Astrophysics Data System (ADS)

    Saffer, Alexander; Yunes, Nicolás; Yagi, Kent

    2018-03-01

    The recent detections of gravitational waves by the advanced LIGO and Virgo detectors open up new tests of modified gravity theories in the strong-field and dynamical, extreme gravity regime. Such tests rely sensitively on the phase evolution of the gravitational waves, which is controlled by the energy–momentum carried by such waves out of the system. We here study four different methods for finding the gravitational wave stress–energy pseudo-tensor in gravity theories with any combination of scalar, vector, or tensor degrees of freedom. These methods rely on the second variation of the action under short-wavelength averaging, the second perturbation of the field equations in the short-wavelength approximation, the construction of an energy complex leading to a Landau–Lifshitz tensor, and the use of Noether’s theorem in field theories about a flat background. We apply these methods in general relativity, Jordan–Fierz–Brans–Dicky theoy, and Einstein-Æther theory to find the gravitational wave stress–energy pseudo-tensor and calculate the rate at which energy and linear momentum is carried away from the system. The stress–energy tensor and the rate of linear momentum loss in Einstein-Æther theory are presented here for the first time. We find that all methods yield the same rate of energy loss, although the stress–energy pseudo-tensor can be functionally different. We also find that the Noether method yields a stress–energy tensor that is not symmetric or gauge-invariant, and symmetrization via the Belinfante procedure does not fix these problems because this procedure relies on Lorentz invariance, which is spontaneously broken in Einstein-Æther theory. The methods and results found here will be useful for the calculation of predictions in modified gravity theories that can then be contrasted with observations.

  16. Chemoviscosity modeling for thermosetting resins, 2

    NASA Technical Reports Server (NTRS)

    Hou, T. H.

    1985-01-01

    A new analytical model for simulating chemoviscosity of thermosetting resin was formulated. The model is developed by modifying the Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By assuming a linear relationship between the glass transition temperature and the degree of cure of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature dependent functions of the modified WLF theory constants were determined from the isothermal cure data of Lee, Loos, and Springer for the Hercules 3501-6 resin system. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data reported by Carpenter. A chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformations of the thermosetting resin systems during cure was established.

  17. Electron-acoustic Instability Simulated By Modified Zakharov Equations

    NASA Astrophysics Data System (ADS)

    Jásenský, V.; Fiala, V.; Vána, O.; Trávnícek, P.; Hellinger, P.

    We present non-linear equations describing processes in plasma when electron - acoustic waves are excited. These waves are present for instance in the vicinity of Earth's bow shock and in the polar ionosphere. Frequently they are excited by an elec- tron beam in a plasma with two electron populations, a cold and hot one. We derive modified Zakharov equations from kinetic theory for such a case together with numer- ical method for solving of this type of equations. Bispectral analysis is used to show which non-linear wave processes are of importance in course of the instability. Finally, we compare these results with similar simulations using Vlasov approach.

  18. On the persistence of unstable bump-on-tail electron velocity distributions in the earth's foreshock

    NASA Technical Reports Server (NTRS)

    Klimas, Alexander J.; Fitzenreiter, Richard J.

    1988-01-01

    This paper presents further evidence for the persistence of bump-on-tail unstable reduced velocity distributions in the earth's electron foreshock, which contradicts the understanding of quasi-linear saturation of the bump-on-tail instability. A modified theory for the saturation of the bump-on-tail instability in the earth's foreshock is proposed to explain the mechanism of this persistence, and the predictions are compared to the results of a numerical simulation of the electron plasma in the foreshock. The results support the thesis that quasi-linear saturation of the bump-on-tail instability is modified in the foreshock, due to the driven nature of the region, so that at saturation the stabilized velocity distribution still appears bump-on-tail unstable to linear plasma analysis.

  19. ASTROP2-LE: A Mistuned Aeroelastic Analysis System Based on a Two Dimensional Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, Oral

    2002-01-01

    An aeroelastic analysis system for flutter and forced response analysis of turbomachines based on a two-dimensional linearized unsteady Euler solver has been developed. The ASTROP2 code, an aeroelastic stability analysis program for turbomachinery, was used as a basis for this development. The ASTROP2 code uses strip theory to couple a two dimensional aerodynamic model with a three dimensional structural model. The code was modified to include forced response capability. The formulation was also modified to include aeroelastic analysis with mistuning. A linearized unsteady Euler solver, LINFLX2D is added to model the unsteady aerodynamics in ASTROP2. By calculating the unsteady aerodynamic loads using LINFLX2D, it is possible to include the effects of transonic flow on flutter and forced response in the analysis. The stability is inferred from an eigenvalue analysis. The revised code, ASTROP2-LE for ASTROP2 code using Linearized Euler aerodynamics, is validated by comparing the predictions with those obtained using linear unsteady aerodynamic solutions.

  20. Effective description of higher-order scalar-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langlois, David; Mancarella, Michele; Vernizzi, Filippo

    Most existing theories of dark energy and/or modified gravity, involving a scalar degree of freedom, can be conveniently described within the framework of the Effective Theory of Dark Energy, based on the unitary gauge where the scalar field is uniform. We extend this effective approach by allowing the Lagrangian in unitary gauge to depend on the time derivative of the lapse function. Although this dependence generically signals the presence of an extra scalar degree of freedom, theories that contain only one propagating scalar degree of freedom, in addition to the usual tensor modes, can be constructed by requiring the initialmore » Lagrangian to be degenerate. Starting from a general quadratic action, we derive the dispersion relations for the linear perturbations around Minkowski and a cosmological background. Our analysis directly applies to the recently introduced Degenerate Higher-Order Scalar-Tensor (DHOST) theories. For these theories, we find that one cannot recover a Poisson-like equation in the static linear regime except for the subclass that includes the Horndeski and so-called 'beyond Horndeski' theories. We also discuss Lorentz-breaking models inspired by Horava gravity.« less

  1. Linear analysis of auto-organization in Hebbian neural networks.

    PubMed

    Carlos Letelier, J; Mpodozis, J

    1995-01-01

    The self-organization of neurotopies where neural connections follow Hebbian dynamics is framed in terms of linear operator theory. A general and exact equation describing the time evolution of the overall synaptic strength connecting two neural laminae is derived. This linear matricial equation, which is similar to the equations used to describe oscillating systems in physics, is modified by the introduction of non-linear terms, in order to capture self-organizing (or auto-organizing) processes. The behavior of a simple and small system, that contains a non-linearity that mimics a metabolic constraint, is analyzed by computer simulations. The emergence of a simple "order" (or degree of organization) in this low-dimensionality model system is discussed.

  2. Linear and non-linear Modified Gravity forecasts with future surveys

    NASA Astrophysics Data System (ADS)

    Casas, Santiago; Kunz, Martin; Martinelli, Matteo; Pettorino, Valeria

    2017-12-01

    Modified Gravity theories generally affect the Poisson equation and the gravitational slip in an observable way, that can be parameterized by two generic functions (η and μ) of time and space. We bin their time dependence in redshift and present forecasts on each bin for future surveys like Euclid. We consider both Galaxy Clustering and Weak Lensing surveys, showing the impact of the non-linear regime, with two different semi-analytical approximations. In addition to these future observables, we use a prior covariance matrix derived from the Planck observations of the Cosmic Microwave Background. In this work we neglect the information from the cross correlation of these observables, and treat them as independent. Our results show that η and μ in different redshift bins are significantly correlated, but including non-linear scales reduces or even eliminates the correlation, breaking the degeneracy between Modified Gravity parameters and the overall amplitude of the matter power spectrum. We further apply a Zero-phase Component Analysis and identify which combinations of the Modified Gravity parameter amplitudes, in different redshift bins, are best constrained by future surveys. We extend the analysis to two particular parameterizations of μ and η and consider, in addition to Euclid, also SKA1, SKA2, DESI: we find in this case that future surveys will be able to constrain the current values of η and μ at the 2-5% level when using only linear scales (wavevector k < 0 . 15 h/Mpc), depending on the specific time parameterization; sensitivity improves to about 1% when non-linearities are included.

  3. Clipping the cosmos: the bias and bispectrum of large scale structure.

    PubMed

    Simpson, Fergus; James, J Berian; Heavens, Alan F; Heymans, Catherine

    2011-12-30

    A large fraction of the information collected by cosmological surveys is simply discarded to avoid length scales which are difficult to model theoretically. We introduce a new technique which enables the extraction of useful information from the bispectrum of galaxies well beyond the conventional limits of perturbation theory. Our results strongly suggest that this method increases the range of scales where the relation between the bispectrum and power spectrum in tree-level perturbation theory may be applied, from k(max) ∼ 0.1 to ∼0.7 hMpc(-1). This leads to correspondingly large improvements in the determination of galaxy bias. Since the clipped matter power spectrum closely follows the linear power spectrum, there is the potential to use this technique to probe the growth rate of linear perturbations and confront theories of modified gravity with observation.

  4. Cosmological tests of modified gravity.

    PubMed

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  5. Generalized Brans-Dicke theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Felice, Antonio; Tsujikawa, Shinji, E-mail: defelice@rs.kagu.tus.ac.jp, E-mail: shinji@rs.kagu.tus.ac.jp

    2010-07-01

    In Brans-Dicke theory a non-linear self interaction of a scalar field φ allows a possibility of realizing the late-time cosmic acceleration, while recovering the General Relativistic behavior at early cosmological epochs. We extend this to more general modified gravitational theories in which a de Sitter solution for dark energy exists without using a field potential. We derive a condition for the stability of the de Sitter point and study the background cosmological dynamics of such theories. We also restrict the allowed region of model parameters from the demand for the avoidance of ghosts and instabilities. A peculiar evolution of themore » field propagation speed allows us to distinguish those theories from the ΛCDM model.« less

  6. Conserving and gapless Hartree-Fock-Bogoliubov theory for the three-dimensional dilute Bose gas

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Hui; Li, Dingping

    2013-11-01

    The excitation spectrum for the three-dimensional Bose gas in the Bose-Einstein condensation phase is calculated nonperturbatively with the modified Hartree-Fock-Bogoliubov theory, which is both conserving and gapless. From improved Φ-derivable theory, the diagrams needed to preserve the Ward-Takahashi identity are re-summed in a systematic and nonperturbative way. It is valid up to the critical temperature where the dispersion relation of the low-energy excitation spectrum changes from linear to quadratic. Because including the higher-order fluctuation, the results show significant improvement on the calculation of the shift of critical temperature with other conserving and gapless theories.

  7. Cluster-modified function projective synchronisation of complex networks with asymmetric coupling

    NASA Astrophysics Data System (ADS)

    Wang, Shuguo

    2018-02-01

    This paper investigates the cluster-modified function projective synchronisation (CMFPS) of a generalised linearly coupled network with asymmetric coupling and nonidentical dynamical nodes. A novel synchronisation scheme is proposed to achieve CMFPS in community networks. We use adaptive control method to derive CMFPS criteria based on Lyapunov stability theory. Each cluster of networks is synchronised with target system by state transformation with scaling function matrix. Numerical simulation results are presented finally to illustrate the effectiveness of this method.

  8. Stability of cylindrical thin shell wormholes supported by MGCG in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Eid, A.

    2018-02-01

    In the framework of f(R) modified theory of gravity, the dynamical equations of motion of a cylindrical thin shell wormholes supported by a modified generalized Chaplygin gas are constructed, using the cut and paste scheme (Darmois Israel formalism). The mechanical stability analysis of a cylindrical thin shell wormhole is discussed using a linearized radial perturbation around static solutions at the wormhole throat. The presence of stable static solutions depends on the suitable values of some parameters of dynamical shell.

  9. Influence of wave modelling on the prediction of fatigue for offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Veldkamp, H. F.; van der Tempel, J.

    2005-01-01

    Currently it is standard practice to use Airy linear wave theory combined with Morison's formula for the calculation of fatigue loads for offshore wind turbines. However, offshore wind turbines are typically placed in relatively shallow water depths of 5-25 m where linear wave theory has limited accuracy and where ideally waves generated with the Navier-Stokes approach should be used. This article examines the differences in fatigue for some representative offshore wind turbines that are found if first-order, second-order and fully non-linear waves are used. The offshore wind turbines near Blyth are located in an area where non-linear wave effects are common. Measurements of these waves from the OWTES project are used to compare the different wave models with the real world in spectral form. Some attention is paid to whether the shape of a higher-order wave height spectrum (modified JONSWAP) corresponds to reality for other places in the North Sea, and which values for the drag and inertia coefficients should be used. Copyright

  10. Teaching Australian Football in Physical Education: Constraints Theory in Practice

    ERIC Educational Resources Information Center

    Pill, Shane

    2013-01-01

    This article outlines a constraints-led process of exploring, modifying, experimenting, adapting, and developing game appreciation known as Game Sense (Australian Sports Commission, 1997; den Duyn, 1996, 1997) for the teaching of Australian football. The game acts as teacher in this constraints-led process. Rather than a linear system that…

  11. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue

    We present two efficient iterative algorithms for solving the linear response eigen- value problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into a product eigenvalue problem that is self-adjoint with respect to a K-inner product. This product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-innermore » product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. However, the other component of the eigenvector can be easily recovered in a postprocessing procedure. Therefore, the algorithms we present here are more efficient than existing algorithms that try to approximate both components of the eigenvectors simultaneously. The efficiency of the new algorithms is demonstrated by numerical examples.« less

  12. Initial conditions for cosmological N-body simulations of the scalar sector of theories of Newtonian, Relativistic and Modified Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valkenburg, Wessel; Hu, Bin, E-mail: valkenburg@lorentz.leidenuniv.nl, E-mail: hu@lorentz.leidenuniv.nl

    2015-09-01

    We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zel'dovich Approximation to nontrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond Λ-Cold Dark Matter initial conditions for modifications of gravitymore » outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology.« less

  13. Linearized modified gravity theories with a cosmological term: advance of perihelion and deflection of light

    NASA Astrophysics Data System (ADS)

    Özer, Hatice; Delice, Özgür

    2018-03-01

    Two different ways of generalizing Einstein’s general theory of relativity with a cosmological constant to Brans–Dicke type scalar–tensor theories are investigated in the linearized field approximation. In the first case a cosmological constant term is coupled to a scalar field linearly whereas in the second case an arbitrary potential plays the role of a variable cosmological term. We see that the former configuration leads to a massless scalar field whereas the latter leads to a massive scalar field. General solutions of these linearized field equations for both cases are obtained corresponding to a static point mass. Geodesics of these solutions are also presented and solar system effects such as the advance of the perihelion, deflection of light rays and gravitational redshift were discussed. In general relativity a cosmological constant has no role in these phenomena. We see that for the Brans–Dicke theory, the cosmological constant also has no effect on these phenomena. This is because solar system observations require very large values of the Brans–Dicke parameter and the correction terms to these phenomena becomes identical to GR for these large values of this parameter. This result is also observed for the theory with arbitrary potential if the mass of the scalar field is very light. For a very heavy scalar field, however, there is no such limit on the value of this parameter and there are ranges of this parameter where these contributions may become relevant in these scales. Galactic and intergalactic dynamics is also discussed for these theories at the latter part of the paper with similar conclusions.

  14. Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse Shear Effects

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Anderson, Melvin S.

    1998-01-01

    The analytical formulation of curved-plate non-linear equilibrium equations that include transverse-shear-deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Using several simplifying assumptions, linearized, stability equations are derived that describe the response of the plate just after bifurcation buckling occurs. These equations are then modified to allow the plate reference surface to be located a distance z(c), from the centroid surface which is convenient for modeling stiffened-plate assemblies. The implementation of the new theory into the VICONOPT buckling and vibration analysis and optimum design program code is described. Either classical plate theory (CPT) or first-order shear-deformation plate theory (SDPT) may be selected in VICONOPT. Comparisons of numerical results for several example problems with different loading states are made. Results from the new curved-plate analysis compare well with closed-form solution results and with results from known example problems in the literature. Finally, a design-optimization study of two different cylindrical shells subject to uniform axial compression is presented.

  15. A simple laminate theory using the orthotropic viscoplasticity theory based on overstress. I - In-plane stress-strain relationships for metal matrix composites

    NASA Technical Reports Server (NTRS)

    Krempl, Erhard; Hong, Bor Zen

    1989-01-01

    A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.

  16. On coherent oscillations of a string.

    NASA Technical Reports Server (NTRS)

    Liu, C. H.

    1972-01-01

    Vibrations of an elastic string when the separation between the ends varies randomly are studied. The emphasis is on the evolution of the coherent, or ordered, oscillations of the string. Using a perturbation technique borrowed from quantum field theory and the modified Kryloff-Bogoliuboff method, the 'multiple scattering' effect of the random separation between the ends on the linear and nonlinear coherent oscillations are investigated. It is found that due to the random interactions the coherent fundamental oscillation as well as the harmonies are damped. Their frequencies are also modified.

  17. Supertrace formulae for nonlinearly realized supersymmetry

    NASA Astrophysics Data System (ADS)

    Murli, Divyanshu; Yamada, Yusuke

    2018-04-01

    We derive the general supertrace formula for a system with N chiral superfields and one nilpotent chiral superfield in global and local supersymmetry. The nilpotent multiplet is realized by taking the scalar-decoupling limit of a chiral superfield breaking supersymmetry spontaneously. As we show, however, the modified formula is not simply related to the scalar-decoupling limit of the supertrace in linearly-realized supersymmetry. We also show that the supertrace formula reduces to that of a linearly realized supersymmetric theory with a decoupled sGoldstino if the Goldstino is the fermion in the nilpotent multiplet.

  18. Persisting roughness when deposition stops.

    PubMed

    Schwartz, Moshe; Edwards, S F

    2004-12-01

    Useful theories for growth of surfaces under random deposition of material have been developed by several authors. The simplest theory is that introduced by Edwards and Wilkinson (EW), which is linear and soluble. Its nonlinear generalization by Kardar, Parisi, and Zhang (KPZ) resulted in many subsequent studies. Yet both EW and KPZ theories contain an unphysical feature. When deposition of material is stopped, both theories predict that as time tends to infinity, the surface becomes flat. In fact, of course, the final surface is not flat, but simply has no gradients larger than the gradient related to the angle of repose. We modify the EW and KPZ theories to accommodate this feature and study the consequences for the simpler system which is a modification of the EW equation. In spite of the fact that the equation describing the evolution of the surface is not linear, we find that the steady state in the presence of noise is not very different in the long-wavelength limit from that of the linear EW equation. The situation is quite different from that of EW when deposition stops. Initially there is still some rearrangement of the surface, but that stops as everywhere on the surface the gradient is less than that related to the angle of repose. The most interesting feature observed after deposition stops is the emergence of history-dependent steady-state distributions.

  19. Influence of mean radial electric field on particle transport induced by RMPs in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Dunqiang; Xu, Yingfeng; Wang, Shaojie

    2018-06-01

    The quasi-linear theory of the particle diffusion coefficient including the finite Larmor radius effect and the mean radial electric field ( E r without shear) in a stochastic magnetic field is derived. The theory has been verified by comparing with test particle simulations and previous theory. It is found that E r can shift the wave-particle resonance position. The Er-shift effect mainly modifies the ion diffusion coefficients and leads to the modification of ion particle flux. By using the ambipolar condition, we obtained the balanced flux at the edge of a tokamak plasma and found good agreement with recent experimental observations.

  20. Quantum gambling based on Nash-equilibrium

    NASA Astrophysics Data System (ADS)

    Zhang, Pei; Zhou, Xiao-Qi; Wang, Yun-Long; Liu, Bi-Heng; Shadbolt, Pete; Zhang, Yong-Sheng; Gao, Hong; Li, Fu-Li; O'Brien, Jeremy L.

    2017-06-01

    The problem of establishing a fair bet between spatially separated gambler and casino can only be solved in the classical regime by relying on a trusted third party. By combining Nash-equilibrium theory with quantum game theory, we show that a secure, remote, two-party game can be played using a quantum gambling machine which has no classical counterpart. Specifically, by modifying the Nash-equilibrium point we can construct games with arbitrary amount of bias, including a game that is demonstrably fair to both parties. We also report a proof-of-principle experimental demonstration using linear optics.

  1. Stellar pulsations in beyond Horndeski gravity theories

    NASA Astrophysics Data System (ADS)

    Sakstein, Jeremy; Kenna-Allison, Michael; Koyama, Kazuya

    2017-03-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  2. Extending Newton's Universal Theory of Gravity

    NASA Astrophysics Data System (ADS)

    Aisenberg, Sol

    2011-11-01

    This should remove the mystery of Dark Matter. Newton's universal theory of gravity only used the observations of the motion of planets in our solar system. Hubble later used observations of fixed stars in the universe, and showed that the fixed stars were actually galaxies with very large numbers of stars. Newton's universal law of gravity could not explain these new observations without the mystery of dark matter for the additional gravity. In science, when a theory is not able to explain new observations it is necessary to modify the theory or abandon the theory. Rubin observed flat (constant velocity) rotation curves for stars in spiral galaxies. Dark matter was proposed to provide the missing gravity. The equation balancing gravitational force and centripetal force is M*G=v*v*r and for the observed constant velocity v this requires M*G to be a linear function of distance r. If the linear dependence is instead assigned to G instead of M to give a new value for Gn as G+A*r, this will explain the observations in the cosmos and also in our solar system for small r. See ``The Misunderstood Universe'' for more details.

  3. Quintessential quartic quasi-topological quartet

    NASA Astrophysics Data System (ADS)

    Ahmed, Jamil; Hennigar, Robie A.; Mann, Robert B.; Mir, Mozhgan

    2017-05-01

    We construct the quartic version of generalized quasi-topological gravity, which was recently constructed to cubic order in arXiv:1703.01631. This class of theories includes Lovelock gravity and a known form of quartic quasi-topological gravity as special cases and possess a number of remarkable properties: (i) In vacuum, or in the presence of suitable matter, there is a single independent field equation which is a total derivative. (ii) At the linearized level, the equations of motion on a maximally symmetric background are second order, coinciding with the linearized Einstein equations up to a redefinition of Newton's constant. Therefore, these theories propagate only the massless, transverse graviton on a maximally symmetric background. (iii) While the Lovelock and quasi-topological terms are trivial in four dimensions, there exist four new generalized quasi-topological terms (the quartet) that are nontrivial, leading to interesting higher curvature theories in d ≥ 4 dimensions that appear well suited for holographic study. We construct four dimensional black hole solutions to the theory and study their properties. A study of black brane solutions in arbitrary dimensions reveals that these solutions are modified from the `universal' properties they possess in other higher curvature theories, which may lead to interesting consequences for the dual CFTs.

  4. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.

    PubMed

    Yunes, Nicolás; Siemens, Xavier

    2013-01-01

    This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime . Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  5. Causal properties of nonlinear gravitational waves in modified gravity

    NASA Astrophysics Data System (ADS)

    Suvorov, Arthur George; Melatos, Andrew

    2017-09-01

    Some exact, nonlinear, vacuum gravitational wave solutions are derived for certain polynomial f (R ) gravities. We show that the boundaries of the gravitational domain of dependence, associated with events in polynomial f (R ) gravity, are not null as they are in general relativity. The implication is that electromagnetic and gravitational causality separate into distinct notions in modified gravity, which may have observable astrophysical consequences. The linear theory predicts that tachyonic instabilities occur, when the quadratic coefficient a2 of the Taylor expansion of f (R ) is negative, while the exact, nonlinear, cylindrical wave solutions presented here can be superluminal for all values of a2. Anisotropic solutions are found, whose wave fronts trace out time- or spacelike hypersurfaces with complicated geometric properties. We show that the solutions exist in f (R ) theories that are consistent with Solar System and pulsar timing experiments.

  6. Fixing extensions to general relativity in the nonlinear regime

    NASA Astrophysics Data System (ADS)

    Cayuso, Juan; Ortiz, Néstor; Lehner, Luis

    2017-10-01

    The question of what gravitational theory could supersede General Relativity has been central in theoretical physics for decades. Many disparate alternatives have been proposed motivated by cosmology, quantum gravity and phenomenological angles, and have been subjected to tests derived from cosmological, solar system and pulsar observations typically restricted to linearized regimes. Gravitational waves from compact binaries provide new opportunities to probe these theories in the strongly gravitating/highly dynamical regimes. To this end however, a reliable understanding of the dynamics in such a regime is required. Unfortunately, most of these theories fail to define well posed initial value problems, which prevents at face value from meeting such challenge. In this work, we introduce a consistent program able to remedy this situation. This program is inspired in the approach to "fixing" viscous relativistic hydrodynamics introduced by Israel and Stewart in the late 70's. We illustrate how to implement this approach to control undesirable effects of higher order derivatives in gravity theories and argue how the modified system still captures the true dynamics of the putative underlying theories in 3 +1 dimensions. We sketch the implementation of this idea in a couple of effective theories of gravity, one in the context of Noncommutative Geometry, and one in the context of Chern-Simons modified General Relativity.

  7. Scintillation index of higher order mode laser beams in strong turbulence

    NASA Astrophysics Data System (ADS)

    Baykal, Yahya

    2017-03-01

    The scintillation index of higher order laser modes is examined in strong atmospheric turbulence. In our formulation, modified Rytov theory is employed with the inclusion of existing modified turbulence spectrum which presents the atmospheric turbulence spectrum as a linear filter having refractive and diffractive spatial frequency cutoffs. Variations of the scintillation index in strong atmospheric turbulence are shown against the weak turbulence plane wave scintillation index for various higher order laser modes of different sizes. Use of higher order modes in optical wireless communication links operating in strongly turbulent atmosphere is found to be advantageous in reducing the scintillation noise.

  8. Cascade model for fluvial geomorphology

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Turcotte, D. L.

    1990-01-01

    Erosional landscapes are generally scale invariant and fractal. Spectral studies provide quantitative confirmation of this statement. Linear theories of erosion will not generate scale-invariant topography. In order to explain the fractal behavior of landscapes a modified Fourier series has been introduced that is the basis for a renormalization approach. A nonlinear dynamical model has been introduced for the decay of the modified Fourier series coefficients that yield a fractal spectra. It is argued that a physical basis for this approach is that a fractal (or nearly fractal) distribution of storms (floods) continually renews erosional features on all scales.

  9. Systematic simulations of modified gravity: chameleon models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Davis, Anne-Christine; Li, Baojiu

    2013-04-01

    In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference withmore » the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc{sup −1}, since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future.« less

  10. Cooling in the single-photon strong-coupling regime of cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Nunnenkamp, A.; Børkje, K.; Girvin, S. M.

    2012-05-01

    In this Rapid Communication we discuss how red-sideband cooling is modified in the single-photon strong-coupling regime of cavity optomechanics where the radiation pressure of a single photon displaces the mechanical oscillator by more than its zero-point uncertainty. Using Fermi's golden rule we calculate the transition rates induced by the optical drive without linearizing the optomechanical interaction. In the resolved-sideband limit we find multiple-phonon cooling resonances for strong single-photon coupling that lead to nonthermal steady states including the possibility of phonon antibunching. Our study generalizes the standard linear cooling theory.

  11. S2 like Star Orbits near the Galactic Center in Rn and Yukawa Gravity

    NASA Astrophysics Data System (ADS)

    Borka, Dusko; Jovanović, Predrag; Jovanović Vesna Borka; Zakharov, Alexander F.

    2015-01-01

    In this chapter we investigate the possibility to provide theoretical explanation for the observed deviations of S2 star orbit around the Galactic Center using gravitational potentials derived from extended gravity models, but in absence of dark matter. Extended Theories of Gravity are alternative theories of gravitational interaction developed from the exact starting points investigated first by Einstein and Hilbert and aimed from one side to extend the positive results of General Relativity and, on the other hand, to cure its shortcomings. One of the aims of these theories is to explain galactic and extragalactic dynamics without introduction of dark matter. They are based on straightforward generalizations of the Einstein theory where the gravitational action (the Hilbert-Einstein action) is assumed to be linear in the Ricci curvature scalar R. The f(R) gravity is a type of modified gravity which generalizes Einstein's General Relativity, i.e. the simplest case is just the General Relativity. It is actually a family of models, each one defined by a different function of the Ricci scalar. Here, we consider Rn (power-law fourth-order theories of gravity) and Yukawa-like modified gravities in the weak field limit and discuss the constrains on these theories. For that purpose we simulate the orbit of S2 star around the Galactic Center in Rn and Yukawa-like gravity potentials and compare it with New Technology Telescope/Very Large Telescope (NTT/VLT) as well as by Keck telescope observations. Our simulations result in strong constraints on the range of gravity interaction and showed that both Rn and Yukawa gravity could satisfactorily explain the observed orbits of S2 star. However, we concluded that parameters of Rn and Yukawa gravity theories must be very close to those corresponding to the Newtonian limit of the theory. Besides, in contrast to Newtonian gravity, these two modified theories induce orbital precession, even in the case of point-like central mass. The approach we are proposing seems to be sufficiently reliable to constrain the modified gravity models from stellar orbits around Galactic Center.

  12. Stellar pulsations in beyond Horndeski gravity theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakstein, Jeremy; Kenna-Allison, Michael; Koyama, Kazuya, E-mail: sakstein@physics.upenn.edu, E-mail: mka1g13@soton.ac.uk, E-mail: kazuya.koyama@port.ac.uk

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify themore » best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.« less

  13. Study of Graphite/Epoxy Composites for Material Flaw Criticality.

    DTIC Science & Technology

    1980-11-01

    criticality of disbonds with two-dimensional planforms located in laminated graphite/epoxy composites has been examined. Linear elastic fracture...mechanics approach, semi-empirical growth laws and methods of stress analysis based on a modified laminated plate theory have been studied for assessing...growth rates of disbonds in a transverse shear environ- ment. Elastic stability analysis has been utilized for laminates with disbonds subjected to in

  14. Parametric decay of plasma waves near the upper-hybrid resonance

    DOE PAGES

    Dodin, I. Y.; Arefiev, A. V.

    2017-03-28

    An intense X wave propagating perpendicularly to dc magnetic field is unstable with respect to a parametric decay into an electron Bernstein wave and a lower-hybrid wave. A modified theory of this effect is proposed that extends to the high-intensity regime, where the instability rate γ ceases to be a linear function of the incident-wave amplitude. An explicit formula for γ is derived and expressed in terms of cold-plasma parameters. Here, theory predictions are in reasonable agreement with the results of the particle-in-cell simulations presented in a separate publication.

  15. Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Bakhshi Khaniki, Hossein; Rajasekaran, Sundaramoorthy

    2018-05-01

    This study develops a comprehensive investigation on mechanical behavior of non-uniform bi-directional functionally graded beam sensors in the framework of modified couple stress theory. Material variation is modelled through both length and thickness directions using power-law, sigmoid and exponential functions. Moreover, beam is assumed with linear, exponential and parabolic cross-section variation through the length using power-law and sigmoid varying functions. Using these assumptions, a general model for microbeams is presented and formulated by employing Hamilton’s principle. Governing equations are solved using a mixed finite element method with Lagrangian interpolation technique, Gaussian quadrature method and Wilson’s Lagrangian multiplier method. It is shown that by using bi-directional functionally graded materials in nonuniform microbeams, mechanical behavior of such structures could be affected noticeably and scale parameter has a significant effect in changing the rigidity of nonuniform bi-directional functionally graded beams.

  16. The Lead Free Electronics Manhattan Project - Phase I

    DTIC Science & Technology

    2009-07-30

    Proceedings TMS, V1: Materials Processing and Properties , p.p. 631-642, 2008. [10] “Real Life Tin-Silver-Copper Alloy Processing ,” A. Rae et al ...in microstructure and other constitutive material properties of Pb-free alloys , strongly suggest that linear cumulative damage theories like Miner’s...manufacturing process , utilization of SnCu modified alloys , such as SN100C, will minimize the degree of Cu dissolution during subsequent rework

  17. Static aeroelastic behavior of a subsonic plate wing

    NASA Astrophysics Data System (ADS)

    Berci, M.

    2017-07-01

    The static aeroelastic behavior of a subsonic plate wing is here described by semi-analytical means. Within a generalised modal formulation, any distribution of the plate's properties is allowed. Modified strip theory is employed for the aerodynamic modelling and a linear aeroelastic model is eventually derived. Numerical results are then shown for the plate's aeroelastic stability in terms of divergence speed, with respect to the most relevant aero-structural parameters.

  18. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; Govind, Niranjan; Yang, Chao

    2017-12-01

    We present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.

  19. Adaptive Control of Linear Modal Systems Using Residual Mode Filters and a Simple Disturbance Estimator

    NASA Technical Reports Server (NTRS)

    Balas, Mark; Frost, Susan

    2012-01-01

    Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter.

  20. Dynamics of cosmological perturbations in modified Brans-Dicke cosmology with matter-scalar field interaction

    NASA Astrophysics Data System (ADS)

    Kofinas, Georgios; Lima, Nelson A.

    2017-10-01

    In this work we focus on a novel completion of the well-known Brans-Dicke theory that introduces an interaction between the dark energy and dark matter sectors, known as complete Brans-Dicke (CBD) theory. We obtain viable cosmological accelerating solutions that fit supernovae observations with great precision without any scalar potential V (ϕ ). We use these solutions to explore the impact of the CBD theory on the large scale structure by studying the dynamics of its linear perturbations. We observe a growing behavior of the lensing potential Φ+ at late-times, while the growth rate is actually suppressed relatively to Λ CDM , which allows the CBD theory to provide a competitive fit to current RSD measurements of f σ8. However, we also observe that the theory exhibits a pathological change of sign in the effective gravitational constant concerning the perturbations on subhorizon scales that could pose a challenge to its validity.

  1. Refinement of the theory for extracting cell dielectric properties from dielectrophoresis and electrorotation experiments.

    PubMed

    Lei, U; Sun, Pei-Hou; Pethig, Ronald

    2011-12-01

    A modified theory is proposed for extracting cell dielectric properties from the peak frequency measurement of electrorotation (ER) and the crossover frequency measurement of dielectrophoresis (DEP). Current theory in the literature is based on the low frequency (DC) approximations for the equivalent cell permittivity and conductivity, which are valid when the measurements are performed in a medium with conductivity less than 1 mS/m. The present theory extracts the cell properties through optimizing an expression for the medium conductivity in terms of the peak ER, or DEP crossover, frequency according to its definition using full expressions of equivalent cell permittivity and conductivity. Various levels of approximation of the theory are proposed and discussed through a scaling analysis. The present theory can extract both membrane and interior properties from the low and the high peak ER, or DEP crossover, frequencies for any medium conductivity provided the peak ER, or DEP crossover, frequency exists. It can be reduced to the linear theory for the low peak ER and DEP crossover frequencies in the literature when the medium conductivity is less than 10 mS/m. However, we can determine the membrane capacitance and conductance via the slope and intercept, respectively, of the straight line fitting of the ER peak and DEP frequency against medium conductivity data according to the linear theory only when the intercept dominates the experimental uncertainty, which occurs when the medium conductivity is less than 1 mS/m in practice.

  2. The effect of small streamwise velocity distortion on the boundary layer flow over a thin flat plate with application to boundary layer stability theory

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Leib, S. J.; Cowley, S. J.

    1990-01-01

    Researchers show how an initially linear spanwise disturbance in the free stream velocity field is amplified by leading edge bluntness effects and ultimately leads to a small amplitude but linear spanwise motion far downstream from the edge. This spanwise motion is imposed on the boundary layer flow and ultimately causes an order-one change in its profile shape. The modified profiles are highly unstable and can support Tollmein-Schlichting wave growth well upstream of the theoretical lower branch of the neutral stability curve for a Blasius boundary layer.

  3. The Zeldovich approximation and wide-angle redshift-space distortions

    NASA Astrophysics Data System (ADS)

    Castorina, Emanuele; White, Martin

    2018-06-01

    The contribution of line-of-sight peculiar velocities to the observed redshift of objects breaks the translational symmetry of the underlying theory, modifying the predicted 2-point functions. These `wide angle effects' have mostly been studied using linear perturbation theory in the context of the multipoles of the correlation function and power spectrum . In this work we present the first calculation of wide angle terms in the Zeldovich approximation, which is known to be more accurate than linear theory on scales probed by the next generation of galaxy surveys. We present the exact result for dark matter and perturbatively biased tracers as well as the small angle expansion of the configuration- and Fourier-space two-point functions and the connection to the multi-frequency angular power spectrum. We compare different definitions of the line-of-sight direction and discuss how to translate between them. We show that wide angle terms can reach tens of percent of the total signal in a measurement at low redshift in some approximations, and that a generic feature of wide angle effects is to slightly shift the Baryon Acoustic Oscillation scale.

  4. Surfing gravitational waves: can bigravity survive growing tensor modes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amendola, Luca; Könnig, Frank; Martinelli, Matteo

    The theory of bigravity offers one of the simplest possibilities to describe a massive graviton while having self-accelerating cosmological solutions without a cosmological constant. However, it has been shown recently that bigravity is affected by early-time fast growing modes on the tensor sector. Here we argue that we can only trust the linear analysis up to when perturbations are in the linear regime and use a cut-off to stop the growing of the metric perturbations. This analysis, although more consistent, still leads to growing tensor modes that are unacceptably large for the theory to be compatible with measurements of themore » cosmic microwave background (CMB), both in temperature and polarization spectra. In order to suppress the growing modes and make the model compatible with CMB spectra, we find it necessary to either fine-tune the initial conditions, modify the theory or set the cut-off for the tensor perturbations of the second metric much lower than unity. Initial conditions such that the growing mode is sufficiently suppresed can be achieved in scenarios in which inflation ends at the GeV scale.« less

  5. Passive control of coherent structures in a modified backwards-facing step flow

    NASA Astrophysics Data System (ADS)

    Ormonde, Pedro C.; Cavalieri, André V. G.; Silva, Roberto G. A. da; Avelar, Ana C.

    2018-05-01

    We study a modified backwards-facing step flow, with the addition of two different plates; one is a baseline, impermeable plate and the second a perforated one. An experimental investigation is carried out for a turbulent reattaching shear layer downstream of the two plates. The proposed setup is a model configuration to study how the plate characteristics affect the separated shear layer and how turbulent kinetic energies and large-scale coherent structures are modified. Measurements show that the perforated plate changes the mean flow field, mostly by reducing the intensity of reverse flow close to the bottom wall. Disturbance amplitudes are significantly reduced up to five step heights downstream of the trailing edge of the plate, more specifically in the recirculation region. A loudspeaker is then used to introduce phase-locked, low-amplitude perturbations upstream of the plates, and phase-averaged measurements allow a quantitative study of large-scale structures in the shear-layer. The evolution of such coherent structures is evaluated in light of linear stability theory, comparing the eigenfunction of the Kelvin-Helmholtz mode to the experimental results. We observe a close match of linear-stability eigenfunctions with phase-averaged amplitudes for the two tested Strouhal numbers. The perforated plate is found to reduce the amplitude of the Kelvin-Helmholtz coherent structures in comparison to the baseline, impermeable plate, a behavior consistent with the predicted amplification trends from linear stability.

  6. Efficient simulations of large-scale structure in modified gravity cosmologies with comoving Lagrangian acceleration

    NASA Astrophysics Data System (ADS)

    Valogiannis, Georgios; Bean, Rachel

    2017-05-01

    We implement an adaptation of the cola approach, a hybrid scheme that combines Lagrangian perturbation theory with an N-body approach, to model nonlinear collapse in chameleon and symmetron modified gravity models. Gravitational screening is modeled effectively through the attachment of a suppression factor to the linearized Klein-Gordon equations. The adapted cola approach is benchmarked, with respect to an N-body code both for the Λ cold dark matter (Λ CDM ) scenario and for the modified gravity theories. It is found to perform well in the estimation of the dark matter power spectra, with consistency of 1% to k ˜2.5 h /Mpc . Redshift space distortions are shown to be effectively modeled through a Lorentzian parametrization with a velocity dispersion fit to the data. We find that cola performs less well in predicting the halo mass functions but has consistency, within 1 σ uncertainties of our simulations, in the relative changes to the mass function induced by the modified gravity models relative to Λ CDM . The results demonstrate that cola, proposed to enable accurate and efficient, nonlinear predictions for Λ CDM , can be effectively applied to a wider set of cosmological scenarios, with intriguing properties, for which clustering behavior needs to be understood for upcoming surveys such as LSST, DESI, Euclid, and WFIRST.

  7. Computing Maximum Likelihood Estimates of Loglinear Models from Marginal Sums with Special Attention to Loglinear Item Response Theory. [Project Psychometric Aspects of Item Banking No. 53.] Research Report 91-1.

    ERIC Educational Resources Information Center

    Kelderman, Henk

    In this paper, algorithms are described for obtaining the maximum likelihood estimates of the parameters in log-linear models. Modified versions of the iterative proportional fitting and Newton-Raphson algorithms are described that work on the minimal sufficient statistics rather than on the usual counts in the full contingency table. This is…

  8. Bioinspired Concepts: Unified Theory for Complex Biological and Engineering Systems

    DTIC Science & Technology

    2006-01-01

    i.e., data flows of finite size arrive at the system randomly. For such a system , we propose a modified dual scheduling algorithm that stabilizes ...demon. We compute the efficiency of the controller over finite and infinite time intervals, and since the controller is optimal, this yields hard limits...and highly optimized tolerance. PNAS, 102, 2005. 51. G. N. Nair and R. J. Evans. Stabilizability of stochastic linear systems with finite feedback

  9. Formulation of the linear model from the nonlinear simulation for the F18 HARV

    NASA Technical Reports Server (NTRS)

    Hall, Charles E., Jr.

    1991-01-01

    The F-18 HARV is a modified F-18 Aircraft which is capable of flying in the post-stall regime in order to achieve superagility. The onset of aerodynamic stall, and continued into the post-stall region, is characterized by nonlinearities in the aerodynamic coefficients. These aerodynamic coefficients are not expressed as analytic functions, but rather in the form of tabular data. The nonlinearities in the aerodynamic coefficients yield a nonlinear model of the aircraft's dynamics. Nonlinear system theory has made many advances, but this area is not sufficiently developed to allow its application to this problem, since many of the theorems are existance theorems and that the systems are composed of analytic functions. Thus, the feedback matrices and the state estimators are obtained from linear system theory techniques. It is important, in order to obtain the correct feedback matrices and state estimators, that the linear description of the nonlinear flight dynamics be as accurate as possible. A nonlinear simulation is run under the Advanced Continuous Simulation Language (ACSL). The ACSL simulation uses FORTRAN subroutines to interface to the look-up tables for the aerodynamic data. ACSL has commands to form the linear representation for the system. Other aspects of this investigation are discussed.

  10. A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel

    NASA Astrophysics Data System (ADS)

    Kumar, Devendra; Singh, Jagdev; Baleanu, Dumitru

    2018-02-01

    The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order.

  11. Introduction of the Floquet-Magnus expansion in solid-state nuclear magnetic resonance spectroscopy.

    PubMed

    Mananga, Eugène S; Charpentier, Thibault

    2011-07-28

    In this article, we present an alternative expansion scheme called Floquet-Magnus expansion (FME) used to solve a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state nuclear magnetic resonance (NMR) in particular. The commonly used methods to treat theoretical problems in solid-state NMR are the average Hamiltonian theory (AHT) and the Floquet theory (FT), which have been successful for designing sophisticated pulse sequences and understanding of different experiments. To the best of our knowledge, this is the first report of the FME scheme in the context of solid state NMR and we compare this approach with other series expansions. We present a modified FME scheme highlighting the importance of the (time-periodic) boundary conditions. This modified scheme greatly simplifies the calculation of higher order terms and shown to be equivalent to the Floquet theory (single or multimode time-dependence) but allows one to derive the effective Hamiltonian in the Hilbert space. Basic applications of the FME scheme are described and compared to previous treatments based on AHT, FT, and static perturbation theory. We discuss also the convergence aspects of the three schemes (AHT, FT, and FME) and present the relevant references. © 2011 American Institute of Physics

  12. Superbounce and loop quantum ekpyrotic cosmologies from modified gravity: F(R) , F(G) and F(T) theories

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.; Saridakis, Emmanuel N.

    2015-12-01

    We investigate the realization of two bouncing paradigms, namely of the superbounce and the loop quantum cosmological ekpyrosis, in the framework of various modified gravities. In particular, we focus on the F(R) , F(G) and F(T) gravities, and we reconstruct their specific subclasses which lead to such universe evolutions. These subclasses constitute from power laws, polynomials, or hypergeometric ansatzes, which can be approximated by power laws. The qualitative similarity of the different effective gravities which realize the above two bouncing cosmologies, indicates that a universality might be lying behind the bounce. Finally, performing a linear perturbation analysis, we show that the obtained solutions are conditionally or fully stable.

  13. The Effects of Linear and Modified Linear Programed Materials on the Achievement of Slow Learners in Tenth Grade BSCS Special Materials Biology.

    ERIC Educational Resources Information Center

    Moody, John Charles

    Assessed were the effects of linear and modified linear programed materials on the achievement of slow learners in tenth grade Biological Sciences Curriculum Study (BSCS) Special Materials biology. Two hundred and six students were randomly placed into four programed materials formats: linear programed materials, modified linear program with…

  14. Time varying G and \\varLambda cosmology in f(R,T) gravity theory

    NASA Astrophysics Data System (ADS)

    Tiwari, R. K.; Beesham, A.; Singh, Rameshwar; Tiwari, L. K.

    2017-08-01

    We have studied the time dependence of the gravitational constant G and cosmological constant Λ by taking into account an anisotropic and homogeneous Bianchi type-I space-time in the framework of the modified f(R,T) theory of gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). For a specific choice of f(R,T)=R+2f(T) where f(T)=-λ T, two solutions of the modified gravity field equations have been generated with the help of a variation law between the expansion anisotropy ({σ}/{θ}) and the scale factor (S), together with a general non-linear equation of state. The solution for m≠3 corresponds to singular model of the universe whereas the solution for m=3 represents a non-singular model. We infer that the models entail a constant value of the deceleration parameter. A careful analysis of all the physical parameters of the models has also been carried out.

  15. Inverse scattering method and soliton double solution family for the general symplectic gravity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Yajun

    A previously established Hauser-Ernst-type extended double-complex linear system is slightly modified and used to develop an inverse scattering method for the stationary axisymmetric general symplectic gravity model. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method applied fine and effective. As an application, a concrete family of soliton double solutions for the considered theory is obtained.

  16. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue

    Within this paper, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. Additionally, the solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less

  17. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue

    In this article, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less

  18. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    DOE PAGES

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; ...

    2017-12-01

    In this article, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less

  19. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    DOE PAGES

    Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; ...

    2017-08-24

    Within this paper, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. Additionally, the solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less

  20. Electronic and optical properties of GaN/AlN quantum dots with adjacent threading dislocations

    NASA Astrophysics Data System (ADS)

    Ye, Han; Lu, Peng-Fei; Yu, Zhong-Yuan; Yao, Wen-Jie; Chen, Zhi-Hui; Jia, Bo-Yong; Liu, Yu-Min

    2010-04-01

    We present a theory to simulate a coherent GaN QD with an adjacent pure edge threading dislocation by using a finite element method. The piezoelectric effects and the strain modified band edges are investigated in the framework of multi-band k · p theory to calculate the electron and the heavy hole energy levels. The linear optical absorption coefficients corresponding to the interband ground state transition are obtained via the density matrix approach and perturbation expansion method. The results indicate that the strain distribution of the threading dislocation affects the electronic structure. Moreover, the ground state transition behaviour is also influenced by the position of the adjacent threading dislocation.

  1. Constraints on modified gravity from Planck 2015: when the health of your theory makes the difference

    NASA Astrophysics Data System (ADS)

    Salvatelli, Valentina; Piazza, Federico; Marinoni, Christian

    2016-09-01

    We use the effective field theory of dark energy (EFT of DE) formalism to constrain dark energy models belonging to the Horndeski class with the recent Planck 2015 CMB data. The space of theories is spanned by a certain number of parameters determining the linear cosmological perturbations, while the expansion history is set to that of a standard ΛCDM model. We always demand that the theories be free of fatal instabilities. Additionally, we consider two optional conditions, namely that scalar and tensor perturbations propagate with subliminal speed. Such criteria severely restrict the allowed parameter space and are thus very effective in shaping the posteriors. As a result, we confirm that no theory performs better than ΛCDM when CMB data alone are analysed. Indeed, the healthy dark energy models considered here are not able to reproduce those phenomenological behaviours of the effective Newton constant and gravitational slip parameters that, according to previous studies, best fit the data.

  2. Constraints on modified gravity from Planck 2015: when the health of your theory makes the difference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvatelli, Valentina; Piazza, Federico; Marinoni, Christian, E-mail: Valentina.Salvatelli@cpt.univ-mrs.fr, E-mail: Federico.Piazza@cpt.univ-mrs.fr, E-mail: Christian.Marinoni@cpt.univ-mrs.fr

    We use the effective field theory of dark energy (EFT of DE) formalism to constrain dark energy models belonging to the Horndeski class with the recent Planck 2015 CMB data. The space of theories is spanned by a certain number of parameters determining the linear cosmological perturbations, while the expansion history is set to that of a standard ΛCDM model. We always demand that the theories be free of fatal instabilities. Additionally, we consider two optional conditions, namely that scalar and tensor perturbations propagate with subliminal speed. Such criteria severely restrict the allowed parameter space and are thus very effectivemore » in shaping the posteriors. As a result, we confirm that no theory performs better than ΛCDM when CMB data alone are analysed. Indeed, the healthy dark energy models considered here are not able to reproduce those phenomenological behaviours of the effective Newton constant and gravitational slip parameters that, according to previous studies, best fit the data.« less

  3. Tuning the thermal conductivity of solar cell polymers through side chain engineering.

    PubMed

    Guo, Zhi; Lee, Doyun; Liu, Yi; Sun, Fangyuan; Sliwinski, Anna; Gao, Haifeng; Burns, Peter C; Huang, Libai; Luo, Tengfei

    2014-05-07

    Thermal transport is critical to the performance and reliability of polymer-based energy devices, ranging from solar cells to thermoelectrics. This work shows that the thermal conductivity of a low band gap conjugated polymer, poly(4,8-bis-alkyloxybenzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-(alkylthieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl) (PBDTTT), for photovoltaic applications can be actively tuned through side chain engineering. Compared to the original polymer modified with short branched side chains, the engineered polymer using all linear and long side chains shows a 160% increase in thermal conductivity. The thermal conductivity of the polymer exhibits a good correlation with the side chain lengths as well as the crystallinity of the polymer characterized using small-angle X-ray scattering (SAXS) experiments. Molecular dynamics simulations and atomic force microscopy are used to further probe the molecular level local order of different polymers. It is found that the linear side chain modified polymer can facilitate the formation of more ordered structures, as compared to the branched side chain modified ones. The effective medium theory modelling also reveals that the long linear side chain enables a larger heat carrier propagation length and the crystalline phase in the bulk polymer increases the overall thermal conductivity. It is concluded that both the length of the side chains and the induced polymer crystallization are important for thermal transport. These results offer important guidance for actively tuning the thermal conductivity of conjugated polymers through molecular level design.

  4. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; Lin, Lin; Shao, Meiyue

    We present two iterative algorithms for approximating the absorption spectrum of molecules within linear response of time-dependent density functional theory (TDDFT) framework. These methods do not attempt to compute eigenvalues or eigenvectors of the linear response matrix. They are designed to approximate the absorption spectrum as a function directly. They take advantage of the special structure of the linear response matrix. Neither method requires the linear response matrix to be constructed explicitly. They only require a procedure that performs the multiplication of the linear response matrix with a vector. These methods can also be easily modified to efficiently estimate themore » density of states (DOS) of the linear response matrix without computing the eigenvalues of this matrix. We show by computational experiments that the methods proposed in this paper can be much more efficient than methods that are based on the exact diagonalization of the linear response matrix. We show that they can also be more efficient than real-time TDDFT simulations. We compare the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost.« less

  5. Viability of Noether Symmetry of F( R) Theory of Gravity

    NASA Astrophysics Data System (ADS)

    Sarkar, Kaushik; Sk, Nayem; Debnath, Subhra; Sanyal, Abhik Kumar

    2013-04-01

    Recently, we have explored vices and virtues of R^{3/2} term in the action which has in-built Noether symmetry and anticipated that a linear term might improve the situation (Sarkar et al., arXiv:1201.2987 [astro-ph.CO], 2012). In the absence of a conserved current it is extremely difficult to obtain an analytical solution of the said fourth order theory of gravity in the presence of a linear term. Here, we therefore enlarge the configuration space by including a scalar field in addition and also taking some of the anisotropic models (in the absence of a scalar field) into account. We observe that Noether symmetry remains obscure and it does not even reproduce the one that already exists in the literature (Sanyal, Gen. Relativ. Gravit., 37:407, 2005). However, there exists in general, a conserved current for F( R) theory of gravity in the presence of a non-minimally coupled scalar field (Sanyal, Phys. Lett. B, 624:81, 2005; Mod. Phys. Lett. A, 25:2667, 2010), which simplifies the field equations considerably. Here, we briefly expatiate the non-Noether conserved current and show that indeed the situation is modified.

  6. Mixing of Exciton and Charge-Transfer States in Photosystem II Reaction Centers: Modeling of Stark Spectra with Modified Redfield Theory

    PubMed Central

    Novoderezhkin, Vladimir I.; Dekker, Jan P.; van Grondelle, Rienk

    2007-01-01

    We propose an exciton model for the Photosystem II reaction center (RC) based on a quantitative simultaneous fit of the absorption, linear dichroism, circular dichroism, steady-state fluorescence, triplet-minus-singlet, and Stark spectra together with the spectra of pheophytin-modified RCs, and so-called RC5 complexes that lack one of the peripheral chlorophylls. In this model, the excited state manifold includes a primary charge-transfer (CT) state that is supposed to be strongly mixed with the pure exciton states. We generalize the exciton theory of Stark spectra by 1), taking into account the coupling to a CT state (whose static dipole cannot be treated as a small parameter in contrast to usual excited states); and 2), expressing the line shape functions in terms of the modified Redfield approach (the same as used for modeling of the linear responses). This allows a consistent modeling of the whole set of experimental data using a unified physical picture. We show that the fluorescence and Stark spectra are extremely sensitive to the assignment of the primary CT state, its energy, and coupling to the excited states. The best fit of the data is obtained supposing that the initial charge separation occurs within the special-pair PD1PD2. Additionally, the scheme with primary electron transfer from the accessory chlorophyll to pheophytin gave a reasonable quantitative fit. We show that the effectiveness of these two pathways is strongly dependent on the realization of the energetic disorder. Supposing a mixed scheme of primary charge separation with a disorder-controlled competition of the two channels, we can explain the coexistence of fast sub-ps and slow ps components of the Phe-anion formation as revealed by different ultrafast spectroscopic techniques. PMID:17526589

  7. Evolution of the transfer function characterization of surface scatter phenomena

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    Based upon the empirical observation that BRDF measurements of smooth optical surfaces exhibited shift-invariant behavior when plotted versus    o , the original Harvey-Shack (OHS) surface scatter theory was developed as a scalar linear systems formulation in which scattered light behavior was characterized by a surface transfer function (STF) reminiscent of the optical transfer function (OTF) of modern image formation theory (1976). This shift-invariant behavior combined with the inverse power law behavior when plotting log BRDF versus log   o was quickly incorporated into several optical analysis software packages. Although there was no explicit smooth-surface approximation in the OHS theory, there was a limitation on both the incident and scattering angles. In 1988 the modified Harvey-Shack (MHS) theory removed the limitation on the angle of incidence; however, a moderate-angle scattering limitation remained. Clearly for large incident angles the BRDF was no longer shift-invariant as a different STF was now required for each incident angle. In 2011 the generalized Harvey-Shack (GHS) surface scatter theory, characterized by a two-parameter family of STFs, evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation inherent in the Rayleigh-Rice theory and/or the moderate-angle limitation of the Beckmann-Kirchhoff theory. And finally, the STF can be multiplied by the classical OTF to provide a complete linear systems formulation of image quality as degraded by diffraction, geometrical aberrations and surface scatter effects from residual optical fabrication errors.

  8. Predicting surface scatter using a linear systems formulation of non-paraxial scalar diffraction

    NASA Astrophysics Data System (ADS)

    Krywonos, Andrey

    Scattering effects from rough surfaces are non-paraxial diffraction phenomena resulting from random phase variations in the reflected wavefront. The ability to predict these effects is important in a variety of applications including x-ray and EUV imaging, the design of stray light rejection systems, and reflection modeling for rendering realistic scenes and animations of physical objects in computer graphics. Rayleigh-Rice (small perturbation method) and Beckmann-Kirchoff (Kirchhoff approximation) theories are commonly used to predict surface scatter effects. In addition, Harvey and Shack developed a linear systems formulation of surface scatter phenomena in which the scattering behavior is characterized by a surface transfer function. This treatment provided insight and understanding not readily gleaned from the two previous theories, and has been incorporated into a variety of computer software packages (ASAP, Zemax, Tracepro). However, smooth surface and paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. In this dissertation, a linear systems formulation of non-paraxial scalar diffraction theory is first developed and then applied to sinusoidal phase gratings, resulting in diffraction efficiency predictions far more accurate than those provided by classical scalar theories. The application of the theory to these gratings was motivated by the fact that rough surfaces are frequently modeled as a superposition of sinusoidal surfaces of different amplitudes, periods, and orientations. The application of the non-paraxial scalar diffraction theory to surface scatter phenomena resulted first in a modified Beckmann-Kirchhoff surface scattering model, then a generalized Harvey-Shack theory, both of which produce accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattering angles than the classical Beckmann-Kirchhoff theory. These new developments enable the analysis and simplify the understanding of wide-angle scattering behavior from rough surfaces illuminated at large incident angles. In addition, they provide an improved BRDF (Bidirectional Reflectance Distribution Function) model, particularly for the smooth surface inverse scattering problem of determining surface power spectral density (PSD) curves from BRDF measurements.

  9. Achieving high peak capacity production for gas chromatography and comprehensive two-dimensional gas chromatography by minimizing off-column peak broadening.

    PubMed

    Wilson, Ryan B; Siegler, W Christopher; Hoggard, Jamin C; Fitz, Brian D; Nadeau, Jeremy S; Synovec, Robert E

    2011-05-27

    By taking into consideration band broadening theory and using those results to select experimental conditions, and also by reducing the injection pulse width, peak capacity production (i.e., peak capacity per separation time) is substantially improved for one dimensional (1D-GC) and comprehensive two dimensional (GC×GC) gas chromatography. A theoretical framework for determining the optimal linear gas velocity (the linear gas velocity producing the minimum H), from experimental parameters provides an in-depth understanding of the potential for GC separations in the absence of extra-column band broadening. The extra-column band broadening is referred to herein as off-column band broadening since it is additional band broadening not due to the on-column separation processes. The theory provides the basis to experimentally evaluate and improve temperature programmed 1D-GC separations, but in order to do so with a commercial 1D-GC instrument platform, off-column band broadening from injection and detection needed to be significantly reduced. Specifically for injection, a resistively heated transfer line is coupled to a high-speed diaphragm valve to provide a suitable injection pulse width (referred to herein as modified injection). Additionally, flame ionization detection (FID) was modified to provide a data collection rate of 5kHz. The use of long, relatively narrow open tubular capillary columns and a 40°C/min programming rate were explored for 1D-GC, specifically a 40m, 180μm i.d. capillary column operated at or above the optimal average linear gas velocity. Injection using standard auto-injection with a 1:400 split resulted in an average peak width of ∼1.5s, hence a peak capacity production of 40peaks/min. In contrast, use of modified injection produced ∼500ms peak widths for 1D-GC, i.e., a peak capacity production of 120peaks/min (a 3-fold improvement over standard auto-injection). Implementation of modified injection resulted in retention time, peak width, peak height, and peak area average RSD%'s of 0.006, 0.8, 3.4, and 4.0%, respectively. Modified injection onto the first column of a GC×GC coupled with another high-speed valve injection onto the second column produced an instrument with high peak capacity production (500-800peaks/min), ∼5-fold to 8-fold higher than typically reported for GC×GC. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Control of the maneuvering SCOLE structure

    NASA Technical Reports Server (NTRS)

    Lim, S.; Meirovitch, L.

    1992-01-01

    This paper is concerned with the vibration control of the SCOLE structure while it undergoes a slewing maneuver. The control law is designed according to the linear quadratic regulator theory. In view of saturation limits on the actuators, the actual implementation is modified so as to observe these limits, resulting in suboptimal control. State estimation is carried out by means of a Kalman filter. The control and state estimation are carried out in discrete time. Numerical simulations for several cases of interest are presented.

  11. Fourier transform and particle swarm optimization based modified LQR algorithm for mitigation of vibrations using magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Kumar, Gaurav; Kumar, Ashok

    2017-11-01

    Structural control has gained significant attention in recent times. The standalone issue of power requirement during an earthquake has already been solved up to a large extent by designing semi-active control systems using conventional linear quadratic control theory, and many other intelligent control algorithms such as fuzzy controllers, artificial neural networks, etc. In conventional linear-quadratic regulator (LQR) theory, it is customary to note that the values of the design parameters are decided at the time of designing the controller and cannot be subsequently altered. During an earthquake event, the response of the structure may increase or decrease, depending the quasi-resonance occurring between the structure and the earthquake. In this case, it is essential to modify the value of the design parameters of the conventional LQR controller to obtain optimum control force to mitigate the vibrations due to the earthquake. A few studies have been done to sort out this issue but in all these studies it was necessary to maintain a database of the earthquake. To solve this problem and to find the optimized design parameters of the LQR controller in real time, a fast Fourier transform and particle swarm optimization based modified linear quadratic regulator method is presented here. This method comprises four different algorithms: particle swarm optimization (PSO), the fast Fourier transform (FFT), clipped control algorithm and the LQR. The FFT helps to obtain the dominant frequency for every time window. PSO finds the optimum gain matrix through the real-time update of the weighting matrix R, thereby, dispensing with the experimentation. The clipped control law is employed to match the magnetorheological (MR) damper force with the desired force given by the controller. The modified Bouc-Wen phenomenological model is taken to recognize the nonlinearities in the MR damper. The assessment of the advised method is done by simulation of a three-story structure having an MR damper at the ground floor level subjected to three different near-fault historical earthquake time histories, and the outcomes are equated with those of simple conventional LQR. The results establish that the advised methodology is more effective than conventional LQR controllers in reducing inter-storey drift, relative displacement, and acceleration response.

  12. Modified retrieval algorithm for three types of precipitation distribution using x-band synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Xie, Yanan; Zhou, Mingliang; Pan, Dengke

    2017-10-01

    The forward-scattering model is introduced to describe the response of normalized radar cross section (NRCS) of precipitation with synthetic aperture radar (SAR). Since the distribution of near-surface rainfall is related to the rate of near-surface rainfall and horizontal distribution factor, a retrieval algorithm called modified regression empirical and model-oriented statistical (M-M) based on the volterra integration theory is proposed. Compared with the model-oriented statistical and volterra integration (MOSVI) algorithm, the biggest difference is that the M-M algorithm is based on the modified regression empirical algorithm rather than the linear regression formula to retrieve the value of near-surface rainfall rate. Half of the empirical parameters are reduced in the weighted integral work and a smaller average relative error is received while the rainfall rate is less than 100 mm/h. Therefore, the algorithm proposed in this paper can obtain high-precision rainfall information.

  13. On the cosmology of scalar-tensor-vector gravity theory

    NASA Astrophysics Data System (ADS)

    Jamali, Sara; Roshan, Mahmood; Amendola, Luca

    2018-01-01

    We consider the cosmological consequences of a special scalar-tensor-vector theory of gravity, known as MOG (for MOdified Gravity), proposed to address the dark matter problem. This theory introduces two scalar fields G(x) and μ(x), and one vector field phiα(x), in addition to the metric tensor. We set the corresponding self-interaction potentials to zero, as in the standard form of MOG. Then using the phase space analysis in the flat Friedmann-Robertson-Walker background, we show that the theory possesses a viable sequence of cosmological epochs with acceptable time dependency for the cosmic scale factor. We also investigate MOG's potential as a dark energy model and show that extra fields in MOG cannot provide a late time accelerated expansion. Furthermore, using a dynamical system approach to solve the non-linear field equations numerically, we calculate the angular size of the sound horizon, i.e. θs, in MOG. We find that 8× 10‑3rad<θs<8.2× 10‑3 rad which is way outside the current observational bounds. Finally, we generalize MOG to a modified form called mMOG, and we find that mMOG passes the sound-horizon constraint. However, mMOG also cannot be considered as a dark energy model unless one adds a cosmological constant, and more importantly, the matter dominated era is still slightly different from the standard case.

  14. Self-optimizing Pitch Control for Large Scale Wind Turbine Based on ADRC

    NASA Astrophysics Data System (ADS)

    Xia, Anjun; Hu, Guoqing; Li, Zheng; Huang, Dongxiao; Wang, Fengxiang

    2018-01-01

    Since wind turbine is a complex nonlinear and strong coupling system, traditional PI control method can hardly achieve good control performance. A self-optimizing pitch control method based on the active-disturbance-rejection control theory is proposed in this paper. A linear model of the wind turbine is derived by linearizing the aerodynamic torque equation and the dynamic response of wind turbine is transformed into a first-order linear system. An expert system is designed to optimize the amplification coefficient according to the pitch rate and the speed deviation. The purpose of the proposed control method is to regulate the amplification coefficient automatically and keep the variations of pitch rate and rotor speed in proper ranges. Simulation results show that the proposed pitch control method has the ability to modify the amplification coefficient effectively, when it is not suitable, and keep the variations of pitch rate and rotor speed in proper ranges

  15. Mathematical Techniques for Nonlinear System Theory.

    DTIC Science & Technology

    1981-09-01

    This report deals with research results obtained in the following areas: (1) Finite-dimensional linear system theory by algebraic methods--linear...Infinite-dimensional linear systems--realization theory of infinite-dimensional linear systems; (3) Nonlinear system theory --basic properties of

  16. Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse-Shear Effects

    NASA Technical Reports Server (NTRS)

    McGowan, David M.

    1999-01-01

    The analytical formulation of curved-plate non-linear equilibrium equations including transverse-shear-deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Linearized, perturbed equilibrium equations (stability equations) that describe the response of the plate just after buckling occurs are derived. These equations are then modified to allow the plate reference surface to be located a distance z(sub c) from the centroidal surface. The implementation of the new theory into the VICONOPT exact buckling and vibration analysis and optimum design computer program is described. The terms of the plate stiffness matrix using both classical plate theory (CPT) and first-order shear-deformation plate theory (SDPT) are presented. The effects of in-plane transverse and in-plane shear loads are included in the in-plane stability equations. Numerical results for several example problems with different loading states are presented. Comparisons of analyses using both physical and tensorial strain measures as well as CPT and SDPT are made. The computational effort required by the new analysis is compared to that of the analysis currently in the VICONOPT program. The effects of including terms related to in-plane transverse and in-plane shear loadings in the in-plane stability equations are also examined. Finally, results of a design-optimization study of two different cylindrical shells subject to uniform axial compression are presented.

  17. Quasi-linear viscoelastic properties of the human medial patello-femoral ligament.

    PubMed

    Criscenti, G; De Maria, C; Sebastiani, E; Tei, M; Placella, G; Speziali, A; Vozzi, G; Cerulli, G

    2015-12-16

    The evaluation of viscoelastic properties of human medial patello-femoral ligament is fundamental to understand its physiological function and contribution as stabilizer for the selection of the methods of repair and reconstruction and for the development of scaffolds with adequate mechanical properties. In this work, 12 human specimens were tested to evaluate the time- and history-dependent non linear viscoelastic properties of human medial patello-femoral ligament using the quasi-linear viscoelastic (QLV) theory formulated by Fung et al. (1972) and modified by Abramowitch and Woo (2004). The five constant of the QLV theory, used to describe the instantaneous elastic response and the reduced relaxation function on stress relaxation experiments, were successfully evaluated. It was found that the constant A was 1.21±0.96MPa and the dimensionless constant B was 26.03±4.16. The magnitude of viscous response, the constant C, was 0.11±0.02 and the initial and late relaxation time constants τ1 and τ2 were 6.32±1.76s and 903.47±504.73s respectively. The total stress relaxation was 32.7±4.7%. To validate our results, the obtained constants were used to evaluate peak stresses from a cyclic stress relaxation test on three different specimens. The theoretically predicted values fit the experimental ones demonstrating that the QLV theory could be used to evaluate the viscoelastic properties of the human medial patello-femoral ligament. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Heating and Acceleration of Charged Particles by Weakly Compressible Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Lynn, Jacob William

    We investigate the interaction between low-frequency magnetohydrodynamic (MHD) turbulence and a distribution of charged particles. Understanding this physics is central to understanding the heating of the solar wind, as well as the heating and acceleration of other collisionless plasmas. Our central method is to simulate weakly compressible MHD turbulence using the Athena code, along with a distribution of test particles which feel the electromagnetic fields of the turbulence. We also construct analytic models of transit-time damping (TTD), which results from the mirror force caused by compressible (fast or slow) MHD waves. Standard linear-theory models in the literature require an exact resonance between particle and wave velocities to accelerate particles. The models developed in this thesis go beyond standard linear theory to account for the fact that wave-particle interactions decorrelate over a short time, which allows particles with velocities off resonance to undergo acceleration and velocity diffusion. We use the test particle simulation results to calibrate and distinguish between different models for this velocity diffusion. Test particle heating is larger than the linear theory prediction, due to continued acceleration of particles with velocities off-resonance. We also include an artificial pitch-angle scattering to the test particle motion, representing the effect of high-frequency waves or velocity-space instabilities. For low scattering rates, we find that the scattering enforces isotropy and enhances heating by a modest factor. For much higher scattering rates, the acceleration is instead due to a non-resonant effect, as particles "frozen" into the fluid adiabatically gain and lose energy as eddies expand and contract. Lastly, we generalize our calculations to allow for relativistic test particles. Linear theory predicts that relativistic particles with velocities much higher than the speed of waves comprising the turbulence would undergo no acceleration; resonance-broadening modifies this conclusion and allows for a continued Fermi-like acceleration process. This may affect the observed spectra of black hole accretion disks by accelerating relativistic particles into a quasi-powerlaw tail.

  19. GW electronic Correlations in Quantum Transport : Renormalization and finite lifetime effects on real systems

    NASA Astrophysics Data System (ADS)

    Darancet, Pierre; Ferretti, Andrea; Mayou, Didier; Olevano, Valerio

    2007-03-01

    We present an ab initio approach to electronic transport in nanoscale systems which includes electronic correlations through the GW approximation. With respect to Landauer approaches based on density-functional theory (DFT), we introduce a physical quasiparticle electronic-structure into a non-equilibrium Green's function theory framework. We use an equilibrium non-selfconsistent G^0W^0 self-energy considering both full non-hermiticity and dynamical effects. The method is applied to a real system, a gold mono-atomic chain. With respect to DFT results, the conductance profile is modified and reduced by to the introduction of diffusion and loss-of-coherence effects. The linear response conductance characteristic appear to be in agreement with experimental results.

  20. The two-dimensional kinetic ballooning theory for ion temperature gradient mode in tokamak

    NASA Astrophysics Data System (ADS)

    Xie, T.; Zhang, Y. Z.; Mahajan, S. M.; Hu, S. L.; He, Hongda; Liu, Z. Y.

    2017-10-01

    The two-dimensional (2D) kinetic ballooning theory is developed for the ion temperature gradient mode in an up-down symmetric equilibrium (illustrated via concentric circular magnetic surfaces). The ballooning transform converts the basic 2D linear gyro-kinetic equation into two equations: (1) the lowest order equation (ballooning equation) is an integral equation essentially the same as that reported by Dong et al., [Phys. Fluids B 4, 1867 (1992)] but has an undetermined Floquet phase variable, (2) the higher order equation for the rapid phase envelope is an ordinary differential equation in the same form as the 2D ballooning theory in a fluid model [Xie et al., Phys. Plasmas 23, 042514 (2016)]. The system is numerically solved by an iterative approach to obtain the (phase independent) eigen-value. The new results are compared to the two earlier theories. We find a strongly modified up-down asymmetric mode structure, and non-trivial modifications to the eigen-value.

  1. Dynamic modeling of porous heterogeneous micro/nanobeams

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Jafari, Ali; Reza Barati, Mohammad

    2017-12-01

    In the present paper, the thermo-mechanical vibration characteristics of a functionally graded (FG) porous microbeam subjected to various types of thermal loadings are investigated based on modified couple stress theory and exact position of neutral axis. The FG micro/nanobeam is modeled via a refined hyperbolic beam theory in which the shear deformation effect is verified without the shear correction factor. A modified power-law distribution which contains porosity volume fraction is used to describe the graded material properties of the FG micro/nanobeam. The temperature field has uniform, linear and nonlinear distributions across the thickness. The governing equations and the related boundary conditions are derived by Hamilton's principle and they are solved applying an analytical solution which satisfies various boundary conditions. A comparison study is performed to verify the present formulation with the known data in the literature and a good agreement is observed. The parametric study covered in this paper includes several parameters, such as thermal loadings, porosity volume fraction, power-law exponents, slenderness ratio, scale parameter and various boundary conditions on natural frequencies of porous FG micro/nanobeams in detail.

  2. Protein Polymerization into Fibrils from the Viewpoint of Nucleation Theory.

    PubMed

    Kashchiev, Dimo

    2015-11-17

    The assembly of various proteins into fibrillar aggregates is an important phenomenon with wide implications ranging from human disease to nanoscience. Using general kinetic results of nucleation theory, we analyze the polymerization of protein into linear or helical fibrils in the framework of the Oosawa-Kasai (OK) model. We show that while within the original OK model of linear polymerization the process does not involve nucleation, within a modified OK model it is nucleation-mediated. Expressions are derived for the size of the fibril nucleus, the work for fibril formation, the nucleation barrier, the equilibrium and stationary fibril size distributions, and the stationary fibril nucleation rate. Under otherwise equal conditions, this rate decreases considerably when the short (subnucleus) fibrils lose monomers much more frequently than the long (supernucleus) fibrils, a feature that should be born in mind when designing a strategy for stymying or stimulating fibril nucleation. The obtained dependence of the nucleation rate on the concentration of monomeric protein is convenient for experimental verification and for use in rate equations accounting for nucleation-mediated fibril formation. The analysis and the results obtained for linear fibrils are fully applicable to helical fibrils whose formation is describable by a simplified OK model. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. de Sitter limit analysis for dark energy and modified gravity models

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Frusciante, Noemi; Papadomanolakis, Georgios

    2017-07-01

    The effective field theory of dark energy and modified gravity is supposed to well describe, at low energies, the behavior of the gravity modifications due to one extra scalar degree of freedom. The usual curvature perturbation is very useful when studying the conditions for the avoidance of ghost instabilities as well as the positivity of the squared speeds of propagation for both the scalar and tensor modes, or the Stückelberg field performs perfectly when investigating the evolution of linear perturbations. We show that the viable parameter space identified by requiring no-ghost instabilities and positive squared speeds of propagation does not change by performing a field redefinition, while the requirement of the avoidance of tachyonic instability might instead be different. Therefore, we find it interesting to associate to the general modified gravity theory described in the effective field theory framework, a perturbation field which will inherit all of the properties of the theory. In the present paper we address the following questions: (1) how can we define such a field? and (2) what is the mass of such a field as the background approaches a final de Sitter state? We define a gauge-invariant quantity which identifies the density of the dark energy perturbation field valid for any background. We derive the mass associated to the gauge-invariant dark energy field on a de Sitter background, which we retain to be still a good approximation also at very low redshift (z ≃0 ). On this background we also investigate the value of the speed of propagation and we find that there exist classes of theories which admit a nonvanishing speed of propagation, even in the Horndeski model, for which a zero speed of sound has previously been found in the literature. We finally apply our results to specific well-known models.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnov, Kirill; Shtanov, Yuri, E-mail: kirill.krasnov@nottingham.ac.uk, E-mail: shtanov@bitp.kiev.ua

    We study linear cosmological perturbations in a previously introduced family of deformations of general relativity characterized by the absence of new degrees of freedom. The homogeneous and isotropic background in this class of theories is unmodified and is described by the usual Friedmann equations. The theory of cosmological perturbations is modified and the relevant deformation parameter has the dimension of length. Gravitational perturbations of the scalar type can be described by a certain relativistic potential related to the matter perturbations just as in general relativity. A system of differential equations describing the evolution of this potential and of the stress-energymore » density perturbations is obtained. We find that the evolution of scalar perturbations proceeds with a modified effective time-dependent speed of sound, which, contrary to the case of general relativity, does not vanish even at the matter-dominated stage. In a broad range of values of the length parameter controlling the deformation, a specific transition from the regime of modified gravity to the regime of general relativity in the evolution of scalar perturbations takes place during the radiation domination. In this case, the resulting power spectrum of perturbations in radiation and dark matter is suppressed on the comoving spatial scales that enter the Hubble radius before this transition. We estimate the bounds on the deformation parameter for which this suppression does not lead to observable consequences. Evolution of scalar perturbations at the inflationary stage is modified but very slightly and the primordial spectrum generated during inflation is not noticeably different from the one obtained in general relativity.« less

  5. A closed form slug test theory for high permeability aquifers.

    PubMed

    Ostendorf, David W; DeGroot, Don J; Dunaj, Philip J; Jakubowski, Joseph

    2005-01-01

    We incorporate a linear estimate of casing friction into the analytical slug test theory of Springer and Gelhar (1991) for high permeability aquifers. The modified theory elucidates the influence of inertia and casing friction on consistent, closed form equations for the free surface, pressure, and velocity fluctuations for overdamped and underdamped conditions. A consistent, but small, correction for kinetic energy is included as well. A characteristic velocity linearizes the turbulent casing shear stress so that an analytical solution for attenuated, phase shifted pressure fluctuations fits a single parameter (damping frequency) to transducer data from any depth in the casing. Underdamped slug tests of 0.3, 0.6, and 1 m amplitudes at five transducer depths in a 5.1 cm diameter PVC well 21 m deep in the Plymouth-Carver Aquifer yield a consistent hydraulic conductivity of 1.5 x 10(-3) m/s. The Springer and Gelhar (1991) model underestimates the hydraulic conductivity for these tests by as much as 25% by improperly ascribing smooth turbulent casing friction to the aquifer. The match point normalization of Butler (1998) agrees with our fitted hydraulic conductivity, however, when friction is included in the damping frequency. Zurbuchen et al. (2002) use a numerical model to establish a similar sensitivity of hydraulic conductivity to nonlinear casing friction.

  6. NL(q) Theory: A Neural Control Framework with Global Asymptotic Stability Criteria.

    PubMed

    Vandewalle, Joos; De Moor, Bart L.R.; Suykens, Johan A.K.

    1997-06-01

    In this paper a framework for model-based neural control design is presented, consisting of nonlinear state space models and controllers, parametrized by multilayer feedforward neural networks. The models and closed-loop systems are transformed into so-called NL(q) system form. NL(q) systems represent a large class of nonlinear dynamical systems consisting of q layers with alternating linear and static nonlinear operators that satisfy a sector condition. For such NL(q)s sufficient conditions for global asymptotic stability, input/output stability (dissipativity with finite L(2)-gain) and robust stability and performance are presented. The stability criteria are expressed as linear matrix inequalities. In the analysis problem it is shown how stability of a given controller can be checked. In the synthesis problem two methods for neural control design are discussed. In the first method Narendra's dynamic backpropagation for tracking on a set of specific reference inputs is modified with an NL(q) stability constraint in order to ensure, e.g., closed-loop stability. In a second method control design is done without tracking on specific reference inputs, but based on the input/output stability criteria itself, within a standard plant framework as this is done, for example, in H( infinity ) control theory and &mgr; theory. Copyright 1997 Elsevier Science Ltd.

  7. Constraints on modified gravity models from white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Srimanta; Singh, Tejinder P.; Shankar, Swapnil, E-mail: srimanta.banerjee@tifr.res.in, E-mail: swapnil.shankar@cbs.ac.in, E-mail: tpsingh@tifr.res.in

    Modified gravity theories can introduce modifications to the Poisson equation in the Newtonian limit. As a result, we expect to see interesting features of these modifications inside stellar objects. White dwarf stars are one of the most well studied stars in stellar astrophysics. We explore the effect of modified gravity theories inside white dwarfs. We derive the modified stellar structure equations and solve them to study the mass-radius relationships for various modified gravity theories. We also constrain the parameter space of these theories from observations.

  8. Validation of a computer code for analysis of subsonic aerodynamic performance of wings with flaps in combination with a canard or horizontal tail and an application to optimization

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.; Mann, Michael J.

    1990-01-01

    Extensive correlations of computer code results with experimental data are employed to illustrate the use of a linearized theory, attached flow method for the estimation and optimization of the longitudinal aerodynamic performance of wing-canard and wing-horizontal tail configurations which may employ simple hinged flap systems. Use of an attached flow method is based on the premise that high levels of aerodynamic efficiency require a flow that is as nearly attached as circumstances permit. The results indicate that linearized theory, attached flow, computer code methods (modified to include estimated attainable leading-edge thrust and an approximate representation of vortex forces) provide a rational basis for the estimation and optimization of aerodynamic performance at subsonic speeds below the drag rise Mach number. Generally, good prediction of aerodynamic performance, as measured by the suction parameter, can be expected for near optimum combinations of canard or horizontal tail incidence and leading- and trailing-edge flap deflections at a given lift coefficient (conditions which tend to produce a predominantly attached flow).

  9. Should the SCOPA-COG be modified? A Rasch analysis perspective.

    PubMed

    Forjaz, M J; Frades-Payo, B; Rodriguez-Blazquez, C; Ayala, A; Martinez-Martin, P

    2010-02-01

    The SCales for Outcomes in PArkinson's disease-Cognition (SCOPA-COG) is a specific measure of cognitive function for Parkinson's disease (PD) patients. Previous studies, under the frame of the classic test theory, indicate satisfactory psychometric properties. The Rasch model, an item response theory approach, provides new information about the scale, as well as results in a linear scale. This study aims at analysing the SCOPA-COG according to the Rasch model and, on the basis of results, suggesting modification to the SCOPA-COG. Fit to the Rasch model was analysed using a sample of 384 PD patients. A good fit was obtained after rescoring for disordered thresholds. The person separation index, a reliability measure, was 0.83. Differential item functioning was observed by age for three items and by gender for one item. The SCOPA-COG is a unidimensional measure of global cognitive function in PD patients, with good scale targeting and no empirical evidence for use of the subscale scores. Its adequate reliability and internal construct validity were supported. The SCOPA-COG, with the proposed scoring scheme, generates true linear interval scores.

  10. Integrated control-system design via generalized LQG (GLQG) theory

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S.; Hyland, David C.; Richter, Stephen; Haddad, Wassim M.

    1989-01-01

    Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations.

  11. Generation and Computerized Simulation of Meshing and Contact of Modified Involute Helical Gears

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Chen, Ningxin; Lu, Jian

    1995-01-01

    The design and generation of modified involute helical gears that have a localized and stable bearing contact, and reduced noise and vibration characteristics are described. The localization of the bearing contact is achieved by the mismatch of the two generating surfaces that are used for generation of the pinion and the gear. The reduction of noise and vibration will be achieved by application of a parabolic function of transmission errors that is able to absorb the almost linear function of transmission errors caused by gear misalignment. The meshing and contact of misaligned gear drives can be analyzed by application of computer programs that have been developed. The computations confirmed the effectiveness of the proposed modification of the gear geometry. A numerical example that illustrates the developed theory is provided.

  12. Theoretical proposal for determining angular momentum compensation in ferrimagnets

    NASA Astrophysics Data System (ADS)

    Zhu, Zhifeng; Fong, Xuanyao; Liang, Gengchiau

    2018-05-01

    This work demonstrates that the magnetization and angular momentum compensation temperatures (TMC and TAMC) in ferrimagnets can be unambiguously determined by performing two sets of temperature-dependent current switching, with the symmetry reversals at TMC and TAMC, respectively. A theoretical model based on the modified Landau-Lifshitz-Bloch equation is developed to systematically study the spin torque effect under different temperatures, and numerical simulations are performed to corroborate our proposal. Furthermore, we demonstrate that the recently reported linear relation between TAMC and TMC can be explained using the Curie-Weiss theory.

  13. Jeans instability of magnetized quantum plasma: Effect of viscosity, rotation and finite Larmor radius corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Shweta, E-mail: jshweta09@gmail.com; Sharma, Prerana; Chhajlani, R. K.

    2015-07-31

    The Jeans instability of self-gravitating quantum plasma is examined considering the effects of viscosity, finite Larmor radius (FLR) corrections and rotation. The analysis is done by normal mode analysis theory with the help of relevant linearized perturbation equations of the problem. The general dispersion relation is obtained using the quantum magneto hydrodynamic model. The modified condition of Jeans instability is obtained and the numerical calculations have been performed to show the effects of various parameters on the growth rate of Jeans instability.

  14. An analysis for the sound field produced by rigid wide cord dual rotation propellers of high solidarity in compressible flow

    NASA Technical Reports Server (NTRS)

    Ramachandra, S. M.; Bober, L. J.

    1986-01-01

    An unsteady lifting service theory for the counter-rotating propeller is presented using the linearized governing equations for the acceleration potential and representing the blades by a surface distribution of pulsating acoustic dipoles distributed according to a modified Birnbaum series. The Birnbaum series coefficients are determined by satisfying the surface tangency boundary conditions on the front and rear propeller blades. Expressions for the combined acoustic resonance modes of the front prop, the rear prop and the combination are also given.

  15. Large-scale structure in brane-induced gravity. I. Perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoccimarro, Roman

    2009-11-15

    We study the growth of subhorizon perturbations in brane-induced gravity using perturbation theory. We solve for the linear evolution of perturbations taking advantage of the symmetry under gauge transformations along the extra-dimension to decouple the bulk equations in the quasistatic approximation, which we argue may be a better approximation at large scales than thought before. We then study the nonlinearities in the bulk and brane equations, concentrating on the workings of the Vainshtein mechanism by which the theory becomes general relativity (GR) at small scales. We show that at the level of the power spectrum, to a good approximation, themore » effect of nonlinearities in the modified gravity sector may be absorbed into a renormalization of the gravitational constant. Since the relation between the lensing potential and density perturbations is entirely unaffected by the extra physics in these theories, the modified gravity can be described in this approximation by a single function, an effective gravitational constant for nonrelativistic motion that depends on space and time. We develop a resummation scheme to calculate it, and provide predictions for the nonlinear power spectrum. At the level of the large-scale bispectrum, the leading order corrections are obtained by standard perturbation theory techniques, and show that the suppression of the brane-bending mode leads to characteristic signatures in the non-Gaussianity generated by gravity, generic to models that become GR at small scales through second-derivative interactions. We compare the predictions in this work to numerical simulations in a companion paper.« less

  16. Note on the initial conditions within the effective field theory approach of cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Wen; Hu, Bin; Zhang, Yi

    2017-12-01

    By using the effective field theory approach, we investigate the role of initial conditions for the dark energy or modified gravity models. In detail, we consider the constant and linear parametrization of the effective Newton constant models. First, under the adiabatic assumption, the correction from the extra scalar degree of freedom in the beyond Λ CDM model is found to be negligible. The dominant ingredient in this setup is the primordial curvature perturbation originated from the inflation mechanism, and the energy budget of the matter components is not very crucial. Second, the isocurvature perturbation sourced by the extra scalar field is studied. For the constant and linear models of the effective Newton constant, no such kind of scalar mode exists. For the quadratic model, there is a nontrivial one. However, the amplitude of the scalar field is damped away very fast on all scales. Consequently, it could not support a reasonable structure formation. Finally, we study the importance of the setup of the scalar field starting time. By setting different turn-on times, namely, a =10-2 and a =10-7, we compare the cosmic microwave background radiation temperature, lensing deflection angle autocorrelation function, and the matter power spectrum in the constant and linear models. We find there is an order of O (1 %) difference in the observable spectra for constant model, while for the linear model, it is smaller than O (0.1 %).

  17. Linear stability theory and three-dimensional boundary layer transition

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Malik, Mujeeb R.

    1992-01-01

    The viewgraphs and discussion of linear stability theory and three dimensional boundary layer transition are provided. The ability to predict, using analytical tools, the location of boundary layer transition over aircraft-type configurations is of great importance to designers interested in laminar flow control (LFC). The e(sup N) method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of transition for simple geometries in low disturbance environments. This method provides a correlation between the most amplified single normal mode and the experimental location of the onset of transition. Studies indicate that values of N between 8 and 10 correlate well with the onset of transition. For most previous calculations, the mean flows were restricted to two-dimensional or axisymmetric cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow fields is required. Results obtained for the linear stability of fully three-dimensional boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed flows are discussed. When possible, transition estimates form the e(sup N) method are compared to experimentally determined locations. The stability calculations are made using a modified version of the linear stability code COSAL. Mean flows were computed using both Navier Stokes and boundary-layer codes.

  18. Graph theory applied to noise and vibration control in statistical energy analysis models.

    PubMed

    Guasch, Oriol; Cortés, Lluís

    2009-06-01

    A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettoni, Dario; Liberati, Stefano, E-mail: dario@physics.technion.ac.il, E-mail: liberati@sissa.it

    We present a general formulation of the theory for a non-minimally coupled perfect fluid in which both conformal and disformal couplings are present. We discuss how such non-minimal coupling is compatible with the assumptions of a perfect fluid and derive both the Einstein and the fluid equations for such model. We found that, while the Euler equation is significantly modified with the introduction of an extra force related to the local gradients of the curvature, the continuity equation is unaltered, thus allowing for the definition of conserved quantities along the fluid flow. As an application to cosmology and astrophysics wemore » compute the effects of the non-minimal coupling on a Friedmann-Lemaȋtre-Robertson-Walker metric at both background and linear perturbation level and on the Newtonian limit of our theory.« less

  20. Vainshtein screening in scalar-tensor theories before and after GW170817: Constraints on theories beyond Horndeski

    NASA Astrophysics Data System (ADS)

    Dima, Alexandru; Vernizzi, Filippo

    2018-05-01

    Screening mechanisms are essential features of dark energy models mediating a fifth force on large scales. We study the regime of strong scalar field nonlinearities, known as Vainshtein screening, in the most general scalar-tensor theories propagating a single scalar degree of freedom. We first develop an effective approach to parametrize cosmological perturbations beyond linear order for these theories. In the quasistatic limit, the fully nonlinear effective Lagrangian contains six independent terms, one of which starts at cubic order in perturbations. We compute the two gravitational potentials around a spherical body. Outside and near the body, screening reproduces standard gravity, with a modified gravitational coupling. Inside the body, the two potentials are different and depend on the density profile, signalling the breaking of the Vainshtein screening. We provide the most general expressions for these modifications, revising and extending previous results. We apply our findings to show that the combination of the GW170817 event, the Hulse-Taylor pulsar and stellar structure physics, constrain the parameters of these general theories at the level of 10-1, and of Gleyzes-Langlois-Piazza-Vernizzi theories at the level of 10-2.

  1. Feedback-induced phase transitions in active heterogeneous conductors.

    PubMed

    Ocko, Samuel A; Mahadevan, L

    2015-04-03

    An active conducting medium is one where the resistance (conductance) of the medium is modified by the current (flow) and in turn modifies the flow, so that the classical linear laws relating current and resistance, e.g., Ohm's law or Darcy's law, are modified over time as the system itself evolves. We consider a minimal model for this feedback coupling in terms of two parameters that characterize the way in which addition or removal of matter follows a simple local (or nonlocal) feedback rule corresponding to either flow-seeking or flow-avoiding behavior. Using numerical simulations and a continuum mean field theory, we show that flow-avoiding feedback causes an initially uniform system to become strongly heterogeneous via a tunneling (channel-building) phase separation; flow-seeking feedback leads to an immuring (wall-building) phase separation. Our results provide a qualitative explanation for the patterning of active conducting media in natural systems, while suggesting ways to realize complex architectures using simple rules in engineered systems.

  2. Unit Reynolds number, Mach number and pressure gradient effects on laminar-turbulent transition in two-dimensional boundary layers

    NASA Astrophysics Data System (ADS)

    Risius, Steffen; Costantini, Marco; Koch, Stefan; Hein, Stefan; Klein, Christian

    2018-05-01

    The influence of unit Reynolds number (Re_1=17.5× 106-80× 106 {m}^{-1}), Mach number (M= 0.35-0.77) and incompressible shape factor (H_{12} = 2.50-2.66) on laminar-turbulent boundary layer transition was systematically investigated in the Cryogenic Ludwieg-Tube Göttingen (DNW-KRG). For this investigation the existing two-dimensional wind tunnel model, PaLASTra, which offers a quasi-uniform streamwise pressure gradient, was modified to reduce the size of the flow separation region at its trailing edge. The streamwise temperature distribution and the location of laminar-turbulent transition were measured by means of temperature-sensitive paint (TSP) with a higher accuracy than attained in earlier measurements. It was found that for the modified PaLASTra model the transition Reynolds number (Re_{ {tr}}) exhibits a linear dependence on the pressure gradient, characterized by H_{12}. Due to this linear relation it was possible to quantify the so-called `unit Reynolds number effect', which is an increase of Re_{ {tr}} with Re_1. By a systematic variation of M, Re_1 and H_{12} in combination with a spectral analysis of freestream disturbances, a stabilizing effect of compressibility on boundary layer transition, as predicted by linear stability theory, was detected (`Mach number effect'). Furthermore, two expressions were derived which can be used to calculate the transition Reynolds number as a function of the amplitude of total pressure fluctuations, Re_1 and H_{12}. To determine critical N-factors, the measured transition locations were correlated with amplification rates, calculated by incompressible and compressible linear stability theory. By taking into account the spectral level of total pressure fluctuations at the frequency of the most amplified Tollmien-Schlichting wave at transition location, the scatter in the determined critical N-factors was reduced. Furthermore, the receptivity coefficients dependence on incidence angle of acoustic waves was used to correct the determined critical N-factors. Thereby, a found dependency of the determined critical N-factors on H_{12} decreased, leading to an average critical N-factor of about 9.5 with a standard deviation of σ ≈ 0.8.

  3. Combined linear theory/impact theory method for analysis and design of high speed configurations

    NASA Technical Reports Server (NTRS)

    Brooke, D.; Vondrasek, D. V.

    1980-01-01

    Pressure distributions on a wing body at Mach 4.63 are calculated. The combined theory is shown to give improved predictions over either linear theory or impact theory alone. The combined theory is also applied in the inverse design mode to calculate optimum camber slopes at Mach 4.63. Comparisons with optimum camber slopes obtained from unmodified linear theory show large differences. Analysis of the results indicate that the combined theory correctly predicts the effect of thickness on the loading distributions at high Mach numbers, and that finite thickness wings optimized at high Mach numbers using unmodified linear theory will not achieve the minimum drag characteristics for which they are designed.

  4. Modified Linear Theory Aircraft Design Tools and Sonic Boom Minimization Strategy Applied to Signature Freezing via F-function Lobe Balancing

    NASA Astrophysics Data System (ADS)

    Jung, Timothy Paul

    Commercial supersonic travel has strong business potential; however, in order for the Federal Aviation Administration to lift its ban on supersonic flight overland, designers must reduce aircraft sonic boom strength to an acceptable level. An efficient methodology and associated tools for designing aircraft for minimized sonic booms are presented. The computer-based preliminary design tool, RapidF, based on modified linear theory, enables quick assessment of an aircraft's sonic boom with run times less than 30 seconds on a desktop computer. A unique feature of RapidF is that it tracks where on the aircraft each segment of the of the sonic boom came from, enabling precise modifications, speeding the design process. Sonic booms from RapidF are compared to flight test data, showing that it is capability of predicting a sonic boom duration, overpressure, and interior shock locations. After the preliminary design is complete, scaled flight tests should be conducted to validate the low boom design. When conducting such tests, it is insufficient to just scale the length; thus, equations to scale the weight and propagation distance are derived. Using RapidF, a conceptual supersonic business jet design is presented that uses F-function lobe balancing to create a frozen sonic boom using lifting surfaces. The leading shock is reduced from 1.4 to 0.83 psf, and the trailing shock from 1.2 to 0.87 psf, 41% and 28% reductions respectfully. By changing the incidence angle of the surfaces, different sonic boom shapes can be created, and allowing the lobes to be re-balanced for new flight conditions. Computational fluid dynamics is conducted to validate the sonic boom predictions. Off-design analysis is presented that varies weight, altitude, Mach number, and propagation angle, demonstrating that lobe-balance is robust. Finally, the Perceived Level of Loudness metric is analyzed, resulting in a modified design that incorporates other boom minimization techniques to further reduce the sonic boom.

  5. Identifiability Results for Several Classes of Linear Compartment Models.

    PubMed

    Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa

    2015-08-01

    Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology.

  6. Numerical solution methods for viscoelastic orthotropic materials

    NASA Technical Reports Server (NTRS)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1988-01-01

    Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.

  7. Beyond δ: Tailoring marked statistics to reveal modified gravity

    NASA Astrophysics Data System (ADS)

    Valogiannis, Georgios; Bean, Rachel

    2018-01-01

    Models which attempt to explain the accelerated expansion of the universe through large-scale modifications to General Relativity (GR), must satisfy the stringent experimental constraints of GR in the solar system. Viable candidates invoke a “screening” mechanism, that dynamically suppresses deviations in high density environments, making their overall detection challenging even for ambitious future large-scale structure surveys. We present methods to efficiently simulate the non-linear properties of such theories, and consider how a series of statistics that reweight the density field to accentuate deviations from GR can be applied to enhance the overall signal-to-noise ratio in differentiating the models from GR. Our results demonstrate that the cosmic density field can yield additional, invaluable cosmological information, beyond the simple density power spectrum, that will enable surveys to more confidently discriminate between modified gravity models and ΛCDM.

  8. Density functional theory calculations of III-N based semiconductors with mBJLDA

    NASA Astrophysics Data System (ADS)

    Gürel, Hikmet Hakan; Akıncı, Özden; Ünlü, Hilmi

    2017-02-01

    In this work, we present first principles calculations based on a full potential linear augmented plane-wave method (FP-LAPW) to calculate structural and electronic properties of III-V based nitrides such as GaN, AlN, InN in a zinc-blende cubic structure. First principles calculation using the local density approximation (LDA) and generalized gradient approximation (GGA) underestimate the band gap. We proposed a new potential called modified Becke-Johnson local density approximation (MBJLDA) that combines modified Becke-Johnson exchange potential and the LDA correlation potential to get better band gap results compared to experiment. We compared various exchange-correlation potentials (LSDA, GGA, HSE, and MBJLDA) to determine band gaps and structural properties of semiconductors. We show that using MBJLDA density potential gives a better agreement with experimental data for band gaps III-V nitrides based semiconductors.

  9. Modelling low-frequency volcanic earthquakes in a viscoelastic medium with topography

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Neuberg, Jürgen; Jolly, Arthur

    2004-11-01

    Magma properties are fundamental to explain the volcanic eruption style as well as the generation and propagation of seismic waves. This study focusses on magma properties and rheology and their impact on low-frequency volcanic earthquakes. We investigate the effects of anelasticity and topography on the amplitudes and spectra of synthetic low-frequency earthquakes. Using a 2-D finite-difference scheme, we model the propagation of seismic energy initiated in a fluid-filled conduit embedded in a homogeneous viscoelastic medium with topography. We model intrinsic attenuation by linear viscoelastic theory and we show that volcanic media can be approximated by a standard linear solid (SLS) for seismic frequencies above 2 Hz. Results demonstrate that attenuation modifies both amplitudes and dispersive characteristics of low-frequency earthquakes. Low frequency volcanic earthquakes are dispersive by nature; however, if attenuation is introduced, their dispersion characteristics will be altered. The topography modifies the amplitudes, depending on the position of the seismographs at the surface. This study shows that we need to take into account attenuation and topography to interpret correctly observed low-frequency volcanic earthquakes. It also suggests that the rheological properties of magmas may be constrained by the analysis of low-frequency seismograms.

  10. A quasi-linear analysis of the impurity effect on turbulent momentum transport and residual stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, S. H., E-mail: shko@nfri.re.kr; Jhang, Hogun; Singh, R.

    2015-08-15

    We study the impact of impurities on turbulence driven intrinsic rotation (via residual stress) in the context of the quasi-linear theory. A two-fluid formulation for main and impurity ions is employed to study ion temperature gradient modes in sheared slab geometry modified by the presence of impurities. An effective form of the parallel Reynolds stress is derived in the center of mass frame of a coupled main ion-impurity system. Analyses show that the contents and the radial profile of impurities have a strong influence on the residual stress. In particular, an impurity profile aligned with that of main ions ismore » shown to cause a considerable reduction of the residual stress, which may lead to the reduction of turbulence driven intrinsic rotation.« less

  11. Disformal theories of gravity: from the solar system to cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakstein, Jeremy, E-mail: j.a.sakstein@damtp.cam.ac.uk

    This paper is concerned with theories of gravity that contain a scalar coupled both conformally and disformally to matter through the metric. By systematically deriving the non-relativistic limit, it is shown that no new non-linear screening mechanisms are present beyond the Vainshtein mechanism and chameleon-like screening. If one includes the cosmological expansion of the universe, disformal effects that are usually taken to be absent can be present in the solar system. When the conformal factor is absent, fifth-forces can be screened on all scales when the cosmological field is slowly-rolling. We investigate the cosmology of these models and use localmore » tests of gravity to place new constraints on the disformal coupling and find M ∼> O(eV), which is not competitive with laboratory tests. Finally, we discuss the future prospects for testing these theories and the implications for other theories of modified gravity. In particular, the Vainshtein radius of solar system objects can be altered from the static prediction when cosmological time-derivatives are non-negligible.« less

  12. Constraints on scalar-tensor theories of gravity from observations

    NASA Astrophysics Data System (ADS)

    Lee, Seokcheon

    2011-03-01

    In spite of their original discrepancy, both dark energy and modified theory of gravity can be parameterized by the effective equation of state (EOS) ω for the expansion history of the Universe. A useful model independent approach to the EOS of them can be given by so-called Chevallier-Polarski-Linder (CPL) parametrization where two parameters of it (ω0 and ωa) can be constrained by the geometrical observations which suffer from degeneracies between models. The linear growth of large scale structure is usually used to remove these degeneracies. This growth can be described by the growth index parameter γ and it can be parameterized by γ0+γa(1-a) in general. We use the scalar-tensor theories of gravity (STG) and show that the discernment between models is possible only when γa is not negligible. We show that the linear density perturbation of the matter component as a function of redshift severely constrains the viable subclasses of STG in terms of ω and γ. From this method, we can rule out or prove the viable STG in future observations. When we use Z(phi) = 1, F shows the convex shape of evolution in a viable STG model. The viable STG models with Z(phi) = 1 are not distinguishable from dark energy models when we strongly limit the solar system constraint.

  13. Hierarchies of Manakov-Santini Type by Means of Rota-Baxter and Other Identities

    NASA Astrophysics Data System (ADS)

    Szablikowski, Błażej

    2016-02-01

    The Lax-Sato approach to the hierarchies of Manakov-Santini type is formalized in order to extend it to a more general class of integrable systems. For this purpose some linear operators are introduced, which must satisfy some integrability conditions, one of them is the Rota-Baxter identity. The theory is illustrated by means of the algebra of Laurent series, the related hierarchies are classified and examples, also new, of Manakov-Santini type systems are constructed, including those that are related to the dispersionless modified Kadomtsev-Petviashvili equation and so called dispersionless r-th systems.

  14. LQR Control of Shell Vibrations Via Piezoceramic Actuators

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1997-01-01

    A model-based Linear Quadratic Regulator (LQR) method for controlling vibrations in cylindrical shells is presented. Surface-mounted piezo-ceramic patches are employed as actuators which leads to unbounded control input operators. Modified Donnell-Mushtari shell equations incorporating strong or Kelvin-Voigt damping are used to model the system. The model is then abstractly formulated in terms of sesquilinear forms. This provides a framework amenable for proving model well-posedness and convergence of LQR gains using analytic semigroup results combined with LQR theory for unbounded input operators. Finally, numerical examples demonstrating the effectiveness of the method are presented.

  15. Study on Determination Method of Fatigue Testing Load for Wind Turbine Blade

    NASA Astrophysics Data System (ADS)

    Liao, Gaohua; Wu, Jianzhong

    2017-07-01

    In this paper, the load calculation method of the fatigue test was studied for the wind turbine blade under uniaxial loading. The characteristics of wind load and blade equivalent load were analyzed. The fatigue property and damage theory of blade material were studied. The fatigue load for 2MW blade was calculated by Bladed, and the stress calculated by ANSYS. Goodman modified exponential function S-N curve and linear cumulative damage rule were used to calculate the fatigue load of wind turbine blades. It lays the foundation for the design and experiment of wind turbine blade fatigue loading system.

  16. Characterization of the dynamic behaviour of flax fibre reinforced composites using vibration measurements

    NASA Astrophysics Data System (ADS)

    El-Hafidi, Ali; Birame Gning, Papa; Piezel, Benoit; Fontaine, Stéphane

    2017-10-01

    Experimental and numerical methods to identify the linear viscoelastic properties of flax fibre reinforced epoxy (FFRE) composite are presented in this study. The method relies on the evolution of storage modulus and loss factor as observed through the frequency response. Free-free symmetrically guided beams were excited on the dynamic range of 10 Hz to 4 kHz with a swept sine excitation focused around their first modes. A fractional derivative Zener model has been identified to predict the complex moduli. A modified ply constitutive law has been then implemented in a classical laminates theory calculation (CLT) routine.

  17. Creep and creep rupture of laminated graphite/epoxy composites. Ph.D. Thesis. Final Report, 1 Oct. 1979 - 30 Sep. 1980

    NASA Technical Reports Server (NTRS)

    Dillard, D. A.; Morris, D. H.; Brinson, H. F.

    1981-01-01

    An incremental numerical procedure based on lamination theory is developed to predict creep and creep rupture of general laminates. Existing unidirectional creep compliance and delayed failure data is used to develop analytical models for lamina response. The compliance model is based on a procedure proposed by Findley which incorporates the power law for creep into a nonlinear constitutive relationship. The matrix octahedral shear stress is assumed to control the stress interaction effect. A modified superposition principle is used to account for the varying stress level effect on the creep strain. The lamina failure model is based on a modification of the Tsai-Hill theory which includes the time dependent creep rupture strength. A linear cumulative damage law is used to monitor the remaining lifetime in each ply.

  18. Effects of induced stress on seismic forward modelling and inversion

    NASA Astrophysics Data System (ADS)

    Tromp, Jeroen; Trampert, Jeannot

    2018-05-01

    We demonstrate how effects of induced stress may be incorporated in seismic modelling and inversion. Our approach is motivated by the accommodation of pre-stress in global seismology. Induced stress modifies both the equation of motion and the constitutive relationship. The theory predicts that induced pressure linearly affects the unstressed isotropic moduli with a slope determined by their adiabatic pressure derivatives. The induced deviatoric stress produces anisotropic compressional and shear wave speeds; the latter result in shear wave splitting. For forward modelling purposes, we determine the weak form of the equation of motion under induced stress. In the context of the inverse problem, we determine induced stress sensitivity kernels, which may be used for adjoint tomography. The theory is illustrated by considering 2-D propagation of SH waves and related Fréchet derivatives based on a spectral-element method.

  19. Electron Acoustic Waves in Pure Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v < vph< 2.1 v. Here, the final wave frequency may differ from the excitation frequency since the excitation modifies f (v); and recent theory analyzes frequency shifts from ``corners'' of a plateau at vph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  20. Spatial Holmboe instability

    NASA Astrophysics Data System (ADS)

    Ortiz, Sabine; Chomaz, Jean-Marc; Loiseleux, Thomas

    2002-08-01

    In mixing-layers between two parallel streams of different densities, shear and gravity effects interplay; buoyancy acts as a restoring force and the Kelvin-Helmholtz mode is known to be stabilized by the stratification. If the density interface is sharp enough, two new instability modes, known as Holmboe modes, appear, propagating in opposite directions. This mechanism has been studied in the temporal instability framework. The present paper analyzes the associated spatial instability problem. It considers, in the Boussinesq approximation, two immiscible inviscid fluids with a piecewise linear broken-line velocity profile. We show how the classical scenario for transition between absolute and convective instability should be modified due to the presence of propagating waves. In the convective region, the spatial theory is relevant and the slowest propagating wave is shown to be the most spatially amplified, as suggested by intuition. Predictions of spatial linear theory are compared with mixing-layer [C. G. Koop and F. K. Browand, J. Fluid Mech. 93, 135 (1979)] and exchange flow [G. Pawlak and L. Armi, J. Fluid Mech. 376, 1 (1999)] experiments. The physical mechanism for Holmboe mode destabilization is analyzed via an asymptotic expansion that predicts the absolute instability domain at large Richardson number.

  1. Fast Magnetosonic Waves Observed by Van Allen Probes: Testing Local Wave Excitation Mechanism

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun; Wang, Xueyi; Chen, Lunjin; Denton, Richard E.

    2018-01-01

    Linear Vlasov theory and particle-in-cell (PIC) simulations for electromagnetic fluctuations in a homogeneous, magnetized, and collisionless plasma are used to investigate a fast magnetosonic wave event observed by the Van Allen Probes. The fluctuating magnetic field observed exhibits a series of spectral peaks at harmonics of the proton cyclotron frequency Ωp and has a dominant compressional component, which can be classified as fast magnetosonic waves. Furthermore, the simultaneously observed proton phase space density exhibits positive slopes in the perpendicular velocity space, ∂fp/∂v⊥>0, which can be a source for these waves. Linear theory analyses and PIC simulations use plasma and field parameters measured in situ except that the modeled proton distribution is modified to have larger ∂fp/∂v⊥ under the assumption that the observed distribution corresponds to a marginally stable state when the distribution has already been scattered by the excited waves. The results show that the positive slope is the source of the proton cyclotron harmonic waves at propagation quasi-perpendicular to the background magnetic field, and as a result of interactions with the excited waves the evolving proton distribution progresses approximately toward the observed distribution.

  2. New algorithms for field-theoretic block copolymer simulations: Progress on using adaptive-mesh refinement and sparse matrix solvers in SCFT calculations

    NASA Astrophysics Data System (ADS)

    Sides, Scott; Jamroz, Ben; Crockett, Robert; Pletzer, Alexander

    2012-02-01

    Self-consistent field theory (SCFT) for dense polymer melts has been highly successful in describing complex morphologies in block copolymers. Field-theoretic simulations such as these are able to access large length and time scales that are difficult or impossible for particle-based simulations such as molecular dynamics. The modified diffusion equations that arise as a consequence of the coarse-graining procedure in the SCF theory can be efficiently solved with a pseudo-spectral (PS) method that uses fast-Fourier transforms on uniform Cartesian grids. However, PS methods can be difficult to apply in many block copolymer SCFT simulations (eg. confinement, interface adsorption) in which small spatial regions might require finer resolution than most of the simulation grid. Progress on using new solver algorithms to address these problems will be presented. The Tech-X Chompst project aims at marrying the best of adaptive mesh refinement with linear matrix solver algorithms. The Tech-X code PolySwift++ is an SCFT simulation platform that leverages ongoing development in coupling Chombo, a package for solving PDEs via block-structured AMR calculations and embedded boundaries, with PETSc, a toolkit that includes a large assortment of sparse linear solvers.

  3. Non-linear interaction of a detonation/vorticity wave

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Jackson, T. L.; Hussaini, M. Y.

    1991-01-01

    The interaction of an oblique, overdriven detonation wave with a vorticity disturbance is investigated by a direct two-dimensional numerical simulation using a multi-domain, finite-difference solution of the compressible Euler equations. The results are compared to those of linear theory, which predict that the effect of exothermicity on the interaction is relatively small except possibly near a critical angle where linear theory no longer holds. It is found that the steady-state computational results agree with the results of linear theory. However, for cases with incident angle near the critical angle, moderate disturbance amplitudes, and/or sudden transient encounter with a disturbance, the effects of exothermicity are more pronounced than predicted by linear theory. Finally, it is found that linear theory correctly determines the critical angle.

  4. Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse-Shear Effects

    NASA Technical Reports Server (NTRS)

    McGowan, David Michael

    1997-01-01

    The analytical formulation of curved-plate non-linear equilibrium equations including transverse-shear-deformation effects is presented. The formulation uses the principle of virtual work. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Linearized, perturbed equilibrium equations (stability equations) that describe the response of the plate just after buckling occurs are then derived after the application of several simplifying assumptions. These equations are then modified to allow the reference surface of the plate to be located at a distance z(sub c) from the centroidal surface. The implementation of the new theory into the VICONOPT exact buckling and vibration analysis and optimum design computer program is described as well. The terms of the plate stiffness matrix using both Classical Plate Theory (CPT) and first-order Shear-Deformation Plate Theory (SDPT) are presented. The necessary steps to include the effects of in-plane transverse and in-plane shear loads in the in-plane stability equations are also outlined. Numerical results are presented using the newly implemented capability. Comparisons of results for several example problems with different loading states are made. Comparisons of analyses using both physical and tensorial strain measures as well as CPT and SDPF are also made. Results comparing the computational effort required by the new analysis to that of the analysis currently in the VICONOPT program are presented. The effects of including terms related to in-plane transverse and in-plane shear loadings in the in-plane stability equations are also examined. Finally, results of a design-optimization study of two different cylindrical shells subject to uniform axial compression are presented.

  5. The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Fan, Zhengfeng; Lu, Xinpei; Ye, Wenhua; Zou, Changlin; Zhang, Ziyun; Zhang, Wen

    2017-10-01

    In this research, we use the numerical simulation method to investigate the generation coefficients of the first three harmonics and the zeroth harmonic in the Ablative Rayleigh-Taylor Instability. It is shown that the interface shifts to the low temperature side during the ablation process. In consideration of the third-order perturbation theory, the first three harmonic amplitudes of the weakly nonlinear regime are calculated and then the harmonic generation coefficients are obtained by curve fitting. The simulation results show that the harmonic generation coefficients changed with time and wavelength. Using the higher-order perturbation theory, we find that more and more harmonics are generated in the later weakly nonlinear stage, which is caused by the negative feedback of the later higher harmonics. Furthermore, extending the third-order theory to the fifth-order theory, we find that the second and the third harmonics coefficients linearly depend on the wavelength, while the feedback coefficients are almost constant. Further analysis also shows that when the fifth-order theory is considered, the normalized effective amplitudes of second and third harmonics can reach about 25%-40%, which are only 15%-25% in the frame of the previous third-order theory. Therefore, the third order perturbation theory is needed to be modified by the higher-order theory when ηL reaches about 20% of the perturbation wavelength.

  6. Modified global and modified linear contrast stretching algorithms: new colour contrast enhancement techniques for microscopic analysis of malaria slide images.

    PubMed

    Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Mohamed, Zeehaida

    2012-01-01

    Malaria is one of the serious global health problem, causing widespread sufferings and deaths in various parts of the world. With the large number of cases diagnosed over the year, early detection and accurate diagnosis which facilitates prompt treatment is an essential requirement to control malaria. For centuries now, manual microscopic examination of blood slide remains the gold standard for malaria diagnosis. However, low contrast of the malaria and variable smears quality are some factors that may influence the accuracy of interpretation by microbiologists. In order to reduce this problem, this paper aims to investigate the performance of the proposed contrast enhancement techniques namely, modified global and modified linear contrast stretching as well as the conventional global and linear contrast stretching that have been applied on malaria images of P. vivax species. The results show that the proposed modified global and modified linear contrast stretching techniques have successfully increased the contrast of the parasites and the infected red blood cells compared to the conventional global and linear contrast stretching. Hence, the resultant images would become useful to microbiologists for identification of various stages and species of malaria.

  7. Scattering from a cylindrical reflector: modified theory of physical optics solution.

    PubMed

    Yalçin, Ugur

    2007-02-01

    The problem of scattering from a perfectly conducting cylindrical reflector is examined with the method of the modified theory of physical optics. In this technique the physical optics currents are modified by using a variable unit vector on the scatterer's surface. These current components are obtained for the reflector, which is fed by an offset electric line source. The scattering integral is expressed by using these currents and evaluated asymptotically with the stationary phase method. The results are compared numerically by using physical optics theory, geometrical optics diffraction theory, and the exact solution of the Helmholtz equation. It is found that the modified theory of physical optics scattering field equations agrees with the geometrical optics diffraction theory and the exact solution of the Helmholtz equation.

  8. Quantum corrections to the generalized Proca theory via a matter field

    NASA Astrophysics Data System (ADS)

    Amado, André; Haghani, Zahra; Mohammadi, Azadeh; Shahidi, Shahab

    2017-09-01

    We study the quantum corrections to the generalized Proca theory via matter loops. We consider two types of interactions, linear and nonlinear in the vector field. Calculating the one-loop correction to the vector field propagator, three- and four-point functions, we show that the non-linear interactions are harmless, although they renormalize the theory. The linear matter-vector field interactions introduce ghost degrees of freedom to the generalized Proca theory. Treating the theory as an effective theory, we calculate the energy scale up to which the theory remains healthy.

  9. Modified Levenberg-Marquardt Method for RÖSSLER Chaotic System Fuzzy Modeling Training

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Hui; Wu, Qing-Xian; Jiang, Chang-Sheng; Xue, Ya-Li; Fang, Wei

    Generally, fuzzy approximation models require some human knowledge and experience. Operator's experience is involved in the mathematics of fuzzy theory as a collection of heuristic rules. The main goal of this paper is to present a new method for identifying unknown nonlinear dynamics such as Rössler system without any human knowledge. Instead of heuristic rules, the presented method uses the input-output data pairs to identify the Rössler chaotic system. The training algorithm is a modified Levenberg-Marquardt (L-M) method, which can adjust the parameters of each linear polynomial and fuzzy membership functions on line, and do not rely on experts' experience excessively. Finally, it is applied to training Rössler chaotic system fuzzy identification. Comparing this method with the standard L-M method, the convergence speed is accelerated. The simulation results demonstrate the effectiveness of the proposed method.

  10. A Resume of Stochastic, Time-Varying, Linear System Theory with Application to Active-Sonar Signal-Processing Problems

    DTIC Science & Technology

    1981-06-15

    relationships 5 3. Normalized energy in ambiguity function for i = 0 14 k ilI SACLANTCEN SR-50 A RESUME OF STOCHASTIC, TIME-VARYING, LINEAR SYSTEM THEORY WITH...the order in which systems are concatenated is unimportant. These results are exactly analogous to the results of time-invariant linear system theory in...REFERENCES 1. MEIER, L. A rdsum6 of deterministic time-varying linear system theory with application to active sonar signal processing problems, SACLANTCEN

  11. Linear and nonlinear 2D finite element analysis of sloshing modes and pressures in rectangular tanks subject to horizontal harmonic motions

    NASA Astrophysics Data System (ADS)

    Virella, Juan C.; Prato, Carlos A.; Godoy, Luis A.

    2008-05-01

    The influence of nonlinear wave theory on the sloshing natural periods and their modal pressure distributions are investigated for rectangular tanks under the assumption of two-dimensional behavior. Natural periods and mode shapes are computed and compared for both linear wave theory (LWT) and nonlinear wave theory (NLWT) models, using the finite element package ABAQUS. Linear wave theory is implemented in an acoustic model, whereas a plane strain problem with large displacements is used in NLWT. Pressure distributions acting on the tank walls are obtained for the first three sloshing modes using both linear and nonlinear wave theory. It is found that the nonlinearity does not have significant effects on the natural sloshing periods. For the sloshing pressures on the tank walls, different distributions were found using linear and nonlinear wave theory models. However, in all cases studied, the linear wave theory conservatively estimated the magnitude of the pressure distribution, whereas larger pressures resultant heights were obtained when using the nonlinear theory. It is concluded that the nonlinearity of the surface wave does not have major effects in the pressure distribution on the walls for rectangular tanks.

  12. Finite-time mixed outer synchronization of complex networks with coupling time-varying delay.

    PubMed

    He, Ping; Ma, Shu-Hua; Fan, Tao

    2012-12-01

    This article is concerned with the problem of finite-time mixed outer synchronization (FMOS) of complex networks with coupling time-varying delay. FMOS is a recently developed generalized synchronization concept, i.e., in which different state variables of the corresponding nodes can evolve into finite-time complete synchronization, finite-time anti-synchronization, and even amplitude finite-time death simultaneously for an appropriate choice of the controller gain matrix. Some novel stability criteria for the synchronization between drive and response complex networks with coupling time-varying delay are derived using the Lyapunov stability theory and linear matrix inequalities. And a simple linear state feedback synchronization controller is designed as a result. Numerical simulations for two coupled networks of modified Chua's circuits are then provided to demonstrate the effectiveness and feasibility of the proposed complex networks control and synchronization schemes and then compared with the proposed results and the previous schemes for accuracy.

  13. Effect of current vehicle’s interruption on traffic stability in cooperative car-following theory

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Liu, Hui

    2017-12-01

    To reveal the impact of the current vehicle’s interruption information on traffic flow, a new car-following model with consideration of the current vehicle’s interruption is proposed and the influence of the current vehicle’s interruption on traffic stability is investigated through theoretical analysis and numerical simulation. By linear analysis, the linear stability condition of the new model is obtained and the negative influence of the current vehicle’s interruption on traffic stability is shown in the headway-sensitivity space. Through nonlinear analysis, the modified Korteweg-de Vries (mKdV) equation of the new model near the critical point is derived and it can be used to describe the propagating behavior of the traffic density wave. Finally, numerical simulation confirms the analytical results, which shows that the current vehicle’s interruption information can destabilize traffic flow and should be considered in real traffic.

  14. Stable diffraction-management soliton in a periodic structure with alternating left-handed and right-handed media

    NASA Astrophysics Data System (ADS)

    Zhang, Jinggui

    2017-09-01

    In this paper, we first derive a modified two-dimensional non-linear Schrödinger equation including high-order diffraction (HOD) suitable for the propagation of optical beam near the low-diffraction regime in Kerr non-linear media with spatial dispersion. Then, we apply our derived physical model to a designed two-dimensional configuration filled with alternate layers of a left-handed material (LHM) and a right-handed media by employing the mean-field theory. It is found that the periodic structure including LHM may experience diminished, cancelled, and even reversed diffraction behaviours through engineering the relative thickness between both media. In particular, the variational method analytically predicts that close to the zero-diffraction regime, such periodic structure can support stable diffraction-management solitons whose beamwidth and peak amplitude evolve periodically with the help of HOD effect. Numerical simulation based on the split-step Fourier method confirms the analytical results.

  15. Mathematical simulation of sound propagation in a flow channel with impedance walls

    NASA Astrophysics Data System (ADS)

    Osipov, A. A.; Reent, K. S.

    2012-07-01

    The paper considers the specifics of calculating tonal sound propagating in a flow channel with an installed sound-absorbing device. The calculation is performed on the basis of numerical integrating on linearized nonstationary Euler equations using a code developed by the authors based on the so-called discontinuous Galerkin method. Using the linear theory of small perturbations, the effect of the sound-absorbing lining of the channel walls is described with the modified value of acoustic impedance proposed by the authors, for which, under flow channel conditions, the traditional classification of the active and reactive types of lining in terms of the real and imaginary impedance values, respectively, remains valid. To stabilize the computation process, a generalized impedance boundary condition is proposed in which, in addition to the impedance value itself, some additional parameters are introduced characterizing certain fictitious properties of inertia and elasticity of the impedance surface.

  16. A non-linear theory of the parallel firehose and gyrothermal instabilities in a weakly collisional plasma

    NASA Astrophysics Data System (ADS)

    Rosin, M. S.; Schekochihin, A. A.; Rincon, F.; Cowley, S. C.

    2011-05-01

    Weakly collisional magnetized cosmic plasmas have a dynamical tendency to develop pressure anisotropies with respect to the local direction of the magnetic field. These anisotropies trigger plasma instabilities at scales just above the ion Larmor radius ρi and much below the mean free path λmfp. They have growth rates of a fraction of the ion cyclotron frequency, which is much faster than either the global dynamics or even local turbulence. Despite their microscopic nature, these instabilities dramatically modify the transport properties and, therefore, the macroscopic dynamics of the plasma. The non-linear evolution of these instabilities is expected to drive pressure anisotropies towards marginal stability values, controlled by the plasma beta βi. Here this non-linear evolution is worked out in an ab initio kinetic calculation for the simplest analytically tractable example - the parallel (k⊥= 0) firehose instability in a high-beta plasma. An asymptotic theory is constructed, based on a particular physical ordering and leading to a closed non-linear equation for the firehose turbulence. In the non-linear regime, both the analytical theory and the numerical solution predict secular (∝t) growth of magnetic fluctuations. The fluctuations develop a k-3∥ spectrum, extending from scales somewhat larger than ρi to the maximum scale that grows secularly with time (∝t1/2); the relative pressure anisotropy (p⊥-p∥)/p∥ tends to the marginal value -2/βi. The marginal state is achieved via changes in the magnetic field, not particle scattering. When a parallel ion heat flux is present, the parallel firehose mutates into the new gyrothermal instability (GTI), which continues to exist up to firehose-stable values of pressure anisotropy, which can be positive and are limited by the magnitude of the ion heat flux. The non-linear evolution of the GTI also features secular growth of magnetic fluctuations, but the fluctuation spectrum is eventually dominated by modes around a maximal scale ˜ρilT/λmfp, where lT is the scale of the parallel temperature variation. Implications for momentum and heat transport are speculated about. This study is motivated by our interest in the dynamics of galaxy cluster plasmas (which are used as the main astrophysical example), but its relevance to solar wind and accretion flow plasmas is also briefly discussed.

  17. Black holes in a cubic Galileon universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babichev, E.; Charmousis, C.; Lehébel, A.

    2016-09-01

    We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two ofmore » these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.« less

  18. Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields.

    PubMed

    Wang, Boshuo; Aberra, Aman S; Grill, Warren M; Peterchev, Angel V

    2018-04-01

    We present a theory and computational methods to incorporate transverse polarization of neuronal membranes into the cable equation to account for the secondary electric field generated by the membrane in response to transverse electric fields. The effect of transverse polarization on nonlinear neuronal activation thresholds is quantified and discussed in the context of previous studies using linear membrane models. The response of neuronal membranes to applied electric fields is derived under two time scales and a unified solution of transverse polarization is given for spherical and cylindrical cell geometries. The solution is incorporated into the cable equation re-derived using an asymptotic model that separates the longitudinal and transverse dimensions. Two numerical methods are proposed to implement the modified cable equation. Several common neural stimulation scenarios are tested using two nonlinear membrane models to compare thresholds of the conventional and modified cable equations. The implementations of the modified cable equation incorporating transverse polarization are validated against previous results in the literature. The test cases show that transverse polarization has limited effect on activation thresholds. The transverse field only affects thresholds of unmyelinated axons for short pulses and in low-gradient field distributions, whereas myelinated axons are mostly unaffected. The modified cable equation captures the membrane's behavior on different time scales and models more accurately the coupling between electric fields and neurons. It addresses the limitations of the conventional cable equation and allows sound theoretical interpretations. The implementation provides simple methods that are compatible with current simulation approaches to study the effect of transverse polarization on nonlinear membranes. The minimal influence by transverse polarization on axonal activation thresholds for the nonlinear membrane models indicates that predictions of stronger effects in linear membrane models with a fixed activation threshold are inaccurate. Thus, the conventional cable equation works well for most neuroengineering applications, and the presented modeling approach is well suited to address the exceptions.

  19. The response of multidegree-of-freedom systems with quadratic non-linearities to a harmonic parametric resonance

    NASA Astrophysics Data System (ADS)

    Nayfeh, A. H.

    1983-09-01

    An analysis is presented of the response of multidegree-of-freedom systems with quadratic non-linearities to a harmonic parametric excitation in the presence of an internal resonance of the combination type ω3 ≈ ω2 + ω1, where the ωn are the linear natural frequencies of the systems. In the case of a fundamental resonance of the third mode (i.e., Ω ≈ω 3, where Ω is the frequency of the excitation), one can identify two critical values ζ 1 and ζ 2, where ζ 2 ⩾ ζ 1, of the amplitude F of the excitation. The value F = ζ2 corresponds to the transition from stable to unstable solutions. When F < ζ1, the motion decays to zero according to both linear and non-linear theories. When F > ζ2, the motion grows exponentially with time according to the linear theory but the non-linearity limits the motion to a finite amplitude steady state. The amplitude of the third mode, which is directly excited, is independent of F, whereas the amplitudes of the first and second modes, which are indirectly excited through the internal resonance, are functions of F. When ζ1 ⩽ F ⩽ ζ2, the motion decays or achieves a finite amplitude steady state depending on the initial conditions according to the non-linear theory, whereas it decays to zero according to the linear theory. This is an example of subcritical instability. In the case of a fundamental resonance of either the first or second mode, the trivial response is the only possible steady state. When F ⩽ ζ2, the motion decays to zero according to both linear and non-linear theories. When F > ζ2, the motion grows exponentially with time according to the linear theory but it is aperiodic according to the non-linear theory. Experiments are being planned to check these theoretical results.

  20. Linewidth and lineshift parameters of rotation-vibration transitions of linear molecule perturbed by inert gas

    NASA Astrophysics Data System (ADS)

    Johri, Manoj; Johri, Gajendra K.; Rishishwar, Rajendra P.

    1990-12-01

    The study of spectral lineshape is important to understand intermolecular forces1-5. We have calculated the linewidth and the lineshift for different rotation-vibration transitions of linear molecules (CO and HCl) perturbed by argon using generalized interaction potential4. The Murphy Boggs6 (MB), Mehrotra Boggs7 and perturbation theories have been used for the linewidth calculation. The lineshift parameters have been calculated using the MEB theory7 including the phase shift effect and ignoring Ji=Ji and Jf=Jf transitions. In these calculation the variation of the rotational constant with the vibrational quantum number has been taken into account. The calculated lineshift parameters decrease with an increase in the initial rotation quamtum numbers (Ji). It remains positive for the lower values of Ji and becomes negative for the higher values of Ji where as the measured8 values are negative for all the transitions. The calculated linewidth parameters using the MEB theory7 are lower by about 15% than the measured values for CO-A collisions. The vibrational dependence in CO-A collisions show significant change in the lineshift. For H Cl-A collisions the discrepancy between the calculated lienwidth parameters using the Mehrotra Boggs theory and the measured9 values is about 46% for J=0-1 transitions and decreases to 22% for J=8-9 transition. The results of the perturbation theory do not show regular variation of the linewidth parameters with the rotational state. The linewidth parameters using the Murphy Boggs theory are lower than the measured9 values by about 50% for all the transitions considered. It is found that the contribution of the diabetic collisions is important as included in the perturbtive and the Mehrotra Boggs approaches. Further, if the pressure broadening method is used to probe anisotropy of the intermolecular forces, there is need of modifying the existing theoretical models and the experimental techniques.

  1. Modelling low-frequency volcanic earthquakes in a viscoelastic medium with topography

    NASA Astrophysics Data System (ADS)

    Jousset, P.; Neuberg, J.

    2003-04-01

    Magma properties are fundamental to explain the volcanic eruption style as well as the generation and propagation of seismic waves. This study focusses on rheological magma properties and their impact on low-frequency volcanic earthquakes. We investigate the effects of anelasticity and topography on the amplitudes and spectra of synthetic low-frequency earthquakes. Using a 2D finite difference scheme, we model the propagation of seismic energy initiated in a fluid-filled conduit embedded in a 2D homogeneous viscoelastic medium with topography. Topography is introduced by using a mapping procedure that stretches the computational rectangular grid into a grid which follows the topography. We model intrinsic attenuation by linear viscoelastic theory and we show that volcanic media can be approximated by a standard linear solid for seismic frequencies (i.e., above 2 Hz). Results demonstrate that attenuation modifies both amplitude and dispersive characteristics of low-frequency earthquakes. Low-frequency events are dispersive by nature; however, if attenuation is introduced, their dispersion characteristics will be altered. The topography modifies the amplitudes, depending on the position of seismographs at the surface. This study shows that we need to take into account attenuation and topography to interpret correctly observed low-frequency volcanic earthquakes. It also suggests that the rheological properties of magmas may be constrained by the analysis of low-frequency seismograms.

  2. Modified Interior Distance Functions (Theory and Methods)

    NASA Technical Reports Server (NTRS)

    Polyak, Roman A.

    1995-01-01

    In this paper we introduced and developed the theory of Modified Interior Distance Functions (MIDF's). The MIDF is a Classical Lagrangian (CL) for a constrained optimization problem which is equivalent to the initial one and can be obtained from the latter by monotone transformation both the objective function and constraints. In contrast to the Interior Distance Functions (IDF's), which played a fundamental role in Interior Point Methods (IPM's), the MIDF's are defined on an extended feasible set and along with center, have two extra tools, which control the computational process: the barrier parameter and the vector of Lagrange multipliers. The extra tools allow to attach to the MEDF's very important properties of Augmented Lagrangeans. One can consider the MIDFs as Interior Augmented Lagrangeans. It makes MIDF's similar in spirit to Modified Barrier Functions (MBF's), although there is a fundamental difference between them both in theory and methods. Based on MIDF's theory, Modified Center Methods (MCM's) have been developed and analyzed. The MCM's find an unconstrained minimizer in primal space and update the Lagrange multipliers, while both the center and the barrier parameter can be fixed or updated at each step. The MCM's convergence was investigated, and their rate of convergence was estimated. The extension of the feasible set and the special role of the Lagrange multipliers allow to develop MCM's, which produce, in case of nondegenerate constrained optimization, a primal and dual sequences that converge to the primal-dual solutions with linear rate, even when both the center and the barrier parameter are fixed. Moreover, every Lagrange multipliers update shrinks the distance to the primal dual solution by a factor 0 less than gamma less than 1 which can be made as small as one wants by choosing a fixed interior point as a 'center' and a fixed but large enough barrier parameter. The numericai realization of MCM leads to the Newton MCM (NMCM). The approximation for the primal minimizer one finds by Newton Method followed by the Lagrange multipliers update. Due to the MCM convergence, when both the center and the barrier parameter are fixed, the condition of the MDF Hessism and the neighborhood of the primal ninimizer where Newton method is 'well' defined remains stable. It contributes to both the complexity and the numerical stability of the NMCM.

  3. Instabilities in rapid solidification of multi-component alloys

    NASA Astrophysics Data System (ADS)

    Altieri, Anthony L.; Davis, Stephen H.

    2017-10-01

    Rapid solidification of multi-component liquids occurs in many modern applications such as additive manufacturing. In the present work the interface departures from equilibrium consist of the segregation coefficient and liquidus slope depending on front speed, the one-sided, frozen-temperature approximation, and the alloy behaving as the superposition of individual components. Linear-stability theory is applied, showing that the cellular and oscillatory instabilities of the binary case are modified. The addition of components tends to destabilize the interface while the addition of a single large-diffusivity material can entirely suppress the oscillatory mode. Multiple minima in the neutral curve for the cellular mode occur.

  4. Cellular instability in rapid directional solidification - Bifurcation theory

    NASA Technical Reports Server (NTRS)

    Braun, R. J.; Davis, S. H.

    1992-01-01

    Merchant and Davis performed a linear stability analysis on a model for the directional solidification of a dilute binary alloy valid for all speeds. The analysis revealed that nonequilibrium segregation effects modify the Mullins and Sekerka cellular mode, whereas attachment kinetics has no effect on these cells. In this paper, the nonlinear stability of the steady cellular mode is analyzed. A Landau equation is obtained that determines the amplitude of the cells. The Landau coefficient here depends on both nonequilibrium segregation effects and attachment kinetics. This equation gives the ranges of parameters for subcritical bifurcation (jump transition) or supercritical bifurcation (smooth transition) to cells.

  5. Measuring correlations in non-separable vector beams using projective measurements

    NASA Astrophysics Data System (ADS)

    Subramanian, Keerthan; Viswanathan, Nirmal K.

    2017-09-01

    Doubts regarding the completeness of quantum mechanics as raised by Einstein, Podolsky and Rosen(EPR) have predominantly been resolved by resorting to a measurement of correlations between entangled photons which clearly demonstrate violation of Bell's inequality. This article is an attempt to reconcile incompatibility of hidden variable theories with reality by demonstrating experimentally a violation of Bell's inequality in locally correlated systems whose two degrees of freedom, the spin and orbital angular momentum, are maximally correlated. To this end we propose and demonstrate a linear, achromatic modified Sagnac interferometer to project orbital angular momentum states which we combine with spin projections to measure correlations.

  6. Incremental analysis of large elastic deformation of a rotating cylinder

    NASA Technical Reports Server (NTRS)

    Buchanan, G. R.

    1976-01-01

    The effect of finite deformation upon a rotating, orthotropic cylinder was investigated using a general incremental theory. The incremental equations of motion are developed using the variational principle. The governing equations are derived using the principle of virtual work for a body with initial stress. The governing equations are reduced to those for the title problem and a numerical solution is obtained using finite difference approximations. Since the problem is defined in terms of one independent space coordinate, the finite difference grid can be modified as the incremental deformation occurs without serious numerical difficulties. The nonlinear problem is solved incrementally by totaling a series of linear solutions.

  7. Transition operators in acoustic-wave diffraction theory. I - General theory. II - Short-wavelength behavior, dominant singularities of Zk0 and Zk0 exp -1

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    1991-01-01

    A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.

  8. Employing Theories Far beyond Their Limits - Linear Dichroism Theory.

    PubMed

    Mayerhöfer, Thomas G

    2018-05-15

    Using linear polarized light, it is possible in case of ordered structures, such as stretched polymers or single crystals, to determine the orientation of the transition moments of electronic and vibrational transitions. This not only helps to resolve overlapping bands, but also assigning the symmetry species of the transitions and to elucidate the structure. To perform spectral evaluation quantitatively, a sometimes "Linear Dichroism Theory" called approach is very often used. This approach links the relative orientation of the transition moment and polarization direction to the quantity absorbance. This linkage is highly questionable for several reasons. First of all, absorbance is a quantity that is by its definition not compatible with Maxwell's equations. Furthermore, absorbance seems not to be the quantity which is generally compatible with linear dichroism theory. In addition, linear dichroism theory disregards that it is not only the angle between transition moment and polarization direction, but also the angle between sample surface and transition moment, that influences band shape and intensity. Accordingly, the often invoked "magic angle" has never existed and the orientation distribution influences spectra to a much higher degree than if linear dichroism theory would hold strictly. A last point that is completely ignored by linear dichroism theory is the fact that partially oriented or randomly-oriented samples usually consist of ordered domains. It is their size relative to the wavelength of light that can also greatly influence a spectrum. All these findings can help to elucidate orientation to a much higher degree by optical methods than currently thought possible by the users of linear dichroism theory. Hence, it is the goal of this contribution to point out these shortcomings of linear dichroism theory to its users to stimulate efforts to overcome the long-lasting stagnation of this important field. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Medium-energy electrons and heavy ions in Jupiter's magnetosphere - Effects of lower hybrid wave-particle interactions

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1986-01-01

    A theory of medium-energy (about keV) electrons and heavy ions in Jupiter's magnetosphere is presented. Lower hybrid waves are generated by the combined effects of a ring instability of neutral wind pickup ions and the modified two-stream instability associated with transport of cool Iogenic plasma. The quasi-linear energy diffusion coefficient for lower hybrid wave-particle interactions is evaluated, and several solutions to the diffusion equation are given. Calculations based on measured wave properties show that the noise substantially modifies the particle distribution functions. The effects are to accelerate superthermal ions and electrons to keV energies and to thermalize the pickup ions on time scales comparable to the particle residence time. The S(2+)/S(+) ratio at medium energies is a measure of the relative contribution from Iogenic thermal plasma and neutral wind ions, and this important quantity should be determined from future measurements. The theory also predicts a preferential acceleration of heavy ions with an accleration time that scales inversely with the root of the ion mass. Electrons accelerated by the process contribute to further reionization of the neutral wind by electron impact, thus providing a possible confirmation of Alfven's critical velocity effect in the Jovian magnetosphere.

  10. Modifier constraint in alkali borophosphate glasses using topological constraint theory

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zeng, Huidan; Jiang, Qi; Zhao, Donghui; Chen, Guorong; Wang, Zhaofeng; Sun, Luyi; Chen, Jianding

    2016-12-01

    In recent years, composition-dependent properties of glasses have been successfully predicted using the topological constraint theory. The constraints of the glass network are derived from two main parts: network formers and network modifiers. The constraints of the network formers can be calculated on the basis of the topological structure of the glass. However, the latter cannot be accurately calculated in this way, because of the existing of ionic bonds. In this paper, the constraints of the modifier ions in phosphate glasses were thoroughly investigated using the topological constraint theory. The results show that the constraints of the modifier ions are gradually increased with the addition of alkali oxides. Furthermore, an improved topological constraint theory for borophosphate glasses is proposed by taking the composition-dependent constraints of the network modifiers into consideration. The proposed theory is subsequently evaluated by analyzing the composition dependence of the glass transition temperature in alkali borophosphate glasses. This method is supposed to be extended to other similar glass systems containing alkali ions.

  11. A Linear Theory for Inflatable Plates of Arbitrary Shape

    NASA Technical Reports Server (NTRS)

    McComb, Harvey G., Jr.

    1961-01-01

    A linear small-deflection theory is developed for the elastic behavior of inflatable plates of which Airmat is an example. Included in the theory are the effects of a small linear taper in the depth of the plate. Solutions are presented for some simple problems in the lateral deflection and vibration of constant-depth rectangular inflatable plates.

  12. A motion-constraint logic for moving-base simulators based on variable filter parameters

    NASA Technical Reports Server (NTRS)

    Miller, G. K., Jr.

    1974-01-01

    A motion-constraint logic for moving-base simulators has been developed that is a modification to the linear second-order filters generally employed in conventional constraints. In the modified constraint logic, the filter parameters are not constant but vary with the instantaneous motion-base position to increase the constraint as the system approaches the positional limits. With the modified constraint logic, accelerations larger than originally expected are limited while conventional linear filters would result in automatic shutdown of the motion base. In addition, the modified washout logic has frequency-response characteristics that are an improvement over conventional linear filters with braking for low-frequency pilot inputs. During simulated landing approaches of an externally blown flap short take-off and landing (STOL) transport using decoupled longitudinal controls, the pilots were unable to detect much difference between the modified constraint logic and the logic based on linear filters with braking.

  13. Integrated analysis on static/dynamic aeroelasticity of curved panels based on a modified local piston theory

    NASA Astrophysics Data System (ADS)

    Yang, Zhichun; Zhou, Jian; Gu, Yingsong

    2014-10-01

    A flow field modified local piston theory, which is applied to the integrated analysis on static/dynamic aeroelastic behaviors of curved panels, is proposed in this paper. The local flow field parameters used in the modification are obtained by CFD technique which has the advantage to simulate the steady flow field accurately. This flow field modified local piston theory for aerodynamic loading is applied to the analysis of static aeroelastic deformation and flutter stabilities of curved panels in hypersonic flow. In addition, comparisons are made between results obtained by using the present method and curvature modified method. It shows that when the curvature of the curved panel is relatively small, the static aeroelastic deformations and flutter stability boundaries obtained by these two methods have little difference, while for curved panels with larger curvatures, the static aeroelastic deformation obtained by the present method is larger and the flutter stability boundary is smaller compared with those obtained by the curvature modified method, and the discrepancy increases with the increasing of curvature of panels. Therefore, the existing curvature modified method is non-conservative compared to the proposed flow field modified method based on the consideration of hypersonic flight vehicle safety, and the proposed flow field modified local piston theory for curved panels enlarges the application range of piston theory.

  14. Saturation of the magnetorotational instability at large Elsasser number

    NASA Astrophysics Data System (ADS)

    Jamroz, B.; Julien, K.; Knobloch, E.

    2008-09-01

    The magnetorotational instability is investigated within the shearing box approximation in the large Elsasser number regime. In this regime, which is of fundamental importance to astrophysical accretion disk theory, shear is the dominant source of energy, but the instability itself requires the presence of a weaker vertical magnetic field. Dissipative effects are weaker still but not negligible. The regime explored retains the condition that (viscous and ohmic) dissipative forces do not play a role in the leading order linear instability mechanism. However, they are sufficiently large to permit a nonlinear feedback mechanism whereby the turbulent stresses generated by the MRI act on and modify the local background shear in the angular velocity profile. To date this response has been omitted in shearing box simulations and is captured by a reduced pde model derived here from the global MHD fluid equations using multiscale asymptotic perturbation theory. Results from numerical simulations of the reduced pde model indicate a linear phase of exponential growth followed by a nonlinear adjustment to algebraic growth and decay in the fluctuating quantities. Remarkably, the velocity and magnetic field correlations associated with these algebraic growth and decay laws conspire to achieve saturation of the angular momentum transport. The inclusion of subdominant ohmic dissipation arrests the algebraic growth of the fluctuations on a longer, dissipative time scale.

  15. Saturation of the Magnetorotational Instability at Large Elssaser Number

    NASA Astrophysics Data System (ADS)

    Julien, Keith; Jamroz, Benjamin; Knobloch, Edgar

    2009-11-01

    The MRI is believed to play an important role in accretion disk physics in extracting angular momentum from the disk and allowing accretion to take place. The instability is investigated within the shearing box approximation under conditions of fundamental importance to astrophysical accretion disk theory. The shear is taken to be the dominant source of energy, but the instability itself requires the presence of a weaker vertical magnetic field. Dissipative effects are suffiently weak that the Elsasser number is large. Thus dissipative forces do not play a role in the leading order linear instability mechanism. However, they are sufficiently large to permit a nonlinear feedback mechanism whereby the turbulent stresses generated by the MRI act on and modify the local background shear in the angular velocity profile. To date this response has been omitted in shearing box simulations and is captured by a reduced pde model derived from the global MHD fluid equations using multiscale asymptotic perturbation theory. Results from simulations of the model indicate a linear phase of exponential growth followed by a nonlinear adjustment to algebraic growth and decay in the fluctuating quantities. Remarkably, the velocity and magnetic field correlations associated with these growth and decay laws conspire to achieve saturation of angular momentum transport.

  16. Group Velocity for Leaky Waves

    NASA Astrophysics Data System (ADS)

    Rzeznik, Andrew; Chumakova, Lyubov; Rosales, Rodolfo

    2017-11-01

    In many linear dispersive/conservative wave problems one considers solutions in an infinite medium which is uniform everywhere except for a bounded region. In general, localized inhomogeneities of the medium cause partial internal reflection, and some waves leak out of the domain. Often one only desires the solution in the inhomogeneous region, with the exterior accounted for by radiation boundary conditions. Formulating such conditions requires definition of the direction of energy propagation for leaky waves in multiple dimensions. In uniform media such waves have the form exp (d . x + st) where d and s are complex and related by a dispersion relation. A complex s is required since these waves decay via radiation to infinity, even though the medium is conservative. We present a modified form of Whitham's Averaged Lagrangian Theory along with modulation theory to extend the classical idea of group velocity to leaky waves. This allows for solving on the bounded region by representing the waves as a linear combination of leaky modes, each exponentially decaying in time. This presentation is part of a joint project, and applications of these results to example GFD problems will be presented by L. Chumakova in the talk ``Leaky GFD Problems''. This work is partially supported by NSF Grants DMS-1614043, DMS-1719637, and 1122374, and by the Hertz Foundation.

  17. Quasi-integrability in the modified defocusing non-linear Schrödinger model and dark solitons

    NASA Astrophysics Data System (ADS)

    Blas, H.; Zambrano, M.

    2016-03-01

    The concept of quasi-integrability has been examined in the context of deformations of the defocusing non-linear Schrödinger model (NLS). Our results show that the quasi-integrability concept, recently discussed in the context of deformations of the sine-Gordon, Bullough-Dodd and focusing NLS models, holds for the modified defocusing NLS model with dark soliton solutions and it exhibits the new feature of an infinite sequence of alternating conserved and asymptotically conserved charges. For the special case of two dark soliton solutions, where the field components are eigenstates of a space-reflection symmetry, the first four and the sequence of even order charges are exactly conserved in the scattering process of the solitons. Such results are obtained through analytical and numerical methods, and employ adaptations of algebraic techniques used in integrable field theories. We perform extensive numerical simulations and consider the scattering of dark solitons for the cubic-quintic NLS model with potential V=η {I}^2-in /6{I}^3 and the saturable type potential satisfying [InlineEquation not available: see fulltext.], with a deformation parameter ɛ ∈ [InlineMediaObject not available: see fulltext.] and I = | ψ|2. The issue of the renormalization of the charges and anomalies, and their (quasi)conservation laws are properly addressed. The saturable NLS supports elastic scattering of two soliton solutions for a wide range of values of { η, ɛ, q}. Our results may find potential applications in several areas of non-linear science, such as the Bose-Einstein condensation.

  18. Quasi-linear theory via the cumulant expansion approach

    NASA Technical Reports Server (NTRS)

    Jones, F. C.; Birmingham, T. J.

    1974-01-01

    The cumulant expansion technique of Kubo was used to derive an intergro-differential equation for f , the average one particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the f equation degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory for this limited class of fluctuations. For more physically realistic fluctuations, however, quasi-linear theory is at best approximate.

  19. Ion radial diffusion in an electrostatic impulse model for stormtime ring current formation

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.; Gorney, David J.

    1992-01-01

    Two refinements to the quasi-linear theory of ion radial diffusion are proposed and examined analytically with simulations of particle trajectories. The resonance-broadening correction by Dungey (1965) is applied to the quasi-linear diffusion theory by Faelthammar (1965) for an individual model storm. Quasi-linear theory is then applied to the mean diffusion coefficients resulting from simulations of particle trajectories in 20 model storms. The correction for drift-resonance broadening results in quasi-linear diffusion coefficients with discrepancies from the corresponding simulated values that are reduced by a factor of about 3. Further reductions in the discrepancies are noted following the averaging of the quasi-linear diffusion coefficients, the simulated coefficients, and the resonance-broadened coefficients for the 20 storms. Quasi-linear theory provides good descriptions of particle transport for a single storm but performs even better in conjunction with the present ensemble-averaging.

  20. Intermediate accelerated solutions as generic late-time attractors in a modified Jordan-Brans-Dicke theory

    NASA Astrophysics Data System (ADS)

    Cid, Antonella; Leon, Genly; Leyva, Yoelsy

    2016-02-01

    In this paper we investigate the evolution of a Jordan-Brans-Dicke scalar field, Φ, with a power-law potential in the presence of a second scalar field, phi, with an exponential potential, in both the Jordan and the Einstein frames. We present the relation of our model with the induced gravity model with power-law potential and the integrability of this kind of models is discussed when the quintessence field phi is massless, and has a small velocity. The fact that for some fine-tuned values of the parameters we may get some integrable cosmological models, makes our choice of potentials very interesting. We prove that in Jordan-Brans-Dicke theory, the de Sitter solution is not a natural attractor. Instead, we show that the attractor in the Jordan frame corresponds to an ``intermediate accelerated'' solution of the form a(t) simeq eα1 tp1, as t → ∞ where α1 > 0 and 0 < p1 < 1, for a wide range of parameters. Furthermore, when we work in the Einstein frame we get that the attractor is also an ``intermediate accelerated'' solution of the form fraktur a(fraktur t) simeq eα2 fraktur tp2 as fraktur t → ∞ where α2 > 0 and 0

  1. Newton's method: A link between continuous and discrete solutions of nonlinear problems

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.

    1980-01-01

    Newton's method for nonlinear mechanics problems replaces the governing nonlinear equations by an iterative sequence of linear equations. When the linear equations are linear differential equations, the equations are usually solved by numerical methods. The iterative sequence in Newton's method can exhibit poor convergence properties when the nonlinear problem has multiple solutions for a fixed set of parameters, unless the iterative sequences are aimed at solving for each solution separately. The theory of the linear differential operators is often a better guide for solution strategies in applying Newton's method than the theory of linear algebra associated with the numerical analogs of the differential operators. In fact, the theory for the differential operators can suggest the choice of numerical linear operators. In this paper the method of variation of parameters from the theory of linear ordinary differential equations is examined in detail in the context of Newton's method to demonstrate how it might be used as a guide for numerical solutions.

  2. Minimally modified theories of gravity: a playground for testing the uniqueness of general relativity

    NASA Astrophysics Data System (ADS)

    Carballo-Rubio, Ra{úl; Di Filippo, Francesco; Liberati, Stefano

    2018-06-01

    In a recent paper [1], it was introduced a new class of gravitational theories with two local degrees of freedom. The existence of these theories apparently challenges the distinctive role of general relativity as the unique non-linear theory of massless spin-2 particles. Here we perform a comprehensive analysis of these theories with the aim of (i) understanding whether or not these are actually equivalent to general relativity, and (ii) finding the root of the variance in case these are not. We have found that a broad set of seemingly different theories actually pass all the possible tests of equivalence to general relativity (in vacuum) that we were able to devise, including the analysis of scattering amplitudes using on-shell techniques. These results are complemented with the observation that the only examples which are manifestly not equivalent to general relativity either do not contain gravitons in their spectrum, or are not guaranteed to include only two local degrees of freedom once radiative corrections are taken into account. Coupling to matter is also considered: we show that coupling these theories to matter in a consistent way is not as straightforward as one could expect. Minimal coupling, as well as the most straightforward non-minimal couplings, cannot be used. Therefore, before being able to address any issues in the presence of matter, it would be necessary to find a consistent (and in any case rather peculiar) coupling scheme.

  3. Reducing bias and analyzing variability in the time-left procedure.

    PubMed

    Trujano, R Emmanuel; Orduña, Vladimir

    2015-04-01

    The time-left procedure was designed to evaluate the psychophysical function for time. Although previous results indicated a linear relationship, it is not clear what role the observed bias toward the time-left option plays in this procedure and there are no reports of how variability changes with predicted indifference. The purposes of this experiment were to reduce bias experimentally, and to contrast the difference limen (a measure of variability around indifference) with predictions from scalar expectancy theory (linear timing) and behavioral economic model (logarithmic timing). A control group of 6 rats performed the original time-left procedure with C=60 s and S=5, 10,…, 50, 55 s, whereas a no-bias group of 6 rats performed the same conditions in a modified time-left procedure in which only a single response per choice trial was allowed. Results showed that bias was reduced for the no-bias group, observed indifference grew linearly with predicted indifference for both groups, and difference limen and Weber ratios decreased as expected indifference increased for the control group, which is consistent with linear timing, whereas for the no-bias group they remained constant, consistent with logarithmic timing. Therefore, the time-left procedure generates results consistent with logarithmic perceived time once bias is experimentally reduced. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Comparison of the Modified Biot-Gassmann Theory and the Kuster-Toksoz Theory in Predicting Elastic Velocities of Sediments

    USGS Publications Warehouse

    Lee, Myung W.

    2008-01-01

    Elastic velocities of water-saturated sandstones depend primarily on porosity, effective pressure, and the degree of consolidation. If the dry-frame moduli are known, from either measurements or theoretical calculations, the effect of pore water on velocities can be modeled using the Gassmann theory. Kuster and Toksoz developed a theory based on wave-scattering theory for a variety of inclusion shapes, which provides a means for calculating dry- or wet-frame moduli. In the Kuster-Toksoz theory, elastic wave velocities through different sediments can be predicted by using different aspect ratios of the sediment's pore space. Elastic velocities increase as the pore aspect ratio increases (larger pore aspect ratio describes a more spherical pore). On the basis of the velocity ratio, which is assumed to be a function of (1-0)n, and the Biot-Gassmann theory, Lee developed a semi-empirical equation for predicting elastic velocities, which is referred to as the modified Biot-Gassmann theory of Lee. In this formulation, the exponent n, which depends on the effective pressure and the degree of consolidation, controls elastic velocities; as n increases, elastic velocities decrease. Computationally, the role of exponent n in the modified Biot-Gassmann theory by Lee is similar to the role of pore aspect ratios in the Kuster-Toksoz theory. For consolidated sediments, either theory predicts accurate velocities. However, for unconsolidated sediments, the modified Biot-Gassmann theory by Lee performs better than the Kuster-Toksoz theory, particularly in predicting S-wave velocities.

  5. A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, Macarena; Baker, Tessa; Ferreira, Pedro G.

    We present a method for parametrizing linear cosmological perturbations of theories of gravity, around homogeneous and isotropic backgrounds. The method is sufficiently general and systematic that it can be applied to theories with any degrees of freedom (DoFs) and arbitrary gauge symmetries. In this paper, we focus on scalar-tensor and vector-tensor theories, invariant under linear coordinate transformations. In the case of scalar-tensor theories, we use our framework to recover the simple parametrizations of linearized Horndeski and ''Beyond Horndeski'' theories, and also find higher-derivative corrections. In the case of vector-tensor theories, we first construct the most general quadratic action for perturbationsmore » that leads to second-order equations of motion, which propagates two scalar DoFs. Then we specialize to the case in which the vector field is time-like (à la Einstein-Aether gravity), where the theory only propagates one scalar DoF. As a result, we identify the complete forms of the quadratic actions for perturbations, and the number of free parameters that need to be defined, to cosmologically characterize these two broad classes of theories.« less

  6. Combined solvent- and non-uniform temperature-programmed gradient liquid chromatography. I - A theoretical investigation.

    PubMed

    Gritti, Fabrice

    2016-11-18

    An new class of gradient liquid chromatography (GLC) is proposed and its performance is analyzed from a theoretical viewpoint. During the course of such gradients, both the solvent strength and the column temperature are simultaneously changed in time and space. The solvent and temperature gradients propagate along the chromatographic column at their own and independent linear velocity. This class of gradient is called combined solvent- and temperature-programmed gradient liquid chromatography (CST-GLC). The general expressions of the retention time, retention factor, and of the temporal peak width of the analytes at elution in CST-GLC are derived for linear solvent strength (LSS) retention models, modified van't Hoff retention behavior, linear and non-distorted solvent gradients, and for linear temperature gradients. In these conditions, the theory predicts that CST-GLC is equivalent to a unique and apparent dynamic solvent gradient. The apparent solvent gradient steepness is the sum of the solvent and temperature steepness. The apparent solvent linear velocity is the reciprocal of the steepness-averaged sum of the reciprocal of the actual solvent and temperature linear velocities. The advantage of CST-GLC over conventional GLC is demonstrated for the resolution of protein digests (peptide mapping) when applying smooth, retained, and linear acetonitrile gradients in combination with a linear temperature gradient (from 20°C to 90°C) using 300μm×150mm capillary columns packed with sub-2 μm particles. The benefit of CST-GLC is demonstrated when the temperature gradient propagates at the same velocity as the chromatographic speed. The experimental proof-of-concept for the realization of temperature ramps propagating at a finite and constant linear velocity is also briefly described. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. An enstrophy-based linear and nonlinear receptivity theory

    NASA Astrophysics Data System (ADS)

    Sengupta, Aditi; Suman, V. K.; Sengupta, Tapan K.; Bhaumik, Swagata

    2018-05-01

    In the present research, a new theory of instability based on enstrophy is presented for incompressible flows. Explaining instability through enstrophy is counter-intuitive, as it has been usually associated with dissipation for the Navier-Stokes equation (NSE). This developed theory is valid for both linear and nonlinear stages of disturbance growth. A previously developed nonlinear theory of incompressible flow instability based on total mechanical energy described in the work of Sengupta et al. ["Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003)] is used to compare with the present enstrophy based theory. The developed equations for disturbance enstrophy and disturbance mechanical energy are derived from NSE without any simplifying assumptions, as compared to other classical linear/nonlinear theories. The theory is tested for bypass transition caused by free stream convecting vortex over a zero pressure gradient boundary layer. We explain the creation of smaller scales in the flow by a cascade of enstrophy, which creates rotationality, in general inhomogeneous flows. Linear and nonlinear versions of the theory help explain the vortex-induced instability problem under consideration.

  8. Density perturbations in general modified gravitational theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Felice, Antonio; Tsujikawa, Shinji; Mukohyama, Shinji

    2010-07-15

    We derive the equations of linear cosmological perturbations for the general Lagrangian density f(R,{phi},X)/2+L{sub c}, where R is a Ricci scalar, {phi} is a scalar field, and X=-{partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}/}2 is a field kinetic energy. We take into account a nonlinear self-interaction term L{sub c}={xi}({phi}) {open_square}{phi}({partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}}) recently studied in the context of ''Galileon'' cosmology, which keeps the field equations at second order. Taking into account a scalar-field mass explicitly, the equations of matter density perturbations and gravitational potentials are obtained under a quasistatic approximation on subhorizon scales. We also derive conditions for the avoidance of ghosts and Laplacianmore » instabilities associated with propagation speeds. Our analysis includes most of modified gravity models of dark energy proposed in literature; and thus it is convenient to test the viability of such models from both theoretical and observational points of view.« less

  9. Correlation between defect transition levels and thermoelectric operational temperature of doped CrSi2

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek; Pandey, Tribhuwan

    2014-03-01

    The performance of a thermoelectric material is quantified by figure of merit ZT. The challenge in achieving high ZT value requires simultaneously high thermopower, high electrical conductivity and low thermal conductivity at optimal carrier concentration. So far doping is the most versatile approach used for modifying thermoelectric properties. Previous studies have shown that doping can significantly improve the thermoelectric performance, however the tuning the operating temperature of a thermoelectric device is a main issue. Using first principles density functional theory, we report for CrSi2, a linear relationship between thermodynamic charge state transition levels of defects and temperature at which thermopower peaks. We show for doped CrSi2 that the peak of thermopower occurs at the temperature Tm, which corresponds to the position of defect transition level. Therefore, by modifying the defect transition level, a thermoelectric material with a given operational temperature can be designed. The authors thankfully acknowledge support from ADA under NpMASS.

  10. Function-Space-Based Solution Scheme for the Size-Modified Poisson-Boltzmann Equation in Full-Potential DFT.

    PubMed

    Ringe, Stefan; Oberhofer, Harald; Hille, Christoph; Matera, Sebastian; Reuter, Karsten

    2016-08-09

    The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol.

  11. Modified computation of the nozzle damping coefficient in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Liu, Peijin; Wang, Muxin; Yang, Wenjing; Gupta, Vikrant; Guan, Yu; Li, Larry K. B.

    2018-02-01

    In solid rocket motors, the bulk advection of acoustic energy out of the nozzle constitutes a significant source of damping and can thus influence the thermoacoustic stability of the system. In this paper, we propose and test a modified version of a historically accepted method of calculating the nozzle damping coefficient. Building on previous work, we separate the nozzle from the combustor, but compute the acoustic admittance at the nozzle entry using the linearized Euler equations (LEEs) rather than with short nozzle theory. We compute the combustor's acoustic modes also with the LEEs, taking the nozzle admittance as the boundary condition at the combustor exit while accounting for the mean flow field in the combustor using an analytical solution to Taylor-Culick flow. We then compute the nozzle damping coefficient via a balance of the unsteady energy flux through the nozzle. Compared with established methods, the proposed method offers competitive accuracy at reduced computational costs, helping to improve predictions of thermoacoustic instability in solid rocket motors.

  12. Modifying Surface Fluctuations of Polymer Melt Films with Substrate Modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yang; He, Qiming; Zhang, Fan

    Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin, melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4R g thick melt films of 131 kg/mol linear PS on silicon and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity. However, when the film thickness is reduced to ~3R g, confinement effects are evident. The surfacemore » fluctuations are slower than predicted using the HCT, and the confinement effect for the PS on silicon is larger than that for the PS on the plasma polymerized film. This deviation is thus due to a difference in the thicknesses of the strongly adsorbed layers at the substrate which are impacted by the substrate surface energy.« less

  13. Shallow subsurface storm flow in a forested headwater catchment: Observations and modeling using a modified TOPMODEL

    USGS Publications Warehouse

    Scanlon, Todd M.; Raffensperger, Jeff P.; Hornberger, George M.; Clapp, Roger B.

    2000-01-01

    Transient, perched water tables in the shallow subsurface are observed at the South Fork Brokenback Run catchment in Shenandoah National Park, Virginia. Crest piezometers installed along a hillslope transect show that the development of saturated conditions in the upper 1.5 m of the subsurface is controlled by total precipitation and antecedent conditions, not precipitation intensity, although soil heterogeneities strongly influence local response. The macroporous subsurface storm flow zone provides a hydrological pathway for rapid runoff generation apart from the underlying groundwater zone, a conceptualization supported by the two‐storage system exhibited by hydrograph recession analysis. A modified version of TOPMODEL is used to simulate the observed catchment dynamics. In this model, generalized topographic index theory is applied to the subsurface storm flow zone to account for logarithmic storm flow recessions, indicative of linearly decreasing transmissivity with depth. Vertical drainage to the groundwater zone is required, and both subsurface reservoirs are considered to contribute to surface saturation.

  14. Modifying Surface Fluctuations of Polymer Melt Films with Substrate Modification

    DOE PAGES

    Zhou, Yang; He, Qiming; Zhang, Fan; ...

    2017-08-14

    Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin, melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4R g thick melt films of 131 kg/mol linear PS on silicon and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity. However, when the film thickness is reduced to ~3R g, confinement effects are evident. The surfacemore » fluctuations are slower than predicted using the HCT, and the confinement effect for the PS on silicon is larger than that for the PS on the plasma polymerized film. This deviation is thus due to a difference in the thicknesses of the strongly adsorbed layers at the substrate which are impacted by the substrate surface energy.« less

  15. Comparison of Linear Induction Motor Theories for the LIMRV and TLRV Motors

    DOT National Transportation Integrated Search

    1978-01-01

    The Oberretl, Yamamura, and Mosebach theories of the linear induction motor are described and also applied to predict performance characteristics of the TLRV & LIMRV linear induction motors. The effect of finite motor width and length on performance ...

  16. A robust algorithm for optimisation and customisation of fractal dimensions of time series modified by nonlinearly scaling their time derivatives: mathematical theory and practical applications.

    PubMed

    Fuss, Franz Konstantin

    2013-01-01

    Standard methods for computing the fractal dimensions of time series are usually tested with continuous nowhere differentiable functions, but not benchmarked with actual signals. Therefore they can produce opposite results in extreme signals. These methods also use different scaling methods, that is, different amplitude multipliers, which makes it difficult to compare fractal dimensions obtained from different methods. The purpose of this research was to develop an optimisation method that computes the fractal dimension of a normalised (dimensionless) and modified time series signal with a robust algorithm and a running average method, and that maximises the difference between two fractal dimensions, for example, a minimum and a maximum one. The signal is modified by transforming its amplitude by a multiplier, which has a non-linear effect on the signal's time derivative. The optimisation method identifies the optimal multiplier of the normalised amplitude for targeted decision making based on fractal dimensions. The optimisation method provides an additional filter effect and makes the fractal dimensions less noisy. The method is exemplified by, and explained with, different signals, such as human movement, EEG, and acoustic signals.

  17. A Robust Algorithm for Optimisation and Customisation of Fractal Dimensions of Time Series Modified by Nonlinearly Scaling Their Time Derivatives: Mathematical Theory and Practical Applications

    PubMed Central

    2013-01-01

    Standard methods for computing the fractal dimensions of time series are usually tested with continuous nowhere differentiable functions, but not benchmarked with actual signals. Therefore they can produce opposite results in extreme signals. These methods also use different scaling methods, that is, different amplitude multipliers, which makes it difficult to compare fractal dimensions obtained from different methods. The purpose of this research was to develop an optimisation method that computes the fractal dimension of a normalised (dimensionless) and modified time series signal with a robust algorithm and a running average method, and that maximises the difference between two fractal dimensions, for example, a minimum and a maximum one. The signal is modified by transforming its amplitude by a multiplier, which has a non-linear effect on the signal's time derivative. The optimisation method identifies the optimal multiplier of the normalised amplitude for targeted decision making based on fractal dimensions. The optimisation method provides an additional filter effect and makes the fractal dimensions less noisy. The method is exemplified by, and explained with, different signals, such as human movement, EEG, and acoustic signals. PMID:24151522

  18. Stable and unstable roots of ion temperature gradient driven mode using curvature modified plasma dispersion functions

    NASA Astrophysics Data System (ADS)

    Gültekin, Ö.; Gürcan, Ö. D.

    2018-02-01

    Basic, local kinetic theory of ion temperature gradient driven (ITG) mode, with adiabatic electrons is reconsidered. Standard unstable, purely oscillating as well as damped solutions of the local dispersion relation are obtained using a bracketing technique that uses the argument principle. This method requires computing the plasma dielectric function and its derivatives, which are implemented here using modified plasma dispersion functions with curvature and their derivatives, and allows bracketing/following the zeros of the plasma dielectric function which corresponds to different roots of the ITG dispersion relation. We provide an open source implementation of the derivatives of modified plasma dispersion functions with curvature, which are used in this formulation. Studying the local ITG dispersion, we find that near the threshold of instability the unstable branch is rather asymmetric with oscillating solutions towards lower wave numbers (i.e. drift waves), and damped solutions toward higher wave numbers. This suggests a process akin to inverse cascade by coupling to the oscillating branch towards lower wave numbers may play a role in the nonlinear evolution of the ITG, near the instability threshold. Also, using the algorithm, the linear wave diffusion is estimated for the marginally stable ITG mode.

  19. Compensator improvement for multivariable control systems

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.; Mcdaniel, W. L., Jr.; Gresham, L. L.

    1977-01-01

    A theory and the associated numerical technique are developed for an iterative design improvement of the compensation for linear, time-invariant control systems with multiple inputs and multiple outputs. A strict constraint algorithm is used in obtaining a solution of the specified constraints of the control design. The result of the research effort is the multiple input, multiple output Compensator Improvement Program (CIP). The objective of the Compensator Improvement Program is to modify in an iterative manner the free parameters of the dynamic compensation matrix so that the system satisfies frequency domain specifications. In this exposition, the underlying principles of the multivariable CIP algorithm are presented and the practical utility of the program is illustrated with space vehicle related examples.

  20. A Review of Hypersonic Boundary Layer Stability Experiments in a Quiet Mach 6 Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.

    1997-01-01

    Three recent experimental studies of transition on cones with adverse pressure gradient produced by a flared afterbody and with the additive stability modifiers of wall cooling, angle of attack and bluntness are reviewed. All tests were conducted in a quiet Mach 6 wind tunnel. The dominant instability was found to be the second mode. For the cases examined with linear stability theory, the N factors at mode saturation were in the range of 8.5 to 11. Evidence of a combined second-mode/Gortler transition process was found. Mean, rms and spectral freestream data for the quiet facility is presented and the role of low frequency freestream noise is discussed.

  1. Gushing metal chain

    NASA Astrophysics Data System (ADS)

    Belyaev, Alexander; Sukhanov, Alexander; Tsvetkov, Alexander

    2016-03-01

    This article addresses the problem in which a chain falls from a glass from some height. This phenomenon demonstrates a paradoxical rise of the chain over the glass. To explain this effect, an initial hypothesis and an appropriate theory are proposed for calculating the steady fall parameters of the chain. For this purpose, the modified Cayley's problem of falling chain given its rise due to the centrifugal force of upward inertia is solved. Results show that the lift caused by an increase in linear density at the part of chain where it is being bent (the upper part) is due to the convergence of the chain balls to one another. The experiments confirm the obtained estimates of the lifting chain.

  2. F100 Multivariable Control Synthesis Program. Computer Implementation of the F100 Multivariable Control Algorithm

    NASA Technical Reports Server (NTRS)

    Soeder, J. F.

    1983-01-01

    As turbofan engines become more complex, the development of controls necessitate the use of multivariable control techniques. A control developed for the F100-PW-100(3) turbofan engine by using linear quadratic regulator theory and other modern multivariable control synthesis techniques is described. The assembly language implementation of this control on an SEL 810B minicomputer is described. This implementation was then evaluated by using a real-time hybrid simulation of the engine. The control software was modified to run with a real engine. These modifications, in the form of sensor and actuator failure checks and control executive sequencing, are discussed. Finally recommendations for control software implementations are presented.

  3. Scale-Invariant Forms of Conservation Equations in Reactive Fields and a Modified Hydro-Thermo-Diffusive Theory of Laminar Flames

    NASA Technical Reports Server (NTRS)

    Sohrab, Siavash H.; Piltch, Nancy (Technical Monitor)

    2000-01-01

    A scale-invariant model of statistical mechanics is applied to present invariant forms of mass, energy, linear, and angular momentum conservation equations in reactive fields. The resulting conservation equations at molecular-dynamic scale are solved by the method of large activation energy asymptotics to describe the hydro-thermo-diffusive structure of laminar premixed flames. The predicted temperature and velocity profiles are in agreement with the observations. Also, with realistic physico-chemical properties and chemical-kinetic parameters for a single-step overall combustion of stoichiometric methane-air premixed flame, the laminar flame propagation velocity of 42.1 cm/s is calculated in agreement with the experimental value.

  4. A Modified Kirchhoff plate theory for Free Vibration analysis of functionally graded material plates using meshfree method

    NASA Astrophysics Data System (ADS)

    Nguyen Van Do, Vuong

    2018-04-01

    In this paper, a modified Kirchhoff theory is presented for free vibration analyses of functionally graded material (FGM) plate based on modified radial point interpolation method (RPIM). The shear deformation effects are taken account into modified theory to ignore the locking phenomenon of thin plates. Due to the proposed refined plate theory, the number of independent unknowns reduces one variable and exists with four degrees of freedom per node. The simulated free vibration results employed by the modified RPIM are compared with the other analytical solutions to verify the effectiveness and the accuracy of the developed mesh-free method. Detail parametric studies of the proposed method are then conducted including the effectiveness of thickness ratio, boundary condition and material inhomogeneity on the sample problems of square plates. Results illustrated that the modified mesh-free RPIM can effectively predict the numerical calculation as compared to the exact solutions. The obtained numerical results are indicated that the proposed method are stable and well accurate prediction to evaluate with other published analyses.

  5. CHAM: a fast algorithm of modelling non-linear matter power spectrum in the sCreened HAlo Model

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Liu, Xue-Wen; Cai, Rong-Gen

    2018-05-01

    We present a fast numerical screened halo model algorithm (CHAM, which stands for the sCreened HAlo Model) for modelling non-linear power spectrum for the alternative models to Λ cold dark matter. This method has three obvious advantages. First of all, it is not being restricted to a specific dark energy/modified gravity model. In principle, all of the screened scalar-tensor theories can be applied. Secondly, the least assumptions are made in the calculation. Hence, the physical picture is very easily understandable. Thirdly, it is very predictable and does not rely on the calibration from N-body simulation. As an example, we show the case of the Hu-Sawicki f(R) gravity. In this case, the typical CPU time with the current parallel PYTHON script (eight threads) is roughly within 10 min. The resulting spectra are in a good agreement with N-body data within a few percentage accuracy up to k ˜ 1 h Mpc-1.

  6. Transmission Measurement of the Third-Order Susceptibility of Gold

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Yoon, Youngkwon; Boyd, Robert W.; Crooks, Richard M.; George, Michael

    1999-01-01

    Gold nanoparticle composites are known to display large optical nonlinearities. In order to assess the validity of generalized effective medium theories (EMT's) for describing the linear and nonlinear optical properties of metal nanoparticle composites, knowledge of the linear and nonlinear susceptibilities of the constituent materials is a prerequisite. In this study the inherent nonlinearity of the metal is measured directly (rather than deduced from a suitable EMT) using a very thin gold film. Specifically, we have used the z-scan technique at a wavelength near the transmission window of bulk gold to measure the third-order susceptibility of a continuous thin gold film deposited on a quartz substrate surface-modified with a self-assembled monolayer to promote adhesion and uniformity without affecting the optical properties. We compare our results with predictions which ascribe the nonlinear response to a Fermi-smearing mechanism. Further, we note that the sign of the nonlinear susceptibility is reversed from that of gold nanoparticle composites.

  7. Methods of sequential estimation for determining initial data in numerical weather prediction. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cohn, S. E.

    1982-01-01

    Numerical weather prediction (NWP) is an initial-value problem for a system of nonlinear differential equations, in which initial values are known incompletely and inaccurately. Observational data available at the initial time must therefore be supplemented by data available prior to the initial time, a problem known as meteorological data assimilation. A further complication in NWP is that solutions of the governing equations evolve on two different time scales, a fast one and a slow one, whereas fast scale motions in the atmosphere are not reliably observed. This leads to the so called initialization problem: initial values must be constrained to result in a slowly evolving forecast. The theory of estimation of stochastic dynamic systems provides a natural approach to such problems. For linear stochastic dynamic models, the Kalman-Bucy (KB) sequential filter is the optimal data assimilation method, for linear models, the optimal combined data assimilation-initialization method is a modified version of the KB filter.

  8. How does non-linear dynamics affect the baryon acoustic oscillation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, Naonori S.; Spergel, David N., E-mail: nao.s.sugiyama@gmail.com, E-mail: dns@astro.princeton.edu

    2014-02-01

    We study the non-linear behavior of the baryon acoustic oscillation in the power spectrum and the correlation function by decomposing the dark matter perturbations into the short- and long-wavelength modes. The evolution of the dark matter fluctuations can be described as a global coordinate transformation caused by the long-wavelength displacement vector acting on short-wavelength matter perturbation undergoing non-linear growth. Using this feature, we investigate the well known cancellation of the high-k solutions in the standard perturbation theory. While the standard perturbation theory naturally satisfies the cancellation of the high-k solutions, some of the recently proposed improved perturbation theories do notmore » guarantee the cancellation. We show that this cancellation clarifies the success of the standard perturbation theory at the 2-loop order in describing the amplitude of the non-linear power spectrum even at high-k regions. We propose an extension of the standard 2-loop level perturbation theory model of the non-linear power spectrum that more accurately models the non-linear evolution of the baryon acoustic oscillation than the standard perturbation theory. The model consists of simple and intuitive parts: the non-linear evolution of the smoothed power spectrum without the baryon acoustic oscillations and the non-linear evolution of the baryon acoustic oscillations due to the large-scale velocity of dark matter and due to the gravitational attraction between dark matter particles. Our extended model predicts the smoothing parameter of the baryon acoustic oscillation peak at z = 0.35 as ∼ 7.7Mpc/h and describes the small non-linear shift in the peak position due to the galaxy random motions.« less

  9. Modified Hartree-Fock-Bogoliubov theory at finite temperature

    NASA Astrophysics Data System (ADS)

    Dinh Dang, Nguyen; Arima, Akito

    2003-07-01

    The modified Hartree-Fock-Bogoliubov (MHFB) theory at finite temperature is derived, which conserves the unitarity relation of the particle-density matrix. This is achieved by constructing a modified-quasiparticle-density matrix, where the fluctuation of the quasiparticle number is microscopically built in. This matrix can be directly obtained from the usual quasiparticle-density matrix by applying the secondary Bogoliubov transformation, which includes the quasiparticle-occupation number. It is shown that, in the limit of constant pairing parameter, the MHFB theory yields the previously obtained modified BCS (MBCS) equations. It is also proved that the modified quasiparticle-random-phase approximation, which is based on the MBCS quasiparticle excitations, conserves the Ikeda sum rule. The numerical calculations of the pairing gap, heat capacity, level density, and level-density parameter within the MBCS theory are carried out for 120Sn. The results show that the superfluid-normal phase transition is completely washed out. The applicability of the MBCS up to a temperature as high as T˜5 MeV is analyzed in detail.

  10. Analytical methods for describing charged particle dynamics in general focusing lattices using generalized Courant-Snyder theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Hong; Davidson, Ronald C.; Burby, Joshua W.

    2014-04-08

    The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is parametrized using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic rotation, or a Uð2Þ element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimensions. Othermore » components of the original CS theory, such as the transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant) all have their counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space optics and phase space quantum mechanics has been recently realized. This gauge fixing also symmetrizes the generalized envelope equation and expresses the theory using only the generalized Twiss function β. The generalized phase advance completely determines the spectral and structural stability properties of a general focusing lattice. For structural stability, the generalized CS theory enables application of the Krein-Moser theory to greatly simplify the stability analysis. The generalized CS theory provides an effective tool to study coupled dynamics and to discover more optimized lattice designs in the larger parameter space of general focusing lattices.« less

  11. Relativistic viscoelastic fluid mechanics.

    PubMed

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  12. Relativistic viscoelastic fluid mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-15

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for themore » propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.« less

  13. General Relativity solutions in modified gravity

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Minamitsuji, Masato

    2018-06-01

    Recent gravitational wave observations of binary black hole mergers and a binary neutron star merger by LIGO and Virgo Collaborations associated with its optical counterpart constrain deviation from General Relativity (GR) both on strong-field regime and cosmological scales with high accuracy, and further strong constraints are expected by near-future observations. Thus, it is important to identify theories of modified gravity that intrinsically possess the same solutions as in GR among a huge number of theories. We clarify the three conditions for theories of modified gravity to allow GR solutions, i.e., solutions with the metric satisfying the Einstein equations in GR and the constant profile of the scalar fields. Our analysis is quite general, as it applies a wide class of single-/multi-field scalar-tensor theories of modified gravity in the presence of matter component, and any spacetime geometry including cosmological background as well as spacetime around black hole and neutron star, for the latter of which these conditions provide a necessary condition for no-hair theorem. The three conditions will be useful for further constraints on modified gravity theories as they classify general theories of modified gravity into three classes, each of which possesses i) unique GR solutions (i.e., no-hair cases), ii) only hairy solutions (except the cases that GR solutions are realized by cancellation between singular coupling functions in the Euler-Lagrange equations), and iii) both GR and hairy solutions, for the last of which one of the two solutions may be selected dynamically.

  14. Cooperative unfolding of apolipoprotein A-1 induced by chemical denaturation.

    PubMed

    Eckhardt, D; Li-Blatter, X; Schönfeld, H-J; Heerklotz, H; Seelig, J

    2018-05-25

    Apolipoprotein A-1 (Apo A-1) plays an important role in lipid transfer and obesity. Chemical unfolding of α-helical Apo A-1 is induced with guanidineHCl and monitored with differential scanning calorimetry (DSC) and CD spectroscopy. The unfolding enthalpy and the midpoint temperature of unfolding decrease linearly with increasing guanidineHCl concentration, caused by the weak binding of denaturant. At room temperature, binding of 50-60 molecules guanidineHCl leads to a complete Apo A-1 unfolding. The entropy of unfolding decreases to a lesser extent than the unfolding enthalpy. Apo A-1 chemical unfolding is a dynamic multi-state equilibrium that is analysed with the Zimm-Bragg theory modified for chemical unfolding. The chemical Zimm-Bragg theory predicts the denaturant binding constant K D and the protein cooperativity σ. Chemical unfolding of Apo A-1 is two orders of magnitude less cooperative than thermal unfolding. The free energy of thermal unfolding is ~0.2 kcal/mol per amino acid residue and ~1.0 kcal/mol for chemical unfolding at room temperature. The Zimm-Bragg theory calculates conformational probabilities and the chemical Zimm-Bragg theory predicts stretches of α-helical segments in dynamic equilibrium, unfolding and refolding independently and fast. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Nonlocal modification and quantum optical generalization of effective-medium theory for metamaterials

    NASA Astrophysics Data System (ADS)

    Wubs, Martijn; Yan, Wei; Amooghorban, Ehsan; Mortensen, N. Asger

    2013-09-01

    A well-known challenge for fabricating metamaterials is to make unit cells significantly smaller than the operating wavelength of light, so one can be sure that effective-medium theories apply. But do they apply? Here we show that nonlocal response in the metal constituents of the metamaterial leads to modified effective parameters for strongly subwavelength unit cells. For infinite hyperbolic metamaterials, nonlocal response gives a very large finite upper bound to the optical density of states that otherwise would diverge. Moreover, for finite hyperbolic metamaterials we show that nonlocal response affects their operation as superlenses, and interestingly that sometimes nonlocal theory predicts the better imaging. Finally, we discuss how to describe metamaterials effectively in quantum optics. Media with loss or gain have associated quantum noise, and the question is whether the effective index is enough to describe this quantum noise effectively. We show that this is true for passive metamaterials, but not for metamaterials where loss is compensated by linear gain. For such loss-compensated metamaterials we present a quantum optical effective medium theory with an effective noise photon distribution as an additional parameter. Interestingly, we find that at the operating frequency, metamaterials with the same effective index but with different amounts of loss compensation can be told apart in quantum optics.

  16. Time-resolved particle image velocimetry measurements of the 3D single-mode Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Xu, Qian

    The Richtmyer-Meshkov Instability (RMI) (Commun. Pure Appl. Math 23, 297-319, 1960; Izv. Akad. Nauk. SSSR Maekh. Zhidk. Gaza. 4, 151-157, 1969) occurs due to an impulsive acceleration acting on a perturbed interface between two fluids of different densities. In the experiments presented in this thesis, single mode 3D RMI experiments are performed. An oscillating speaker generates a single mode sinusoidal initial perturbation at an interface of two gases, air and SF6. A Mach 1.19 shock wave accelerates the interface and generates the Richtmyer-Meshkov Instability. Both gases are seeded with propylene glycol particles which are illuminated by an Nd: YLF pulsed laser. Three high-speed video cameras record image sequences of the experiment. Particle Image Velocimetry (PIV) is applied to measure the velocity field. Measurements of the amplitude for both spike and bubble are obtained, from which the growth rate is measured. For both spike and bubble experiments, amplitude and growth rate match the linear stability theory at early time, but fall into a non-linear region with amplitude measurements lying between the modified 3D Sadot et al. model ( Phys. Rev. Lett. 80, 1654-1657, 1998) and the Zhang & Sohn model (Phys. Fluids 9. 1106-1124, 1997; Z. Angew. Math Phys 50. 1-46, 1990) at late time. Amplitude and growth rate curves are found to lie above the modified 3D Sadot et al. model and below Zhang & Sohn model for the spike experiments. Conversely, for the bubble experiments, both amplitude and growth rate curves lie above the Zhang & Sohn model, and below the modified 3D Sadot et al. model. Circulation is also calculated using the vorticity and velocity fields from the PIV measurements. The calculated circulation are approximately equal and found to grow with time, a result that differs from the modified Jacobs and Sheeley's circulation model (Phys. Fluids 8, 405-415, 1996).

  17. Tensor-vector-scalar-modified gravity: from small scale to cosmology.

    PubMed

    Bekenstein, Jacob D

    2011-12-28

    The impressive success of the standard cosmological model has suggested to many that its ingredients are all that one needs to explain galaxies and their systems. I summarize a number of known problems with this programme. They might signal the failure of standard gravity theory on galaxy scales. The requisite hints as to the alternative gravity theory may lie with the modified Newtonian dynamics (MOND) paradigm, which has proved to be an effective summary of galaxy phenomenology. A simple nonlinear modified gravity theory does justice to MOND at the non-relativistic level, but cannot be consistently promoted to relativistic status. The obstacles were first side-stepped with the formulation of tensor-vector-scalar theory (TeVeS), a covariant-modified gravity theory. I review its structure, its MOND and Newtonian limits, and its performance in the face of galaxy phenomenology. I also summarize features of TeVeS cosmology and describe the confrontation with data from strong and weak gravitational lensing.

  18. Research in Applied Mathematics Related to Mathematical System Theory.

    DTIC Science & Technology

    1977-06-01

    This report deals with research results obtained in the field of mathematical system theory . Special emphasis was given to the following areas: (1...Linear system theory over a field: parametrization of multi-input, multi-output systems and the geometric structure of classes of systems of...constant dimension. (2) Linear systems over a ring: development of the theory for very general classes of rings. (3) Nonlinear system theory : basic

  19. Large-Scale Linear Optimization through Machine Learning: From Theory to Practical System Design and Implementation

    DTIC Science & Technology

    2016-08-10

    AFRL-AFOSR-JP-TR-2016-0073 Large-scale Linear Optimization through Machine Learning: From Theory to Practical System Design and Implementation ...2016 4.  TITLE AND SUBTITLE Large-scale Linear Optimization through Machine Learning: From Theory to Practical System Design and Implementation 5a...performances on various machine learning tasks and it naturally lends itself to fast parallel implementations . Despite this, very little work has been

  20. A reciprocal theorem for a mixture theory. [development of linearized theory of interacting media

    NASA Technical Reports Server (NTRS)

    Martin, C. J.; Lee, Y. M.

    1972-01-01

    A dynamic reciprocal theorem for a linearized theory of interacting media is developed. The constituents of the mixture are a linear elastic solid and a linearly viscous fluid. In addition to Steel's field equations, boundary conditions and inequalities on the material constants that have been shown by Atkin, Chadwick and Steel to be sufficient to guarantee uniqueness of solution to initial-boundary value problems are used. The elements of the theory are given and two different boundary value problems are considered. The reciprocal theorem is derived with the aid of the Laplace transform and the divergence theorem and this section is concluded with a discussion of the special cases which arise when one of the constituents of the mixture is absent.

  1. Study on longitudinal dispersion relation in one-dimensional relativistic plasma: Linear theory and Vlasov simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H.; Wu, S. Z.; Zhou, C. T.

    2013-09-15

    The dispersion relation of one-dimensional longitudinal plasma waves in relativistic homogeneous plasmas is investigated with both linear theory and Vlasov simulation in this paper. From the Vlasov-Poisson equations, the linear dispersion relation is derived for the proper one-dimensional Jüttner distribution. Numerically obtained linear dispersion relation as well as an approximate formula for plasma wave frequency in the long wavelength limit is given. The dispersion of longitudinal wave is also simulated with a relativistic Vlasov code. The real and imaginary parts of dispersion relation are well studied by varying wave number and plasma temperature. Simulation results are in agreement with establishedmore » linear theory.« less

  2. A highly sensitive and selective sensor based on a graphene-coated carbon paste electrode modified with a computationally designed boron-embedded duplex molecularly imprinted hybrid membrane for the sensing of lamotrigine.

    PubMed

    Wang, Hongjuan; Qian, Duo; Xiao, Xilin; Gao, Shuqin; Cheng, Jianlin; He, Bo; Liao, Lifu; Deng, Jian

    2017-08-15

    An innovative electrochemical sensor, based on a carbon paste electrode (CPE) modified with graphene (GR) and a boron-embedded duplex molecularly imprinted hybrid membrane (B-DMIHM), was fabricated for the highly sensitive and selective determination of lamotrigine (LMT). Density functional theory (DFT) was employed to study the interactions between the template and monomers to screen appropriate functional monomers for rational design of the B-DMIHM. The distinct synergic effect of GR and B-DMIHM was evidenced by the positive shift of the reduction peak potential of LMT at B-DMIHM/GR modified CPE (B-DMIHM/GR/CPE) by about 300mV, and the 13-fold amplification of the peak current, compared to a bare carbon paste electrode (CPE). The electrochemical reduction mechanism of lamotrigine was investigated by different voltammetric techniques. It was illustrated that square wave voltammetry (SWV) was more sensitive than different pulse voltammetry (DPV) for the quantitative analysis of LMT. Thereafter, a highly sensitive electroanalytical method for LMT was established by SWV at B-DMIHM/GR/CPE with a good linear relationship from 5.0×10 -8 to 5.0×10 -5 and 5.0×10 -5 to 3.0×10 -4 molL -1 with a lower detection limit (1.52×10 -9 molL -1 ) based on the lower linear range(S/N=3). The practical application of the sensor was demonstrated by determining the concentration of LMT in pharmaceutical and biological samples with good precision (RSD 1.04-4.41%) and acceptable recoveries (92.40-107.0%). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The efficacy of a modified Theory of Reasoned Action to explain gambling behavior in college students.

    PubMed

    Thrasher, Robert G; Andrew, Damon P S; Mahony, Daniel F

    2011-09-01

    Recently, Thrasher et al. (College Student Affairs Journal 27(1): 57-75, 2007) explored the efficacy of the Theory of Reasoned Action (TRA; Ajzen and Fishbein, Attitudes, personality, and behavior, 1980) in explaining gambling behavior of college students. However, their study found the TRA only predicted small amounts of variance in gambling intentions. Heeding their call to enhance the efficacy of the TRA through the addition of explanatory variables to the model, the present study incorporated gambling motivations and locus of control as moderating variables within the TRA to test the potential of a modified TRA in explaining gambling behavior of college students. A total of 345 students at a major metropolitan research university in the Midwest volunteered to participate in the study. A series of hierarchical linear regressions indicated intrinsic motivation to accomplish (p = .002) significantly moderated the relationship between gambling attitudes and gambling intentions. Further, internal locus of control (p < .001), chance locus of control (p < .001), and powerful others locus of control (p < .001) also significantly moderated the relationship between gambling attitudes and gambling intentions. The significant impact of the moderating variables on the relationship between gambling attitudes and intentions suggests intrinsic motivation and locus of control can alter the impact of the relationship between gambling attitudes and gambling intentions.

  4. TEMPERATURE-DEPENDENT VISCOELASTIC PROPERTIES OF THE HUMAN SUPRASPINATUS TENDON

    PubMed Central

    Huang, Chun-Yuh; Wang, Vincent M.; Flatow, Evan L.; Mow, Van C.

    2009-01-01

    Temperature effects on the viscoelastic properties of the human supraspinatus tendon were investigated using static stress-relaxation experiments and Quasi-Linear Viscoelastic (QLV) theory. Twelve supraspinatus tendons were randomly assigned to one of two test groups for tensile testing using the following sequence of temperatures: (1) 37°C, 27°C, and 17°C (Group I, n=6), or (2) 42°C, 32°C, and 22°C (Group II, n=6). QLV parameter C was found to increase at elevated temperatures, suggesting greater viscous mechanical behavior at higher temperatures. Elastic parameters A and B showed no significant difference among the six temperatures studied, implying that the viscoelastic stress response of the supraspinatus tendon is not sensitive to temperature over shorter testing durations. Using regression analysis, an exponential relationship between parameter C and test temperature was implemented into QLV theory to model temperature-dependent viscoelastic behavior. This modified approach facilitates the theoretical determination of the viscoelastic behavior of tendons at arbitrary temperatures. PMID:19159888

  5. Momentum and charge transport in non-relativistic holographic fluids from Hořava gravity

    NASA Astrophysics Data System (ADS)

    Davison, Richard A.; Grozdanov, Sašo; Janiszewski, Stefan; Kaminski, Matthias

    2016-11-01

    We study the linearized transport of transverse momentum and charge in a conjectured field theory dual to a black brane solution of Hořava gravity with Lifshitz exponent z = 1. As expected from general hydrodynamic reasoning, we find that both of these quantities are diffusive over distance and time scales larger than the inverse temperature. We compute the diffusion constants and conductivities of transverse momentum and charge, as well the ratio of shear viscosity to entropy density, and find that they differ from their relativistic counterparts. To derive these results, we propose how the holographic dictionary should be modified to deal with the multiple horizons and differing propagation speeds of bulk excitations in Hořava gravity. When possible, as a check on our methods and results, we use the covariant Einstein-Aether formulation of Hořava gravity, along with field redefinitions, to re-derive our results from a relativistic bulk theory.

  6. Limitations of inclusive fitness.

    PubMed

    Allen, Benjamin; Nowak, Martin A; Wilson, Edward O

    2013-12-10

    Until recently, inclusive fitness has been widely accepted as a general method to explain the evolution of social behavior. Affirming and expanding earlier criticism, we demonstrate that inclusive fitness is instead a limited concept, which exists only for a small subset of evolutionary processes. Inclusive fitness assumes that personal fitness is the sum of additive components caused by individual actions. This assumption does not hold for the majority of evolutionary processes or scenarios. To sidestep this limitation, inclusive fitness theorists have proposed a method using linear regression. On the basis of this method, it is claimed that inclusive fitness theory (i) predicts the direction of allele frequency changes, (ii) reveals the reasons for these changes, (iii) is as general as natural selection, and (iv) provides a universal design principle for evolution. In this paper we evaluate these claims, and show that all of them are unfounded. If the objective is to analyze whether mutations that modify social behavior are favored or opposed by natural selection, then no aspect of inclusive fitness theory is needed.

  7. Symmetry aspects in emergent quantum mechanics

    NASA Astrophysics Data System (ADS)

    Elze, Hans-Thomas

    2009-06-01

    We discuss an explicit realization of the dissipative dynamics anticipated in the proof of 't Hooft's existence theorem, which states that 'For any quantum system there exists at least one deterministic model that reproduces all its dynamics after prequantization'. - There is an energy-parity symmetry hidden in the Liouville equation, which mimics the Kaplan-Sundrum protective symmetry for the cosmological constant. This symmetry may be broken by the coarse-graining inherent in physics at scales much larger than the Planck length. We correspondingly modify classical ensemble theory by incorporating dissipative fluctuations (information loss) - which are caused by discrete spacetime continually 'measuring' matter. In this way, aspects of quantum mechanics, such as the von Neumann equation, including a Lindblad term, arise dynamically and expectations of observables agree with the Born rule. However, the resulting quantum coherence is accompanied by an intrinsic decoherence and continuous localization mechanism. Our proposal leads towards a theory that is linear and local at the quantum mechanical level, but the relation to the underlying classical degrees of freedom is nonlocal.

  8. Lie algebras and linear differential equations.

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  9. Constraining modified gravitational theories by weak lensing with Euclid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinelli, Matteo; Calabrese, Erminia; De Bernardis, Francesco

    2011-01-15

    Future proposed satellite missions such as Euclid can offer the opportunity to test general relativity on cosmic scales through mapping of the galaxy weak-lensing signal. In this paper we forecast the ability of these experiments to constrain modified gravity scenarios such as those predicted by scalar-tensor and f(R) theories. We find that Euclid will improve constraints expected from the Planck satellite on these modified theories of gravity by 2 orders of magnitude. We discuss parameter degeneracies and the possible biases introduced by modifications to gravity.

  10. Nonisentropic unsteady three dimensional small disturbance potential theory

    NASA Technical Reports Server (NTRS)

    Gibbons, M. D.; Whitlow, W., Jr.; Williams, M. H.

    1986-01-01

    Modifications that allow for more accurate modeling of flow fields when strong shocks are present were made into three dimensional transonic small disturbance (TSD) potential theory. The Engquist-Osher type-dependent differencing was incorporated into the solution algorithm. The modified theory was implemented in the XTRAN3S computer code. Steady flows over a rectangular wing with a constant NACA 0012 airfoil section and an aspect ratio of 12 were calculated for freestream Mach numbers (M) of 0.82, 0.84, and 0.86. The obtained results are compared using the modified and unmodified TSD theories and the results from a three dimensional Euler code are presented. Nonunique solutions in three dimensions are shown to appear for the rectangular wing as aspect ratio increases. Steady and unsteady results are shown for the RAE tailplane model at M = 0.90. Calculations using unmodified theory, modified theory and experimental data are compared.

  11. A modified homotopy perturbation method and the axial secular frequencies of a non-linear ion trap.

    PubMed

    Doroudi, Alireza

    2012-01-01

    In this paper, a modified version of the homotopy perturbation method, which has been applied to non-linear oscillations by V. Marinca, is used for calculation of axial secular frequencies of a non-linear ion trap with hexapole and octopole superpositions. The axial equation of ion motion in a rapidly oscillating field of an ion trap can be transformed to a Duffing-like equation. With only octopole superposition the resulted non-linear equation is symmetric; however, in the presence of hexapole and octopole superpositions, it is asymmetric. This modified homotopy perturbation method is used for solving the resulting non-linear equations. As a result, the ion secular frequencies as a function of non-linear field parameters are obtained. The calculated secular frequencies are compared with the results of the homotopy perturbation method and the exact results. With only hexapole superposition, the results of this paper and the homotopy perturbation method are the same and with hexapole and octopole superpositions, the results of this paper are much more closer to the exact results compared with the results of the homotopy perturbation method.

  12. A novel l-leucine modified Sol-Gel-Carbon electrode for simultaneous electrochemical detection of homovanillic acid, dopamine and uric acid in neuroblastoma diagnosis.

    PubMed

    Khamlichi, Redouan El; Bouchta, Dounia; Anouar, El Hassane; Atia, Mounia Ben; Attar, Aisha; Choukairi, Mohamed; Tazi, Saloua; Ihssane, Raissouni; Faiza, Chaoukat; Khalid, Draoui; Khalid, Riffi Temsamani

    2017-02-01

    Neuroblastoma is a pediatric neuroblastic tumor arising in the sympathetic nervous crest cells. A high grade of Neuroblastoma is characterized by a high urinary excretion of homovanillic acid and dopamine. In this work l-leucine modified Sol-Gel-Carbon electrode was used for a sensitive voltammetric determination of homovanillic acid and dopamine in urine. The electrochemical response characteristics were investigated by cyclic and differential pulse voltammetry; the modified electrode has shown an increase in the effective area of up to 40%, a well-separated oxidation peaks and an excellent electrocatalytic activity. High sensitivity and selectivity in the linear range of 0,4-100μML -1 of homovanillic acid and 10-120μML -1 of dopamine were also obtained. Moreover, a sub-micromolar limit of detection of 0.1μM for homovanillic acid and 1.0μM for the dopamine was achieved. Indeed, high reproducibility with simple preparation and regeneration of the electrode surface made this electrode very suitable for the determination of homovanillic acid and dopamine in pharmaceutical and clinical preparations. The mechanism of homovanillic acid and the electrochemical oxidation at l-leucine modified Sol-Gel-Carbon electrode is described out the B3P86/6-31+G(d,p) level of theory as implemented in Gaussian software. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Educational intervention and functional decline among older people: the modifying effects of social capital.

    PubMed

    Poulsen, Tine; Siersma, Volkert Dirk; Lund, Rikke; Christensen, Ulla; Vass, Mikkel; Avlund, Kirsten

    2014-05-01

    To analyse if social capital modifies the effect of educational intervention of home visitors on mobility disability. Earlier studies have found that educational intervention of home visitors has a positive effect of older peoples' functional decline, but how social capital might modify this effect is still unknown. We used the Danish Intervention Study on Preventive Home Visits - a prospective cohort study including 2863 75-year-olds and 1171 80-year-olds in 34 Danish municipalities - to analyse the modifying effect of different aspects of social capital on the effect of educational intervention of home visitors on functional decline. The three measures of social capital (bonding, bridging, and linking) were measured at contextual level. Data was analysed with multivariate linear regression model using generalised estimating equations to account for repeated measurements. We found that 80-year-olds living in municipalities with high bonding (B=0.089, p=0.0279) and high linking (B=0.0929; p=0.0217) had significant better mobility disability in average at 3-year follow up if their municipality had received intervention. With the unique design of the Danish Intervention Study on Preventive Home Visits and with theory-based measures of social capital that distinguish between three aspects of social capital with focus on older people, this study contributes to the literature about the role of social capital for interventions on mobility disability.

  14. The study of the transition regime between slab and mixed slab-toroidal electron temperature gradient modes in a basic experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbaky, Abed; Sokolov, Vladimir; Sen, Amiya K.

    2015-05-15

    Electron temperature gradient (ETG) modes are suspected sources of anomalous electron thermal transport in magnetically confined plasmas as in tokamaks. Prior work in the Columbia Linear Machine (CLM) has been able to produce and identify slab ETG modes in a slab geometry [Wei et al., Phys. Plasmas 17, 042108 (2010)]. Now by modifying CLM to introduce curvature to the confining axial magnetic field, we have excited mixed slab-toroidal modes. Linear theory predicts a transition between slab and toroidal ETG modes when (k{sub ∥}R{sub c})/(k{sub y}ρ) ∼1 [J. Kim and W. Horton, Phys. Fluids B 3, 1167 (1991)]. We observe changesmore » in the mode amplitude for levels of curvature R{sub c}{sup −1}≪(k{sub ∥,slab})/(k{sub ⊥}ρ) , which may be explained by reductions in k{sub ∥} in the transition from slab to mixed slab-toroidal modes, as also predicted by theory. We present mode amplitude scaling as a function of magnetic field curvature. Over the range of curvature available in CLM experimentally we find a modest increase in saturated ETG potential fluctuations (∼1.5×), and a substantial increase in the power density of individual mode peaks (∼4–5×)« less

  15. Transport through a network of capillaries from ultrametric diffusion equation with quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Oleschko, K.; Khrennikov, A.

    2017-10-01

    This paper is about a novel mathematical framework to model transport (of, e.g., fluid or gas) through networks of capillaries. This framework takes into account the tree structure of the networks of capillaries. (Roughly speaking, we use the tree-like system of coordinates.) As is well known, tree-geometry can be topologically described as the geometry of an ultrametric space, i.e., a metric space in which the metric satisfies the strong triangle inequality: in each triangle, the third side is less than or equal to the maximum of two other sides. Thus transport (e.g., of oil or emulsion of oil and water in porous media, or blood and air in biological organisms) through networks of capillaries can be mathematically modelled as ultrametric diffusion. Such modelling was performed in a series of recently published papers of the authors. However, the process of transport through capillaries can be only approximately described by the linear diffusion, because the concentration of, e.g., oil droplets, in a capillary can essentially modify the dynamics. Therefore nonlinear dynamical equations provide a more adequate model of transport in a network of capillaries. We consider a nonlinear ultrametric diffusion equation with quadratic nonlinearity - to model transport in such a network. Here, as in the linear case, we apply the theory of ultrametric wavelets. The paper also contains a simple introduction to theory of ultrametric spaces and analysis on them.

  16. Basic Research in the Mathematical Foundations of Stability Theory, Control Theory and Numerical Linear Algebra.

    DTIC Science & Technology

    1979-09-01

    without determinantal divisors, Linear and Multilinear Algebra 7(1979), 107-109. 4. The use of integral operators in number theory (with C. Ryavec and...Gersgorin revisited, to appear in Letters in Linear Algebra. 15. A surprising determinantal inequality for real matrices (with C.R. Johnson), to appear in...Analysis: An Essay Concerning the Limitations of Some Mathematical Methods in the Social , Political and Biological Sciences, David Berlinski, MIT Press

  17. Do Hassles and Uplifts Change with Age? Longitudinal Findings from the VA Normative Aging Study

    PubMed Central

    Aldwin, Carolyn M.; Jeong, Yu-Jin; Igarashi, Heidi; Spiro, Avron

    2014-01-01

    To examine emotion regulation in later life, we contrasted the modified hedonic treadmill theory with developmental theories, using hassles and uplifts to assess emotion regulation in context. The sample was 1,315 men from the VA Normative Aging Study aged 53 to 85 years, who completed 3,894 observations between 1989 and 2004. We computed three scores for both hassles and uplifts: intensity (ratings reflecting appraisal processes), exposure (count), and summary (total) scores. Growth curves over age showed marked differences in trajectory patterns for intensity and exposure scores. Although exposure to hassles and uplifts decreased in later life, intensity scores increased. Growth based modelling showed individual differences in patterns of hassles and uplifts intensity and exposure, with relative stability in uplifts intensity, normative non-linear changes in hassles intensity, and complex patterns of individual differences in exposure for both hassles and uplifts. Analyses with the summary scores showed that emotion regulation in later life is a function of both developmental change and contextual exposure, with different patterns emerging for hassles and uplifts. Thus, support was found for both hedonic treadmill and developmental change theories, reflecting different aspects of emotion regulation in late life. PMID:24660796

  18. Most-Critical Transient Disturbances in an Incompressible Flat-Plate Boundary Layer

    NASA Astrophysics Data System (ADS)

    Monschke, Jason; White, Edward

    2015-11-01

    Transient growth is a linear disturbance growth mechanism that plays a key role in roughness-induced boundary-layer transition. It occurs when superposed stable, non-orthogonal continuous spectrum modes experience algebraic disturbance growth followed by exponential decay. Algebraic disturbance growth can modify the basic state making it susceptible to secondary instabilities rapidly leading to transition. Optimal disturbance theory was developed to model the most-dangerous disturbances. However, evidence suggests roughness-induced transient growth is sub-optimal yet leads to transition earlier than optimal theory suggests. This research computes initial disturbances most unstable to secondary instabilities to further develop the applicability of transient growth theory to surface roughness. The main approach is using nonlinear adjoint optimization with solutions of the parabolized Navier-Stokes and BiGlobal stability equations. Two objective functions were considered: disturbance kinetic energy growth and sinuous instability growth rate. The first objective function was used as validation of the optimization method. Counter-rotating streamwise vortices located low in the boundary layer maximize the sinuous instability growth rate. The authors would like to acknowledge NASA and the AFOSR for funding this work through AFOSR Grant FA9550-09-1-0341.

  19. Scale invariance of the η-deformed AdS5 × S5 superstring, T-duality and modified type II equations

    NASA Astrophysics Data System (ADS)

    Arutyunov, G.; Frolov, S.; Hoare, B.; Roiban, R.; Tseytlin, A. A.

    2016-02-01

    We consider the ABF background underlying the η-deformed AdS5 ×S5 sigma model. This background fails to satisfy the standard IIB supergravity equations which indicates that the corresponding sigma model is not Weyl invariant, i.e. does not define a critical string theory in the usual sense. We argue that the ABF background should still define a UV finite theory on a flat 2d world-sheet implying that the η-deformed model is scale invariant. This property follows from the formal relation via T-duality between the η-deformed model and the one defined by an exact type IIB supergravity solution that has 6 isometries albeit broken by a linear dilaton. We find that the ABF background satisfies candidate type IIB scale invariance conditions which for the R-R field strengths are of the second order in derivatives. Surprisingly, we also find that the ABF background obeys an interesting modification of the standard IIB supergravity equations that are first order in derivatives of R-R fields. These modified equations explicitly depend on Killing vectors of the ABF background and, although not universal, they imply the universal scale invariance conditions. Moreover, we show that it is precisely the non-isometric dilaton of the T-dual solution that leads, after T-duality, to modification of type II equations from their standard form. We conjecture that the modified equations should follow from κ-symmetry of the η-deformed model. All our observations apply also to η-deformations of AdS3 ×S3 ×T4and AdS2 ×S2 ×T6models.

  20. Scale invariance of the η-deformed AdS 5 × S 5 superstring, T-duality and modified type II equations

    DOE PAGES

    Arutyunov, G.; Frolov, S.; Hoare, B.; ...

    2015-12-23

    We consider the ABF background underlying the η-deformed AdS 5 × S 5 sigma model. This background fails to satisfy the standard IIB supergravity equations which indicates that the corresponding sigma model is not Weyl invariant, i.e. does not define a critical string theory in the usual sense. We argue that the ABF background should still define a UV finite theory on a flat 2d world-sheet implying that the η-deformed model is scale invariant. This property follows from the formal relation via T-duality between the η-deformed model and the one defined by an exact type IIB supergravity solution that hasmore » 6 isometries albeit broken by a linear dilaton. We find that the ABF background satisfies candidate type IIB scale invariance conditions which for the R–R field strengths are of the second order in derivatives. Surprisingly, we also find that the ABF background obeys an interesting modification of the standard IIB supergravity equations that are first order in derivatives of R–R fields. These modified equations explicitly depend on Killing vectors of the ABF background and, although not universal, they imply the universal scale invariance conditions. Moreover, we show that it is precisely the non-isometric dilaton of the T-dual solution that leads, after T-duality, to modification of type II equations from their standard form. We conjecture that the modified equations should follow from κ-symmetry of the η-deformed model. All our observations apply also to η-deformations of AdS 3 × S 3 × T 4 and AdS 2 × S 2 × T 6 models.« less

  1. Econophysics and individual choice

    NASA Astrophysics Data System (ADS)

    Bordley, Robert F.

    2005-08-01

    The subjectivist theory of probability specifies certain axioms of rationality which together lead to both a theory of probability and a theory of preference. The theory of probability is used throughout the sciences while the theory of preferences is used in economics. Results in quantum physics challenge the adequacy of the subjectivist theory of probability. As we show, answering this challenge requires modifying an Archimedean axiom in the subjectivist theory. But changing this axiom modifies the subjectivist theory of preference and therefore has implications for economics. As this paper notes, these implications are consistent with current empirical findings in psychology and economics. As we show, these results also have implications for pricing in securities markets. This suggests further directions for research in econophysics.

  2. Influence of Parameters of a Reactive Interatomic Potential on the Properties of Saturated Hydrocarbons

    DTIC Science & Technology

    2017-01-01

    Methodology 3 2.1 Modified Embedded-Atom Method Theory 3 2.1.1 Embedding Energy Function 3 2.1.2 Screening Factor 8 2.1.3 Modified Embedded-Atom...Simulation Methodology 2.1 Modified Embedded-Atom Method Theory In the EAM and MEAM formalisms1,2,5 the total energy of a system of atoms (Etot) is...An interatomic potential for saturated hydrocarbons using the modified embedded-atom method (MEAM), a semiempirical many-body potential based on

  3. Cosmological bound from the neutron star merger GW170817 in scalar-tensor and F(R) gravity theories

    NASA Astrophysics Data System (ADS)

    Nojiri, Shin'ichi; Odintsov, Sergei D.

    2018-04-01

    We consider the evolution of cosmological gravitational waves in scalar-tensor theory and F (R) gravity theory as typical models of the modified gravity. Although the propagation speed is not changed from the speed of light, the propagation phase changes when we compare the propagation in these modified gravity theories with the propagation in the ΛCDM model. The phase change might be detected in future observations.

  4. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models

    NASA Astrophysics Data System (ADS)

    Nojiri, Shin'Ichi; Odintsov, Sergei D.

    2011-08-01

    The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F(R) and Hořava-Lifshitz F(R) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann-Robertson-Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F(R) gravities, for latter F(R) theory, the effective ΛCDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.

  5. Modification of the acid/base properties of γ-Al2O3 by oxide additives: An ethanol TPD investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Ja Hun; Lee, Jaekyoung; Szanyi, Janos

    2016-02-26

    The electronic properties of oxide-modified γ Al2O3 surfaces were investigated by using ethanol TPD. Ethanol TPD showed remarkable sensitivity toward the surface structures and electronic properties of the aluminas modified by various transition metal oxides. Maximum desorption rates for the primary product of ethanol adsorption, ethylene, were observed at 225 °C on non-modified γ-Al2O3. Desorption temperature of ethanol over a γ Al2O3 samples with different amounts of BaO linearly increased with increasing loading. On the contrary, ethanol desorption temperature on Pt modified γ-Al2O3 after calcined at 500 oC linearly decreased with increasing Pt loading. These results clearly suggested that themore » acid/base properties of the γ-Al2O3 surface can be strongly affected by ad-atoms. For confirming these arguments, we performed ethanol TPD experiments on various oxide modified γ-Al2O3 and normalized the maximum desorption temperatures based on the same number of oxide dopants. These normalized ethanol desorption temperatures linearly correlate with the electronegativity of the metal atom in the oxide. This linear relationship clearly demonstrates that the acidic properties of alumina surfaces can be systematically changed by ad-atoms.« less

  6. Current-wave spectra coupling project. Volume III. Cumulative distribution of forces on structures subjected to the combined action of currents and random waves for potential OTEC sites: (A) Keahole Point, Hawaii, 100 year hurricane; (B) Punta Tuna, Puerto Rico, 100 year hurricane; (C) New Orleans, Louisiana, 100 year hurricane; (D) West Coast of Florida, 100 year hurricane. [CUFOR code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venezian, G.; Bretschneider, C.L.

    1980-08-01

    This volume details a new methodology to analyze statistically the forces experienced by a structure at sea. Conventionally a wave climate is defined using a spectral function. The wave climate is described using a joint distribution of wave heights and periods (wave lengths), characterizing actual sea conditions through some measured or estimated parameters like the significant wave height, maximum spectral density, etc. Random wave heights and periods satisfying the joint distribution are then generated. Wave kinetics are obtained using linear or non-linear theory. In the case of currents a linear wave-current interaction theory of Venezian (1979) is used. The peakmore » force experienced by the structure for each individual wave is identified. Finally, the probability of exceedance of any given peak force on the structure may be obtained. A three-parameter Longuet-Higgins type joint distribution of wave heights and periods is discussed in detail. This joint distribution was used to model sea conditions at four potential OTEC locations. A uniform cylindrical pipe of 3 m diameter, extending to a depth of 550 m was used as a sample structure. Wave-current interactions were included and forces computed using Morison's equation. The drag and virtual mass coefficients were interpolated from published data. A Fortran program CUFOR was written to execute the above procedure. Tabulated and graphic results of peak forces experienced by the structure, for each location, are presented. A listing of CUFOR is included. Considerable flexibility of structural definition has been incorporated. The program can easily be modified in the case of an alternative joint distribution or for inclusion of effects like non-linearity of waves, transverse forces and diffraction.« less

  7. HOLLOTRON switch for megawatt lightweight space inverters

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Goebel, D. M.; Schumacher, R. W.

    1991-01-01

    The feasibility of satisfying the switching requirements for a megawatt ultralight inverter system using HOLLOTRON switch technology was determined. The existing experimental switch hardware was modified to investigate a coaxial HOLLOTRON switch configuration and the results were compared with those obtained for a modified linear HOLLOTRON configuration. It was concluded that scaling the HOLLOTRON switch to the current and voltage specifications required for a megawatt converter system is indeed feasible using a modified linear configuration. The experimental HOLLOTRON switch operated at parameters comparable to the scaled coaxial HOLLOTRON. However, the linear HOLLOTRON data verified the capability for meeting all the design objectives simultaneously including current density (greater than 2 A/sq cm), voltage (5 kV), switching frequency (20 kHz), switching time (300 ns), and forward voltage drop (less than or equal to 20 V). Scaling relations were determined and a preliminary design was completed for an engineering model linear HOLLOTRON switch to meet the megawatt converter system specifications.

  8. Note on bouncing backgrounds

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Pan, Supriya

    2018-05-01

    The theory of inflation is one of the fundamental and revolutionary developments of modern cosmology that became able to explain many issues of the early Universe in the context of the standard cosmological model (SCM). However, the initial singularity of the Universe, where physics is indefinite, is still obscure in the combined SCM +inflation scenario. An alternative to SCM +inflation without the initial singularity is thus always welcome, and bouncing cosmology is an attempt at that. The current work is thus motivated to investigate the bouncing solutions in modified gravity theories when the background universe is described by the spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry. We show that the simplest way to obtain the bouncing cosmologies in such spacetime is to consider some kind of Lagrangian whose gravitational sector depends only on the square of the Hubble parameter of the FLRW universe. For these modified Lagrangians, the corresponding Friedmann equation, a constraint in the dynamics of the Universe, depicts a curve in the phase space (H ,ρ ), where H is the Hubble parameter and ρ is the energy density of the Universe. As a consequence, a bouncing cosmology is obtained when this curve is closed and crosses the axis H =0 at least twice, and whose simplest particular example is the ellipse depicting the well-known holonomy corrected Friedmann equation in loop quantum cosmology (LQC). Sometimes, a crucial point in such theories is the appearance of the Ostrogradski instability at the perturbative level; however, fortunately enough, in the present work, as long as the linear level of perturbations is concerned, this instability does not appear, although it may appear at the higher order of perturbations.

  9. Non-Condon nonequilibrium Fermi’s golden rule rates from the linearized semiclassical method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiang; Geva, Eitan

    2016-08-14

    The nonequilibrium Fermi’s golden rule describes the transition between a photoexcited bright donor electronic state and a dark acceptor electronic state, when the nuclear degrees of freedom start out in a nonequilibrium state. In a previous paper [X. Sun and E. Geva, J. Chem. Theory Comput. 12, 2926 (2016)], we proposed a new expression for the nonequilibrium Fermi’s golden rule within the framework of the linearized semiclassical approximation and based on the Condon approximation, according to which the electronic coupling between donor and acceptor is assumed constant. In this paper we propose a more general expression, which is applicable tomore » the case of non-Condon electronic coupling. We test the accuracy of the new non-Condon nonequilibrium Fermi’s golden rule linearized semiclassical expression on a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering the following: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary-mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions, in both normal and inverted regions, and over a wide range of initial nonequilibrium states, temperatures, and frictions.« less

  10. Galileon string measure and other modified measure extended objects

    NASA Astrophysics Data System (ADS)

    Vulfs, T. O.; Guendelman, E. I.

    2017-12-01

    We show that it is possible to formulate string theory as a “Galileon string theory”. The Galileon field χ enters in the definition of the integration measure in the action. Following the methods of the modified measure string theory, we find that the final equations are again those of the sigma-model. Moreover, the string tension appears again as an additional dynamical degree of freedom. At the same time, the theory satisfies all requirements of the Galileon higher derivative theory at the action level while the equations of motion are still of the second-order. A Galileon symmetry is displayed explicitly in the conformal string worldsheet frame. Also, we define the Galileon gauge transformations. Generalizations to branes with other modified measures are discussed.

  11. An Introduction to Multilinear Formula Score Theory. Measurement Series 84-4.

    ERIC Educational Resources Information Center

    Levine, Michael V.

    Formula score theory (FST) associates each multiple choice test with a linear operator and expresses all of the real functions of item response theory as linear combinations of the operator's eigenfunctions. Hard measurement problems can then often be reformulated as easier, standard mathematical problems. For example, the problem of estimating…

  12. Lack of Set Theory Relevant Prerequisite Knowledge

    ERIC Educational Resources Information Center

    Dogan-Dunlap, Hamide

    2006-01-01

    Many students struggle with college mathematics topics due to a lack of mastery of prerequisite knowledge. Set theory language is one such prerequisite for linear algebra courses. Many students' mistakes on linear algebra questions reveal a lack of mastery of set theory knowledge. This paper reports the findings of a qualitative analysis of a…

  13. A Quasi-Linear Behavioral Model and an Application to Self-Directed Learning

    NASA Technical Reports Server (NTRS)

    Ponton, Michael K.; Carr, Paul B.

    1999-01-01

    A model is presented that describes the relationship between one's knowledge of the world and the concomitant personal behaviors that serve as a mechanism to obtain desired outcomes. Integrated within this model are the differing roles that outcomes serve as motivators and as modifiers to one's worldview. The model is dichotomized between general and contextual applications. Because learner self-directedness (a personal characteristic) involves cognition and affection while self-directed learning (a pedagogic process) encompasses conation, behavior and introspection, the model can be dichotomized again in another direction. Presented also are the roles that cognitive motivation theories play in moving an individual through this behavioral model and the roles of wishes, self-efficacy, opportunity and self-influence.

  14. Electric dipole radiation at VLF in a uniform warm magneto-plasma.

    NASA Technical Reports Server (NTRS)

    Wang, T. N. C.; Bell, T. F.

    1972-01-01

    Use of a linear full electromagnetic wave theory to calculate the input impedance of an electric antenna embedded in a uniform, lossless, unbounded warm magnetoplasma, which is assumed to consist of warm electrons and cold ions. In calculating the dipole radiation resistance for the thermal modes and the thermally modified whistler mode the analysis includes the finite temperature only for the electrons. In deriving the formal solution of the warm plasma dipole input impedance a full-wave analysis is used and two antenna orientations are considered, parallel and perpendicular to the static magnetic field. A general dispersion equation governing the modes of propagation is derived and a detailed analysis is made of the propagation characteristics of these modes.

  15. The relationship between severity of violence in the home and dating violence.

    PubMed

    Sims, Eva Nowakowski; Dodd, Virginia J Noland; Tejeda, Manuel J

    2008-01-01

    This study used propositions from the social learning theory to explore the effects of the combined influences of child maltreatment, childhood witness to parental violence, sibling violence, and gender on dating violence perpetration using a modified version of the Conflict Tactics Scale 2 (CTS2). A weighted scoring method was utilized to determine how severity of violence in the home impacts dating violence perpetration. Bivariate correlations and linear regression models indicate significant associations between child maltreatment, sibling violence perpetration, childhood witness to parental violence, gender, and subsequent dating violence perpetration. Multiple regression analyses indicate that for men, history of severe violence victimization (i.e., child maltreatment and childhood witness to parental violence) and severe perpetration (sibling violence) significantly predict dating violence perpetration.

  16. Influence of electrical double-layer dispersion forces and size dependency on pull-in instability of clamped microplate immersed in ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Karimipour, I.; Beni, Yaghoub Tadi; Taheri, N.

    2017-10-01

    Plate-type clamped microplate is of the most common constructive elements for developing in-liquid-operating devices. While the electromechanical behavior of clamped microplate in non-liquid environments has exclusively been addressed in the literature, no theoretical studies have yet been conducted on precise modeling of the clamped microplate in electrolyte liquid. Herein, the electromechanical response and instability of the clamped microplate immersed in ionic electrolyte media are investigated. The electrochemical force field is determined using double layer theory and linearized Poisson-Boltzmann equation. The presence of dispersion forces, i.e., Casimir and van der Waals attractions, are included in the theoretical model considering the correction due to the presence of liquid media between the interacting surfaces (three-layer model). To this end, a kind of microplate has been designed, i.e., a square microplate with all edges clamped supported. The strain gradient elasticity is employed to model the size-dependent structural behavior of the clamped microplate. To solve the nonlinear constitutive equation of the system, Extended Kantorovich Method, is employed and the pull-in parameter of the microplate are extracted. Impacts of the dispersion forces and size effect on the instability characteristics are discussed as well as the effect of ion concentration and potential ratio. It is found that the significant difference between the pull-in instability parameters in the modified strain gradient theory and the classical theory for thin microplates is merely due to the consideration of size effect parameter in the modified strain gradient theory. To confirm the validity of formulations, the numerical values of the results are compared. The results predicted via the aforementioned approach are in excellent agreement with those in the literature. Some new examples are solved to demonstrate the applicability of the procedure.

  17. Ion concentrations and velocity profiles in nanochannel electroosmotic flows

    NASA Astrophysics Data System (ADS)

    Qiao, R.; Aluru, N. R.

    2003-03-01

    Ion distributions and velocity profiles for electroosmotic flow in nanochannels of different widths are studied in this paper using molecular dynamics and continuum theory. For the various channel widths studied in this paper, the ion distribution near the channel wall is strongly influenced by the finite size of the ions and the discreteness of the solvent molecules. The classical Poisson-Boltzmann equation fails to predict the ion distribution near the channel wall as it does not account for the molecular aspects of the ion-wall and ion-solvent interactions. A modified Poisson-Boltzmann equation based on electrochemical potential correction is introduced to account for ion-wall and ion-solvent interactions. The electrochemical potential correction term is extracted from the ion distribution in a smaller channel using molecular dynamics. Using the electrochemical potential correction term extracted from molecular dynamics (MD) simulation of electroosmotic flow in a 2.22 nm channel, the modified Poisson-Boltzmann equation predicts the ion distribution in larger channel widths (e.g., 3.49 and 10.00 nm) with good accuracy. Detailed studies on the velocity profile in electro-osmotic flow indicate that the continuum flow theory can be used to predict bulk fluid flow in channels as small as 2.22 nm provided that the viscosity variation near the channel wall is taken into account. We propose a technique to embed the velocity near the channel wall obtained from MD simulation of electroosmotic flow in a narrow channel (e.g., 2.22 nm wide channel) into simulation of electroosmotic flow in larger channels. Simulation results indicate that such an approach can predict the velocity profile in larger channels (e.g., 3.49 and 10.00 nm) very well. Finally, simulation of electroosmotic flow in a 0.95 nm channel indicates that viscosity cannot be described by a local, linear constitutive relationship that the continuum flow theory is built upon and thus the continuum flow theory is not applicable for electroosmotic flow in such small channels.

  18. Consensus for linear multi-agent system with intermittent information transmissions using the time-scale theory

    NASA Astrophysics Data System (ADS)

    Taousser, Fatima; Defoort, Michael; Djemai, Mohamed

    2016-01-01

    This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.

  19. Lineshape theory of pigment-protein complexes: How the finite relaxation time of nuclei influences the exciton relaxation-induced lifetime broadening.

    PubMed

    Dinh, Thanh-Chung; Renger, Thomas

    2016-07-21

    In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures, Redfield theory still provides a numerically efficient alternative to NeMoR theory. At higher temperatures, we suggest to use NeMoR theory, because it has the same numerical costs as modified Redfield theory, but is more accurate.

  20. Effect of upstream ULF waves on the energetic ion diffusion at the earth's foreshock: Theory, Simulation, and Observations

    NASA Astrophysics Data System (ADS)

    Otsuka, F.; Matsukiyo, S.; Kis, A.; Hada, T.

    2017-12-01

    Spatial diffusion of energetic particles is an important problem not only from a fundamental physics point of view but also for its application to particle acceleration processes at astrophysical shocks. Quasi-linear theory can provide the spatial diffusion coefficient as a function of the wave turbulence spectrum. By assuming a simple power-law spectrum for the turbulence, the theory has been successfully applied to diffusion and acceleration of cosmic rays in the interplanetary and interstellar medium. Near the earth's foreshock, however, the wave spectrum often has an intense peak, presumably corresponding to the upstream ULF waves generated by the field-aligned beam (FAB). In this presentation, we numerically and theoretically discuss how the intense ULF peak in the wave spectrum modifies the spatial parallel diffusion of energetic ions. The turbulence is given as a superposition of non-propagating transverse MHD waves in the solar wind rest frame, and its spectrum is composed of a piecewise power-law spectrum with different power-law indices. The diffusion coefficients are then estimated by using the quasi-linear theory and test particle simulations. We find that the presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The results above are used to discuss the Cluster observations of the diffuse ions at the Earth's foreshock. Using the density gradients of the energetic ions detected by the Cluster spacecraft, we determine the e-folding distances, equivalently, the spatial diffusion coefficients, of ions with their energies from 10 to 32 keV. The observed e-folding distances are significantly smaller than those estimated in the past statistical studies. This suggests that the particle acceleration at the foreshock can be more efficient than considered before. Our test particle simulation explains well the small estimate of the e-folding distances, by using the observed wave turbulence spectrum near the shock.

  1. Non-linear 3-D Born shear waveform tomography in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Panning, Mark P.; Cao, Aimin; Kim, Ahyi; Romanowicz, Barbara A.

    2012-07-01

    Southeast (SE) Asia is a tectonically complex region surrounded by many active source regions, thus an ideal test bed for developments in seismic tomography. Much recent development in tomography has been based on 3-D sensitivity kernels based on the first-order Born approximation, but there are potential problems with this approach when applied to waveform data. In this study, we develop a radially anisotropic model of SE Asia using long-period multimode waveforms. We use a theoretical 'cascade' approach, starting with a large-scale Eurasian model developed using 2-D Non-linear Asymptotic Coupling Theory (NACT) sensitivity kernels, and then using a modified Born approximation (nBorn), shown to be more accurate at modelling waveforms, to invert a subset of the data for structure in a subregion (longitude 75°-150° and latitude 0°-45°). In this subregion, the model is parametrized at a spherical spline level 6 (˜200 km). The data set is also inverted using NACT and purely linear 3-D Born kernels. All three final models fit the data well, with just under 80 per cent variance reduction as calculated using the corresponding theory, but the nBorn model shows more detailed structure than the NACT model throughout and has much better resolution at depths greater than 250 km. Based on variance analysis, the purely linear Born kernels do not provide as good a fit to the data due to deviations from linearity for the waveform data set used in this modelling. The nBorn isotropic model shows a stronger fast velocity anomaly beneath the Tibetan Plateau in the depth range of 150-250 km, which disappears at greater depth, consistent with other studies. It also indicates moderate thinning of the high-velocity plate in the middle of Tibet, consistent with a model where Tibet is underplated by Indian lithosphere from the south and Eurasian lithosphere from the north, in contrast to a model with continuous underplating by Indian lithosphere across the entire plateau. The nBorn anisotropic model detects negative ξ anomalies suggestive of vertical deformation associated with subducted slabs and convergent zones at the Himalayan front and Tien Shan at depths near 150 km.

  2. On holographic Rényi entropy in some modified theories of gravity

    NASA Astrophysics Data System (ADS)

    Dey, Anshuman; Roy, Pratim; Sarkar, Tapobrata

    2018-04-01

    We perform a detailed analysis of holographic entanglement Rényi entropy in some modified theories of gravity with four dimensional conformal field theory duals. First, we construct perturbative black hole solutions in a recently proposed model of Einsteinian cubic gravity in five dimensions, and compute the Rényi entropy as well as the scaling dimension of the twist operators in the dual field theory. Consistency of these results are verified from the AdS/CFT correspondence, via a corresponding computation of the Weyl anomaly on the gravity side. Similar analyses are then carried out for three other examples of modified gravity in five dimensions that include a chemical potential, namely Born-Infeld gravity, charged quasi-topological gravity and a class of Weyl corrected gravity theories with a gauge field, with the last example being treated perturbatively. Some interesting bounds in the dual conformal field theory parameters in quasi-topological gravity are pointed out. We also provide arguments on the validity of our perturbative analysis, whenever applicable.

  3. Linear approximations of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Su, R.

    1983-01-01

    The development of a method for designing an automatic flight controller for short and vertical take off aircraft is discussed. This technique involves transformations of nonlinear systems to controllable linear systems and takes into account the nonlinearities of the aircraft. In general, the transformations cannot always be given in closed form. Using partial differential equations, an approximate linear system called the modified tangent model was introduced. A linear transformation of this tangent model to Brunovsky canonical form can be constructed, and from this the linear part (about a state space point x sub 0) of an exact transformation for the nonlinear system can be found. It is shown that a canonical expansion in Lie brackets about the point x sub 0 yields the same modified tangent model.

  4. Einstein’s quadrupole formula from the kinetic-conformal Hořava theory

    NASA Astrophysics Data System (ADS)

    Bellorín, Jorge; Restuccia, Alvaro

    We analyze the radiative and nonradiative linearized variables in a gravity theory within the family of the nonprojectable Hořava theories, the Hořava theory at the kinetic-conformal point. There is no extra mode in this formulation, the theory shares the same number of degrees of freedom with general relativity. The large-distance effective action, which is the one we consider, can be given in a generally-covariant form under asymptotically flat boundary conditions, the Einstein-aether theory under the condition of hypersurface orthogonality on the aether vector. In the linearized theory, we find that only the transverse-traceless tensorial modes obey a sourced wave equation, as in general relativity. The rest of variables are nonradiative. The result is gauge-independent at the level of the linearized theory. For the case of a weak source, we find that the leading mode in the far zone is exactly Einstein’s quadrupole formula of general relativity, if some coupling constants are properly identified. There are no monopoles nor dipoles in this formulation, in distinction to the nonprojectable Horava theory outside the kinetic-conformal point. We also discuss some constraints on the theory arising from the observational bounds on Lorentz-violating theories.

  5. Scalar-tensor linear inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artymowski, Michał; Racioppi, Antonio, E-mail: Michal.Artymowski@uj.edu.pl, E-mail: Antonio.Racioppi@kbfi.ee

    2017-04-01

    We investigate two approaches to non-minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for a non-minimal coupling to gravity of the form of f (φ) R /2; b) the particle physics approach, where we motivate the form of the Jordan frame potential by loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced gravity inflationary scenario, but instead of the Starobinsky attractor they lead tomore » linear inflation in the strong coupling limit.« less

  6. Using theories of behaviour change to inform interventions for addictive behaviours.

    PubMed

    Webb, Thomas L; Sniehotta, Falko F; Michie, Susan

    2010-11-01

    This paper reviews a set of theories of behaviour change that are used outside the field of addiction and considers their relevance for this field. Ten theories are reviewed in terms of (i) the main tenets of each theory, (ii) the implications of the theory for promoting change in addictive behaviours and (iii) studies in the field of addiction that have used the theory. An augmented feedback loop model based on Control Theory is used to organize the theories and to show how different interventions might achieve behaviour change. Briefly, each theory provided the following recommendations for intervention: Control Theory: prompt behavioural monitoring, Goal-Setting Theory: set specific and challenging goals, Model of Action Phases: form 'implementation intentions', Strength Model of Self-Control: bolster self-control resources, Social Cognition Models (Protection Motivation Theory, Theory of Planned Behaviour, Health Belief Model): modify relevant cognitions, Elaboration Likelihood Model: consider targets' motivation and ability to process information, Prototype Willingness Model: change perceptions of the prototypical person who engages in behaviour and Social Cognitive Theory: modify self-efficacy. There are a range of theories in the field of behaviour change that can be applied usefully to addiction, each one pointing to a different set of modifiable determinants and/or behaviour change techniques. Studies reporting interventions should describe theoretical basis, behaviour change techniques and mode of delivery accurately so that effective interventions can be understood and replicated. © 2010 The Authors. Journal compilation © 2010 Society for the Study of Addiction.

  7. An outflow boundary condition for aeroacoustic computations

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Hagstrom, Thomas

    1995-01-01

    A formulation of boundary condition for flows with small disturbances is presented. The authors test their methodology in an axisymmetric jet flow calculation, using both the Navier-Stokes and Euler equations. Solutions in the far field are assumed to be oscillatory. If the oscillatory disturbances are small, the growth of the solution variables can be predicted by linear theory. Eigenfunctions of the linear theory are used explicitly in the formulation of the boundary conditions. This guarantees correct solutions at the boundary in the limit where the predictions of linear theory are valid.

  8. Modified gravity in Arnowitt-Deser-Misner formalism

    NASA Astrophysics Data System (ADS)

    Gao, Changjun

    2010-02-01

    Motivated by Hořava-Lifshitz gravity theory, we propose and investigate two kinds of modified gravity theories, the f(R) kind and the K-essence kind, in the Arnowitt-Deser-Misner (ADM) formalism. The f(R) kind includes one ultraviolet (UV) term and one infrared (IR) term together with the Einstein-Hilbert action. We find that these two terms naturally present the ultraviolet and infrared modifications to the Friedmann equation. The UV and IR modifications can avoid the past Big-Bang singularity and the future Big-Rip singularity, respectively. Furthermore, the IR modification can naturally account for the current acceleration of the Universe. The Lagrangian of K-essence kind modified gravity is made up of the three-dimensional Ricci scalar and an arbitrary function of the extrinsic curvature term. We find the cosmic acceleration can also be naturally interpreted without invoking any kind of dark energy. The static, spherically symmetry and vacuum solutions of both theories are Schwarzschild or Schwarzschild-de Sitter solution. Thus these modified gravity theories are viable for solar system tests.

  9. Modified kinetic theory applied to the shear flows of granular materials

    DOE PAGES

    Duan, Yifei; Feng, Zhi -Gang; Michaelides, Efstathios E.; ...

    2017-04-11

    Here, granular materials are characterized by large collections of discrete particles, where the particle-particle interactions are significantly more important than the particle-fluid interactions. The current kinetic theory captures fairly accurately the granular flow behavior in the dilute case, when only binary interactions are significant, but is not accurate at all in the dense flow regime, where multi-particle interactions and contacts must be modeled. To improve the kinetic theory results for granular flows in the dense flow regime, we propose a Modified Kinetic Theory (MKT) model that utilizes the contact duration or cut-off time to account for the complex particle-particle interactionsmore » in the dense regime. The contact duration model, also called TC model, is originally proposed by Luding and McNamara to solve the inelastic collapse issue existing in the Inelastic Hard Sphere (IHS) model. This model defines a cut-off time t c such that dissipation is not counted if the time between two consecutive contacts is less than t c. As shown in their study, the use of a cut-off time t c can also reduce the dissipation during multi-particle contacts. In this paper we relate the TC model with the Discrete Element Method (DEM) by choosing the cut-off time t c to be the duration of contact calculated from the linear-spring-dashpot soft-sphere model of the DEM. We examine two types of granular flows: simple shear flow and the plane shear flow, and compare the results of the classical Kinetic Theory (KT) model, the present MKT model, and the DEM model. Here, we show that the MKT model entails a significant improvement over the KT model for simple shear flows at inertial regimes. With the MKT model the calculations are close to the DEM results at solid fractions as high as 0.57. Even for the plane shear flows, where shear rate and solid fraction are inhomogeneous, the results of the MKT model agree very well with the DEM results.« less

  10. Modified kinetic theory applied to the shear flows of granular materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yifei; Feng, Zhi -Gang; Michaelides, Efstathios E.

    Here, granular materials are characterized by large collections of discrete particles, where the particle-particle interactions are significantly more important than the particle-fluid interactions. The current kinetic theory captures fairly accurately the granular flow behavior in the dilute case, when only binary interactions are significant, but is not accurate at all in the dense flow regime, where multi-particle interactions and contacts must be modeled. To improve the kinetic theory results for granular flows in the dense flow regime, we propose a Modified Kinetic Theory (MKT) model that utilizes the contact duration or cut-off time to account for the complex particle-particle interactionsmore » in the dense regime. The contact duration model, also called TC model, is originally proposed by Luding and McNamara to solve the inelastic collapse issue existing in the Inelastic Hard Sphere (IHS) model. This model defines a cut-off time t c such that dissipation is not counted if the time between two consecutive contacts is less than t c. As shown in their study, the use of a cut-off time t c can also reduce the dissipation during multi-particle contacts. In this paper we relate the TC model with the Discrete Element Method (DEM) by choosing the cut-off time t c to be the duration of contact calculated from the linear-spring-dashpot soft-sphere model of the DEM. We examine two types of granular flows: simple shear flow and the plane shear flow, and compare the results of the classical Kinetic Theory (KT) model, the present MKT model, and the DEM model. Here, we show that the MKT model entails a significant improvement over the KT model for simple shear flows at inertial regimes. With the MKT model the calculations are close to the DEM results at solid fractions as high as 0.57. Even for the plane shear flows, where shear rate and solid fraction are inhomogeneous, the results of the MKT model agree very well with the DEM results.« less

  11. ORACLS: A system for linear-quadratic-Gaussian control law design

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1978-01-01

    A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.

  12. Self-consistent predictor/corrector algorithms for stable and efficient integration of the time-dependent Kohn-Sham equation

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Herbert, John M.

    2018-01-01

    The "real time" formulation of time-dependent density functional theory (TDDFT) involves integration of the time-dependent Kohn-Sham (TDKS) equation in order to describe the time evolution of the electron density following a perturbation. This approach, which is complementary to the more traditional linear-response formulation of TDDFT, is more efficient for computation of broad-band spectra (including core-excited states) and for systems where the density of states is large. Integration of the TDKS equation is complicated by the time-dependent nature of the effective Hamiltonian, and we introduce several predictor/corrector algorithms to propagate the density matrix, one of which can be viewed as a self-consistent extension of the widely used modified-midpoint algorithm. The predictor/corrector algorithms facilitate larger time steps and are shown to be more efficient despite requiring more than one Fock build per time step, and furthermore can be used to detect a divergent simulation on-the-fly, which can then be halted or else the time step modified.

  13. A modified variational method for nonlinear vibration analysis of rotating beams including Coriolis effects

    NASA Astrophysics Data System (ADS)

    Tian, Jiajin; Su, Jinpeng; Zhou, Kai; Hua, Hongxing

    2018-07-01

    This paper presents a general formulation for nonlinear vibration analysis of rotating beams. A modified variational method combined with a multi-segment partitioning technique is employed to derive the free and transient vibration behaviors of the rotating beams. The strain energy and kinetic energy functional are formulated based on the order truncation principle of the fully geometrically nonlinear beam theory. The Coriolis effects as well as nonlinear effects due to the coupling of bending-stretching, bending-twist and twist-stretching are taken into account. The present method relaxes the need to explicitly meet the requirements of the boundary conditions for the admissible functions, and allows the use of any linearly independent, complete basis functions as admissible functions for rotating beams. Moreover, the method is readily used to deal with the nonlinear transient vibration problems for rotating beams subjected to dynamic loads. The accuracy, convergence and efficiency of the proposed method are examined by numerical examples. The influences of Coriolis and centrifugal forces on the vibration behaviors of the beams with various hub radiuses and slenderness ratios and rotating at different angular velocities are also investigated.

  14. Aquatic passive sampling of perfluorinated chemicals with polar organic chemical integrative sampler and environmental factors affecting sampling rate.

    PubMed

    Li, Ying; Yang, Cunman; Bao, Yijun; Ma, Xueru; Lu, Guanghua; Li, Yi

    2016-08-01

    A modified polar organic chemical integrative sampler (POCIS) could provide a convenient way of monitoring perfluorinated chemicals (PFCs) in water. In the present study, the modified POCIS was calibrated to monitor PFCs. The effects of water temperature, pH, and dissolved organic matter (DOM) on the sampling rate (R s) of PFCs were evaluated with a static renewal system. During laboratory validation over a 14-day period, the uptake kinetics of PFCs was linear with the POCIS. DOM and water temperature slightly influenced POCIS uptake rates, which is in consistent with the theory for uptake into POCIS. Therefore, within a narrow span of DOM and water temperatures, it was unnecessary to adjust the R s value for POCIS. Laboratory experiments were conducted with water over pH ranges of 3, 7, and 9. The R s values declined significantly with pH increase for PFCs. Although pH affected the uptake of PFCs, the effect was less than twofold. Application of the R s value to analyze PFCs with POCIS deployed in the field provided similar concentrations obtained from grab samples.

  15. The use of modified scaling factors in the design of high-power, non-linear, transmitting rod-core antennas

    NASA Astrophysics Data System (ADS)

    Jordan, Jared Williams; Dvorak, Steven L.; Sternberg, Ben K.

    2010-10-01

    In this paper, we develop a technique for designing high-power, non-linear, transmitting rod-core antennas by using simple modified scale factors rather than running labor-intensive numerical models. By using modified scale factors, a designer can predict changes in magnetic moment, inductance, core series loss resistance, etc. We define modified scale factors as the case when all physical dimensions of the rod antenna are scaled by p, except for the cross-sectional area of the individual wires or strips that are used to construct the core. This allows one to make measurements on a scaled-down version of the rod antenna using the same core material that will be used in the final antenna design. The modified scale factors were derived from prolate spheroidal analytical expressions for a finite-length rod antenna and were verified with experimental results. The modified scaling factors can only be used if the magnetic flux densities within the two scaled cores are the same. With the magnetic flux density constant, the two scaled cores will operate with the same complex permeability, thus changing the non-linear problem to a quasi-linear problem. We also demonstrate that by holding the number of turns times the drive current constant, while changing the number of turns, the inductance and core series loss resistance change by the number of turns squared. Experimental measurements were made on rod cores made from varying diameters of black oxide, low carbon steel wires and different widths of Metglas foil. Furthermore, we demonstrate that the modified scale factors work even in the presence of eddy currents within the core material.

  16. The Dynamics of Small-Scale Turbulence Driven Flows

    NASA Astrophysics Data System (ADS)

    Beer, M. A.; Hammett, G. W.

    1997-11-01

    The dynamics of small-scale fluctuation driven flows are of great interest for micro-instability driven turbulence, since nonlinear toroidal simulations have shown that these flows play an important role in the regulation of the turbulence and transport levels. The gyrofluid treatment of these flows was shown to be accurate for times shorter than a bounce time.(Beer, M. A., Ph. D. thesis, Princeton University (1995).) Since the decorrelation times of the turbulence are generally shorter than a bounce time, our original hypothesis was that this description was adequate. Recent work(Hinton, F. L., Rosenbluth, M. N., and Waltz, R. E., International Sherwood Fusion Theory Conference (1997).) pointed out possible problems with this hypothesis, emphasizing the existence of a linearly undamped component of the flow which could build up in time and lower the final turbulence level. While our original gyrofluid model reproduces some aspects of the linear flow, there are differences between the long time gyrofluid and kinetic linear results in some cases. On the other hand, if the long time behavior of these flows is dominated by nonlinear damping (which seems reasonable), then the existing nonlinear gyrofluid simulations may be sufficiently accurate. We test these possibilities by modifying the gyrofluid description of these flows and diagnosing the flow evolution in nonlinear simulations.

  17. Single-Mode Deceleration Stage Rayleigh-Taylor Instability Growth in Cylindrical Implosions

    NASA Astrophysics Data System (ADS)

    Sauppe, J. P.; Palaniyappan, S.; Bradley, P. A.; Batha, S. H.; Loomis, E. N.; Kline, J. L.; Srinivasan, B.; Bose, A.; Malka, E.; Shvarts, D.

    2017-10-01

    We present design calculations demonstrating the feasibility of measuring single-mode deceleration stage Rayleigh-Taylor instability (RTI) growth at a factor of four convergence. RTI growth rates are modified as a result of convergence [Bell LA-1321, 1951], and cylindrical targets are considered here, as they allow direct diagnostic access along the interface. The 2D computations, performed with the radiation-hydrodynamics code xRAGE [Gittings et al., CSD 2008] utilizing a new laser ray-tracing package, predict growth factors of 6 to 10 for mode 10 and 4 to 6 for mode 4, both of high interest in evaluating inertial confinement fusion capsule degradation mechanisms [Bose et al., this conference]. These results compare favorably to a linear theory [Epstein, PoP 2004] and to a buoyancy-drag model [Srebro et al., LPB 2003], which accounts for the linear and non-linear stages. Synthetic radiographs, produced by combining 2D computations of axial and transverse cross-sections, indicate this growth will be observable, and these will be compared to experimental data obtained at the OMEGA laser facility. Work performed by Los Alamos National Laboratory under contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the U.S. Department of Energy. (LA-UR-17-25608).

  18. A general theory of linear cosmological perturbations: bimetric theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, Macarena; Ferreira, Pedro G., E-mail: m.lagos13@imperial.ac.uk, E-mail: p.ferreira1@physics.ox.ac.uk

    2017-01-01

    We implement the method developed in [1] to construct the most general parametrised action for linear cosmological perturbations of bimetric theories of gravity. Specifically, we consider perturbations around a homogeneous and isotropic background, and identify the complete form of the action invariant under diffeomorphism transformations, as well as the number of free parameters characterising this cosmological class of theories. We discuss, in detail, the case without derivative interactions, and compare our results with those found in massive bigravity.

  19. Graph-based linear scaling electronic structure theory.

    PubMed

    Niklasson, Anders M N; Mniszewski, Susan M; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Rubensson, Emanuel H; Djidjev, Hristo

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  20. Graph-based linear scaling electronic structure theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  1. Regularization of Instantaneous Frequency Attribute Computations

    NASA Astrophysics Data System (ADS)

    Yedlin, M. J.; Margrave, G. F.; Van Vorst, D. G.; Ben Horin, Y.

    2014-12-01

    We compare two different methods of computation of a temporally local frequency:1) A stabilized instantaneous frequency using the theory of the analytic signal.2) A temporally variant centroid (or dominant) frequency estimated from a time-frequency decomposition.The first method derives from Taner et al (1979) as modified by Fomel (2007) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method computes the power centroid (Cohen, 1995) of the time-frequency spectrum, obtained using either the Gabor or Stockwell Transform. Common to both methods is the necessity of division by a diagonal matrix, which requires appropriate regularization.We modify Fomel's (2007) method by explicitly penalizing the roughness of the estimate. Following Farquharson and Oldenburg (2004), we employ both the L curve and GCV methods to obtain the smoothest model that fits the data in the L2 norm.Using synthetic data, quarry blast, earthquakes and the DPRK tests, our results suggest that the optimal method depends on the data. One of the main applications for this work is the discrimination between blast events and earthquakesFomel, Sergey. " Local seismic attributes." , Geophysics, 72.3 (2007): A29-A33.Cohen, Leon. " Time frequency analysis theory and applications." USA: Prentice Hall, (1995).Farquharson, Colin G., and Douglas W. Oldenburg. "A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems." Geophysical Journal International 156.3 (2004): 411-425.Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. " Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063.

  2. Global hybrids from the semiclassical atom theory satisfying the local density linear response.

    PubMed

    Fabiano, Eduardo; Constantin, Lucian A; Cortona, Pietro; Della Sala, Fabio

    2015-01-13

    We propose global hybrid approximations of the exchange-correlation (XC) energy functional which reproduce well the modified fourth-order gradient expansion of the exchange energy in the semiclassical limit of many-electron neutral atoms and recover the full local density approximation (LDA) linear response. These XC functionals represent the hybrid versions of the APBE functional [Phys. Rev. Lett. 2011, 106, 186406] yet employing an additional correlation functional which uses the localization concept of the correlation energy density to improve the compatibility with the Hartree-Fock exchange as well as the coupling-constant-resolved XC potential energy. Broad energetic and structural testing, including thermochemistry and geometry, transition metal complexes, noncovalent interactions, gold clusters and small gold-molecule interfaces, as well as an analysis of the hybrid parameters, show that our construction is quite robust. In particular, our testing shows that the resulting hybrid, including 20% of Hartree-Fock exchange and named hAPBE, performs remarkably well for a broad palette of systems and properties, being generally better than popular hybrids (PBE0 and B3LYP). Semiempirical dispersion corrections are also provided.

  3. Wing box transonic-flutter suppression using piezoelectric self-sensing actuators attached to skin

    NASA Astrophysics Data System (ADS)

    Otiefy, R. A. H.; Negm, H. M.

    2010-12-01

    The main objective of this research is to study the capability of piezoelectric (PZT) self-sensing actuators to suppress the transonic wing box flutter, which is a flow-structure interaction phenomenon. The unsteady general frequency modified transonic small disturbance (TSD) equation is used to model the transonic flow about the wing. The wing box structure and piezoelectric actuators are modeled using the equivalent plate method, which is based on the first order shear deformation plate theory (FSDPT). The piezoelectric actuators are bonded to the skin. The optimal electromechanical coupling conditions between the piezoelectric actuators and the wing are collected from previous work. Three main different control strategies, a linear quadratic Gaussian (LQG) which combines the linear quadratic regulator (LQR) with the Kalman filter estimator (KFE), an optimal static output feedback (SOF), and a classic feedback controller (CFC), are studied and compared. The optimum actuator and sensor locations are determined using the norm of feedback control gains (NFCG) and norm of Kalman filter estimator gains (NKFEG) respectively. A genetic algorithm (GA) optimization technique is used to calculate the controller and estimator parameters to achieve a target response.

  4. Mechanism of and relation between the sorption and desorption of nonylphenol on black carbon-inclusive sediment.

    PubMed

    Liping, Lou; Guanghuan, Cheng; Jingyou, Deng; Mingyang, Sun; Huanyu, Chen; Qiang, Yang; Xinhua, Xu

    2014-07-01

    Correlation between the sorption and desorption of nonylphenol (NP) and binary linear regression were conducted to reveal the underlying mechanism of and relation between sorption domains and desorption sites in black carbon (BC)-amended sediment. The sorption and desorption data could be fitted well using dual-mode (R(2) = 0.971-0.996) and modified two-domain model (R(2) = 0.986-0.995), respectively, and there were good correlations between these two parts of parameters (R(2) = 0.884-0.939, P < 0.01). The NP percentage in desorbable fraction was almost equal to that of the partition fraction, suggesting the desorbed NP came from linear partition domain, whereas the resistant desorption NP was segregated in nonlinear adsorption sites, which were dominated by pores in BC-amended sediment. Our investigation refined theory about the relation between sorption domains and desorption sites in sediment and could be used to predict the release risk of NP using sorption data when BC is used for NP pollution control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Modelling of a bridge-shaped nonlinear piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Gafforelli, G.; Xu, R.; Corigliano, A.; Kim, S. G.

    2013-12-01

    Piezoelectric MicroElectroMechanical Systems (MEMS) energy harvesting is an attractive technology for harvesting small magnitudes of energy from ambient vibrations. Increasing the operating frequency bandwidth of such devices is one of the major issues for real world applications. A MEMS-scale doubly clamped nonlinear beam resonator is designed and developed to demonstrate very wide bandwidth and high power density. In this paper a first complete theoretical discussion of nonlinear resonating piezoelectric energy harvesting is provided. The sectional behaviour of the beam is studied through the Classical Lamination Theory (CLT) specifically modified to introduce the piezoelectric coupling and nonlinear Green-Lagrange strain tensor. A lumped parameter model is built through Rayleigh-Ritz Method and the resulting nonlinear coupled equations are solved in the frequency domain through the Harmonic Balance Method (HBM). Finally, the influence of external load resistance on the dynamic behaviour is studied. The theoretical model shows that nonlinear resonant harvesters have much wider power bandwidth than that of linear resonators but their maximum power is still bounded by the mechanical damping as is the case for linear resonating harvesters.

  6. Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Pikichyan, H. V.

    2017-07-01

    In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.

  7. Towards a non-linear theory for fluid pressure and osmosis in shales

    NASA Astrophysics Data System (ADS)

    Droghei, Riccardo; Salusti, Ettore

    2015-04-01

    In exploiting deep hydrocarbon reservoirs, often injections of fluid and/or solute are used. To control and avoid troubles as fluid and gas unexpected diffusions, a reservoir characterization can be obtained also from observations of space and time evolution of micro-earthquake clouds resulting from such injections. This is important since several among the processes caused by fluid injections can modify the deep matrix. Information about the evolution of such micro-seismicity clouds therefore plays a realistic role in the reservoir analyses. To reach a better insight about such processes, and obtain a better system control, we here analyze the initial stress necessary to originate strong non linear transients of combined fluid pressure and solute density (osmosis) in a porous matrix. All this can indeed perturb in a mild (i.e. a linear diffusion) or dramatic non linear way the rock structure, till inducing rock deformations, micro-earthquakes or fractures. I more detail we here assume first a linear Hooke law relating strain, stress, solute density and fluid pressure, and analyze their effect in the porous rock dynamics. Then we analyze its generalization, i.e. the further non linear effect of a stronger external pressure, also in presence of a trend of pressure or solute in the whole region. We moreover characterize the zones where a sudden arrival of such a front can cause micro-earthquakes or fractures. All this allows to reach a novel, more realistic insight about the control of rock evolution in presence of strong pressure fronts. We thus obtain a more efficient reservoir control to avoid large geological perturbations. It is of interest that our results are very similar to those found by Shapiro et al.(2013) with a different approach.

  8. The preconditioned Gauss-Seidel method faster than the SOR method

    NASA Astrophysics Data System (ADS)

    Niki, Hiroshi; Kohno, Toshiyuki; Morimoto, Munenori

    2008-09-01

    In recent years, a number of preconditioners have been applied to linear systems [A.D. Gunawardena, S.K. Jain, L. Snyder, Modified iterative methods for consistent linear systems, Linear Algebra Appl. 154-156 (1991) 123-143; T. Kohno, H. Kotakemori, H. Niki, M. Usui, Improving modified Gauss-Seidel method for Z-matrices, Linear Algebra Appl. 267 (1997) 113-123; H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioner (I+Smax), J. Comput. Appl. Math. 145 (2002) 373-378; H. Kotakemori, H. Niki, N. Okamoto, Accelerated iteration method for Z-matrices, J. Comput. Appl. Math. 75 (1996) 87-97; M. Usui, H. Niki, T.Kohno, Adaptive Gauss-Seidel method for linear systems, Internat. J. Comput. Math. 51(1994)119-125 [10

  9. Colombeau algebra as a mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots

    NASA Astrophysics Data System (ADS)

    Průša, Vít; Řehoř, Martin; Tůma, Karel

    2017-02-01

    The response of mechanical systems composed of springs and dashpots to a step input is of eminent interest in the applications. If the system is formed by linear elements, then its response is governed by a system of linear ordinary differential equations. In the linear case, the mathematical method of choice for the analysis of the response is the classical theory of distributions. However, if the system contains nonlinear elements, then the classical theory of distributions is of no use, since it is strictly limited to the linear setting. Consequently, a question arises whether it is even possible or reasonable to study the response of nonlinear systems to step inputs. The answer is positive. A mathematical theory that can handle the challenge is the so-called Colombeau algebra. Building on the abstract result by Průša and Rajagopal (Int J Non-Linear Mech 81:207-221, 2016), we show how to use the theory in the analysis of response of nonlinear spring-dashpot and spring-dashpot-mass systems.

  10. Trends in modern system theory

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1976-01-01

    The topics considered are related to linear control system design, adaptive control, failure detection, control under failure, system reliability, and large-scale systems and decentralized control. It is pointed out that the design of a linear feedback control system which regulates a process about a desirable set point or steady-state condition in the presence of disturbances is a very important problem. The linearized dynamics of the process are used for design purposes. The typical linear-quadratic design involving the solution of the optimal control problem of a linear time-invariant system with respect to a quadratic performance criterion is considered along with gain reduction theorems and the multivariable phase margin theorem. The stumbling block in many adaptive design methodologies is associated with the amount of real time computation which is necessary. Attention is also given to the desperate need to develop good theories for large-scale systems, the beginning of a microprocessor revolution, the translation of the Wiener-Hopf theory into the time domain, and advances made in dynamic team theory, dynamic stochastic games, and finite memory stochastic control.

  11. Activation energy associated with the electromigration of oligosaccharides through viscosity modifier and polymeric additive containing background electrolytes.

    PubMed

    Kerékgyártó, Márta; Járvás, Gábor; Novák, Levente; Guttman, András

    2016-02-01

    The activation energy related to the electromigration of oligosaccharides can be determined from their measured electrophoretic mobilities at different temperatures. The effects of a viscosity modifier (ethylene glycol) and a polymeric additive (linear polyacrylamide) on the electrophoretic mobility of linear sugar oligomers with α1-4 linked glucose units (maltooligosaccharides) were studied in CE using the activation energy concept. The electrophoretic separations of 8-aminopyrene-1,3,6-trisulfonate-labeled maltooligosaccharides were monitored by LIF detection in the temperature range of 20-50°C, using either 0-60% ethylene glycol (viscosity modifier) or 0-3% linear polyacrylamide (polymeric additive) containing BGEs. Activation energy curves were constructed based on the slopes of the Arrhenius plots. With the use of linear polyacrylamide additive, solute size-dependent activation energy variations were found for the maltooligosaccharides with polymerization degrees below and above maltoheptaose (DP 7), probably due to molecular conformation changes and possible matrix interaction effects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Determination of linear short chain aliphatic aldehyde and ketone vapors in air using a polystyrene-coated quartz crystal nanobalance sensor.

    PubMed

    Mirmohseni, Abdolreza; Olad, Ali

    2010-01-01

    A polystyrene coated quartz crystal nanobalance (QCN) sensor was developed for use in the determination of a number of linear short-chain aliphatic aldehyde and ketone vapors contained in air. The quartz crystal was modified by a thin-layer coating of a commercial grade general purpose polystyrene (GPPS) from Tabriz petrochemical company using a solution casting method. Determination was based on frequency shifts of the modified quartz crystal due to the adsorption of analytes at the surface of modified electrode in exposure to various concentrations of analytes. The frequency shift was found to have a linear relation to the concentration of analytes. Linear calibration curves were obtained for 7-70 mg l(-1) of analytes with correlation coefficients in the range of 0.9935-0.9989 and sensitivity factors in the range of 2.07-6.74 Hz/mg l(-1). A storage period of over three months showed no loss in the sensitivity and performance of the sensor.

  13. Assessing a hydrodynamic description for instabilities in highly dissipative, freely cooling granular gases.

    PubMed

    Mitrano, Peter P; Garzó, Vicente; Hilger, Andrew M; Ewasko, Christopher J; Hrenya, Christine M

    2012-04-01

    An intriguing phenomenon displayed by granular flows and predicted by kinetic-theory-based models is the instability known as particle "clustering," which refers to the tendency of dissipative grains to form transient, loose regions of relatively high concentration. In this work, we assess a modified-Sonine approximation recently proposed [Garzó, Santos, and Montanero, Physica A 376, 94 (2007)] for a granular gas via an examination of system stability. In particular, we determine the critical length scale associated with the onset of two types of instabilities--vortices and clusters--via stability analyses of the Navier-Stokes-order hydrodynamic equations by using the expressions of the transport coefficients obtained from both the standard and the modified-Sonine approximations. We examine the impact of both Sonine approximations over a range of solids fraction φ<0.2 for small restitution coefficients e = 0.25-0.4, where the standard and modified theories exhibit discrepancies. The theoretical predictions for the critical length scales are compared to molecular dynamics (MD) simulations, of which a small percentage were not considered due to inelastic collapse. Results show excellent quantitative agreement between MD and the modified-Sonine theory, while the standard theory loses accuracy for this highly dissipative parameter space. The modified theory also remedies a high-dissipation qualitative mismatch between the standard theory and MD for the instability that forms more readily. Furthermore, the evolution of cluster size is briefly examined via MD, indicating that domain-size clusters may remain stable or halve in size, depending on system parameters.

  14. Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT).

    PubMed

    Maurer, Reinhard J; Reuter, Karsten

    2013-07-07

    Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion Δ-self-consistent field method by Gavnholt et al. [Phys. Rev. B 78, 075441 (2008)] presents an efficient alternative to time consuming quasi-particle calculations. In this method, the standard Kohn-Sham equations of density-functional theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work, we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.

  15. Linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    NASA Astrophysics Data System (ADS)

    Camporesi, Roberto

    2011-06-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and the variation of constants method. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  16. Linear system theory

    NASA Technical Reports Server (NTRS)

    Callier, Frank M.; Desoer, Charles A.

    1991-01-01

    The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.

  17. A generalized Lyapunov theory for robust root clustering of linear state space models with real parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1992-01-01

    The problem of analyzing and designing controllers for linear systems subject to real parameter uncertainty is considered. An elegant, unified theory for robust eigenvalue placement is presented for a class of D-regions defined by algebraic inequalities by extending the nominal matrix root clustering theory of Gutman and Jury (1981) to linear uncertain time systems. The author presents explicit conditions for matrix root clustering for different D-regions and establishes the relationship between the eigenvalue migration range and the parameter range. The bounds are all obtained by one-shot computation in the matrix domain and do not need any frequency sweeping or parameter gridding. The method uses the generalized Lyapunov theory for getting the bounds.

  18. Gravitons as Embroidery on the Weave

    NASA Astrophysics Data System (ADS)

    Iwasaki, Junichi; Rovelli, Carlo

    We investigate the physical interpretation of the loop states that appear in the loop representation of quantum gravity. By utilizing the “weave” state, which has been recently introduced as a quantum description of the microstructure of flat space, we analyze the relation between loop states and graviton states. This relation determines a linear map M from the state-space of the nonperturbative theory (loop space) into the state-space of the linearized theory (Fock space). We present an explicit form of this map, and a preliminary investigation of its properties. The existence of such a map indicates that the full nonperturbative quantum theory includes a sector that describes the same physics as (the low energy regimes of) the linearized theory, namely gravitons on flat space.

  19. Linear instability of plane Couette and Poiseuille flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chefranov, S. G., E-mail: schefranov@mail.ru; Chefranov, A. G., E-mail: Alexander.chefranov@emu.edu.tr

    2016-05-15

    It is shown that linear instability of plane Couette flow can take place even at finite Reynolds numbers Re > Re{sub th} ≈ 139, which agrees with the experimental value of Re{sub th} ≈ 150 ± 5 [16, 17]. This new result of the linear theory of hydrodynamic stability is obtained by abandoning traditional assumption of the longitudinal periodicity of disturbances in the flow direction. It is established that previous notions about linear stability of this flow at arbitrarily large Reynolds numbers relied directly upon the assumed separation of spatial variables of the field of disturbances and their longitudinal periodicitymore » in the linear theory. By also abandoning these assumptions for plane Poiseuille flow, a new threshold Reynolds number Re{sub th} ≈ 1035 is obtained, which agrees to within 4% with experiment—in contrast to 500% discrepancy for the previous estimate of Re{sub th} ≈ 5772 obtained in the framework of the linear theory under assumption of the “normal” shape of disturbances [2].« less

  20. Variational Theory of Motion of Curved, Twisted and Extensible Elastic Rods

    DTIC Science & Technology

    1993-01-18

    nonlinear theory such as questions of existence of solutions and global behavior have been carried out by Antman (1976). His basic work entitled "The...Aerosp. Ens. Q017/018 16 REFERENCES Antman , S.S., "Ordinary Differential Equations of Non-Linear ElastIcity 1: Foundatious of the Theories of Non-Linearly...Elutic rods and Shells," A.R.M.A. 61 (1976), 307-351. Antman , S.S., "The Theory of Rods", Handbuch der Physik, Vol. Vla/2, Springer-Verlq, Berlin

  1. Lineshape theory of pigment-protein complexes: How the finite relaxation time of nuclei influences the exciton relaxation-induced lifetime broadening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinh, Thanh-Chung; Renger, Thomas, E-mail: thomas.renger@jku.at

    2016-07-21

    In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. Somore » far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures, Redfield theory still provides a numerically efficient alternative to NeMoR theory. At higher temperatures, we suggest to use NeMoR theory, because it has the same numerical costs as modified Redfield theory, but is more accurate.« less

  2. A non-axisymmetric linearized supersonic wave drag analysis: Mathematical theory

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1996-01-01

    A Mathematical theory is developed to perform the calculations necessary to determine the wave drag for slender bodies of non-circular cross section. The derivations presented in this report are based on extensions to supersonic linearized small perturbation theory. A numerical scheme is presented utilizing Fourier decomposition to compute the pressure coefficient on and about a slender body of arbitrary cross section.

  3. Design of Supersonic Transport Flap Systems for Thrust Recovery at Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Mann, Michael J.; Carlson, Harry W.; Domack, Christopher S.

    1999-01-01

    A study of the subsonic aerodynamics of hinged flap systems for supersonic cruise commercial aircraft has been conducted using linear attached-flow theory that has been modified to include an estimate of attainable leading edge thrust and an approximate representation of vortex forces. Comparisons of theoretical predictions with experimental results show that the theory gives a reasonably good and generally conservative estimate of the performance of an efficient flap system and provides a good estimate of the leading and trailing-edge deflection angles necessary for optimum performance. A substantial reduction in the area of the inboard region of the leading edge flap has only a minor effect on the performance and the optimum deflection angles. Changes in the size of the outboard leading-edge flap show that performance is greatest when this flap has a chord equal to approximately 30 percent of the wing chord. A study was also made of the performance of various combinations of individual leading and trailing-edge flaps, and the results show that aerodynamic efficiencies as high as 85 percent of full suction are predicted.

  4. Whitham modulation theory for (2  +  1)-dimensional equations of Kadomtsev–Petviashvili type

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Biondini, Gino; Rumanov, Igor

    2018-05-01

    Whitham modulation theory for certain two-dimensional evolution equations of Kadomtsev–Petviashvili (KP) type is presented. Three specific examples are considered in detail: the KP equation, the two-dimensional Benjamin–Ono (2DBO) equation and a modified KP (m2KP) equation. A unified derivation is also provided. In the case of the m2KP equation, the corresponding Whitham modulation system exhibits features different from the other two. The approach presented here does not require integrability of the original evolution equation. Indeed, while the KP equation is known to be a completely integrable equation, the 2DBO equation and the m2KP equation are not known to be integrable. In each of the cases considered, the Whitham modulation system obtained consists of five first-order quasilinear partial differential equations. The Riemann problem (i.e. the analogue of the Gurevich–Pitaevskii problem) for the one-dimensional reduction of the m2KP equation is studied. For the m2KP equation, the system of modulation equations is used to analyze the linear stability of traveling wave solutions.

  5. Quasi-optical theory of relativistic surface-wave oscillators with one-dimensional and two-dimensional periodic planar structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S.; Zaslavsky, V. Yu.; Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950

    2013-11-15

    Within the framework of a quasi-optical approach, we develop 2D and 3D self-consistent theory of relativistic surface-wave oscillators. Presenting the radiation field as a sum of two counter-propagating wavebeams coupled on a shallow corrugated surface, we describe formation of an evanescent slow wave. Dispersion characteristics of the evanescent wave following from this method are in good compliance with those found from the direct cst simulations. Considering excitation of the slow wave by a sheet electron beam, we simulate linear and nonlinear stages of interaction, which allows us to determine oscillation threshold conditions, electron efficiency, and output coupling. The transition frommore » the model of surface-wave oscillator operating in the π-mode regime to the canonical model of relativistic backward wave oscillator is considered. We also described a modified scheme of planar relativistic surface-wave oscillators exploiting two-dimensional periodic gratings. Additional transverse propagating waves emerging on these gratings synchronize the emission from a wide sheet rectilinear electron beam allowing realization of a Cherenkov millimeter-wave oscillators with subgigawatt output power level.« less

  6. A Reduced Model for the Magnetorotational Instability

    NASA Astrophysics Data System (ADS)

    Jamroz, Ben; Julien, Keith; Knobloch, Edgar

    2008-11-01

    The magnetorotational instability is investigated within the shearing box approximation in the large Elsasser number regime. In this regime, which is of fundamental importance to astrophysical accretion disk theory, shear is the dominant source of energy, but the instability itself requires the presence of a weaker vertical magnetic field. Dissipative effects are weaker still. However, they are sufficiently large to permit a nonlinear feedback mechanism whereby the turbulent stresses generated by the MRI act on and modify the local background shear in the angular velocity profile. To date this response has been omitted in shearing box simulations and is captured by a reduced pde model derived here from the global MHD fluid equations using multiscale asymptotic perturbation theory. Results from numerical simulations of the reduced pde model indicate a linear phase of exponential growth followed by a nonlinear adjustment to algebraic growth and decay in the fluctuating quantities. Remarkably, the velocity and magnetic field correlations associated with these algebraic growth and decay laws conspire to achieve saturation of the angular momentum transport. The inclusion of subdominant ohmic dissipation arrests the algebraic growth of the fluctuations on a longer, dissipative time scale.

  7. First-Principles Study of the Electronic Structure and Bonding Properties of X8C46 and X8B6C40 (X: Li, Na, Mg, Ca) Carbon Clathrates

    NASA Astrophysics Data System (ADS)

    KoleŻyński, Andrzej; Szczypka, Wojciech

    2016-03-01

    Results from theoretical analysis of the crystal structure, electronic structure, and bonding properties of C46 and B6C40 carbon clathrates doped with selected alkali and alkaline earth metals cations (Li, Na, Mg, Ca) are presented. The ab initio calculations were performed by means of the WIEN2k package (full potential linearized augmented plane wave method (FP-LAPW) within density functional theory (DFT)) with PBESol and modified Becke-Johnson exchange-correlation potentials used in geometry optimization and electronic structure calculations, respectively. The bonding properties were analyzed by applying Bader's quantum theory of atoms in molecules formalism to the topological properties of total electron density obtained from ab initio calculations. Analysis of the results obtained (i.a. equilibrium geometry, equation of state, cohesive energy, band structure, density of states—both total and projected on to particular atoms, and topological properties of bond critical points and net charges of topological atoms) is presented in detail.

  8. Constraining Modified Theories of Gravity with Gravitational-Wave Stochastic Backgrounds

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Marassi, Stefania; Ferrari, Valeria; Kokkotas, Kostas; Schneider, Raffaella

    2016-08-01

    The direct discovery of gravitational waves has finally opened a new observational window on our Universe, suggesting that the population of coalescing binary black holes is larger than previously expected. These sources produce an unresolved background of gravitational waves, potentially observable by ground-based interferometers. In this Letter we investigate how modified theories of gravity, modeled using the parametrized post-Einsteinian formalism, affect the expected signal, and analyze the detectability of the resulting stochastic background by current and future ground-based interferometers. We find the constraints that Advanced LIGO would be able to set on modified theories, showing that they may significantly improve the current bounds obtained from astrophysical observations of binary pulsars.

  9. A programmable nonlinear acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Yang, Tianzhi; Song, Zhi-Guang; Clerkin, Eoin; Zhang, Ye-Wei; Sun, Jia-He; Su, Yi-Shu; Chen, Li-Qun; Hagedorn, Peter

    2017-09-01

    Acoustic metamaterials with specifically designed lattices can manipulate acoustic/elastic waves in unprecedented ways. Whereas there are many studies that focus on passive linear lattice, with non-reconfigurable structures. In this letter, we present the design, theory and experimental demonstration of an active nonlinear acoustic metamaterial, the dynamic properties of which can be modified instantaneously with reversibility. By incorporating active and nonlinear elements in a single unit cell, a real-time tunability and switchability of the band gap is achieved. In addition, we demonstrate a dynamic "editing" capability for shaping transmission spectra, which can be used to create the desired band gap and resonance. This feature is impossible to achieve in passive metamaterials. These advantages demonstrate the versatility of the proposed device, paving the way toward smart acoustic devices, such as logic elements, diode and transistor.

  10. Light scattering by randomly oriented cubes and parallelepipeds. [for interpretation of observed data from planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Liou, K. N.; Cai, Q.; Pollack, J. B.; Cuzzi, J. N.

    1983-01-01

    In this paper, the geometric ray tracing theory for the scattering of light by hexagonal cylinders to cubes and parallelepipeds has been modified. Effects of the real and imaginary parts of the refractive index and aspect ratio of the particle on the scattering phase function and the degree of linear polarization are investigated. Causes of the physical features in the scattering polarization patterns are identified in terms of the scattering contribution due to geometric reflections and refractions. The single-scattering phase function and polarization data presented in this paper should be of some use for the interpretation of observed scattering and polarization data from planetary atmospheres and for the physical understanding of the transfer of radiation in an atmosphere containing nonspherical particles.

  11. Improved synchronization criteria for time-delayed chaotic Lur'e systems using sampled-data control

    NASA Astrophysics Data System (ADS)

    Duan, Wenyong; Li, Yan; Fu, Xiaorong; Du, Baozhu

    2017-02-01

    This paper is concerned with the synchronization for a class of time-delayed chaotic Lur’e systems using sampled-data control. Both of time-varying and time-invariant delays are considered. New criteria are proposed in terms of linear matrix inequalities (LMIs) by employing a modified LKF combined with the delay-fraction theory and some novel terms. The criteria are less conservative than some previous ones and a longer sampling period is achieved under the new results. Furthermore, the derived conditions are employed to design a sampled-data controller. The desired controller gain matrix can be obtained by means of the LMI approach. Finally, a numerical examples and simulations on Chua’s circuit is presented to show the effectiveness of the proposed approach.

  12. On the Validity of the Streaming Model for the Redshift-Space Correlation Function in the Linear Regime

    NASA Astrophysics Data System (ADS)

    Fisher, Karl B.

    1995-08-01

    The relation between the galaxy correlation functions in real-space and redshift-space is derived in the linear regime by an appropriate averaging of the joint probability distribution of density and velocity. The derivation recovers the familiar linear theory result on large scales but has the advantage of clearly revealing the dependence of the redshift distortions on the underlying peculiar velocity field; streaming motions give rise to distortions of θ(Ω0.6/b) while variations in the anisotropic velocity dispersion yield terms of order θ(Ω1.2/b2). This probabilistic derivation of the redshift-space correlation function is similar in spirit to the derivation of the commonly used "streaming" model, in which the distortions are given by a convolution of the real-space correlation function with a velocity distribution function. The streaming model is often used to model the redshift-space correlation function on small, highly nonlinear, scales. There have been claims in the literature, however, that the streaming model is not valid in the linear regime. Our analysis confirms this claim, but we show that the streaming model can be made consistent with linear theory provided that the model for the streaming has the functional form predicted by linear theory and that the velocity distribution is chosen to be a Gaussian with the correct linear theory dispersion.

  13. Long-range corrected density functional theory with accelerated Hartree-Fock exchange integration using a two-Gaussian operator [LC-ωPBE(2Gau)].

    PubMed

    Song, Jong-Won; Hirao, Kimihiko

    2015-10-14

    Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular and periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.

  14. Communication: Recovering the flat-plane condition in electronic structure theory at semi-local DFT cost

    NASA Astrophysics Data System (ADS)

    Bajaj, Akash; Janet, Jon Paul; Kulik, Heather J.

    2017-11-01

    The flat-plane condition is the union of two exact constraints in electronic structure theory: (i) energetic piecewise linearity with fractional electron removal or addition and (ii) invariant energetics with change in electron spin in a half filled orbital. Semi-local density functional theory (DFT) fails to recover the flat plane, exhibiting convex fractional charge errors (FCE) and concave fractional spin errors (FSE) that are related to delocalization and static correlation errors. We previously showed that DFT+U eliminates FCE but now demonstrate that, like other widely employed corrections (i.e., Hartree-Fock exchange), it worsens FSE. To find an alternative strategy, we examine the shape of semi-local DFT deviations from the exact flat plane and we find this shape to be remarkably consistent across ions and molecules. We introduce the judiciously modified DFT (jmDFT) approach, wherein corrections are constructed from few-parameter, low-order functional forms that fit the shape of semi-local DFT errors. We select one such physically intuitive form and incorporate it self-consistently to correct semi-local DFT. We demonstrate on model systems that jmDFT represents the first easy-to-implement, no-overhead approach to recovering the flat plane from semi-local DFT.

  15. Predicted Static Aeroelastic Effects on Wings with Supersonic Leading Edges and Streamwise Tips

    NASA Technical Reports Server (NTRS)

    Brown, Stuart C.

    1959-01-01

    A method is presented for calculation of static aeroelastic effects on wings with supersonic leading edges and streamwise tips. Both chord-wise and spanwise deflections are taken into account. Aerodynamic and structural forces are introduced in influence coefficient form; the former are developed from linearized supersonic wing theory and the latter are assumed to be known from load-deflection tests or theory. The predicted effects of flexibility on lateral-control effectiveness, damping in roll, and lift-curve slope are shown for a low-aspect-ratio wing at Mach numbers of 1.25 and 2.60. The control effectiveness is shown for a trailing-edge aileron, a tip aileron, and a slot-deflector spoiler located along the 0.70 chord line. The calculations indicate that the tip aileron is particularly attractive from an aeroelastic standpoint, because the changes in effectiveness with dynamic pressure are small compared to the changes in effectiveness of the trailing-edge aileron and slot-deflector spoiler. The effects of making several simplifying assumptions in the example calculations are shown. The use of a modified strip theory to determine the aerodynamic influence coefficients gave adequate results only for the high Mach number case. Elimination of chordwise bending in the structural influence coefficients exaggerated the aeroelastic effects on rolling-moment and lift coefficients for both Mach numbers.

  16. Rigorous diffraction analysis using geometrical theory of diffraction for future mask technology

    NASA Astrophysics Data System (ADS)

    Chua, Gek S.; Tay, Cho J.; Quan, Chenggen; Lin, Qunying

    2004-05-01

    Advanced lithographic techniques such as phase shift masks (PSM) and optical proximity correction (OPC) result in a more complex mask design and technology. In contrast to the binary masks, which have only transparent and nontransparent regions, phase shift masks also take into consideration transparent features with a different optical thickness and a modified phase of the transmitted light. PSM are well-known to show prominent diffraction effects, which cannot be described by the assumption of an infinitely thin mask (Kirchhoff approach) that is used in many commercial photolithography simulators. A correct prediction of sidelobe printability, process windows and linearity of OPC masks require the application of rigorous diffraction theory. The problem of aerial image intensity imbalance through focus with alternating Phase Shift Masks (altPSMs) is performed and compared between a time-domain finite-difference (TDFD) algorithm (TEMPEST) and Geometrical theory of diffraction (GTD). Using GTD, with the solution to the canonical problems, we obtained a relationship between the edge on the mask and the disturbance in image space. The main interest is to develop useful formulations that can be readily applied to solve rigorous diffraction for future mask technology. Analysis of rigorous diffraction effects for altPSMs using GTD approach will be discussed.

  17. A view on thermodynamics of concentrated electrolytes: Modification necessity for electrostatic contribution of osmotic coefficient

    NASA Astrophysics Data System (ADS)

    Sahu, Jyoti; Juvekar, Vinay A.

    2018-05-01

    Prediction of the osmotic coefficient of concentrated electrolytes is needed in a wide variety of industrial applications. There is a need to correctly segregate the electrostatic contribution to osmotic coefficient from nonelectrostatic contribution. This is achieved in a rational way in this work. Using the Robinson-Stokes-Glueckauf hydrated ion model to predict non-electrostatic contribution to the osmotic coefficient, it is shown that hydration number should be independent of concentration so that the observed linear dependence of osmotic coefficient on electrolyte concentration in high concentration range could be predicted. The hydration number of several electrolytes (LiCl, NaCl, KCl, MgCl2, and MgSO4) has been estimated by this method. The hydration number predicted by this model shows correct dependence on temperature. It is also shown that the electrostatic contribution to osmotic coefficient is underpredicted by the Debye-Hückel theory at concentration beyond 0.1 m. The Debye-Hückel theory is modified by introducing a concentration dependent hydrated ionic size. Using the present analysis, it is possible to correctly estimate the electrostatic contribution to the osmotic coefficient, beyond the range of validation of the D-H theory. This would allow development of a more fundamental model for electrostatic interaction at high electrolyte concentrations.

  18. Polymeric mercaptosilane-modified platinum electrodes for elimination of interferants in glucose biosensors.

    PubMed

    Jung, S K; Wilson, G S

    1996-02-15

    An oxidase-based glucose sensor has been developed that uses a mercaptosilane-modified platinum electrode to achieve selectivity of electrochemical interferants. A platinum-iridium (9:1) wire (0.178 mm o.d., sensing area of 1.12 mm2) is modified with (3-mercaptopropyl)trimethoxysilane. The modified sensors show excellent operational stability for more than 5 days. Glucose oxidase is immobilized on the modified surface (i) by using 3-maleimidopropionic acid as a linker or (ii) by cross-liking with bovine serum albumin using glutaraldehyde. Sensitivities in the range of 9.97 nA/mM glucose are observed when the enzyme is immobilized by method ii. Lower sensitivities (1.13 x 10(-1) nA/mM glucose) are observed when immobilization method i is employed. In terms of linear response range, the sensor enzyme-immobilized by method i is superior to that immobilized by method ii. The linearity is improved upon coating the enzyme layer with polyurethane. The sensor immobilized by method ii and coated with polyurethane exhibits a linear range to 15 mM glucose and excellent selectivity to glucose (0.47 nA/mM) against interferants such as ascorbic acid, uric acid, and acetaminophen.

  19. Estimating cosmic velocity fields from density fields and tidal tensors

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan

    2012-10-01

    In this work we investigate the non-linear and non-local relation between cosmological density and peculiar velocity fields. Our goal is to provide an algorithm for the reconstruction of the non-linear velocity field from the fully non-linear density. We find that including the gravitational tidal field tensor using second-order Lagrangian perturbation theory based upon an estimate of the linear component of the non-linear density field significantly improves the estimate of the cosmic flow in comparison to linear theory not only in the low density, but also and more dramatically in the high-density regions. In particular we test two estimates of the linear component: the lognormal model and the iterative Lagrangian linearization. The present approach relies on a rigorous higher order Lagrangian perturbation theory analysis which incorporates a non-local relation. It does not require additional fitting from simulations being in this sense parameter free, it is independent of statistical-geometrical optimization and it is straightforward and efficient to compute. The method is demonstrated to yield an unbiased estimator of the velocity field on scales ≳5 h-1 Mpc with closely Gaussian distributed errors. Moreover, the statistics of the divergence of the peculiar velocity field is extremely well recovered showing a good agreement with the true one from N-body simulations. The typical errors of about 10 km s-1 (1σ confidence intervals) are reduced by more than 80 per cent with respect to linear theory in the scale range between 5 and 10 h-1 Mpc in high-density regions (δ > 2). We also find that iterative Lagrangian linearization is significantly superior in the low-density regime with respect to the lognormal model.

  20. Investigation of metrics to assess vascular flow modifications for diverter device designs using hydrodynamics and angiographic studies

    NASA Astrophysics Data System (ADS)

    Ionita, Ciprian N.; Bednarek, Daniel R.; Rudin, Stephen

    2012-03-01

    Intracranial aneurysm treatment with flow diverters (FD) is a new minimally invasive approach, recently approved for use in human patients. Attempts to correlate the flow reduction observed in angiograms with a parameter related to the FD structure have not been totally successful. To find the proper parameter, we investigated four porous-media flow models. The models describing the relation between the pressure drop and flow velocity that are investigated include the capillary theory linear model (CTLM), the drag force linear model (DFLM), the simple quadratic model (SQM) and the modified quadratic model (MQM). Proportionality parameters are referred to as permeability for the linear models and resistance for the quadratic ones. A two stage experiment was performed. First, we verified flow model validity by placing six different stainless-steel meshes, resembling FD structures, in known flow conditions. The best flow model was used for the second stage, where six different FD's were inserted in aneurysm phantoms and flow modification was estimated using angiographically derived time density curves (TDC). Finally, TDC peak variation was compared with the FD parameter. Model validity experiments indicated errors of: 70% for the linear models, 26% for the SQM and 7% for the MQM. The resistance calculated according to the MQM model correlated well with the contrast flow reduction. Results indicate that resistance calculated according to MQM is appropriate to characterize the FD and could explain the flow modification observed in angiograms.

  1. Exploring the Role of Diagnosis in the Modified Labeling Theory of Mental Illness

    ERIC Educational Resources Information Center

    Kroska, Amy; Harkness, Sarah K.

    2008-01-01

    According to the modified labeling theory of mental illness, when an individual is diagnosed with a mental illness, cultural ideas associated with the mentally ill become personally relevant and foster negative self-feelings. We explore the way that psychiatric diagnosis shapes this process. Specifically, we examine if and how psychiatric…

  2. Simulating Charge Transport in Solid Oxide Mixed Ionic and Electronic Conductors: Nernst-Planck Theory vs Modified Fick's Law

    DOE PAGES

    Jin, Xinfang; White, Ralph E.; Huang, Kevin

    2016-10-04

    With the assumption that the Fermi level (electrochemical potential of electrons) is uniform across the thickness of a mixed ionic and electronic conducting (MIEC) electrode, the charge-transport model in the electrode domain can be reduced to the modified Fick’s first law, which includes a thermodynamic factor A. A transient numerical solution of the Nernst-Planck theory was obtained for a symmetric cell with MIEC electrodes to illustrate the validity of the assumption of a uniform Fermi level. Subsequently, an impedance numerical solution based on the modified Fick’s first law is compared with that from the Nernst-Planck theory. The results show thatmore » Nernst-Planck charge-transport model is essentially the same as the modified Fick’s first law model as long as the MIEC electrodes have a predominant electronic conductivity. However, because of the invalidity of the uniform Fermi level assumption for aMIEC electrolyte with a predominant ionic conductivity, Nernst-Planck theory is needed to describe the charge transport behaviors.« less

  3. Index of NACA Technical Publications, 1915 - 1949

    DTIC Science & Technology

    1950-03-31

    in Linearized Supersonic Swanson, Robert S. and Gillis, Clarence Wing Theory. TN 1767, April 1949. L.: ’Vind-Tunnel Calibration and Cor- rection...Symmetrical Joukowski Profiles.Heaslet, Max, A.; Lomax, Harvard and Rept. 621, 1938. Spreiter, John R.: Linearized Com- pressible-Flow Theory for Sonic Flight...Rept. 624, 1938. TheApplication of Green’s Theoremto the Solution of Boundary-Value Stack, John; Lindsey, W. F. and-Littell, Problems in Linearized

  4. Every Mass or Mass Group When Created Will have No Motion, Linear, Rotational or Vibratory Motion, Singly or in Some Combination, Which May Be Later Modified by External Forces--A Natural Law

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2010-03-01

    Every mass or mass group, from atoms and molecules to stars and galaxies,has no motion, is vibrating, rotating,or moving linearly, singularly or in some combination. When created, the excess energy of creation will generate a vibration, rotation and/or linear motion besides the mass or mass group. Curvilinear or orbital motion is linear motion in an external force field. External forces, such as photon, molecular or stellar collisions may over time modify the inital rotational, vibratory or linear motions of the mass of mass group. The energy equation for each mass or mass group is E=mc^2 + 1/2mv^2 + 1/2I2̂+ 1/2kx0^2 + WG+ WE+ WM.

  5. The spectral applications of Beer-Lambert law for some biological and dosimetric materials

    NASA Astrophysics Data System (ADS)

    Içelli, Orhan; Yalçin, Zeynel; Karakaya, Vatan; Ilgaz, Işıl P.

    2014-08-01

    The aim of this study is to conduct quantitative and qualitative analysis of biological and dosimetric materials which contain organic and inorganic materials and to make the determination by using the spectral theorem Beer-Lambert law. Beer-Lambert law is a system of linear equations for the spectral theory. It is possible to solve linear equations with a non-zero coefficient matrix determinant forming linear equations. Characteristic matrix of the linear equation with zero determinant is called point spectrum at the spectral theory.

  6. Applicability of linearized-theory attached-flow methods to design and analysis of flap systems at low speeds for thin swept wings with sharp leading edges

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.

    1987-01-01

    Low-speed experimental force and data on a series of thin swept wings with sharp leading edges and leading and trailing-edge flaps are compared with predictions made using a linearized-theory method which includes estimates of vortex forces. These comparisons were made to assess the effectiveness of linearized-theory methods for use in the design and analysis of flap systems in subsonic flow. Results demonstrate that linearized-theory, attached-flow methods (with approximate representation of vortex forces) can form the basis of a rational system for flap design and analysis. Even attached-flow methods that do not take vortex forces into account can be used for the selection of optimized flap-system geometry, but design-point performance levels tend to be underestimated unless vortex forces are included. Illustrative examples of the use of these methods in the design of efficient low-speed flap systems are included.

  7. A comparison of two multi-variable integrator windup protection schemes

    NASA Technical Reports Server (NTRS)

    Mattern, Duane

    1993-01-01

    Two methods are examined for limit and integrator wind-up protection for multi-input, multi-output linear controllers subject to actuator constraints. The methods begin with an existing linear controller that satisfies the specifications for the nominal, small perturbation, linear model of the plant. The controllers are formulated to include an additional contribution to the state derivative calculations. The first method to be examined is the multi-variable version of the single-input, single-output, high gain, Conventional Anti-Windup (CAW) scheme. Except for the actuator limits, the CAW scheme is linear. The second scheme to be examined, denoted the Modified Anti-Windup (MAW) scheme, uses a scalar to modify the magnitude of the controller output vector while maintaining the vector direction. The calculation of the scalar modifier is a nonlinear function of the controller outputs and the actuator limits. In both cases the constrained actuator is tracked. These two integrator windup protection methods are demonstrated on a turbofan engine control system with five measurements, four control variables, and four actuators. The closed-loop responses of the two schemes are compared and contrasted during limit operation. The issue of maintaining the direction of the controller output vector using the Modified Anti-Windup scheme is discussed and the advantages and disadvantages of both of the IWP methods are presented.

  8. Subsonic and Supersonic Flutter Analysis of a Highly Tapered Swept-Wing Planform, Including Effects of Density Variation and Finite Wing Thickness, and Comparison with Experiments

    NASA Technical Reports Server (NTRS)

    Yates, Carson, Jr.

    1967-01-01

    The flutter characteristics of several wings with an aspect-ratio of 4.0, a taper ratio of 0.2, and a quarter-chord sweepback of 45 deg. have been investigated analytically for Mach numbers up to 2.0. The calculations were based on the modified-strip-analysis method, the subsonic-kernel-function method, piston theory, and quasi-steady second-order theory. Results of t h e analysis and comparisons with experiment indicated that: (1) Flutter speeds were accurately predicted by the modified strip analysis, although accuracy at t h e highest Mach numbers required the use of nonlinear aerodynamic theory (which accounts for effects of wing thickness) for the calculation of the aerodynamic parameters. (2) An abrupt increase of flutter-speed coefficient with increasing Mach number, observed experimentally in the transonic range, was also indicated by the modified strip analysis. (3) In the low supersonic range for some densities, a discontinuous variation of flutter frequency with Mach number was indicated by the modified strip analysis. An abrupt change of frequency appeared experimentally in the transonic range. (4) Differences in flutter-speed-coefficient levels obtained from tests at low supersonic Mach numbers in two wind tunnels were also predicted by the modified strip analysis and were shown to be caused primarily by differences in mass ratio. (5) Flutter speeds calculated by the subsonic-kernel-function method were in good agreement with experiment and with the results of the modified strip analysis. (6) Flutter speed obtained from piston theory and from quasi-steady second-order theory were higher than experimental values by at least 38 percent.

  9. Waves and instabilities in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.

    1987-01-01

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.

  10. The Importance of Why: An Intelligence Approach for a Multi-Polar World

    DTIC Science & Technology

    2016-04-04

    December 27, 2015). 12. 2 Jupiter Scientific, “Definitions of Important Terms in Chaos Theory ,” Jupiter Scientific website, http...Important Terms in Chaos Theory .” Linearizing a system is approximating a nonlinear system through the application of linear system model. 25...Complexity Theory to Anticipate Strategic Surprise,” 24. 16 M. Mitchell Waldrop, Complexity: The Emerging Science at the Edge of Order and Chaos (New

  11. Robust global identifiability theory using potentials--Application to compartmental models.

    PubMed

    Wongvanich, N; Hann, C E; Sirisena, H R

    2015-04-01

    This paper presents a global practical identifiability theory for analyzing and identifying linear and nonlinear compartmental models. The compartmental system is prolonged onto the potential jet space to formulate a set of input-output equations that are integrals in terms of the measured data, which allows for robust identification of parameters without requiring any simulation of the model differential equations. Two classes of linear and non-linear compartmental models are considered. The theory is first applied to analyze the linear nitrous oxide (N2O) uptake model. The fitting accuracy of the identified models from differential jet space and potential jet space identifiability theories is compared with a realistic noise level of 3% which is derived from sensor noise data in the literature. The potential jet space approach gave a match that was well within the coefficient of variation. The differential jet space formulation was unstable and not suitable for parameter identification. The proposed theory is then applied to a nonlinear immunological model for mastitis in cows. In addition, the model formulation is extended to include an iterative method which allows initial conditions to be accurately identified. With up to 10% noise, the potential jet space theory predicts the normalized population concentration infected with pathogens, to within 9% of the true curve. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Numerical Test of Analytical Theories for Perpendicular Diffusion in Small Kubo Number Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heusen, M.; Shalchi, A., E-mail: husseinm@myumanitoba.ca, E-mail: andreasm4@yahoo.com

    In the literature, one can find various analytical theories for perpendicular diffusion of energetic particles interacting with magnetic turbulence. Besides quasi-linear theory, there are different versions of the nonlinear guiding center (NLGC) theory and the unified nonlinear transport (UNLT) theory. For turbulence with high Kubo numbers, such as two-dimensional turbulence or noisy reduced magnetohydrodynamic turbulence, the aforementioned nonlinear theories provide similar results. For slab and small Kubo number turbulence, however, this is not the case. In the current paper, we compare different linear and nonlinear theories with each other and test-particle simulations for a noisy slab model corresponding to smallmore » Kubo number turbulence. We show that UNLT theory agrees very well with all performed test-particle simulations. In the limit of long parallel mean free paths, the perpendicular mean free path approaches asymptotically the quasi-linear limit as predicted by the UNLT theory. For short parallel mean free paths we find a Rechester and Rosenbluth type of scaling as predicted by UNLT theory as well. The original NLGC theory disagrees with all performed simulations regardless what the parallel mean free path is. The random ballistic interpretation of the NLGC theory agrees much better with the simulations, but compared to UNLT theory the agreement is inferior. We conclude that for this type of small Kubo number turbulence, only the latter theory allows for an accurate description of perpendicular diffusion.« less

  13. A fresh look at linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    NASA Astrophysics Data System (ADS)

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  14. On the stability conditions for theories of modified gravity in the presence of matter fields

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Frusciante, Noemi; Papadomanolakis, Georgios

    2017-03-01

    We present a thorough stability analysis of modified gravity theories in the presence of matter fields. We use the Effective Field Theory framework for Dark Energy and Modified Gravity to retain a general approach for the gravity sector and a Sorkin-Schutz action for the matter one. Then, we work out the proper viability conditions to guarantee in the scalar sector the absence of ghosts, gradient and tachyonic instabilities. The absence of ghosts can be achieved by demanding a positive kinetic matrix, while the lack of a gradient instability is ensured by imposing a positive speed of propagation for all the scalar modes. In case of tachyonic instability, the mass eigenvalues have been studied and we work out the appropriate expressions. For the latter, an instability occurs only when the negative mass eigenvalue is much larger, in absolute value, than the Hubble parameter. We discuss the results for the minimally coupled quintessence model showing for a particular set of parameters two typical behaviours which in turn lead to a stable and an unstable configuration. Moreover, we find that the speeds of propagation of the scalar modes strongly depend on matter densities, for the beyond Horndeski theories. Our findings can be directly employed when testing modified gravity theories as they allow to identify the correct viability space.

  15. The Growing Importance of Linear Algebra in Undergraduate Mathematics.

    ERIC Educational Resources Information Center

    Tucker, Alan

    1993-01-01

    Discusses the theoretical and practical importance of linear algebra. Presents a brief history of linear algebra and matrix theory and describes the place of linear algebra in the undergraduate curriculum. (MDH)

  16. Speed of gravitational waves and black hole hair

    NASA Astrophysics Data System (ADS)

    Tattersall, Oliver J.; Ferreira, Pedro G.; Lagos, Macarena

    2018-04-01

    The recent detection of GRB 170817A and GW170817 constrains the speed of gravity waves cT to be that of light, which severely restricts the landscape of modified gravity theories that impact the cosmological evolution of the Universe. In this work, we investigate the presence of black hole hair in the remaining viable cosmological theories of modified gravity that respect the constraint cT=1 . We focus mainly on scalar-tensor theories of gravity, analyzing static, asymptotically flat black holes in Horndeski, Beyond Horndeski, Einstein-scalar-Gauss-Bonnet, and Chern-Simons theories. We find that in all of the cases considered here, theories that are cosmologically relevant and respect cT=1 do not allow for hair, or have negligible hair. We further comment on vector-tensor theories including Einstein-Yang-Mills, Einstein-Aether, and generalized Proca theories, as well as bimetric theories.

  17. Unification theory of optimal life histories and linear demographic models in internal stochasticity.

    PubMed

    Oizumi, Ryo

    2014-01-01

    Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order to analyze the optimal control under internal stochasticity, we need to make use of "Stochastic Control Theory" in the optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal stochasticity into linear demographic models. First, we show the relationship between the general age-states linear demographic models and the stochastic control theory via several mathematical formulations, such as path-integral, integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear demographic models.

  18. Modules as Learning Tools in Linear Algebra

    ERIC Educational Resources Information Center

    Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff; Loch, Sergio

    2014-01-01

    This paper reports on the experience of STEM and mathematics faculty at four different institutions working collaboratively to integrate learning theory with curriculum development in a core undergraduate linear algebra context. The faculty formed a Professional Learning Community (PLC) with a focus on learning theories in mathematics and…

  19. Conical singularities and the Vainshtein screening in full GLPV theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kase, Ryotaro; Tsujikawa, Shinji; Felice, Antonio De, E-mail: r.kase@rs.tus.ac.jp, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: antonio.defelice@yukawa.kyoto-u.ac.jp

    In Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories, it is known that the conical singularity arises at the center of a spherically symmetric body (r = 0) in the case where the parameter α{sub H}4 characterizing the deviation from the Horndeski Lagrangian L{sub 4} approaches a non-zero constant as r → 0. We derive spherically symmetric solutions around the center in full GLPV theories and show that the GLPV Lagrangian L{sub 5} does not modify the divergent property of the Ricci scalar R induced by the non-zero α{sub H}4. Provided that α{sub H}4 = 0, curvature scalar quantities can remain finite at r = 0 even in the presence of L{sub 5}more » beyond the Horndeski domain. For the theories in which the scalar field φ is directly coupled to R, we also obtain spherically symmetric solutions inside/outside the body to study whether the fifth force mediated by φ can be screened by non-linear field self-interactions. We find that there is one specific model of GLPV theories in which the effect of L{sub 5} vanishes in the equations of motion. We also show that, depending on the sign of a L{sub 5}-dependent term in the field equation, the model can be compatible with solar-system constraints under the Vainshtein mechanism or it is plagued by the problem of a divergence of the field derivative in high-density regions.« less

  20. Calculation of the distributed loads on the blades of individual multiblade propellers in axial flow using linear and nonlinear lifting surface theories

    NASA Technical Reports Server (NTRS)

    Pesetskaya, N. N.; Timofeev, I. YA.; Shipilov, S. D.

    1988-01-01

    In recent years much attention has been given to the development of methods and programs for the calculation of the aerodynamic characteristics of multiblade, saber-shaped air propellers. Most existing methods are based on the theory of lifting lines. Elsewhere, the theory of a lifting surface is used to calculate screw and lifting propellers. In this work, methods of discrete eddies are described for the calculation of the aerodynamic characteristics of propellers using the linear and nonlinear theories of lifting surfaces.

  1. A quantum description of linear, and non-linear optical interactions in arrays of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Arabahmadi, Ehsan; Ahmadi, Zabihollah; Rashidian, Bizhan

    2018-06-01

    A quantum theory for describing the interaction of photons and plasmons, in one- and two-dimensional arrays is presented. Ohmic losses and inter-band transitions are not considered. We use macroscopic approach, and quantum field theory methods including S-matrix expansion, and Feynman diagrams for this purpose. Non-linear interactions are also studied, and increasing the probability of such interactions, and its application are also discussed.

  2. Perturbative Yang-Mills theory without Faddeev-Popov ghost fields

    NASA Astrophysics Data System (ADS)

    Huffel, Helmuth; Markovic, Danijel

    2018-05-01

    A modified Faddeev-Popov path integral density for the quantization of Yang-Mills theory in the Feynman gauge is discussed, where contributions of the Faddeev-Popov ghost fields are replaced by multi-point gauge field interactions. An explicit calculation to O (g2) shows the equivalence of the usual Faddeev-Popov scheme and its modified version.

  3. Correlation, evaluation, and extension of linearized theories for tire motion and wheel shimmy

    NASA Technical Reports Server (NTRS)

    Smiley, Robert F

    1957-01-01

    An evaluation is made of the existing theories of a linearized tire motion and wheel shimmy. It is demonstrated that most of the previously published theories represent varying degrees of approximation to a summary theory developed in this report which is a minor modification of the basic theory of Von Schlippe and Dietrich. In most cases where strong differences exist between the previously published theories and summary theory, the previously published theories are shown to possess certain deficiencies. A series of systematic approximations to the summary theory is developed for the treatment of problems too simple to merit the use of the complete summary theory, and procedures are discussed for applying the summary theory and its systematic approximations to the shimmy of more complex landing-gear structures than have previously been considered. Comparisons of the existing experimental data with the predictions of the summary theory and the systematic approximations provide a fair substantiation of the more detailed approximate theories.

  4. Solar wind interaction with dusty plasmas produces instabilities and solitary structures

    NASA Astrophysics Data System (ADS)

    Saleem, H.; Ali, S.

    2017-12-01

    It is pointed out that the solar wind interaction with dusty magnetospheres of the planets can give rise to purely growing instabilities as well as nonlinear electric field structures. Linear dispersion relation of the low frequency electrostatic ion-acoustic wave (IAW) is modified in the presence of stationary dust and its frequency becomes larger than its frequency in usual electron ion plasma even if ion temperature is equal to the electron temperature. This dust-ion-acoustic wave (DIAW) either becomes a purely growing electrostatic instability or turns out to be the modified dust-ion-acoustic wave (mDIAW) depending upon the magnitude of shear flow scale length and its direction. Growth rate of shear flow-driven electrostatic instability in a plasma having negatively charged stationary dust is larger than the usual D'Angelo instability of electron-ion plasma. It is shown that shear modified dust ion acoustic wave (mDIAW) produces electrostatic solitons in the nonlinear regime. The fluid theory predicts the existence of electrostatic solitons in the dusty plasmas in those regions where the inhomogeneous solar wind flow is parallel to the planetary or cometary magnetic field lines. The amplitude and width of the solitary structure depends upon dust density and magnitude of shear in the flow. This is a general theoretical model which is applied to dusty plasma of Saturn's F-ring for illustration.

  5. On some Approximation Schemes for Steady Compressible Viscous Flow

    NASA Astrophysics Data System (ADS)

    Bause, M.; Heywood, J. G.; Novotny, A.; Padula, M.

    This paper continues our development of approximation schemes for steady compressible viscous flow based on an iteration between a Stokes like problem for the velocity and a transport equation for the density, with the aim of improving their suitability for computations. Such schemes seem attractive for computations because they offer a reduction to standard problems for which there is already highly refined software, and because of the guidance that can be drawn from an existence theory based on them. Our objective here is to modify a recent scheme of Heywood and Padula [12], to improve its convergence properties. This scheme improved upon an earlier scheme of Padula [21], [23] through the use of a special ``effective pressure'' in linking the Stokes and transport problems. However, its convergence is limited for several reasons. Firstly, the steady transport equation itself is only solvable for general velocity fields if they satisfy certain smallness conditions. These conditions are met here by using a rescaled variant of the steady transport equation based on a pseudo time step for the equation of continuity. Another matter limiting the convergence of the scheme in [12] is that the Stokes linearization, which is a linearization about zero, has an inevitably small range of convergence. We replace it here with an Oseen or Newton linearization, either of which has a wider range of convergence, and converges more rapidly. The simplicity of the scheme offered in [12] was conducive to a relatively simple and clearly organized proof of its convergence. The proofs of convergence for the more complicated schemes proposed here are structured along the same lines. They strengthen the theorems of existence and uniqueness in [12] by weakening the smallness conditions that are needed. The expected improvement in the computational performance of the modified schemes has been confirmed by Bause [2], in an ongoing investigation.

  6. Fractional representation theory - Robustness results with applications to finite dimensional control of a class of linear distributed systems

    NASA Technical Reports Server (NTRS)

    Nett, C. N.; Jacobson, C. A.; Balas, M. J.

    1983-01-01

    This paper reviews and extends the fractional representation theory. In particular, new and powerful robustness results are presented. This new theory is utilized to develop a preliminary design methodology for finite dimensional control of a class of linear evolution equations on a Banach space. The design is for stability in an input-output sense, but particular attention is paid to internal stability as well.

  7. When is quasi-linear theory exact. [particle acceleration

    NASA Technical Reports Server (NTRS)

    Jones, F. C.; Birmingham, T. J.

    1975-01-01

    We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.

  8. A Thermodynamic Theory Of Solid Viscoelasticity. Part 1: Linear Viscoelasticity.

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Leonov, Arkady I.

    2002-01-01

    The present series of three consecutive papers develops a general theory for linear and finite solid viscoelasticity. Because the most important object for nonlinear studies are rubber-like materials, the general approach is specified in a form convenient for solving problems important for many industries that involve rubber-like materials. General linear and nonlinear theories for non-isothermal deformations of viscoelastic solids are developed based on the quasi-linear approach of non-equilibrium thermodynamics. In this, the first paper of the series, we analyze non-isothermal linear viscoelasticity, which is applicable in a range of small strains not only to all synthetic polymers and bio-polymers but also to some non-polymeric materials. Although the linear case seems to be well developed, there still are some reasons to implement a thermodynamic derivation of constitutive equations for solid-like, non-isothermal, linear viscoelasticity. The most important is the thermodynamic modeling of thermo-rheological complexity , i.e. different temperature dependences of relaxation parameters in various parts of relaxation spectrum. A special structure of interaction matrices is established for different physical mechanisms contributed to the normal relaxation modes. This structure seems to be in accord with observations, and creates a simple mathematical framework for both continuum and molecular theories of the thermo-rheological complex relaxation phenomena. Finally, a unified approach is briefly discussed that, in principle, allows combining both the long time (discrete) and short time (continuous) descriptions of relaxation behaviors for polymers in the rubbery and glassy regions.

  9. Linear dependence between the wavefront gradient and the masked intensity for the point source with a CCD sensor

    NASA Astrophysics Data System (ADS)

    Yang, Huizhen; Ma, Liang; Wang, Bin

    2018-01-01

    In contrast to the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system doesn't need a WFS to measure the wavefront aberrations. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. The model-based WFSless system has a great potential in real-time correction applications because of its fast convergence. The control algorithm of the model-based WFSless system is based on an important theory result that is the linear relation between the Mean-Square Gradient (MSG) magnitude of the wavefront aberration and the second moment of the masked intensity distribution in the focal plane (also called as Masked Detector Signal-MDS). The linear dependence between MSG and MDS for the point source imaging with a CCD sensor will be discussed from theory and simulation in this paper. The theory relationship between MSG and MDS is given based on our previous work. To verify the linear relation for the point source, we set up an imaging model under atmospheric turbulence. Additionally, the value of MDS will be deviate from that of theory because of the noise of detector and further the deviation will affect the correction effect. The theory results under noise will be obtained through theoretical derivation and then the linear relation between MDS and MDS under noise will be discussed through the imaging model. Results show the linear relation between MDS and MDS under noise is also maintained well, which provides a theoretical support to applications of the model-based WFSless system.

  10. Two new modified Gauss-Seidel methods for linear system with M-matrices

    NASA Astrophysics Data System (ADS)

    Zheng, Bing; Miao, Shu-Xin

    2009-12-01

    In 2002, H. Kotakemori et al. proposed the modified Gauss-Seidel (MGS) method for solving the linear system with the preconditioner [H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioner () J. Comput. Appl. Math. 145 (2002) 373-378]. Since this preconditioner is constructed by only the largest element on each row of the upper triangular part of the coefficient matrix, the preconditioning effect is not observed on the nth row. In the present paper, to deal with this drawback, we propose two new preconditioners. The convergence and comparison theorems of the modified Gauss-Seidel methods with these two preconditioners for solving the linear system are established. The convergence rates of the new proposed preconditioned methods are compared. In addition, numerical experiments are used to show the effectiveness of the new MGS methods.

  11. The "Chaos" Pattern in Piaget's Theory of Cognitive Development.

    ERIC Educational Resources Information Center

    Lindsay, Jean S.

    Piaget's theory of the cognitive development of the child is related to the recently developed non-linear "chaos" model. The term "chaos" refers to the tendency of dynamical, non-linear systems toward irregular, sometimes unpredictable, deterministic behavior. Piaget identified this same pattern in his model of cognitive…

  12. Are All Non-Linear Systems (Approx.) Bilinear,

    DTIC Science & Technology

    1977-06-01

    There is a rumor going around in mathematical system theory circles that all non-linear systems are bilinear or nearly so. This note examines the...case for such an assertion and finds it wanting and en passant, offers some comments on the current proliferation of mathematical literature on system theory .

  13. Linear kinetic theory and particle transport in stochastic mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomraning, G.C.

    We consider the formulation of linear transport and kinetic theory describing energy and particle flow in a random mixture of two or more immiscible materials. Following an introduction, we summarize early and fundamental work in this area, and we conclude with a brief discussion of recent results.

  14. Deterministic theory of Monte Carlo variance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueki, T.; Larsen, E.W.

    1996-12-31

    The theoretical estimation of variance in Monte Carlo transport simulations, particularly those using variance reduction techniques, is a substantially unsolved problem. In this paper, the authors describe a theory that predicts the variance in a variance reduction method proposed by Dwivedi. Dwivedi`s method combines the exponential transform with angular biasing. The key element of this theory is a new modified transport problem, containing the Monte Carlo weight w as an extra independent variable, which simulates Dwivedi`s Monte Carlo scheme. The (deterministic) solution of this modified transport problem yields an expression for the variance. The authors give computational results that validatemore » this theory.« less

  15. Resource Theory of Superposition

    NASA Astrophysics Data System (ADS)

    Theurer, T.; Killoran, N.; Egloff, D.; Plenio, M. B.

    2017-12-01

    The superposition principle lies at the heart of many nonclassical properties of quantum mechanics. Motivated by this, we introduce a rigorous resource theory framework for the quantification of superposition of a finite number of linear independent states. This theory is a generalization of resource theories of coherence. We determine the general structure of operations which do not create superposition, find a fundamental connection to unambiguous state discrimination, and propose several quantitative superposition measures. Using this theory, we show that trace decreasing operations can be completed for free which, when specialized to the theory of coherence, resolves an outstanding open question and is used to address the free probabilistic transformation between pure states. Finally, we prove that linearly independent superposition is a necessary and sufficient condition for the faithful creation of entanglement in discrete settings, establishing a strong structural connection between our theory of superposition and entanglement theory.

  16. Linear network representation of multistate models of transport.

    PubMed Central

    Sandblom, J; Ring, A; Eisenman, G

    1982-01-01

    By introducing external driving forces in rate-theory models of transport we show how the Eyring rate equations can be transformed into Ohm's law with potentials that obey Kirchhoff's second law. From such a formalism the state diagram of a multioccupancy multicomponent system can be directly converted into linear network with resistors connecting nodal (branch) points and with capacitances connecting each nodal point with a reference point. The external forces appear as emf or current generators in the network. This theory allows the algebraic methods of linear network theory to be used in solving the flux equations for multistate models and is particularly useful for making proper simplifying approximation in models of complex membrane structure. Some general properties of linear network representation are also deduced. It is shown, for instance, that Maxwell's reciprocity relationships of linear networks lead directly to Onsager's relationships in the near equilibrium region. Finally, as an example of the procedure, the equivalent circuit method is used to solve the equations for a few transport models. PMID:7093425

  17. On some problems in a theory of thermally and mechanically interacting continuous media. Ph.D. Thesis; [linearized theory of interacting mixture of elastic solid and viscous fluid

    NASA Technical Reports Server (NTRS)

    Lee, Y. M.

    1971-01-01

    Using a linearized theory of thermally and mechanically interacting mixture of linear elastic solid and viscous fluid, we derive a fundamental relation in an integral form called a reciprocity relation. This reciprocity relation relates the solution of one initial-boundary value problem with a given set of initial and boundary data to the solution of a second initial-boundary value problem corresponding to a different initial and boundary data for a given interacting mixture. From this general integral relation, reciprocity relations are derived for a heat-conducting linear elastic solid, and for a heat-conducting viscous fluid. An initial-boundary value problem is posed and solved for the mixture of linear elastic solid and viscous fluid. With the aid of the Laplace transform and the contour integration, a real integral representation for the displacement of the solid constituent is obtained as one of the principal results of the analysis.

  18. Probability theory, not the very guide of life.

    PubMed

    Juslin, Peter; Nilsson, Håkan; Winman, Anders

    2009-10-01

    Probability theory has long been taken as the self-evident norm against which to evaluate inductive reasoning, and classical demonstrations of violations of this norm include the conjunction error and base-rate neglect. Many of these phenomena require multiplicative probability integration, whereas people seem more inclined to linear additive integration, in part, at least, because of well-known capacity constraints on controlled thought. In this article, the authors show with computer simulations that when based on approximate knowledge of probabilities, as is routinely the case in natural environments, linear additive integration can yield as accurate estimates, and as good average decision returns, as estimates based on probability theory. It is proposed that in natural environments people have little opportunity or incentive to induce the normative rules of probability theory and, given their cognitive constraints, linear additive integration may often offer superior bounded rationality.

  19. Fracture prediction using modified mohr coulomb theory for non-linear strain paths using AA3104-H19

    NASA Astrophysics Data System (ADS)

    Dick, Robert; Yoon, Jeong Whan

    2016-08-01

    Experiment results from uniaxial tensile tests, bi-axial bulge tests, and disk compression tests for a beverage can AA3104-H19 material are presented. The results from the experimental tests are used to determine material coefficients for both Yld2000 and Yld2004 models. Finite element simulations are developed to study the influence of materials model on the predicted earing profile. It is shown that only the YLD2004 model is capable of accurately predicting the earing profile as the YLD2000 model only predicts 4 ears. Excellent agreement with the experimental data for earing is achieved using the AA3104-H19 material data and the Yld2004 constitutive model. Mechanical tests are also conducted on the AA3104-H19 to generate fracture data under different stress triaxiality conditions. Tensile tests are performed on specimens with a central hole and notched specimens. Torsion of a double bridge specimen is conducted to generate points near pure shear conditions. The Nakajima test is utilized to produce points in bi-axial tension. The data from the experiments is used to develop the fracture locus in the principal strain space. Mapping from principal strain space to stress triaxiality space, principal stress space, and polar effective plastic strain space is accomplished using a generalized mapping technique. Finite element modeling is used to validate the Modified Mohr-Coulomb (MMC) fracture model in the polar space. Models of a hole expansion during cup drawing and a cup draw/reverse redraw/expand forming sequence demonstrate the robustness of the modified PEPS fracture theory for the condition with nonlinear forming paths and accurately predicts the onset of failure. The proposed methods can be widely used for predicting failure for the examples which undergo nonlinear strain path including rigid-packaging and automotive forming.

  20. Linear-response time-dependent density-functional theory with pairing fields.

    PubMed

    Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.

  1. Geostrophic adjustment in a shallow-water numerical model as it relates to thermospheric dynamics

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.; Mikkelsen, I. S.

    1986-01-01

    The theory of geostrophic adjustment and its application to the dynamics of the high latitude thermosphere have been discussed in previous papers based on a linearized treatment of the fluid dynamical equations. However, a linearized treatment is only valid for small Rossby numbers given by Ro = V/fL, where V is the wind speed, f is the local value of the Coriolis parameter, and L is a characteristic horizontal scale for the flow. For typical values in the auroral zone, the approximation is not reasonable for wind speeds greater than 25 m/s or so. A shallow-water (one layer) model was developed that includes the spherical geometry and full nonlinear dynamics in the momentum equations in order to isolate the effects of the nonlinearities on the adjustment process. A belt of accelerated winds between 60 deg and 70 deg latitude was used as the initial condition. The adjustment process was found to proceed as expected from the linear formulation, but that an asymmetry between the response for an eastward and westward flow results from the nonlineawr curvature (centrifugal) terms. In general, the amplitude of an eastward flowing wind will be less after adjustment than a westward wind. For instance, if the initial wind velocity is 300 m/s, the linearized theory predicts a final wind speed of 240 m/s, regardless of the flow direction. However, the nonlinear curvature terms modify the response and produce a final wind speed of only 200 m/s for an initial eastward wind and a final wind speed of almost 300 m/s for an initial westward flow direction. Also, less gravity wave energy is produced by the adjustment of the westward flow than by the adjustment of the eastward flow. The implications are that the response of the thermosphere should be significantly different on the dawn and dusk sides of the auroral oval. Larger flow velocities would be expected on the dusk side since the plasma will accelerate the flow in a westward direction in that sector.

  2. Structual Effects of Cytidine 2^' Ribose Modifications as Determined by Irmpd Action Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hamlow, Lucas; He, Chenchen; Fan, Lin; Wu, Ranran; Yang, Bo; Rodgers, M. T.; Berden, Giel; Oomens, J.

    2015-06-01

    Modified nucleosides, both naturally occurring and synthetic play an important role in understanding and manipulating RNA and DNA. Naturally occurring modified nucleosides are commonly found in functionally important regions of RNA and also affect antibiotic resistance or sensitivity. Synthetic modifications of nucleosides such as fluorinated and arabinosyl nucleosides have found uses as anti-virals and chemotherapy agents. Understanding the effect that modifications have on structure and glycosidic bond stability may lend insight into the functions of these modified nucleosides. Modifications such as the naturally occurring 2^'-O-methylation and the synthetic 2^'-fluorination are believed to help stabilize the nucleoside through the glycosidic bond stability and intramolecular hydrogen bonding. Changing the sugar from ribose to arabinose alters the stereochemistry at the 2^' position and thus shifts the 3D orientation of the 2^'-hydroxyl group, which also affects intramolecular hydrogen bonding and glycosidic bond stability. The structures of 2^'-deoxy-2^'-fluorocytidine, 2^'-O-methylcytidine and cytosine arabinoside are examined in the current work by measuring the infrared spectra in the IR fingerprint region using infrared multiple photon dissociation (IRMPD) action spectroscopy. The structures accessed in the experiments were determined via comparison of the measured IRMPD action spectra to the theoretical linear IR spectra determined by density functional theory and molecular modeling for the stable low-energy structures. Although glycosidic bond stability cannot be quantitatively determined from this data, complementary TCID studies will establish the effect of these modifications. Comparison of these modified nucleosides with their RNA and DNA analogues will help elucidate differences in their intrinsic chemistry.

  3. Simulating cosmologies beyond ΛCDM with PINOCCHIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Luca A.; Villaescusa-Navarro, Francisco; Monaco, Pierluigi

    2017-01-01

    We present a method that extends the capabilities of the PINpointing Orbit-Crossing Collapsed HIerarchical Objects (PINOCCHIO) code, allowing it to generate accurate dark matter halo mock catalogues in cosmological models where the linear growth factor and the growth rate depend on scale. Such cosmologies comprise, among others, models with massive neutrinos and some classes of modified gravity theories. We validate the code by comparing the halo properties from PINOCCHIO against N-body simulations, focusing on cosmologies with massive neutrinos: νΛCDM. We analyse the halo mass function, halo two-point correlation function and halo power spectrum, showing that PINOCCHIO reproduces the results frommore » simulations with the same level of precision as the original code (∼ 5–10%). We demonstrate that the abundance of halos in cosmologies with massless and massive neutrinos from PINOCCHIO matches very well the outcome of simulations, and point out that PINOCCHIO can reproduce the Ω{sub ν}–σ{sub 8} degeneracy that affects the halo mass function. We finally show that the clustering properties of the halos from PINOCCHIO matches accurately those from simulations both in real and redshift-space, in the latter case up to k = 0.3 h Mpc{sup −1}. We emphasize that the computational time required by PINOCCHIO to generate mock halo catalogues is orders of magnitude lower than the one needed for N-body simulations. This makes this tool ideal for applications like covariance matrix studies within the standard ΛCDM model but also in cosmologies with massive neutrinos or some modified gravity theories.« less

  4. From atomic structure to excess entropy: a neutron diffraction and density functional theory study of CaO-Al2O3-SiO2 melts

    NASA Astrophysics Data System (ADS)

    Liu, Maoyuan; Jacob, Aurélie; Schmetterer, Clemens; Masset, Patrick J.; Hennet, Louis; Fischer, Henry E.; Kozaily, Jad; Jahn, Sandro; Gray-Weale, Angus

    2016-04-01

    Calcium aluminosilicate \\text{CaO}-\\text{A}{{\\text{l}}2}{{\\text{O}}3}-\\text{Si}{{\\text{O}}2} (CAS) melts with compositions {{≤ft(\\text{CaO}-\\text{Si}{{\\text{O}}2}\\right)}x}{{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}1-x} for x  <  0.5 and {{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}x}{{≤ft(\\text{Si}{{\\text{O}}2}\\right)}1-x} for x≥slant 0.5 are studied using neutron diffraction with aerodynamic levitation and density functional theory molecular dynamics modelling. Simulated structure factors are found to be in good agreement with experimental structure factors. Local atomic structures from simulations reveal the role of calcium cations as a network modifier, and aluminium cations as a non-tetrahedral network former. Distributions of tetrahedral order show that an increasing concentration of the network former Al increases entropy, while an increasing concentration of the network modifier Ca decreases entropy. This trend is opposite to the conventional understanding that increasing amounts of network former should increase order in the network liquid, and so decrease entropy. The two-body correlation entropy S 2 is found to not correlate with the excess entropy values obtained from thermochemical databases, while entropies including higher-order correlations such as tetrahedral order, O-M-O or M-O-M bond angles and Q N environments show a clear linear correlation between computed entropy and database excess entropy. The possible relationship between atomic structures and excess entropy is discussed.

  5. Calculation of composition distribution of ultrafine ion-H2O-H2SO4 clusters using a modified binary ion nucleation theory

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Smith, A. S.; Chan, L. Y.; Yue, G. K.

    1982-01-01

    Thomson's ion nucleation theory was modified to include the effects of curvature dependence of the microscopic surface tension of field dependent, nonlinear, dielectric properties of the liquid; and of sulfuric acid hydrate formation in binary mixtures of water and sulfuric acid vapors. The modified theory leads to a broadening of the ion cluster spectrum, and shifts it towards larger numbers of H2O and H2SO4 molecules. Whether there is more shifting towards larger numbers of H2O or H2SO4 molecules depends on the relative humidity and relative acidity of the mixture. Usually, a broadening of the spectrum is accompanied by a lowering of the mean cluster intensity. For fixed values of relative humidity and relative acidity, a similar broadening pattern is observed when the temperature is lowered. These features of the modified theory illustrate that a trace of sulfuric acid can facilitate the formation of ultrafine, stable, prenucleation ion clusters as well as the growth of the prenucleation ion clusters towards the critical saddle point conditions, even with low values of relative humidity and relative acidity.

  6. COLA with scale-dependent growth: applications to screened modified gravity models

    NASA Astrophysics Data System (ADS)

    Winther, Hans A.; Koyama, Kazuya; Manera, Marc; Wright, Bill S.; Zhao, Gong-Bo

    2017-08-01

    We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f(R) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative to ΛCDM even when using a fairly small number of COLA time steps.

  7. Direct perturbation theory for the dark soliton solution to the nonlinear Schroedinger equation with normal dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Jialu; Yang Chunnuan; Cai Hao

    2007-04-15

    After finding the basic solutions of the linearized nonlinear Schroedinger equation by the method of separation of variables, the perturbation theory for the dark soliton solution is constructed by linear Green's function theory. In application to the self-induced Raman scattering, the adiabatic corrections to the soliton's parameters are obtained and the remaining correction term is given as a pure integral with respect to the continuous spectral parameter.

  8. Modified polarized geometrical attenuation model for bidirectional reflection distribution function based on random surface microfacet theory.

    PubMed

    Liu, Hong; Zhu, Jingping; Wang, Kai

    2015-08-24

    The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.

  9. On the stability conditions for theories of modified gravity in the presence of matter fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Felice, Antonio; Frusciante, Noemi; Papadomanolakis, Georgios, E-mail: antonio.defelice@yukawa.kyoto-u.ac.jp, E-mail: fruscian@iap.fr, E-mail: papadomanolakis@lorentz.leidenuniv.nl

    We present a thorough stability analysis of modified gravity theories in the presence of matter fields. We use the Effective Field Theory framework for Dark Energy and Modified Gravity to retain a general approach for the gravity sector and a Sorkin-Schutz action for the matter one. Then, we work out the proper viability conditions to guarantee in the scalar sector the absence of ghosts, gradient and tachyonic instabilities. The absence of ghosts can be achieved by demanding a positive kinetic matrix, while the lack of a gradient instability is ensured by imposing a positive speed of propagation for all themore » scalar modes. In case of tachyonic instability, the mass eigenvalues have been studied and we work out the appropriate expressions. For the latter, an instability occurs only when the negative mass eigenvalue is much larger, in absolute value, than the Hubble parameter. We discuss the results for the minimally coupled quintessence model showing for a particular set of parameters two typical behaviours which in turn lead to a stable and an unstable configuration. Moreover, we find that the speeds of propagation of the scalar modes strongly depend on matter densities, for the beyond Horndeski theories. Our findings can be directly employed when testing modified gravity theories as they allow to identify the correct viability space.« less

  10. Robust set-point regulation for ecological models with multiple management goals.

    PubMed

    Guiver, Chris; Mueller, Markus; Hodgson, Dave; Townley, Stuart

    2016-05-01

    Population managers will often have to deal with problems of meeting multiple goals, for example, keeping at specific levels both the total population and population abundances in given stage-classes of a stratified population. In control engineering, such set-point regulation problems are commonly tackled using multi-input, multi-output proportional and integral (PI) feedback controllers. Building on our recent results for population management with single goals, we develop a PI control approach in a context of multi-objective population management. We show that robust set-point regulation is achieved by using a modified PI controller with saturation and anti-windup elements, both described in the paper, and illustrate the theory with examples. Our results apply more generally to linear control systems with positive state variables, including a class of infinite-dimensional systems, and thus have broader appeal.

  11. A continuous vibration theory for rotors with an open edge crack

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Alireza; Heydari, Mahdi; Behzad, Mehdi

    2014-07-01

    In this paper a new continuous model for flexural vibration of rotors with an open edge crack has been developed. The cracked rotor is considered in the rotating coordinate system attached to it. Therefore, the rotor bending can be decomposed in two perpendicular directions. Two quasi-linear displacement fields are assumed for these two directions and the strain and stress fields are calculated in each direction. Then the final displacement and stress fields are obtained by composing the displacement and stress fields in the two directions. The governing equation of motion for the rotor has been obtained using the Hamilton principle and solved using a modified Galerkin method. The free vibration has been analyzed and the critical speeds have been calculated. Results are compared with the finite element results and an excellent agreement is observed.

  12. Delay-induced Turing-like waves for one-species reaction-diffusion model on a network

    NASA Astrophysics Data System (ADS)

    Petit, Julien; Carletti, Timoteo; Asllani, Malbor; Fanelli, Duccio

    2015-09-01

    A one-species time-delay reaction-diffusion system defined on a complex network is studied. Traveling waves are predicted to occur following a symmetry-breaking instability of a homogeneous stationary stable solution, subject to an external nonhomogeneous perturbation. These are generalized Turing-like waves that materialize in a single-species populations dynamics model, as the unexpected byproduct of the imposed delay in the diffusion part. Sufficient conditions for the onset of the instability are mathematically provided by performing a linear stability analysis adapted to time-delayed differential equations. The method here developed exploits the properties of the Lambert W-function. The prediction of the theory are confirmed by direct numerical simulation carried out for a modified version of the classical Fisher model, defined on a Watts-Strogatz network and with the inclusion of the delay.

  13. Ab-initio calculations of structural, electronic, and optical properties of Zn3(VO4)2

    NASA Astrophysics Data System (ADS)

    Ahmed, Nisar; Mukhtar, S.; Gao, Wei; Zafar Ilyas, Syed

    2018-03-01

    The structural, electronic, and optical properties of Zn3(VO4)2 are investigated using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Various approaches are adopted to treat the exchange and correlation potential energy such as generalized gradient approximation (GGA), GGA+U, and the Tran–Blaha modified Becke–Johnson (TB-mBJ) potential. The calculated band gap of 3.424 eV by TB-mBJ is found to be close to the experimental result (3.3 eV). The optical anisotropy is analyzed through optical constants, such as dielectric function and absorption coefficient along parallel and perpendicular crystal orientations. The absorption coefficient reveals high absorption (1.5× {10}6 {cm}}-1) of photons in the ultraviolet region.

  14. Expressions of the fundamental equation of gradient elution and a numerical solution of these equations under any gradient profile.

    PubMed

    Nikitas, P; Pappa-Louisi, A

    2005-09-01

    The original work carried out by Freiling and Drake in gradient liquid chromatography is rewritten in the current language of reversed-phase liquid chromatography. This allows for the rigorous derivation of the fundamental equation for gradient elution and the development of two alternative expressions of this equation, one of which is free from the constraint that the holdup time must be constant. In addition, the above derivation results in a very simple numerical solution of the various equations of gradient elution under any gradient profile. The theory was tested using eight catechol-related solutes in mobile phases modified with methanol, acetonitrile, or 2-propanol. It was found to be a satisfactory prediction of solute gradient retention behavior even if we used a simple linear description for the isocratic elution of these solutes.

  15. Effective gravitational coupling in modified teleparallel theories

    NASA Astrophysics Data System (ADS)

    Abedi, Habib; Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando

    2018-04-01

    In the present study, we consider an extended form of teleparallel Lagrangian f (T ,ϕ ,X ) , as function of a scalar field ϕ , its kinetic term X and the torsion scalar T . We use linear perturbations to obtain the equation of matter density perturbations on sub-Hubble scales. The gravitational coupling is modified in scalar modes with respect to the one of general relativity, albeit vector modes decay and do not show any significant effects. We thus extend these results by involving multiple scalar field models. Further, we study conformal transformations in teleparallel gravity and we obtain the coupling as the scalar field is nonminimally coupled to both torsion and boundary terms. Finally, we propose the specific model f (T ,ϕ ,X )=T +∂μϕ ∂μϕ +ξ T ϕ2 . To check its goodness, we employ the observational Hubble data, constraining the coupling constant, ξ , through a Monte Carlo technique based on the Metropolis-Hastings algorithm. Hence, fixing ξ to its best-fit value got from our numerical analysis, we calculate the growth rate of matter perturbations and we compare our outcomes with the latest measurements and the predictions of the Λ CDM model.

  16. Deforming black hole and cosmological solutions by quasiperiodic and/or pattern forming structures in modified and Einstein gravity

    NASA Astrophysics Data System (ADS)

    Bubuianu, Laurenţiu; Vacaru, Sergiu I.

    2018-05-01

    We elaborate on the anholonomic frame deformation method, AFDM, for constructing exact solutions with quasiperiodic structure in modified gravity theories, MGTs, and general relativity, GR. Such solutions are described by generic off-diagonal metrics, nonlinear and linear connections and (effective) matter sources with coefficients depending on all spacetime coordinates via corresponding classes of generation and integration functions and (effective) matter sources. There are studied effective free energy functionals and nonlinear evolution equations for generating off-diagonal quasiperiodic deformations of black hole and/or homogeneous cosmological metrics. The physical data for such functionals are stated by different values of constants and prescribed symmetries for defining quasiperiodic structures at cosmological scales, or astrophysical objects in nontrivial gravitational backgrounds some similar forms as in condensed matter physics. It is shown how quasiperiodic structures determined by general nonlinear, or additive, functionals for generating functions and (effective) sources may transform black hole like configurations into cosmological metrics and inversely. We speculate on possible implications of quasiperiodic solutions in dark energy and dark matter physics. Finally, it is concluded that geometric methods for constructing exact solutions consist an important alternative tool to numerical relativity for investigating nonlinear effects in astrophysics and cosmology.

  17. R 2 inflation to probe non-perturbative quantum gravity

    NASA Astrophysics Data System (ADS)

    Koshelev, Alexey S.; Sravan Kumar, K.; Starobinsky, Alexei A.

    2018-03-01

    It is natural to expect a consistent inflationary model of the very early Universe to be an effective theory of quantum gravity, at least at energies much less than the Planck one. For the moment, R + R 2, or shortly R 2, inflation is the most successful in accounting for the latest CMB data from the PLANCK satellite and other experiments. Moreover, recently it was shown to be ultra-violet (UV) complete via an embedding into an analytic infinite derivative (AID) non-local gravity. In this paper, we derive a most general theory of gravity that contributes to perturbed linear equations of motion around maximally symmetric space-times. We show that such a theory is quadratic in the Ricci scalar and the Weyl tensor with AID operators along with the Einstein-Hilbert term and possibly a cosmological constant. We explicitly demonstrate that introduction of the Ricci tensor squared term is redundant. Working in this quadratic AID gravity framework without a cosmological term we prove that for a specified class of space homogeneous space-times, a space of solutions to the equations of motion is identical to the space of backgrounds in a local R 2 model. We further compute the full second order perturbed action around any background belonging to that class. We proceed by extracting the key inflationary parameters of our model such as a spectral index ( n s ), a tensor-to-scalar ratio ( r) and a tensor tilt ( n t ). It appears that n s remains the same as in the local R 2 inflation in the leading slow-roll approximation, while r and n t get modified due to modification of the tensor power spectrum. This class of models allows for any value of r < 0.07 with a modified consistency relation which can be fixed by future observations of primordial B-modes of the CMB polarization. This makes the UV complete R 2 gravity a natural target for future CMB probes.

  18. Time-Dependent Thermal Transport Theory.

    PubMed

    Biele, Robert; D'Agosta, Roberto; Rubio, Angel

    2015-07-31

    Understanding thermal transport in nanoscale systems presents important challenges to both theory and experiment. In particular, the concept of local temperature at the nanoscale appears difficult to justify. Here, we propose a theoretical approach where we replace the temperature gradient with controllable external blackbody radiations. The theory recovers known physical results, for example, the linear relation between the thermal current and the temperature difference of two blackbodies. Furthermore, our theory is not limited to the linear regime and goes beyond accounting for nonlinear effects and transient phenomena. Since the present theory is general and can be adapted to describe both electron and phonon dynamics, it provides a first step toward a unified formalism for investigating thermal and electronic transport.

  19. An approximation theory for the identification of linear thermoelastic systems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.; Su, Chien-Hua Frank

    1990-01-01

    An abstract approximation framework and convergence theory for the identification of thermoelastic systems is developed. Starting from an abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity and first order parabolic equation for heat conduction, well-posedness is established using linear semigroup theory in Hilbert space, and a class of parameter estimation problems is then defined involving mild solutions. The approximation framework is based upon generic Galerkin approximation of the mild solutions, and convergence of solutions of the resulting sequence of approximating finite dimensional parameter identification problems to a solution of the original infinite dimensional inverse problem is established using approximation results for operator semigroups. An example involving the basic equations of one dimensional linear thermoelasticity and a linear spline based scheme are discussed. Numerical results indicate how the approach might be used in a study of damping mechanisms in flexible structures.

  20. Diffusion by one wave and by many waves

    NASA Astrophysics Data System (ADS)

    Albert, J. M.

    2010-03-01

    Radiation belt electrons and chorus waves are an outstanding instance of the important role cyclotron resonant wave-particle interactions play in the magnetosphere. Chorus waves are particularly complex, often occurring with large amplitude, narrowband but drifting frequency and fine structure. Nevertheless, modeling their effect on radiation belt electrons with bounce-averaged broadband quasi-linear theory seems to yield reasonable results. It is known that coherent interactions with monochromatic waves can cause particle diffusion, as well as radically different phase bunching and phase trapping behavior. Here the two formulations of diffusion, while conceptually different, are shown to give identical diffusion coefficients, in the narrowband limit of quasi-linear theory. It is further shown that suitably averaging the monochromatic diffusion coefficients over frequency and wave normal angle parameters reproduces the full broadband quasi-linear results. This may account for the rather surprising success of quasi-linear theory in modeling radiation belt electrons undergoing diffusion by chorus waves.

  1. Testing higher-order Lagrangian perturbation theory against numerical simulation. 1: Pancake models

    NASA Technical Reports Server (NTRS)

    Buchert, T.; Melott, A. L.; Weiss, A. G.

    1993-01-01

    We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of quasi-linear scales. The Lagrangian theory of gravitational instability of an Einstein-de Sitter dust cosmogony investigated and solved up to the third order is compared with numerical simulations. In this paper we study the dynamics of pancake models as a first step. In previous work the accuracy of several analytical approximations for the modeling of large-scale structure in the mildly non-linear regime was analyzed in the same way, allowing for direct comparison of the accuracy of various approximations. In particular, the Zel'dovich approximation (hereafter ZA) as a subclass of the first-order Lagrangian perturbation solutions was found to provide an excellent approximation to the density field in the mildly non-linear regime (i.e. up to a linear r.m.s. density contrast of sigma is approximately 2). The performance of ZA in hierarchical clustering models can be greatly improved by truncating the initial power spectrum (smoothing the initial data). We here explore whether this approximation can be further improved with higher-order corrections in the displacement mapping from homogeneity. We study a single pancake model (truncated power-spectrum with power-spectrum with power-index n = -1) using cross-correlation statistics employed in previous work. We found that for all statistical methods used the higher-order corrections improve the results obtained for the first-order solution up to the stage when sigma (linear theory) is approximately 1. While this improvement can be seen for all spatial scales, later stages retain this feature only above a certain scale which is increasing with time. However, third-order is not much improvement over second-order at any stage. The total breakdown of the perturbation approach is observed at the stage, where sigma (linear theory) is approximately 2, which corresponds to the onset of hierarchical clustering. This success is found at a considerable higher non-linearity than is usual for perturbation theory. Whether a truncation of the initial power-spectrum in hierarchical models retains this improvement will be analyzed in a forthcoming work.

  2. On the interaction of small-scale linear waves with nonlinear solitary waves

    NASA Astrophysics Data System (ADS)

    Xu, Chengzhu; Stastna, Marek

    2017-04-01

    In the study of environmental and geophysical fluid flows, linear wave theory is well developed and its application has been considered for phenomena of various length and time scales. However, due to the nonlinear nature of fluid flows, in many cases results predicted by linear theory do not agree with observations. One of such cases is internal wave dynamics. While small-amplitude wave motion may be approximated by linear theory, large amplitude waves tend to be solitary-like. In some cases, when the wave is highly nonlinear, even weakly nonlinear theories fail to predict the wave properties correctly. We study the interaction of small-scale linear waves with nonlinear solitary waves using highly accurate pseudo spectral simulations that begin with a fully nonlinear solitary wave and a train of small-amplitude waves initialized from linear waves. The solitary wave then interacts with the linear waves through either an overtaking collision or a head-on collision. During the collision, there is a net energy transfer from the linear wave train to the solitary wave, resulting in an increase in the kinetic energy carried by the solitary wave and a phase shift of the solitary wave with respect to a freely propagating solitary wave. At the same time the linear waves are greatly reduced in amplitude. The percentage of energy transferred depends primarily on the wavelength of the linear waves. We found that after one full collision cycle, the longest waves may retain as much as 90% of the kinetic energy they had initially, while the shortest waves lose almost all of their initial energy. We also found that a head-on collision is more efficient in destroying the linear waves than an overtaking collision. On the other hand, the initial amplitude of the linear waves has very little impact on the percentage of energy that can be transferred to the solitary wave. Because of the nonlinearity of the solitary wave, these results provide us some insight into wave-mean flow interaction in a fully nonlinear framework.

  3. Direct perturbation theory for the dark soliton solution to the nonlinear Schrödinger equation with normal dispersion.

    PubMed

    Yu, Jia-Lu; Yang, Chun-Nuan; Cai, Hao; Huang, Nian-Ning

    2007-04-01

    After finding the basic solutions of the linearized nonlinear Schrödinger equation by the method of separation of variables, the perturbation theory for the dark soliton solution is constructed by linear Green's function theory. In application to the self-induced Raman scattering, the adiabatic corrections to the soliton's parameters are obtained and the remaining correction term is given as a pure integral with respect to the continuous spectral parameter.

  4. Unification Theory of Optimal Life Histories and Linear Demographic Models in Internal Stochasticity

    PubMed Central

    Oizumi, Ryo

    2014-01-01

    Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order to analyze the optimal control under internal stochasticity, we need to make use of “Stochastic Control Theory” in the optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal stochasticity into linear demographic models. First, we show the relationship between the general age-states linear demographic models and the stochastic control theory via several mathematical formulations, such as path–integral, integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear demographic models. PMID:24945258

  5. Excited states with internally contracted multireference coupled-cluster linear response theory.

    PubMed

    Samanta, Pradipta Kumar; Mukherjee, Debashis; Hanauer, Matthias; Köhn, Andreas

    2014-04-07

    In this paper, the linear response (LR) theory for the variant of internally contracted multireference coupled cluster (ic-MRCC) theory described by Hanauer and Köhn [J. Chem. Phys. 134, 204211 (2011)] has been formulated and implemented for the computation of the excitation energies relative to a ground state of pronounced multireference character. We find that straightforward application of the linear-response formalism to the time-averaged ic-MRCC Lagrangian leads to unphysical second-order poles. However, the coupling matrix elements that cause this behavior are shown to be negligible whenever the internally contracted approximation as such is justified. Hence, for the numerical implementation of the method, we adopt a Tamm-Dancoff-type approximation and neglect these couplings. This approximation is also consistent with an equation-of-motion based derivation, which neglects these couplings right from the start. We have implemented the linear-response approach in the ic-MRCC singles-and-doubles framework and applied our method to calculate excitation energies for a number of molecules ranging from CH2 to p-benzyne and conjugated polyenes (up to octatetraene). The computed excitation energies are found to be very accurate, even for the notoriously difficult case of doubly excited states. The ic-MRCC-LR theory is also applicable to systems with open-shell ground-state wavefunctions and is by construction not biased towards a particular reference determinant. We have also compared the linear-response approach to the computation of energy differences by direct state-specific ic-MRCC calculations. We finally compare to Mk-MRCC-LR theory for which spurious roots have been reported [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044116 (2012)], being due to the use of sufficiency conditions to solve the Mk-MRCC equations. No such problem is present in ic-MRCC-LR theory.

  6. Optimal energy growth in a stably stratified shear flow

    NASA Astrophysics Data System (ADS)

    Jose, Sharath; Roy, Anubhab; Bale, Rahul; Iyer, Krithika; Govindarajan, Rama

    2018-02-01

    Transient growth of perturbations by a linear non-modal evolution is studied here in a stably stratified bounded Couette flow. The density stratification is linear. Classical inviscid stability theory states that a parallel shear flow is stable to exponentially growing disturbances if the Richardson number (Ri) is greater than 1/4 everywhere in the flow. Experiments and numerical simulations at higher Ri show however that algebraically growing disturbances can lead to transient amplification. The complexity of a stably stratified shear flow stems from its ability to combine this transient amplification with propagating internal gravity waves (IGWs). The optimal perturbations associated with maximum energy amplification are numerically obtained at intermediate Reynolds numbers. It is shown that in this wall-bounded flow, the three-dimensional optimal perturbations are oblique, unlike in unstratified flow. A partitioning of energy into kinetic and potential helps in understanding the exchange of energies and how it modifies the transient growth. We show that the apportionment between potential and kinetic energy depends, in an interesting manner, on the Richardson number, and on time, as the transient growth proceeds from an optimal perturbation. The oft-quoted stabilizing role of stratification is also probed in the non-diffusive limit in the context of disturbance energy amplification.

  7. High Reynolds number analysis of flat plate and separated afterbody flow using non-linear turbulence models

    NASA Technical Reports Server (NTRS)

    Carlson, John R.

    1996-01-01

    The ability of the three-dimensional Navier-Stokes method, PAB3D, to simulate the effect of Reynolds number variation using non-linear explicit algebraic Reynolds stress turbulence modeling was assessed. Subsonic flat plate boundary-layer flow parameters such as normalized velocity distributions, local and average skin friction, and shape factor were compared with DNS calculations and classical theory at various local Reynolds numbers up to 180 million. Additionally, surface pressure coefficient distributions and integrated drag predictions on an axisymmetric nozzle afterbody were compared with experimental data from 10 to 130 million Reynolds number. The high Reynolds data was obtained from the NASA Langley 0.3m Transonic Cryogenic Tunnel. There was generally good agreement of surface static pressure coefficients between the CFD and measurement. The change in pressure coefficient distributions with varying Reynolds number was similar to the experimental data trends, though slightly over-predicting the effect. The computational sensitivity of viscous modeling and turbulence modeling are shown. Integrated afterbody pressure drag was typically slightly lower than the experimental data. The change in afterbody pressure drag with Reynolds number was small both experimentally and computationally, even though the shape of the distribution was somewhat modified with Reynolds number.

  8. Chemoviscosity modeling for thermosetting resins - I

    NASA Technical Reports Server (NTRS)

    Hou, T. H.

    1984-01-01

    A new analytical model for chemoviscosity variation during cure of thermosetting resins was developed. This model is derived by modifying the widely used WLF (Williams-Landel-Ferry) Theory in polymer rheology. Major assumptions involved are that the rate of reaction is diffusion controlled and is linearly inversely proportional to the viscosity of the medium over the entire cure cycle. The resultant first order nonlinear differential equation is solved numerically, and the model predictions compare favorably with experimental data of EPON 828/Agent U obtained on a Rheometrics System 4 Rheometer. The model describes chemoviscosity up to a range of six orders of magnitude under isothermal curing conditions. The extremely non-linear chemoviscosity profile for a dynamic heating cure cycle is predicted as well. The model is also shown to predict changes of glass transition temperature for the thermosetting resin during cure. The physical significance of this prediction is unclear at the present time, however, and further research is required. From the chemoviscosity simulation point of view, the technique of establishing an analytical model as described here is easily applied to any thermosetting resin. The model thus obtained is used in real-time process controls for fabricating composite materials.

  9. Design of pressure-sensing diaphragm for MEMS capacitance diaphragm gauge considering size effect

    NASA Astrophysics Data System (ADS)

    Li, Gang; Li, Detian; Cheng, Yongjun; Sun, Wenjun; Han, Xiaodong; Wang, Chengxiang

    2018-03-01

    MEMS capacitance diaphragm gauge with a full range of (1˜1000) Pa is considered for its wide application prospect. The design of pressure-sensing diaphragm is the key to achieve balanced performance for this kind of gauges. The optimization process of the pressure-sensing diaphragm with island design of a capacitance diaphragm gauge based on MEMS technique has been reported in this work. For micro-components in micro scale range, mechanical properties are very different from that in the macro scale range, so the size effect should not be ignored. The modified strain gradient elasticity theory considering size effect has been applied to determine the bending rigidity of the pressure-sensing diaphragm, which is then used in the numerical model to calculate the deflection-pressure relation of the diaphragm. According to the deflection curves, capacitance variation can be determined by integrating over the radius of the diaphragm. At last, the design of the diaphragm has been optimized based on three parameters: sensitivity, linearity and ground capacitance. With this design, a full range of (1˜1000) Pa can be achieved, meanwhile, balanced sensitivity, resolution and linearity can be kept.

  10. Older Women and Their Career Decisions and Compromise.

    ERIC Educational Resources Information Center

    Gerlicher, Cathie

    Career theory is not a new topic, but one with an interesting past. The theories have been developed through working with men in the early days of the study of careers, modified to add women, and then modified even more for men and women in transition. Making a career decision is not a single event that takes place only in one's early adulthood,…

  11. Linear tearing mode stability equations for a low collisionality toroidal plasma

    NASA Astrophysics Data System (ADS)

    Connor, J. W.; Hastie, R. J.; Helander, P.

    2009-01-01

    Tearing mode stability is normally analysed using MHD or two-fluid Braginskii plasma models. However for present, or future, large hot tokamaks like JET or ITER the collisionality is such as to place them in the banana regime. Here we develop a linear stability theory for the resonant layer physics appropriate to such a regime. The outcome is a set of 'fluid' equations whose coefficients encapsulate all neoclassical physics: the neoclassical Ohm's law, enhanced ion inertia, cross-field transport of particles, heat and momentum all play a role. While earlier treatments have also addressed this type of neoclassical physics we differ in incorporating the more physically relevant 'semi-collisional fluid' regime previously considered in cylindrical geometry; semi-collisional effects tend to screen the resonant surface from the perturbed magnetic field, preventing reconnection. Furthermore we also include thermal physics, which may modify the results. While this electron description is of wide relevance and validity, the fluid treatment of the ions requires the ion banana orbit width to be less than the semi-collisional electron layer. This limits the application of the present theory to low magnetic shear—however, this is highly relevant to the sawtooth instability—or to colder ions. The outcome of the calculation is a set of one-dimensional radial differential equations of rather high order. However, various simplifications that reduce the computational task of solving these are discussed. In the collisional regime, when the set reduces to a single second-order differential equation, the theory extends previous work by Hahm et al (1988 Phys. Fluids 31 3709) to include diamagnetic-type effects arising from plasma gradients, both in Ohm's law and the ion inertia term of the vorticity equation. The more relevant semi-collisional regime pertaining to JET or ITER, is described by a pair of second-order differential equations, extending the cylindrical equations of Drake et al (1983 Phys. Fluids 26 2509) to toroidal geometry.

  12. An investigation of stress wave propagation in a shear deformable nanobeam based on modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Akbarzadeh Khorshidi, Majid; Shariati, Mahmoud

    2016-04-01

    This paper presents a new investigation for propagation of stress wave in a nanobeam based on modified couple stress theory. Using Euler-Bernoulli beam theory, Timoshenko beam theory, and Reddy beam theory, the effect of shear deformation is investigated. This nonclassical model contains a material length scale parameter to capture the size effect and the Poisson effect is incorporated in the current model. Governing equations of motion are obtained by Hamilton's principle and solved explicitly. This solution leads to obtain two phase velocities for shear deformable beams in different directions. Effects of shear deformation, material length scale parameter, and Poisson's ratio on the behavior of these phase velocities are investigated and discussed. The results also show a dual behavior for phase velocities against Poisson's ratio.

  13. Comments on the variational modified-hypernetted-chain theory for simple fluids

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Yaakov

    1986-02-01

    The variational modified-hypernetted-chain (VMHNC) theory, based on the approximation of universality of the bridge functions, is reformulated. The new formulation includes recent calculations by Lado and by Lado, Foiles, and Ashcroft, as two stages in a systematic approach which is analyzed. A variational iterative procedure for solving the exact (diagrammatic) equations for the fluid structure which is formally identical to the VMHNC is described, featuring the theory of simple classical fluids as a one-iteration theory. An accurate method for calculating the pair structure for a given potential and for inverting structure factor data in order to obtain the potential and the thermodynamic functions, follows from our analysis.

  14. Applications of Cosmological Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Christopherson, Adam J.

    2011-06-01

    Cosmological perturbation theory is crucial for our understanding of the universe. The linear theory has been well understood for some time, however developing and applying the theory beyond linear order is currently at the forefront of research in theoretical cosmology. This thesis studies the applications of perturbation theory to cosmology and, specifically, to the early universe. Starting with some background material introducing the well-tested 'standard model' of cosmology, we move on to develop the formalism for perturbation theory up to second order giving evolution equations for all types of scalar, vector and tensor perturbations, both in gauge dependent and gauge invariant form. We then move on to the main result of the thesis, showing that, at second order in perturbation theory, vorticity is sourced by a coupling term quadratic in energy density and entropy perturbations. This source term implies a qualitative difference to linear order. Thus, while at linear order vorticity decays with the expansion of the universe, the same is not true at higher orders. This will have important implications on future measurements of the polarisation of the Cosmic Microwave Background, and could give rise to the generation of a primordial seed magnetic field. Having derived this qualitative result, we then estimate the scale dependence and magnitude of the vorticity power spectrum, finding, for simple power law inputs a small, blue spectrum. The final part of this thesis concerns higher order perturbation theory, deriving, for the first time, the metric tensor, gauge transformation rules and governing equations for fully general third order perturbations. We close with a discussion of natural extensions to this work and other possible ideas for off-shooting projects in this continually growing field.

  15. A linear quadratic regulator approach to the stabilization of uncertain linear systems

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Sunkel, J. W.; Wang, Y. J.

    1990-01-01

    This paper presents a linear quadratic regulator approach to the stabilization of uncertain linear systems. The uncertain systems under consideration are described by state equations with the presence of time-varying unknown-but-bounded uncertainty matrices. The method is based on linear quadratic regulator (LQR) theory and Liapunov stability theory. The robust stabilizing control law for a given uncertain system can be easily constructed from the symmetric positive-definite solution of the associated augmented Riccati equation. The proposed approach can be applied to matched and/or mismatched systems with uncertainty matrices in which only their matrix norms are bounded by some prescribed values and/or their entries are bounded by some prescribed constraint sets. Several numerical examples are presented to illustrate the results.

  16. The Hagen-Poiseuille, Plane Couette and Poiseuille Flows Linear Instability and Rogue Waves Excitation Mechanism

    NASA Astrophysics Data System (ADS)

    Chefranov, Sergey; Chefranov, Alexander

    2016-04-01

    Linear hydrodynamic stability theory for the Hagen-Poiseuille (HP) flow yields a conclusion of infinitely large threshold Reynolds number, Re, value. This contradiction to the observation data is bypassed using assumption of the HP flow instability having hard type and possible for sufficiently high-amplitude disturbances. HP flow disturbance evolution is considered by nonlinear hydrodynamic stability theory. Similar is the case of the plane Couette (PC) flow. For the plane Poiseuille (PP) flow, linear theory just quantitatively does not agree with experimental data defining the threshold Reynolds number Re= 5772 ( S. A. Orszag, 1971), more than five-fold exceeding however the value observed, Re=1080 (S. J. Davies, C. M. White, 1928). In the present work, we show that the linear stability theory conclusions for the HP and PC on stability for any Reynolds number and evidently too high threshold Reynolds number estimate for the PP flow are related with the traditional use of the disturbance representation assuming the possibility of separation of the longitudinal (along the flow direction) variable from the other spatial variables. We show that if to refuse from this traditional form, conclusions on the linear instability for the HP and PC flows may be obtained for finite Reynolds numbers (for the HP flow, for Re>704, and for the PC flow, for Re>139). Also, we fit the linear stability theory conclusion on the PP flow to the experimental data by getting an estimate of the minimal threshold Reynolds number as Re=1040. We also get agreement of the minimal threshold Reynolds number estimate for PC with the experimental data of S. Bottin, et.al., 1997, where the laminar PC flow stability threshold is Re = 150. Rogue waves excitation mechanism in oppositely directed currents due to the PC flow linear instability is discussed. Results of the new linear hydrodynamic stability theory for the HP, PP, and PC flows are published in the following papers: 1. S.G. Chefranov, A.G. Chefranov, JETP, v.119, No.2, 331, 2014 2. S.G. Chefranov, A.G. Chefranov, Doklady Physics, vol.60, No.7, 327-332, 2015 3. S.G. Chefranov, A. G. Chefranov, arXiv: 1509.08910v1 [physics.flu-dyn] 29 Sep 2015 (accepted to JETP)

  17. Anisotropic strange stars under simplest minimal matter-geometry coupling in the f (R ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Deb, Debabrata; Guha, B. K.; Rahaman, Farook; Ray, Saibal

    2018-04-01

    We study strange stars in the framework of f (R ,T ) theory of gravity. To provide exact solutions of the field equations it is considered that the gravitational Lagrangian can be expressed as the linear function of the Ricci scalar R and the trace of the stress-energy tensor T , i.e. f (R ,T )=R +2 χ T , where χ is a constant. We also consider that the strange quark matter (SQM) distribution inside the stellar system is governed by the phenomenological MIT bag model equation of state (EOS), given as pr=1/3 (ρ -4 B ) , where B is the bag constant. Further, for a specific value of B and observed values of mass of the strange star candidates we obtain the exact solution of the modified Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of f (R ,T ) gravity and have studied in detail the dependence of the different physical parameters, like the metric potentials, energy density, radial and tangential pressures and anisotropy etc., due to the chosen different values of χ . Likewise in GR, as have been shown in our previous work [Deb et al., Ann. Phys. (Amsterdam) 387, 239 (2017), 10.1016/j.aop.2017.10.010] in the present work also we find maximum anisotropy at the surface which seems an inherent property of the strange stars in modified f (R ,T ) theory of gravity. To check the physical acceptability and stability of the stellar system based on the obtained solutions we have performed different physical tests, viz., the energy conditions, Herrera cracking concept, adiabatic index etc. In this work, we also have explained the effects, those are arising due to the interaction between the matter and the curvature terms in f (R ,T ) gravity, on the anisotropic compact stellar system. It is interesting to note that as the values of χ increase the strange stars become more massive and their radius increase gradually so that eventually they gradually turn into less dense compact objects. The present study reveals that the modified f (R ,T ) gravity is a suitable theory to explain massive stellar systems like recent magnetars, massive pulsars and super-Chandrasekhar stars, which cannot be explained in the framework of GR. However, for χ =0 the standard results of Einsteinian gravity are retrieved.

  18. Manipulator control by exact linearization

    NASA Technical Reports Server (NTRS)

    Kruetz, K.

    1987-01-01

    Comments on the application to rigid link manipulators of geometric control theory, resolved acceleration control, operational space control, and nonlinear decoupling theory are given, and the essential unity of these techniques for externally linearizing and decoupling end effector dynamics is discussed. Exploiting the fact that the mass matrix of a rigid link manipulator is positive definite, a consequence of rigid link manipulators belonging to the class of natural physical systems, it is shown that a necessary and sufficient condition for a locally externally linearizing and output decoupling feedback law to exist is that the end effector Jacobian matrix be nonsingular. Furthermore, this linearizing feedback is easy to produce.

  19. Fuzzy Linear Programming and its Application in Home Textile Firm

    NASA Astrophysics Data System (ADS)

    Vasant, P.; Ganesan, T.; Elamvazuthi, I.

    2011-06-01

    In this paper, new fuzzy linear programming (FLP) based methodology using a specific membership function, named as modified logistic membership function is proposed. The modified logistic membership function is first formulated and its flexibility in taking up vagueness in parameter is established by an analytical approach. The developed methodology of FLP has provided a confidence in applying to real life industrial production planning problem. This approach of solving industrial production planning problem can have feedback with the decision maker, the implementer and the analyst.

  20. Symmetry and singularity properties of second-order ordinary differential equations of Lie's type III

    NASA Astrophysics Data System (ADS)

    Andriopoulos, K.; Leach, P. G. L.

    2007-04-01

    We extend the work of Abraham-Shrauner [B. Abraham-Shrauner, Hidden symmetries and linearization of the modified Painleve-Ince equation, J. Math. Phys. 34 (1993) 4809-4816] on the linearization of the modified Painleve-Ince equation to a wider class of nonlinear second-order ordinary differential equations invariant under the symmetries of time translation and self-similarity. In the process we demonstrate a remarkable connection with the parameters obtained in the singularity analysis of this class of equations.

  1. Analytic Theory for the Yarkovsky-O Effect on Obliquity

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Vokrouhlický, David

    2008-07-01

    The Yarkovsky-O'Keefe-Radzievski-Paddack (YORP) effect is a thermal radiation torque that causes small objects to speed up or slow down their rotation and modify their spin vector orientation. This effect has important implications for spin dynamics of diameter D lsim 50 km asteroids. In our previous work we developed an analytic theory for the component of the YORP torque that affects the spin rate. Here we extend these calculations to determine the effect of the YORP torque on obliquity. Our theory is limited to objects with near-spherical shapes. Two limiting cases are studied: (1) immediate emission of the thermal energy that occurs for surface thermal conductivity K = 0; (2) the effects of K ≠ 0 in the limit of small temporal variations of the surface temperature. We use the linearized heat transport equation to model (2). The results include explicit scaling of the YORP torque on obliquity with physical and dynamical parameters such as the thermal conductivity and spin rate. The dependence of torques on the obliquity is given as series of the Legendre polynomials. Comparisons show excellent agreement of the analytic results with the numerically calculated YORP torques for objects such as asteroids 1998 KY26 and (66391) 1999 KW4. We suggest that an important fraction of main belt asteroids may have specific obliquity values (generalized Slivan states) arising from the roots of the Legendre polynomials.

  2. A Comparison of Measurement Equivalence Methods Based on Confirmatory Factor Analysis and Item Response Theory.

    ERIC Educational Resources Information Center

    Flowers, Claudia P.; Raju, Nambury S.; Oshima, T. C.

    Current interest in the assessment of measurement equivalence emphasizes two methods of analysis, linear, and nonlinear procedures. This study simulated data using the graded response model to examine the performance of linear (confirmatory factor analysis or CFA) and nonlinear (item-response-theory-based differential item function or IRT-Based…

  3. Constructive Processes in Linear Order Problems Revealed by Sentence Study Times

    ERIC Educational Resources Information Center

    Mynatt, Barbee T.; Smith, Kirk H.

    1977-01-01

    This research was a further test of the theory of constructive processes proposed by Foos, Smith, Sabol, and Mynatt (1976) to account for differences among presentation orders in the construction of linear orders. This theory is composed of different series of mental operations that must be performed when an order relationship is integrated with…

  4. The application of Green's theorem to the solution of boundary-value problems in linearized supersonic wing theory

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard

    1950-01-01

    Following the introduction of the linearized partial differential equation for nonsteady three-dimensional compressible flow, general methods of solution are given for the two and three-dimensional steady-state and two-dimensional unsteady-state equations. It is also pointed out that, in the absence of thickness effects, linear theory yields solutions consistent with the assumptions made when applied to lifting-surface problems for swept-back plan forms at sonic speeds. The solutions of the particular equations are determined in all cases by means of Green's theorem, and thus depend on the use of Green's equivalent layer of sources, sinks, and doublets. Improper integrals in the supersonic theory are treated by means of Hadamard's "finite part" technique.

  5. Non-linear Frequency Shifts, Mode Couplings, and Decay Instability of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Affolter, Mathew; Anderegg, F.; Driscoll, C. F.; Valentini, F.

    2015-11-01

    We present experiments and theory for non-linear plasma wave decay to longer wavelengths, in both the oscillatory coupling and exponential decay regimes. The experiments are conducted on non-neutral plasmas in cylindrical Penning-Malmberg traps, θ-symmetric standing plasma waves have near acoustic dispersion ω (kz) ~kz - αkz2 , discretized by kz =mz (π /Lp) . Large amplitude waves exhibit non-linear frequency shifts δf / f ~A2 and Fourier harmonic content, both of which are increased as the plasma dispersion is reduced. Non-linear coupling rates are measured between large amplitude mz = 2 waves and small amplitude mz = 1 waves, which have a small detuning Δω = 2ω1 -ω2 . At small excitation amplitudes, this detuning causes the mz = 1 mode amplitude to ``bounce'' at rate Δω , with amplitude excursions ΔA1 ~ δn2 /n0 consistent with cold fluid theory and Vlasov simulations. At larger excitation amplitudes, where the non-linear coupling exceeds the dispersion, phase-locked exponential growth of the mz = 1 mode is observed, in qualitative agreement with simple 3-wave instability theory. However, significant variations are observed experimentally, and N-wave theory gives stunningly divergent predictions that depend sensitively on the dispersion-moderated harmonic content. Measurements on higher temperature Langmuir waves and the unusual ``EAW'' (KEEN) waves are being conducted to investigate the effects of wave-particle kinetics on the non-linear coupling rates. Department of Energy Grants DE-SC0002451and DE-SC0008693.

  6. Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies

    PubMed Central

    Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A

    2017-01-01

    Abstract Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. PMID:29106476

  7. Electrochemical sensor for ranitidine determination based on carbon paste electrode modified with oxovanadium (IV) salen complex.

    PubMed

    Raymundo-Pereira, Paulo A; Teixeira, Marcos F S; Fatibello-Filho, Orlando; Dockal, Edward R; Bonifácio, Viviane Gomes; Marcolino, Luiz H

    2013-10-01

    The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicyllideneiminato)oxovanadium (IV) complex ([VO(salen)]) as well as its application for ranitidine determination are described. The electrochemical behavior of the modified electrode for the electroreduction of ranitidine was investigated using cyclic voltammetry, and analytical curves were obtained for ranitidine using linear sweep voltammetry (LSV) under optimized conditions. The best voltammetric response was obtained for an electrode composition of 20% (m/m) [VO(salen)] in the paste, 0.10 mol L(-1) of KCl solution (pH 5.5 adjusted with HCl) as supporting electrolyte and scan rate of 25 mV s(-1). A sensitive linear voltammetric response for ranitidine was obtained in the concentration range from 9.9×10(-5) to 1.0×10(-3) mol L(-1), with a detection limit of 6.6×10(-5) mol L(-1) using linear sweep voltammetry. These results demonstrated the viability of this modified electrode as a sensor for determination, quality control and routine analysis of ranitidine in pharmaceutical formulations. Copyright © 2013. Published by Elsevier B.V.

  8. New classes of modified teleparallel gravity models

    NASA Astrophysics Data System (ADS)

    Bahamonde, Sebastian; Böhmer, Christian G.; Krššák, Martin

    2017-12-01

    New classes of modified teleparallel theories of gravity are introduced. The action of this theory is constructed to be a function of the irreducible parts of torsion f (Tax ,Tten ,Tvec), where Tax ,Tten and Tvec are squares of the axial, tensor and vector components of torsion, respectively. This is the most general (well-motivated) second order teleparallel theory of gravity that can be constructed from the torsion tensor. Different particular second order theories can be recovered from this theory such as new general relativity, conformal teleparallel gravity or f (T) gravity. Additionally, the boundary term B which connects the Ricci scalar with the torsion scalar via R = - T + B can also be incorporated into the action. By performing a conformal transformation, it is shown that the two unique theories which have an Einstein frame are either the teleparallel equivalent of general relativity or f (- T + B) = f (R) gravity, as expected.

  9. Using Dark Matter Haloes to Learn about Cosmic Acceleration: A New Proposal for a Universal Mass Function

    NASA Technical Reports Server (NTRS)

    Prescod-Weinstein, Chanda; Afshordi, Niayesh

    2011-01-01

    Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit or overpredict the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy or a modified gravity implement a modified Press-Schechter formalism, which relates the linear overdensities to the abundance of dark matter haloes at the same time. We critically examine the universality of the Press-Schechter formalism for different cosmologies, and show that the halo abundance is best correlated with spherical linear overdensity at 94% of collapse (or observation) time. We then extend this argument to ellipsoidal collapse (which decreases the fractional time of best correlation for small haloes), and show that our results agree with deviations from modified Press-Schechter formalism seen in simulated mass functions. This provides a novel universal prescription to measure linear density evolution, based on current and future observations of cluster (or dark matter) halo mass function. In particular, even observations of cluster abundance in a single epoch will constrain the entire history of linear growth of cosmological of perturbations.

  10. Dark stars in Starobinsky's model

    NASA Astrophysics Data System (ADS)

    Panotopoulos, Grigoris; Lopes, Ilídio

    2018-01-01

    In the present work we study non-rotating dark stars in f (R ) modified theory of gravity. In particular, we have considered bosonic self-interacting dark matter modeled inside the star as a Bose-Einstein condensate, while as far as the modified theory of gravity is concerned we have assumed Starobinsky's model R +a R2. We solve the generalized structure equations numerically, and we obtain the mass-to-ratio relation for several different values of the parameter a , and for two different dark matter equation-of-states. Our results show that the dark matter stars become more compact in the R-squared gravity compared to general relativity, while at the same time the highest star mass is slightly increased in the modified gravitational theory. The numerical value of the highest star mass for each case has been reported.

  11. Adsorption of three-domain antifreeze proteins on ice: a study using LGMMAS theory and Monte Carlo simulations.

    PubMed

    Lopez Ortiz, Juan Ignacio; Torres, Paola; Quiroga, Evelina; Narambuena, Claudio F; Ramirez-Pastor, Antonio J

    2017-11-29

    In the present work, the adsorption of three-domain antifreeze proteins on ice is studied by combining a statistical thermodynamics based theory and Monte Carlo simulations. The three-domain protein is modeled by a trimer, and the ice surface is represented by a lattice of adsorption sites. The statistical theory, obtained from the exact partition function of non-interacting trimers adsorbed in one dimension and its extension to two dimensions, includes the configuration of the molecule in the adsorbed state, and allows the existence of multiple adsorption states for the protein. We called this theory "lattice-gas model of molecules with multiple adsorption states" (LGMMAS). The main thermodynamics functions (partial and total adsorption isotherms, Helmholtz free energy and configurational entropy) are obtained by solving a non-linear system of j equations, where j is the total number of possible adsorption states of the protein. The theoretical results are contrasted with Monte Carlo simulations, and a modified Langmuir model (MLM) where the arrangement of the adsorption sites in space is immaterial. The formalism introduced here provides exact results in one-dimensional lattices, and offers a very accurate description in two dimensions (2D). In addition, the scheme is capable of predicting the proportion between coverage degrees corresponding to different conformations in the same energetic state. In contrast, the MLM does not distinguish between different adsorption states, and shows severe discrepancies with the 2D simulation results. These findings indicate that the adsorbate structure and the lattice geometry play fundamental roles in determining the statistics of multistate adsorbed molecules, and consequently, must be included in the theory.

  12. Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory.

    PubMed

    Kussmann, Jörg; Ochsenfeld, Christian

    2007-08-07

    Details of a new density matrix-based formulation for calculating nuclear magnetic resonance chemical shifts at both Hartree-Fock and density functional theory levels are presented. For systems with a nonvanishing highest occupied molecular orbital-lowest unoccupied molecular orbital gap, the method allows us to reduce the asymptotic scaling order of the computational effort from cubic to linear, so that molecular systems with 1000 and more atoms can be tackled with today's computers. The key feature is a reformulation of the coupled-perturbed self-consistent field (CPSCF) theory in terms of the one-particle density matrix (D-CPSCF), which avoids entirely the use of canonical MOs. By means of a direct solution for the required perturbed density matrices and the adaptation of linear-scaling integral contraction schemes, the overall scaling of the computational effort is reduced to linear. A particular focus of our formulation is to ensure numerical stability when sparse-algebra routines are used to obtain an overall linear-scaling behavior.

  13. Linear {GLP}-algebras and their elementary theories

    NASA Astrophysics Data System (ADS)

    Pakhomov, F. N.

    2016-12-01

    The polymodal provability logic {GLP} was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free {GLP}-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable [1]. For every positive integer n we solve the corresponding question for the logics {GLP}_n that are the fragments of {GLP} with n modalities. We prove that the elementary theory of the free {GLP}_n-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable for all n. We introduce the notion of a linear {GLP}_n-algebra and prove that all free {GLP}_n-algebras generated by the constants \\mathbf{0}, \\mathbf{1} are linear. We also consider the more general case of the logics {GLP}_α whose modalities are indexed by the elements of a linearly ordered set α: we define the notion of a linear algebra and prove the latter result in this case.

  14. Linearized-moment analysis of the temperature jump and temperature defect in the Knudsen layer of a rarefied gas.

    PubMed

    Gu, Xiao-Jun; Emerson, David R

    2014-06-01

    Understanding the thermal behavior of a rarefied gas remains a fundamental problem. In the present study, we investigate the predictive capabilities of the regularized 13 and 26 moment equations. In this paper, we consider low-speed problems with small gradients, and to simplify the analysis, a linearized set of moment equations is derived to explore a classic temperature problem. Analytical solutions obtained for the linearized 26 moment equations are compared with available kinetic models and can reliably capture all qualitative trends for the temperature-jump coefficient and the associated temperature defect in the thermal Knudsen layer. In contrast, the linearized 13 moment equations lack the necessary physics to capture these effects and consistently underpredict kinetic theory. The deviation from kinetic theory for the 13 moment equations increases significantly for specular reflection of gas molecules, whereas the 26 moment equations compare well with results from kinetic theory. To improve engineering analyses, expressions for the effective thermal conductivity and Prandtl number in the Knudsen layer are derived with the linearized 26 moment equations.

  15. On the use of LiF:Mg,Ti thermoluminescence dosemeters in space--a critical review.

    PubMed

    Horowitz, Y S; Satinger, D; Fuks, E; Oster, L; Podpalov, L

    2003-01-01

    The use of LiF:Mg,Ti thermoluminescence dosemeters (TLDs) in space radiation fields is reviewed. It is demonstrated in the context of modified track structure theory and microdosimetric track structure theory that there is no unique correlation between the relative thermoluminescence (TL) efficiency of heavy charged particles, neutrons of all energies and linear energy transfer (LET). Many experimental measurements dating back more than two decades also demonstrate the multivalued, non-universal, relationship between relative TL efficiency and LET. It is further demonstrated that the relative intensities of the dosimetric peaks and especially the high-temperature structure are dependent on a large number of variables, some controllable, some not. It is concluded that TL techniques employing the concept of LET (e.g. measurement of total dose, the high-temperature ratio (HTR) methods and other combinations of the relative TL efficiency of the various peaks used to estimate average Q or simulate Q-LET relationships) should be regarded as lacking a sound theoretical basis, highly prone to error and, as well, lack of reproducibility/universality due to the absence of a standardised experimental protocol essential to reliable experimental methodology.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jong-Won; Hirao, Kimihiko, E-mail: hirao@riken.jp

    Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular andmore » periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.« less

  17. A theoretical framework for the changing spectral properties of meter-scale Farley-Buneman waves between 90 and 125 km altitudes

    NASA Astrophysics Data System (ADS)

    St.-Maurice, Jean-Pierre; Chau, Jorge L.

    2016-10-01

    Stimulated by recent observations described in a companion paper, we have revisited existing theories of the Farley-Buneman instability throughout the altitude range 90 to 125 km. We have assumed that the irregularities detected by radars at a given altitude are dominated by structures moving at the threshold speed in a direction associated with maximum linear growth rate conditions. We included recent nonisothermal electron and ion theories, which can modify threshold speeds by considerable amounts. We included altitude-dependent models of ion and electron temperature and of the ion motion in the phase velocity calculations. Our treatment of the instability explains why some spectra are slow (Doppler shifts typically 200 m/s) and narrow, while others are fast (1500 m/s or close to the E × B) and narrow. These narrow spectra have all the characteristics of what has been labeled as "Type III" and "Type IV" in the past. Our calculations also offer an explanation for the observation of a strong asymmetry in the number of events with positive Doppler shifts near the nominal ion-acoustic speed and those with negative Doppler shifts of the same magnitude.

  18. Cosmic-ray streaming perpendicular to the mean magnetic field. II - The gyrophase distribution function

    NASA Technical Reports Server (NTRS)

    Forman, M. A.; Jokipii, J. R.

    1978-01-01

    The distribution function of cosmic rays streaming perpendicular to the mean magnetic field in a turbulent medium is reexamined. Urch's (1977) discovery that in quasi-linear theory, the flux is due to particles at 90 deg pitch angle is discussed and shown to be consistent with previous formulations of the theory. It is pointed out that this flux of particles at 90 deg cannot be arbitrarily set equal to zero, and hence the alternative theory which proceeds from this premise is dismissed. A further, basic inconsistency in Urch's transport equation is demonstrated, and the connection between quasi-linear theory and compound diffusion is discussed.

  19. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.

    PubMed

    Coriani, Sonia; Høst, Stinne; Jansík, Branislav; Thøgersen, Lea; Olsen, Jeppe; Jørgensen, Poul; Reine, Simen; Pawłowski, Filip; Helgaker, Trygve; Sałek, Paweł

    2007-04-21

    A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field theories for the calculation of frequency-dependent molecular response properties and excitation energies is presented, based on a nonredundant exponential parametrization of the one-electron density matrix in the atomic-orbital basis, avoiding the use of canonical orbitals. The response equations are solved iteratively, by an atomic-orbital subspace method equivalent to that of molecular-orbital theory. Important features of the subspace method are the use of paired trial vectors (to preserve the algebraic structure of the response equations), a nondiagonal preconditioner (for rapid convergence), and the generation of good initial guesses (for robust solution). As a result, the performance of the iterative method is the same as in canonical molecular-orbital theory, with five to ten iterations needed for convergence. As in traditional direct Hartree-Fock and Kohn-Sham theories, the calculations are dominated by the construction of the effective Fock/Kohn-Sham matrix, once in each iteration. Linear complexity is achieved by using sparse-matrix algebra, as illustrated in calculations of excitation energies and frequency-dependent polarizabilities of polyalanine peptides containing up to 1400 atoms.

  20. Comparison of impedimetric detection of DNA hybridization on the various biosensors based on modified glassy carbon electrodes with PANHS and nanomaterials of RGO and MWCNTs.

    PubMed

    Benvidi, Ali; Tezerjani, Marzieh Dehghan; Jahanbani, Shahriar; Mazloum Ardakani, Mohammad; Moshtaghioun, Seyed Mohammad

    2016-01-15

    In this research, we have developed lable free DNA biosensors based on modified glassy carbon electrodes (GCE) with reduced graphene oxide (RGO) and carbon nanotubes (MWCNTs) for detection of DNA sequences. This paper compares the detection of BRCA1 5382insC mutation using independent glassy carbon electrodes (GCE) modified with RGO and MWCNTs. A probe (BRCA1 5382insC mutation detection (ssDNA)) was then immobilized on the modified electrodes for a specific time. The immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were performed under optimum conditions using different electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed biosensors were used for determination of complementary DNA sequences. The non-modified DNA biosensor (1-pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS)/GCE), revealed a linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-16)molL(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.992, for DNA biosensors modified with multi-wall carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) wider linear range and lower detection limit were obtained. For ssDNA/PANHS/MWCNTs/GCE a linear range 1.0×10(-17)mol L(-1)-1.0×10(-10)mol L(-1) with a correlation coefficient of 0.993 and for ssDNA/PANHS/RGO/GCE a linear range from 1.0×10(-18)mol L(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.985 were obtained. In addition, the mentioned biosensors were satisfactorily applied for discriminating of complementary sequences from noncomplementary sequences, so the mentioned biosensors can be used for the detection of BRCA1-associated breast cancer. Copyright © 2015. Published by Elsevier B.V.

  1. Cyclic Plasticity Constitutive Model for Uniaxial Ratcheting Behavior of AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Liu, Zheng-Hua; Chen, Xiao-Min; Long, Zhi-Li

    2015-05-01

    Investigating the ratcheting behavior of magnesium alloys is significant for the structure's reliable design. The uniaxial ratcheting behavior of AZ31B magnesium alloy is studied by the asymmetric cyclic stress-controlled experiments at room temperature. A modified kinematic hardening model is established to describe the uniaxial ratcheting behavior of the studied alloy. In the modified model, the material parameter m i is improved as an exponential function of the maximum equivalent stress. The modified model can be used to predict the ratcheting strain evolution of the studied alloy under the single-step and multi-step asymmetric stress-controlled cyclic loadings. Additionally, due to the significant effect of twinning on the plastic deformation of magnesium alloy, the relationship between the material parameter m i and the linear density of twins is discussed. It is found that there is a linear relationship between the material parameter m i and the linear density of twins induced by the cyclic loadings.

  2. Gravitation in material media

    NASA Astrophysics Data System (ADS)

    Ridgely, Charles T.

    2011-03-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.

  3. Modified first-order Hořava-Lifshitz gravity: Hamiltonian analysis of the general theory and accelerating FRW cosmology in a power-law F(R) model

    NASA Astrophysics Data System (ADS)

    Carloni, Sante; Chaichian, Masud; Nojiri, Shin'Ichi; Odintsov, Sergei D.; Oksanen, Markku; Tureanu, Anca

    2010-09-01

    We propose the most general modified first-order Hořava-Lifshitz gravity, whose action does not contain time derivatives higher than the second order. The Hamiltonian structure of this theory is studied in all the details in the case of the spatially-flat Friedmann-Robertson-Walker (FRW) space-time, demonstrating many of the features of the general theory. It is shown that, with some plausible assumptions, including the projectability of the lapse function, this model is consistent. As a large class of such theories, the modified Hořava-Lifshitz F(R) gravity is introduced. The study of its ultraviolet properties shows that its z=3 version seems to be renormalizable in the same way as the original Hořava-Lifshitz proposal. The Hamiltonian analysis of the modified Hořava-Lifshitz F(R) gravity shows that it is in general a consistent theory. The F(R) gravity action is also studied in the fixed-gauge form, where the appearance of a scalar field is particularly illustrative. Then the spatially-flat FRW cosmology for this F(R) gravity is investigated. It is shown that a special choice of parameters for this theory leads to the same equations of motion as in the case of traditional F(R) gravity. Nevertheless, the cosmological structure of the modified Hořava-Lifshitz F(R) gravity turns out to be much richer than for its traditional counterpart. The emergence of multiple de Sitter solutions indicates the possibility of unification of early-time inflation with late-time acceleration within the same model. Power-law F(R) theories are also investigated in detail. It is analytically shown that they have a quite rich cosmological structure: early-/late-time cosmic acceleration of quintessence, as well as of phantom types. Also it is demonstrated that all the four known types of finite-time future singularities may occur in the power-law Hořava-Lifshitz F(R) gravity. Finally, a covariant proposal for (renormalizable) F(R) gravity within the Hořava-Lifshitz spirit is presented.

  4. Couple stress theory of curved rods. 2-D, high order, Timoshenko's and Euler-Bernoulli models

    NASA Astrophysics Data System (ADS)

    Zozulya, V. V.

    2017-01-01

    New models for plane curved rods based on linear couple stress theory of elasticity have been developed.2-D theory is developed from general 2-D equations of linear couple stress elasticity using a special curvilinear system of coordinates related to the middle line of the rod as well as special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and rotation along with body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby, all equations of elasticity including Hooke's law have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of elasticity, a system of differential equations in terms of displacements and boundary conditions for Fourier coefficients have been obtained. Timoshenko's and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear couple stress theory of elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scales when taking into account couple stress and rotation effects.

  5. Chaos in World Politics: A Reflection

    NASA Astrophysics Data System (ADS)

    Ferreira, Manuel Alberto Martins; Filipe, José António Candeias Bonito; Coelho, Manuel F. P.; Pedro, Isabel C.

    Chaos theory results from natural scientists' findings in the area of non-linear dynamics. The importance of related models has increased in the last decades, by studying the temporal evolution of non-linear systems. In consequence, chaos is one of the concepts that most rapidly have been expanded in what research topics respects. Considering that relationships in non-linear systems are unstable, chaos theory aims to understand and to explain this kind of unpredictable aspects of nature, social life, the uncertainties, the nonlinearities, the disorders and confusion, scientifically it represents a disarray connection, but basically it involves much more than that. The existing close relationship between change and time seems essential to understand what happens in the basics of chaos theory. In fact, this theory got a crucial role in the explanation of many phenomena. The relevance of this kind of theories has been well recognized to explain social phenomena and has permitted new advances in the study of social systems. Chaos theory has also been applied, particularly in the context of politics, in this area. The goal of this chapter is to make a reflection on chaos theory - and dynamical systems such as the theories of complexity - in terms of the interpretation of political issues, considering some kind of events in the political context and also considering the macro-strategic ideas of states positioning in the international stage.

  6. A Lagrangian effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less

  7. A Lagrangian effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro, E-mail: zvlah@stanford.edu, E-mail: mwhite@berkeley.edu, E-mail: aviles@berkeley.edu

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The 'new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. All the perturbative models fare better than linear theory.« less

  8. A Lagrangian effective field theory

    DOE PAGES

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro

    2015-09-02

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less

  9. Semigroup theory and numerical approximation for equations in linear viscoelasticity

    NASA Technical Reports Server (NTRS)

    Fabiano, R. H.; Ito, K.

    1990-01-01

    A class of abstract integrodifferential equations used to model linear viscoelastic beams is investigated analytically, applying a Hilbert-space approach. The basic equation is rewritten as a Cauchy problem, and its well-posedness is demonstrated. Finite-dimensional subspaces of the state space and an estimate of the state operator are obtained; approximation schemes for the equations are constructed; and the convergence is proved using the Trotter-Kato theorem of linear semigroup theory. The actual convergence behavior of different approximations is demonstrated in numerical computations, and the results are presented in tables.

  10. Modified Mason number for charged paramagnetic colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Du, Di; Hilou, Elaa; Biswal, Sibani Lisa

    2016-06-01

    The dynamics of magnetorheological fluids have typically been described by the Mason number, a governing parameter defined as the ratio between viscous and magnetic forces in the fluid. For most experimental suspensions of magnetic particles, surface forces, such as steric and electrostatic interactions, can significantly influence the dynamics. Here we propose a theory of a modified Mason number that accounts for surface forces and show that this modified Mason number is a function of interparticle distance. We demonstrate that this modified Mason number is accurate in describing the dynamics of a rotating pair of paramagnetic colloids of identical or mismatched sizes in either high or low salt solutions. The modified Mason number is confirmed to be pseudoconstant for particle pairs and particle chains undergoing a stable-metastable transition during rotation. The interparticle distance term can be calculated using theory or can be measured experimentally. This modified Mason number is more applicable to magnetorheological systems where surface forces are not negligible.

  11. A Silver Nanoparticle-Modified Evanescent Field Optical Fiber Sensor for Methylene Blue Detection

    PubMed Central

    Luo, Ji; Yao, Jun; Lu, Yonggang; Ma, Wenying; Zhuang, Xuye

    2013-01-01

    A silver nanoparticle-modified evanescent field optical fiber sensor based on a MEMS microchannel chip has been successfully fabricated. Experimental results show that the sensor response decreases linearly with increasing concentration of analyte. Over a range of methylene blue concentrations from 0 to 0.4 μmol/mL, the sensor response is linear (R = 0.9496). A concentration variation of 0.1 μmol/mL can cause an absorbance change of 0.402 dB. Moreover, the optical responses of the same sensing fiber without decoration and modified with silver nanoparticles have also been compared. It can be observed that the output intensity of the Ag nanoparticle-modified sensor is enhanced and the sensitivity is higher. Meanwhile, the absorbance spectra are found to be more sensitive to concentration changes compared to the spectra of the peak wavelength. PMID:23519353

  12. The mass-zero spin-two field and gravitational theory.

    NASA Technical Reports Server (NTRS)

    Coulter, C. A.

    1972-01-01

    Demonstration that the conventional theory of the mass-zero spin-two field with sources introduces extraneous nonspin-two field components in source regions and fails to be covariant under the full or restricted conformal group. A modified theory is given, expressed in terms of the physical components of mass-zero spin-two field rather than in terms of 'potentials,' which has no extraneous components inside or outside sources, and which is covariant under the full conformal group. For a proper choice of source term, this modified theory has the correct Newtonian limit and automatically implies that a symmetric second-rank source tensor has zero divergence. It is shown that possibly a generally covariant form of the spin-two theory derived here can be constructed to agree with general relativity in all currently accessible experimental situations.

  13. Small-angle x-ray scattering from lipid bilayers is well described by modified Caillé theory but not by paracrystalline theory.

    PubMed Central

    Zhang, R; Tristram-Nagle, S; Sun, W; Headrick, R L; Irving, T C; Suter, R M; Nagle, J F

    1996-01-01

    X-ray scattering data at high instrumental resolution are reported for multilamellar vesicles of L alpha phase lipid bilayers of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine at 50 degrees C under varying osmotic pressure. The data are fitted to two theories that account for noncrystalline disorder, paracrystalline theory (PT) and modified Caillé theory (MCT). The MCT provides good fits to the data, much better than the PT fits. The particularly important characteristic of MCT is the long power law tails in the scattering. PT fits (as well as ordinary integration with no attempt to account for the noncrystalline disorder) increasingly underestimate this scattering intensity as the order h increases, thereby underestimating the form factors used to obtain electron density profiles. Images FIGURE 4 PMID:8770211

  14. Geometric Theory of Reduction of Nonlinear Control Systems

    NASA Astrophysics Data System (ADS)

    Elkin, V. I.

    2018-02-01

    The foundations of a differential geometric theory of nonlinear control systems are described on the basis of categorical concepts (isomorphism, factorization, restrictions) by analogy with classical mathematical theories (of linear spaces, groups, etc.).

  15. Development as a Complex Process of Change: Conception and Analysis of Projects, Programs and Policies

    ERIC Educational Resources Information Center

    Nordtveit, Bjorn Harald

    2010-01-01

    Development is often understood as a linear process of change towards Western modernity, a vision that is challenged by this paper, arguing that development efforts should rather be connected to the local stakeholders' sense of their own development. Further, the paper contends that Complexity Theory is more effective than a linear theory of…

  16. The generic world-sheet action of irrational conformal field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clubok, K.; Halpern, M.B.

    1995-05-01

    We review developments in the world-sheet action formulation of the generic irrational conformal field theory, including the non-linear and the linearized forms of the action. These systems form a large class of spin-two gauged WZW actions which exhibit exotic gravitational couplings. Integrating out the gravitational field, we also speculate on a connection with sigma models.

  17. Linear dispersion relation for the mirror instability in context of the gyrokinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porazik, Peter; Johnson, Jay R.

    2013-10-15

    The linear dispersion relation for the mirror instability is discussed in context of the gyrokinetic theory. The objective is to provide a coherent view of different kinetic approaches used to derive the dispersion relation. The method based on gyrocenter phase space transformations is adopted in order to display the origin and ordering of various terms.

  18. Incompressible boundary-layer stability analysis of LFC experimental data for sub-critical Mach numbers. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Berry, S. A.

    1986-01-01

    An incompressible boundary-layer stability analysis of Laminar Flow Control (LFC) experimental data was completed and the results are presented. This analysis was undertaken for three reasons: to study laminar boundary-layer stability on a modern swept LFC airfoil; to calculate incompressible design limits of linear stability theory as applied to a modern airfoil at high subsonic speeds; and to verify the use of linear stability theory as a design tool. The experimental data were taken from the slotted LFC experiment recently completed in the NASA Langley 8-Foot Transonic Pressure Tunnel. Linear stability theory was applied and the results were compared with transition data to arrive at correlated n-factors. Results of the analysis showed that for the configuration and cases studied, Tollmien-Schlichting (TS) amplification was the dominating disturbance influencing transition. For these cases, incompressible linear stability theory correlated with an n-factor for TS waves of approximately 10 at transition. The n-factor method correlated rather consistently to this value despite a number of non-ideal conditions which indicates the method is useful as a design tool for advanced laminar flow airfoils.

  19. Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-Impulse Theory: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kok Yan Chan, G.; Sclavounos, P. D.; Jonkman, J.

    2015-04-02

    A hydrodynamics computer module was developed for the evaluation of the linear and nonlinear loads on floating wind turbines using a new fluid-impulse formulation for coupling with the FAST program. The recently developed formulation allows the computation of linear and nonlinear loads on floating bodies in the time domain and avoids the computationally intensive evaluation of temporal and nonlinear free-surface problems and efficient methods are derived for its computation. The body instantaneous wetted surface is approximated by a panel mesh and the discretization of the free surface is circumvented by using the Green function. The evaluation of the nonlinear loadsmore » is based on explicit expressions derived by the fluid-impulse theory, which can be computed efficiently. Computations are presented of the linear and nonlinear loads on the MIT/NREL tension-leg platform. Comparisons were carried out with frequency-domain linear and second-order methods. Emphasis was placed on modeling accuracy of the magnitude of nonlinear low- and high-frequency wave loads in a sea state. Although fluid-impulse theory is applied to floating wind turbines in this paper, the theory is applicable to other offshore platforms as well.« less

  20. Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations

    NASA Astrophysics Data System (ADS)

    Eskandari Nasrabad, A.; Laghaei, R.

    2018-04-01

    Computer simulations and various theories are applied to compute the thermodynamic and transport properties of nitrogen fluid. To model the nitrogen interaction, an existing potential in the literature is modified to obtain a close agreement between the simulation results and experimental data for the orthobaric densities. We use the Generic van der Waals theory to calculate the mean free volume and apply the results within the modified Cohen-Turnbull relation to obtain the self-diffusion coefficient. Compared to experimental data, excellent results are obtained via computer simulations for the orthobaric densities, the vapor pressure, the equation of state, and the shear viscosity. We analyze the results of the theory and computer simulations for the various thermophysical properties.

  1. Quantum Theories of Self-Localization

    NASA Astrophysics Data System (ADS)

    Bernstein, Lisa Joan

    In the classical dynamics of coupled oscillator systems, nonlinearity leads to the existence of stable solutions in which energy remains localized for all time. Here the quantum-mechanical counterpart of classical self-localization is investigated in the context of two model systems. For these quantum models, the terms corresponding to classical nonlinearities modify a subset of the stationary quantum states to be particularly suited to the creation of nonstationary wavepackets that localize energy for long times. The first model considered here is the Quantized Discrete Self-Trapping model (QDST), a system of anharmonic oscillators with linear dispersive coupling used to model local modes of vibration in polyatomic molecules. A simple formula is derived for a particular symmetry class of QDST systems which gives an analytic connection between quantum self-localization and classical local modes. This formula is also shown to be useful in the interpretation of the vibrational spectra of some molecules. The second model studied is the Frohlich/Einstein Dimer (FED), a two-site system of anharmonically coupled oscillators based on the Frohlich Hamiltonian and motivated by the theory of Davydov solitons in biological protein. The Born-Oppenheimer perturbation method is used to obtain approximate stationary state wavefunctions with error estimates for the FED at the first excited level. A second approach is used to reduce the first excited level FED eigenvalue problem to a system of ordinary differential equations. A simple theory of low-energy self-localization in the FED is discussed. The quantum theories of self-localization in the intrinsic QDST model and the extrinsic FED model are compared.

  2. Hořava Gravity in the Effective Field Theory formalism: From cosmology to observational constraints

    NASA Astrophysics Data System (ADS)

    Frusciante, Noemi; Raveri, Marco; Vernieri, Daniele; Hu, Bin; Silvestri, Alessandra

    2016-09-01

    We consider Hořava gravity within the framework of the effective field theory (EFT) of dark energy and modified gravity. We work out a complete mapping of the theory into the EFT language for an action including all the operators which are relevant for linear perturbations with up to sixth order spatial derivatives. We then employ an updated version of the EFTCAMB/EFTCosmoMC package to study the cosmology of the low-energy limit of Hořava gravity and place constraints on its parameters using several cosmological data sets. In particular we use cosmic microwave background (CMB) temperature-temperature and lensing power spectra by Planck 2013, WMAP low- ℓ polarization spectra, WiggleZ galaxy power spectrum, local Hubble measurements, Supernovae data from SNLS, SDSS and HST and the baryon acoustic oscillations measurements from BOSS, SDSS and 6dFGS. We get improved upper bounds, with respect to those from Big Bang Nucleosynthesis, on the deviation of the cosmological gravitational constant from the local Newtonian one. At the level of the background phenomenology, we find a relevant rescaling of the Hubble rate at all epoch, which has a strong impact on the cosmological observables; at the level of perturbations, we discuss in details all the relevant effects on the observables and find that in general the quasi-static approximation is not safe to describe the evolution of perturbations. Overall we find that the effects of the modifications induced by the low-energy Hořava gravity action are quite dramatic and current data place tight bounds on the theory parameters.

  3. On the sensitivity of annual streamflow to air temperature

    USGS Publications Warehouse

    Milly, Paul C.D.; Kam, Jonghun; Dunne, Krista A.

    2018-01-01

    Although interannual streamflow variability is primarily a result of precipitation variability, temperature also plays a role. The relative weakness of the temperature effect at the annual time scale hinders understanding, but may belie substantial importance on climatic time scales. Here we develop and evaluate a simple theory relating variations of streamflow and evapotranspiration (E) to those of precipitation (P) and temperature. The theory is based on extensions of the Budyko water‐balance hypothesis, the Priestley‐Taylor theory for potential evapotranspiration ( ), and a linear model of interannual basin storage. The theory implies that the temperature affects streamflow by modifying evapotranspiration through a Clausius‐Clapeyron‐like relation and through the sensitivity of net radiation to temperature. We apply and test (1) a previously introduced “strong” extension of the Budyko hypothesis, which requires that the function linking temporal variations of the evapotranspiration ratio (E/P) and the index of dryness ( /P) at an annual time scale is identical to that linking interbasin variations of the corresponding long‐term means, and (2) a “weak” extension, which requires only that the annual evapotranspiration ratio depends uniquely on the annual index of dryness, and that the form of that dependence need not be known a priori nor be identical across basins. In application of the weak extension, the readily observed sensitivity of streamflow to precipitation contains crucial information about the sensitivity to potential evapotranspiration and, thence, to temperature. Implementation of the strong extension is problematic, whereas the weak extension appears to capture essential controls of the temperature effect efficiently.

  4. Robust root clustering for linear uncertain systems using generalized Lyapunov theory

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1993-01-01

    Consideration is given to the problem of matrix root clustering in subregions of a complex plane for linear state space models with real parameter uncertainty. The nominal matrix root clustering theory of Gutman & Jury (1981) using the generalized Liapunov equation is extended to the perturbed matrix case, and bounds are derived on the perturbation to maintain root clustering inside a given region. The theory makes it possible to obtain an explicit relationship between the parameters of the root clustering region and the uncertainty range of the parameter space.

  5. Reconstruction of real-space linear matter power spectrum from multipoles of BOSS DR12 results

    NASA Astrophysics Data System (ADS)

    Lee, Seokcheon

    2018-02-01

    Recently, the power spectrum (PS) multipoles using the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample are analyzed [1]. The based model for the analysis is the so-called TNS quasi-linear model and the analysis provides the multipoles up to the hexadecapole [2]. Thus, one might be able to recover the real-space linear matter PS by using the combinations of multipoles to investigate the cosmology [3]. We provide the analytic form of the ratio of quadrupole (hexadecapole) to monopole moments of the quasi-linear PS including the Fingers-of-God (FoG) effect to recover the real-space PS in the linear regime. One expects that observed values of the ratios of multipoles should be consistent with those of the linear theory at large scales. Thus, we compare the ratios of multipoles of the linear theory, including the FoG effect with the measured values. From these, we recover the linear matter power spectra in real-space. These recovered power spectra are consistent with the linear matter power spectra.

  6. Simple estimation of linear 1+1 D tsunami run-up

    NASA Astrophysics Data System (ADS)

    Fuentes, M.; Campos, J. A.; Riquelme, S.

    2016-12-01

    An analytical expression is derived concerning the linear run-up for any given initial wave generated over a sloping bathymetry. Due to the simplicity of the linear formulation, complex transformations are unnecessay, because the shoreline motion is directly obtained in terms of the initial wave. This analytical result not only supports maximum run-up invariance between linear and non-linear theories, but also the time evolution of shoreline motion and velocity. The results exhibit good agreement with the non-linear theory. The present formulation also allows computing the shoreline motion numerically from a customised initial waveform, including non-smooth functions. This is useful for numerical tests, laboratory experiments or realistic cases in which the initial disturbance might be retrieved from seismic data rather than using a theoretical model. It is also shown that the real case studied is consistent with the field observations.

  7. Embeddings of the "New Massive Gravity"

    NASA Astrophysics Data System (ADS)

    Dalmazi, D.; Mendonça, E. L.

    2016-07-01

    Here we apply different types of embeddings of the equations of motion of the linearized "New Massive Gravity" in order to generate alternative and even higher-order (in derivatives) massive gravity theories in D=2+1. In the first part of the work we use the Weyl symmetry as a guiding principle for the embeddings. First we show that a Noether gauge embedding of the Weyl symmetry leads to a sixth-order model in derivatives with either a massive or a massless ghost, according to the chosen overall sign of the theory. On the other hand, if the Weyl symmetry is implemented by means of a Stueckelberg field we obtain a new scalar-tensor model for massive gravitons. It is ghost-free and Weyl invariant at the linearized level around Minkowski space. The model can be nonlinearly completed into a scalar field coupled to the NMG theory. The elimination of the scalar field leads to a nonlocal modification of the NMG. In the second part of the work we prove to all orders in derivatives that there is no local, ghost-free embedding of the linearized NMG equations of motion around Minkowski space when written in terms of one symmetric tensor. Regarding that point, NMG differs from the Fierz-Pauli theory, since in the latter case we can replace the Einstein-Hilbert action by specific f(R,Box R) generalizations and still keep the theory ghost-free at the linearized level.

  8. Linear spin-2 fields in most general backgrounds

    NASA Astrophysics Data System (ADS)

    Bernard, Laura; Deffayet, Cédric; Schmidt-May, Angnis; von Strauss, Mikael

    2016-04-01

    We derive the full perturbative equations of motion for the most general background solutions in ghost-free bimetric theory in its metric formulation. Clever field redefinitions at the level of fluctuations enable us to circumvent the problem of varying a square-root matrix appearing in the theory. This greatly simplifies the expressions for the linear variation of the bimetric interaction terms. We show that these field redefinitions exist and are uniquely invertible if and only if the variation of the square-root matrix itself has a unique solution, which is a requirement for the linearized theory to be well defined. As an application of our results we examine the constraint structure of ghost-free bimetric theory at the level of linear equations of motion for the first time. We identify a scalar combination of equations which is responsible for the absence of the Boulware-Deser ghost mode in the theory. The bimetric scalar constraint is in general not manifestly covariant in its nature. However, in the massive gravity limit the constraint assumes a covariant form when one of the interaction parameters is set to zero. For that case our analysis provides an alternative and almost trivial proof of the absence of the Boulware-Deser ghost. Our findings generalize previous results in the metric formulation of massive gravity and also agree with studies of its vielbein version.

  9. Structure and thermodynamics of liquid alkali metals in variational modified hypernetted-chain theory

    NASA Astrophysics Data System (ADS)

    Chen, H. C.; Lai, S. K.

    1992-03-01

    The role of the Percus-Yevick hard-sphere bridge function in the modified hypernetted-chain integral equation is examined within the context of Lado's criterion [F. Lado, S. M. Foiles, and N. W. Ashcroft, Phys. Rev. A 28, 2374 (1983)]. It is found that the commonly used Lado's criterion, which takes advantage of the analytical simplicity of the Percus-Yevick hard-sphere bridge function, is inadequate for determining an accurate static pair-correlation function. Following Rosenfeld [Y. Rosenfeld, Phys. Rev. A 29, 2877 (1984)], we reconsider Lado's criterion in the so-called variational modified hypernetted-chain theory. The main idea is to construct a free-energy functional satisfying the virial-energy thermodynamic self-consistency. It turns out that the widely used Gibbs-Bogoliubov inequality is equivalent to this integral approach of Lado's criterion. Detailed comparison between the presently obtained structural and thermodynamic quantities for liquid alkali metals and those calculated also in the modified hypernetted-chain theory but with the one-component-plasma reference system leads us to a better understanding of the universality property of the bridge function.

  10. Testing Modified Gravity Theories via Wide Binaries and GAIA

    NASA Astrophysics Data System (ADS)

    Pittordis, Charalambos; Sutherland, Will

    2018-06-01

    The standard ΛCDM model based on General Relativity (GR) including cold dark matter (CDM) is very successful at fitting cosmological observations, but recent non-detections of candidate dark matter (DM) particles mean that various modified-gravity theories remain of significant interest. The latter generally involve modifications to GR below a critical acceleration scale ˜10-10 m s-2. Wide-binary (WB) star systems with separations ≳ 5 kAU provide an interesting test for modified gravity, due to being in or near the low-acceleration regime and presumably containing negligible DM. Here, we explore the prospects for new observations pending from the GAIA spacecraft to provide tests of GR against MOND or TeVes-like theories in a regime only partially explored to date. In particular, we find that a histogram of (3D) binary relative velocities, relative to equilibrium circular velocity predicted from the (2D) projected separation predicts a rather sharp feature in this distribution for standard gravity, with an 80th (90th) percentile value close to 1.025 (1.14) with rather weak dependence on the eccentricity distribution. However, MOND/TeVeS theories produce a shifted distribution, with a significant increase in these upper percentiles. In MOND-like theories without an external field effect, there are large shifts of order unity. With the external field effect included, the shifts are considerably reduced to ˜0.04 - 0.08, but are still potentially detectable statistically given reasonably large samples and good control of contaminants. In principle, followup of GAIA-selected wide binaries with ground-based radial velocities accurate to ≲ 0.03 { km s^{-1}} should be able to produce an interesting new constraint on modified-gravity theories.

  11. Reduced-order model based feedback control of the modified Hasegawa-Wakatani model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goumiri, I. R.; Rowley, C. W.; Ma, Z.

    2013-04-15

    In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modified Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in flow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then, a model-based feedback controller is designed for the reduced order model using linear quadratic regulators. Finally, a linear quadratic Gaussian controller which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHW equations to stabilizemore » the equilibrium and suppress the transition to drift-wave induced turbulence.« less

  12. Improving Non-Linear Approaches to Anomaly Detection, Class Separation, and Visualization

    DTIC Science & Technology

    2014-12-26

    Chainlink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Modified Banana ...45 3.3 LLE Example for the Modified Banana Dataset. . . . . . . . . . . . . . . . . . 47 x...Figure Page 3.4 Banana Dataset RLLE and Supervised RLLE Example. . . . . . . . . . . . . . 51 3.5 DWT Decomposition [162

  13. Parametrized modified gravity and the CMB bispectrum

    NASA Astrophysics Data System (ADS)

    Di Valentino, Eleonora; Melchiorri, Alessandro; Salvatelli, Valentina; Silvestri, Alessandra

    2012-09-01

    We forecast the constraints on modified theories of gravity from the cosmic microwave background (CMB) anisotropies bispectrum that arises from correlations between lensing and the Integrated Sachs-Wolfe effect. In models of modified gravity the evolution of the metric potentials is generally altered and the contribution to the CMB bispectrum signal can differ significantly from the one expected in the standard cosmological model. We adopt a parametrized approach and focus on three different classes of models: Linder’s growth index, Chameleon-type models, and f(R) theories. We show that the constraints on the parameters of the models will significantly improve with future CMB bispectrum measurements.

  14. Initial singularity and pure geometric field theories

    NASA Astrophysics Data System (ADS)

    Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.

    2018-01-01

    In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.

  15. Cosmic Tsunamis in Modified Gravity: Disruption of Screening Mechanisms from Scalar Waves.

    PubMed

    Hagala, R; Llinares, C; Mota, D F

    2017-03-10

    Extending general relativity by adding extra degrees of freedom is a popular approach for explaining the accelerated expansion of the Universe and to build high energy completions of the theory of gravity. The presence of such new degrees of freedom is, however, tightly constrained from several observations and experiments that aim to test general relativity in a wide range of scales. The viability of a given modified theory of gravity, therefore, strongly depends on the existence of a screening mechanism that suppresses the extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of freedom can significantly impact the efficiency of some screening mechanisms, thereby threatening the viability of these modified gravity theories. Specifically, we show that the waves produced in the symmetron model can increase the amplitude of the fifth force and the parametrized post Newtonian parameters by several orders of magnitude.

  16. Cosmic Tsunamis in Modified Gravity: Disruption of Screening Mechanisms from Scalar Waves

    NASA Astrophysics Data System (ADS)

    Hagala, R.; Llinares, C.; Mota, D. F.

    2017-03-01

    Extending general relativity by adding extra degrees of freedom is a popular approach for explaining the accelerated expansion of the Universe and to build high energy completions of the theory of gravity. The presence of such new degrees of freedom is, however, tightly constrained from several observations and experiments that aim to test general relativity in a wide range of scales. The viability of a given modified theory of gravity, therefore, strongly depends on the existence of a screening mechanism that suppresses the extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of freedom can significantly impact the efficiency of some screening mechanisms, thereby threatening the viability of these modified gravity theories. Specifically, we show that the waves produced in the symmetron model can increase the amplitude of the fifth force and the parametrized post Newtonian parameters by several orders of magnitude.

  17. Nonlinear analysis of 0-3 polarized PLZT microplate based on the new modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Zheng, Shijie

    2018-02-01

    In this study, based on the new modified couple stress theory, the size- dependent model for nonlinear bending analysis of a pure 0-3 polarized PLZT plate is developed for the first time. The equilibrium equations are derived from a variational formulation based on the potential energy principle and the new modified couple stress theory. The Galerkin method is adopted to derive the nonlinear algebraic equations from governing differential equations. And then the nonlinear algebraic equations are solved by using Newton-Raphson method. After simplification, the new model includes only a material length scale parameter. In addition, numerical examples are carried out to study the effect of material length scale parameter on the nonlinear bending of a simply supported pure 0-3 polarized PLZT plate subjected to light illumination and uniform distributed load. The results indicate the new model is able to capture the size effect and geometric nonlinearity.

  18. Toward a Cultural Advancement of Tinto's Theory

    ERIC Educational Resources Information Center

    Guiffrida, Douglas A.

    2006-01-01

    Despite the broad appeal of Tinto's (1993) theory, it is not well supported by empirical research, especially when applied to minority students. While prior critiques of the theory indicate the need to modify Tinto's concept of "breaking away" when applying the theory to diverse students, research suggests a need for additional refinements. In…

  19. Scalar-tensor theories and modified gravity in the wake of GW170817

    NASA Astrophysics Data System (ADS)

    Langlois, David; Saito, Ryo; Yamauchi, Daisuke; Noui, Karim

    2018-03-01

    Theories of dark energy and modified gravity can be strongly constrained by astrophysical or cosmological observations, as illustrated by the recent observation of the gravitational wave event GW170817 and of its electromagnetic counterpart GRB 170817A, which showed that the speed of gravitational waves, cg , is the same as the speed of light, within deviations of order 10-15 . This observation implies severe restrictions on scalar-tensor theories, in particular theories whose action depends on second derivatives of a scalar field. Working in the very general framework of degenerate higher-order scalar-tensor (DHOST) theories, which encompass Horndeski and beyond Horndeski theories, we present the DHOST theories that satisfy cg=c . We then examine, for these theories, the screening mechanism that suppresses scalar interactions on small scales, namely the Vainshtein mechanism, and compute the corresponding gravitational laws for a nonrelativistic spherical body. We show that it can lead to a deviation from standard gravity inside matter, parametrized by three coefficients which satisfy a consistency relation and can be constrained by present and future astrophysical observations.

  20. Thermal, size and surface effects on the nonlinear pull-in of small-scale piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    SoltanRezaee, Masoud; Ghazavi, Mohammad-Reza

    2017-09-01

    Electrostatically actuated miniature wires/tubes have many operational applications in the high-tech industries. In this research, the nonlinear pull-in instability of piezoelectric thermal small-scale switches subjected to Coulomb and dissipative forces is analyzed using strain gradient and modified couple stress theories. The discretized governing equation is solved numerically by means of the step-by-step linearization method. The correctness of the formulated model and solution procedure is validated through comparison with experimental and several theoretical results. Herein, the length-scale, surface energy, van der Waals attraction and nonlinear curvature are considered in the present comprehensive model and the thermo-electro-mechanical behavior of cantilever piezo-beams are discussed in detail. It is found that the piezoelectric actuation can be used as a design parameter to control the pull-in phenomenon. The obtained results are applicable in stability analysis, practical design and control of actuated miniature intelligent devices.

  1. The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter

    NASA Technical Reports Server (NTRS)

    Townsend, Barbara K.

    1987-01-01

    A control-system design method, quadratic optimal cooperative control synthesis (CCS), is applied to the design of a stability and control augmentation system (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design method, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and linear quadratic regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.

  2. The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter

    NASA Technical Reports Server (NTRS)

    Townsend, Barbara K.

    1986-01-01

    A control-system design method, Quadratic Optimal Cooperative Control Synthesis (CCS), is applied to the design of a Stability and Control Augmentation Systems (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design model, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing Vertol CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and Linear Quadratic Regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.

  3. Low-pass filtering of noisy field Schlumberger sounding curves. Part II: Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, N.; Wadhwa, R.S.; Shrotri, B.S.

    1986-02-01

    The basic principles of the application of the linear system theory for smoothing noise-degraded d.c. geoelectrical sounding curves were recently established by Patella. A field Schlumberger sounding is presented to demonstrate first their application and validity. To achieve this purpose, firstly it is pointed out that the required smoothing or low-pass filtering can be considered as an intrinsic property of the transformation of original Schlumberger sounding curves into pole-pole (two-electrode) curves. Then the authors sketch a numerical algorithm to perform the transformation, opportunely modified from a known procedure for transforming dipole diagrams into Schlumberger ones. Finally they show a fieldmore » example with the double aim of demonstrating (i) the high quality of the low-pass filtering, and (ii) the reliability of the transformed pole-pole curve as far as quantitative interpretation is concerned.« less

  4. SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape

    PubMed Central

    2016-01-01

    Coupling noble metal nanoparticles by a 1 nm gap to an underlying gold mirror confines light to extremely small volumes, useful for sensing on the nanoscale. Individually measuring 10 000 of such gold nanoparticles of increasing size dramatically shows the different scaling of their optical scattering (far-field) and surface-enhanced Raman emission (SERS, near-field). Linear red-shifts of the coupled plasmon modes are seen with increasing size, matching theory. The total SERS from the few hundred molecules under each nanoparticle dramatically increases with increasing size. This scaling shows that maximum SERS emission is always produced from the largest nanoparticles, irrespective of tuning to any plasmonic resonances. Changes of particle facet with nanoparticle size result in vastly weaker scaling of the near-field SERS, without much modifying the far-field, and allows simple approaches for optimizing practical sensing. PMID:27223478

  5. SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape.

    PubMed

    Benz, Felix; Chikkaraddy, Rohit; Salmon, Andrew; Ohadi, Hamid; de Nijs, Bart; Mertens, Jan; Carnegie, Cloudy; Bowman, Richard W; Baumberg, Jeremy J

    2016-06-16

    Coupling noble metal nanoparticles by a 1 nm gap to an underlying gold mirror confines light to extremely small volumes, useful for sensing on the nanoscale. Individually measuring 10 000 of such gold nanoparticles of increasing size dramatically shows the different scaling of their optical scattering (far-field) and surface-enhanced Raman emission (SERS, near-field). Linear red-shifts of the coupled plasmon modes are seen with increasing size, matching theory. The total SERS from the few hundred molecules under each nanoparticle dramatically increases with increasing size. This scaling shows that maximum SERS emission is always produced from the largest nanoparticles, irrespective of tuning to any plasmonic resonances. Changes of particle facet with nanoparticle size result in vastly weaker scaling of the near-field SERS, without much modifying the far-field, and allows simple approaches for optimizing practical sensing.

  6. AMI SZ observation of galaxy-cluster merger CIZA J2242+5301: perpendicular flows of gas and dark matter

    NASA Astrophysics Data System (ADS)

    Rumsey, Clare; Perrott, Yvette C.; Olamaie, Malak; Saunders, Richard D. E.; Hobson, Michael P.; Stroe, Andra; Schammel, Michel P.; Grainge, Keith J. B.

    2017-10-01

    Arcminute Microkelvin Imager observations towards CIZA J2242+5301, in comparison with observations of weak gravitational lensing and X-ray emission from the literature, are used to investigate the behaviour of non-baryonic dark matter (NBDM) and gas during the merger. Analysis of the Sunyaev-Zel'dovich (SZ) signal indicates the presence of high pressure gas elongated perpendicularly to the X-ray and weak-lensing morphologies, which, given the merger-axis constraints in the literature, implies that high pressure gas is pushed out into a linear structure during core passing. Simulations in the literature closely matching the inferred merger scenario show the formation of gas density and temperature structures perpendicular to the merger axis. These SZ observations are challenging for modified gravity theories in which NBDM is not the dominant contributor to galaxy-cluster gravity.

  7. Dielectric and thermal effects on the optical properties of natural dyes: a case study on solvated cyanin.

    PubMed

    Malcıoğlu, Osman Bariş; Calzolari, Arrigo; Gebauer, Ralph; Varsano, Daniele; Baroni, Stefano

    2011-10-05

    The optical properties of the flavylium state of the cyanin dye are simulated numerically by combining Car-Parrinello molecular dynamics and linear-response time-dependent density functional theory calculations. The spectrum of the dye calculated in the gas phase is characterized by two peaks in the yellow and in the blue (green and violet), using a GGA-PBE (hybrid-B3LYP) DFT functional, which would bring about a greenish (bright orange) color incompatible with the dark purple hue observed in nature. Describing the effect of the water solvent through a polarizable continuum model does not modify qualitatively the resulting picture. An explicit simulation of both solvent and thermal effects using ab initio molecular dynamics results instead in a spectrum that is compatible with the observed coloration. This result is analyzed in terms of the spectroscopic effects of the molecular distortions induced by thermal fluctuations.

  8. Phases of New Physics in the BAO Spectrum

    NASA Astrophysics Data System (ADS)

    Baumann, Daniel; Green, Daniel; Zaldarriaga, Matias

    2017-11-01

    We show that the phase of the spectrum of baryon acoustic oscillations (BAO) is immune to the effects of nonlinear evolution. This suggests that any new physics that contributes to the initial phase of the BAO spectrum, such as extra light species in the early universe, can be extracted reliably at late times. We provide three arguments in support of our claim: first, we point out that a phase shift of the BAO spectrum maps to a characteristic sign change in the real space correlation function and that this feature cannot be generated or modified by nonlinear dynamics. Second, we confirm this intuition through an explicit computation, valid to all orders in cosmological perturbation theory. Finally, we provide a nonperturbative argument using general analytic properties of the linear response to the initial oscillations. Our result motivates measuring the phase of the BAO spectrum as a robust probe of new physics.

  9. The pole tide in deep oceans

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1990-01-01

    The fluid-dynamical theory of the pole tide is examined by describing the oceanic response to the Chandler wobble and assessing its implications for mantle anelasticity and low-frequency ocean dynamics. The Laplace tide equations accounting for bottom friction are given, and a spherical harmonic approach is delineated in which the time-independent portion of the tide height is expanded. Pole-tide height and related inertia products are linearly proportional to wobble amplitude, and the final equations are modified to account for mantle elasticity and oceanic loading. Results for pole tide effects are given for various earth models with attention to the role of boundary constraints. A dynamic effect is identified which lengthens the Chandler period by about 1 day more than static lengthening, a contribution that suggests a vigorous low-frequency response. The values derived are shown to agree with previous models that do not incorporate the effects of the pole tide.

  10. Diffusive-convective physical vapor transport of PbTe from a Te-rich solid source

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J.; Akutagawa, W.

    1982-01-01

    Crystal growth of PbTe by physical vapor transport (sublimation) in a closed ampoule is governed by the vapor species in thermal equilibrium with the solid compound. Deviations from stoichiometry in the source material cause diffusion limitation of the transport rate, which can be modified by natural (gravity-driven) convection. Mass-transport experiments have been performed using Te-rich material wherein sublimation rates have been measured in order to study the effects of natural convection in diffusion-limited vapor transport. Linear velocities for both crystal growth and evaporation (back sublimation) have been measured for transport in the direction of gravity, horizontally, and opposite to gravity. The experimental results are discussed in terms of both the one-dimensional diffusive-advective model and current, more sophisticated theory which includes natural convection. There is some evidence that convection effects from radial temperature gradients and solutal density gradients have been observed.

  11. Ab-initio investigation of Rb substitution in KTP single crystal

    NASA Astrophysics Data System (ADS)

    Ghoohestani, Marzieh; Arab, Ali; Hashemifar, S. Javad; Sadeghi, Hossein

    2018-01-01

    The effects of rubidium doping on the structural, electronic, and optical properties of KTiOPO4 (KTP) are investigated in the framework of density functional theory. The equilibrium structural parameters of KTP and RbTiOPO4 (RTP) are calculated within the local density and Perdew-Burke-Ernzerhof (PBE), Wu-Cohen, and PBEsol formulation of generalized gradient approximations. We discuss that PBEsol predicts better equilibrium parameters for the KTP alloy. In addition, the variation of lattice constants and Ti-O-Ti bond angles are evaluated as a function of rubidium concentration. The modern modified Becke-Johnson functional is applied for more accurate band gap determination in the pure and alloyed KTP/RTP compounds. The phenomenological pseudoinversion parameter is calculated for a qualitative understanding of the effect of impurity on a non-linear optical response of KTP. We also analyze the behavior of the dielectric function, dispersive refractive indices, and birefringence of KTP/RTP alloys.

  12. Simulation of radiation from lightning return strokes - The effects of tortuosity

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Meneghini, R.

    1978-01-01

    A Monte Carlo simulation has been developed for the electromagnetic fields radiated from a tortuous lightning channel. This was done using a piecewise linear model for the channel and employing for each element the field radiated by a traveling wave on an arbitrarily oriented filament over a conducting plane. The simulation reproduces experimental data reasonably well and has been used to study the effects of tortuosity on the fields radiated by return strokes. Tortuosity can significantly modify the radiated waveform, tending to render it less representative of the current pulse and more nearly unipolar than one would expect based on the theory for a long straight channel. In the frequency domain the effect of tortuosity is an increase in high frequency energy as compared with an equivalent straight channel. The extent of this increase depends on the mean length of the elements comprising the channel and can be significant.

  13. Computer aided design of digital controller for radial active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Shen, Zupei; Zhang, Zuming; Zhao, Hongbin

    1992-01-01

    A five degree of freedom Active Magnetic Bearing (AMB) system is developed which is controlled by digital controllers. The model of the radial AMB system is linearized and the state equation is derived. Based on the state variables feedback theory, digital controllers are designed. The performance of the controllers are evaluated according to experimental results. The Computer Aided Design (CAD) method is used to design controllers for magnetic bearings. The controllers are implemented with a digital signal processing (DSP) system. The control algorithms are realized with real-time programs. It is very easy to change the controller by changing or modifying the programs. In order to identify the dynamic parameters of the controlled magnetic system, a special experiment was carried out. Also, the online Recursive Least Squares (RLS) parameter identification method is studied. It can be realized with the digital controllers. Online parameter identification is essential for the realization of an adaptive controller.

  14. Thermophoretically induced large-scale deformations around microscopic heat centers

    NASA Astrophysics Data System (ADS)

    Puljiz, Mate; Orlishausen, Michael; Köhler, Werner; Menzel, Andreas M.

    2016-05-01

    Selectively heating a microscopic colloidal particle embedded in a soft elastic matrix is a situation of high practical relevance. For instance, during hyperthermic cancer treatment, cell tissue surrounding heated magnetic colloidal particles is destroyed. Experiments on soft elastic polymeric matrices suggest a very long-ranged, non-decaying radial component of the thermophoretically induced displacement fields around the microscopic heat centers. We theoretically confirm this conjecture using a macroscopic hydrodynamic two-fluid description. Both thermophoretic and elastic effects are included in this theory. Indeed, we find that the elasticity of the environment can cause the experimentally observed large-scale radial displacements in the embedding matrix. Additional experiments confirm the central role of elasticity. Finally, a linearly decaying radial component of the displacement field in the experiments is attributed to the finite size of the experimental sample. Similar results are obtained from our theoretical analysis under modified boundary conditions.

  15. SCBUCKLE user's manual: Buckling analysis program for simple supported and clamped panels

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.

    1993-01-01

    The program SCBUCKLE calculates the buckling loads and mode shapes of cylindrically curved, rectangular panels. The panel is assumed to have no imperfections. SCBUCKLE is capable of analyzing specially orthotropic symmetric panels (i.e., A(sub 16) = A(sub 26) = 0.0, D(sub 16) = D(sub 26) = 0.0, B(sub ij) = 0.0). The analysis includes first-order transverse shear theory and is capable of modeling sandwich panels. The analysis supports two types of boundary conditions: either simply supported or clamped on all four edges. The panel can be subjected to linearly varying normal loads N(sub x) and N(sub y) in addition to a constant shear load N(sub xy). The applied loads can be divided into two parts: a preload component; and a variable (eigenvalue-dependent) component. The analysis is based on the modified Donnell's equations for shallow shells. The governing equations are solved by Galerkin's method.

  16. Polycyclic Aromatic Hydrocarbons Adsorption onto Graphene: A DFT and AIMD Study.

    PubMed

    Li, Bing; Ou, Pengfei; Wei, Yulan; Zhang, Xu; Song, Jun

    2018-05-03

    Density functional theory (DFT) calculations and ab-initio molecular dynamics (AIMD) simulations were performed to understand graphene and its interaction with polycyclic aromatic hydrocarbons (PAHs) molecules. The adsorption energy was predicted to increase with the number of aromatic rings in the adsorbates, and linearly correlate with the hydrophobicity of PAHs. Additionally, the analysis of the electronic properties showed that PAHs behave as mild n-dopants and introduce electrons into graphene; but do not remarkably modify the band gap of graphene, indicating that the interaction between PAHs and graphene is physisorption. We have also discovered highly sensitive strain dependence on the adsorption strength of PAHs onto graphene surface. The AIMD simulation indicated that a sensitive and fast adsorption process of PAHs can be achieved by choosing graphene as the adsorbent. These findings are anticipated to shed light on the future development of graphene-based materials with potential applications in the capture and removal of persistent aromatic pollutants.

  17. Sequential and parallel image restoration: neural network implementations.

    PubMed

    Figueiredo, M T; Leitao, J N

    1994-01-01

    Sequential and parallel image restoration algorithms and their implementations on neural networks are proposed. For images degraded by linear blur and contaminated by additive white Gaussian noise, maximum a posteriori (MAP) estimation and regularization theory lead to the same high dimension convex optimization problem. The commonly adopted strategy (in using neural networks for image restoration) is to map the objective function of the optimization problem into the energy of a predefined network, taking advantage of its energy minimization properties. Departing from this approach, we propose neural implementations of iterative minimization algorithms which are first proved to converge. The developed schemes are based on modified Hopfield (1985) networks of graded elements, with both sequential and parallel updating schedules. An algorithm supported on a fully standard Hopfield network (binary elements and zero autoconnections) is also considered. Robustness with respect to finite numerical precision is studied, and examples with real images are presented.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunes, Rafael C.; Abreu, Everton M.C.; Neto, Jorge Ananias

    Based on the relationship between thermodynamics and gravity we propose, with the aid of Verlinde's formalism, an alternative interpretation of the dynamical evolution of the Friedmann-Robertson-Walker Universe. This description takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there through non-gaussian statistical theories proposed by Tsallis and Kaniadakis. The effect of these non-gaussian statistics in the cosmological context is to change the strength of the gravitational constant. In this paper, we consider the w CDM model modified by the non-gaussian statistics and investigate the compatibility of these non-gaussian modificationmore » with the cosmological observations. In order to analyze in which extend the cosmological data constrain these non-extensive statistics, we will use type Ia supernovae, baryon acoustic oscillations, Hubble expansion rate function and the linear growth of matter density perturbations data. We show that Tsallis' statistics is favored at 1σ confidence level.« less

  19. Simulation and Testing of a Linear Array of Modified Four-Square Feed Antennas for the Tianlai Cylindrical Radio Telescope

    NASA Astrophysics Data System (ADS)

    Cianciara, Aleksander J.; Anderson, Christopher J.; Chen, Xuelei; Chen, Zhiping; Geng, Jingchao; Li, Jixia; Liu, Chao; Liu, Tao; Lu, Wing; Peterson, Jeffrey B.; Shi, Huli; Steffel, Catherine N.; Stebbins, Albert; Stucky, Thomas; Sun, Shijie; Timbie, Peter T.; Wang, Yougang; Wu, Fengquan; Zhang, Juyong

    A wide bandwidth, dual polarized, modified four-square antenna is presented as a feed antenna for radio astronomical measurements. A linear array of these antennas is used as a line-feed for cylindrical reflectors for Tianlai, a radio interferometer designed for 21cm intensity mapping. Simulations of the feed antenna beam patterns and scattering parameters are compared to experimental results at multiple frequencies across the 650-1420MHz range. Simulations of the beam patterns of the combined feed array/reflector are presented as well.

  20. Spheroidal and conical shapes of ferrofluid-filled capsules in magnetic fields

    NASA Astrophysics Data System (ADS)

    Wischnewski, Christian; Kierfeld, Jan

    2018-04-01

    We investigate the deformation of soft spherical elastic capsules filled with a ferrofluid in external uniform magnetic fields at fixed volume by a combination of numerical and analytical approaches. We develop a numerical iterative solution strategy based on nonlinear elastic shape equations to calculate the stretched capsule shape numerically and a coupled finite element and boundary element method to solve the corresponding magnetostatic problem and employ analytical linear response theory, approximative energy minimization, and slender-body theory. The observed deformation behavior is qualitatively similar to the deformation of ferrofluid droplets in uniform magnetic fields. Homogeneous magnetic fields elongate the capsule and a discontinuous shape transition from a spheroidal shape to a conical shape takes place at a critical field strength. We investigate how capsule elasticity modifies this hysteretic shape transition. We show that conical capsule shapes are possible but involve diverging stretch factors at the tips, which gives rise to rupture for real capsule materials. In a slender-body approximation we find that the critical susceptibility above which conical shapes occur for ferrofluid capsules is the same as for droplets. At small fields capsules remain spheroidal and we characterize the deformation of spheroidal capsules both analytically and numerically. Finally, we determine whether wrinkling of a spheroidal capsule occurs during elongation in a magnetic field and how it modifies the stretching behavior. We find the nontrivial dependence between the extent of the wrinkled region and capsule elongation. Our results can be helpful in quantitatively determining capsule or ferrofluid material properties from magnetic deformation experiments. All results also apply to elastic capsules filled with a dielectric liquid in an external uniform electric field.

  1. Survey and analysis of research on supersonic drag-due-to-lift minimization with recommendations for wing design

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Mann, Michael J.

    1992-01-01

    A survey of research on drag-due-to-lift minimization at supersonic speeds, including a study of the effectiveness of current design and analysis methods was conducted. The results show that a linearized theory analysis with estimated attainable thrust and vortex force effects can predict with reasonable accuracy the lifting efficiency of flat wings. Significantly better wing performance can be achieved through the use of twist and camber. Although linearized theory methods tend to overestimate the amount of twist and camber required for a given application and provide an overly optimistic performance prediction, these deficiencies can be overcome by implementation of recently developed empirical corrections. Numerous examples of the correlation of experiment and theory are presented to demonstrate the applicability and limitations of linearized theory methods with and without empirical corrections. The use of an Euler code for the estimation of aerodynamic characteristics of a twisted and cambered wing and its application to design by iteration are discussed.

  2. Koopman operator theory: Past, present, and future

    NASA Astrophysics Data System (ADS)

    Brunton, Steven; Kaiser, Eurika; Kutz, Nathan

    2017-11-01

    Koopman operator theory has emerged as a dominant method to represent nonlinear dynamics in terms of an infinite-dimensional linear operator. The Koopman operator acts on the space of all possible measurement functions of the system state, advancing these measurements with the flow of the dynamics. A linear representation of nonlinear dynamics has tremendous potential to enable the prediction, estimation, and control of nonlinear systems with standard textbook methods developed for linear systems. Dynamic mode decomposition has become the leading data-driven method to approximate the Koopman operator, although there are still open questions and challenges around how to obtain accurate approximations for strongly nonlinear systems. This talk will provide an introductory overview of modern Koopman operator theory, reviewing the basics and describing recent theoretical and algorithmic developments. Particular emphasis will be placed on the use of data-driven Koopman theory to characterize and control high-dimensional fluid dynamic systems. This talk will also address key advances in the rapidly growing fields of machine learning and data science that are likely to drive future developments.

  3. Magnetic field power density spectra during 'scatter-free' solar particle events

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.

    1993-01-01

    We have examined interplanetary magnetic field power spectral density during four previously identified 3He-rich flare periods when the about 1 MeV nucleon-1 particles exhibited nearly scatter-free transport from the sun to 1 AU. Since the scattering mean free path A was large, it might be expected that interplanetary turbulence was low, yet the spectral density value was low only for one of the four periods. For the other three, however, the spectral index q of the power density spectrum was near 2.0, a value at which quasi-linear theories predict an increase in the scattering mean free path. Comparing the lambda values from the energetic particles with that computed from a recent quasi-linear theory which includes helicity and the propagation direction of waves, we find lambda(QLT)/lambda(SEP) = 0.08 +/- 0.03 for the four events. Thus, the theory fits the q-dependence of lambda; however, as found for previous quasi-linear theories, the absolute value is low.

  4. Local control theory using trajectory surface hopping and linear-response time-dependent density functional theory.

    PubMed

    Curchod, Basile F E; Penfold, Thomas J; Rothlisberger, Ursula; Tavernelli, Ivano

    2013-01-01

    The implementation of local control theory using nonadiabatic molecular dynamics within the framework of linear-response time-dependent density functional theory is discussed. The method is applied to study the photoexcitation of lithium fluoride, for which we demonstrate that this approach can efficiently generate a pulse, on-the-fly, able to control the population transfer between two selected electronic states. Analysis of the computed control pulse yields insights into the photophysics of the process identifying the relevant frequencies associated to the curvature of the initial and final state potential energy curves and their energy differences. The limitations inherent to the use of the trajectory surface hopping approach are also discussed.

  5. The elastic theory of shells using geometric algebra

    PubMed Central

    Lasenby, J.; Agarwal, A.

    2017-01-01

    We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible. PMID:28405404

  6. New infinite-dimensional hidden symmetries for heterotic string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Yajun

    The symmetry structures of two-dimensional heterotic string theory are studied further. A (2d+n)x(2d+n) matrix complex H-potential is constructed and the field equations are extended into a complex matrix formulation. A pair of Hauser-Ernst-type linear systems are established. Based on these linear systems, explicit formulations of new hidden symmetry transformations for the considered theory are given and then these symmetry transformations are verified to constitute infinite-dimensional Lie algebras: the semidirect product of the Kac-Moody o(d,d+n-circumflex) and Virasoro algebras (without center charges). These results demonstrate that the heterotic string theory under consideration possesses more and richer symmetry structures than previously expected.

  7. The elastic theory of shells using geometric algebra.

    PubMed

    Gregory, A L; Lasenby, J; Agarwal, A

    2017-03-01

    We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible.

  8. Testing general relativity with compact-body orbits: a modified Einstein–Infeld–Hoffmann framework

    NASA Astrophysics Data System (ADS)

    Will, Clifford M.

    2018-04-01

    We describe a general framework for analyzing orbits of systems containing compact objects (neutron stars or black holes) in a class of Lagrangian-based alternative theories of gravity that also admit a global preferred reference frame. The framework is based on a modified Einstein–Infeld–Hoffmann (EIH) formalism developed by Eardley and by Will, generalized to include the possibility of Lorentz-violating, preferred-frame effects. It uses a post-Newtonian N-body Lagrangian with arbitrary parameters that depend on the theory of gravity and on ‘sensitivities’ that encode the effects of the bodies’ internal structure on their motion. We determine the modified EIH parameters for the Einstein-Æther and Khronometric vector-tensor theories of gravity. We find the effects of motion relative to a preferred universal frame on the orbital parameters of binary systems containing neutron stars, such as a class of ultra-circular pulsar-white dwarf binaries; the amplitudes of the effects depend upon ‘strong-field’ preferred-frame parameters \\hatα1 and \\hatα2 , which we relate to the fundamental modified EIH parameters. We also determine the amplitude of the ‘Nordtvedt effect’ in a triple system containing the pulsar J0337+1715 in terms of the modified EIH parameters.

  9. Feasibility and safety of modified inverted T-shaped method using linear stapler with movable cartridge fork for esophagojejunostomy following laparoscopic total gastrectomy.

    PubMed

    Ohuchida, Kenoki; Nagai, Eishi; Moriyama, Taiki; Shindo, Koji; Manabe, Tatsuya; Ohtsuka, Takao; Shimizu, Shuji; Nakamura, Masafumi

    2017-01-01

    We previously reported the use of an inverted T-shaped method to obtain a suitable view for hand sewing to close the common entry hole when the linear stapler was fired for esophagojejunostomy after laparoscopic total gastrectomy (LTG). This conventional method involved insertion of the fixed cartridge fork to the Roux limb and the fine movable anvil fork to the esophagus to avoid perforation of the jejunum. However, insertion of the movable anvil fork to the esophagus during this procedure often requires us to strongly push down the main body of the stapler with the fixed cartridge fork to bring the direction of the anvil fork in line with the direction of the long axis of the esophagus while controlling the opening of the movable anvil fork. We therefore modified this complicated inverted T-shaped method using a linear stapler with a movable cartridge fork. This modified method involved insertion of the movable cartridge fork into the Roux limb followed by natural, easy insertion of the fixed anvil fork into the esophagus without controlling the opening of the movable cartridge fork. We performed LTG in a total of 155 consecutive patients with gastric cancer from November 2007 to December 2015 in Kyushu University Hospital. After LTG, we performed the conventional inverted T-shaped method using a linear stapler with a fixed cartridge fork in 61 patients from November 2007 to July 2011 (fixed cartridge group). From August 2011, we used a linear stapler with a movable cartridge fork and performed the modified inverted T-shaped method in 94 patients (movable cartridge group). We herein compare the short-term outcomes in 94 cases of LTG using the modified method (movable cartridge fork) with those in 61 cases using the conventional method (fixed cartridge fork). We found no significant differences in the perioperative or postoperative events between the movable and fixed cartridge groups. One case of anastomotic leakage occurred in the fixed cartridge group, but no anastomotic leakage occurred in the movable cartridge group. Although there were no remarkable differences in the short-term outcomes between the movable and fixed cartridge groups, we believe that the modified inverted T-shaped method is technically more feasible and reliable than the conventional method and will contribute to the improved safety of LTG.

  10. Feasibility and safety of modified inverted T-shaped method using linear stapler with movable cartridge fork for esophagojejunostomy following laparoscopic total gastrectomy

    PubMed Central

    Ohuchida, Kenoki; Moriyama, Taiki; Shindo, Koji; Manabe, Tatsuya; Ohtsuka, Takao; Shimizu, Shuji; Nakamura, Masafumi

    2017-01-01

    Background We previously reported the use of an inverted T-shaped method to obtain a suitable view for hand sewing to close the common entry hole when the linear stapler was fired for esophagojejunostomy after laparoscopic total gastrectomy (LTG). This conventional method involved insertion of the fixed cartridge fork to the Roux limb and the fine movable anvil fork to the esophagus to avoid perforation of the jejunum. However, insertion of the movable anvil fork to the esophagus during this procedure often requires us to strongly push down the main body of the stapler with the fixed cartridge fork to bring the direction of the anvil fork in line with the direction of the long axis of the esophagus while controlling the opening of the movable anvil fork. We therefore modified this complicated inverted T-shaped method using a linear stapler with a movable cartridge fork. This modified method involved insertion of the movable cartridge fork into the Roux limb followed by natural, easy insertion of the fixed anvil fork into the esophagus without controlling the opening of the movable cartridge fork. Methods We performed LTG in a total of 155 consecutive patients with gastric cancer from November 2007 to December 2015 in Kyushu University Hospital. After LTG, we performed the conventional inverted T-shaped method using a linear stapler with a fixed cartridge fork in 61 patients from November 2007 to July 2011 (fixed cartridge group). From August 2011, we used a linear stapler with a movable cartridge fork and performed the modified inverted T-shaped method in 94 patients (movable cartridge group). We herein compare the short-term outcomes in 94 cases of LTG using the modified method (movable cartridge fork) with those in 61 cases using the conventional method (fixed cartridge fork). Results We found no significant differences in the perioperative or postoperative events between the movable and fixed cartridge groups. One case of anastomotic leakage occurred in the fixed cartridge group, but no anastomotic leakage occurred in the movable cartridge group. Conclusions Although there were no remarkable differences in the short-term outcomes between the movable and fixed cartridge groups, we believe that the modified inverted T-shaped method is technically more feasible and reliable than the conventional method and will contribute to the improved safety of LTG. PMID:28616606

  11. Lyapunov stability and its application to systems of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Kennedy, E. W.

    1979-01-01

    An outline and a brief introduction to some of the concepts and implications of Lyapunov stability theory are presented. Various aspects of the theory are illustrated by the inclusion of eight examples, including the Cartesian coordinate equations of the two-body problem, linear and nonlinear (Van der Pol's equation) oscillatory systems, and the linearized Kustaanheimo-Stiefel element equations for the unperturbed two-body problem.

  12. Thermal Density Functional Theory: Time-Dependent Linear Response and Approximate Functionals from the Fluctuation-Dissipation Theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron

    We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.

  13. Toward Control of Universal Scaling in Critical Dynamics

    DTIC Science & Technology

    2016-01-27

    program that aims to synergistically combine two powerful and very successful theories for non-linear stochastic dynamics of cooperative multi...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Uwe Tauber Uwe C. T? uber , Michel Pleimling, Daniel J. Stilwell 611102 c. THIS PAGE The public reporting burden...to synergistically combine two powerful and very successful theories for non-linear stochastic dynamics of cooperative multi-component systems, namely

  14. Thermal Density Functional Theory: Time-Dependent Linear Response and Approximate Functionals from the Fluctuation-Dissipation Theorem

    DOE PAGES

    Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron

    2016-06-08

    We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.

  15. A system for aerodynamic design and analysis of supersonic aircraft. Part 4: Test cases

    NASA Technical Reports Server (NTRS)

    Middleton, W. D.; Lundry, J. L.

    1980-01-01

    An integrated system of computer programs was developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. Representative test cases and associated program output are presented.

  16. Cosmic ray diffusion: Report of the Workshop in Cosmic Ray Diffusion Theory

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Jones, F. C.

    1975-01-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory.

  17. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.

  18. Universal Linear Scaling of Permeability and Time for Heterogeneous Fracture Dissolution

    NASA Astrophysics Data System (ADS)

    Wang, L.; Cardenas, M. B.

    2017-12-01

    Fractures are dynamically changing over geological time scale due to mechanical deformation and chemical reactions. However, the latter mechanism remains poorly understood with respect to the expanding fracture, which leads to a positively coupled flow and reactive transport processes, i.e., as a fracture expands, so does its permeability (k) and thus flow and reactive transport processes. To unravel this coupling, we consider a self-enhancing process that leads to fracture expansion caused by acidic fluid, i.e., CO2-saturated brine dissolving calcite fracture. We rigorously derive a theory, for the first time, showing that fracture permeability increases linearly with time [Wang and Cardenas, 2017]. To validate this theory, we resort to the direct simulation that solves the Navier-Stokes and Advection-Diffusion equations with a moving mesh according to the dynamic dissolution process in two-dimensional (2D) fractures. We find that k slowly increases first until the dissolution front breakthrough the outbound when we observe a rapid k increase, i.e., the linear time-dependence of k occurs. The theory agrees well with numerical observations across a broad range of Peclet and Damkohler numbers through homogeneous and heterogeneous 2D fractures. Moreover, the theory of linear scaling relationship between k and time matches well with experimental observations of three-dimensional (3D) fractures' dissolution. To further attest to our theory's universality for 3D heterogeneous fractures across a broad range of roughness and correlation length of aperture field, we develop a depth-averaged model that simulates the process-based reactive transport. The simulation results show that, regardless of a wide variety of dissolution patterns such as the presence of dissolution fingers and preferential dissolution paths, the linear scaling relationship between k and time holds. Our theory sheds light on predicting permeability evolution in many geological settings when the self-enhancing process is relevant. References: Wang, L., and M. B. Cardenas (2017), Linear permeability evolution of expanding conduits due to feedback between flow and fast phase change, Geophys. Res. Lett., 44(9), 4116-4123, doi: 10.1002/2017gl073161.

  19. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant, E-mail: prashant.valluri@ed.ac.uk

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analysesmore » based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the wave propagation is represented graphically in terms of a flow map based on the liquid and gas flow rates and the prediction carries over to the nonlinear regime with only a small deviation.« less

  20. Lensing-induced morphology changes in CMB temperature maps in modified gravity theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munshi, D.; Coles, P.; Hu, B.

    2016-04-01

    Lensing of the Cosmic Microwave Background (CMB) changes the morphology of pattern of temperature fluctuations, so topological descriptors such as Minkowski Functionals can probe the gravity model responsible for the lensing. We show how the recently introduced two-to-two and three-to-one kurt-spectra (and their associated correlation functions), which depend on the power spectrum of the lensing potential, can be used to probe modified gravity theories such as f ( R ) theories of gravity and quintessence models. We also investigate models based on effective field theory, which include the constant-Ω model, and low-energy Hořava theories. Estimates of the cumulative signal-to-noise formore » detection of lensing-induced morphology changes, reaches O(10{sup 3}) for the future planned CMB polarization mission COrE{sup +}. Assuming foreground removal is possible to ℓ{sub max}=3000, we show that many modified gravity theories can be rejected with a high level of significance, making this technique comparable in power to galaxy weak lensing or redshift surveys. These topological estimators are also useful in distinguishing lensing from other scattering secondaries at the level of the four-point function or trispectrum. Examples include the kinetic Sunyaev-Zel'dovich (kSZ) effect which shares, with lensing, a lack of spectral distortion. We also discuss the complication of foreground contamination from unsubtracted point sources.« less

Top