Science.gov

Sample records for modified maize expressing

  1. High-Throughput Sequence-Based Analysis of the Intestinal Microbiota of Weanling Pigs Fed Genetically Modified MON810 Maize Expressing Bacillus thuringiensis Cry1Ab (Bt Maize) for 31 Days

    PubMed Central

    Buzoianu, Stefan G.; Walsh, Maria C.; Rea, Mary C.; O'Sullivan, Orla; Cotter, Paul D.; Ross, R. Paul; Lawlor, Peadar G.

    2012-01-01

    The objective of this study was to investigate if feeding genetically modified (GM) MON810 maize expressing the Bacillus thuringiensis insecticidal protein (Bt maize) had any effects on the porcine intestinal microbiota. Eighteen pigs were weaned at ∼28 days and, following a 6-day acclimatization period, were assigned to diets containing either GM (Bt MON810) maize or non-GM isogenic parent line maize for 31 days (n = 9/treatment). Effects on the porcine intestinal microbiota were assessed through culture-dependent and -independent approaches. Fecal, cecal, and ileal counts of total anaerobes, Enterobacteriaceae, and Lactobacillus were not significantly different between pigs fed the isogenic or Bt maize-based diets. Furthermore, high-throughput 16S rRNA gene sequencing revealed few differences in the compositions of the cecal microbiotas. The only differences were that pigs fed the Bt maize diet had higher cecal abundance of Enterococcaceae (0.06 versus 0%; P < 0.05), Erysipelotrichaceae (1.28 versus 1.17%; P < 0.05), and Bifidobacterium (0.04 versus 0%; P < 0.05) and lower abundance of Blautia (0.23 versus 0.40%; P < 0.05) than pigs fed the isogenic maize diet. A lower enzyme-resistant starch content in the Bt maize, which is most likely a result of normal variation and not due to the genetic modification, may account for some of the differences observed within the cecal microbiotas. These results indicate that Bt maize is well tolerated by the porcine intestinal microbiota and provide additional data for safety assessment of Bt maize. Furthermore, these data can potentially be extrapolated to humans, considering the suitability of pigs as a human model. PMID:22467509

  2. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA.

    PubMed

    Ahmad, Aqeel; Negri, Ignacio; Oliveira, Wladecir; Brown, Christopher; Asiimwe, Peter; Sammons, Bernard; Horak, Michael; Jiang, Changjian; Carson, David

    2016-02-01

    As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1%). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual

  3. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA.

    PubMed

    Ahmad, Aqeel; Negri, Ignacio; Oliveira, Wladecir; Brown, Christopher; Asiimwe, Peter; Sammons, Bernard; Horak, Michael; Jiang, Changjian; Carson, David

    2016-02-01

    As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1%). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual

  4. Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight.

    PubMed

    Kim, Ju-Kon; Jang, In-Cheol; Wu, Ray; Zuo, Wei-Neng; Boston, Rebecca S; Lee, Yong-Hwan; Ahn, Il-Pyung; Nahm, Baek Hie

    2003-08-01

    Chitinases, beta-1,3-glucanases, and ribosome-inactivating proteins are reported to have antifungal activity in plants. With the aim of producing fungus-resistant transgenic plants, we co-expressed a modified maize ribosome-inactivating protein gene, MOD1, and a rice basic chitinase gene, RCH10, in transgenic rice plants. A construct containing MOD1 and RCH10 under the control of the rice rbcS and Act1 promoters, respectively, was co-transformed with a plasmid containing the herbicide-resistance gene bar as a selection marker into rice by particle bombardment. Several transformants analyzed by genomic Southern-blot hybridization demonstrated integration of multiple copies of the foreign gene into rice chromosomes. Immunoblot experiments showed that MOD1 formed approximately 0.5% of the total soluble protein in transgenic leaves. RCH10 expression was examined using the native polyacrylamide-overlay gel method, and high RCH10 activity was observed in leaf tissues where endogenous RCH10 is not expressed. R1 plants were analyzed in a similar way, and the Southern-blot patterns and levels of transgene expression remained the same as in the parental line. Analysis of the response of R2 plants to three fungal pathogens of rice, Rhizoctonia solani, Bipolaris oryzae, and Magnaporthe grisea, indicated statistically significant symptom reduction only in the case of R. solani (sheath blight). The increased resistance co-segregated with herbicide tolerance, reflecting a correlation between the resistance phenotype and transgene expression.

  5. A 90-day subchronic feeding study of genetically modified maize expressing Cry1Ac-M protein in Sprague-Dawley rats.

    PubMed

    Liu, Pengfei; He, Xiaoyun; Chen, Delong; Luo, Yunbo; Cao, Sishuo; Song, Huan; Liu, Ting; Huang, Kunlun; Xu, Wentao

    2012-09-01

    The cry1Ac-M gene, coding one of Bacillus thuringiensis (Bt) crystal proteins, was introduced into maize H99 × Hi IIB genome to produce insect-resistant GM maize BT-38. The food safety assessment of the BT-38 maize was conducted in Sprague-Dawley rats by a 90-days feeding study. We incorporated maize grains from BT-38 and H99 × Hi IIB into rodent diets at three concentrations (12.5%, 25%, 50%) and administered to Sprague-Dawley rats (n=10/sex/group) for 90 days. A commercialized rodent diet was fed to an additional group as control group. Body weight, feed consumption and toxicological response variables were measured, and gross as well as microscopic pathology were examined. Moreover, detection of residual Cry1Ac-M protein in the serum of rats fed with GM maize was conducted. No death or adverse effects were observed in the current feeding study. No adverse differences in the values of the response variables were observed between rats that consumed diets containing GM maize BT-38 and non-GM maize H99 × Hi IIB. No detectable Cry1Ac-M protein was found in the serum of rats after feeding diets containing GM maize for 3 months. The results demonstrated that BT-38 maize is as safe as conventional non-GM maize.

  6. Heritable transgene expression pattern imposed onto maize ubiquitin promoter by maize adh-1 matrix attachment regions: tissue and developmental specificity in maize transgenic plants.

    PubMed

    Torney, François; Partier, Anne; Says-Lesage, Véronique; Nadaud, Isabelle; Barret, Pierre; Beckert, Michel

    2004-07-01

    Matrix attachment regions (MARs) have been used to enhance transgene expression and to reduce transgene expression instability in various organisms. In plants, contradictory data question the role of MAR sequences. To assess the use of MAR sequences in maize, we have used two well-characterized MARs from the maize adh-1 region. The MARs have been cloned either 5' to or at both sides of a reporter gene expression cassette to reconstitute a MAR-based domain. Histochemical staining revealed a new transgene expression pattern in roots of regenerated plants and their progeny. Furthermore, MARs systematically induced variegation. We show here that maize adh-1 MARs are able to modify transgene expression patterns as a heritable trait, giving a new and complementary outcome following use of MARs in genetic transformation. PMID:15127223

  7. Unconventional P-35S sequence identified in genetically modified maize.

    PubMed

    Al-Hmoud, Nisreen; Al-Husseini, Nawar; Ibrahim-Alobaide, Mohammed A; Kübler, Eric; Farfoura, Mahmoud; Alobydi, Hytham; Al-Rousan, Hiyam

    2014-01-01

    The Cauliflower Mosaic Virus 35S promoter sequence, CaMV P-35S, is one of several commonly used genetic targets to detect genetically modified maize and is found in most GMOs. In this research we report the finding of an alternative P-35S sequence and its incidence in GM maize marketed in Jordan. The primer pair normally used to amplify a 123 bp DNA fragment of the CaMV P-35S promoter in GMOs also amplified a previously undetected alternative sequence of CaMV P-35S in GM maize samples which we term V3. The amplified V3 sequence comprises 386 base pairs and was not found in the standard wild-type maize, MON810 and MON 863 GM maize. The identified GM maize samples carrying the V3 sequence were found free of CaMV when compared with CaMV infected brown mustard sample. The data of sequence alignment analysis of the V3 genetic element showed 90% similarity with the matching P-35S sequence of the cauliflower mosaic virus isolate CabbB-JI and 99% similarity with matching P-35S sequences found in several binary plant vectors, of which the binary vector locus JQ693018 is one example. The current study showed an increase of 44% in the incidence of the identified 386 bp sequence in GM maize sold in Jordan's markets during the period 2009 and 2012. PMID:24495911

  8. Unconventional P-35S sequence identified in genetically modified maize

    PubMed Central

    Al-Hmoud, Nisreen; Al-Husseini, Nawar; Ibrahim-Alobaide, Mohammed A; Kübler, Eric; Farfoura, Mahmoud; Alobydi, Hytham; Al-Rousan, Hiyam

    2014-01-01

    The Cauliflower Mosaic Virus 35S promoter sequence, CaMV P-35S, is one of several commonly used genetic targets to detect genetically modified maize and is found in most GMOs. In this research we report the finding of an alternative P-35S sequence and its incidence in GM maize marketed in Jordan. The primer pair normally used to amplify a 123 bp DNA fragment of the CaMV P-35S promoter in GMOs also amplified a previously undetected alternative sequence of CaMV P-35S in GM maize samples which we term V3. The amplified V3 sequence comprises 386 base pairs and was not found in the standard wild-type maize, MON810 and MON 863 GM maize. The identified GM maize samples carrying the V3 sequence were found free of CaMV when compared with CaMV infected brown mustard sample. The data of sequence alignment analysis of the V3 genetic element showed 90% similarity with the matching P-35S sequence of the cauliflower mosaic virus isolate CabbB-JI and 99% similarity with matching P-35S sequences found in several binary plant vectors, of which the binary vector locus JQ693018 is one example. The current study showed an increase of 44% in the incidence of the identified 386 bp sequence in GM maize sold in Jordan’s markets during the period 2009 and 2012. PMID:24495911

  9. Unconventional P-35S sequence identified in genetically modified maize.

    PubMed

    Al-Hmoud, Nisreen; Al-Husseini, Nawar; Ibrahim-Alobaide, Mohammed A; Kübler, Eric; Farfoura, Mahmoud; Alobydi, Hytham; Al-Rousan, Hiyam

    2014-01-01

    The Cauliflower Mosaic Virus 35S promoter sequence, CaMV P-35S, is one of several commonly used genetic targets to detect genetically modified maize and is found in most GMOs. In this research we report the finding of an alternative P-35S sequence and its incidence in GM maize marketed in Jordan. The primer pair normally used to amplify a 123 bp DNA fragment of the CaMV P-35S promoter in GMOs also amplified a previously undetected alternative sequence of CaMV P-35S in GM maize samples which we term V3. The amplified V3 sequence comprises 386 base pairs and was not found in the standard wild-type maize, MON810 and MON 863 GM maize. The identified GM maize samples carrying the V3 sequence were found free of CaMV when compared with CaMV infected brown mustard sample. The data of sequence alignment analysis of the V3 genetic element showed 90% similarity with the matching P-35S sequence of the cauliflower mosaic virus isolate CabbB-JI and 99% similarity with matching P-35S sequences found in several binary plant vectors, of which the binary vector locus JQ693018 is one example. The current study showed an increase of 44% in the incidence of the identified 386 bp sequence in GM maize sold in Jordan's markets during the period 2009 and 2012.

  10. Fate of maize intrinsic and recombinant genes in calves fed genetically modified maize Bt11.

    PubMed

    Chowdhury, Emdadull H; Mikami, Osamu; Murata, Hideo; Sultana, Parvin; Shimada, Nobuaki; Yoshioka, Miyako; Guruge, Keerthi S; Yamamoto, Sachiko; Miyazaki, Shigeru; Yamanaka, Noriko; Nakajima, Yasuyuki

    2004-02-01

    The presence of maize intrinsic and recombinant cry1Ab genes in the gastrointestinal (GI) contents, peripheral blood mononuclear cells (PBMC), and visceral organs of calves fed genetically modified Bt11 maize was examined by PCR in a subchronic 90-day performance study. Samples were collected from six Japanese Black/Holstein calves fed Bt11 maize and from six calves fed non-Bt maize. Fragments of maize zein (Ze1), invertase, chloroplast, and cry1Ab were detected inconsistently in the rumen fluid and rectal contents 5 and 18 h after feeding. The chloroplast DNA fragments of ribulose-1,5-bisphosphate carboxylase/oxygenase and tRNA were detected inconsistently in the PBMC, the visceral organs, and the longissimus muscle, while the cry1Ab gene was never detected in PBMC or in the visceral organs. These results suggest that feed-derived maize DNA was mostly degraded in the GI tract but that fragmented DNA was detectable in the GI contents as a possible source of transfer to calf tissues. These results also suggest that the recombinant cry1Ab genes were not transferred to the PBMC and tissues of calves fed Bt11 maize.

  11. Real-time quantitative polymerase chain reaction methods for four genetically modified maize varieties and maize DNA content in food.

    PubMed

    Brodmann, Peter D; Ilg, Evelyn C; Berthoud, Hélène; Herrmann, Andre

    2002-01-01

    Quantitative detection methods are needed for enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients. This labeling threshold, which is set to 1% in the European Union and Switzerland, must be applied to all approved GMOs. Four different varieties of maize are approved in the European Union: the insect-resistant Bt176 maize (Maximizer), Btl 1 maize, Mon810 (YieldGard) maize, and the herbicide-tolerant T25 (Liberty Link) maize. Because the labeling must be considered individually for each ingredient, a quantitation system for the endogenous maize content is needed in addition to the GMO-specific detection systems. Quantitative real-time polymerase chain reaction detection methods were developed for the 4 approved genetically modified maize varieties and for an endogenous maize (invertase) gene system.

  12. Individual detection of genetically modified maize varieties in non-identity-preserved maize samples.

    PubMed

    Akiyama, Hiroshi; Sakata, Kozue; Kondo, Kazunari; Tanaka, Asako; Liu, Ming S; Oguchi, Taichi; Furui, Satoshi; Kitta, Kazumi; Hino, Akihiro; Teshima, Reiko

    2008-03-26

    In many countries, the labeling of grains and feed- and foodstuffs is mandatory if the genetically modified organism (GMO) content exceeds a certain level of approved GM varieties. The GMO content in a maize sample containing the combined-trait (stacked) GM maize as determined by the currently available methodology is likely to be overestimated. However, there has been little information in the literature on the mixing level and varieties of stacked GM maize in real sample grains. For the first time, the GMO content of non-identity-preserved (non-IP) maize samples imported from the United States has been successfully determined by using a previously developed individual kernel detection system coupled to a multiplex qualitative PCR method followed by multichannel capillary gel electrophoresis system analysis. To clarify the GMO content in the maize samples imported from the United States, determine how many stacked GM traits are contained therein, and which GM trait varieties frequently appeared in 2005, the GMO content (percent) on a kernel basis and the varieties of the GM kernels in the non-IP maize samples imported from the United States were investigated using the individual kernel analysis system. The average (+/-standard deviation) of the GMO contents on a kernel basis in five non-IP sample lots was determined to be 51.0+/-21.6%, the percentage of a single GM trait grains was 39%, and the percentage of the stacked GM trait grains was 12%. The MON810 grains and NK603 grains were the most frequent varieties in the single GM traits. The most frequent stacked GM traits were the MON810xNK603 grains. In addition, the present study would provide the answer and impact for the quantification of GM maize content in the GM maize kernels on labeling regulation.

  13. Individual detection of genetically modified maize varieties in non-identity-preserved maize samples.

    PubMed

    Akiyama, Hiroshi; Sakata, Kozue; Kondo, Kazunari; Tanaka, Asako; Liu, Ming S; Oguchi, Taichi; Furui, Satoshi; Kitta, Kazumi; Hino, Akihiro; Teshima, Reiko

    2008-03-26

    In many countries, the labeling of grains and feed- and foodstuffs is mandatory if the genetically modified organism (GMO) content exceeds a certain level of approved GM varieties. The GMO content in a maize sample containing the combined-trait (stacked) GM maize as determined by the currently available methodology is likely to be overestimated. However, there has been little information in the literature on the mixing level and varieties of stacked GM maize in real sample grains. For the first time, the GMO content of non-identity-preserved (non-IP) maize samples imported from the United States has been successfully determined by using a previously developed individual kernel detection system coupled to a multiplex qualitative PCR method followed by multichannel capillary gel electrophoresis system analysis. To clarify the GMO content in the maize samples imported from the United States, determine how many stacked GM traits are contained therein, and which GM trait varieties frequently appeared in 2005, the GMO content (percent) on a kernel basis and the varieties of the GM kernels in the non-IP maize samples imported from the United States were investigated using the individual kernel analysis system. The average (+/-standard deviation) of the GMO contents on a kernel basis in five non-IP sample lots was determined to be 51.0+/-21.6%, the percentage of a single GM trait grains was 39%, and the percentage of the stacked GM trait grains was 12%. The MON810 grains and NK603 grains were the most frequent varieties in the single GM traits. The most frequent stacked GM traits were the MON810xNK603 grains. In addition, the present study would provide the answer and impact for the quantification of GM maize content in the GM maize kernels on labeling regulation. PMID:18298063

  14. Functional diversity of staphylinid beetles (Coleoptera: Staphylinidae) in maize fields: testing the possible effect of genetically modified, insect resistant maize.

    PubMed

    Svobodová, Z; Skoková Habuštová, O; Boháč, J; Sehnal, F

    2016-08-01

    Staphylinid beetles are recommended bioindicators for the pre-market environmental risk assessment of genetically modified (GM) insect protected maize expressing the Cry3Bb1 toxin. Our multiannual study is a unique European analysis of a staphylinid community within a 14 ha maize field. GM maize, its near-isogenic hybrid (with or without insecticide treatment), and two other reference hybrids were each grown in five 0.5 ha plots. The opportunity for exposure to Cry toxin from plant residues ploughed into the soil was shown by the presence of saprophagous dipteran larvae that are common prey of predatory staphylinid species and hosts of the parasitoid species. 2587 individuals belonging to 77 staphylinid species were sampled using pitfall traps. Lesteva longoelytrata (31%), Oxypoda acuminata (12%), Aloconota sulcifrons (8%) and Anotylus rugosus (7%) were the most abundant beetles in the field. Bionomics, food specialization, temperature requirements and size group were assigned for 25 most common species. These traits determine the occurrence of staphylinid beetles in the field, the food sources they could utilize and thus also their likely contact with the Cry3Bb1 toxin. Statistical analysis of activity abundance, Rao indices and multivariate analysis of distribution of particular categories of functional traits in the field showed negligible effects of the experimental treatments, including the GM maize, upon the staphylinid community. Staphylinid beetles represent a considerably diverse part of epigeic field fauna with wide food specialization; these features render them suitable for the assessment of environmental safety of GM insect protected maize. However, the availability of prey and the presence of particular staphylinid species and their abundance are highly variable; this complicates the interpretation of the results. PMID:26781035

  15. Functional diversity of staphylinid beetles (Coleoptera: Staphylinidae) in maize fields: testing the possible effect of genetically modified, insect resistant maize.

    PubMed

    Svobodová, Z; Skoková Habuštová, O; Boháč, J; Sehnal, F

    2016-08-01

    Staphylinid beetles are recommended bioindicators for the pre-market environmental risk assessment of genetically modified (GM) insect protected maize expressing the Cry3Bb1 toxin. Our multiannual study is a unique European analysis of a staphylinid community within a 14 ha maize field. GM maize, its near-isogenic hybrid (with or without insecticide treatment), and two other reference hybrids were each grown in five 0.5 ha plots. The opportunity for exposure to Cry toxin from plant residues ploughed into the soil was shown by the presence of saprophagous dipteran larvae that are common prey of predatory staphylinid species and hosts of the parasitoid species. 2587 individuals belonging to 77 staphylinid species were sampled using pitfall traps. Lesteva longoelytrata (31%), Oxypoda acuminata (12%), Aloconota sulcifrons (8%) and Anotylus rugosus (7%) were the most abundant beetles in the field. Bionomics, food specialization, temperature requirements and size group were assigned for 25 most common species. These traits determine the occurrence of staphylinid beetles in the field, the food sources they could utilize and thus also their likely contact with the Cry3Bb1 toxin. Statistical analysis of activity abundance, Rao indices and multivariate analysis of distribution of particular categories of functional traits in the field showed negligible effects of the experimental treatments, including the GM maize, upon the staphylinid community. Staphylinid beetles represent a considerably diverse part of epigeic field fauna with wide food specialization; these features render them suitable for the assessment of environmental safety of GM insect protected maize. However, the availability of prey and the presence of particular staphylinid species and their abundance are highly variable; this complicates the interpretation of the results.

  16. Lack of Detectable Allergenicity in Genetically Modified Maize Containing “Cry” Proteins as Compared to Native Maize Based on In Silico & In Vitro Analysis

    PubMed Central

    Mathur, Chandni; Kathuria, Pooran C.; Dahiya, Pushpa; Singh, Anand B.

    2015-01-01

    Background Genetically modified, (GM) crops with potential allergens must be evaluated for safety and endogenous IgE binding pattern compared to native variety, prior to market release. Objective To compare endogenous IgE binding proteins of three GM maize seeds containing Cry 1Ab,1Ac,1C transgenic proteins with non GM maize. Methods An integrated approach of in silico & in vitro methods was employed. Cry proteins were tested for presence of allergen sequence by FASTA in allergen databases. Biochemical assays for maize extracts were performed. Specific IgE (sIgE) and Immunoblot using food sensitized patients sera (n = 39) to non GM and GM maize antigens was performed. Results In silico approaches, confirmed for non sequence similarity of stated transgenic proteins in allergen databases. An insignificant (p> 0.05) variation in protein content between GM and non GM maize was observed. Simulated Gastric Fluid (SGF) revealed reduced number of stable protein fractions in GM then non GM maize which might be due to shift of constituent protein expression. Specific IgE values from patients showed insignificant difference in non GM and GM maize extracts. Five maize sensitized cases, recognized same 7 protein fractions of 88-28 kD as IgE bindng in both GM and non-GM maize, signifying absence of variation. Four of the reported IgE binding proteins were also found to be stable by SGF. Conclusion Cry proteins did not indicate any significant similarity of >35% in allergen databases. Immunoassays also did not identify appreciable differences in endogenous IgE binding in GM and non GM maize. PMID:25706412

  17. Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule.

    PubMed

    Yang, Litao; Guo, Jinchao; Pan, Aihu; Zhang, Haibo; Zhang, Kewei; Wang, Zhengming; Zhang, Dabing

    2007-01-10

    With the development of genetically modified organism (GMO) detection techniques, the Polymerase Chain Reaction (PCR) technique has been the mainstay for GMO detection, and real-time PCR is the most effective and important method for GMO quantification. An event-specific detection strategy based on the unique and specific integration junction sequences between the host plant genome DNA and the integrated gene is being developed for its high specificity. This study establishes the event-specific detection methods for TC1507 and CBH351 maizes. In addition, the event-specific TaqMan real-time PCR detection methods for another seven GM maize events (Bt11, Bt176, GA21, MON810, MON863, NK603, and T25) were systematically optimized and developed. In these PCR assays, the fluorescent quencher, TAMRA, was dyed on the T-base of the probe at the internal position to improve the intensity of the fluorescent signal. To overcome the difficulties in obtaining the certified reference materials of these GM maizes, one novel standard reference molecule containing all nine specific integration junction sequences of these GM maizes and the maize endogenous reference gene, zSSIIb, was constructed and used for quantitative analysis. The limits of detection of these methods were 20 copies for these different GM maizes, the limits of quantitation were about 20 copies, and the dynamic ranges for quantification were from 0.05 to 100% in 100 ng of DNA template. Furthermore, nine groups of the mixed maize samples of these nine GM maize events were quantitatively analyzed to evaluate the accuracy and precision. The accuracy expressed as bias varied from 0.67 to 28.00% for the nine tested groups of GM maize samples, and the precision expressed as relative standard deviations was from 0.83 to 26.20%. All of these indicated that the established event-specific real-time PCR detection systems and the reference molecule in this study are suitable for the identification and quantification of these GM

  18. Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule.

    PubMed

    Yang, Litao; Guo, Jinchao; Pan, Aihu; Zhang, Haibo; Zhang, Kewei; Wang, Zhengming; Zhang, Dabing

    2007-01-10

    With the development of genetically modified organism (GMO) detection techniques, the Polymerase Chain Reaction (PCR) technique has been the mainstay for GMO detection, and real-time PCR is the most effective and important method for GMO quantification. An event-specific detection strategy based on the unique and specific integration junction sequences between the host plant genome DNA and the integrated gene is being developed for its high specificity. This study establishes the event-specific detection methods for TC1507 and CBH351 maizes. In addition, the event-specific TaqMan real-time PCR detection methods for another seven GM maize events (Bt11, Bt176, GA21, MON810, MON863, NK603, and T25) were systematically optimized and developed. In these PCR assays, the fluorescent quencher, TAMRA, was dyed on the T-base of the probe at the internal position to improve the intensity of the fluorescent signal. To overcome the difficulties in obtaining the certified reference materials of these GM maizes, one novel standard reference molecule containing all nine specific integration junction sequences of these GM maizes and the maize endogenous reference gene, zSSIIb, was constructed and used for quantitative analysis. The limits of detection of these methods were 20 copies for these different GM maizes, the limits of quantitation were about 20 copies, and the dynamic ranges for quantification were from 0.05 to 100% in 100 ng of DNA template. Furthermore, nine groups of the mixed maize samples of these nine GM maize events were quantitatively analyzed to evaluate the accuracy and precision. The accuracy expressed as bias varied from 0.67 to 28.00% for the nine tested groups of GM maize samples, and the precision expressed as relative standard deviations was from 0.83 to 26.20%. All of these indicated that the established event-specific real-time PCR detection systems and the reference molecule in this study are suitable for the identification and quantification of these GM

  19. Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay.

    PubMed

    Galeano, Pablo; Debat, Claudio Martínez; Ruibal, Fabiana; Fraguas, Laura Franco; Galván, Guillermo A

    2010-01-01

    The cultivation of genetically modified (GM) Bt maize (Zea mays L.) events MON810 and Bt11 is permitted in Uruguay. Local regulations specify that 10% of the crop should be a non-GM cultivar as refuge area for biodiversity, and the distance from other non-GM maize crops should be more than 250 m in order to avoid cross-pollination. However, the degree of cross-fertilization between maize crops in Uruguay is unknown. The level of adventitious presence of GM material in non-GM crops is a relevant issue for organic farming, in situ conservation of genetic resources and seed production. In the research reported here, the occurrence and frequency of cross-fertilization between commercial GM and non-GM maize crops in Uruguay was assessed. The methodology comprised field sampling and detection using DAS-ELISA and PCR. Five field-pair cases where GM maize crops were grown near non-GM maize crops were identified. These cases had the potential to cross-fertilize considering the distance between crops and the similarity of the sowing dates. Adventitious presence of GM material in the offspring of non-GM crops was found in three of the five cases. Adventitious presence of event MON810 or Bt11 in non-GM maize, which were distinguished using specific primers, matched the events in the putative sources of transgenic pollen. Percentages of transgenic seedlings in the offspring of the non-GM crops were estimated as 0.56%, 0.83% and 0.13% for three sampling sites with distances of respectively 40, 100 and 330 m from the GM crops. This is a first indication that adventitious presence of transgenes in non-GM maize crops will occur in Uruguay if isolation by distance and/or time is not provided. These findings contribute to the evaluation of the applicability of the "regulated coexistence policy" in Uruguay.

  20. Position of modifying groups on starch chains of octenylsuccinic anhydride-modified waxy maize starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Octenylsuccinic anhydride (OSA)-modified starches with degree of substitution of 0.018 (OS-S-L) and 0.092 (OS-S-H) were prepared from granular native waxy maize starch in an aqueous slurry system. The substitution distribution of OS groups was investigated by enzyme hydrolysis followed by chromatogr...

  1. [Contamination with genetically modified maize MON863 of processed foods on the market].

    PubMed

    Ohgiya, Yoko; Sakai, Masaaki; Miyashita, Taeko; Yano, Koichi

    2009-06-01

    Genetically modified maize MON863 (MON863), which has passed a safety examination in Japan, is commercially cultivated in the United States as a food and a resource for fuel. Maize is an anemophilous flower, which easily hybridizes. However, an official method for quantifying the content of MON863 has not been provided yet in Japan. We here examined MON863 contamination in maize-processed foods that had no labeling indicating of the use of genetically modified maize.From March 2006 to July 2008, we purchased 20 frozen maize products, 8 maize powder products, 7 canned maize products and 4 other maize processed foods. Three primer pairs named MON 863 primer, MON863-1, and M3/M4 for MON863-specific integrated cassette were used for qualitative polymerase chain reaction (PCR). A primer pair "SSIIb-3" for starch synthase gene was used to confirm the quality of extracted DNA. The starch synthase gene was detected in all samples. In qualitative tests, the MON863-specific fragments were detected in 7 (18%) maize powder products out of the 39 processed foods with all the three primer pairs.We concluded that various maize processed foods on the market were contaminated with MON863. It is important to accumulate further information on MON863 contamination in maize-processed foods that have no label indication of the use of genetically modified maize.

  2. Safety assessment by in vitro digestibility and allergenicity of genetically modified maize with an amaranth 11S globulin.

    PubMed

    Sinagawa-García, Sugey R; Rascón-Cruz, Quintín; Valdez-Ortiz, Angel; Medina-Godoy, Sergio; Escobar-Gutiérrez, Alejandro; Paredes-López, Octavio

    2004-05-01

    Prospective testing for allergenicity of proteins obtained from sources with no prior history of causing allergy has been difficult to perform. Thus, the objective of this work was to assess the food safety of genetically modified maize with an amaranth globulin protein termed amarantin. Transgenic maize lines evaluated showed, in relation to nontransgenic, 4-35% more protein and 0-44% higher contents of specific essential amino acids. Individual sequence analysis with known amino acid sequences, reported as allergens, showed that none of these IgE elicitors were identified in amarantin. Amarantin was digested within the first 15 min by Simulated Gastric Fluid treatment as observed by Western blot. Expressed amarantin did not induce important levels of specific IgE antibodies in BALB/c mice, as analyzed by ELISA. We conclude that the transgenic maize with amarantin is not an important allergenicity inducer, just as nontransgenic maize.

  3. Engineering a thermoregulated intein-modified xylanase into maize for consolidated lignocellulosic biomass processing.

    PubMed

    Shen, Binzhang; Sun, Xueguang; Zuo, Xiao; Shilling, Taran; Apgar, James; Ross, Mary; Bougri, Oleg; Samoylov, Vladimir; Parker, Matthew; Hancock, Elaina; Lucero, Hector; Gray, Benjamin; Ekborg, Nathan A; Zhang, Dongcheng; Johnson, Jeremy C Schley; Lazar, Gabor; Raab, R Michael

    2012-11-01

    Plant cellulosic biomass is an abundant, low-cost feedstock for producing biofuels and chemicals. Expressing cell wall-degrading (CWD) enzymes (e.g. xylanases) in plant feedstocks could reduce the amount of enzymes required for feedstock pretreatment and hydrolysis during bioprocessing to release soluble sugars. However, in planta expression of xylanases can reduce biomass yield and plant fertility. To overcome this problem, we engineered a thermostable xylanase (XynB) with a thermostable self-splicing bacterial intein to control the xylanase activity. Intein-modified XynB (iXynB) variants were selected that have <10% wild-type enzymatic activity but recover >60% enzymatic activity upon intein self-splicing at temperatures >59 °C. Greenhouse-grown xynB maize expressing XynB has shriveled seeds and low fertility, but ixynB maize had normal seeds and fertility. Processing dried ixynB maize stover by temperature-regulated xylanase activation and hydrolysis in a cocktail of commercial CWD enzymes produced >90% theoretical glucose and >63% theoretical xylose yields. PMID:23086202

  4. Structure and expression of maize phytochrome family homeologs.

    PubMed

    Sheehan, Moira J; Farmer, Phyllis R; Brutnell, Thomas P

    2004-07-01

    To begin the study of phytochrome signaling in maize, we have cloned and characterized the phytochrome gene family from the inbred B73. Through DNA gel blot analysis of maize genomic DNA and BAC library screens, we show that the PhyA, PhyB, and PhyC genes are each duplicated once in the genome of maize. Each gene pair was positioned to homeologous regions of the genome using recombinant inbred mapping populations. These results strongly suggest that the duplication of the phytochrome gene family in maize arose as a consequence of an ancient tetraploidization in the maize ancestral lineage. Furthermore, sequencing of Phy genes directly from BAC clones indicates that there are six functional phytochrome genes in maize. Through Northern gel blot analysis and a semiquantitative reverse transcriptase polymerase chain reaction assay, we determined that all six phytochrome genes are transcribed in several seedling tissues. However, expression from PhyA1, PhyB1, and PhyC1 predominate in all seedling tissues examined. Dark-grown seedlings express higher levels of PhyA and PhyB than do light-grown plants but PhyC genes are expressed at similar levels under light and dark growth conditions. These results are discussed in relation to phytochrome gene regulation in model eudicots and monocots and in light of current genome sequencing efforts in maize. PMID:15280251

  5. Structure and expression of maize phytochrome family homeologs.

    PubMed Central

    Sheehan, Moira J; Farmer, Phyllis R; Brutnell, Thomas P

    2004-01-01

    To begin the study of phytochrome signaling in maize, we have cloned and characterized the phytochrome gene family from the inbred B73. Through DNA gel blot analysis of maize genomic DNA and BAC library screens, we show that the PhyA, PhyB, and PhyC genes are each duplicated once in the genome of maize. Each gene pair was positioned to homeologous regions of the genome using recombinant inbred mapping populations. These results strongly suggest that the duplication of the phytochrome gene family in maize arose as a consequence of an ancient tetraploidization in the maize ancestral lineage. Furthermore, sequencing of Phy genes directly from BAC clones indicates that there are six functional phytochrome genes in maize. Through Northern gel blot analysis and a semiquantitative reverse transcriptase polymerase chain reaction assay, we determined that all six phytochrome genes are transcribed in several seedling tissues. However, expression from PhyA1, PhyB1, and PhyC1 predominate in all seedling tissues examined. Dark-grown seedlings express higher levels of PhyA and PhyB than do light-grown plants but PhyC genes are expressed at similar levels under light and dark growth conditions. These results are discussed in relation to phytochrome gene regulation in model eudicots and monocots and in light of current genome sequencing efforts in maize. PMID:15280251

  6. Prevalence of genetically modified rice, maize, and soy in Saudi food products.

    PubMed

    Elsanhoty, Rafaat M; Al-Turki, A I; Ramadan, Mohamed Fawzy

    2013-10-01

    Qualitative and quantitative DNA-based methods were applied to detect genetically modified foods in samples from markets in the Kingdom of Saudi Arabia. Two hundred samples were collected from Al-Qassim, Riyadh, and Mahdina in 2009 and 2010. GMOScreen 35S and NOS test kits for the detection of genetically modified organism varieties in samples were used. The positive results obtained from GMOScreen 35S and NOS were identified using specific primer pairs. The results indicated that all rice samples gave negative results for the presence of 35S and NOS terminator. About 26 % of samples containing soybean were positive for 35S and NOS terminator and 44 % of samples containing maize were positive for the presence of 35S and/or NOS terminator. The results showed that 20.4 % of samples was positive for maize line Bt176, 8.8 % was positive for maize line Bt11, 8.8 % was positive for maize line T25, 5.9 % was positive for maize line MON 810, and 5.9 % was positive for StarLink maize. Twelve samples were shown to contain <3 % of genetically modified (GM) soy and 6 samples >10 % of GM soy. Four samples containing GM maize were shown to contain >5 % of GM maize MON 810. Four samples containing GM maize were shown to contain >1 % of StarLink maize. Establishing strong regulations and certified laboratories to monitor GM foods or crops in Saudi market is recommended.

  7. [Identification for genetically modified maize T14/T25 with real time fluorescent PCR method].

    PubMed

    Cao, Ji-Juan; Qin, Wen; Zhu, Shui-Fang; Cao, Yuan-Yin

    2004-09-01

    To identify genetically modified (GM) maize T14/T25 lines, a real-time fluorescent PCR (RTF PCR) assay was performed in this study. Primers and Taqman probes specific for inserted genes in the T14/T25 were used to conduct the real-time fluorescent (RTF) PCR and PCR assays. The RTF PCR method was established to detect and identify GM maize lines. The results show that the TaqMan probe could identify T14/T25 maize used, while other GM and NO-GM maize didn't be detected. The RTF PCR could be a new method for detecting other genetically modified organism.

  8. Risks and benefits of genetically modified maize donations to southern Africa: views from Malawi.

    PubMed

    Muula, Adamson S; Mfutso-Bengo, Joseph M

    2003-02-01

    In 2001 and 2002, many countries in the Southern African Development Community (SADC) have suffered from severe food shortages resulting in an estimated 14 million people facing starvation due to inadequate quantities of the staple maize. The international community's response has been the donation of foodstuffs, including genetically modified maize. Reactions of the recipient countries of Zambia, Zimbabwe, and Malawi have been different. Zambia appealed to the donors not to send genetically modified maize, whereas Malawi accepted the maize donations. Malawi is currently facing many public health challenges because 10% of its 10-million population is HIV-positive, maternal mortality rate has almost doubled between 1992 and 2000, and there are also an estimated 1 million orphans due to HIV/AIDS. In the European Union, genetically modified maize falls under "Novel Foods" and its marketing and distribution are strictly regulated by law. This has never been the case in the southern African countries. In this article, we discuss the ethical challenges associated with genetically modified maize donations to southern Africa. Although genetically modified food offers a way to avoid many adverse effects of food shortages, we believe that some of the ethical questions of genetically modified food donations should be solved first, under the leadership of the donor countries and partnership of the developing countries. There are fears that consummation of genetically modified maize could have adverse health effects. These fears must be addressed if the confidence of developing countries in the donor community is to be maintained.

  9. [Detection of the genetically modified organisms in genetically modified soybean and maize by polymerase chain reaction method].

    PubMed

    Mao, Deqian; Mu, Weipeng; Yang, Xiaoguang

    2002-06-01

    A method for the detection of the (genetically modified organism GMOs) in genetically modified soybean (Round-up Ready soybean, RR soybean) and maize(Bt-176 maize) is described. The polymerase chain reaction (PCR) method is discussed with the genetically modified soybean and maize whose contents are known. The detection limit can be 0.1%, that is to say, we can detect the GMO in the food whose content is only 0.1%, the detection method is just a screening method. The procedure includes: (1) extraction of genomic DNA of maize and soybean, (2) amplification of the inserted genes, CaMV35S promoter and the NOS terminator inserted by means of the polymerase chain reaction (PCR) method, (3) amplification of the specific genes of maize and soybean in order to determine that the samples are maize and soybean, (4) characterization and confirmation of the PCR products by restriction enzyme analysis and the electrophoresis on agarose gel. The RR soybean contains CaMV35S promoter and NOS terminator, and the Bt-176 maize contains only CaMV35S promoter. Due to the high content of the starch in maize, the effect of the electrophororesis is not so good as of the soybean's.

  10. [Medical and biological safety assessment of genetically modified maize strain MIR604].

    PubMed

    Tutel'ian, V A; Gapparov, M M G; Avren'eva, L I; Aksiuk, I N; Guseva, G V; Kravchenko, L V; L'vova, L S; Saprykin, V P; Tyshko, N V; Chernysheva, O N

    2009-01-01

    The results of toxicologo-hygienic examinations, which were conducted within the framework of integrated medical and biological assessment of genetically modified rootworm Diabrotica spp.-protected maize event MIR604, are presented. Analysis of morphological, hematological, biochemical parameters and system (sensitive) biomarkers has not confirmed any toxic effect of maize event MIR604.

  11. A multiplex PCR method of detecting recombinant DNAs from five lines of genetically modified maize.

    PubMed

    Matsuoka, T; Kuribara, H; Akiyama, H; Miura, H; Goda, Y; Kusakabe, Y; Isshiki, K; Toyoda, M; Hino, A

    2001-02-01

    Seven lines of genetically modified (GM) maize have been authorized in Japan as foods and feeds imported from the USA. We improved a multiplex PCR method described in the previous report in order to distinguish the five lines of GM maize. Genomic DNA was extracted from GM maize with a silica spin column kit, which could reduce experimental time and improve safety in the laboratory and potentially in the environment. We sequenced recombinant DNA (r-DNA) introduced into GM maize, and re-designed new primer pairs to increase the specificity of PCR to distinguish five lines of GM maize by multiplex PCR. A primer pair for the maize intrinsic zein gene (Ze1) was also designed to confirm the presence of amplifiable maize DNA. The lengths of PCR products using these six primer pairs were different. The Ze1 and the r-DNAs from the five lines of GM maize were qualitatively detected in one tube. The specific PCR bands were distinguishable from each other on the basis of the expected length. The r-DNA could be detected from maize samples containing 0.5% of each of the five lines of GM maize. The sensitivity would be acceptable to secure the verification of non-GMO materials and to monitor the reliability of the labeling system.

  12. O-linked glycosylation in maize-expressed human IgA1.

    PubMed

    Karnoup, Anton S; Turkelson, Virgil; Anderson, W H Kerr

    2005-10-01

    O-Linked glycans vary between eukaryotic cell types and play an important role in determining a glycoprotein's properties, including stability, target recognition, and potentially immunogenicity. We describe O-linked glycan structures of a recombinant human IgA1 (hIgA1) expressed in transgenic maize. Up to six proline/hydroxyproline conversions and variable amounts of arabinosylation (Pro/Hyp + Ara) were found in the hinge region of maize-expressed hIgA1 heavy chain (HC) by using a combination of matrix-assisted laser-desorption ionization mass spectrometry (MALDI MS), chromatography, and amino acid analysis. Approximately 90% of hIgA1 was modified in this way. An average molar ratio of six Ara units per molecule of hIgA1 was revealed. Substantial sequence similarity was identified between the HC hinge region of hIgA1 and regions of maize extensin-family of hydroxyproline-rich glycoproteins (HRGP). We propose that because of this sequence similarity, the HC hinge region of maize-expressed hIgA1 can become a substrate for posttranslational conversion of Pro to Hyp by maize prolyl-hydroxylase(s) with the subsequent arabinosylation of the Hyp residues by Hyp-glycosyltransferase(s) in the Golgi apparatus in maize endosperm tissue. The observation of up to six Pro/Hyp hydroxylations combined with extensive arabinosylation in the hIgA1 HC hinge region is well in agreement with the Pro/Hyp hydroxylation model and the Hyp contiguity hypothesis suggested earlier in literature for plant HRGP. For the first time, the extensin-like Hyp/Pro conversion and O-linked arabinosylation are described for a recombinant therapeutic protein expressed in transgenic plants. Our findings are of significance to the field of plant biotechnology and biopharmaceutical industry-developing transgenic plants as a platform for the production of recombinant therapeutic proteins. PMID:15901675

  13. Evaluation of modified PCR quantitation of genetically modified maize and soybean using reference molecules: interlaboratory study.

    PubMed

    Kodama, Takashi; Kuribara, Hideo; Minegishi, Yasutaka; Futo, Satoshi; Watai, Masatoshi; Sawada, Chihiro; Watanabe, Takahiro; Akiyama, Hiroshi; Maitani, Tamio; Teshima, Reiko; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2009-01-01

    Real-time polymerase chain reaction (PCR)-based quantitative methods were previously developed and validated for genetically modified (GM) maize or soy. In this study, the quantification step of the validated methods was modified, and an interlaboratory study was conducted. The modification included the introduction of the PCR system SSIIb 3 instead of SSIIb 1 for the detection of the taxon-specific sequence of maize, as well as the adoption of colE1 as a carrier included in a reference plasmid solution as a replacement for salmon testis. The interlaboratory study was conducted with the ABI PRISM 7700 and consisted of 2 separate stages: (1) the measurement of conversion factor (Cf) value, which is the ratio of recombinant DNA (r-DNA) sequence to taxon-specific sequence in each genuine GM seed, and (2) the quantification of blind samples. Additionally, Cf values of other instruments, such as the ABI PRISM 7900 and the ABI PRISM 7000, were measured in a multilaboratory trial. After outlier laboratories were eliminated, the repeatability and reproducibility for 5.0% samples were <15.8 and 20.6%, respectively. The quantitation limits of these methods were 0.5% for Bt11, T25, and MON810, and 0.1% for GA21, Event176, and RR soy. The quantitation limits, trueness, and precision of the current modified methods were equivalent to those of the previous methods. Therefore, it was concluded that the modified methods would be a suitable replacement for the validated methods. PMID:19382580

  14. [Medical and biological safety assessment of genetically modified maize event MIR604].

    PubMed

    Tyshko, N V; Britsina, M V; Gmoshinskiĭ, I V; Zhanataev, A K; Zakharova, N S; Zorin, S N; Mazo, V K; Ozeretskovskaia, M N; Semenov, B F

    2009-01-01

    There are presented the results of genotoxicologic, immunologic and allergologic examinations which were conducted within the framework of integrated medical and biological assessment of genetically modified rootworm Diabrotica spp.-protected maize event MIR604. Analysis of damages of DNA and structural chromosome aberrations, assessment of the allergenic potential and immunoreactive properties has not confirmed any genotoxic, allergenic and immunotoxic effect of maize event MIR604.

  15. The maize milkweed pod1 mutant reveals a mechanism to modify organ morphology.

    PubMed

    Johnston, Robyn; Candela, Héctor; Hake, Sarah; Foster, Toshi

    2010-07-01

    Plant lateral organs, such as leaves, have three primary axes of growth-proximal-distal, medial--lateral and adaxial-abaxial (dorsal-ventral). Although most leaves are planar, modified leaf forms, such as the bikeeled grass prophyll, can be found in nature. A detailed examination of normal prophyll development indicates that polarity is established differently in the keels than in other parts of the prophyll. Analysis of the maize HD-ZIPIII gene rolled leaf1 (rld1) suggests that altered expression patterns are responsible for keel outgrowth. Recessive mutations in the maize (Zea mays) KANADI (KAN) gene milkweed pod1 (mwp1), which promotes abaxial cell identity, strongly affect development of the prophyll and silks (fused carpels). The prophyll is reduced to two unfused midribs and the silks are narrow and misshapen. Our data indicate that the prophyll and other fused organs are particularly sensitive to disruptions in adaxial-abaxial polarity. In addition, lateral and proximal-distal growth of most lateral organs is reduced in the mwp1-R mutant, supporting a role for the adaxial-abaxial boundary in promoting growth along both axes. We propose that the adaxial-abaxial patterning mechanism has been co-opted during evolution to generate diverse organ morphologies. PMID:20213690

  16. Bt-maize event MON 88017 expressing Cry3Bb1 does not cause harm to non-target organisms.

    PubMed

    Devos, Yann; De Schrijver, Adinda; De Clercq, Patrick; Kiss, József; Romeis, Jörg

    2012-12-01

    This review paper explores whether the cultivation of the genetically modified Bt-maize transformation event MON 88017, expressing the insecticidal Cry3Bb1 protein against corn rootworms (Coleoptera: Chrysomelidae), causes adverse effects to non-target organisms (NTOs) and the ecological and anthropocentric functions they provide. Available data do not reveal adverse effects of Cry3Bb1 on various NTOs that are representative of potentially exposed taxonomic and functional groups, confirming that the insecticidal activity of the Cry3Bb1 protein is limited to species belonging to the coleopteran family of Chrysomelidae. The potential risk to non-target chrysomelid larvae ingesting maize MON 88017 pollen deposited on host plants is minimal, as their abundance in maize fields and the likelihood of encountering harmful amounts of pollen in and around maize MON 88017 fields are low. Non-target adult chrysomelids, which may occasionally feed on maize MON 88017 plants, are not expected to be affected due to the low activity of the Cry3Bb1 protein on adults. Impacts on NTOs caused by potential unintended changes in maize MON 88017 are not expected to occur, as no differences in composition, phenotypic characteristics and plant-NTO interactions were observed between maize MON 88017 and its near-isogenic line. PMID:22576225

  17. Bt-maize event MON 88017 expressing Cry3Bb1 does not cause harm to non-target organisms.

    PubMed

    Devos, Yann; De Schrijver, Adinda; De Clercq, Patrick; Kiss, József; Romeis, Jörg

    2012-12-01

    This review paper explores whether the cultivation of the genetically modified Bt-maize transformation event MON 88017, expressing the insecticidal Cry3Bb1 protein against corn rootworms (Coleoptera: Chrysomelidae), causes adverse effects to non-target organisms (NTOs) and the ecological and anthropocentric functions they provide. Available data do not reveal adverse effects of Cry3Bb1 on various NTOs that are representative of potentially exposed taxonomic and functional groups, confirming that the insecticidal activity of the Cry3Bb1 protein is limited to species belonging to the coleopteran family of Chrysomelidae. The potential risk to non-target chrysomelid larvae ingesting maize MON 88017 pollen deposited on host plants is minimal, as their abundance in maize fields and the likelihood of encountering harmful amounts of pollen in and around maize MON 88017 fields are low. Non-target adult chrysomelids, which may occasionally feed on maize MON 88017 plants, are not expected to be affected due to the low activity of the Cry3Bb1 protein on adults. Impacts on NTOs caused by potential unintended changes in maize MON 88017 are not expected to occur, as no differences in composition, phenotypic characteristics and plant-NTO interactions were observed between maize MON 88017 and its near-isogenic line.

  18. Profiling expression changes caused by a segmental aneuploid in maize

    PubMed Central

    Makarevitch, Irina; Phillips, Ronald L; Springer, Nathan M

    2008-01-01

    Background While changes in chromosome number that result in aneuploidy are associated with phenotypic consequences such as Down syndrome and cancer, the molecular causes of specific phenotypes and genome-wide expression changes that occur in aneuploids are still being elucidated. Results We employed a segmental aneuploid condition in maize to study phenotypic and gene expression changes associated with aneuploidy. Maize plants that are trisomic for 90% of the short arm of chromosome 5 and monosomic for a small distal portion of the short arm of chromosome 6 exhibited a phenotypic syndrome that includes reduced stature, tassel morphology changes and the presence of knots on the leaves. The knotted-like homeobox gene knox10, which is located on the short arm of chromosome 5, was shown to be ectopically expressed in developing leaves of the aneuploid plants. Expression profiling revealed that ~40% of the expressed genes in the trisomic region exhibited the expected 1.5 fold increased transcript levels while the remaining 60% of genes did not show altered expression even with increased gene dosage. Conclusion We found that the majority of genes with altered expression levels were located within the chromosomal regions affected by the segmental aneuploidy and exhibits dosage-dependent expression changes. A small number of genes exhibit higher levels of expression change not predicted by the dosage, or display altered expression even though they are not located in the aneuploid regions. PMID:18186930

  19. Gene-expression profile comparisons distinguish seven organs of maize

    PubMed Central

    Cho, Yangrae; Fernandes, John; Kim, Soo-Hwan; Walbot, Virginia

    2002-01-01

    Background A maize array was fabricated with 5,376 unique expressed sequence tag (EST) clones sequenced from 4-day-old roots, immature ears and adult organ cDNA libraries. To elucidate organ relationships, relative mRNA levels were quantified by hybridization with embryos, three maize vegetative organs (leaf blades, leaf sheaths and roots) from multiple developmental stages, husk leaves and two types of floral organs (immature ears and silks). Results Clustering analyses of the hybridization data suggest that maize utilizes both the PEPCK and NADP-ME C4 photosynthetic routes as genes in these pathways are co-regulated. Husk RNA has a gene-expression profile more similar to floral organs than to vegetative leaves. Only 7% of the genes were highly organ specific, showing over a fourfold difference in at least one of 12 comparisons and 37% showed a two- to fourfold difference. The majority of genes were expressed in diverse organs with little difference in transcript levels. Cross-hybridization among closely related genes within multigene families could obscure tissue specificity. As a first step in elucidating individual gene-expression patterns, we show that 45-nucleotide oligo probes produce signal intensities and signal ratios comparable to PCR probes on the same matrix. Conclusions Gene-expression profile studies with cDNA microarrays provide a new molecular tool for defining plant organs and their relationships and for discovering new biological processes in silico. cDNA microarrays are insufficient for differentiating recently duplicated genes. Gene-specific oligo probes printed along with cDNA probes can query individual gene-expression profiles and gene families simultaneously. PMID:12225584

  20. Comparative proteomic analysis of genetically modified maize grown under different agroecosystems conditions in Brazil

    PubMed Central

    2013-01-01

    Background Profiling technologies allow the simultaneous measurement and comparison of thousands of cell components without prior knowledge of their identity. In the present study, we used two-dimensional gel electrophoresis combined with mass spectrometry to evaluate protein expression of Brazilian genetically modified maize hybrid grown under different agroecosystems conditions. To this effect, leaf samples were subjected to comparative analysis using the near-isogenic non-GM hybrid as the comparator. Results In the first stage of the analysis, the main sources of variation in the dataset were identified by using Principal Components Analysis which correlated most of the variation to the different agroecosystems conditions. Comparative analysis within each field revealed a total of thirty two differentially expressed proteins between GM and non-GM samples that were identified and their molecular functions were mainly assigned to carbohydrate and energy metabolism, genetic information processing and stress response. Conclusions To the best of our knowledge this study represents the first evidence of protein identities with differentially expressed isoforms in Brazilian MON810 genetic background hybrid grown under field conditions. As global databases on outputs from “omics” analysis become available, these could provide a highly desirable benchmark for safety assessments. PMID:24304660

  1. Novel reference molecules for quantitation of genetically modified maize and soybean.

    PubMed

    Kuribara, Hideo; Shindo, Yoichiro; Matsuoka, Takeshi; Takubo, Ken; Futo, Satoshi; Aoki, Nobutaro; Hirao, Takashi; Akiyama, Hiroshi; Goda, Yukihiro; Toyoda, Masatake; Hino, Akihiro

    2002-01-01

    New quantitation methods based on a real-time polymerase chain reaction (PCR) technique were developed for 5 lines of genetically modified (GM) maize, including MON810, Event176, Bt11, T25, and GA21, and a GM soy, Roundup Ready. Oligonucleotide DNA, including specific primers and fluorescent dye-labeled probes, were designed for PCRs. Two plasmids were constructed as reference molecules (RMs) for the detection of GM maize and GM soy. The molecules contain the DNA sequences of a specific region found in each GM line, universal sequences used in various GM lines, such as cauliflower mosaic virus 35S promoter and nopaline synthase terminator, and the endogenous DNA sequences of maize or soy. By using these plasmids, no GM maize and GM soy were required as reference materials for the qualitative and quantitative PCR technique. Test samples containing 0, 0.10, 0.50, 1.0, 5.0, and 10% GM maize or GM soy were quantitated. At the 5.0% level, the bias (mean-true value) ranged from 2.8 to 19.4% and the relative standard deviation was <5.2%. These results show that our method involving the use of these plasmids as RMs is reliable and practical for quantitation of GM maize and GM soy. PMID:12374407

  2. Fate of genetically modified maize DNA in the oral cavity and rumen of sheep.

    PubMed

    Duggan, Paula S; Chambers, Philip A; Heritage, John; Michael Forbes, J

    2003-02-01

    The polymerase chain reaction (PCR) technique was used to investigate the fate of a transgene in the rumen of sheep fed silage and maize grains from an insect-resistant maize line. A 1914-bp DNA fragment containing the entire coding region of the synthetic cryIA(b) gene was still amplifiable from rumen fluid sampled 5 h after feeding maize grains. The same target sequence, however, could not be amplified from rumen fluid sampled from sheep fed silage prepared from the genetically modified maize line. PCR amplification of a shorter (211-bp), yet still highly specific, target sequence was possible with rumen fluid sampled up to 3 and 24 h after feeding silage and maize grains, respectively. These findings indicate that intact transgenes from silage are unlikely to survive significantly in the rumen since a DNA sequence 211-bp long is very unlikely to transmit genetic information. By contrast, DNA in maize grains persists for a significant time and may, therefore, provide a source of transforming DNA in the rumen. In addition, we have examined the biological activity of plasmid DNA that had previously been exposed to the ovine oral cavity. Plasmid extracted from saliva sampled after incubation for 8 min was still capable of transforming competent Escherichia coli to kanamycin resistance, implying that DNA released from the diet within the mouth may retain sufficient biological activity for the transformation of competent oral bacteria.

  3. A computational workflow to identify allele-specific expression and epigenetic modification in maize.

    PubMed

    Wei, Xiaoxing; Wang, Xiangfeng

    2013-08-01

    Allele-specific expression refers to the preferential expression of one of the two alleles in a diploid genome, which has been thought largely attributable to the associated cis-element variation and allele-specific epigenetic modification patterns. Allele-specific expression may contribute to the heterosis (or hybrid vigor) effect in hybrid plants that are produced from crosses of closely-related species, subspecies and/or inbred lines. In this study, using Illumina high-throughput sequencing of maize transcriptomics, chromatic H3K27me3 histone modification and DNA methylation data, we developed a new computational framework to identify allele-specifically expressed genes by simultaneously tracking allele-specific gene expression patterns and the epigenetic modification landscape in the seedling tissues of hybrid maize. This approach relies on detecting nucleotide polymorphisms and any genomic structural variation between two parental genomes in order to distinguish paternally or maternally derived sequencing reads. This computational pipeline also incorporates a modified Chi-square test to statistically identify allele-specific gene expression and epigenetic modification based on the Poisson distribution.

  4. Modification of recombinant maize ChitA chitinase by fungal chitinase-modifying proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In commercial maize, there are at least two different alleles of the chiA gene that encode alloforms of ChitA chitinase, a protein that is abundant in developing seed. Both known alloforms are modified by Bz-cmp, a protein secreted by the fungal pathogen Bipolaris zeicola. One alloform (ChitA-B73) i...

  5. Maize Seed Chitinase is Modified by a Protein Secreted by Bipolaris zeicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants contain defense mechanisms that prevent infection by most fungi. Some specialized fungi have the ability to overcome plant defenses. The Zea mays (maize) seed chitinase ChitA has been previously reported as an antifungal protein. Here we report that ChitA is converted to a modified form by...

  6. Position of modifying groups on starch chains of octenylsuccinic anhydride-modified waxy maize starch.

    PubMed

    Bai, Yanjie; Kaufman, Rhett C; Wilson, Jeff D; Shi, Yong-Cheng

    2014-06-15

    Octenylsuccinic anhydride (OSA)-modified starches with a low (0.018) and high (0.092) degree of substitution (DS) were prepared from granular native waxy maize starch in aqueous slurry. The position of OS substituents along the starch chains was investigated by enzyme hydrolysis followed by chromatographic analysis. Native starch and two OS starches with a low and high DS had β-limit values of 55.9%, 52.8%, and 34.4%, respectively. The weight-average molecular weight of the β-limit dextrin from the OS starch with a low DS was close to that of the β-limit dextrin from native starch but lower than that of the β-limit dextrin from the OS starch with a high DS. Debranching of OS starches was incomplete compared with native starch. OS groups in the OS starch with a low DS were located on the repeat units near the branching points, whereas the OS substituents in the OS starch with a high DS occurred both near the branching points and the non-reducing ends.

  7. Application of immunoaffinity column as cleanup tool for an enzyme linked immunosorbent assay of phosphinothricin-N-acetyltransferase detection in genetically modified maize and rape.

    PubMed

    Xu, Wentao; Huang, Kunlun; Zhao, Heng; Luo, Yunbo

    2005-06-01

    We have developed a new immunoassay method to detect genetically modified (GM) maize and rape containing phosphinothricin-N-acetyltransferase (PAT). PAT encoded by Bialaphos resistance gene (bar) was highly expressed in soluble form in Escherichia coli BL21(DE3) and purified to homogeneity by Ni2+ affinity chromatography. A simple and efficient extraction and purification procedure of PAT from GM maize and rape was developed by means of the immunoaffinity column (IAC) as a cleanup tool. Purified polyclonal antibodies against PAT was produced and coupled covalently to CNBr-activated Sepharose 4B. Both the binding conditions and elution protocols were optimized. The IAC was successfully employed to isolate and purify the PAT from the various tissues of GM maize (Bt11 and Bt176) and rapes (MS1/RF1 and MS8/RF3). Enzyme linked immunosorbent assay (ELISA) procedures were established further on to measure the PAT protein. GM maize cannot be differentiated from non-GM maize by ELISA. But IAC-ELISA allowed 0.5% GMOs to be detected in MS1/RF1 and MS8/RF3 and 10% GMOs to be detected in Bt11 and Bt176, which makes this method an acceptable method to access PAT protein in GM rapes and maize.

  8. Gene duplication confers enhanced expression of 27-kDa γ-zein for endosperm modification in quality protein maize.

    PubMed

    Liu, Hongjun; Shi, Junpeng; Sun, Chuanlong; Gong, Hao; Fan, Xingming; Qiu, Fazhan; Huang, Xuehui; Feng, Qi; Zheng, Xixi; Yuan, Ningning; Li, Changsheng; Zhang, Zhiyong; Deng, Yiting; Wang, Jiechen; Pan, Guangtang; Han, Bin; Lai, Jinsheng; Wu, Yongrui

    2016-05-01

    The maize opaque2 (o2) mutant has a high nutritional value but it develops a chalky endosperm that limits its practical use. Genetic selection for o2 modifiers can convert the normally chalky endosperm of the mutant into a hard, vitreous phenotype, yielding what is known as quality protein maize (QPM). Previous studies have shown that enhanced expression of 27-kDa γ-zein in QPM is essential for endosperm modification. Taking advantage of genome-wide association study analysis of a natural population, linkage mapping analysis of a recombinant inbred line population, and map-based cloning, we identified a quantitative trait locus (qγ27) affecting expression of 27-kDa γ-zein. qγ27 was mapped to the same region as the major o2 modifier (o2 modifier1) on chromosome 7 near the 27-kDa γ-zein locus. qγ27 resulted from a 15.26-kb duplication at the 27-kDa γ-zein locus, which increases the level of gene expression. This duplication occurred before maize domestication; however, the gene structure of qγ27 appears to be unstable and the DNA rearrangement frequently occurs at this locus. Because enhanced expression of 27-kDa γ-zein is critical for endosperm modification in QPM, qγ27 is expected to be under artificial selection. This discovery provides a useful molecular marker that can be used to accelerate QPM breeding.

  9. [Medical and biological safety assessment of genetically modified maize event MON 88017. Report 1. Toxicologo-hygienic examinations].

    PubMed

    Tutel'ian, V A; Gapparov, M M; Avren'eva, L I; Aksiuk, I N; Guseva, G V; kravchenko, L V; L'vova, L S; Saprykin, V P; Tyshko, N V; Chernysheva, O N

    2008-01-01

    The results of toxicologo-hygienic examinations, which were conducted within the framework of integrated medical and biological assessment of genetically modified rootworm Diabrotica spp.--protected and glyphosate tolerant maize event MON 88017, are presented. Analysis of morphological, hematological, biochemical parameters and system (sensitive) biomarkers has not confirmed any toxic effect of maize event MON 88017.

  10. Relating significance and relations of differentially expressed genes in response to Aspergillus flavus infection in maize.

    PubMed

    Asters, Matthew C; Williams, W Paul; Perkins, Andy D; Mylroie, J Erik; Windham, Gary L; Shan, Xueyan

    2014-01-01

    Aspergillus flavus is a pathogenic fungus infecting maize and producing aflatoxins that are health hazards to humans and animals. Characterizing host defense mechanism and prioritizing candidate resistance genes are important to the development of resistant maize germplasm. We investigated methods amenable for the analysis of the significance and relations among maize candidate genes based on the empirical gene expression data obtained by RT-qPCR technique from maize inbred lines. We optimized a pipeline of analysis tools chosen from various programs to provide rigorous statistical analysis and state of the art data visualization. A network-based method was also explored to construct the empirical gene expression relational structures. Maize genes at the centers in the network were considered as important candidate genes for maize DNA marker studies. The methods in this research can be used to analyze large RT-qPCR datasets and establish complex empirical gene relational structures across multiple experimental conditions. PMID:24770700

  11. Relating significance and relations of differentially expressed genes in response to Aspergillus flavus infection in maize

    PubMed Central

    Asters, Matthew C.; Williams, W. Paul; Perkins, Andy D.; Mylroie, J. Erik; Windham, Gary L.; Shan, Xueyan

    2014-01-01

    Aspergillus flavus is a pathogenic fungus infecting maize and producing aflatoxins that are health hazards to humans and animals. Characterizing host defense mechanism and prioritizing candidate resistance genes are important to the development of resistant maize germplasm. We investigated methods amenable for the analysis of the significance and relations among maize candidate genes based on the empirical gene expression data obtained by RT-qPCR technique from maize inbred lines. We optimized a pipeline of analysis tools chosen from various programs to provide rigorous statistical analysis and state of the art data visualization. A network-based method was also explored to construct the empirical gene expression relational structures. Maize genes at the centers in the network were considered as important candidate genes for maize DNA marker studies. The methods in this research can be used to analyze large RT-qPCR datasets and establish complex empirical gene relational structures across multiple experimental conditions. PMID:24770700

  12. The maize milkweed pod1 mutant reveals a mechanism to modify organ morphology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A detailed examination of normal prophyll development indicates that polarity is established differently in the keels than in other parts of the prophyll. Analysis of the maize HD-ZIPIII gene rolled leaf1 (rld1) suggests that altered expression patterns are responsible for keel outgrowth. Recessive ...

  13. Detection of genetically modified maize in processed foods sold commercially in iran by qualitative PCR.

    PubMed

    Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud

    2013-01-01

    Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer's right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses. PMID:24250568

  14. Detection of genetically modified maize in processed foods sold commercially in iran by qualitative PCR.

    PubMed

    Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud

    2013-01-01

    Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer's right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses.

  15. Detection of Genetically Modified Maize in Processed Foods Sold Commercially in Iran by Qualitative PCR

    PubMed Central

    Rabiei, Maryam; Mehdizadeh, Mehrangiz; Rastegar, Hossein; Vahidi, Hossein; Alebouyeh, Mahmoud

    2013-01-01

    Detection of genetically modified organisms (GMOs) in food is an important issue for all the subjects involved in food control and customer’s right. Due to the increasing number of GMOs imported to Iran during the past few years, it has become necessary to screen the products in order to determine the identity of the consumed daily foodstuffs. In this study, following the extraction of genomic DNA from processed foods sold commercially in Iran, qualitative PCR was performed to detect genetically modified maize. The recombinant DNA target sequences were detected with primers highly specific for each investigated transgene such as CaMV35s gene, Bt-11, MON810 and Bt-176 separately. Based on the gel electrophoresis results, Bt- 11 and MON810 events were detected in some maize samples, while, in none of them Bt- 176 modified gene was detected. For the first time, the results demonstrate the presence of genetically modified maize in Iranian food products, reinforcing the need for the development of labeling system and valid quantitative methods in routine analyses. PMID:24250568

  16. A look at product development with genetically modified crops: examples from maize.

    PubMed

    Mumm, Rita H

    2013-09-01

    Plant breeding for crop genetic improvement involves the cycle of creating genetic diversity and exploiting that diversity to derive an improved cultivar with outstanding performance for specific traits of interest. Genetic modification through transformation essentially expands the genepool to facilitate access to genes otherwise not available through crossing. Transgenic events are defined by the DNA sequence that has been incorporated into the target genome and the specific point(s) of insertion. In the development of a new transgenic trait, typically many events are generated and evaluated with the aim of identifying one exhibiting consistent trait expression at or above specified thresholds, stable inheritance, and the absence of any negative effects. With transgenic traits for maize, once commercial candidates have been identified, these events are introgressed into elite lines, often through the use of molecular markers that can accelerate the breeding process and aid in producing a quality conversion. Converted elite lines are yield-tested to ensure performance equivalency with their unconverted counterparts. Finally, before commercial sale of seed, quality control monitoring is conducted to ensure event identity and purity and the absence of any unintended events. This monitoring complements other quality control measures to confirm seed viability and line/hybrid purity and uniformity in seed treatments, all in an effort to ensure customer satisfaction and to comply with governmental regulations. Thus, genetically modified (GM) cultivars are subject to significant testing and auditing prior to seed sale and distribution to farmers, more testing and auditing than with non-GM cultivars.

  17. A look at product development with genetically modified crops: examples from maize.

    PubMed

    Mumm, Rita H

    2013-09-01

    Plant breeding for crop genetic improvement involves the cycle of creating genetic diversity and exploiting that diversity to derive an improved cultivar with outstanding performance for specific traits of interest. Genetic modification through transformation essentially expands the genepool to facilitate access to genes otherwise not available through crossing. Transgenic events are defined by the DNA sequence that has been incorporated into the target genome and the specific point(s) of insertion. In the development of a new transgenic trait, typically many events are generated and evaluated with the aim of identifying one exhibiting consistent trait expression at or above specified thresholds, stable inheritance, and the absence of any negative effects. With transgenic traits for maize, once commercial candidates have been identified, these events are introgressed into elite lines, often through the use of molecular markers that can accelerate the breeding process and aid in producing a quality conversion. Converted elite lines are yield-tested to ensure performance equivalency with their unconverted counterparts. Finally, before commercial sale of seed, quality control monitoring is conducted to ensure event identity and purity and the absence of any unintended events. This monitoring complements other quality control measures to confirm seed viability and line/hybrid purity and uniformity in seed treatments, all in an effort to ensure customer satisfaction and to comply with governmental regulations. Thus, genetically modified (GM) cultivars are subject to significant testing and auditing prior to seed sale and distribution to farmers, more testing and auditing than with non-GM cultivars. PMID:23668783

  18. Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells.

    PubMed Central

    Subbaiah, C C; Bush, D S; Sachs, M M

    1994-01-01

    Based on pharmacological evidence, we previously proposed that intracellular Ca2+ mediates the perception of O2 deprivation in maize seedlings. Herein, using fluorescence imaging and photometry of Ca2+ in maize suspension-cultured cells, the proposal was further investigated. Two complementary approaches were taken: (1) real time analysis of anoxia-induced changes in cytosolic Ca2+ concentration ([Ca]i) and (2) experimental manipulation of [Ca]i and then assay of the resultant anoxia-specific responses. O2 depletion caused an immediate increase in [Ca2+]i, and this was reversible within a few seconds of reoxygenation. The [Ca]i elevation proceeded independent of extracellular Ca2+. The kinetics of the Ca2+ response showed that it occurred much earlier than any detectable changes in gene expression. Ruthenium red blocked the anoxic [Ca]i elevation and also the induction of adh1 (encoding alcohol dehydrogenase) and sh1 (encoding sucrose synthase) mRNA. Ca2+, when added along with ruthenium red, prevented the effects of the antagonist on the anoxic responses. Verapamil and bepridil failed to block the [Ca]i rise induced by anoxia and were equally ineffective on anoxic gene expression. Caffeine induced an elevation of [Ca]i as well as ADH activity under normoxia. The data provide direct evidence for [Ca]i elevation in maize cells as a result of anoxia-induced mobilization of Ca2+ from intracellular stores. Furthermore, any manipulation that modified the [Ca]i rise brought about a parallel change in the expression of two anoxia-inducible genes. Thus, these results corroborate our proposal that [Ca]i is a physiological transducer of anoxia signals in plants. PMID:7866021

  19. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25.

    PubMed

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-11-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg(-1) GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25.

  20. Expression of an anthranilate synthase from maize mutant bf-1 in maize line HiII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize mutant bf-1 was one of a series of maize mutants generated by radiation from the Bikini Atoll atomic bomb test in 1946. It is characterized by blue fluorescence in seedlings and anthers under ultraviolet illumination and by mutant plants giving off a characteristic grape-like odor due to the ...

  1. Analysis and expression of the alpha-expansin and beta-expansin gene families in maize

    NASA Technical Reports Server (NTRS)

    Wu, Y.; Meeley, R. B.; Cosgrove, D. J.

    2001-01-01

    Expansins comprise a multigene family of proteins in maize (Zea mays). We isolated and characterized 13 different maize expansin cDNAs, five of which are alpha-expansins and eight of which are beta-expansins. This paper presents an analysis of these 13 expansins, as well as an expression analysis by northern blotting with materials from young and mature maize plants. Some expansins were expressed in restricted regions, such as the beta-expansins ExpB1 (specifically expressed in maize pollen) and ExpB4 (expressed principally in young husks). Other expansins such as alpha-expansin Exp1 and beta-expansin ExpB2 were expressed in several organs. The expression of yet a third group was not detected in the selected organs and tissues. An analysis of expansin sequences from the maize expressed sequence tag collection is also presented. Our results indicate that expansin genes may have general, overlapping expression in some instances, whereas in other cases the expression may be highly specific and limited to a single organ or cell type. In contrast to the situation in Arabidopsis, beta-expansins in maize seem to be more numerous and more highly expressed than are alpha-expansins. The results support the concept that beta-expansins multiplied and evolved special functions in the grasses.

  2. Finding the joker among the maize endogenous reference genes for genetically modified organism (GMO) detection.

    PubMed

    Paternò, Annalisa; Marchesi, Ugo; Gatto, Francesco; Verginelli, Daniela; Quarchioni, Cinzia; Fusco, Cristiana; Zepparoni, Alessia; Amaddeo, Demetrio; Ciabatti, Ilaria

    2009-12-01

    The comparison of five real-time polymerase chain reaction (PCR) methods targeted at maize ( Zea mays ) endogenous sequences is reported. PCR targets were the alcohol dehydrogenase (adh) gene for three methods and high-mobility group (hmg) gene for the other two. The five real-time PCR methods have been checked under repeatability conditions at several dilution levels on both pooled DNA template from several genetically modified (GM) maize certified reference materials (CRMs) and single CRM DNA extracts. Slopes and R(2) coefficients of all of the curves obtained from the adopted regression model were compared within the same method and among all of the five methods, and the limit of detection and limit of quantitation were analyzed for each PCR system. Furthermore, method equivalency was evaluated on the basis of the ability to estimate the target haploid genome copy number at each concentration level. Results indicated that, among the five methods tested, one of the hmg-targeted PCR systems can be considered equivalent to the others but shows the best regression parameters and a higher repeteability along the dilution range. Thereby, it is proposed as a valid module to be coupled to different event-specific real-time PCR for maize genetically modified organism (GMO) quantitation. The resulting practicability improvement on the analytical control of GMOs is discussed.

  3. Clarification of colloidal and suspended material in water using triethanolamine modified maize tassels.

    PubMed

    Kinyua, Esther Mbuci; Mwangi, Isaac W; Wanjau, Ruth N; Ngila, J C

    2016-03-01

    Suspended particles in water are a major concern in global pollution management. They affect the appreciation of water due to clarity, photosynthesis, and poor oxygen environment rendering water unsuitable for aquatic animals. Some suspended materials contain functional groups capable of forming complex compounds with metals making them available for poisoning. Such material promotes the growth of bacteria and fouling that give rise to unpleasant taste and odor of the water and thus requires removal. Removal of suspended solids is normally achieved through sedimentation or filtration. However, some suspended colloidal particles are very stable in water and cannot settle while others are able to pass through the filter due to small size, hence difficult to remove. This study investigated the use of triethanolamine-modified maize tassels to form a flocculent for their removal. The modified maize tassels were characterized using Fourier transform infrared (FTIR), and it was found that the triethanolamine was anchored within the cellulose structure of the maize tassels. Clarification parameters such as settling time, reagent dosage, and pH were investigated. The best clarification was at a pH of 6.0 with clearance being less than in 30 min. The optimal flocculent dosage was found to be 3.5 ml of the material, showing that the material has a potential of enhancing clarity in polluted water. PMID:26561324

  4. Maize tassel-modified carbon paste electrode for voltammetric determination of Cu(II).

    PubMed

    Moyo, Mambo; Okonkwo, Jonathan O; Agyei, Nana M

    2014-08-01

    The preparation and application of a practical electrochemical sensor for environmental monitoring and assessment of heavy metal ions in samples is a subject of considerable interest. In this paper, a carbon paste electrode modified with maize tassel for the determination of Cu(II) has been proposed. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to study morphology and identify the functional groups on the modified electrode, respectively. First, Cu(II) was adsorbed on the carbon paste electrode surface at open circuit and voltammetric techniques were used to investigate the electrochemical performances of the sensor. The electrochemical sensor showed an excellent electrocatalytic activity towards Cu(II) at pH 5.0 and by increasing the amount of maize tassel biomass, a maximum response at 1:2.5 (maize tassel:carbon paste; w/w) was obtained. The electrocatalytic redox current of Cu(II) showed a linear response in the range (1.23 μM to 0.4 mM) with the correlation coefficient of 0.9980. The limit of detection and current-concentration sensitivity were calculated to be 0.13 (±0.01) μM and 0.012 (±0.001) μA/μM, respectively. The sensor gave good recovery of Cu(II) in the range from 96.0 to 98.0 % when applied to water samples. PMID:24705875

  5. Maize tassel-modified carbon paste electrode for voltammetric determination of Cu(II).

    PubMed

    Moyo, Mambo; Okonkwo, Jonathan O; Agyei, Nana M

    2014-08-01

    The preparation and application of a practical electrochemical sensor for environmental monitoring and assessment of heavy metal ions in samples is a subject of considerable interest. In this paper, a carbon paste electrode modified with maize tassel for the determination of Cu(II) has been proposed. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to study morphology and identify the functional groups on the modified electrode, respectively. First, Cu(II) was adsorbed on the carbon paste electrode surface at open circuit and voltammetric techniques were used to investigate the electrochemical performances of the sensor. The electrochemical sensor showed an excellent electrocatalytic activity towards Cu(II) at pH 5.0 and by increasing the amount of maize tassel biomass, a maximum response at 1:2.5 (maize tassel:carbon paste; w/w) was obtained. The electrocatalytic redox current of Cu(II) showed a linear response in the range (1.23 μM to 0.4 mM) with the correlation coefficient of 0.9980. The limit of detection and current-concentration sensitivity were calculated to be 0.13 (±0.01) μM and 0.012 (±0.001) μA/μM, respectively. The sensor gave good recovery of Cu(II) in the range from 96.0 to 98.0 % when applied to water samples.

  6. Finding the joker among the maize endogenous reference genes for genetically modified organism (GMO) detection.

    PubMed

    Paternò, Annalisa; Marchesi, Ugo; Gatto, Francesco; Verginelli, Daniela; Quarchioni, Cinzia; Fusco, Cristiana; Zepparoni, Alessia; Amaddeo, Demetrio; Ciabatti, Ilaria

    2009-12-01

    The comparison of five real-time polymerase chain reaction (PCR) methods targeted at maize ( Zea mays ) endogenous sequences is reported. PCR targets were the alcohol dehydrogenase (adh) gene for three methods and high-mobility group (hmg) gene for the other two. The five real-time PCR methods have been checked under repeatability conditions at several dilution levels on both pooled DNA template from several genetically modified (GM) maize certified reference materials (CRMs) and single CRM DNA extracts. Slopes and R(2) coefficients of all of the curves obtained from the adopted regression model were compared within the same method and among all of the five methods, and the limit of detection and limit of quantitation were analyzed for each PCR system. Furthermore, method equivalency was evaluated on the basis of the ability to estimate the target haploid genome copy number at each concentration level. Results indicated that, among the five methods tested, one of the hmg-targeted PCR systems can be considered equivalent to the others but shows the best regression parameters and a higher repeteability along the dilution range. Thereby, it is proposed as a valid module to be coupled to different event-specific real-time PCR for maize genetically modified organism (GMO) quantitation. The resulting practicability improvement on the analytical control of GMOs is discussed. PMID:19902949

  7. DNA extraction techniques compared for accurate detection of genetically modified organisms (GMOs) in maize food and feed products.

    PubMed

    Turkec, Aydin; Kazan, Hande; Karacanli, Burçin; Lucas, Stuart J

    2015-08-01

    In this paper, DNA extraction methods have been evaluated to detect the presence of genetically modified organisms (GMOs) in maize food and feed products commercialised in Turkey. All the extraction methods tested performed well for the majority of maize foods and feed products analysed. However, the highest DNA content was achieved by the Wizard, Genespin or the CTAB method, all of which produced optimal DNA yield and purity for different maize food and feed products. The samples were then screened for the presence of GM elements, along with certified reference materials. Of the food and feed samples, 8 % tested positive for the presence of one GM element (NOS terminator), of which half (4 % of the total) also contained a second element (the Cauliflower Mosaic Virus 35S promoter). The results obtained herein clearly demonstrate the presence of GM maize in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of maize food and feed products. PMID:26243938

  8. DNA extraction techniques compared for accurate detection of genetically modified organisms (GMOs) in maize food and feed products.

    PubMed

    Turkec, Aydin; Kazan, Hande; Karacanli, Burçin; Lucas, Stuart J

    2015-08-01

    In this paper, DNA extraction methods have been evaluated to detect the presence of genetically modified organisms (GMOs) in maize food and feed products commercialised in Turkey. All the extraction methods tested performed well for the majority of maize foods and feed products analysed. However, the highest DNA content was achieved by the Wizard, Genespin or the CTAB method, all of which produced optimal DNA yield and purity for different maize food and feed products. The samples were then screened for the presence of GM elements, along with certified reference materials. Of the food and feed samples, 8 % tested positive for the presence of one GM element (NOS terminator), of which half (4 % of the total) also contained a second element (the Cauliflower Mosaic Virus 35S promoter). The results obtained herein clearly demonstrate the presence of GM maize in the Turkish market, and that the Foodproof GMO Screening Kit provides reliable screening of maize food and feed products.

  9. Cell-Specific Expression of Mitochondrial Transcripts in Maize Seedlings.

    PubMed Central

    Li, X. Q.; Zhang, M.; Brown, G. G.

    1996-01-01

    Although mitochondria are thought to assume crucial and possibly novel physiological functions during male gametogenesis, it is not known to what extent mitochondrial function is necessary for other aspects of plant development or to what degree the expression of plant mitochondrial genes is subject to cell-specific regulation, particularly during vegetative growth. We have used in situ hybridization to show that extensive differences exist in the levels of mitochondrial RNAs (mtRNAs) among different tissues and among different individual cell types within the same organ of maize seedlings. The expression of all examined mtRNAs is enhanced in vascular bundles, particularly in procambium- and xylem-forming cells. Mitochondrial transcript levels correlated highly with cell division activity. For example, in roots, the transcripts are abundant in the dividing cells of the meristem but drop to very low levels in the nondividing cells of the root cap and the meristem quiescent center. By comparison, levels of functional mitochondria, as assessed by rhodamine-123 fluorescence, did not vary greatly among the same group of cells. In shoots, in situ hybridization and blot hybridization revealed differences in the patterns of localization among different mtRNAs. The results indicate that during vegetative growth, mitochondrial gene expression at the transcript level is subject to an unexpected degree of cell-specific regulation and that different controls may operate on different trancripts. PMID:12239371

  10. Earthworms modify microbial community structure and accelerate maize stover decomposition during vermicomposting.

    PubMed

    Chen, Yuxiang; Zhang, Yufen; Zhang, Quanguo; Xu, Lixin; Li, Ran; Luo, Xiaopei; Zhang, Xin; Tong, Jin

    2015-11-01

    In the present study, maize stover was vermicomposted with the epigeic earthworm Eisenia fetida. The results showed that, during vermicomposting process, the earthworms promoted decomposition of maize stover. Analysis of microbial communities of the vermicompost by high-throughput pyrosequencing showed more complex bacterial community structure in the substrate treated by the earthworms than that in the control group. The dominant microbial genera in the treatment with the earthworms were Pseudoxanthomonas, Pseudomonas, Arthrobacter, Streptomyces, Cryptococcus, Guehomyces, and Mucor. Compared to the control group, the relative abundance of lignocellulose degradation microorganisms increased. The results indicated that the earthworms modified the structure of microbial communities during vermicomposting process, activated the growth of lignocellulose degradation microorganisms, and triggered the lignocellulose decomposition. PMID:26139410

  11. Earthworms modify microbial community structure and accelerate maize stover decomposition during vermicomposting.

    PubMed

    Chen, Yuxiang; Zhang, Yufen; Zhang, Quanguo; Xu, Lixin; Li, Ran; Luo, Xiaopei; Zhang, Xin; Tong, Jin

    2015-11-01

    In the present study, maize stover was vermicomposted with the epigeic earthworm Eisenia fetida. The results showed that, during vermicomposting process, the earthworms promoted decomposition of maize stover. Analysis of microbial communities of the vermicompost by high-throughput pyrosequencing showed more complex bacterial community structure in the substrate treated by the earthworms than that in the control group. The dominant microbial genera in the treatment with the earthworms were Pseudoxanthomonas, Pseudomonas, Arthrobacter, Streptomyces, Cryptococcus, Guehomyces, and Mucor. Compared to the control group, the relative abundance of lignocellulose degradation microorganisms increased. The results indicated that the earthworms modified the structure of microbial communities during vermicomposting process, activated the growth of lignocellulose degradation microorganisms, and triggered the lignocellulose decomposition.

  12. [Medical and biological safety assessment of genetically modified maize event MON 88017. Report 2. Genotoxicologic, immunologic and allergologic examinations].

    PubMed

    Tyshko, N V; Britsina, M V; Gmoshinskiĭ, I V; Zhanataev, A K; Zakharova, N S; Zorin, S N; Mazo, V K; Semenov, B F

    2008-01-01

    There are presented the results of genotoxicologic, immunologic and allergologic examinations which were conducted within the framework of integrated medical and biological assessment of genetically modified rootworm Diabrotica spp.--protected and glyphosate tolerant maize event MON 88017. Analysis of damages of DNA and structural chromosome aberrations, assessment of the allergenic potential and immunoreactive properties has not confirmed any genotoxic, allergenic and immunotoxic effect of maize event MON 88017.

  13. Resistance evolution to the first generation of genetically modified Diabrotica-active Bt-maize events by western corn rootworm: management and monitoring considerations.

    PubMed

    Devos, Yann; Meihls, Lisa N; Kiss, József; Hibbard, Bruce E

    2013-04-01

    Western corn rootworm (Diabrotica virgifera virgifera; WCR) is a major coleopteran maize pest in North America and the EU, and has traditionally been managed through crop rotation and broad-spectrum soil insecticides. Genetically modified Bt-maize offers an additional management tool for WCR and has been valuable in reducing insecticide use and increasing farm income. A concern is that the widespread, repeated, and exclusive deployment of the same Bt-maize transformation event will result in the rapid evolution of resistance in WCR. This publication explores the potential of WCR to evolve resistance to plant-produced Bt-toxins from the first generation of Diabrotica-active Bt-maize events (MON 863 and MON 88017, DAS-59122-7 and MIR604), and whether currently implemented risk management strategies to delay and monitor resistance evolution are appropriate. In twelve of the twelve artificial selection experiments reported, resistant WCR populations were yielded rapidly. Field-selected resistance of WCR to Cry3Bb1 is documented in some US maize growing areas, where an increasing number of cases of unexpected damage of WCR larvae to Bt-maize MON 88017 has been reported. Currently implemented insect resistance management measures for Bt-crops usually rely on the high dose/refuge (HDR) strategy. Evidence (including laboratory, greenhouse and field data) indicates that several conditions contributing to the success of the HDR strategy may not be met for the first generation of Bt-maize events and WCR: (1) the Bt-toxins are expressed heterogeneously at a low-to-moderate dose in roots; (2) resistance alleles may be present at a higher frequency than initially assumed; (3) WCR may mate in a non-random manner; (4) resistance traits could have non-recessive inheritance; and (5) fitness costs may not necessarily be associated with resistance evolution. However, caution must be exercised when extrapolating laboratory and greenhouse results to field conditions. Model predictions

  14. Resistance evolution to the first generation of genetically modified Diabrotica-active Bt-maize events by western corn rootworm: management and monitoring considerations.

    PubMed

    Devos, Yann; Meihls, Lisa N; Kiss, József; Hibbard, Bruce E

    2013-04-01

    Western corn rootworm (Diabrotica virgifera virgifera; WCR) is a major coleopteran maize pest in North America and the EU, and has traditionally been managed through crop rotation and broad-spectrum soil insecticides. Genetically modified Bt-maize offers an additional management tool for WCR and has been valuable in reducing insecticide use and increasing farm income. A concern is that the widespread, repeated, and exclusive deployment of the same Bt-maize transformation event will result in the rapid evolution of resistance in WCR. This publication explores the potential of WCR to evolve resistance to plant-produced Bt-toxins from the first generation of Diabrotica-active Bt-maize events (MON 863 and MON 88017, DAS-59122-7 and MIR604), and whether currently implemented risk management strategies to delay and monitor resistance evolution are appropriate. In twelve of the twelve artificial selection experiments reported, resistant WCR populations were yielded rapidly. Field-selected resistance of WCR to Cry3Bb1 is documented in some US maize growing areas, where an increasing number of cases of unexpected damage of WCR larvae to Bt-maize MON 88017 has been reported. Currently implemented insect resistance management measures for Bt-crops usually rely on the high dose/refuge (HDR) strategy. Evidence (including laboratory, greenhouse and field data) indicates that several conditions contributing to the success of the HDR strategy may not be met for the first generation of Bt-maize events and WCR: (1) the Bt-toxins are expressed heterogeneously at a low-to-moderate dose in roots; (2) resistance alleles may be present at a higher frequency than initially assumed; (3) WCR may mate in a non-random manner; (4) resistance traits could have non-recessive inheritance; and (5) fitness costs may not necessarily be associated with resistance evolution. However, caution must be exercised when extrapolating laboratory and greenhouse results to field conditions. Model predictions

  15. Mass spectrometric detection of CP4 EPSPS in genetically modified soya and maize.

    PubMed

    Ocaña, Mireia Fernández; Fraser, Paul D; Patel, Raj K P; Halket, John M; Bramley, Peter M

    2007-01-01

    The potential of protein fractionation hyphenated to mass spectrometry (MS) to detect and characterize the transgenic protein present in Roundup Ready soya and maize has been investigated. Genetically modified (GM) soya and maize contain the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Agrobacterium tumefaciens CP4, which confers resistance to the herbicide glyphosate. The GM soya and maize proteomes were fractionated by gel filtration, anion-exchange chromatography and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) prior to MS. This facilitated detection of a tryptic peptide map of CP4 EPSPS by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS and nanoelectrospray ionization quadrupole time-of-flight (nanoESI-QTOF) MS. Subsequently, sequence information from the CP4 EPSPS tryptic peptides was obtained by nanoESI-QTOF MS/MS. The identification was accomplished in 0.9% GM soya seeds, which is the current EU threshold for food-labeling requirements.

  16. Genotyping and phenotyping of an epigenetic modifier Unstable factor for orange1 (Ufo1) in maize

    NASA Astrophysics Data System (ADS)

    Bowersox, Karisa; Chopra, Surinder

    2012-02-01

    Pericarp color 1 is a model system for the study of epigenetic gene regulation. It has more than 100 alleles that contribute to the color of the pericarp and cob glume of maize. Unstable factor for orange 1 (Ufo1) is a spontaneous dominant mutation that leads to a gain in pigmentation due to a decrease in methylation in p1 genes. This decrease in methylation of cytosine in the DNA leads to changes in chromatin structure. Finding the mechanism for this spontaneous mutation can lead to way of preventing the mutation increasing production colorless maize for food production. Through genotyping and phenotyping fine gene mapping, gene expression and whole genome profiling can be accomplished for plants with the Ufo1 mutation present.

  17. Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants.

    PubMed

    El-Mesbahi, Mohamed Najib; Azcón, Rosario; Ruiz-Lozano, Juan Manuel; Aroca, Ricardo

    2012-10-01

    It is well known that the arbuscular mycorrhizal (AM) symbiosis helps the host plant to overcome several abiotic stresses including drought. One of the mechanisms for this drought tolerance enhancement is the higher water uptake capacity of the mycorrhizal plants. However, the effects of the AM symbiosis on processes regulating root hydraulic properties of the host plant, such as root hydraulic conductivity and plasma membrane aquaporin gene expression, and protein abundance, are not well defined. Since it is known that K(+) status is modified by AM and that it regulates root hydraulic properties, it has been tested how plant K(+) status could modify the effects of the symbiosis on root hydraulic conductivity and plasma membrane aquaporin gene expression and protein abundance, using maize (Zea mays L.) plants and Glomus intraradices as a model. It was observed that the supply of extra K(+) increased root hydraulic conductivity only in AM plants. Also, the different pattern of plasma membrane aquaporin gene expression and protein abundance between AM and non-AM plants changed with the application of extra K(+). Thus, plant K(+) status could be one of the causes of the different observed effects of the AM symbiosis on root hydraulic properties. The present study also highlights the critical importance of AM fungal aquaporins in regulating root hydraulic properties of the host plant. PMID:22370879

  18. Gene duplication confers enhanced expression of 27-kDa γ-zein for endosperm modification in quality protein maize

    PubMed Central

    Liu, Hongjun; Shi, Junpeng; Sun, Chuanlong; Gong, Hao; Fan, Xingming; Qiu, Fazhan; Huang, Xuehui; Feng, Qi; Zheng, Xixi; Yuan, Ningning; Li, Changsheng; Zhang, Zhiyong; Deng, Yiting; Wang, Jiechen; Pan, Guangtang; Han, Bin; Lai, Jinsheng; Wu, Yongrui

    2016-01-01

    The maize opaque2 (o2) mutant has a high nutritional value but it develops a chalky endosperm that limits its practical use. Genetic selection for o2 modifiers can convert the normally chalky endosperm of the mutant into a hard, vitreous phenotype, yielding what is known as quality protein maize (QPM). Previous studies have shown that enhanced expression of 27-kDa γ-zein in QPM is essential for endosperm modification. Taking advantage of genome-wide association study analysis of a natural population, linkage mapping analysis of a recombinant inbred line population, and map-based cloning, we identified a quantitative trait locus (qγ27) affecting expression of 27-kDa γ-zein. qγ27 was mapped to the same region as the major o2 modifier (o2 modifier1) on chromosome 7 near the 27-kDa γ-zein locus. qγ27 resulted from a 15.26-kb duplication at the 27-kDa γ-zein locus, which increases the level of gene expression. This duplication occurred before maize domestication; however, the gene structure of qγ27 appears to be unstable and the DNA rearrangement frequently occurs at this locus. Because enhanced expression of 27-kDa γ-zein is critical for endosperm modification in QPM, qγ27 is expected to be under artificial selection. This discovery provides a useful molecular marker that can be used to accelerate QPM breeding. PMID:27092004

  19. Reliable detection and identification of genetically modified maize, soybean, and canola by multiplex PCR analysis.

    PubMed

    James, Delano; Schmidt, Anna-Mary; Wall, Erika; Green, Margaret; Masri, Saad

    2003-09-24

    Multiplex PCR procedures were developed for simultaneously detecting multiple target sequences in genetically modified (GM) soybean (Roundup Ready), maize (event 176, Bt11, Mon810, T14/25), and canola (GT73, HCN92/28, MS8/RF3, Oxy 235). Internal control targets (invertase gene in corn, lectin and beta-actin genes in soybean, and cruciferin gene in canola) were included as appropriate to assess the efficiency of all reactions, thereby eliminating any false negatives. Primer combinations that allowed the identification of specific lines were used. In one system of identification, simultaneous amplification profiling (SAP), rather than target specific detection, was used for the identification of four GM maize lines. SAP is simple and has the potential to identify both approved and nonapproved GM lines. The template concentration was identified as a critical factor affecting efficient multiplex PCRs. In canola, 75 ng of DNA template was more effective than 50 ng of DNA for the simultaneous amplification of all targets in a reaction volume of 25 microL. Reliable identification of GM canola was achieved at a DNA concentration of 3 ng/microL, and at 0.1% for GM soybean, indicating high levels of sensitivity. Nonspecific amplification was utilized in this study as a tool for specific and reliable identification of one line of GM maize. The primer cry1A 4-3' (antisense primer) recognizes two sites on the DNA template extracted from GM transgenic maize containing event 176 (European corn borer resistant), resulting in the amplification of products of 152 bp (expected) and 485 bp (unexpected). The latter fragment was sequenced and confirmed to be Cry1A specific. The systems described herein represent simple, accurate, and sensitive GMO detection methods in which only one reaction is necessary to detect multiple GM target sequences that can be reliably used for the identification of specific lines of GMOs.

  20. Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize

    PubMed Central

    2013-01-01

    Background Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in various physiological processes, including plant growth and development, abiotic and biotic stress responses and plant hormone signaling in plants. Results In this study, we performed a bioinformatics analysis of the entire maize genome and identified 40 CDPK genes. Phylogenetic analysis indicated that 40 ZmCPKs can be divided into four groups. Most maize CDPK genes exhibited different expression levels in different tissues and developmental stages. Twelve CDPK genes were selected to respond to various stimuli, including salt, drought and cold, as well as ABA and H2O2. Expression analyses suggested that maize CDPK genes are important components of maize development and multiple transduction pathways. Conclusion Here, we present a genome-wide analysis of the CDPK gene family in maize for the first time, and this genomic analysis of maize CDPK genes provides the first step towards a functional study of this gene family in maize. PMID:23815483

  1. Genome-Wide Identification, Evolution and Expression Analysis of mTERF Gene Family in Maize

    PubMed Central

    Zhao, Yanxin; Cai, Manjun; Zhang, Xiaobo; Li, Yurong; Zhang, Jianhua; Zhao, Hailiang; Kong, Fei; Zheng, Yonglian; Qiu, Fazhan

    2014-01-01

    Plant mitochondrial transcription termination factor (mTERF) genes comprise a large family with important roles in regulating organelle gene expression. In this study, a comprehensive database search yielded 31 potential mTERF genes in maize (Zea mays L.) and most of them were targeted to mitochondria or chloroplasts. Maize mTERF were divided into nine main groups based on phylogenetic analysis, and group IX represented the mitochondria and species-specific clade that diverged from other groups. Tandem and segmental duplication both contributed to the expansion of the mTERF gene family in the maize genome. Comprehensive expression analysis of these genes, using microarray data and RNA-seq data, revealed that these genes exhibit a variety of expression patterns. Environmental stimulus experiments revealed differential up or down-regulation expression of maize mTERF genes in seedlings exposed to light/dark, salts and plant hormones, respectively, suggesting various important roles of maize mTERF genes in light acclimation and stress-related responses. These results will be useful for elucidating the roles of mTERF genes in the growth, development and stress response of maize. PMID:24718683

  2. Increased Gene Expression by the First Intron of Maize Shrunken-1 Locus in Grass Species 1

    PubMed Central

    Vasil, Vimla; Clancy, Maureen; Ferl, Robert J.; Vasil, Indra K.; Hannah, L. Curtis

    1989-01-01

    The first intron of the shrunken-1 (Sh1) locus of maize was incorporated into constructs containing the chloramphenicol acetyltransferase gene (CAT) coupled with the nopaline synthase 3′ polyadenylation signal. Transcription was driven with the 35S promoter of the cauliflower mosaic virus (CaMV) or the Sh1 promoter of maize. Transient gene expression was monitored following electroporation into protoplasts of Panicum maximum (guineagrass), Pennisetum purpureum (napiergrass), or Zea mays (maize). The 1028 base pair intron increased gene expression in cells of each species when transcription was driven with the 35S promoter. Eleven to 91-fold increases were observed. Expression levels observed in maize were two and eight times those observed in napiergrass and guineagrass, respectively. The 35S promoter gave CAT activity 10 to 100 times that observed with the Sh1 promoter. Whereas expression driven by the 35S promoter was reproducible, that observed with the Sh1 promoter proved quite variable. In similar constructs the first intron of the alcohol dehydrogenase-1 (Adh1) gene of maize led to increased gene expression of only 7 to 10% of that observed with the Sh1 first intron. The increased level of gene expression caused by the Sh1 first intron is approximately 10 times higher than that caused by any other plant introns that have been used. Thus, the Sh1 first intron may prove quite useful in increasing expression of foreign genes in monocots and possibly other plants. Images Figure 2 PMID:16667219

  3. Lack of repeatable differential expression patterns between MON810 and comparable commercial varieties of maize.

    PubMed

    Coll, Anna; Nadal, Anna; Palaudelmàs, Montserrat; Messeguer, Joaquima; Melé, Enric; Puigdomènech, Pere; Pla, Maria

    2008-09-01

    The introduction of genetically modified organisms (GMO) in many countries follows strict regulations to assure that only products that have been safety tested in relation to human health and the environment are marketed. Thus, GMOs must be authorized before use. By complementing more targeted approaches, profiling methods can assess possible unintended effects of transformation. We used microarrays to compare the transcriptome profiles of widely commercialized maize MON810 varieties and their non-GM near-isogenic counterparts. The expression profiles of MON810 seedlings are more similar to those of their corresponding near-isogenic varieties than are the profiles of other lines produced by conventional breeding. However, differential expression of approximately 1.7 and approximately 0.1% of transcripts was identified in two variety pairs (AristisBt/Aristis and PR33P67/PR33P66) that had similar cryIA(b) mRNA levels, demonstrating that commercial varieties of the same event have different similarity levels to their near-isogenic counterparts without the transgene (note that these two pairs also show phenotypic differences). In the tissues, developmental stage and varieties analyzed, we could not identify any gene differentially expressed in all variety-pairs. However, a small set of sequences were differentially expressed in various pairs. Their relation to the transgenesis was not proven, although this is likely to be modulated by the genetic background of each variety. PMID:18604604

  4. Lack of repeatable differential expression patterns between MON810 and comparable commercial varieties of maize.

    PubMed

    Coll, Anna; Nadal, Anna; Palaudelmàs, Montserrat; Messeguer, Joaquima; Melé, Enric; Puigdomènech, Pere; Pla, Maria

    2008-09-01

    The introduction of genetically modified organisms (GMO) in many countries follows strict regulations to assure that only products that have been safety tested in relation to human health and the environment are marketed. Thus, GMOs must be authorized before use. By complementing more targeted approaches, profiling methods can assess possible unintended effects of transformation. We used microarrays to compare the transcriptome profiles of widely commercialized maize MON810 varieties and their non-GM near-isogenic counterparts. The expression profiles of MON810 seedlings are more similar to those of their corresponding near-isogenic varieties than are the profiles of other lines produced by conventional breeding. However, differential expression of approximately 1.7 and approximately 0.1% of transcripts was identified in two variety pairs (AristisBt/Aristis and PR33P67/PR33P66) that had similar cryIA(b) mRNA levels, demonstrating that commercial varieties of the same event have different similarity levels to their near-isogenic counterparts without the transgene (note that these two pairs also show phenotypic differences). In the tissues, developmental stage and varieties analyzed, we could not identify any gene differentially expressed in all variety-pairs. However, a small set of sequences were differentially expressed in various pairs. Their relation to the transgenesis was not proven, although this is likely to be modulated by the genetic background of each variety.

  5. opaque-15, a maize mutation with properties of a defective opaque-2 modifier.

    PubMed Central

    Dannenhoffer, J M; Bostwick, D E; Or, E; Larkins, B A

    1995-01-01

    An opaque mutation was identified that reduces gamma-zein synthesis in maize endosperm. The mutation, opaque-15, causes a 2- to 3-fold reduction in gamma-zein mRNA and protein synthesis and reduces the proportion of the 27-kDa gamma-zein A gene transcript. Although the protein bodies in opaque-15 are similar in size and morphology compared to wild type, there are fewer of them in developing endosperm cells. The opaque-15 mutation maps near the telomere of chromosome 7L, coincident with an opaque-2 modifier locus. Based on its phenotype, opaque-15 appears to be a mutation of an opaque-2 modifier gene. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:7892202

  6. IUPAC collaborative trial study of a method to detect genetically modified soy beans and maize in dried powder.

    PubMed

    Lipp, M; Brodmann, P; Pietsch, K; Pauwels, J; Anklam, E; Börchers, T; Braunschweiger, G; Busch, U; Eklund, E; Eriksen, F D; Fagan, J; Fellinger, A; Gaugitsch, H; Hayes, D; Hertel, C; Hörtner, H; Joudrier, P; Kruse, L; Meyer, R; Miraglia, M; Müller, W; Phillipp, P; Pöpping, B; Rentsch, R; Wurtz, A

    1999-01-01

    This paper presents results of a collaborative trial study (IUPAC project No. 650/93/97) involving 29 laboratories in 13 countries applying a method for detecting genetically modified organisms (GMOs) in food. The method is based on using the polymerase chain reaction to determine the 35S promotor and the NOS terminator for detection of GMOs. reference materials were produced that were derived from genetically modified soy beans and maize. Correct identification of samples containing 2% GMOs is achievable for both soy beans and maize. For samples containing 0.5% genetically modified soy beans, analysis of the 35S promotor resulted also in a 100% correct classification. However, 3 false-negative results (out of 105 samples analyzed) were reported for analysis of the NOS terminator, which is due to the lower sensitivity of this method. Because of the bigger genomic DNA of maize, the probability of encountering false-negative results for samples containing 0.5% GMOs is greater for maize than for soy beans. For blank samples (0% GMO), only 2 false-positive results for soy beans and one for maize were reported. These results appeared as very weak signals and were most probably due to contamination of laboratory equipment.

  7. Transgenic maize lines with cell-type specific expression of fluorescent proteins in plastids.

    PubMed

    Sattarzadeh, Amir; Fuller, Jonathan; Moguel, Salvador; Wostrikoff, Katia; Sato, Shirley; Covshoff, Sarah; Clemente, Tom; Hanson, Maureen; Stern, David B

    2010-02-01

    Plastid number and morphology vary dramatically between cell types and at different developmental stages. Furthermore, in C4 plants such as maize, chloroplast ultrastructure and biochemical functions are specialized in mesophyll and bundle sheath cells, which differentiate acropetally from the proplastid form in the leaf base. To develop visible markers for maize plastids, we have created a series of stable transgenics expressing fluorescent proteins fused to either the maize ubiquitin promoter, the mesophyll-specific phosphoenolpyruvate carboxylase (PepC) promoter, or the bundle sheath-specific Rubisco small subunit 1 (RbcS) promoter. Multiple independent events were examined and revealed that maize codon-optimized versions of YFP and GFP were particularly well expressed, and that expression was stably inherited. Plants carrying PepC promoter constructs exhibit YFP expression in mesophyll plastids and the RbcS promoter mediated expression in bundle sheath plastids. The PepC and RbcS promoter fusions also proved useful for identifying plastids in organs such as epidermis, silks, roots and trichomes. These tools will inform future plastid-related studies of wild-type and mutant maize plants and provide material from which different plastid types may be isolated. PMID:20051034

  8. Transgenic maize lines with cell-type specific expression of fluorescent proteins in plastids.

    PubMed

    Sattarzadeh, Amir; Fuller, Jonathan; Moguel, Salvador; Wostrikoff, Katia; Sato, Shirley; Covshoff, Sarah; Clemente, Tom; Hanson, Maureen; Stern, David B

    2010-02-01

    Plastid number and morphology vary dramatically between cell types and at different developmental stages. Furthermore, in C4 plants such as maize, chloroplast ultrastructure and biochemical functions are specialized in mesophyll and bundle sheath cells, which differentiate acropetally from the proplastid form in the leaf base. To develop visible markers for maize plastids, we have created a series of stable transgenics expressing fluorescent proteins fused to either the maize ubiquitin promoter, the mesophyll-specific phosphoenolpyruvate carboxylase (PepC) promoter, or the bundle sheath-specific Rubisco small subunit 1 (RbcS) promoter. Multiple independent events were examined and revealed that maize codon-optimized versions of YFP and GFP were particularly well expressed, and that expression was stably inherited. Plants carrying PepC promoter constructs exhibit YFP expression in mesophyll plastids and the RbcS promoter mediated expression in bundle sheath plastids. The PepC and RbcS promoter fusions also proved useful for identifying plastids in organs such as epidermis, silks, roots and trichomes. These tools will inform future plastid-related studies of wild-type and mutant maize plants and provide material from which different plastid types may be isolated.

  9. Detection of genetically modified maize DNA fragments in the intestinal contents of pigs fed StarLink CBH351.

    PubMed

    Chowdhury, E H; Mikami, O; Nakajima, Y; Hino, A; Kuribara, H; Suga, K; Hanazumi, M; Yomemochi, C

    2003-03-01

    We tried to detect DNA fragments derived from maize in the intestinal contents of pigs fed genetically modified (GM) StarLink CBH351 maize (SL) or non-GM maize. Intestinal contents of 8 SL and 8 non-GM maize-fed pigs were collected at slaughter, and the genes of the recombinant cry9C and the maize intrinsic zein (Zel) were assayed by polymerase chain reaction (PCR) 3 times with a total of 4 primer pairs of different expected lengths. The cry9C gene (either 103 or 170 bp) was detected in the rectal contents (with a frequency of 25-37.5%) and in the cecal contents (25-50%) of the pigs fed SL. In a similar fashion, the zein (Zel) gene (either 242 or 329 bp) was detected in the rectal contents (with a frequency of 31.3%) and in the cecal contents (25-37.5%) of pigs fed on SL non-GM maize. These results suggested that ingested DNA was not totally degraded, but is present in a form detectable by PCR.

  10. Production of resistant starch by extrusion cooking of acid-modified normal-maize starch.

    PubMed

    Hasjim, Jovin; Jane, Jay-Lin

    2009-09-01

    The objective of this study was to utilize extrusion cooking and hydrothermal treatment to produce resistant starch (RS) as an economical alternative to a batch-cooking process. A hydrothermal treatment (110 degrees C, 3 d) of batch-cooked and extruded starch samples facilitated propagation of heat-stable starch crystallites and increased the RS contents from 2.1% to 7.7% up to 17.4% determined using AOAC Method 991.43 for total dietary fiber. When starch samples were batch cooked and hydrothermally treated at a moisture content below 70%, acid-modified normal-maize starch (AMMS) produced a greater RS content than did native normal-maize starch (NMS). This was attributed to the partially hydrolyzed, smaller molecules in the AMMS, which had greater mobility and freedom than the larger molecules in the NMS. The RS contents of the batch-cooked and extruded AMMS products after the hydrothermal treatment were similar. A freezing treatment of the AMMS samples at -20 degrees C prior to the hydrothermal treatment did not increase the RS content. The DSC thermograms and the X-ray diffractograms showed that retrograded amylose and crystalline starch-lipid complex, which had melting temperatures above 100 degrees C, accounted for the RS contents.

  11. Removal of cadmium(II) from aqueous solutions by chemically modified maize straw.

    PubMed

    Guo, Hong; Zhang, Shufen; Kou, Zinong; Zhai, Shangru; Ma, Wei; Yang, Yi

    2015-01-22

    A new regenerable adsorbent was successfully prepared by modifying maize straw (MS) with succinic anhydride in xylene. The succinylated-maize straw (S-MS) was characterized by FTIR, solid-state MAS (13)C NMR spectroscopy, SEM-EDX and point of zero charge analysis. NaS-MS was successfully obtained after deprotonating the carboxylic acid groups of S-MS by Na2CO3 solution. Batch experiments were carried out with NaS-MS for the removal of Cd(II). The effects of pH, adsorbent dosage, contact time, initial concentration and temperature were investigated. The experimental data were best described by a pseudo-second-order kinetics and Langmuir adsorption models. Thermodynamic parameters (ΔG, ΔH, and ΔS) were also calculated from data obtained from experiments performed to study the effect of temperatures. NaS-MS could be regenerated at least five times in saturated NaCl solution without any loss. Furthermore, ∼97% of adsorbed Cd(II) ions could be recovered as the metal oxide. Finally, the adsorption mechanism of NaS-MS was discussed. PMID:25439883

  12. Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut.

    PubMed

    Allen, Aron; Islamovic, Emir; Kaur, Jagdeep; Gold, Scott; Shah, Dilip; Smith, Thomas J

    2011-10-01

    The corn smut fungus, Ustilago maydis, is a global pathogen responsible for extensive agricultural losses. Control of corn smut using traditional breeding has met with limited success because natural resistance to U. maydis is organ specific and involves numerous maize genes. Here, we present a transgenic approach by constitutively expressing the Totivirus antifungal protein KP4, in maize. Transgenic maize plants expressed high levels of KP4 with no apparent negative impact on plant development and displayed robust resistance to U. maydis challenges to both the stem and ear tissues in the greenhouse. More broadly, these results demonstrate that a high level of organ independent fungal resistance can be afforded by transgenic expression of this family of antifungal proteins.

  13. Regulation of Cat1 gene expression in the scutellum of maize during early sporophytic development.

    PubMed Central

    Chandlee, J M; Scandalios, J G

    1984-01-01

    A regulatory element has been identified in maize that appears to exert an effect specifically on Cat1 gene expression in the scutellum of maize during early sporophytic development. Cat1 encodes CAT-1 catalase, one of two forms of catalase expressed in the scutellum during this developmental time period. Density-labeling experiments indicate that the regulatory element influences the overall levels of CAT-1 protein synthesis in the scutellum but has no effect on CAT-2 protein synthesis. Immunoprecipitation experiments of in vitro translation products suggest that this element has an effect on the level of translatable Cat1 mRNA associated with the scutellar polysomes. The element exhibits additive inheritance and is tissue and time specific in its action. This element, therefore, meets all the criteria of a regulatory gene and has been designated Car2. The element acts to regulate the temporal expression of the Cat1 structural locus in maize. Images PMID:6589635

  14. EXPRESSION OF THE MAIZE MOSAIC VIRUS GLYCOPROTEIN IN INSECT CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize mosaic virus (genus Nucleorhabdovirus, family Rhabdoviridae) is transmitted in a persistent-propagative manner by Peregrinus maidis, the corn planthopper. Like other rhabdoviruses, the MMV genome encodes a surface glycoprotein that is likely involved in virus attachment and entry into host ce...

  15. The structure and expression of maize genes encoding the major heat shock protein, hsp70.

    PubMed

    Rochester, D E; Winer, J A; Shah, D M

    1986-03-01

    We have isolated and sequenced two maize genomic clones that are homologous to the Drosophila hsp70 gene. One of the maize hsp70 clones contains the entire hsp70 coding region and 81 nucleotides of the 5' nontranslated sequence. The predicted amino acid sequence for this maize protein is 68% homologous to the hsp70 of Drosophila. The second maize hsp70 clone contains only part of the coding sequence and 1.1 kb of the 5' flanking sequence. This 5' flanking sequence contains two sequences homologous to the consensus heat-shock-element sequence. Both maize genes are thermally inducible and each contains an intron in the same position as that of the heat-shock-cognate gene, hsc1, of Drosophila. The presence of an intron in the maize genes is a distinguishing feature in that no other thermally inducible hsp70 genes described to date contain an intron. We have constructed a hybrid hsp70 gene containing the entire hsp70 coding sequence with an intron, and 1.1 kb of the 5' flanking sequence. We demonstrate that this hybrid gene is thermally inducible in a transgenic petunia plant and that the gene is expressed from its own promoter.

  16. Tissue-specific gene expression in maize seeds during colonization by Aspergillus flavus and Fusarium verticillioides.

    PubMed

    Shu, Xiaomei; Livingston, David P; Franks, Robert G; Boston, Rebecca S; Woloshuk, Charles P; Payne, Gary A

    2015-09-01

    Aspergillus flavus and Fusarium verticillioides are fungal pathogens that colonize maize kernels and produce the harmful mycotoxins aflatoxin and fumonisin, respectively. Management practice based on potential host resistance to reduce contamination by these mycotoxins has proven difficult, resulting in the need for a better understanding of the infection process by these fungi and the response of maize seeds to infection. In this study, we followed the colonization of seeds by histological methods and the transcriptional changes of two maize defence-related genes in specific seed tissues by RNA in situ hybridization. Maize kernels were inoculated with either A. flavus or F. verticillioides 21-22 days after pollination, and harvested at 4, 12, 24, 48, 72, 96 and 120 h post-inoculation. The fungi colonized all tissues of maize seed, but differed in their interactions with aleurone and germ tissues. RNA in situ hybridization showed the induction of the maize pathogenesis-related protein, maize seed (PRms) gene in the aleurone and scutellum on infection by either fungus. Transcripts of the maize sucrose synthase-encoding gene, shrunken-1 (Sh1), were observed in the embryo of non-infected kernels, but were induced on infection by each fungus in the aleurone and scutellum. By comparing histological and RNA in situ hybridization results from adjacent serial sections, we found that the transcripts of these two genes accumulated in tissue prior to the arrival of the advancing pathogens in the seeds. A knowledge of the patterns of colonization and tissue-specific gene expression in response to these fungi will be helpful in the development of resistance.

  17. Engineering secondary metabolism in maize cells by ectopic expression of transcription factors

    PubMed Central

    Grotewold, E; Chamberlin, M; Snook, M; Siame, B; Butler, L; Swenson, J; Maddock, S; Clair, GS; Bowen, B

    1998-01-01

    Manipulation of plant natural product biosynthesis through genetic engineering is an attractive but technically challenging goal. Here, we demonstrate that different secondary metabolites can be produced in cultured maize cells by ectopic expression of the appropriate regulatory genes. Cell lines engineered to express the maize transcriptional activators C1 and R accumulate two cyanidin derivatives, which are similar to the predominant anthocyanin found in differentiated plant tissues. In contrast, cell lines that express P accumulate various 3-deoxy flavonoids. Unexpectedly, P-expressing cells in culture also accumulate phenylpropanoids and green fluorescent compounds that are targeted to different subcellular compartments. Two endogenous biosynthetic genes (c2 and a1, encoding chalcone synthase and flavanone/dihydroflavonol reductase, respectively) are independently activated by ectopic expression of either P or C1/R, and there is a dose-response relationship between the transcript level of P and the degree to which c2 or a1 is expressed. Our results support a simple model showing how the gene encoding P may act as a quantitative trait locus controlling insecticidal C-glycosyl flavone level in maize silks, and they suggest how p1 might confer a selective advantage against insect predation in maize. PMID:9596632

  18. Authentic processing and targeting of active maize auxin-binding protein in the baculovirus expression system.

    PubMed Central

    Macdonald, H; Henderson, J; Napier, R M; Venis, M A; Hawes, C; Lazarus, C M

    1994-01-01

    The major auxin-binding protein (ABP1) from maize (Zea mays L.) has been expressed in insect cells using the baculovirus expression system. The recombinant protein can be readily detected in total insect cell lysates by Coomassie blue staining on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Our data suggest that ABP1 is processed similarly in both insect cells and maize. The signal peptide is cleaved at the same position as in maize and the mature protein undergoes tunicamycin-sensitive glycosylation, yielding a product with the same mobility on SDS-PAGE as authentic maize ABP1. On immunoblots the expressed protein is recognized by anti-KDEL monoclonal antibodies. Immunofluorescence localization demonstrates that it is targeted to and retained in the endoplasmic reticulum of insect cells in accordance with its signal peptide and KDEL retention sequence. The expressed ABP1 also appears to be active, since extracts of insect cells expressing ABP1 contain a saturable high-affinity 1-naphthylacetic acid-binding site, whereas no saturable auxin-binding activity is detected in extracts from control cells. PMID:7972488

  19. A mathematical model of exposure of non-target Lepidoptera to Bt-maize pollen expressing Cry1Ab within Europe

    PubMed Central

    Perry, J. N.; Devos, Y.; Arpaia, S.; Bartsch, D.; Gathmann, A.; Hails, R. S.; Kiss, J.; Lheureux, K.; Manachini, B.; Mestdagh, S.; Neemann, G.; Ortego, F.; Schiemann, J.; Sweet, J. B.

    2010-01-01

    Genetically modified (GM) maize MON810 expresses a Cry1Ab insecticidal protein, derived from Bacillus thuringiensis (Bt), toxic to lepidopteran target pests such as Ostrinia nubilalis. An environmental risk to non-target Lepidoptera from this GM crop is exposure to harmful amounts of Bt-containing pollen deposited on host plants in or near MON810 fields. An 11-parameter mathematical model analysed exposure of larvae of three non-target species: the butterflies Inachis io (L.), Vanessa atalanta (L.) and moth Plutella xylostella (L.), in 11 representative maize cultivation regions in four European countries. A mortality–dose relationship was integrated with a dose–distance relationship to estimate mortality both within the maize MON810 crop and within the field margin at varying distances from the crop edge. Mortality estimates were adjusted to allow for physical effects; the lack of temporal coincidence between the susceptible larval stage concerned and the period over which maize MON810 pollen is shed; and seven further parameters concerned with maize agronomy and host-plant ecology. Sublethal effects were estimated and allowance made for aggregated pollen deposition. Estimated environmental impact was low: in all regions, the calculated mortality rate for worst-case scenarios was less than one individual in every 1572 for the butterflies and one in 392 for the moth. PMID:20053648

  20. A mathematical model of exposure of non-target Lepidoptera to Bt-maize pollen expressing Cry1Ab within Europe.

    PubMed

    Perry, J N; Devos, Y; Arpaia, S; Bartsch, D; Gathmann, A; Hails, R S; Kiss, J; Lheureux, K; Manachini, B; Mestdagh, S; Neemann, G; Ortego, F; Schiemann, J; Sweet, J B

    2010-05-01

    Genetically modified (GM) maize MON810 expresses a Cry1Ab insecticidal protein, derived from Bacillus thuringiensis (Bt), toxic to lepidopteran target pests such as Ostrinia nubilalis. An environmental risk to non-target Lepidoptera from this GM crop is exposure to harmful amounts of Bt-containing pollen deposited on host plants in or near MON810 fields. An 11-parameter mathematical model analysed exposure of larvae of three non-target species: the butterflies Inachis io (L.), Vanessa atalanta (L.) and moth Plutella xylostella (L.), in 11 representative maize cultivation regions in four European countries. A mortality-dose relationship was integrated with a dose-distance relationship to estimate mortality both within the maize MON810 crop and within the field margin at varying distances from the crop edge. Mortality estimates were adjusted to allow for physical effects; the lack of temporal coincidence between the susceptible larval stage concerned and the period over which maize MON810 pollen is shed; and seven further parameters concerned with maize agronomy and host-plant ecology. Sublethal effects were estimated and allowance made for aggregated pollen deposition. Estimated environmental impact was low: in all regions, the calculated mortality rate for worst-case scenarios was less than one individual in every 1572 for the butterflies and one in 392 for the moth.

  1. Challenges in testing genetically modified crops for potential increases in endogenous allergen expression for safety.

    PubMed

    Panda, R; Ariyarathna, H; Amnuaycheewa, P; Tetteh, A; Pramod, S N; Taylor, S L; Ballmer-Weber, B K; Goodman, R E

    2013-02-01

    Premarket, genetically modified (GM) plants are assessed for potential risks of food allergy. The major risk would be transfer of a gene encoding an allergen or protein nearly identical to an allergen into a different food source, which can be assessed by specific serum testing. The potential that a newly expressed protein might become an allergen is evaluated based on resistance to digestion in pepsin and abundance in food fractions. If the modified plant is a common allergenic source (e.g. soybean), regulatory guidelines suggest testing for increases in the expression of endogenous allergens. Some regulators request evaluating endogenous allergens for rarely allergenic plants (e.g. maize and rice). Since allergic individuals must avoid foods containing their allergen (e.g. peanut, soybean, maize, or rice), the relevance of the tests is unclear. Furthermore, no acceptance criteria are established and little is known about the natural variation in allergen concentrations in these crops. Our results demonstrate a 15-fold difference in the major maize allergen, lipid transfer protein between nine varieties, and complex variation in IgE binding to various soybean varieties. We question the value of evaluating endogenous allergens in GM plants unless the intent of the modification was production of a hypoallergenic crop. PMID:23205714

  2. Challenges in testing genetically modified crops for potential increases in endogenous allergen expression for safety.

    PubMed

    Panda, R; Ariyarathna, H; Amnuaycheewa, P; Tetteh, A; Pramod, S N; Taylor, S L; Ballmer-Weber, B K; Goodman, R E

    2013-02-01

    Premarket, genetically modified (GM) plants are assessed for potential risks of food allergy. The major risk would be transfer of a gene encoding an allergen or protein nearly identical to an allergen into a different food source, which can be assessed by specific serum testing. The potential that a newly expressed protein might become an allergen is evaluated based on resistance to digestion in pepsin and abundance in food fractions. If the modified plant is a common allergenic source (e.g. soybean), regulatory guidelines suggest testing for increases in the expression of endogenous allergens. Some regulators request evaluating endogenous allergens for rarely allergenic plants (e.g. maize and rice). Since allergic individuals must avoid foods containing their allergen (e.g. peanut, soybean, maize, or rice), the relevance of the tests is unclear. Furthermore, no acceptance criteria are established and little is known about the natural variation in allergen concentrations in these crops. Our results demonstrate a 15-fold difference in the major maize allergen, lipid transfer protein between nine varieties, and complex variation in IgE binding to various soybean varieties. We question the value of evaluating endogenous allergens in GM plants unless the intent of the modification was production of a hypoallergenic crop.

  3. Degradation of transgenic DNA from genetically modified soya and maize in human intestinal simulations.

    PubMed

    Martín-Orúe, Susana M; O'Donnell, Anthony G; Ariño, Joaquin; Netherwood, Trudy; Gilbert, Harry J; Mathers, John C

    2002-06-01

    The inclusion of genetically modified (GM) foods in the human diet has caused considerable debate. There is concern that the transfer of plant-derived transgenes to the resident intestinal microflora could have safety implications. For these gene transfer events to occur, the nucleic acid would need to survive passage through the gastrointestinal tract. The aim of the present study was to evaluate the rate at which transgenes, contained within GM soya and maize, are degraded in gastric and small bowel simulations. The data showed that 80 % of the transgene in naked GM soya DNA was degraded in the gastric simulations, while no degradation of the transgenes contained within GM soya and maize were observed in these acidic conditions. In the small intestinal simulations, transgenes in naked soya DNA were degraded at a similar rate to the material in the soya protein. After incubation for 30 min, the transgenes remaining in soya protein and naked DNA were 52 (sem 13.1) % and 34 (sem 17.5) %, respectively, and at the completion of the experiment (3 h) these values were 5 % and 3 %, respectively. In contrast to the soya transgene, the maize nucleic acid was hydrolysed in the small intestinal simulations in a biphasic process in which approximately 85 % was rapidly degraded, while the rest of the DNA was cleaved at a rate similar to that in the soya material. Guar gum and tannic acid, molecules that are known to inhibit digestive enzymes, did not influence the rate of transgene degradation in soya protein. In contrast guar gum reduced the rate of transgene degradation in naked soya DNA in the initial stages, but the polysaccharide did not influence the amount of nucleic acid remaining at the end of the experiment. Tannic acid reduced the rate of DNA degradation throughout the small bowel simulations, with 21 (sem 5.4) % and 2 (sem 1.8) % of the naked soya DNA remaining in the presence and absence of the phenolic acid, respectively. These data indicate that some transgenes

  4. Establishment of Quantitative Analysis Method for Genetically Modified Maize Using a Reference Plasmid and Novel Primers

    PubMed Central

    Moon, Gi-Seong; Shin, Weon-Sun

    2012-01-01

    For the quantitative analysis of genetically modified (GM) maize in processed foods, primer sets and probes based on the 35S promoter (p35S), nopaline synthase terminator (tNOS), p35S-hsp70 intron, and zSSIIb gene encoding starch synthase II for intrinsic control were designed. Polymerase chain reaction (PCR) products (80~101 bp) were specifically amplified and the primer sets targeting the smaller regions (80 or 81 bp) were more sensitive than those targeting the larger regions (94 or 101 bp). Particularly, the primer set 35F1-R1 for p35S targeting 81 bp of sequence was even more sensitive than that targeting 101 bp of sequence by a 3-log scale. The target DNA fragments were also specifically amplified from all GM labeled food samples except for one item we tested when 35F1-R1 primer set was applied. A reference plasmid pGMmaize (3 kb) including the smaller PCR products for p35S, tNOS, p35S-hsp70 intron, and the zSSIIb gene was constructed for real-time PCR (RT-PCR). The linearity of standard curves was confirmed by using diluents ranging from 2×101~105 copies of pGMmaize and the R2 values ranged from 0.999~1.000. In the RT-PCR, the detection limit using the novel primer/probe sets was 5 pg of genomic DNA from MON810 line indicating that the primer sets targeting the smaller regions (80 or 81 bp) could be used for highly sensitive detection of foreign DNA fragments from GM maize in processed foods. PMID:24471096

  5. Establishment of quantitative analysis method for genetically modified maize using a reference plasmid and novel primers.

    PubMed

    Moon, Gi-Seong; Shin, Weon-Sun

    2012-12-01

    For the quantitative analysis of genetically modified (GM) maize in processed foods, primer sets and probes based on the 35S promoter (p35S), nopaline synthase terminator (tNOS), p35S-hsp70 intron, and zSSIIb gene encoding starch synthase II for intrinsic control were designed. Polymerase chain reaction (PCR) products (80~101 bp) were specifically amplified and the primer sets targeting the smaller regions (80 or 81 bp) were more sensitive than those targeting the larger regions (94 or 101 bp). Particularly, the primer set 35F1-R1 for p35S targeting 81 bp of sequence was even more sensitive than that targeting 101 bp of sequence by a 3-log scale. The target DNA fragments were also specifically amplified from all GM labeled food samples except for one item we tested when 35F1-R1 primer set was applied. A reference plasmid pGMmaize (3 kb) including the smaller PCR products for p35S, tNOS, p35S-hsp70 intron, and the zSSIIb gene was constructed for real-time PCR (RT-PCR). The linearity of standard curves was confirmed by using diluents ranging from 2×10(1)~10(5) copies of pGMmaize and the R(2) values ranged from 0.999~1.000. In the RT-PCR, the detection limit using the novel primer/probe sets was 5 pg of genomic DNA from MON810 line indicating that the primer sets targeting the smaller regions (80 or 81 bp) could be used for highly sensitive detection of foreign DNA fragments from GM maize in processed foods.

  6. Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize.

    PubMed

    Séralini, Gilles-Eric; Clair, Emilie; Mesnage, Robin; Gress, Steeve; Defarge, Nicolas; Malatesta, Manuela; Hennequin, Didier; de Vendômois, Joël Spiroux

    2012-11-01

    The health effects of a Roundup-tolerant genetically modified maize (from 11% in the diet), cultivated with or without Roundup, and Roundup alone (from 0.1 ppb in water), were studied 2 years in rats. In females, all treated groups died 2-3 times more than controls, and more rapidly. This difference was visible in 3 male groups fed GMOs. All results were hormone and sex dependent, and the pathological profiles were comparable. Females developed large mammary tumors almost always more often than and before controls, the pituitary was the second most disabled organ; the sex hormonal balance was modified by GMO and Roundup treatments. In treated males, liver congestions and necrosis were 2.5-5.5 times higher. This pathology was confirmed by optic and transmission electron microscopy. Marked and severe kidney nephropathies were also generally 1.3-2.3 greater. Males presented 4 times more large palpable tumors than controls which occurred up to 600 days earlier. Biochemistry data confirmed very significant kidney chronic deficiencies; for all treatments and both sexes, 76% of the altered parameters were kidney related. These results can be explained by the non linear endocrine-disrupting effects of Roundup, but also by the overexpression of the transgene in the GMO and its metabolic consequences. PMID:22999595

  7. Detection of airborne genetically modified maize pollen by real-time PCR.

    PubMed

    Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc

    2012-09-01

    The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves. PMID:22805239

  8. Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize.

    PubMed

    Séralini, Gilles-Eric; Clair, Emilie; Mesnage, Robin; Gress, Steeve; Defarge, Nicolas; Malatesta, Manuela; Hennequin, Didier; de Vendômois, Joël Spiroux

    2012-11-01

    The health effects of a Roundup-tolerant genetically modified maize (from 11% in the diet), cultivated with or without Roundup, and Roundup alone (from 0.1 ppb in water), were studied 2 years in rats. In females, all treated groups died 2-3 times more than controls, and more rapidly. This difference was visible in 3 male groups fed GMOs. All results were hormone and sex dependent, and the pathological profiles were comparable. Females developed large mammary tumors almost always more often than and before controls, the pituitary was the second most disabled organ; the sex hormonal balance was modified by GMO and Roundup treatments. In treated males, liver congestions and necrosis were 2.5-5.5 times higher. This pathology was confirmed by optic and transmission electron microscopy. Marked and severe kidney nephropathies were also generally 1.3-2.3 greater. Males presented 4 times more large palpable tumors than controls which occurred up to 600 days earlier. Biochemistry data confirmed very significant kidney chronic deficiencies; for all treatments and both sexes, 76% of the altered parameters were kidney related. These results can be explained by the non linear endocrine-disrupting effects of Roundup, but also by the overexpression of the transgene in the GMO and its metabolic consequences.

  9. Detection of airborne genetically modified maize pollen by real-time PCR.

    PubMed

    Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc

    2012-09-01

    The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves.

  10. Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis

    PubMed Central

    Stupar, Robert M; Gardiner, Jack M; Oldre, Aaron G; Haun, William J; Chandler, Vicki L; Springer, Nathan M

    2008-01-01

    Background Heterosis is the superior performance of F1 hybrid progeny relative to the parental phenotypes. Maize exhibits heterosis for a wide range of traits, however the magnitude of heterosis is highly variable depending on the choice of parents and the trait(s) measured. We have used expression profiling to determine whether the level, or types, of non-additive gene expression vary in maize hybrids with different levels of genetic diversity or heterosis. Results We observed that the distributions of better parent heterosis among a series of 25 maize hybrids generally do not exhibit significant correlations between different traits. Expression profiling analyses for six of these hybrids, chosen to represent diversity in genotypes and heterosis responses, revealed a correlation between genetic diversity and transcriptional variation. The majority of differentially expressed genes in each of the six different hybrids exhibited additive expression patterns, and ~25% exhibited statistically significant non-additive expression profiles. Among the non-additive profiles, ~80% exhibited hybrid expression levels between the parental levels, ~20% exhibited hybrid expression levels at the parental levels and ~1% exhibited hybrid levels outside the parental range. Conclusion We have found that maize inbred genetic diversity is correlated with transcriptional variation. However, sampling of seedling tissues indicated that the frequencies of additive and non-additive expression patterns are very similar across a range of hybrid lines. These findings suggest that heterosis is probably not a consequence of higher levels of additive or non-additive expression, but may be related to transcriptional variation between parents. The lack of correlation between better parent heterosis levels for different traits suggests that transcriptional diversity at specific sets of genes may influence heterosis for different traits. PMID:18402703

  11. Genome-wide identification and analysis of expression profiles of maize mitogen-activated protein kinase kinase kinase.

    PubMed

    Kong, Xiangpei; Lv, Wei; Zhang, Dan; Jiang, Shanshan; Zhang, Shizhong; Li, Dequan

    2013-01-01

    Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction model in animals, yeast and plants. Plant MAPK cascades have been implicated in development and stress responses. Although MAPKKKs have been investigated in several plant species including Arabidopsis and rice, no systematic analysis has been conducted in maize. In this study, we performed a bioinformatics analysis of the entire maize genome and identified 74 MAPKKK genes. Phylogenetic analyses of MAPKKKs from maize, rice and Arabidopsis have classified them into three subgroups, which included Raf, ZIK and MEKK. Evolutionary relationships within subfamilies were also supported by exon-intron organizations and the conserved protein motifs. Further expression analysis of the MAPKKKs in microarray databases revealed that MAPKKKs were involved in important signaling pathways in maize different organs and developmental stages. Our genomics analysis of maize MAPKKK genes provides important information for evolutionary and functional characterization of this family in maize.

  12. Genotypic and Environmental Impact on Natural Variation of Nutrient Composition in 50 Non Genetically Modified Commercial Maize Hybrids in North America.

    PubMed

    Cong, Bin; Maxwell, Carl; Luck, Stanley; Vespestad, Deanne; Richard, Keith; Mickelson, James; Zhong, Cathy

    2015-06-10

    This study was designed to assess natural variation in composition and metabolites in 50 genetically diverse non genetically modified maize hybrids grown at six locations in North America. Results showed that levels of compositional components in maize forage were affected by environment more than genotype. Crude protein, all amino acids except lysine, manganese, and β-carotene in maize grain were affected by environment more than genotype; however, most proximates and fibers, all fatty acids, lysine, most minerals, vitamins, and secondary metabolites in maize grain were affected by genotype more than environment. A strong interaction between genotype and environment was seen for some analytes. The results could be used as reference values for future nutrient composition studies of genetically modified crops and to expand conventional compositional data sets. These results may be further used as a genetic basis for improvement of the nutritional value of maize grain by molecular breeding and biotechnology approaches.

  13. First application of a microsphere-based immunoassay to the detection of genetically modified organisms (GMOs): quantification of Cry1Ab protein in genetically modified maize.

    PubMed

    Fantozzi, Anna; Ermolli, Monica; Marini, Massimiliano; Scotti, Domenico; Balla, Branko; Querci, Maddalena; Langrell, Stephen R H; Van den Eede, Guy

    2007-02-21

    An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis.

  14. First application of a microsphere-based immunoassay to the detection of genetically modified organisms (GMOs): quantification of Cry1Ab protein in genetically modified maize.

    PubMed

    Fantozzi, Anna; Ermolli, Monica; Marini, Massimiliano; Scotti, Domenico; Balla, Branko; Querci, Maddalena; Langrell, Stephen R H; Van den Eede, Guy

    2007-02-21

    An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis. PMID:17300145

  15. Elucidation of substituted ester group position in octenylsuccinic anhydride modified sugary maize soluble starch.

    PubMed

    Ye, Fan; Miao, Ming; Huang, Chao; Lu, Keyu; Jiang, Bo; Zhang, Tao

    2014-12-01

    The octenylsuccinic groups in esterification-modified sugary maize soluble starches with a low (0.0191) or high (0.0504) degree of substitution (DS) were investigated by amyloglucosidase hydrolysis followed by a combination of chemical and physical analysis. The results showed the zeta-potential remained at approximately the same value regardless of excessive hydrolysis. The weight-average molecular weight decreased rapidly and reached 1.22 × 10(7) and 1.60 × 10(7) g/mol after 120 min for low-DS and high-DS octenylsuccinic anhydride (OSA) modified starch, respectively. The pattern of z-average radius of gyration as well as particle size change was similar to that of Mw, and z-average radius of gyration decreased much more slowly, especially for high-DS OSA starch. Compared to native starch, two characteristic absorption peaks at 1726.76 and 1571.83 cm(-1) were observed in FT-IR spectra, and the intensity of absorption peaks increased with increasing DS. The NMR results showed that OSA starch had several additional peaks at 0.8-3.0 ppm and a shoulder at 5.56 ppm for OSA substituents, which were grafted at O-2 and O-3 positions in soluble starch. The even distribution of OSA groups in the center area of soluble starch particle has been directly shown under CLSM. Most substitutions were located near branching points of soluble starch particles for a low-DS modified starch, whereas the substituted ester groups were located near branching points as well as at the nonreducing ends in OSA starch with a high DS.

  16. Laser Microdissection of Narrow Sheath Mutant Maize Uncovers Novel Gene Expression in the Shoot Apical Meristem

    PubMed Central

    Zhang, Xiaolan; Madi, Shahinez; Borsuk, Lisa; Nettleton, Dan; Elshire, Robert J; Buckner, Brent; Janick-Buckner, Diane; Beck, Jon; Timmermans, Marja; Schnable, Patrick S; Scanlon, Michael J

    2007-01-01

    Microarrays enable comparative analyses of gene expression on a genomic scale, however these experiments frequently identify an abundance of differentially expressed genes such that it may be difficult to identify discrete functional networks that are hidden within large microarray datasets. Microarray analyses in which mutant organisms are compared to nonmutant siblings can be especially problematic when the gene of interest is expressed in relatively few cells. Here, we describe the use of laser microdissection microarray to perform transcriptional profiling of the maize shoot apical meristem (SAM), a ~100-μm pillar of organogenic cells that is required for leaf initiation. Microarray analyses compared differential gene expression within the SAM and incipient leaf primordium of nonmutant and narrow sheath mutant plants, which harbored mutations in the duplicate genes narrow sheath1 (ns1) and narrow sheath2 (ns2). Expressed in eight to ten cells within the SAM, ns1 and ns2 encode paralogous WUSCHEL1-like homeobox (WOX) transcription factors required for recruitment of leaf initials that give rise to a large lateral domain within maize leaves. The data illustrate the utility of laser microdissection-microarray analyses to identify a relatively small number of genes that are differentially expressed within the SAM. Moreover, these analyses reveal potentially conserved WOX gene functions and implicate specific hormonal and signaling pathways during early events in maize leaf development. PMID:17571927

  17. Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene.

    PubMed

    Amara, Imen; Capellades, Montserrat; Ludevid, M Dolors; Pagès, Montserrat; Goday, Adela

    2013-06-15

    Late Embryogenesis Abundant (LEA) proteins participate in plant stress responses and contribute to the acquisition of desiccation tolerance. In this report Rab28 LEA gene has been over-expressed in maize plants under a constitutive maize promoter. The expression of Rab28 transcripts led to the accumulation and stability of Rab28 protein in the transgenic plants. Native Rab28 protein is localized to nucleoli in wild type maize embryo cells; here we find by whole-mount immunocytochemistry that in root cells of Rab28 transgenic and wild-type plants the protein is also associated to nucleolar structures. Transgenic plants were tested for stress tolerance and resulted in sustained growth under polyethyleneglycol (PEG)-mediated dehydration compared to wild-type controls. Under osmotic stress transgenic seedlings showed increased leaf and root areas, higher relative water content (RWC), reduced chlorophyll loss and lower Malondialdehyde (MDA) production in relation to wild-type plants. Moreover, transgenic seeds exhibited higher germination rates than wild-type seeds under water deficit. Overall, our results highlight the presence of transgenic Rab28 protein in nucleolar structures and point to the potential of group 5 LEA Rab28 gene as candidate to enhance stress tolerance in maize plants.

  18. Genome-Wide Identification, Characterization and Expression Analysis of the Chalcone Synthase Family in Maize

    PubMed Central

    Han, Yahui; Ding, Ting; Su, Bo; Jiang, Haiyang

    2016-01-01

    Members of the chalcone synthase (CHS) family participate in the synthesis of a series of secondary metabolites in plants, fungi and bacteria. The metabolites play important roles in protecting land plants against various environmental stresses during the evolutionary process. Our research was conducted on comprehensive investigation of CHS genes in maize (Zea mays L.), including their phylogenetic relationships, gene structures, chromosomal locations and expression analysis. Fourteen CHS genes (ZmCHS01–14) were identified in the genome of maize, representing one of the largest numbers of CHS family members identified in one organism to date. The gene family was classified into four major classes (classes I–IV) based on their phylogenetic relationships. Most of them contained two exons and one intron. The 14 genes were unevenly located on six chromosomes. Two segmental duplication events were identified, which might contribute to the expansion of the maize CHS gene family to some extent. In addition, quantitative real-time PCR and microarray data analyses suggested that ZmCHS genes exhibited various expression patterns, indicating functional diversification of the ZmCHS genes. Our results will contribute to future studies of the complexity of the CHS gene family in maize and provide valuable information for the systematic analysis of the functions of the CHS gene family. PMID:26828478

  19. Genome-Wide Identification, Characterization and Expression Analysis of the Chalcone Synthase Family in Maize.

    PubMed

    Han, Yahui; Ding, Ting; Su, Bo; Jiang, Haiyang

    2016-01-01

    Members of the chalcone synthase (CHS) family participate in the synthesis of a series of secondary metabolites in plants, fungi and bacteria. The metabolites play important roles in protecting land plants against various environmental stresses during the evolutionary process. Our research was conducted on comprehensive investigation of CHS genes in maize (Zea mays L.), including their phylogenetic relationships, gene structures, chromosomal locations and expression analysis. Fourteen CHS genes (ZmCHS01-14) were identified in the genome of maize, representing one of the largest numbers of CHS family members identified in one organism to date. The gene family was classified into four major classes (classes I-IV) based on their phylogenetic relationships. Most of them contained two exons and one intron. The 14 genes were unevenly located on six chromosomes. Two segmental duplication events were identified, which might contribute to the expansion of the maize CHS gene family to some extent. In addition, quantitative real-time PCR and microarray data analyses suggested that ZmCHS genes exhibited various expression patterns, indicating functional diversification of the ZmCHS genes. Our results will contribute to future studies of the complexity of the CHS gene family in maize and provide valuable information for the systematic analysis of the functions of the CHS gene family. PMID:26828478

  20. Expression of a Truncated ATHB17 Protein in Maize Increases Ear Weight at Silking

    PubMed Central

    Creelman, Robert A.; Griffith, Cara; Ahrens, Jeffrey E.; Taylor, J. Philip; Murphy, Lesley R.; Manjunath, Siva; Thompson, Rebecca L.; Lingard, Matthew J.; Back, Stephanie L.; Larue, Huachun; Brayton, Bonnie R.; Burek, Amanda J.; Tiwari, Shiv; Adam, Luc; Morrell, James A.; Caldo, Rico A.; Huai, Qing; Kouadio, Jean-Louis K.; Kuehn, Rosemarie; Sant, Anagha M.; Wingbermuehle, William J.; Sala, Rodrigo; Foster, Matt; Kinser, Josh D.; Mohanty, Radha; Jiang, Dongming; Ziegler, Todd E.; Huang, Mingya G.; Kuriakose, Saritha V.; Skottke, Kyle; Repetti, Peter P.; Reuber, T. Lynne; Ruff, Thomas G.; Petracek, Marie E.; Loida, Paul J.

    2014-01-01

    ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize. PMID:24736658

  1. Relationship among physiological quality, heterosis, and amylase gene expression in maize seeds.

    PubMed

    Oliveira, G E; Von Pinho, E V R; Andrade, T; Souza, J C; Caixeta, F; Ferreira, R A D C

    2015-07-31

    In this study, we analyzed heterosis, amylase enzyme gene expression, and the physiological quality of maize seeds with different genotypes and sizes, which were subjected to aging and not subjected to aging. We used seeds from 2 maize lines that differed with regard to physiological quality, the hybrid, and the reciprocal hybrid; they were classified into 2 sizes and were subjected to aging and not subjected to aging. Physiological quality was assessed by performing tests for germination, emergence, emergence speed index, and artificial aging. Expressions of the genes alpha amylase B73, alpha amylase (LOC542522), isoamylase mRNA clone 353244, and the endogenous controls ubiquitin and alcohol dehydrogenase in the seeds were studied using quantitative real-time-polymerase chain reaction. We observed heterosis for seed quality and for expression of amylase genes in the genotypes studied. We found no difference in seed quality between large and small seeds.

  2. Detection of six genetically modified maize lines using optical thin-film biosensor chips.

    PubMed

    Bai, Sulan; Zhang, Jie; Li, Shucheng; Chen, Haodong; Terzaghi, William; Zhang, Xin; Chi, Xiurong; Tian, Jin; Luo, Hongxia; Huang, Wensheng; Chen, Ying; Zhang, Yaochuan

    2010-08-11

    As more and more genetically modified organisms (GMO) are commercialized, efficient and inexpensive assays are required for their quick detection. An event-specific detection strategy based on the unique and specific sequences of integration junctions is useful because of its high specificity. This study developed a system for detecting six GM maize lines (Bt11, Bt176, GA21, MON810, NK603, and T25) using optical silicon thin-film biosensor chips. Aldehyde-labeled probes were arrayed and covalently attached to a hydrazine-derivatized chip surface. Biotinylated PCR amplicons were then hybridized with the probes. After washing and brief incubation with an anti-biotin IgG horseradish peroxidase conjugate and a precipitable horseradish peroxidase substrate, biotinylated PCR amplicons perfectly matched with the probes can be visualized by the color change on the chip surface (gold to blue/purple). This assay is extremely robust, exhibits high sensitivity and specificity, and is flexible from low through moderate to high throughput. PMID:20614904

  3. Influence of galactooligosaccharides and modified waxy maize starch on some attributes of yogurt.

    PubMed

    Prasad, Laxmi N; Sherkat, Frank; Shah, Nagendra P

    2013-01-01

    This study examined the influence of galactooligosaccharides (GOS) and modified waxy maize starch (MWMS) addition on the growth of starter cultures, and syneresis and firmness of low-fat yogurt during storage for 28 d at 4 °C. The control yogurt (CY) was prepared without any prebiotics. Incorporation of 2.0% (w/v) GOS improved the growth of L. delbrueckii ssp. bulgaricus ATCC 11842 resulting in a shorter fermentation time. There was a significant (P < 0.05) increase in proteolysis in yogurt made with GOS (GOSY) as measured by absorbance value (0.728). Addition of GOS resulted in higher (P < 0.05) concentration of lactic and acetic acids in comparison with that of MWMSY and the CY up to day 14, thereafter, the product showed a decrease in lactic acid content in all 3 batches until the end of storage. The level of syneresis was the lowest (2.14%) in MWMSY as compared with that of GOSY (2.35%) and CY (2.53%). There was no statistically significant (P > 0.05) difference in the firmness among the 3 types of yogurt.

  4. Detection of six genetically modified maize lines using optical thin-film biosensor chips.

    PubMed

    Bai, Sulan; Zhang, Jie; Li, Shucheng; Chen, Haodong; Terzaghi, William; Zhang, Xin; Chi, Xiurong; Tian, Jin; Luo, Hongxia; Huang, Wensheng; Chen, Ying; Zhang, Yaochuan

    2010-08-11

    As more and more genetically modified organisms (GMO) are commercialized, efficient and inexpensive assays are required for their quick detection. An event-specific detection strategy based on the unique and specific sequences of integration junctions is useful because of its high specificity. This study developed a system for detecting six GM maize lines (Bt11, Bt176, GA21, MON810, NK603, and T25) using optical silicon thin-film biosensor chips. Aldehyde-labeled probes were arrayed and covalently attached to a hydrazine-derivatized chip surface. Biotinylated PCR amplicons were then hybridized with the probes. After washing and brief incubation with an anti-biotin IgG horseradish peroxidase conjugate and a precipitable horseradish peroxidase substrate, biotinylated PCR amplicons perfectly matched with the probes can be visualized by the color change on the chip surface (gold to blue/purple). This assay is extremely robust, exhibits high sensitivity and specificity, and is flexible from low through moderate to high throughput.

  5. Constitutive expression of the maize genes B1 and C1 in transgenic Hi II maize results in differential tissue pigmentation and generates resistance to Helicoverpa zea.

    PubMed

    Johnson, Eric T; Berhow, Mark A; Dowd, Patrick F

    2010-02-24

    Anthocyanin biosynthesis in maize protects tissues from biotic and abiotic stresses. Constitutive expression of the maize B1 and C1 genes, which induces anthocyanin biosynthesis, resulted in transgenic plants with varied phenotypes. Some colored leaves were substantially resistant to thrips damage, while only leaves with the highest levels of cyanidin, the predominant anthocyanidin detected in all colored transgenic tissues, were resistant to corn earworm (CEW) larvae. Colored anthers were resistant to CEW feeding, and reductions in CEW growth were significantly correlated to levels of cyanidin in the anthers. Cyanidin chloride and cyanidin-3-glucoside chloride added to insect diet slowed the growth of CEW larvae. Attempts to produce 3'5'-hydroxylated anthocyanins in colored maize with the expression of a petunia F3'5'H hydroxylase gene were unsuccessful. PMID:20108901

  6. Discovery and purification of a fungal protease secreted by Bipolaris zeicola that modifies maize seed endochitinase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Healthy maize seeds have two basic endochitinases, chitA and chitB, with antifungal properties. A comparison of the isoenzyme profiles of symptomatic fungal-infested maize seeds, removed at harvest from ears that we wound inoculated in the late milk stage of maturity with one of several common ear-...

  7. Short-term effects of different genetically modified maize varieties on arthropod food web properties: an experimental field assessment

    PubMed Central

    Szénási, Ágnes; Pálinkás, Zoltán; Zalai, Mihály; Schmitz, Oswald J.; Balog, Adalbert

    2014-01-01

    There is concern that genetically modified (GM) plants may have adverse affects on the arthropod biodiversity comprising agricultural landscapes. The present study report on a two year field experimental test of whether four different genotypic lines, some are novel with no previous field tests, of GM maize hybrids alter the structure of arthropod food webs that they harbour, relative to non-GM maize (control) that is widely used in agriculture. The different GM genotypes produced either Bt toxins, conferred glyphosate tolerance or a combination of the two traits. Quantitative food web analysis, based on short-term assessment assigning a total of 243,896 arthropod individuals collected from the treatments to their positions in food webs, revealed that complex and stable food webs persisted in each maize treatment. Moreover, food web structure remained relatively unchanged by the GM-genotype. The results suggest that at least in short-term period these particular GM maize genotypes will not have adverse effects on arthropod biota of agricultural landscapes. PMID:24937207

  8. Short-term effects of different genetically modified maize varieties on arthropod food web properties: an experimental field assessment.

    PubMed

    Szénási, Ágnes; Pálinkás, Zoltán; Zalai, Mihály; Schmitz, Oswald J; Balog, Adalbert

    2014-06-17

    There is concern that genetically modified (GM) plants may have adverse affects on the arthropod biodiversity comprising agricultural landscapes. The present study report on a two year field experimental test of whether four different genotypic lines, some are novel with no previous field tests, of GM maize hybrids alter the structure of arthropod food webs that they harbour, relative to non-GM maize (control) that is widely used in agriculture. The different GM genotypes produced either Bt toxins, conferred glyphosate tolerance or a combination of the two traits. Quantitative food web analysis, based on short-term assessment assigning a total of 243,896 arthropod individuals collected from the treatments to their positions in food webs, revealed that complex and stable food webs persisted in each maize treatment. Moreover, food web structure remained relatively unchanged by the GM-genotype. The results suggest that at least in short-term period these particular GM maize genotypes will not have adverse effects on arthropod biota of agricultural landscapes.

  9. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    PubMed

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950

  10. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    PubMed

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions.

  11. Development of a multiplex polymerase chain reaction method for simultaneous detection of eight events of genetically modified maize.

    PubMed

    Onishi, Mari; Matsuoka, Takeshi; Kodama, Takashi; Kashiwaba, Koichi; Futo, Satoshi; Akiyama, Hiroshi; Maitani, Tamio; Furui, Satoshi; Oguchi, Taichi; Hino, Akihiro

    2005-12-14

    In this study, we developed a novel multiplex polymerase chain reaction (PCR) method for simultaneous detection of up to eight events of genetically modified (GM) maize within a single reaction. The eight detection primer pairs designed to be construct specific for eight respective GM events (i.e., Bt11, Event176, GA21, MON810, MON863, NK603, T25, and TC1507) and a primer pair for an endogenous reference gene, ssIIb, were included in the nonaplex(9plex) PCR system, and its amplified products could be distinguished by agarose gel and capillary electrophoreses based on their different lengths. The optimal condition enabled us to reliably amplify two fragments corresponding to a construct specific sequence and a taxon specific ssIIb in each of the eight events of GM maize and all of nine fragments in a simulated GM mixture containing as little as 0.25% (w/w) each of eight events of GM maize. These results indicate that this multiplex PCR method could be an effective qualitative detection method for screening GM maize. PMID:16332120

  12. Genome-wide identification and characterization of maize expansin genes expressed in endosperm.

    PubMed

    Zhang, Wei; Yan, Hanwei; Chen, Weijun; Liu, Jinyang; Jiang, Cuiping; Jiang, Haiyang; Zhu, Suwen; Cheng, Beijiu

    2014-12-01

    By promoting cell wall loosening, expansins contribute to cell enlargement during various developmental processes. Nevertheless, the role of expansins in the expansion and development of endosperm--a major seed component whose cell size is significantly associated with grain yield--is poorly understood. To explore associated biological processes and the evolution of expansins in maize, we performed a systematic analysis of the expansin gene family encompassing gene structure, phylogeny, chromosomal location, gene duplication, and gene ontology. A total of 88 maize expansin genes (ZmEXPs) were identified and categorized into three subfamilies according to their phylogenetic relationships. Expression patterns of ZmEXPs were also investigated in nine different tissues by semi-quantitative RT-PCR. The expression of eight ZmEXPs was detected in endosperm, with five showing endosperm-specific expression. Quantitative RT-PCR was used to analyze expression patterns of the eight ZmEXPs in endosperm (10 days after pollination) under abscisic acid (ABA) and gibberellic acid (GA3) treatments. All eight ZmEXPs were found to be significantly regulated by ABA and GA3 in endosperm, suggesting important roles for these hormones in the regulation of ZmEXPs during endosperm development. Our results provide essential information for ZmEXPs cloning and functional exploration, which will assist research on expansin-related mechanisms and contribute to future enhancement of maize grain yield.

  13. Expression and characterization of maize ZBP14, a member of a new family of zinc-binding proteins.

    PubMed Central

    Robinson, K; Jones, D; Howell, S; Soneji, Y; Martin, S; Aitken, A

    1995-01-01

    A maize gene (Mz2-12), with a deduced amino acid sequence similar to that of a protein kinase C (PKC) inhibitor from bovine brain, has been expressed in Escherichia coli and the protein (ZBP14) purified to homogeneity. The bovine protein was originally identified by Walsh's group and named PKC inhibitor-1 (PKCI-1). The recombinant maize protein (ZBP14) shares characteristics of bovine PKCI-1: it has similar secondary structure, is dimeric, and has a similar affinity for zinc. However, the maize ZBP14 had very little activity as an inhibitor of mammalian brain PKC, thus precluding zinc sequestration as the mechanism of inhibition. The biological role for the maize protein in plant kinase regulation is therefore unclear. In the presence of both maize ZBP14 and 14-3-3 protein (which inhibits PKC in the absence of diacylglycerol), the effects on PKC appeared to be synergistic. Images Figure 1 PMID:7717986

  14. Biodegradation of atrazine by three transgenic grasses and alfalfa expressing a modified bacterial atrazine chlorohydrolase gene.

    PubMed

    Vail, Andrew W; Wang, Ping; Uefuji, Hirotaka; Samac, Deborah A; Vance, Carroll P; Wackett, Lawrence P; Sadowsky, Michael J

    2015-06-01

    The widespread use of atrazine and other s-triazine herbicides to control weeds in agricultural production fields has impacted surface and groundwater in the United States and elsewhere. We previously reported the cloning, sequencing, and expression of six genes involved in the atrazine biodegradation pathway of Pseudomonas sp. strain ADP, which is initiated by atzA, encoding atrazine chlorohydrolase. Here we explored the use of enhanced expression of a modified bacterial atrazine chlorohydrolase, p-AtzA, in transgenic grasses (tall fescue, perennial ryegrass, and switchgrass) and the legume alfalfa for the biodegradation of atrazine. Enhanced expression of p-AtzA was obtained by using combinations of the badnavirus promoter, the maize alcohol dehydrogenase first intron, and the maize ubiquitin promoter. For alfalfa, we used the first intron of the 5'-untranslated region tobacco alcohol dehydrogenase gene and the cassava vein mosaic virus promoter. Resistance of plants to atrazine in agar-based and hydroponic growth assays was correlated with in vivo levels of gene expression and atrazine degradation. The in planta expression of p-atzA enabled transgenic tall fescue to transform atrazine into hydroxyatrazine and other metabolites. Results of our studies highlight the potential use of transgenic plants for bioremediating atrazine in the environment. PMID:25432082

  15. Biodegradation of atrazine by three transgenic grasses and alfalfa expressing a modified bacterial atrazine chlorohydrolase gene.

    PubMed

    Vail, Andrew W; Wang, Ping; Uefuji, Hirotaka; Samac, Deborah A; Vance, Carroll P; Wackett, Lawrence P; Sadowsky, Michael J

    2015-06-01

    The widespread use of atrazine and other s-triazine herbicides to control weeds in agricultural production fields has impacted surface and groundwater in the United States and elsewhere. We previously reported the cloning, sequencing, and expression of six genes involved in the atrazine biodegradation pathway of Pseudomonas sp. strain ADP, which is initiated by atzA, encoding atrazine chlorohydrolase. Here we explored the use of enhanced expression of a modified bacterial atrazine chlorohydrolase, p-AtzA, in transgenic grasses (tall fescue, perennial ryegrass, and switchgrass) and the legume alfalfa for the biodegradation of atrazine. Enhanced expression of p-AtzA was obtained by using combinations of the badnavirus promoter, the maize alcohol dehydrogenase first intron, and the maize ubiquitin promoter. For alfalfa, we used the first intron of the 5'-untranslated region tobacco alcohol dehydrogenase gene and the cassava vein mosaic virus promoter. Resistance of plants to atrazine in agar-based and hydroponic growth assays was correlated with in vivo levels of gene expression and atrazine degradation. The in planta expression of p-atzA enabled transgenic tall fescue to transform atrazine into hydroxyatrazine and other metabolites. Results of our studies highlight the potential use of transgenic plants for bioremediating atrazine in the environment.

  16. Nonsyntenic Genes Drive Tissue-Specific Dynamics of Differential, Nonadditive, and Allelic Expression Patterns in Maize Hybrids1[OPEN

    PubMed Central

    2016-01-01

    Distantly related maize (Zea mays) inbred lines display an exceptional degree of genomic diversity. F1 progeny of such inbred lines are often more vigorous than their parents, a phenomenon known as heterosis. In this study, we investigated how the genetic divergence of the maize inbred lines B73 and Mo17 and their F1 hybrid progeny is reflected in differential, nonadditive, and allelic expression patterns in primary root tissues. In pairwise comparisons of the four genotypes, the number of differentially expressed genes between the two parental inbred lines significantly exceeded those of parent versus hybrid comparisons in all four tissues under analysis. No differentially expressed genes were detected between reciprocal hybrids, which share the same nuclear genome. Moreover, hundreds of nonadditive and allelic expression ratios that were different from the expression ratios of the parents were observed in the reciprocal hybrids. The overlap of both nonadditive and allelic expression patterns in the reciprocal hybrids significantly exceeded the expected values. For all studied types of expression - differential, nonadditive, and allelic - substantial tissue-specific plasticity was observed. Significantly, nonsyntenic genes that evolved after the last whole genome duplication of a maize progenitor from genes with synteny to sorghum (Sorghum bicolor) were highly overrepresented among differential, nonadditive, and allelic expression patterns compared with the fraction of these genes among all expressed genes. This observation underscores the role of nonsyntenic genes in shaping the transcriptomic landscape of maize hybrids during the early developmental manifestation of heterosis in root tissues of maize hybrids. PMID:27208302

  17. Carotenoid Biosynthetic and Catabolic Pathways: Gene Expression and Carotenoid Content in Grains of Maize Landraces

    PubMed Central

    Messias, Rafael da Silva; Galli, Vanessa; Silva, Sérgio Delmar dos Anjos e; Rombaldi, Cesar Valmor

    2014-01-01

    Plant carotenoids have been implicated in preventing several age-related diseases, and they also provide vitamin A precursors; therefore, increasing the content of carotenoids in maize grains is of great interest. It is not well understood, however, how the carotenoid biosynthetic pathway is regulated. Fortunately, the maize germplasm exhibits a high degree of genetic diversity that can be exploited for this purpose. Here, the accumulation of carotenoids and the expression of genes from carotenoid metabolic and catabolic pathways were investigated in several maize landraces. The carotenoid content in grains varied from 10.03, in the white variety MC5, to 61.50 μg·g−1, in the yellow-to-orange variety MC3, and the major carotenoids detected were lutein and zeaxanthin. PSY1 (phythoene synthase) expression showed a positive correlation with the total carotenoid content. Additionally, the PSY1 and HYD3 (ferredoxin-dependent di-iron monooxygenase) expression levels were positively correlated with β-cryptoxanthin and zeaxanthin, while CYP97C (cytochrome P450-type monooxygenase) expression did not correlate with any of the carotenoids. In contrast, ZmCCD1 (carotenoid dioxygenase) was more highly expressed at the beginning of grain development, as well as in the white variety, and its expression was inversely correlated with the accumulation of several carotenoids, suggesting that CCD1 is also an important enzyme to be considered when attempting to improve the carotenoid content in maize. The MC27 and MC1 varieties showed the highest HYD3/CYP97C ratios, suggesting that they are promising candidates for increasing the zeaxanthin content; in contrast, MC14 and MC7 showed low HYD3/CYP97C, suggesting that they may be useful in biofortification efforts aimed at promoting the accumulation of provitamin A. The results of this study demonstrate the use of maize germplasm to provide insight into the regulation of genes involved in the carotenoid pathway, which would thus better

  18. Absolute quantification of genetically modified MON810 maize (Zea mays L.) by digital polymerase chain reaction.

    PubMed

    Corbisier, Philippe; Bhat, Somanath; Partis, Lina; Xie, Vicki Rui Dan; Emslie, Kerry R

    2010-03-01

    Quantitative analysis of genetically modified (GM) foods requires estimation of the amount of the transgenic event relative to an endogenous gene. Regulatory authorities in the European Union (EU) have defined the labelling threshold for GM food on the copy number ratio between the transgenic event and an endogenous gene. Real-time polymerase chain reaction (PCR) is currently being used for quantification of GM organisms (GMOs). Limitations in real-time PCR applications to detect very low number of DNA targets has led to new developments such as the digital PCR (dPCR) which allows accurate measurement of DNA copies without the need for a reference calibrator. In this paper, the amount of maize MON810 and hmg copies present in a DNA extract from seed powders certified for their mass content and for their copy number ratio was measured by dPCR. The ratio of these absolute copy numbers determined by dPCR was found to be identical to the ratios measured by real-time quantitative PCR (qPCR) using a plasmid DNA calibrator. These results indicate that both methods could be applied to determine the copy number ratio in MON810. The reported values were in agreement with estimations from a model elaborated to convert mass fractions into copy number fractions in MON810 varieties. This model was challenged on two MON810 varieties used for the production of MON810 certified reference materials (CRMs) which differ in the parental origin of the introduced GM trait. We conclude that dPCR has a high metrological quality and can be used for certifying GM CRMs in terms of DNA copy number ratio.

  19. Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants

    PubMed Central

    Vaculík, Marek; Landberg, Tommy; Greger, Maria; Luxová, Miroslava; Stoláriková, Miroslava; Lux, Alexander

    2012-01-01

    Background and Aims Silicon (Si) has been shown to ameliorate the negative influence of cadmium (Cd) on plant growth and development. However, the mechanism of this phenomenon is not fully understood. Here we describe the effect of Si on growth, and uptake and subcellular distribution of Cd in maize plants in relation to the development of root tissues. Methods Young maize plants (Zea mays) were cultivated for 10 d hydroponically with 5 or 50 µm Cd and/or 5 mm Si. Growth parameters and the concentrations of Cd and Si were determined in root and shoot by atomic absorption spectrometry or inductively coupled plasma mass spectroscopy. The development of apoplasmic barriers (Casparian bands and suberin lamellae) and vascular tissues in roots were analysed, and the influence of Si on apoplasmic and symplasmic distribution of 109Cd applied at 34 nm was investigated between root and shoot. Key Results Si stimulated the growth of young maize plants exposed to Cd and influenced the development of Casparian bands and suberin lamellae as well as vascular tissues in root. Si did not affect the distribution of apoplasmic and symplasmic Cd in maize roots, but considerably decreased symplasmic and increased apoplasmic concentration of Cd in maize shoots. Conclusions Differences in Cd uptake of roots and shoots are probably related to the development of apoplasmic barriers and maturation of vascular tissues in roots. Alleviation of Cd toxicity by Si might be attributed to enhanced binding of Cd to the apoplasmic fraction in maize shoots. PMID:22455991

  20. Discovering functional modules across diverse maize transcriptomes using COB, the Co-expression Browser.

    PubMed

    Schaefer, Robert J; Briskine, Roman; Springer, Nathan M; Myers, Chad L

    2014-01-01

    Tools that provide improved ability to relate genotype to phenotype have the potential to accelerate breeding for desired traits and to improve our understanding of the molecular variants that underlie phenotypes. The availability of large-scale gene expression profiles in maize provides an opportunity to advance our understanding of complex traits in this agronomically important species. We built co-expression networks based on genome-wide expression data from a variety of maize accessions as well as an atlas of different tissues and developmental stages. We demonstrate that these networks reveal clusters of genes that are enriched for known biological function and contain extensive structure which has yet to be characterized. Furthermore, we found that co-expression networks derived from developmental or tissue atlases as compared to expression variation across diverse accessions capture unique functions. To provide convenient access to these networks, we developed a public, web-based Co-expression Browser (COB), which enables interactive queries of the genome-wide networks. We illustrate the utility of this system through two specific use cases: one in which gene-centric queries are used to provide functional context for previously characterized metabolic pathways, and a second where lists of genes produced by mapping studies are further resolved and validated using co-expression networks.

  1. Discovering functional modules across diverse maize transcriptomes using COB, the Co-expression Browser.

    PubMed

    Schaefer, Robert J; Briskine, Roman; Springer, Nathan M; Myers, Chad L

    2014-01-01

    Tools that provide improved ability to relate genotype to phenotype have the potential to accelerate breeding for desired traits and to improve our understanding of the molecular variants that underlie phenotypes. The availability of large-scale gene expression profiles in maize provides an opportunity to advance our understanding of complex traits in this agronomically important species. We built co-expression networks based on genome-wide expression data from a variety of maize accessions as well as an atlas of different tissues and developmental stages. We demonstrate that these networks reveal clusters of genes that are enriched for known biological function and contain extensive structure which has yet to be characterized. Furthermore, we found that co-expression networks derived from developmental or tissue atlases as compared to expression variation across diverse accessions capture unique functions. To provide convenient access to these networks, we developed a public, web-based Co-expression Browser (COB), which enables interactive queries of the genome-wide networks. We illustrate the utility of this system through two specific use cases: one in which gene-centric queries are used to provide functional context for previously characterized metabolic pathways, and a second where lists of genes produced by mapping studies are further resolved and validated using co-expression networks. PMID:24922320

  2. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transportors in maize (Zea mays L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A greenhouse experiment was conducted to study the expression of two phosphate (P) transporter genes ZEAma:Pht1;3 (epidermal-expressed) and ZEAma:Pht1;6 (AM specific induced, and expressed around arbuscules) in maize root to colonization by different arbuscular mycorrhizal (AM) fungal inoculants. No...

  3. Estimation of the minimum uncertainty of DNA concentration in a genetically modified maize sample candidate certified reference material.

    PubMed

    Prokisch, J; Zeleny, R; Trapmann, S; Le Guern, L; Schimmel, H; Kramer, G N; Pauwels, J

    2001-08-01

    Homogeneity testing and the determination of minimum sample mass are an important part of the certification of reference materials. The smallest theoretically achievable uncertainty of certified concentration values is limited by the concentration distribution of analyte in the different particle size fractions of powdered biological samples. This might be of special importance if the reference material is prepared by dry mixing, a dilution technique which is used for the production of the new and third generation of genetically modified (GMO) plant certified reference materials. For the production of dry mixed PMON 810 maize reference material a computer program was developed to calculate the theoretically smallest uncertainty for a selected sample intake. This model was used to compare three differently milled maize samples, and the effect of dilution on the uncertainty of the DNA content of GMO maize was estimated as well. In the case of a 50-mg sample mass the lowest achievable standard deviation was 2% for the sample containing 0.1% GMO and the minimum deviation was less than 0.5% for the sample containing 5% GMO. PMID:11569879

  4. Estimation of the minimum uncertainty of DNA concentration in a genetically modified maize sample candidate certified reference material.

    PubMed

    Prokisch, J; Zeleny, R; Trapmann, S; Le Guern, L; Schimmel, H; Kramer, G N; Pauwels, J

    2001-08-01

    Homogeneity testing and the determination of minimum sample mass are an important part of the certification of reference materials. The smallest theoretically achievable uncertainty of certified concentration values is limited by the concentration distribution of analyte in the different particle size fractions of powdered biological samples. This might be of special importance if the reference material is prepared by dry mixing, a dilution technique which is used for the production of the new and third generation of genetically modified (GMO) plant certified reference materials. For the production of dry mixed PMON 810 maize reference material a computer program was developed to calculate the theoretically smallest uncertainty for a selected sample intake. This model was used to compare three differently milled maize samples, and the effect of dilution on the uncertainty of the DNA content of GMO maize was estimated as well. In the case of a 50-mg sample mass the lowest achievable standard deviation was 2% for the sample containing 0.1% GMO and the minimum deviation was less than 0.5% for the sample containing 5% GMO.

  5. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize.

    PubMed

    Gond, Surendra K; Bergen, Marshall S; Torres, Mónica S; White, James F

    2015-03-01

    Endophytes are mutualistic symbionts within healthy plant tissues. In this study we isolated Bacillus spp. from seeds of several varieties of maize. Bacillus amyloliquifaciens or Bacillus subtilis were found to be present in all maize varieties examined in this study. To determine whether bacteria may produce antifungal compounds, generally lipopeptides in Bacillus spp., bacterial cultures were screened for production of lipopeptides. Lipopeptides were extracted by acid precipitation from liquid cultures of Bacillus spp. Lipopeptide extracts from Bacillus spp. isolated from Indian popcorn and yellow dent corn showed inhibitory activity against Fusarium moniliforme at 500μg per disk. Using MALDI-TOF mass spectrometry we detected the presence of antifungal iturin A, fengycin and bacillomycin in these isolates. PCR amplification also showed the presence of genes for iturin A and fengycin. B. subtilis (SG_JW.03) isolated from Indian popcorn showed strong inhibition of Arabidopsis seed mycoflora and enhanced seedling growth. We tested for the induction of defence gene expression in the host plant after treatment of plants with B. subtilis (SG_JW.03) and its lipopeptide extract using RT-qPCR. Roots of Indian popcorn seedlings treated with a suspension of B. subtilis (SG_JW.03) showed the induction of pathogenesis-related genes, including PR-1 and PR-4, which relate to plant defence against fungal pathogens. The lipopeptide extract alone did not increase the expression of these pathogenesis-related genes. Based on our study of maize endophytes, we hypothesize that, bacterial endophytes that naturally occur in many maize varieties may function to protect hosts by secreting antifungal lipopeptides that inhibit pathogens as well as inducing the up-regulation of pathogenesis-related genes of host plants (systemic acquired resistance). PMID:25497916

  6. Development and validation of event-specific quantitative PCR method for genetically modified maize MIR604.

    PubMed

    Mano, Junichi; Furui, Satoshi; Takashima, Kaori; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Takabatake, Reona; Kitta, Kazumi

    2012-01-01

    A GM maize event, MIR604, has been widely distributed and an analytical method to quantify its content is required to monitor the validity of food labeling. Here we report a novel real-time PCR-based quantitation method for MIR604 maize. We developed real-time PCR assays specific for MIR604 using event-specific primers designed by the trait developer, and for maize endogenous starch synthase IIb gene (SSIIb). Then, we determined the conversion factor, which is required to calculate the weight-based GM maize content from the copy number ratio of MIR604-specific DNA to the endogenous reference DNA. Finally, to validate the developed method, an interlaboratory collaborative trial according to the internationally harmonized guidelines was performed with blind samples containing MIR604 at the mixing levels of 0, 0.5, 1.0, 5.0 and 10.0%. The reproducibility (RSDr) of the developed method was evaluated to be less than 25%. The limit of quantitation of the method was estimated to be 0.5% based on the ISO 24276 guideline. These results suggested that the developed method would be suitable for practical quantitative analyses of MIR604 maize. PMID:23132355

  7. Expression of genes related to tolerance to low temperature for maize seed germination.

    PubMed

    Silva-Neta, I C; Pinho, E V; Veiga, A D; Pìnho, R G; Guimarães, R M; Caixeta, F; Santos, H O; Marques, T L

    2015-01-01

    The aim of this study was to characterize maize lines tolerant to cold temperatures during the germination process. Seeds from lines with different levels of tolerance to low temperatures were used; 3 lines were classified as tolerant and 3 as susceptible to low germination temperatures. A field was set up to multiply seeds from selected lines. After the seeds were harvested and classified, we conducted physiological tests and analyzed fatty acid content of palmitic, stearic, oleic, linoleic, linolenic, and eicosenoic acids. In proteomic analysis, the expression of heat-resistant proteins, including catalase, peroxidase, esterase, superoxide dismutase, and α-amylase, were evaluated. Transcript analysis was used to measure the expression of the genes AOX1, AOX2, ZmMPK-17, and ZmAN-13. The material showing the highest susceptibility to low germination temperatures contained high saturated fatty acid content. Expression of α-amylase in seeds soaked for 72 h at a temperature of 10°C was lower than expression of α-amylase when soaked at 25°C for the same amount of time. We observed variation in the expression of heat-resistant proteins in seeds of the lines evaluated. The genes AOX and Zm-AN13 were promising for use in identifying maize materials that are tolerant to low germination temperatures.

  8. Expression of genes related to tolerance to low temperature for maize seed germination.

    PubMed

    Silva-Neta, I C; Pinho, E V; Veiga, A D; Pìnho, R G; Guimarães, R M; Caixeta, F; Santos, H O; Marques, T L

    2015-01-01

    The aim of this study was to characterize maize lines tolerant to cold temperatures during the germination process. Seeds from lines with different levels of tolerance to low temperatures were used; 3 lines were classified as tolerant and 3 as susceptible to low germination temperatures. A field was set up to multiply seeds from selected lines. After the seeds were harvested and classified, we conducted physiological tests and analyzed fatty acid content of palmitic, stearic, oleic, linoleic, linolenic, and eicosenoic acids. In proteomic analysis, the expression of heat-resistant proteins, including catalase, peroxidase, esterase, superoxide dismutase, and α-amylase, were evaluated. Transcript analysis was used to measure the expression of the genes AOX1, AOX2, ZmMPK-17, and ZmAN-13. The material showing the highest susceptibility to low germination temperatures contained high saturated fatty acid content. Expression of α-amylase in seeds soaked for 72 h at a temperature of 10°C was lower than expression of α-amylase when soaked at 25°C for the same amount of time. We observed variation in the expression of heat-resistant proteins in seeds of the lines evaluated. The genes AOX and Zm-AN13 were promising for use in identifying maize materials that are tolerant to low germination temperatures. PMID:25867416

  9. A Maize (E)-β-Caryophyllene Synthase Implicated in Indirect Defense Responses against Herbivores Is Not Expressed in Most American Maize Varieties[W][OA

    PubMed Central

    Köllner, Tobias G.; Held, Matthias; Lenk, Claudia; Hiltpold, Ivan; Turlings, Ted C.J.; Gershenzon, Jonathan; Degenhardt, Jörg

    2008-01-01

    The sesquiterpene (E)-β-caryophyllene is emitted by maize (Zea mays) leaves in response to attack by lepidopteran larvae like Spodoptera littoralis and released from roots after damage by larvae of the coleopteran Diabrotica virgifera virgifera. We identified a maize terpene synthase, Terpene Synthase 23 (TPS23), that produces (E)-β-caryophyllene from farnesyl diphosphate. The expression of TPS23 is controlled at the transcript level and induced independently by D. v. virgifera damage in roots and S. littoralis damage in leaves. We demonstrate that (E)-β-caryophyllene can attract natural enemies of both herbivores: entomopathogenic nematodes below ground and parasitic wasps, after an initial learning experience, above ground. The biochemical properties of TPS23 are similar to those of (E)-β-caryophyllene synthases from dicotyledons but are the result of repeated evolution. The sequence of TPS23 is maintained by positive selection in maize and its closest wild relatives, teosinte (Zea sp) species. The gene encoding TPS23 is active in teosinte species and European maize lines, but decreased transcription in most North American lines resulted in the loss of (E)-β-caryophyllene production. We argue that the (E)-β-caryophyllene defense signal was lost during breeding of the North American lines and that its restoration might help to increase the resistance of these lines against agronomically important pests. PMID:18296628

  10. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize.

    PubMed

    Harris, Linda J; Balcerzak, Margaret; Johnston, Anne; Schneiderman, Danielle; Ouellet, Thérèse

    2016-01-01

    Fusarium graminearum is a broad host pathogen threatening cereal crops in temperate regions around the world. To better understand how F. graminearum adapts to different hosts, we have performed a comparison of the transcriptome of a single strain of F. graminearum during early infection (up to 4 d post-inoculation) of barley, maize, and wheat using custom oligomer microarrays. Our results showed high similarity between F. graminearum transcriptomes in infected wheat and barley spike tissues. Quantitative RT-PCR was used to validate the gene expression profiles of 24 genes. Host-specific expression of genes was observed in each of the three hosts. This included expression of distinct sets of genes associated with transport and secondary metabolism in each of the three crops, as well as host-specific patterns for particular gene categories such as sugar transporters, integral membrane protein PTH11-like proteins, and chitinases. This study identified 69 F. graminearum genes as preferentially expressed in developing maize kernels relative to wheat and barley spikes. These host-specific differences showcase the genomic flexibility of F. graminearum to adapt to a range of hosts.

  11. Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families.

    PubMed

    Zhang, Zhongbao; Li, Xianglong; Zhang, Chun; Zou, Huawen; Wu, Zhongyi

    2016-09-16

    NUCLEAR FACTOR-Y (NF-Y) has been shown to play an important role in growth, development, and response to environmental stress. A NF-Y complex, which consists of three subunits, NF-YA, NF-YB, and, NF-YC, binds to CCAAT sequences in a promoter to control the expression of target genes. Although NF-Y proteins have been reported in Arabidopsis and rice, a comprehensive and systematic analysis of ZmNF-Y genes has not yet been performed. To examine the functions of ZmNF-Y genes in this family, we isolated and characterized 50 ZmNF-Y (14 ZmNF-YA, 18 ZmNF-YB, and 18 ZmNF-YC) genes in an analysis of the maize genome. The 50 ZmNF-Y genes were distributed on all 10 maize chromosomes, and 12 paralogs were identified. Multiple alignments showed that maize ZmNF-Y family proteins had conserved regions and relatively variable N-terminal or C-terminal domains. The comparative syntenic map illustrated 40 paralogous NF-Y gene pairs among the 10 maize chromosomes. Microarray data showed that the ZmNF-Y genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results suggested that ZmNF-YB2, 4, 8, 10, 13, and 16 and ZmNF-YC6, 8, and 15 were induced, while ZmNF-YA1, 3, 4, 6, 7, 10, 12, and 13, ZmNF-YB15, and ZmNF-YC3 and 9 were suppressed by drought stress. ZmNF-YA3, ZmNF-YA8 and ZmNF-YA12 were upregulated after infection by the three pathogens, while ZmNF-YA1 and ZmNF-YB2 were suppressed. These results indicate that the ZmNF-Ys may have significant roles in the response to abiotic and biotic stresses.

  12. Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families.

    PubMed

    Zhang, Zhongbao; Li, Xianglong; Zhang, Chun; Zou, Huawen; Wu, Zhongyi

    2016-09-16

    NUCLEAR FACTOR-Y (NF-Y) has been shown to play an important role in growth, development, and response to environmental stress. A NF-Y complex, which consists of three subunits, NF-YA, NF-YB, and, NF-YC, binds to CCAAT sequences in a promoter to control the expression of target genes. Although NF-Y proteins have been reported in Arabidopsis and rice, a comprehensive and systematic analysis of ZmNF-Y genes has not yet been performed. To examine the functions of ZmNF-Y genes in this family, we isolated and characterized 50 ZmNF-Y (14 ZmNF-YA, 18 ZmNF-YB, and 18 ZmNF-YC) genes in an analysis of the maize genome. The 50 ZmNF-Y genes were distributed on all 10 maize chromosomes, and 12 paralogs were identified. Multiple alignments showed that maize ZmNF-Y family proteins had conserved regions and relatively variable N-terminal or C-terminal domains. The comparative syntenic map illustrated 40 paralogous NF-Y gene pairs among the 10 maize chromosomes. Microarray data showed that the ZmNF-Y genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results suggested that ZmNF-YB2, 4, 8, 10, 13, and 16 and ZmNF-YC6, 8, and 15 were induced, while ZmNF-YA1, 3, 4, 6, 7, 10, 12, and 13, ZmNF-YB15, and ZmNF-YC3 and 9 were suppressed by drought stress. ZmNF-YA3, ZmNF-YA8 and ZmNF-YA12 were upregulated after infection by the three pathogens, while ZmNF-YA1 and ZmNF-YB2 were suppressed. These results indicate that the ZmNF-Ys may have significant roles in the response to abiotic and biotic stresses. PMID:27498027

  13. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1.

    PubMed

    Bovy, Arnaud; de Vos, Ric; Kemper, Mark; Schijlen, Elio; Almenar Pertejo, Maria; Muir, Shelagh; Collins, Geoff; Robinson, Sue; Verhoeyen, Martine; Hughes, Steve; Santos-Buelga, Celestino; van Tunen, Arjen

    2002-10-01

    Flavonoids are a group of polyphenolic plant secondary metabolites important for plant biology and human nutrition. In particular flavonols are potent antioxidants, and their dietary intake is correlated with a reduced risk of cardiovascular diseases. Tomato fruit contain only in their peel small amounts of flavonoids, mainly naringenin chalcone and the flavonol rutin, a quercetin glycoside. To increase flavonoid levels in tomato, we expressed the maize transcription factor genes LC and C1 in the fruit of genetically modified tomato plants. Expression of both genes was required and sufficient to upregulate the flavonoid pathway in tomato fruit flesh, a tissue that normally does not produce any flavonoids. These fruit accumulated high levels of the flavonol kaempferol and, to a lesser extent, the flavanone naringenin in their flesh. All flavonoids detected were present as glycosides. Anthocyanins, previously reported to accumulate upon LC expression in several plant species, were present in LC/C1 tomato leaves but could not be detected in ripe LC/C1 fruit. RNA expression analysis of ripening fruit revealed that, with the exception of chalcone isomerase, all of the structural genes required for the production of kaempferol-type flavonols and pelargonidin-type anthocyanins were induced strongly by the LC/C1 transcription factors. Expression of the genes encoding flavanone-3'-hydroxylase and flavanone-3'5'-hydroxylase, which are required for the modification of B-ring hydroxylation patterns, was not affected by LC/C1. Comparison of flavonoid profiles and gene expression data between tomato leaves and fruit indicates that the absence of anthocyanins in LC/C1 fruit is attributable primarily to an insufficient expression of the gene encoding flavanone-3'5'-hydroxylase, in combination with a strong preference of the tomato dihydroflavonol reductase enzyme to use the flavanone-3'5'-hydroxylase reaction product dihydromyricetin as a substrate.

  14. Development of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    PubMed

    Oguchi, Taichi; Onishi, Mari; Minegishi, Yasutaka; Kurosawa, Yasunori; Kasahara, Masaki; Akiyama, Hiroshi; Teshima, Reiko; Futo, Satoshi; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2009-06-01

    A duplex real-time PCR method was developed for quantitative screening analysis of GM maize. The duplex real-time PCR simultaneously detected two GM-specific segments, namely the cauliflower mosaic virus (CaMV) 35S promoter (P35S) segment and an event-specific segment for GA21 maize which does not contain P35S. Calibration was performed with a plasmid calibrant specially designed for the duplex PCR. The result of an in-house evaluation suggested that the analytical precision of the developed method was almost equivalent to those of simplex real-time PCR methods, which have been adopted as ISO standard methods for the analysis of GMOs in foodstuffs and have also been employed for the analysis of GMOs in Japan. In addition, this method will reduce both the cost and time requirement of routine GMO analysis by half. The high analytical performance demonstrated in the current study would be useful for the quantitative screening analysis of GM maize. We believe the developed method will be useful for practical screening analysis of GM maize, although interlaboratory collaborative studies should be conducted to confirm this. PMID:19602858

  15. Development of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    PubMed

    Oguchi, Taichi; Onishi, Mari; Minegishi, Yasutaka; Kurosawa, Yasunori; Kasahara, Masaki; Akiyama, Hiroshi; Teshima, Reiko; Futo, Satoshi; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2009-06-01

    A duplex real-time PCR method was developed for quantitative screening analysis of GM maize. The duplex real-time PCR simultaneously detected two GM-specific segments, namely the cauliflower mosaic virus (CaMV) 35S promoter (P35S) segment and an event-specific segment for GA21 maize which does not contain P35S. Calibration was performed with a plasmid calibrant specially designed for the duplex PCR. The result of an in-house evaluation suggested that the analytical precision of the developed method was almost equivalent to those of simplex real-time PCR methods, which have been adopted as ISO standard methods for the analysis of GMOs in foodstuffs and have also been employed for the analysis of GMOs in Japan. In addition, this method will reduce both the cost and time requirement of routine GMO analysis by half. The high analytical performance demonstrated in the current study would be useful for the quantitative screening analysis of GM maize. We believe the developed method will be useful for practical screening analysis of GM maize, although interlaboratory collaborative studies should be conducted to confirm this.

  16. Gene Expression Biomarkers Provide Sensitive Indicators of in Planta Nitrogen Status in Maize[W][OA

    PubMed Central

    Yang, Xiaofeng S.; Wu, Jingrui; Ziegler, Todd E.; Yang, Xiao; Zayed, Adel; Rajani, M.S.; Zhou, Dafeng; Basra, Amarjit S.; Schachtman, Daniel P.; Peng, Mingsheng; Armstrong, Charles L.; Caldo, Rico A.; Morrell, James A.; Lacy, Michelle; Staub, Jeffrey M.

    2011-01-01

    Over the last several decades, increased agricultural production has been driven by improved agronomic practices and a dramatic increase in the use of nitrogen-containing fertilizers to maximize the yield potential of crops. To reduce input costs and to minimize the potential environmental impacts of nitrogen fertilizer that has been used to optimize yield, an increased understanding of the molecular responses to nitrogen under field conditions is critical for our ability to further improve agricultural sustainability. Using maize (Zea mays) as a model, we have characterized the transcriptional response of plants grown under limiting and sufficient nitrogen conditions and during the recovery of nitrogen-starved plants. We show that a large percentage (approximately 7%) of the maize transcriptome is nitrogen responsive, similar to previous observations in other plant species. Furthermore, we have used statistical approaches to identify a small set of genes whose expression profiles can quantitatively assess the response of plants to varying nitrogen conditions. Using a composite gene expression scoring system, this single set of biomarker genes can accurately assess nitrogen responses independently of genotype, developmental stage, tissue type, or environment, including in plants grown under controlled environments or in the field. Importantly, the biomarker composite expression response is much more rapid and quantitative than phenotypic observations. Consequently, we have successfully used these biomarkers to monitor nitrogen status in real-time assays of field-grown maize plants under typical production conditions. Our results suggest that biomarkers have the potential to be used as agronomic tools to monitor and optimize nitrogen fertilizer usage to help achieve maximal crop yields. PMID:21980173

  17. Bt-maize (MON810) and non-GM soybean meal in diets for Atlantic salmon (Salmo salar L.) juveniles--impact on survival, growth performance, development, digestive function, and transcriptional expression of intestinal immune and stress responses.

    PubMed

    Gu, Jinni; Bakke, Anne Marie; Valen, Elin C; Lein, Ingrid; Krogdahl, Åshild

    2014-01-01

    Responses in Atlantic salmon (Salmo salar L.) juveniles (fry) fed diets containing genetically modified maize (Bt-maize, MON810) expressing Cry1Ab protein from first-feeding were investigated during a 99-day feeding trial. Four experimental diets were made; each diet contained ∼20% maize, either Bt-maize or its near-isogenic maternal line (non-GM maize). One pair was fishmeal-based while the other pair included standard (extracted) soybean meal (SBM; 16.7% inclusion level), with the intention of investigating responses to the maize varieties in healthy fish as well as in immunologically challenged fish with SBM-induced distal intestinal inflammation, respectively. Three replicate tanks of fry (0.17±0.01 g; initial mean weight ± SEM) were fed one of the four diets and samples were taken on days 15, 36, 48 and 99. Survival, growth performance, whole body composition, digestive function, morphology of intestine, liver and skeleton, and mRNA expression of some immune and stress response parameters in the distal intestine were evaluated. After 99 days of feeding, survival was enhanced and the intended SBM-induced inflammatory response in the distal intestine of the two groups of SBM-fed fish was absent, indicating that the juvenile salmon were tolerant to SBM. Mortality, growth performance and body composition were similar in fish fed the two maize varieties. The Bt-maize fed fish, however, displayed minor but significantly decreased digestive enzyme activities of leucine aminopeptidase and maltase, as well as decreased concentration of gut bile salts, but significantly increased amylase activity at some sampling points. Histomorphological, radiographic and mRNA expression evaluations did not reveal any biologically relevant effects of Bt-maize in the gastrointestinal tract, liver or skeleton. The results suggest that the Cry1Ab protein or other compositional differences in GM Bt-maize may cause minor alterations in intestinal responses in juvenile salmon, but

  18. Expression profile of maize (Zea mays) scutellar epithelium during imbibition.

    PubMed

    Tnani, Hedia; García-Muniz, Nora; Vicient, Carlos M; López-Ribera, Ignacio

    2012-09-15

    The scutellum is a shield-shaped structure surrounding the embryo axis in grass species. The scutellar epithelium (Sep) is a monolayer of cells in contact with the endosperm. The Sep plays an important role during seed germination in the secretion of gibberellins and hydrolytic enzymes and in the transport of the hydrolized products to the growing embryo. We identified 30 genes predominantly expressed after imbibition in the Sep as compared to other parts of the scutellum. A high proportion of these genes is involved in metabolic processes. Some other identified genes are involved in the synthesis or modification of cell walls, which may be reflected in the changes of cell shape and cell wall composition that can be observed during imbibition. One of the genes encodes a proteinase that belongs to a proteinase family typical of carnivorous plants. Almost nothing is known about their role in other plants or organs, but the scutellar presence may point to a "digestive" function during germination. Genes involved in the production of energy and the transport of peptides were also identified.

  19. Characterization and expression analysis of six MADS-box genes in maize (Zea mays L.).

    PubMed

    Zhang, Zhongbao; Li, Huiyong; Zhang, Dengfeng; Liu, Yinghui; Fu, Jing; Shi, Yunsu; Song, Yanchun; Wang, Tianyu; Li, Yu

    2012-05-15

    MADS-box genes encode a family of transcription factors, which control diverse developmental processes in flowering plants, with organs ranging from roots, flowers and fruits. In this study, six maize cDNAs encoding MADS-box proteins were isolated. BLASTX searches and phylogenetic analysis indicated that the six MADS-box genes belonging to the AGL2-like clade. qRT-PCR analysis revealed that these genes had differential expression patterns in different organs in maize. The results of yeast one-hybrid system indicated that the protein ZMM3-1, ZMM3-2, ZMM6, ZMM7-L, ZMM8-L and ZMM14-L had transcriptional activation activity. Subcellular localization of ZMM7-L demonstrated that the fluorescence of ZMM7-L-GFP was mainly detected in the nuclei of onion epidermal cells. qRT-PCR analysis for expression pattern of ZMM7-L showed that the gene was up-regulated by abiotic stresses and down-regulated by exogenous ABA. The germination rates of over-expression transgenic lines were lower than that of the wild type on medium with 150 mM NaCl, 350 mM mannitol. These results indicated that ZMM7-L might be a negative transcription factor responsive to abiotic stresses.

  20. Pollen specific expression of maize genes encoding actin depolymerizing factor-like proteins.

    PubMed Central

    Lopez, I; Anthony, R G; Maciver, S K; Jiang, C J; Khan, S; Weeds, A G; Hussey, P J

    1996-01-01

    In pollen development, a dramatic reorganization of the actin cytoskeleton takes place during the passage of the pollen grain into dormancy and on activation of pollen tube growth. A role for actin-binding proteins is implicated and we report here the identification of a small gene family in maize that encodes actin depolymerizing factor (ADF)-like proteins. The ADF group of proteins are believed to control actin polymerization and depolymerization in response to both intracellular and extracellular signals. Two of the maize genes ZmABP1 and ZmABP2 are expressed specifically in pollen and germinating pollen suggesting that the protein products may be involved in pollen actin reorganization. A third gene, ZmABP3, encodes a protein only 56% and 58% identical to ZmABP1 and ZmABP2, respectively, and its expression is suppressed in pollen and germinated pollen. The fundamental biochemical characteristics of the ZmABP proteins has been elucidated using bacterially expressed ZmABP3 protein. This has the ability to bind monomeric actin (G-actin) and filamentous actin (F-actin). Moreover, it decreases the viscosity of polymerized actin solutions consistent with an ability to depolymerize filaments. These biochemical characteristics, taken together with the sequence comparisons, support the inclusion of the ZmABP proteins in the ADF group. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8693008

  1. Differential gene expression and epiregulation of alpha zein gene copies in maize haplotypes.

    PubMed

    Miclaus, Mihai; Xu, Jian-Hong; Messing, Joachim

    2011-06-01

    Multigenic traits are very common in plants and cause diversity. Nutritional quality is such a trait, and one of its factors is the composition and relative expression of storage protein genes. In maize, they represent a medium-size gene family distributed over several chromosomes and unlinked locations. Two inbreds, B73 and BSSS53, both from the Iowa Stiff Stock Synthetic collection, have been selected to analyze allelic and non-allelic variability in these regions that span between 80-500 kb of chromosomal DNA. Genes were copied to unlinked sites before and after allotetraploidization of maize, but before transposition enlarged intergenic regions in a haplotype-specific manner. Once genes are copied, expression of donor genes is reduced relative to new copies. Epigenetic regulation seems to contribute to silencing older copies, because some of them can be reactivated when endosperm is maintained as cultured cells, indicating that copy number variation might contribute to a reserve of gene copies. Bisulfite sequencing of the promoter region also shows different methylation patterns among gene clusters as well as differences between tissues, suggesting a possible position effect on regulatory mechanisms as a result of inserting copies at unlinked locations. The observations offer a potential paradigm for how different gene families evolve and the impact this has on their expression and regulation of their members. PMID:21731501

  2. Differential Gene Expression and Epiregulation of Alpha Zein Gene Copies in Maize Haplotypes

    PubMed Central

    Miclaus, Mihai; Xu, Jian-Hong; Messing, Joachim

    2011-01-01

    Multigenic traits are very common in plants and cause diversity. Nutritional quality is such a trait, and one of its factors is the composition and relative expression of storage protein genes. In maize, they represent a medium-size gene family distributed over several chromosomes and unlinked locations. Two inbreds, B73 and BSSS53, both from the Iowa Stiff Stock Synthetic collection, have been selected to analyze allelic and non-allelic variability in these regions that span between 80–500 kb of chromosomal DNA. Genes were copied to unlinked sites before and after allotetraploidization of maize, but before transposition enlarged intergenic regions in a haplotype-specific manner. Once genes are copied, expression of donor genes is reduced relative to new copies. Epigenetic regulation seems to contribute to silencing older copies, because some of them can be reactivated when endosperm is maintained as cultured cells, indicating that copy number variation might contribute to a reserve of gene copies. Bisulfite sequencing of the promoter region also shows different methylation patterns among gene clusters as well as differences between tissues, suggesting a possible position effect on regulatory mechanisms as a result of inserting copies at unlinked locations. The observations offer a potential paradigm for how different gene families evolve and the impact this has on their expression and regulation of their members. PMID:21731501

  3. Heat-resistant protein expression during germination of maize seeds under water stress.

    PubMed

    Abreu, V M; Silva Neta, I C; Von Pinho, E V R; Naves, G M F; Guimarães, R M; Santos, H O; Von Pinho, R G

    2016-01-01

    Low water availability is one of the factors that limit agricultural crop development, and hence the development of genotypes with increased water stress tolerance is a challenge in plant breeding programs. Heat-resistant proteins have been widely studied, and are reported to participate in various developmental processes and to accumulate in response to stress. This study aimed to evaluate heat-resistant protein expression under water stress conditions during the germination of maize seed inbreed lines differing in their water stress tolerance. Maize seed lines 91 and 64 were soaked in 0, -0.3, -0.6, and -0.9 MPa water potential for 0, 6, 12, 18, and 24 h. Line 91 is considered more water stress-tolerant than line 64. The analysis of heat-resistant protein expression was made by gel electrophoresis and spectrophotometry. In general, higher expression of heat-resistant proteins was observed in seeds from line 64 subjected to shorter soaking periods and lower water potentials. However, in the water stress-tolerant line 91, a higher expression was observed in seeds that were subjected to -0.3 and -0.6 MPa water potentials. In the absence of water stress, heat-resistant protein expression was reduced with increasing soaking period. Thus, there was a difference in heat-resistant protein expression among the seed lines differing in water stress tolerance. Increased heat-resistant protein expression was observed in seeds from line 91 when subjected to water stress conditions for longer soaking periods. PMID:27525950

  4. Seed-specific expression of the lysine-rich protein gene sb401 significantly increases both lysine and total protein content in maize seeds.

    PubMed

    Yu, Jingjuan; Peng, Peng; Zhang, Xiujun; Zhao, Qian; Zhu, Dengyun; Sun, Xuehui; Liu, Junqi; Ao, Guangming

    2005-12-01

    The sb401 gene from potato (Solanum berthaultii) encoding a pollen-specific protein with high lysine content was successfully integrated into the genome of maize plants, and its expression was correlated with increased levels of lysine and total protein content in maize seeds. A plasmid vector containing the sb401 gene under the control of a maize seed-specific expression storage protein promoter (P19z) was constructed and introduced into maize calli by microprojectile bombardment. The integration of the sb401 gene into the maize genome was confirmed by Southern blot analysis, and its expression was confirmed by Western blot analysis. Quantification of the lysine and protein contents in R1 maize seeds showed that, compared with the nontransgenic maize control, the lysine content increased by 16.1% to 54.8% and the total protein content increased by 11.6% to 39.0%. There were no visible morphological changes in the vegetative parts and seeds of the transgenic maize plants. Lysine and protein analysis of the transgenic maize grains showed that the levels of lysine and total protein remained high for six continuous generations, indicating that the elevated lysine and total protein levels were heritable. These results indicate that the sb401 gene could be successfully employed in breeding programs aimed at improving the nutritional value of maize.

  5. Comparative studies of the quantification of genetically modified organisms in foods processed from maize and soy using trial producing.

    PubMed

    Yoshimura, Tomoaki; Kuribara, Hideo; Kodama, Takashi; Yamata, Seiko; Futo, Satoshi; Watanabe, Satoshi; Aoki, Nobutaro; Iizuka, Tayoshi; Akiyama, Hiroshi; Maitani, Tamio; Naito, Shigehiro; Hino, Akihiro

    2005-03-23

    Seven types of processed foods, namely, cornstarch, cornmeal, corn puffs, corn chips, tofu, soy milk, and boiled beans, were trial produced from 1 and 5% (w/w) genetically modified (GM) mixed raw materials. In this report, insect resistant maize (MON810) and herbicide tolerant soy (Roundup Ready soy, 40-3-2) were used as representatives of GM maize and soy, respectively. Deoxyribonucleic acid (DNA) was extracted from the raw materials and the trial-produced processed food using two types of methods, i.e., the silica membrane method and the anion exchange method. The GM% values of these samples were quantified, and the significant differences between the raw materials and the trial-produced processed foods were statistically confirmed. There were some significant differences in the comparisons of all processed foods. However, our quantitative methods could be applied as a screening assay to tofu and soy milk because the differences in GM% between the trial-produced processed foods and their raw materials were lower than 13 and 23%, respectively. In addition, when quantitating with two primer pairs (SSIIb 3, 114 bp; SSIIb 4, 83 bp for maize and Le1n02, 118 bp; Le1n03, 89 bp for soy), which were targeted within the same taxon specific DNA sequence with different amplicon sizes, the ratios of the copy numbers of the two primer pairs (SSIIb 3/4 and Le1n02/03) decreased with time in a heat-treated processing model using an autoclave. In this report, we suggest that the degradation level of DNA in processed foods could be estimated from these ratios, and the probability of GM quantification could be experimentally predicted from the results of the trial producing. PMID:15769136

  6. [Development and validation of event-specific quantitative PCR method for genetically modified maize LY038].

    PubMed

    Mano, Junichi; Masubuchi, Tomoko; Hatano, Shuko; Futo, Satoshi; Koiwa, Tomohiro; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Takabatake, Reona; Kitta, Kazumi

    2013-01-01

    In this article, we report a novel real-time PCR-based analytical method for quantitation of the GM maize event LY038. We designed LY038-specific and maize endogenous reference DNA-specific PCR amplifications. After confirming the specificity and linearity of the LY038-specific PCR amplification, we determined the conversion factor required to calculate the weight-based content of GM organism (GMO) in a multilaboratory evaluation. Finally, in order to validate the developed method, an interlaboratory collaborative trial according to the internationally harmonized guidelines was performed with blind DNA samples containing LY038 at the mixing levels of 0, 0.5, 1.0, 5.0 and 10.0%. The precision of the method was evaluated as the RSD of reproducibility (RSDR), and the values obtained were all less than 25%. The limit of quantitation of the method was judged to be 0.5% based on the definition of ISO 24276 guideline. The results from the collaborative trial suggested that the developed quantitative method would be suitable for practical testing of LY038 maize.

  7. [Development and validation of event-specific quantitative PCR method for genetically modified maize LY038].

    PubMed

    Mano, Junichi; Masubuchi, Tomoko; Hatano, Shuko; Futo, Satoshi; Koiwa, Tomohiro; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Takabatake, Reona; Kitta, Kazumi

    2013-01-01

    In this article, we report a novel real-time PCR-based analytical method for quantitation of the GM maize event LY038. We designed LY038-specific and maize endogenous reference DNA-specific PCR amplifications. After confirming the specificity and linearity of the LY038-specific PCR amplification, we determined the conversion factor required to calculate the weight-based content of GM organism (GMO) in a multilaboratory evaluation. Finally, in order to validate the developed method, an interlaboratory collaborative trial according to the internationally harmonized guidelines was performed with blind DNA samples containing LY038 at the mixing levels of 0, 0.5, 1.0, 5.0 and 10.0%. The precision of the method was evaluated as the RSD of reproducibility (RSDR), and the values obtained were all less than 25%. The limit of quantitation of the method was judged to be 0.5% based on the definition of ISO 24276 guideline. The results from the collaborative trial suggested that the developed quantitative method would be suitable for practical testing of LY038 maize. PMID:23470871

  8. Complexity and Genetic Variability of Heat-Shock Protein Expression in Isolated Maize Microspores.

    PubMed Central

    Magnard, J. L.; Vergne, P.; Dumas, C.

    1996-01-01

    The expression of heat-shock proteins (HSPs) in isolated maize (Zea mays L.) microspores has been investigated using high-resolution two-dimensional electrophoresis coupled to immunodetection and fluorography of in vivo synthesized proteins. To this end, homogeneous and viable populations of microspores have been purified in sufficient amounts for molecular analysis from plants grown in controlled conditions. Appropriate conditions for thermal stress application have been defined. The analysis revealed that isolated microspores from maize display a classical heat-shock response characterized by the repression of the normal protein synthesis and the expression of a set of HSPs. A high complexity of the response was demonstrated, with numerous different HSPs being resolved in each known major HSP molecular weight class. However, the extent of this heat-shock response is limited in that some of these HSPs do not accumulate at high levels following temperature elevation. Comparative analysis of the heat-shock responses of microspores isolated from five genotypes demonstrated high levels of genetic variability. Furthermore, many HSPs were detected in microspores at control temperature, indicating a possible involvement of these proteins in pollen development at stages close to first pollen mitosis. PMID:12226349

  9. Complexity and Genetic Variability of Heat-Shock Protein Expression in Isolated Maize Microspores.

    PubMed

    Magnard, J. L.; Vergne, P.; Dumas, C.

    1996-08-01

    The expression of heat-shock proteins (HSPs) in isolated maize (Zea mays L.) microspores has been investigated using high-resolution two-dimensional electrophoresis coupled to immunodetection and fluorography of in vivo synthesized proteins. To this end, homogeneous and viable populations of microspores have been purified in sufficient amounts for molecular analysis from plants grown in controlled conditions. Appropriate conditions for thermal stress application have been defined. The analysis revealed that isolated microspores from maize display a classical heat-shock response characterized by the repression of the normal protein synthesis and the expression of a set of HSPs. A high complexity of the response was demonstrated, with numerous different HSPs being resolved in each known major HSP molecular weight class. However, the extent of this heat-shock response is limited in that some of these HSPs do not accumulate at high levels following temperature elevation. Comparative analysis of the heat-shock responses of microspores isolated from five genotypes demonstrated high levels of genetic variability. Furthermore, many HSPs were detected in microspores at control temperature, indicating a possible involvement of these proteins in pollen development at stages close to first pollen mitosis. PMID:12226349

  10. Randomly detected genetically modified (GM) maize (Zea mays L.) near a transport route revealed a fragile 45S rDNA phenotype.

    PubMed

    Waminal, Nomar Espinosa; Ryu, Ki Hyun; Choi, Sun-Hee; Kim, Hyun Hee

    2013-01-01

    Monitoring of genetically modified (GM) crops has been emphasized to prevent their potential effects on the environment and human health. Monitoring of the inadvertent dispersal of transgenic maize in several fields and transport routes in Korea was carried out by qualitative multiplex PCR, and molecular analyses were conducted to identify the events of the collected GM maize. Cytogenetic investigations through fluorescence in situ hybridization (FISH) of the GM maize were performed to check for possible changes in the 45S rDNA cluster because this cluster was reported to be sensitive to replication and transcription stress. Three GM maize kernels were collected from a transport route near Incheon port, Korea, and each was found to contain NK603, stacked MON863 x NK603, and stacked NK603 x MON810 inserts, respectively. Cytogenetic analysis of the GM maize containing the stacked NK603 x MON810 insert revealed two normal compact 5S rDNA signals, but the 45S rDNA showed a fragile phenotype, demonstrating a "beads-on-a-string" fragmentation pattern, which seems to be a consequence of genetic modification. Implications of the 45S rDNA cluster fragility in GM maize are also discussed.

  11. Randomly Detected Genetically Modified (GM) Maize (Zea mays L.) near a Transport Route Revealed a Fragile 45S rDNA Phenotype

    PubMed Central

    Waminal, Nomar Espinosa; Ryu, Ki Hyun; Choi, Sun-Hee; Kim, Hyun Hee

    2013-01-01

    Monitoring of genetically modified (GM) crops has been emphasized to prevent their potential effects on the environment and human health. Monitoring of the inadvertent dispersal of transgenic maize in several fields and transport routes in Korea was carried out by qualitative multiplex PCR, and molecular analyses were conducted to identify the events of the collected GM maize. Cytogenetic investigations through fluorescence in situ hybridization (FISH) of the GM maize were performed to check for possible changes in the 45S rDNA cluster because this cluster was reported to be sensitive to replication and transcription stress. Three GM maize kernels were collected from a transport route near Incheon port, Korea, and each was found to contain NK603, stacked MON863 x NK603, and stacked NK603 x MON810 inserts, respectively. Cytogenetic analysis of the GM maize containing the stacked NK603 x MON810 insert revealed two normal compact 5S rDNA signals, but the 45S rDNA showed a fragile phenotype, demonstrating a “beads-on-a-string” fragmentation pattern, which seems to be a consequence of genetic modification. Implications of the 45S rDNA cluster fragility in GM maize are also discussed. PMID:24040165

  12. Event-specific detection of seven genetically modified soybean and maizes using multiplex-PCR coupled with oligonucleotide microarray.

    PubMed

    Xu, Jia; Zhu, Shuifang; Miao, Haizhen; Huang, Wensheng; Qiu, Minyan; Huang, Yan; Fu, Xuping; Li, Yao

    2007-07-11

    With the increasing development of genetically modified organism (GMO) detection techniques, the polymerase chain reaction (PCR) technique has been the mainstay for GMO detection. An oligonucleotide microarray is a glass chip to the surface of which an array of oligonucleotides was fixed as spots, each containing numerous copies of a sequence-specific probe that is complementary to a gene of interest. So it is used to detect ten or more targets synchronously. In this research, an event-specific detection strategy based on the unique and specific integration junction sequences between the host plant genome DNA and the integrated gene is being developed for its high specificity using multiplex-PCR together with oligonucleotide microarray. A commercial GM soybean (GTS 40-3-2) and six GM maize events (MON810, MON863, Bt176, Bt11, GA21, and T25) were detected by this method. The results indicate that it is a suitable method for the identification of these GM soybean and maizes. PMID:17559227

  13. Event-specific detection of seven genetically modified soybean and maizes using multiplex-PCR coupled with oligonucleotide microarray.

    PubMed

    Xu, Jia; Zhu, Shuifang; Miao, Haizhen; Huang, Wensheng; Qiu, Minyan; Huang, Yan; Fu, Xuping; Li, Yao

    2007-07-11

    With the increasing development of genetically modified organism (GMO) detection techniques, the polymerase chain reaction (PCR) technique has been the mainstay for GMO detection. An oligonucleotide microarray is a glass chip to the surface of which an array of oligonucleotides was fixed as spots, each containing numerous copies of a sequence-specific probe that is complementary to a gene of interest. So it is used to detect ten or more targets synchronously. In this research, an event-specific detection strategy based on the unique and specific integration junction sequences between the host plant genome DNA and the integrated gene is being developed for its high specificity using multiplex-PCR together with oligonucleotide microarray. A commercial GM soybean (GTS 40-3-2) and six GM maize events (MON810, MON863, Bt176, Bt11, GA21, and T25) were detected by this method. The results indicate that it is a suitable method for the identification of these GM soybean and maizes.

  14. Testing potential effects of maize expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) on mycorrhizal fungal communities via DNA- and RNA-based pyrosequencing and molecular fingerprinting.

    PubMed

    Verbruggen, Erik; Kuramae, Eiko E; Hillekens, Remy; de Hollander, Mattias; Kiers, E Toby; Röling, Wilfred F M; Kowalchuk, George A; van der Heijden, Marcel G A

    2012-10-01

    The cultivation of genetically modified (GM) crops has increased significantly over the last decades. However, concerns have been raised that some GM traits may negatively affect beneficial soil biota, such as arbuscular mycorrhizal fungi (AMF), potentially leading to alterations in soil functioning. Here, we test two maize varieties expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) for their effects on soil AM fungal communities. We target both fungal DNA and RNA, which is new for AM fungi, and we use two strategies as an inclusive and robust way of detecting community differences: (i) 454 pyrosequencing using general fungal rRNA gene-directed primers and (ii) terminal restriction fragment length polymorphism (T-RFLP) profiling using AM fungus-specific markers. Potential GM-induced effects were compared to the normal natural variation of AM fungal communities across 15 different agricultural fields. AM fungi were found to be abundant in the experiment, accounting for 8% and 21% of total recovered DNA- and RNA-derived fungal sequences, respectively, after 104 days of plant growth. RNA- and DNA-based sequence analyses yielded most of the same AM fungal lineages. Our research yielded three major conclusions. First, no consistent differences were detected between AM fungal communities associated with GM plants and non-GM plants. Second, temporal variation in AMF community composition (between two measured time points) was bigger than GM trait-induced variation. Third, natural variation of AMF communities across 15 agricultural fields in The Netherlands, as well as within-field temporal variation, was much higher than GM-induced variation. In conclusion, we found no indication that Bt maize cultivation poses a risk for AMF.

  15. Testing Potential Effects of Maize Expressing the Bacillus thuringiensis Cry1Ab Endotoxin (Bt Maize) on Mycorrhizal Fungal Communities via DNA- and RNA-Based Pyrosequencing and Molecular Fingerprinting

    PubMed Central

    Kuramae, Eiko E.; Hillekens, Remy; de Hollander, Mattias; Kiers, E. Toby; Röling, Wilfred F. M.; Kowalchuk, George A.; van der Heijden, Marcel G. A.

    2012-01-01

    The cultivation of genetically modified (GM) crops has increased significantly over the last decades. However, concerns have been raised that some GM traits may negatively affect beneficial soil biota, such as arbuscular mycorrhizal fungi (AMF), potentially leading to alterations in soil functioning. Here, we test two maize varieties expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) for their effects on soil AM fungal communities. We target both fungal DNA and RNA, which is new for AM fungi, and we use two strategies as an inclusive and robust way of detecting community differences: (i) 454 pyrosequencing using general fungal rRNA gene-directed primers and (ii) terminal restriction fragment length polymorphism (T-RFLP) profiling using AM fungus-specific markers. Potential GM-induced effects were compared to the normal natural variation of AM fungal communities across 15 different agricultural fields. AM fungi were found to be abundant in the experiment, accounting for 8% and 21% of total recovered DNA- and RNA-derived fungal sequences, respectively, after 104 days of plant growth. RNA- and DNA-based sequence analyses yielded most of the same AM fungal lineages. Our research yielded three major conclusions. First, no consistent differences were detected between AM fungal communities associated with GM plants and non-GM plants. Second, temporal variation in AMF community composition (between two measured time points) was bigger than GM trait-induced variation. Third, natural variation of AMF communities across 15 agricultural fields in The Netherlands, as well as within-field temporal variation, was much higher than GM-induced variation. In conclusion, we found no indication that Bt maize cultivation poses a risk for AMF. PMID:22885748

  16. Ectopic expression of a maize calreticulin mitigates calcium deficiency-like disorders in "sCAX1"-expressing tobacco and tomato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deregulated expression of an Arabidopsis H(+)/Ca(2+) antiporter (sCAX1) in agricultural crops increases total calcium (Ca(2+)) but may result in yield losses due to Ca(2+) deficiency-like symptoms. Here we demonstrate that co-expression of a maize calreticulin (CRT, a Ca(2+) binding protein located ...

  17. Gravity-stimulated changes in auxin and invertase gene expression in maize pulvinal cells

    NASA Technical Reports Server (NTRS)

    Long, Joanne C.; Zhao, Wei; Rashotte, Aaron M.; Muday, Gloria K.; Huber, Steven C.; Brown, C. S. (Principal Investigator)

    2002-01-01

    Maize (Zea mays) stem gravitropism involves differential elongation of cells within a highly specialized region, the stem internodal pulvinus. In the present study, we investigated factors that control gravitropic responses in this system. In the graviresponding pulvinus, hexose sugars (D-Glc and D-Fru) accumulated asymmetrically across the pulvinus. This correlated well with an asymmetric increase in acid invertase activity across the pulvinus. Northern analyses revealed asymmetric induction of one maize acid invertase gene, Ivr2, consistent with transcriptional regulation by gravistimulation. Several lines of evidence indicated that auxin redistribution, as a result of polar auxin transport, is necessary for gravity-stimulated Ivr2 transcript accumulation and differential cell elongation across the maize pulvinus. First, the auxin transport inhibitor, N-1-naphthylphthalamic acid, inhibited gravistimulated curvature and Ivr2 transcript accumulation. Second, a transient gradient of free indole-3-acetic acid (IAA) across the pulvinus was apparent shortly after initiation of gravistimulation. This temporarily free IAA gradient appears to be important for differential cell elongation and Ivr2 transcript accumulation. This is based on the observation that N-1-naphthylphthalamic acid will not inhibit gravitropic responses when applied to pulvinus tissue after the free IAA gradient peak has occurred. Third, IAA alone can stimulate Ivr2 transcript accumulation in non-gravistimulated pulvini. The gravity- and IAA-stimulated increase in Ivr2 transcripts was sensitive to the protein synthesis inhibitor, cycloheximide. Based on these results, a two-phase model describing possible relationships between gravitropic curvature, IAA redistribution, and Ivr2 expression is presented.

  18. Gravity-Stimulated Changes in Auxin and Invertase Gene Expression in Maize Pulvinal Cells1

    PubMed Central

    Long, Joanne C.; Zhao, Wei; Rashotte, Aaron M.; Muday, Gloria K.; Huber, Steven C.

    2002-01-01

    Maize (Zea mays) stem gravitropism involves differential elongation of cells within a highly specialized region, the stem internodal pulvinus. In the present study, we investigated factors that control gravitropic responses in this system. In the graviresponding pulvinus, hexose sugars (d-Glc and d-Fru) accumulated asymmetrically across the pulvinus. This correlated well with an asymmetric increase in acid invertase activity across the pulvinus. Northern analyses revealed asymmetric induction of one maize acid invertase gene, Ivr2, consistent with transcriptional regulation by gravistimulation. Several lines of evidence indicated that auxin redistribution, as a result of polar auxin transport, is necessary for gravity-stimulated Ivr2 transcript accumulation and differential cell elongation across the maize pulvinus. First, the auxin transport inhibitor, N-1-naphthylphthalamic acid, inhibited gravistimulated curvature and Ivr2 transcript accumulation. Second, a transient gradient of free indole-3-acetic acid (IAA) across the pulvinus was apparent shortly after initiation of gravistimulation. This temporarily free IAA gradient appears to be important for differential cell elongation and Ivr2 transcript accumulation. This is based on the observation that N-1-naphthylphthalamic acid will not inhibit gravitropic responses when applied to pulvinus tissue after the free IAA gradient peak has occurred. Third, IAA alone can stimulate Ivr2 transcript accumulation in non-gravistimulated pulvini. The gravity- and IAA-stimulated increase in Ivr2 transcripts was sensitive to the protein synthesis inhibitor, cycloheximide. Based on these results, a two-phase model describing possible relationships between gravitropic curvature, IAA redistribution, and Ivr2 expression is presented. PMID:11842162

  19. Gravity-stimulated changes in auxin and invertase gene expression in maize pulvinal cells.

    PubMed

    Long, Joanne C; Zhao, Wei; Rashotte, Aaron M; Muday, Gloria K; Huber, Steven C

    2002-02-01

    Maize (Zea mays) stem gravitropism involves differential elongation of cells within a highly specialized region, the stem internodal pulvinus. In the present study, we investigated factors that control gravitropic responses in this system. In the graviresponding pulvinus, hexose sugars (D-Glc and D-Fru) accumulated asymmetrically across the pulvinus. This correlated well with an asymmetric increase in acid invertase activity across the pulvinus. Northern analyses revealed asymmetric induction of one maize acid invertase gene, Ivr2, consistent with transcriptional regulation by gravistimulation. Several lines of evidence indicated that auxin redistribution, as a result of polar auxin transport, is necessary for gravity-stimulated Ivr2 transcript accumulation and differential cell elongation across the maize pulvinus. First, the auxin transport inhibitor, N-1-naphthylphthalamic acid, inhibited gravistimulated curvature and Ivr2 transcript accumulation. Second, a transient gradient of free indole-3-acetic acid (IAA) across the pulvinus was apparent shortly after initiation of gravistimulation. This temporarily free IAA gradient appears to be important for differential cell elongation and Ivr2 transcript accumulation. This is based on the observation that N-1-naphthylphthalamic acid will not inhibit gravitropic responses when applied to pulvinus tissue after the free IAA gradient peak has occurred. Third, IAA alone can stimulate Ivr2 transcript accumulation in non-gravistimulated pulvini. The gravity- and IAA-stimulated increase in Ivr2 transcripts was sensitive to the protein synthesis inhibitor, cycloheximide. Based on these results, a two-phase model describing possible relationships between gravitropic curvature, IAA redistribution, and Ivr2 expression is presented. PMID:11842162

  20. Novel role of ZmaNAC36 in co-expression of starch synthetic genes in maize endosperm.

    PubMed

    Zhang, Junjie; Chen, Jiang; Yi, Qiang; Hu, Yufeng; Liu, Hanmei; Liu, Yinghong; Huang, Yubi

    2014-02-01

    Starch is an essential commodity that is widely used as food, feed, fuel and in industry. However, its mechanism of synthesis is not fully understood, especially in terms of the expression and regulation of the starch synthetic genes. It was reported that the starch synthetic genes were co-expressed during maize endosperm development; however, the mechanism of the co-expression was not reported. In this paper, the ZmaNAC36 gene was amplified by homology-based cloning, and its expression vector was constructed for transient expression. The nuclear localization, transcriptional activation and target sites of the ZmaNAC36 protein were identified. The expression profile of ZmaNAC36 showed that it was strongly expressed in the maize endosperm and was co-expressed with most of the starch synthetic genes. Moreover, the expressions of many starch synthesis genes in the endosperm were upregulated when ZmaNAC36 was transiently overexpressed. All our results indicated that NAC36 might be a transcription factor and play a potential role in the co-expression of starch synthetic genes in the maize endosperm.

  1. Integration of Ethylene and Jasmonic Acid Signaling Pathways in the Expression of Novel Maize Defense Protein Mir1-CP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In plants, ethylene (ET) and jasmonate (JA) control the defense responses to multiple stressors, including insect predation. Among the defense proteins known to be regulated by ET, is maize insect resistance 1-cysteine protease (Mir1-CP). This protein is constitutively expressed in the insect resi...

  2. Field Evaluation of Arbuscular Mycorrhizal Fungal Colonization in Bacillus thuringiensis Toxin-Expressing (Bt) and Non-Bt Maize

    PubMed Central

    Cruzan, Mitchell B.; Rosenstiel, Todd N.

    2013-01-01

    The cultivation of genetically engineered Bacillus thuringiensis toxin-expressing (Bt) maize continues to increase worldwide, yet the effects of Bt crops on arbuscular mycorrhizal fungi (AMF) in soil are poorly understood. In this field experiment, we investigated the impact of seven different genotypes of Bt maize and five corresponding non-Bt parental cultivars on AMF and evaluated plant growth responses at three different physiological time points. Plants were harvested 60 days (active growth), 90 days (tasseling and starting to produce ears), and 130 days (maturity) after sowing, and data on plant growth responses and percent AMF colonization of roots at each harvest were collected. Spore abundance and diversity were also evaluated at the beginning and end of the field season to determine whether the cultivation of Bt maize had a negative effect on AMF propagules in the soil. Plant growth and AMF colonization did not differ between Bt and non-Bt maize at any harvest period, but AMF colonization was positively correlated with leaf chlorophyll content at the 130-day harvest. Cultivation of Bt maize had no effect on spore abundance and diversity in Bt versus non-Bt plots over one field season. Plot had the most significant effect on total spore counts, indicating spatial heterogeneity in the field. Although previous greenhouse studies demonstrated that AMF colonization was lower in some Bt maize lines, our field study did not yield the same results, suggesting that the cultivation of Bt maize may not have an impact on AMF in the soil ecosystem under field conditions. PMID:23624473

  3. Field evaluation of arbuscular mycorrhizal fungal colonization in Bacillus thuringiensis toxin-expressing (Bt) and non-Bt maize.

    PubMed

    Cheeke, Tanya E; Cruzan, Mitchell B; Rosenstiel, Todd N

    2013-07-01

    The cultivation of genetically engineered Bacillus thuringiensis toxin-expressing (Bt) maize continues to increase worldwide, yet the effects of Bt crops on arbuscular mycorrhizal fungi (AMF) in soil are poorly understood. In this field experiment, we investigated the impact of seven different genotypes of Bt maize and five corresponding non-Bt parental cultivars on AMF and evaluated plant growth responses at three different physiological time points. Plants were harvested 60 days (active growth), 90 days (tasseling and starting to produce ears), and 130 days (maturity) after sowing, and data on plant growth responses and percent AMF colonization of roots at each harvest were collected. Spore abundance and diversity were also evaluated at the beginning and end of the field season to determine whether the cultivation of Bt maize had a negative effect on AMF propagules in the soil. Plant growth and AMF colonization did not differ between Bt and non-Bt maize at any harvest period, but AMF colonization was positively correlated with leaf chlorophyll content at the 130-day harvest. Cultivation of Bt maize had no effect on spore abundance and diversity in Bt versus non-Bt plots over one field season. Plot had the most significant effect on total spore counts, indicating spatial heterogeneity in the field. Although previous greenhouse studies demonstrated that AMF colonization was lower in some Bt maize lines, our field study did not yield the same results, suggesting that the cultivation of Bt maize may not have an impact on AMF in the soil ecosystem under field conditions.

  4. Pepsin degradation of Cry1A(b) protein purified from genetically modified maize (Zea mays).

    PubMed

    de Luis, Ruth; Lavilla, María; Sánchez, Lourdes; Calvo, Miguel; Pérez, María D

    2010-02-24

    The aim of this work was to study the in vitro digestion of Cry1A(b) protein by pepsin. To perform this work, a protein fraction purified from transgenic maize by immunoadsorption was employed. The undigested fraction showed several bands of molecular weight ranging between 14 and 70 kDa when assayed by SDS-PAGE. These bands were identified as corresponding to Cry1A(b) protein by immunochemical techniques and mass spectrometry. The rate of degradation of the purified fraction by pepsin estimated by ELISA was found to be about 75% within 30 min, and the protein concentration remained constant up to 4 h. In all treated samples, the full-length protein and fragments present in Cry1A(b) fraction were absent and peptides of less than 8.5 kDa were mainly found by SDS-PAGE and mass spectrometry. These peptides did not react with antiserum against Cry1A(b) protein by Western blotting. These results suggest that Cry1A(b) fraction purified from transgenic maize is rapidly and extensively degraded by pepsin, giving peptides of low molecular mass.

  5. Rapid visual detection of phytase gene in genetically modified maize using loop-mediated isothermal amplification method.

    PubMed

    Huang, Xin; Chen, Lili; Xu, Jiangmin; Ji, Hai-Feng; Zhu, Shuifang; Chen, Hongjun

    2014-08-01

    Transgenic maize plant expressing high phytase activity has been reported and approved by Chinese government in 2009. Here, we report a highly specific loop-mediated isothermal amplification (LAMP) method to detect the phytase gene in the GMO maize. The LAMP reaction takes less than 20min and the amplification is visible without gel electrophoresis. The detection sensitivity of the LAMP method is about 30 copies of phytase genomic DNA, which is 33.3 times greater than the conventional PCR method with gel electrophoresis. The quantitative detection results showed that the LAMP method has a good linear correlation between the DNA copy number and the associated Tt values over a large dynamic range of template concentration from 6×10(1) to 6×10(7) copies, with a quantification limit of 60 copies. Therefore, the LAMP method is visual, faster, and more sensitive, and does not need special equipment compared to traditional PCR technique, which is very useful for field tests and fast screening of GMO feeds. PMID:24629956

  6. Rapid visual detection of phytase gene in genetically modified maize using loop-mediated isothermal amplification method.

    PubMed

    Huang, Xin; Chen, Lili; Xu, Jiangmin; Ji, Hai-Feng; Zhu, Shuifang; Chen, Hongjun

    2014-08-01

    Transgenic maize plant expressing high phytase activity has been reported and approved by Chinese government in 2009. Here, we report a highly specific loop-mediated isothermal amplification (LAMP) method to detect the phytase gene in the GMO maize. The LAMP reaction takes less than 20min and the amplification is visible without gel electrophoresis. The detection sensitivity of the LAMP method is about 30 copies of phytase genomic DNA, which is 33.3 times greater than the conventional PCR method with gel electrophoresis. The quantitative detection results showed that the LAMP method has a good linear correlation between the DNA copy number and the associated Tt values over a large dynamic range of template concentration from 6×10(1) to 6×10(7) copies, with a quantification limit of 60 copies. Therefore, the LAMP method is visual, faster, and more sensitive, and does not need special equipment compared to traditional PCR technique, which is very useful for field tests and fast screening of GMO feeds.

  7. Quantification and identification of genetically modified maize events in non-identity preserved maize samples in 2009 using an individual kernel detection system.

    PubMed

    Akiyama, Hiroshi; Minegishi, Yasutaka; Makiyama, Daiki; Mano, Junichi; Sakata, Kozue; Nakamura, Kosuke; Noguchi, Akio; Takabatake, Reona; Futo, Satoshi; Kondo, Kazunari; Kitta, Kazumi; Kato, Yasuo; Teshima, Reiko

    2012-01-01

    We investigated the GM maize grain content of non-identity preserved (non-IP) maize samples produced in 2009 in the USA using our individual kernel detection system, involving two multiplex qualitative PCR methods coupled to microchip electrophoresis and partially real-time PCR array analysis, to clarify how many GM event maize grains were present in the samples and which GM events frequently appeared in 2009. The average percentage and standard deviation of GM maize grains on a kernel basis in five non-IP sample lots were 81.9%±2.8%, the average percentage of single GM event grains was 46.9%, and the average percentage of stacked GM event grains was 35.0%. MON88017 grains and NK603 grains were the most frequently observed as single GM event grains. The most frequent stacked GM event grains were MON88017×MON810 grains. This study shows that our method can provide information about GM maize events present in imported maize samples on a kernel basis. PMID:23132354

  8. Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT) down-regulated, and normal maize plants

    PubMed Central

    Guillaumie, Sabine; Goffner, Deborah; Barbier, Odile; Martinant, Jean-Pierre; Pichon, Magalie; Barrière, Yves

    2008-01-01

    Background Silage maize is a major forage and energy resource for cattle feeding, and several studies have shown that lignin content and structure are the determining factors in forage maize feeding value. In maize, four natural brown-midrib mutants have modified lignin content, lignin structure and cell wall digestibility. The greatest lignin reduction and the highest cell wall digestibility were observed in the brown-midrib-3 (bm3) mutant, which is disrupted in the caffeic acid O-methyltransferase (COMT) gene. Results Expression of cell wall related genes was investigated in basal and ear internodes of normal, COMT antisens (AS225), and bm3 maize plants of the INRA F2 line. A cell wall macro-array was developed with 651 gene specific tags of genes specifically involved in cell wall biogenesis. When comparing basal (older lignifying) and ear (younger lignifying) internodes of the normal line, all genes known to be involved in constitutive monolignol biosynthesis had a higher expression in younger ear internodes. The expression of the COMT gene was heavily reduced, especially in the younger lignifying tissues of the ear internode. Despite the fact that AS225 transgene expression was driven only in sclerenchyma tissues, COMT expression was also heavily reduced in AS225 ear and basal internodes. COMT disruption or down-regulation led to differential expressions of a few lignin pathway genes, which were all over-expressed, except for a phenylalanine ammonia-lyase gene. More unexpectedly, several transcription factor genes, cell signaling genes, transport and detoxification genes, genes involved in cell wall carbohydrate metabolism and genes encoding cell wall proteins, were differentially expressed, and mostly over-expressed, in COMT-deficient plants. Conclusion Differential gene expressions in COMT-deficient plants highlighted a probable disturbance in cell wall assembly. In addition, the gene expressions suggested modified chronology of the different events leading

  9. Constitutive expression of fluorescent protein by Aspergillus var. niger and Aspergillus carbonarius to monitor fungal colonization in maize plants.

    PubMed

    Palencia, Edwin Rene; Glenn, Anthony Elbie; Hinton, Dorothy Mae; Bacon, Charles Wilson

    2013-09-01

    Aspergillus niger and Aspergillus carbonarius are two species in the Aspergillus section Nigri (black-spored aspergilli) frequently associated with peanut (Arachis hypogea), maize (Zea mays), and other plants as pathogens. These infections are symptomless and as such are major concerns since some black aspergilli produce important mycotoxins, ochratoxins A, and the fumonisins. To facilitate the study of the black aspergilli-maize interactions with maize during the early stages of infections, we developed a method that used the enhanced yellow fluorescent protein (eYFP) and the monomeric red fluorescent protein (mRFP1) to transform A. niger and A. carbonarius, respectively. The results were constitutive expressions of the fluorescent genes that were stable in the cytoplasms of hyphae and conidia under natural environmental conditions. The hyphal in planta distribution in 21-day-old seedlings of maize were similar wild type and transformants of A. niger and A. carbonarius. The in planta studies indicated that both wild type and transformants internally colonized leaf, stem and root tissues of maize seedlings, without any visible disease symptoms. Yellow and red fluorescent strains were capable of invading epidermal cells of maize roots intercellularly within the first 3 days after inoculation, but intracellular hyphal growth was more evident after 7 days of inoculation. We also tested the capacity of fluorescent transformants to produce ochratoxin A and the results with A. carbonarius showed that this transgenic strain produced similar concentrations of this secondary metabolite. This is the first report on the in planta expression of fluorescent proteins that should be useful to study the internal plant colonization patterns of two ochratoxigenic species in the Aspergillus section Nigri.

  10. Genome-Wide Identification of VQ Motif-Containing Proteins and their Expression Profiles Under Abiotic Stresses in Maize

    PubMed Central

    Song, Weibin; Zhao, Haiming; Zhang, Xiangbo; Lei, Lei; Lai, Jinsheng

    2016-01-01

    VQ motif-containing proteins play crucial roles in abiotic stress responses in plants. Recent studies have shown that some VQ proteins physically interact with WRKY transcription factors to activate downstream genes. In the present study, we identified and characterized genes encoding VQ motif-containing proteins using the most recent version of the maize genome sequence. In total, 61VQ genes were identified. In a cluster analysis, these genes clustered into nine groups together with their homologous genes in rice and Arabidopsis. Most of the VQ genes (57 out of 61 numbers) identified in maize were found to be single-copy genes. Analyses of RNA-seq data obtained using seedlings under long-term drought treatment showed that the expression levels of most ZmVQ genes (41 out of 61 members) changed during the drought stress response. Quantitative real-time PCR analyses showed that most of the ZmVQ genes were responsive to NaCl treatment. Also, approximately half of the ZmVQ genes were co-expressed with ZmWRKY genes. The identification of these VQ genes in the maize genome and knowledge of their expression profiles under drought and osmotic stresses will provide a solid foundation for exploring their specific functions in the abiotic stress responses of maize. PMID:26779214

  11. Expression Patterns of Glutathione Transferase Gene (GstI) in Maize Seedlings Under Juglone-Induced Oxidative Stress

    PubMed Central

    Sytykiewicz, Hubert

    2011-01-01

    Juglone (5-hydroxy-1,4-naphthoquinone) has been identified in organs of many plant species within Juglandaceae family. This secondary metabolite is considered as a highly bioactive substance that functions as direct oxidant stimulating the production of reactive oxygen species (ROS) in acceptor plants. Glutathione transferases (GSTs, E.C.2.5.1.18) represent an important group of cytoprotective enzymes participating in detoxification of xenobiotics and limiting oxidative damages of cellular macromolecules. The purpose of this study was to investigate the impact of tested allelochemical on growth and development of maize (Zea mays L.) seedlings. Furthermore, the effect of juglone-induced oxidative stress on glutathione transferase (GstI) gene expression patterns in maize seedlings was recorded. It was revealed that 4-day juglone treatment significantly stimulated the transcriptional activity of GstI in maize seedlings compared to control plants. By contrast, at the 6th and 8th day of experiments the expression gene responses were slightly lower as compared with non-stressed seedlings. Additionally, the specific gene expression profiles, as well as the inhibition of primary roots and coleoptile elongation were proportional to juglone concentrations. In conclusion, the results provide strong molecular evidence that allelopathic influence of juglone on growth and development of maize seedlings may be relevant with an induction of oxidative stress in acceptor plants. PMID:22174645

  12. Validation of real-time PCR analyses for line-specific quantitation of genetically modified maize and soybean using new reference molecules.

    PubMed

    Shindo, Yoichiro; Kuribara, Hideo; Matsuoka, Takeshi; Futo, Satoshi; Sawada, Chihiro; Shono, Jinji; Akiyama, Hiroshi; Goda, Yukihiro; Toyoda, Masatake; Hino, Akihiro

    2002-01-01

    Novel analytical methods based on real-time quantitative polymerase chain reactions by use of new reference molecules were validated in interlaboratory studies for the quantitation of genetically modified (GM) maize and soy. More than 13 laboratories from Japan, Korea, and the United States participated in the studies. The interlaboratory studies included 2 separate stages: (1) measurement tests of coefficient values, the ratio of recombinant DNA (r-DNA) sequence, and endogenous DNA sequence in the seeds of GM maize and GM soy; and (2) blind tests with 6 pairs of maize and soy samples, including different levels of GM maize or GM soy. Test results showed that the methods are applicable to the specific quantitation of the 5 lines of GM maize and one line of GM soy. After statistical treatment to remove outliers, the repeatability and reproducibility of these methods at a level of 5.0% were <13.7 and 15.9%, respectively. The quantitation limits of the methods were 0.50% for Bt11, T25, and MON810, and 0.10% for GA21, Event176, and Roundup Ready soy. The results of blind tests showed that the numerical information obtained from these methods will contribute to practical analyses for labeling systems of GM crops. PMID:12374412

  13. Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L.) by expression profiling

    PubMed Central

    Użarowska, Anna; Dionisio, Giuseppe; Sarholz, Barbara; Piepho, Hans-Peter; Xu, Mingliang; Ingvardsen, Christina Rønn; Wenzel, Gerhard; Lübberstedt, Thomas

    2009-01-01

    Background The potyviruses sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV) are major pathogens of maize worldwide. Two loci, Scmv1 and Scmv2, have ealier been shown to confer complete resistance to SCMV. Custom-made microarrays containing previously identified SCMV resistance candidate genes and resistance gene analogs were utilised to investigate and validate gene expression and expression patterns of isogenic lines under pathogen infection in order to obtain information about the molecular mechanisms involved in maize-potyvirus interactions. Results By employing time course microarray experiments we identified 68 significantly differentially expressed sequences within the different time points. The majority of differentially expressed genes differed between the near-isogenic line carrying Scmv1 resistance locus at chromosome 6 and the other isogenic lines. Most differentially expressed genes in the SCMV experiment (75%) were identified one hour after virus inoculation, and about one quarter at multiple time points. Furthermore, most of the identified mapped genes were localised outside the Scmv QTL regions. Annotation revealed differential expression of promising pathogenesis-related candidate genes, validated by qRT-PCR, coding for metallothionein-like protein, S-adenosylmethionine synthetase, germin-like protein or 26S ribosomal RNA. Conclusion Our study identified putative candidate genes and gene expression patterns related to resistance to SCMV. Moreover, our findings support the effectiveness and reliability of the combination of different expression profiling approaches for the identification and validation of candidate genes. Genes identified in this study represent possible future targets for manipulation of SCMV resistance in maize. PMID:19187556

  14. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction.

    PubMed

    Dobnik, David; Spilsberg, Bjørn; Bogožalec Košir, Alexandra; Holst-Jensen, Arne; Žel, Jana

    2015-08-18

    Presence of genetically modified organisms (GMO) in food and feed products is regulated in many countries. The European Union (EU) has implemented a threshold for labeling of products containing more than 0.9% of authorized GMOs per ingredient. As the number of GMOs has increased over time, standard-curve based simplex quantitative polymerase chain reaction (qPCR) analyses are no longer sufficiently cost-effective, despite widespread use of initial PCR based screenings. Newly developed GMO detection methods, also multiplex methods, are mostly focused on screening and detection but not quantification. On the basis of droplet digital PCR (ddPCR) technology, multiplex assays for quantification of all 12 EU authorized GM maize lines (per April first 2015) were developed. Because of high sequence similarity of some of the 12 GM targets, two separate multiplex assays were needed. In both assays (4-plex and 10-plex), the transgenes were labeled with one fluorescence reporter and the endogene with another (GMO concentration = transgene/endogene ratio). It was shown that both multiplex assays produce specific results and that performance parameters such as limit of quantification, repeatability, and trueness comply with international recommendations for GMO quantification methods. Moreover, for samples containing GMOs, the throughput and cost-effectiveness is significantly improved compared to qPCR. Thus, it was concluded that the multiplex ddPCR assays could be applied for routine quantification of 12 EU authorized GM maize lines. In case of new authorizations, the events can easily be added to the existing multiplex assays. The presented principle of quantitative multiplexing can be applied to any other domain. PMID:26169291

  15. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction.

    PubMed

    Dobnik, David; Spilsberg, Bjørn; Bogožalec Košir, Alexandra; Holst-Jensen, Arne; Žel, Jana

    2015-08-18

    Presence of genetically modified organisms (GMO) in food and feed products is regulated in many countries. The European Union (EU) has implemented a threshold for labeling of products containing more than 0.9% of authorized GMOs per ingredient. As the number of GMOs has increased over time, standard-curve based simplex quantitative polymerase chain reaction (qPCR) analyses are no longer sufficiently cost-effective, despite widespread use of initial PCR based screenings. Newly developed GMO detection methods, also multiplex methods, are mostly focused on screening and detection but not quantification. On the basis of droplet digital PCR (ddPCR) technology, multiplex assays for quantification of all 12 EU authorized GM maize lines (per April first 2015) were developed. Because of high sequence similarity of some of the 12 GM targets, two separate multiplex assays were needed. In both assays (4-plex and 10-plex), the transgenes were labeled with one fluorescence reporter and the endogene with another (GMO concentration = transgene/endogene ratio). It was shown that both multiplex assays produce specific results and that performance parameters such as limit of quantification, repeatability, and trueness comply with international recommendations for GMO quantification methods. Moreover, for samples containing GMOs, the throughput and cost-effectiveness is significantly improved compared to qPCR. Thus, it was concluded that the multiplex ddPCR assays could be applied for routine quantification of 12 EU authorized GM maize lines. In case of new authorizations, the events can easily be added to the existing multiplex assays. The presented principle of quantitative multiplexing can be applied to any other domain.

  16. Priming maize resistance by its neighbors: activating 1,4-benzoxazine-3-ones synthesis and defense gene expression to alleviate leaf disease

    PubMed Central

    Ding, Xupo; Yang, Min; Huang, Huichuan; Chuan, Youcong; He, Xiahong; Li, Chengyun; Zhu, Youyong; Zhu, Shusheng

    2015-01-01

    Plant disease can be effectively suppressed in intercropping systems. Our previous study demonstrated that neighboring maize plants can restrict the spread of soil-borne pathogens of pepper plants by secreting defense compounds into the soil. However, whether maize plant can receive benefits from its neighboring pepper plants in an intercropping system is little attention. We examined the effects of maize roots treated with elicitors from the pepper pathogen Phytophthora capsici and pepper root exudates on the synthesis of 1,4-benzoxazine-3-ones (BXs), the expression of defense-related genes in maize, and their ability to alleviate the severity of southern corn leaf blight (SCLB) caused by Bipolaris maydis. We found that SCLB was significantly reduced after the above treatments. The contents of 1,4-benzoxazine-3-ones (BXs: DIBOA, DIMBOA, and MBOA) and the expression levels of BX synthesis and defense genes in maize roots and shoots were up-regulated. DIMBOA and MBOA effectively inhibited the mycelium growth of Bipolaris maydis at physiological concentrations in maize shoots. Further studies suggested that the defense related pathways or genes in maize roots and shoots were activated by elicitors from the P. capsici or pepper root exudates. In conclusion, maize increased the levels of BXs and defense gene expression both in roots and shoots after being triggered by root exudates and pathogen from neighboring pepper plants, eventually enhancing its resistance. PMID:26528303

  17. Impact of reagent infiltration time on reaction patterns and pasting properties of modified maize and wheat starches.

    PubMed

    Hong, Jung Sun; BeMiller, James N; Huber, Kerry C

    2016-10-20

    The impact of granular and molecular reaction patterns on modified starch properties was investigated as a function of the length of time allowed for reagent to infiltrate starch granules. A fluorescent reagent [5-(4,6-dichlorotriazinyl)aminofluorescein] was dispersed in aqueous normal maize or wheat starch slurries (35%, w/v) for 0, 5, 10, 30, or 60min, after which reaction was initiated by increasing the pH to 11.5 and allowing reaction to proceed for 3h. With increasing lengths of infiltration, the reaction became increasingly homogeneous within the granule interior (matrix) and the AM:AP reactivity ratio increased (wheat starch), as assessed by confocal laser scanning microscopy (CLSM) and size-exclusion chromatography (refractive index and fluorescence detection), respectively. A longer reagent infiltration time also led to a more inhibited (i.e., cross-linked) pasting viscosity, suggesting that both granular and/or molecular reaction patterns were altered by varied reagent infiltration times to ultimately impact modified starch properties.

  18. Development and validation of an event-specific quantitative PCR method for genetically modified maize MIR162.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2014-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162.

  19. Detection of nonauthorized genetically modified organisms using differential quantitative polymerase chain reaction: application to 35S in maize.

    PubMed

    Cankar, Katarina; Chauvensy-Ancel, Valérie; Fortabat, Marie-Noelle; Gruden, Kristina; Kobilinsky, André; Zel, Jana; Bertheau, Yves

    2008-05-15

    Detection of nonauthorized genetically modified organisms (GMOs) has always presented an analytical challenge because the complete sequence data needed to detect them are generally unavailable although sequence similarity to known GMOs can be expected. A new approach, differential quantitative polymerase chain reaction (PCR), for detection of nonauthorized GMOs is presented here. This method is based on the presence of several common elements (e.g., promoter, genes of interest) in different GMOs. A statistical model was developed to study the difference between the number of molecules of such a common sequence and the number of molecules identifying the approved GMO (as determined by border-fragment-based PCR) and the donor organism of the common sequence. When this difference differs statistically from zero, the presence of a nonauthorized GMO can be inferred. The interest and scope of such an approach were tested on a case study of different proportions of genetically modified maize events, with the P35S promoter as the Cauliflower Mosaic Virus common sequence. The presence of a nonauthorized GMO was successfully detected in the mixtures analyzed and in the presence of (donor organism of P35S promoter). This method could be easily transposed to other common GMO sequences and other species and is applicable to other detection areas such as microbiology.

  20. Development and validation of an event-specific quantitative PCR method for genetically modified maize MIR162.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2014-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162. PMID:25743383

  1. Detection of nonauthorized genetically modified organisms using differential quantitative polymerase chain reaction: application to 35S in maize.

    PubMed

    Cankar, Katarina; Chauvensy-Ancel, Valérie; Fortabat, Marie-Noelle; Gruden, Kristina; Kobilinsky, André; Zel, Jana; Bertheau, Yves

    2008-05-15

    Detection of nonauthorized genetically modified organisms (GMOs) has always presented an analytical challenge because the complete sequence data needed to detect them are generally unavailable although sequence similarity to known GMOs can be expected. A new approach, differential quantitative polymerase chain reaction (PCR), for detection of nonauthorized GMOs is presented here. This method is based on the presence of several common elements (e.g., promoter, genes of interest) in different GMOs. A statistical model was developed to study the difference between the number of molecules of such a common sequence and the number of molecules identifying the approved GMO (as determined by border-fragment-based PCR) and the donor organism of the common sequence. When this difference differs statistically from zero, the presence of a nonauthorized GMO can be inferred. The interest and scope of such an approach were tested on a case study of different proportions of genetically modified maize events, with the P35S promoter as the Cauliflower Mosaic Virus common sequence. The presence of a nonauthorized GMO was successfully detected in the mixtures analyzed and in the presence of (donor organism of P35S promoter). This method could be easily transposed to other common GMO sequences and other species and is applicable to other detection areas such as microbiology. PMID:18346452

  2. Genomewide analysis of MATE-type gene family in maize reveals microsynteny and their expression patterns under aluminum treatment.

    PubMed

    Zhu, Huasheng; Wu, Jiandong; Jiang, Yingli; Jin, Jing; Zhou, Wei; Wang, Yu; Han, Guomin; Zhao, Yang; Cheng, Beijiu

    2016-09-01

    Multidrug and toxic compound extrusion (MATE) proteins are a group of secondary active transporters, which widely exist in all living organisms and play important role in the detoxication of endogenous secondary metabolites and exogenous agents. However, to date, no systematic and comprehensive study of this family is reported in maize. Here, a total of 49 MATE genes (ZmMATE) were identified and divided into seven groups by phylogenetic analysis. Conserved intro-exon structures and motif compositions were investigated in these genes. Results by gene locations indicated that these genes were unevenly distributed among all 10 chromosomes. Tandem and segmental duplications appeared to contribute to the expansion and evolution of this gene family. The Ka/Ks ratios suggested that the ZmMATE has undergone large-scale purifying selection on the maize genome. Interspecies microsynteny analysis revealed that there were independent gene duplication events of 10 ZmMATE. In addition, most maize MATE genes exhibited different expression profiles in diverse tissues and developmental stages. Sixteen MATE genes were chosen for further quantitative real-time polymerase chain reaction analysis showed differential expression patterns in response to aluminum treatment. These results provide a useful clue for future studies on the identification of MATE genes and functional analysis of MATE proteins in maize. PMID:27659341

  3. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings

    PubMed Central

    Sytykiewicz, Hubert

    2016-01-01

    Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans’ attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants. PMID:26907270

  4. Over-expression of the cucumber expansin gene (Cs-EXPA1) in transgenic maize seed for cellulose deconstruction.

    PubMed

    Yoon, Sangwoong; Devaiah, Shivakumar P; Choi, Seo-eun; Bray, Jeff; Love, Robert; Lane, Jeffrey; Drees, Carol; Howard, John H; Hood, Elizabeth E

    2016-04-01

    Plant cell wall degradation into fermentable sugars by cellulases is one of the greatest barriers to biofuel production. Expansin protein loosens the plant cell wall by opening up the complex of cellulose microfibrils and polysaccharide matrix components thereby increasing its accessibility to cellulases. We over-expressed cucumber expansin in maize kernels to produce enough protein to assess its potential to serve as an industrial enzyme for applications particularly in biomass conversion. We used the globulin-1 embryo-preferred promoter to express the cucumber expansin gene in maize seed. Expansin protein was targeted to one of three sub-cellular locations: the cell wall, the vacuole, or the endoplasmic reticulum (ER). To assess the level of expansin accumulation in seeds of transgenic kernels, a high throughput expansin assay was developed. The highest expressing plants were chosen and enriched crude expansin extract from those plants was tested for synergistic effects with cellulase on several lignocellulosic substrates. Activity of recombinant cucumber expansin from transgenic kernels was confirmed on these pretreated substrates. The best transgenic lines (ER-targeted) can now be used for breeding to increase expansin expression for use in the biomass conversion industry. Results of these experiments show the success of expansin over-expression and accumulation in transgenic maize seed without negative impact on growth and development and confirm its synergistic effect with cellulase on deconstruction of complex cell wall substrates.

  5. Haplo-diploid gene expression and pollen selection for tolerance to acetochlor in maize.

    PubMed

    Frascaroli, E; Galletti, S; Landi, P

    1994-08-01

    The objectives of this research were to determine if genes controlling the reaction to the herbicide acetochlor in maize (Zea mays L.) are active during both the haploid and the diploid phases of the life cycle and if pollen selection can be utilized for improving sporophytic resistance. Pollen of eight inbred lines, previously characterized through sporophytic analysis for the level of tolerance to acetochlor, showed a differential reaction to the herbicide forin vitro tube length; moreover, such pollen reactions proved to be significantly correlated (r =0.786(*),df=6) with those of the sporophytes producing the pollen. Pollen analysis of two inbred lines (i.e. Mo17, tolerant, and B79, susceptible) and their single cross showed that thein vitro pollen-tube length reaction of the hybrid was intermediate between those of two parents. An experiment on pollen selection was then performed by growing tassels of Mo17xB79 in the presence of the herbicide. Pollen obtained from treated tassels showed a greater tolerance to acetochlor, assessed asin vitro tube length reaction, than pollen obtained from control tassels. Moreover, the backcross [B79 (Mo17xB79)] sporophytic population obtained using pollen from the treated tassels was more tolerant (as indicated by the fresh weight of plants grown in the presence of the herbicide) than was the control backcross population. The two populations did not differ when grown without the herbicide. These findings indicate that genes controlling the reaction to acetochlor in maize have haplodiploid expression; consequently, pollen selection can be applied for improving plant tolerance. PMID:24186178

  6. Effects of Chemically Modified Messenger RNA on Protein Expression.

    PubMed

    Li, Bin; Luo, Xiao; Dong, Yizhou

    2016-03-16

    Chemically modified nucleotides play significant roles in the effectiveness of mRNA translation. Here, we describe the synthesis of two sets of chemically modified mRNAs [encoding firefly Luciferase (FLuc) and enhanced green fluorescent protein (eGFP), respectively], evaluation of protein expression, and correlation analysis of expression level under various conditions. The results indicate that chemical modifications of mRNAs are able to significantly improve protein expression, which is dependent on cell types and coding sequences. Moreover, eGFP mRNAs with N1-methylpseudouridine (me(1)ψ), 5-methoxyuridine (5moU), and pseudouridine (ψ) modifications ranked top three in cell lines tested. Interestingly, 5moU-modified eGFP mRNA was more stable than other eGFP mRNAs. Consequently, me(1)ψ, 5moU, and ψ are promising nucleotides for chemical modification of mRNAs. PMID:26906521

  7. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize

    PubMed Central

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Background Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). Methodology/Principal Findings In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Conclusions Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize. PMID:26606743

  8. Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes.

    PubMed

    Salvo, Stella A G D; Hirsch, Candice N; Buell, C Robin; Kaeppler, Shawn M; Kaeppler, Heidi F

    2014-01-01

    Embryogenic tissue culture systems are utilized in propagation and genetic engineering of crop plants, but applications are limited by genotype-dependent culture response. To date, few genes necessary for embryogenic callus formation have been identified or characterized. The goal of this research was to enhance our understanding of gene expression during maize embryogenic tissue culture initiation. In this study, we highlight the expression of candidate genes that have been previously regarded in the literature as having important roles in somatic embryogenesis. We utilized RNA based sequencing (RNA-seq) to characterize the transcriptome of immature embryo explants of the highly embryogenic and regenerable maize genotype A188 at 0, 24, 36, 48, and 72 hours after placement of explants on tissue culture initiation medium. Genes annotated as functioning in stress response, such as glutathione-S-transferases and germin-like proteins, and genes involved with hormone transport, such as PINFORMED, increased in expression over 8-fold in the study. Maize genes with high sequence similarity to genes previously described in the initiation of embryogenic cultures, such as transcription factors BABY BOOM, LEAFY COTYLEDON, and AGAMOUS, and important receptor-like kinases such as SOMATIC EMBRYOGENESIS RECEPTOR LIKE KINASES and CLAVATA, were also expressed in this time course study. By combining results from whole genome transcriptome analysis with an in depth review of key genes that play a role in the onset of embryogenesis, we propose a model of coordinated expression of somatic embryogenesis-related genes, providing an improved understanding of genomic factors involved in the early steps of embryogenic culture initiation in maize and other plant species.

  9. Enhanced Virus Resistance in Transgenic Maize Expressing a dsRNA-Specific Endoribonuclease Gene from E. coli

    PubMed Central

    Liu, He; Tian, Lanzhi; Zhang, Aihong; Zhang, Yanjing; Shi, Lindan; Guo, Bihong; Xu, Jin; Duan, Xifei; Wang, Xianbing; Han, Chenggui; Miao, Hongqin; Yu, Jialin; Li, Dawei

    2013-01-01

    Maize rough dwarf disease (MRDD), caused by several Fijiviruses in the family Reoviridae, is a global disease that is responsible for substantial yield losses in maize. Although some maize germplasm have low levels of polygenic resistance to MRDD, highly resistant cultivated varieties are not available for agronomic field production in China. In this work, we have generated transgenic maize lines that constitutively express rnc70, a mutant E. coli dsRNA-specific endoribonuclease gene. Transgenic lines were propagated and screened under field conditions for 12 generations. During three years of evaluations, two transgenic lines and their progeny were challenged with Rice black-streaked dwarf virus (RBSDV), the causal agent of MRDD in China, and these plants exhibited reduced levels of disease severity. In two normal years of MRDD abundance, both lines were more resistant than non-transgenic plants. Even in the most serious MRDD year, six out of seven progeny from one line were resistant, whereas non-transgenic plants were highly susceptible. Molecular approaches in the T12 generation revealed that the rnc70 transgene was integrated and expressed stably in transgenic lines. Under artificial conditions permitting heavy virus inoculation, the T12 progeny of two highly resistant lines had a reduced incidence of MRDD and accumulation of RBSDV in infected plants. In addition, we confirmed that the RNC70 protein could bind directly to RBSDV dsRNA in vitro. Overall, our data show that RNC70-mediated resistance in transgenic maize can provide efficient protection against dsRNA virus infection. PMID:23593318

  10. Organ-specific gene expression in maize: The P-wr allele. Final report, August 15, 1993--August 14, 1996

    SciTech Connect

    Peterson, T.A.

    1997-06-01

    The ultimate aim of our work is to understand how a regulatory gene produces a specific pattern of gene expression during plant development. Our model is the P-wr gene of maize, which produces a distinctive pattern of pigmentation of maize floral organs. We are investigating this system using a combination of classical genetic and molecular approaches. Mechanisms of organ-specific gene expression are a subject of intense research interest, as it is the operation of these mechanisms during eukaryotic development which determine the characteristics of each organism Allele-specific expression has been characterized in only a few other plant genes. In maize, organ-specific pigmentation regulated by the R, B, and Pl genes is achieved by differential transcription of functionally conserved protein coding sequences. Our studies point to a strikingly different mechanism of organ-specific gene expression, involving post-transcriptional regulation of the regulatory P gene. The novel pigmentation pattern of the P-wr allele is associated with differences in the encoded protein. Furthermore, the P-wr gene itself is present as a unique tandemly amplified structure, which may affect its transcriptional regulation.

  11. Isolation, characterization, and expression analyses of tryptophan aminotransferase genes in a maize dek18 mutant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dek18 mutant of maize has decreased auxin content in kernels. Molecular and functional characterization of this mutant line offers the possibility to better understand auxin biology in maize seed development. Seeds of the dek18 mutants are smaller compared to wild type seeds and the vegetative d...

  12. Isolation, expression and functional analysis of a putative RNA-dependent RNA polymerase gene from maize (Zea mays L.).

    PubMed

    He, Junguang; Dong, Zhigang; Jia, Zhiwei; Wang, Jianhua; Wang, Guoying

    2010-02-01

    RNA-dependent RNA polymerases (RdRPs) in plants have been reported to be involved in post-transcriptional gene silencing (PTGS) and antiviral defense. In this report, an RdRP gene from maize (ZmRdRP1) was obtained by rapid amplification of cDNA ends (RACE) and RT-PCR. The mRNA of ZmRdRP1 was composed of 3785 nucleotides, including a 167 nt 5' untranslated region (UTR), a 291 nt 3'UTR and a 3327 nt open reading frame (ORF), which encodes a putative protein of 1108 amino acids with an estimated molecular mass of 126.9 kDa and a predicated isoelectric point (pI) of 8.37. Real-time quantitative RT-PCR analysis showed that ZmRdRP1 was elicited by salicylic acid (SA) treatment, methyl jasmonate (MeJA) treatment and sugarcane mosaic virus (SCMV) infection. We silenced ZmRdRP1 by constitutively expressing an inverted-repeat fragment of ZmRdRP1 (ir-RdRP1) in transgenic maize plants. Further studies revealed that the ir-RdRP1 transgenic plants were more susceptible to SCMV infection than wild type plants. Virus-infected transgenic maize plants developed more serious disease symptoms and accumulated more virus than wild type plants. These findings suggested that ZmRdRP1 was involved in antiviral defense in maize.

  13. Direct extraction of genomic DNA from maize with aqueous ionic liquid buffer systems for applications in genetically modified organisms analysis.

    PubMed

    Gonzalez García, Eric; Ressmann, Anna K; Gaertner, Peter; Zirbs, Ronald; Mach, Robert L; Krska, Rudolf; Bica, Katharina; Brunner, Kurt

    2014-12-01

    To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method. PMID:25381609

  14. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    PubMed

    Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.

  15. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    PubMed

    Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize. PMID:21873818

  16. Direct extraction of genomic DNA from maize with aqueous ionic liquid buffer systems for applications in genetically modified organisms analysis.

    PubMed

    Gonzalez García, Eric; Ressmann, Anna K; Gaertner, Peter; Zirbs, Ronald; Mach, Robert L; Krska, Rudolf; Bica, Katharina; Brunner, Kurt

    2014-12-01

    To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method.

  17. Interlaboratory study of DNA extraction from multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for individual kernel detection system of genetically modified maize.

    PubMed

    Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi

    2011-01-01

    In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.

  18. Ninety-day oral toxicity studies on two genetically modified maize MON810 varieties in Wistar Han RCC rats (EU 7th Framework Programme project GRACE).

    PubMed

    Zeljenková, Dagmar; Ambrušová, Katarína; Bartušová, Mária; Kebis, Anton; Kovrižnych, Jevgenij; Krivošíková, Zora; Kuricová, Miroslava; Líšková, Aurélia; Rollerová, Eva; Spustová, Viera; Szabová, Elena; Tulinská, Jana; Wimmerová, Soňa; Levkut, Mikuláš; Révajová, Viera; Ševčíková, Zuzana; Schmidt, Kerstin; Schmidtke, Jörg; La Paz, Jose Luis; Corujo, Maria; Pla, Maria; Kleter, Gijs A; Kok, Esther J; Sharbati, Jutta; Hanisch, Carlos; Einspanier, Ralf; Adel-Patient, Karine; Wal, Jean-Michel; Spök, Armin; Pöting, Annette; Kohl, Christian; Wilhelm, Ralf; Schiemann, Joachim; Steinberg, Pablo

    2014-12-01

    The GMO Risk Assessment and Communication of Evidence (GRACE; www.grace-fp7.eu ) project is funded by the European Commission within the 7th Framework Programme. A key objective of GRACE is to conduct 90-day animal feeding trials, animal studies with an extended time frame as well as analytical, in vitro and in silico studies on genetically modified (GM) maize in order to comparatively evaluate their use in GM plant risk assessment. In the present study, the results of two 90-day feeding trials with two different GM maize MON810 varieties, their near-isogenic non-GM varieties and four additional conventional maize varieties are presented. The feeding trials were performed by taking into account the guidance for such studies published by the EFSA Scientific Committee in 2011 and the OECD Test Guideline 408. The results obtained show that the MON810 maize at a level of up to 33 % in the diet did not induce adverse effects in male and female Wistar Han RCC rats after subchronic exposure, independently of the two different genetic backgrounds of the event. PMID:25270621

  19. One-year oral toxicity study on a genetically modified maize MON810 variety in Wistar Han RCC rats (EU 7th Framework Programme project GRACE).

    PubMed

    Zeljenková, Dagmar; Aláčová, Radka; Ondrejková, Júlia; Ambrušová, Katarína; Bartušová, Mária; Kebis, Anton; Kovrižnych, Jevgenij; Rollerová, Eva; Szabová, Elena; Wimmerová, Soňa; Černák, Martin; Krivošíková, Zora; Kuricová, Miroslava; Líšková, Aurélia; Spustová, Viera; Tulinská, Jana; Levkut, Mikuláš; Révajová, Viera; Ševčíková, Zuzana; Schmidt, Kerstin; Schmidtke, Jörg; Schmidt, Paul; La Paz, Jose Luis; Corujo, Maria; Pla, Maria; Kleter, Gijs A; Kok, Esther J; Sharbati, Jutta; Bohmer, Marc; Bohmer, Nils; Einspanier, Ralf; Adel-Patient, Karine; Spök, Armin; Pöting, Annette; Kohl, Christian; Wilhelm, Ralf; Schiemann, Joachim; Steinberg, Pablo

    2016-10-01

    The GRACE (GMO Risk Assessment and Communication of Evidence; www.grace-fp7.eu ) project was funded by the European Commission within the 7th Framework Programme. A key objective of GRACE was to conduct 90-day animal feeding trials, animal studies with an extended time frame as well as analytical, in vitro and in silico studies on genetically modified (GM) maize in order to comparatively evaluate their use in GM plant risk assessment. In the present study, the results of a 1-year feeding trial with a GM maize MON810 variety, its near-isogenic non-GM comparator and an additional conventional maize variety are presented. The feeding trials were performed by taking into account the guidance for such studies published by the EFSA Scientific Committee in 2011 and the OECD Test Guideline 452. The results obtained show that the MON810 maize at a level of up to 33 % in the diet did not induce adverse effects in male and female Wistar Han RCC rats after a chronic exposure.

  20. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize[OPEN

    PubMed Central

    Shi, Jinrui; Habben, Jeffrey E.; Archibald, Rayeann L.; Drummond, Bruce J.; Chamberlin, Mark A.; Williams, Robert W.; Lafitte, H. Renee; Weers, Ben P.

    2015-01-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950

  1. One-year oral toxicity study on a genetically modified maize MON810 variety in Wistar Han RCC rats (EU 7th Framework Programme project GRACE).

    PubMed

    Zeljenková, Dagmar; Aláčová, Radka; Ondrejková, Júlia; Ambrušová, Katarína; Bartušová, Mária; Kebis, Anton; Kovrižnych, Jevgenij; Rollerová, Eva; Szabová, Elena; Wimmerová, Soňa; Černák, Martin; Krivošíková, Zora; Kuricová, Miroslava; Líšková, Aurélia; Spustová, Viera; Tulinská, Jana; Levkut, Mikuláš; Révajová, Viera; Ševčíková, Zuzana; Schmidt, Kerstin; Schmidtke, Jörg; Schmidt, Paul; La Paz, Jose Luis; Corujo, Maria; Pla, Maria; Kleter, Gijs A; Kok, Esther J; Sharbati, Jutta; Bohmer, Marc; Bohmer, Nils; Einspanier, Ralf; Adel-Patient, Karine; Spök, Armin; Pöting, Annette; Kohl, Christian; Wilhelm, Ralf; Schiemann, Joachim; Steinberg, Pablo

    2016-10-01

    The GRACE (GMO Risk Assessment and Communication of Evidence; www.grace-fp7.eu ) project was funded by the European Commission within the 7th Framework Programme. A key objective of GRACE was to conduct 90-day animal feeding trials, animal studies with an extended time frame as well as analytical, in vitro and in silico studies on genetically modified (GM) maize in order to comparatively evaluate their use in GM plant risk assessment. In the present study, the results of a 1-year feeding trial with a GM maize MON810 variety, its near-isogenic non-GM comparator and an additional conventional maize variety are presented. The feeding trials were performed by taking into account the guidance for such studies published by the EFSA Scientific Committee in 2011 and the OECD Test Guideline 452. The results obtained show that the MON810 maize at a level of up to 33 % in the diet did not induce adverse effects in male and female Wistar Han RCC rats after a chronic exposure. PMID:27439414

  2. Interlaboratory study of DNA extraction from multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for individual kernel detection system of genetically modified maize.

    PubMed

    Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi

    2011-01-01

    In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize. PMID:22165018

  3. Ninety-day oral toxicity studies on two genetically modified maize MON810 varieties in Wistar Han RCC rats (EU 7th Framework Programme project GRACE).

    PubMed

    Zeljenková, Dagmar; Ambrušová, Katarína; Bartušová, Mária; Kebis, Anton; Kovrižnych, Jevgenij; Krivošíková, Zora; Kuricová, Miroslava; Líšková, Aurélia; Rollerová, Eva; Spustová, Viera; Szabová, Elena; Tulinská, Jana; Wimmerová, Soňa; Levkut, Mikuláš; Révajová, Viera; Ševčíková, Zuzana; Schmidt, Kerstin; Schmidtke, Jörg; La Paz, Jose Luis; Corujo, Maria; Pla, Maria; Kleter, Gijs A; Kok, Esther J; Sharbati, Jutta; Hanisch, Carlos; Einspanier, Ralf; Adel-Patient, Karine; Wal, Jean-Michel; Spök, Armin; Pöting, Annette; Kohl, Christian; Wilhelm, Ralf; Schiemann, Joachim; Steinberg, Pablo

    2014-12-01

    The GMO Risk Assessment and Communication of Evidence (GRACE; www.grace-fp7.eu ) project is funded by the European Commission within the 7th Framework Programme. A key objective of GRACE is to conduct 90-day animal feeding trials, animal studies with an extended time frame as well as analytical, in vitro and in silico studies on genetically modified (GM) maize in order to comparatively evaluate their use in GM plant risk assessment. In the present study, the results of two 90-day feeding trials with two different GM maize MON810 varieties, their near-isogenic non-GM varieties and four additional conventional maize varieties are presented. The feeding trials were performed by taking into account the guidance for such studies published by the EFSA Scientific Committee in 2011 and the OECD Test Guideline 408. The results obtained show that the MON810 maize at a level of up to 33 % in the diet did not induce adverse effects in male and female Wistar Han RCC rats after subchronic exposure, independently of the two different genetic backgrounds of the event.

  4. Expression and functional analysis of genes encoding cytokinin receptor-like histidine kinase in maize (Zea mays L.).

    PubMed

    Wang, Bo; Chen, Yanhong; Guo, Baojian; Kabir, Muhammad Rezaul; Yao, Yingyin; Peng, Huiru; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2014-08-01

    Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development.

  5. Expression and functional analysis of genes encoding cytokinin receptor-like histidine kinase in maize (Zea mays L.).

    PubMed

    Wang, Bo; Chen, Yanhong; Guo, Baojian; Kabir, Muhammad Rezaul; Yao, Yingyin; Peng, Huiru; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2014-08-01

    Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development. PMID:24585212

  6. Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids.

    PubMed

    Ko, Dae Kwan; Rohozinski, Dominica; Song, Qingxin; Taylor, Samuel H; Juenger, Thomas E; Harmon, Frank G; Chen, Z Jeffrey

    2016-07-01

    Heterosis has been widely used in agriculture, but the molecular mechanism for this remains largely elusive. In Arabidopsis hybrids and allopolyploids, increased photosynthetic and metabolic activities are linked to altered expression of circadian clock regulators, including CIRCADIAN CLOCK ASSOCIATED1 (CCA1). It is unknown whether a similar mechanism mediates heterosis in maize hybrids. Here we report that higher levels of carbon fixation and starch accumulation in the maize hybrids are associated with altered temporal gene expression. Two maize CCA1 homologs, ZmCCA1a and ZmCCA1b, are diurnally up-regulated in the hybrids. Expressing ZmCCA1 complements the cca1 mutant phenotype in Arabidopsis, and overexpressing ZmCCA1b disrupts circadian rhythms and biomass heterosis. Furthermore, overexpressing ZmCCA1b in maize reduced chlorophyll content and plant height. Reduced height stems from reduced node elongation but not total node number in both greenhouse and field conditions. Phenotypes are less severe in the field than in the greenhouse, suggesting that enhanced light and/or metabolic activities in the field can compensate for altered circadian regulation in growth vigor. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis reveals a temporal shift of ZmCCA1-binding targets to the early morning in the hybrids, suggesting that activation of morning-phased genes in the hybrids promotes photosynthesis and growth vigor. This temporal shift of ZmCCA1-binding targets correlated with nonadditive and additive gene expression in early and late stages of seedling development. These results could guide breeding better hybrid crops to meet the growing demand in food and bioenergy. PMID:27467757

  7. Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids

    PubMed Central

    Song, Qingxin; Juenger, Thomas E.

    2016-01-01

    Heterosis has been widely used in agriculture, but the molecular mechanism for this remains largely elusive. In Arabidopsis hybrids and allopolyploids, increased photosynthetic and metabolic activities are linked to altered expression of circadian clock regulators, including CIRCADIAN CLOCK ASSOCIATED1 (CCA1). It is unknown whether a similar mechanism mediates heterosis in maize hybrids. Here we report that higher levels of carbon fixation and starch accumulation in the maize hybrids are associated with altered temporal gene expression. Two maize CCA1 homologs, ZmCCA1a and ZmCCA1b, are diurnally up-regulated in the hybrids. Expressing ZmCCA1 complements the cca1 mutant phenotype in Arabidopsis, and overexpressing ZmCCA1b disrupts circadian rhythms and biomass heterosis. Furthermore, overexpressing ZmCCA1b in maize reduced chlorophyll content and plant height. Reduced height stems from reduced node elongation but not total node number in both greenhouse and field conditions. Phenotypes are less severe in the field than in the greenhouse, suggesting that enhanced light and/or metabolic activities in the field can compensate for altered circadian regulation in growth vigor. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis reveals a temporal shift of ZmCCA1-binding targets to the early morning in the hybrids, suggesting that activation of morning-phased genes in the hybrids promotes photosynthesis and growth vigor. This temporal shift of ZmCCA1-binding targets correlated with nonadditive and additive gene expression in early and late stages of seedling development. These results could guide breeding better hybrid crops to meet the growing demand in food and bioenergy. PMID:27467757

  8. Analysis of Gene Expression and Physiological Responses in Three Mexican Maize Landraces under Drought Stress and Recovery Irrigation

    PubMed Central

    Hayano-Kanashiro, Corina; Calderón-Vázquez, Carlos; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Simpson, June

    2009-01-01

    Background Drought is one of the major constraints for plant productivity worldwide. Different mechanisms of drought-tolerance have been reported for several plant species including maize. However, the differences in global gene expression between drought-tolerant and susceptible genotypes and their relationship to physiological adaptations to drought are largely unknown. The study of the differences in global gene expression between tolerant and susceptible genotypes could provide important information to design more efficient breeding programs to produce maize varieties better adapted to water limiting conditions. Methodology/Principal Findings Changes in physiological responses and gene expression patterns were studied under drought stress and recovery in three Mexican maize landraces which included two drought tolerant (Cajete criollo and Michoacán 21) and one susceptible (85-2) genotypes. Photosynthesis, stomatal conductance, soil and leaf water potentials were monitored throughout the experiment and microarray analysis was carried out on transcripts obtained at 10 and 17 days following application of stress and after recovery irrigation. The two tolerant genotypes show more drastic changes in global gene expression which correlate with different physiological mechanisms of adaptation to drought. Differences in the kinetics and number of up- and down-regulated genes were observed between the tolerant and susceptible maize genotypes, as well as differences between the two tolerant genotypes. Interestingly, the most dramatic differences between the tolerant and susceptible genotypes were observed during recovery irrigation, suggesting that the tolerant genotypes activate mechanisms that allow more efficient recovery after a severe drought. Conclusions/Significance A correlation between levels of photosynthesis and transcription under stress was observed and differences in the number, type and expression levels of transcription factor families were also

  9. A new PCR-CGE (size and color) method for simultaneous detection of genetically modified maize events.

    PubMed

    Nadal, Anna; Coll, Anna; La Paz, Jose-Luis; Esteve, Teresa; Pla, Maria

    2006-10-01

    We present a novel multiplex PCR assay for simultaneous detection of multiple transgenic events in maize. Initially, five PCR primers pairs specific to events Bt11, GA21, MON810, and NK603, and Zea mays L. (alcohol dehydrogenase) were included. The event specificity was based on amplification of transgene/plant genome flanking regions, i.e., the same targets as for validated real-time PCR assays. These short and similarly sized amplicons were selected to achieve high and similar amplification efficiency for all targets; however, its unambiguous identification was a technical challenge. We achieved a clear distinction by a novel CGE approach that combined the identification by size and color (CGE-SC). In one single step, all five targets were amplified and specifically labeled with three different fluorescent dyes. The assay was specific and displayed an LOD of 0.1% of each genetically modified organism (GMO). Therefore, it was adequate to fulfill legal thresholds established, e.g., in the European Union. Our CGE-SC based strategy in combination with an adequate labeling design has the potential to simultaneously detect higher numbers of targets. As an example, we present the detection of up to eight targets in a single run. Multiplex PCR-CGE-SC only requires a conventional sequencer device and enables automation and high throughput. In addition, it proved to be transferable to a different laboratory. The number of authorized GMO events is rapidly growing; and the acreage of genetically modified (GM) varieties cultivated and commercialized worldwide is rapidly increasing. In this context, our multiplex PCR-CGE-SC can be suitable for screening GM contents in food.

  10. A new PCR-CGE (size and color) method for simultaneous detection of genetically modified maize events.

    PubMed

    Nadal, Anna; Coll, Anna; La Paz, Jose-Luis; Esteve, Teresa; Pla, Maria

    2006-10-01

    We present a novel multiplex PCR assay for simultaneous detection of multiple transgenic events in maize. Initially, five PCR primers pairs specific to events Bt11, GA21, MON810, and NK603, and Zea mays L. (alcohol dehydrogenase) were included. The event specificity was based on amplification of transgene/plant genome flanking regions, i.e., the same targets as for validated real-time PCR assays. These short and similarly sized amplicons were selected to achieve high and similar amplification efficiency for all targets; however, its unambiguous identification was a technical challenge. We achieved a clear distinction by a novel CGE approach that combined the identification by size and color (CGE-SC). In one single step, all five targets were amplified and specifically labeled with three different fluorescent dyes. The assay was specific and displayed an LOD of 0.1% of each genetically modified organism (GMO). Therefore, it was adequate to fulfill legal thresholds established, e.g., in the European Union. Our CGE-SC based strategy in combination with an adequate labeling design has the potential to simultaneously detect higher numbers of targets. As an example, we present the detection of up to eight targets in a single run. Multiplex PCR-CGE-SC only requires a conventional sequencer device and enables automation and high throughput. In addition, it proved to be transferable to a different laboratory. The number of authorized GMO events is rapidly growing; and the acreage of genetically modified (GM) varieties cultivated and commercialized worldwide is rapidly increasing. In this context, our multiplex PCR-CGE-SC can be suitable for screening GM contents in food. PMID:16972302

  11. Modifiers, Quantifiers, and the Treatment of Japanese Numeral Expressions.

    ERIC Educational Resources Information Center

    Dubinsky, Stanley

    Analysis of Japanese numeral expressions provides evidence that their two semantically distinct functions, attributive and partitive, can be associated with distinct syntactic positions within the noun phrase (NP). The attributive numeral phrase occupies the position of a modifier and is a complement to N or N'. The quantifier (partitive) numeral…

  12. Adaptive expansion of the maize maternally expressed gene (Meg) family involves changes in expression patterns and protein secondary structures of its members

    PubMed Central

    2014-01-01

    Background The Maternally expressed gene (Meg) family is a locally-duplicated gene family of maize which encodes cysteine-rich proteins (CRPs). The founding member of the family, Meg1, is required for normal development of the basal endosperm transfer cell layer (BETL) and is involved in the allocation of maternal nutrients to growing seeds. Despite the important roles of Meg1 in maize seed development, the evolutionary history of the Meg cluster and the activities of the duplicate genes are not understood. Results In maize, the Meg gene cluster resides in a 2.3 Mb-long genomic region that exhibits many features of non-centromeric heterochromatin. Using phylogenetic reconstruction and syntenic alignments, we identified the pedigree of the Meg family, in which 11 of its 13 members arose in maize after allotetraploidization ~4.8 mya. Phylogenetic and population-genetic analyses identified possible signatures suggesting recent positive selection in Meg homologs. Structural analyses of the Meg proteins indicated potentially adaptive changes in secondary structure from α-helix to β-strand during the expansion. Transcriptomic analysis of the maize endosperm indicated that 6 Meg genes are selectively activated in the BETL, and younger Meg genes are more active than older ones. In endosperms from B73 by Mo17 reciprocal crosses, most Meg genes did not display parent-specific expression patterns. Conclusions Recently-duplicated Meg genes have different protein secondary structures, and their expressions in the BETL dominate over those of older members. Together with the signs of positive selections in the young Meg genes, these results suggest that the expansion of the Meg family involves potentially adaptive transitions in which new members with novel functions prevailed over older members. PMID:25084677

  13. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence.

    PubMed

    Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing

    2005-11-30

    Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.

  14. Gene expression profiles of MON810 and comparable non-GM maize varieties cultured in the field are more similar than are those of conventional lines.

    PubMed

    Coll, Anna; Nadal, Anna; Collado, Rosa; Capellades, Gemma; Messeguer, Joaquima; Melé, Enric; Palaudelmàs, Montserrat; Pla, Maria

    2009-10-01

    Maize is a major food crop and genetically modified (GM) varieties represented 24% of the global production in 2007. Authorized GM organisms have been tested for human and environmental safety. We previously used microarrays to compare the transcriptome profiles of widely used commercial MON810 versus near-isogenic varieties and reported differential expression of a small set of sequences in leaves of in vitro cultured plants of AristisBt/Aristis and PR33P67/PR33P66 (Coll et al. 2008). Here we further assessed the significance of these differential expression patterns in plants grown in a real context, i.e. in the field. Most sequences that were differentially expressed in plants cultured in vitro had the same expression values in MON810 and comparable varieties when grown in the field; and no sequence was found to be differentially regulated in the two variety pairs grown in the field. The differential expression patterns observed between in vitro and field culture were similar between MON810 and comparable varieties, with higher divergence between the two conventional varieties. This further indicates that MON810 and comparable non-GM varieties are equivalent except for the introduced character.

  15. Impact of genetic structures on haploid genome-based quantification of genetically modified DNA: theoretical considerations, experimental data in MON 810 maize kernels (Zea mays L.) and some practical applications.

    PubMed

    Zhang, David; Corlet, Aurélie; Fouilloux, Stephane

    2008-06-01

    Real-time Polymerase Chain Reaction (PCR) based assays are widely used to estimate the content of genetically modified (GM) materials in food, feed and seed. It has been known that the genetic structures of the analyte can significantly influence the GM content expressed by the haploid genome (HG) % estimated using real-time PCR assays; this kind of influence is also understood as the impact of biological factors. The influence was first simulated at theoretical level using maize as a model. We then experimentally assessed the impact of biological factors on quantitative results, analysing by quantitative real-time PCR six maize MON 810 hybrid kernels with different genetic structures: (1) hemizygous from transgenic male parent, (2) hemizygous from transgenic female parent and (3) homozygous at the transgenic locus. The results obtained in the present study showed clear influences of biological factors on GM DNA quantification: 1% of GM materials by weight (wt) for the three genetic structures contained 0.39, 0.55 and 1.0% of GM DNA by HG respectively, from quantitative real-time PCR analyses. The relationships between GM wt% and GM HG% can be empirically established as: (1) in the case of the presence of a single GM trait: GM HG% = GM wt% x (0.5 +/- 0.167Y), where Y is the endosperm DNA content (%) in the total DNA of a maize kernel, (2) in the case of the presence of multiple GM traits: GM HG% = N x GM wt% x (0.5 +/- 0.167Y), where N is the number of GM traits (stacked or not) present in an unknown sample. This finding can be used by stakeholders related to GMO for empirical prediction from one unit of expression to another in the monitoring of seed and grain production chains. Practical equations have also been suggested for haploid copy number calculations, using hemizygous GM materials for calibration curves. PMID:17638110

  16. Impact of genetic structures on haploid genome-based quantification of genetically modified DNA: theoretical considerations, experimental data in MON 810 maize kernels (Zea mays L.) and some practical applications.

    PubMed

    Zhang, David; Corlet, Aurélie; Fouilloux, Stephane

    2008-06-01

    Real-time Polymerase Chain Reaction (PCR) based assays are widely used to estimate the content of genetically modified (GM) materials in food, feed and seed. It has been known that the genetic structures of the analyte can significantly influence the GM content expressed by the haploid genome (HG) % estimated using real-time PCR assays; this kind of influence is also understood as the impact of biological factors. The influence was first simulated at theoretical level using maize as a model. We then experimentally assessed the impact of biological factors on quantitative results, analysing by quantitative real-time PCR six maize MON 810 hybrid kernels with different genetic structures: (1) hemizygous from transgenic male parent, (2) hemizygous from transgenic female parent and (3) homozygous at the transgenic locus. The results obtained in the present study showed clear influences of biological factors on GM DNA quantification: 1% of GM materials by weight (wt) for the three genetic structures contained 0.39, 0.55 and 1.0% of GM DNA by HG respectively, from quantitative real-time PCR analyses. The relationships between GM wt% and GM HG% can be empirically established as: (1) in the case of the presence of a single GM trait: GM HG% = GM wt% x (0.5 +/- 0.167Y), where Y is the endosperm DNA content (%) in the total DNA of a maize kernel, (2) in the case of the presence of multiple GM traits: GM HG% = N x GM wt% x (0.5 +/- 0.167Y), where N is the number of GM traits (stacked or not) present in an unknown sample. This finding can be used by stakeholders related to GMO for empirical prediction from one unit of expression to another in the monitoring of seed and grain production chains. Practical equations have also been suggested for haploid copy number calculations, using hemizygous GM materials for calibration curves.

  17. PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production.

    PubMed

    Chen, Zhi-Yuan; Brown, Robert L; Damann, Kenneth E; Cleveland, Thomas E

    2010-01-01

    Maize (Zea mays L.) is a major crop susceptible to Aspergillus flavus infection and subsequent contamination with aflatoxins, the potent carcinogenic secondary metabolites of the fungus. Protein profiles of maize genotypes resistant and susceptible to A. flavus infection and/or aflatoxin contamination have been compared, and several resistance-associated proteins have been found, including a pathogenesis-related protein 10 (PR10). In this study, RNA interference (RNAi) gene silencing technology was employed to further investigate the importance of PR10. An RNAi gene silencing vector was constructed and introduced into immature Hi II maize embryos through both bombardment and Agrobacterium infection procedures. PR10 expression was reduced by 65% to more than 99% in transgenic callus lines from bombardment. The RNAi-silenced callus lines also showed increased sensitivity to heat stress treatment. A similar reduction in PR10 transcript levels was observed in seedling leaf and root tissues developed from transgenic kernels. When inoculated with A. flavus, RNAi-silenced mature kernels produced from Agrobacterium-mediated transformation showed a significant increase in fungal colonization and aflatoxin production in 10 and six, respectively, of 11 RNAi lines compared with the non-silenced control. Further proteomic analysis of RNAi-silenced kernels revealed a significant reduction in PR10 production in eight of 11 RNAi lines that showed positive for transformation. A significant negative correlation between PR10 expression at either transcript or protein level and kernel aflatoxin production was observed. The results indicate a major role for PR10 expression in maize aflatoxin resistance. PMID:20078777

  18. Integration of ethylene and jasmonic acid signaling pathways in the expression of maize defense protein Mir1-CP.

    PubMed

    Ankala, A; Luthe, D S; Williams, W P; Wilkinson, J R

    2009-12-01

    In plants, ethylene and jasmonate control the defense responses to multiple stressors, including insect predation. Among the defense proteins known to be regulated by ethylene is maize insect resistance 1-cysteine protease (Mir1-CP). This protein is constitutively expressed in the insect-resistant maize (Zea mays) genotype Mp708; however, its abundance significantly increases during fall armyworm (Spodoptera frugiperda) herbivory. Within 1 h of herbivory by fall armyworm, Mir1-CP accumulates at the feeding site and continues to increase in abundance until 24 h without any increase in its transcript (mir1) levels. To resolve this discrepancy and elucidate the role of ethylene and jasmonate in the signaling of Mir1-CP expression, the effects of phytohormone biosynthesis and perception inhibitors on Mir1-CP expression were tested. Immunoblot analysis of Mir1-CP accumulation and quantitative reverse-transcriptase polymerase chain reaction examination of mir1 levels in these treated plants demonstrate that Mir1-CP accumulation is regulated by both transcript abundance and protein expression levels. The results also suggest that jasmonate functions upstream of ethylene in the Mir1-CP expression pathway, allowing for both low-level constitutive expression and a two-stage defensive response, an immediate response involving Mir1-CP accumulation and a delayed response inducing mir1 transcript expression.

  19. Root-expressed maize lipoxygenase 3 negatively regulates induced systemic resistance to Colletotrichum graminicola in shoots

    PubMed Central

    Constantino, Nasie N.; Mastouri, Fatemeh; Damarwinasis, Ramadhika; Borrego, Eli J.; Moran-Diez, Maria E.; Kenerley, Charley M.; Gao, Xiquan; Kolomiets, Michael V.

    2013-01-01

    We have previously reported that disruption of a maize root-expressed 9-lipoxygenase (9-LOX) gene, ZmLOX3, results in dramatic increase in resistance to diverse leaf and stalk pathogens. Despite evident economic significance of these findings, the mechanism behind this increased resistance remained elusive. In this study, we found that increased resistance of the lox3-4 mutants is due to constitutive activation of induced systemic resistance (ISR) signaling. We showed that ZmLOX3 lacked expression in leaves in response to anthracnose leaf blight pathogen Colletotrichum graminicola, but was expressed constitutively in the roots, thus, prompting our hypothesis: the roots of lox3-4 mutants are the source of increased resistance in leaves. Supporting this hypothesis, treatment of wild-type plants (WT) with xylem sap of lox3-4 mutant induced resistance to C. graminicola to the levels comparable to those observed in lox3-4 mutant. Moreover, treating mutants with the sap collected from WT plants partially restored the susceptibility to C. graminicola. lox3-4 mutants showed primed defense responses upon infection, which included earlier and greater induction of defense-related PAL and GST genes compared to WT. In addition to the greater expression of the octadecanoid pathway genes, lox3-4 mutant responded earlier and with a greater accumulation of H2O2 in response to C. graminicola infection or treatment with alamethicin. These findings suggest that lox3-4 mutants display constitutive ISR-like signaling. In support of this idea, root colonization by Trichoderma virens strain GV29-8 induced the same level of disease resistance in WT as the treatment with the mutant sap, but had no additional resistance effect in lox3-4 mutant. While treatment with T. virens GV29 strongly and rapidly suppressed ZmLOX3 expression in hydroponically grown WT roots, T. virens Δsml mutant, which is deficient in ISR induction, was unable to suppress expression of ZmLOX3, thus, providing genetic

  20. Selection of Suitable DNA Extraction Methods for Genetically Modified Maize 3272, and Development and Evaluation of an Event-Specific Quantitative PCR Method for 3272.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize, 3272. We first attempted to obtain genome DNA from this maize using a DNeasy Plant Maxi kit and a DNeasy Plant Mini kit, which have been widely utilized in our previous studies, but DNA extraction yields from 3272 were markedly lower than those from non-GM maize seeds. However, lowering of DNA extraction yields was not observed with GM quicker or Genomic-tip 20/G. We chose GM quicker for evaluation of the quantitative method. We prepared a standard plasmid for 3272 quantification. The conversion factor (Cf), which is required to calculate the amount of a genetically modified organism (GMO), was experimentally determined for two real-time PCR instruments, the Applied Biosystems 7900HT (the ABI 7900) and the Applied Biosystems 7500 (the ABI7500). The determined Cf values were 0.60 and 0.59 for the ABI 7900 and the ABI 7500, respectively. To evaluate the developed method, a blind test was conducted as part of an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSDr). The determined values were similar to those in our previous validation studies. The limit of quantitation for the method was estimated to be 0.5% or less, and we concluded that the developed method would be suitable and practical for detection and quantification of 3272.

  1. Selection of Suitable DNA Extraction Methods for Genetically Modified Maize 3272, and Development and Evaluation of an Event-Specific Quantitative PCR Method for 3272.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize, 3272. We first attempted to obtain genome DNA from this maize using a DNeasy Plant Maxi kit and a DNeasy Plant Mini kit, which have been widely utilized in our previous studies, but DNA extraction yields from 3272 were markedly lower than those from non-GM maize seeds. However, lowering of DNA extraction yields was not observed with GM quicker or Genomic-tip 20/G. We chose GM quicker for evaluation of the quantitative method. We prepared a standard plasmid for 3272 quantification. The conversion factor (Cf), which is required to calculate the amount of a genetically modified organism (GMO), was experimentally determined for two real-time PCR instruments, the Applied Biosystems 7900HT (the ABI 7900) and the Applied Biosystems 7500 (the ABI7500). The determined Cf values were 0.60 and 0.59 for the ABI 7900 and the ABI 7500, respectively. To evaluate the developed method, a blind test was conducted as part of an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSDr). The determined values were similar to those in our previous validation studies. The limit of quantitation for the method was estimated to be 0.5% or less, and we concluded that the developed method would be suitable and practical for detection and quantification of 3272. PMID:26936302

  2. Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis

    PubMed Central

    Osman, Gamal H.; Assem, Shireen K.; Alreedy, Rasha M.; El-Ghareeb, Doaa K.; Basry, Mahmoud A.; Rastogi, Anshu; Kalaji, Hazem M.

    2015-01-01

    Due to the importance of chitinolytic enzymes for insect, nematode and fungal growth, they are receiving attention concerning their development as biopesticides or chemical defense proteins in transgenic plants and as microbial biocontrol agents. Targeting chitin associated with the extracellular matrices or cell wall by insect chitinases may be an effective approach for controlling pest insects and pathogenic fungi. The ability of chitinases to attack and digest chitin in the peritrophic matrix or exoskeleton raises the possibility to use them as insect control method. In this study, an insect chitinase cDNA from cotton leaf worm (Spodoptera littoralis) has been synthesized. Transgenic maize plant system was used to improve its tolerance against insects. Insect chitinase transcripts and proteins were expressed in transgenic maize plants. The functional integrity and expression of chitinase in progenies of the transgenic plants were confirmed by insect bioassays. The bioassays using transgenic corn plants against corn borer (Sesamia cretica) revealed that ~50% of the insects reared on transgenic corn plants died, suggesting that transgenic maize plants have enhanced resistance against S. cretica. PMID:26658494

  3. Stress-induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis

    PubMed Central

    Forestan, Cristian; Aiese Cigliano, Riccardo; Farinati, Silvia; Lunardon, Alice; Sanseverino, Walter; Varotto, Serena

    2016-01-01

    Plant’s response and adaptation to abiotic stresses involve sophisticated genetic and epigenetic regulatory systems. To obtain a global view of molecular response to osmotic stresses, including the non-coding portion of genome, we conducted a total leaf transcriptome analysis on maize plants subjected to prolonged drought and salt stresses. Stress application to both B73 wild type and the epiregulator mutant rpd1-1/rmr6 allowed dissection of the epigenetic component of stress response. Coupling total RNA-Seq and transcriptome re-assembly we annotated thousands of new maize transcripts, together with 13,387 lncRNAs that may play critical roles in regulating gene expression. Differential expression analysis revealed hundreds of genes modulated by long-term stress application, including also many lncRNAs and transposons specifically induced by stresses. The amplitude and dynamic of the stress-modulated gene sets are very different between B73 and rpd1-1/rmr6 mutant plants, as result of stress-like effect on genome regulation caused by the mutation itself, which activates many stress-related genes even in control condition. The analyzed extensive set of total RNA-Seq data, together with the improvement of the transcriptome and the identification of the non-coding portion of the transcriptome give a revealing insight into the genetic and epigenetic mechanism responsible for maize molecular response to abiotic stresses. PMID:27461139

  4. Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis.

    PubMed

    Osman, Gamal H; Assem, Shireen K; Alreedy, Rasha M; El-Ghareeb, Doaa K; Basry, Mahmoud A; Rastogi, Anshu; Kalaji, Hazem M

    2015-01-01

    Due to the importance of chitinolytic enzymes for insect, nematode and fungal growth, they are receiving attention concerning their development as biopesticides or chemical defense proteins in transgenic plants and as microbial biocontrol agents. Targeting chitin associated with the extracellular matrices or cell wall by insect chitinases may be an effective approach for controlling pest insects and pathogenic fungi. The ability of chitinases to attack and digest chitin in the peritrophic matrix or exoskeleton raises the possibility to use them as insect control method. In this study, an insect chitinase cDNA from cotton leaf worm (Spodoptera littoralis) has been synthesized. Transgenic maize plant system was used to improve its tolerance against insects. Insect chitinase transcripts and proteins were expressed in transgenic maize plants. The functional integrity and expression of chitinase in progenies of the transgenic plants were confirmed by insect bioassays. The bioassays using transgenic corn plants against corn borer (Sesamia cretica) revealed that ~50% of the insects reared on transgenic corn plants died, suggesting that transgenic maize plants have enhanced resistance against S. cretica. PMID:26658494

  5. Stress-induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis.

    PubMed

    Forestan, Cristian; Aiese Cigliano, Riccardo; Farinati, Silvia; Lunardon, Alice; Sanseverino, Walter; Varotto, Serena

    2016-01-01

    Plant's response and adaptation to abiotic stresses involve sophisticated genetic and epigenetic regulatory systems. To obtain a global view of molecular response to osmotic stresses, including the non-coding portion of genome, we conducted a total leaf transcriptome analysis on maize plants subjected to prolonged drought and salt stresses. Stress application to both B73 wild type and the epiregulator mutant rpd1-1/rmr6 allowed dissection of the epigenetic component of stress response. Coupling total RNA-Seq and transcriptome re-assembly we annotated thousands of new maize transcripts, together with 13,387 lncRNAs that may play critical roles in regulating gene expression. Differential expression analysis revealed hundreds of genes modulated by long-term stress application, including also many lncRNAs and transposons specifically induced by stresses. The amplitude and dynamic of the stress-modulated gene sets are very different between B73 and rpd1-1/rmr6 mutant plants, as result of stress-like effect on genome regulation caused by the mutation itself, which activates many stress-related genes even in control condition. The analyzed extensive set of total RNA-Seq data, together with the improvement of the transcriptome and the identification of the non-coding portion of the transcriptome give a revealing insight into the genetic and epigenetic mechanism responsible for maize molecular response to abiotic stresses. PMID:27461139

  6. Prevention of Aerobic Spoilage of Maize Silage by a Genetically Modified Killer Yeast, Kluyveromyces lactis, Defective in the Ability To Grow on Lactic Acid

    PubMed Central

    Kitamoto, H. K.; Hasebe, A.; Ohmomo, S.; Suto, E. G.; Muraki, M.; Iimura, Y.

    1999-01-01

    In this study, we propose a new process of adding a genetically modified killer yeast to improve the aerobic stability of silage. Previously constructed Kluyveromyces lactis killer strain PCK27, defective in growth on lactic acid due to disruption of the gene coding for phosphoenolpyruvate carboxykinase, a key enzyme for gluconeogenesis, inhibited the growth of Pichia anomala inoculated as an aerobic spoilage yeast and prevented a rise in pH in a model of silage fermentation. This suppressive effect of PCK27 was not only due to growth competition but also due to the killer protein produced. From these results, we concluded that strain PCK27 can be used as an additive to prolong the aerobic stability of maize silage. In the laboratory-scale experiment of maize silage, the addition of a killer yeast changed the yeast flora and significantly reduced aerobic spoilage. PMID:10508111

  7. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses.

    PubMed

    Feng, Shangguo; Yue, Runqing; Tao, Sun; Yang, Yanjun; Zhang, Lei; Xu, Mingfeng; Wang, Huizhong; Shen, Chenjia

    2015-09-01

    Auxin is involved in different aspects of plant growth and development by regulating the expression of auxin-responsive family genes. As one of the three major auxin-responsive families, GH3 (Gretchen Hagen3) genes participate in auxin homeostasis by catalyzing auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. However, how GH3 genes function in responses to abiotic stresses and various hormones in maize is largely unknown. Here, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmGH3 family genes from maize. The results showed that 13 ZmGH3 genes were mapped on five maize chromosomes (total 10 chromosomes). Highly diversified gene structures and tissue-specific expression patterns suggested the possibility of function diversification for these genes in response to environmental stresses and hormone stimuli. The expression patterns of ZmGH3 genes are responsive to several abiotic stresses (salt, drought and cadmium) and major stress-related hormones (abscisic acid, salicylic acid and jasmonic acid). Various environmental factors suppress auxin free IAA contents in maize roots suggesting that these abiotic stresses and hormones might alter GH3-mediated auxin levels. The responsiveness of ZmGH3 genes to a wide range of abiotic stresses and stress-related hormones suggested that ZmGH3s are involved in maize tolerance to environmental stresses.

  8. Expression of the promoter of HyPRP, an embryo-specific gene from Zea mays in maize and tobacco transgenic plants.

    PubMed

    José-Estanyol, Matilde; Pérez, Pascual; Puigdomènech, Pere

    2005-08-15

    zmHyPRP is a gene specifically expressed in maize immature embryos where its transcripts are mainly observed in the scutellum. It has been shown that zmHyPRP expression in the embryo is arrested when ABA levels increase at the beginning of the maturation stage. Here we report the ability of 2 Kb zmHyPRP promoter to reproduce the zmHyPRP gene specific expression pattern in the maize embryo and its repression by ABA at the end of the morphogenetic process. Three different approaches have been used, transient particle bombardment of maize immature excised embryos and stable transformation of maize and tobacco plants with a construct containing 2 Kb of zmHyPRP promoter fused to the GUS gene. This construct has shown to confer specific expression to maize and tobacco embryos but in tobacco expression in the embryo was very low. The same construct was also negatively regulated by ABA in embryos of both species. This suggests that 2 Kb of the zmHyPRP promoter contain all regulatory elements sufficient to confer the developmental expression patterns of the gene characterized to date.

  9. Consumption of Bt maize pollen expressing Cry1Ab or Cry3Bb1 does not harm adult green Lacewings, Chrysoperla carnea (Neuroptera: Chrysopidae).

    PubMed

    Li, Yunhe; Meissle, Michael; Romeis, Jörg

    2008-01-01

    Adults of the common green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), are prevalent pollen-consumers in maize fields. They are therefore exposed to insecticidal proteins expressed in the pollen of insect-resistant, genetically engineered maize varieties expressing Cry proteins derived from Bacillus thuringiensis (Bt). Laboratory experiments were conducted to evaluate the impact of Cry3Bb1 or Cry1Ab-expressing transgenic maize (MON 88017, Event Bt176) pollen on fitness parameters of adult C. carnea. Adults were fed pollen from Bt maize varieties or their corresponding near isolines together with sucrose solution for 28 days. Survival, pre-oviposition period, fecundity, fertility and dry weight were not different between Bt or non-Bt maize pollen treatments. In order to ensure that adults of C. carnea are not sensitive to the tested toxins independent from the plant background and to add certainty to the hazard assessment, adult C. carnea were fed with artificial diet containing purified Cry3Bb1 or Cry1Ab at about a 10 times higher concentration than in maize pollen. Artificial diet containing Galanthus nivalis agglutinin (GNA) was included as a positive control. No differences were found in any life-table parameter between Cry protein containing diet treatments and control diet. However, the pre-oviposition period, daily and total fecundity and dry weight of C. carnea were significantly negatively affected by GNA-feeding. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources as well as the uptake by C. carnea was confirmed. These results show that adults of C. carnea are not affected by Bt maize pollen and are not sensitive to Cry1Ab and Cry3Bb1 at concentrations exceeding the levels in pollen. Consequently, Bt maize pollen consumption will pose a negligible risk to adult C. carnea. PMID:18682800

  10. A major locus expressed in the male gametophyte with incomplete penetrance is responsible for in situ gynogenesis in maize.

    PubMed

    Barret, P; Brinkmann, M; Beckert, M

    2008-08-01

    In flowering plants, double fertilization occurs when the egg cell and the central cell are each fertilized by one sperm cell. In maize, some lines produce pollen capable of inducing in situ gynogenesis thereby leading to maternal haploids that originate exclusively from the female plant. In this paper, we present a genetic analysis of in situ gynogenesis in maize. Using a cross between non-inducing and inducing lines, we identified a major locus on maize chromosome 1 controlling in situ gynogenesis (ggi1, for gynogenesis inducer 1). Fine mapping of this locus was performed, and BAC physical contigs spanning the locus were identified using the rice genome as anchor. Genetic component analysis showed that (a) a segregation distortion against the inducer parent was present at this locus, (b) segregation resulted only from male deficiency and (c) there was a correlation between the rate of segregation distortion and the level of gynogenetic induction. In addition, our results showed that the genotype of the pollen determined its capacity to induce the formation of a haploid female embryo, indicating gametophytic expression of the character with incomplete penetrance. We propose the occurrence of a gametophytic-specific process which leads to segregation distortion at the ggi1 locus associated with gynogenetic induction with incomplete penetrance.

  11. Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: from structure to gene expression.

    PubMed

    Soltys, Dorota; Rudzińska-Langwald, Anna; Kurek, Wojciech; Szajko, Katarzyna; Sliwinska, Elwira; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-05-01

    Cyanamide (CA) is a phytotoxic compound produced by four Fabaceae species: hairy vetch, bird vetch, purple vetch and black locust. Its toxicity is due to complex activity that involves the modification of both cellular structures and physiological processes. To date, CA has been investigated mainly in dicot plants. The goal of this study was to investigate the effects of CA in the restriction of the root growth of maize (Zea mays), representing the monocot species. CA (3mM) reduced the number of border cells in the root tips of maize seedlings and degraded their protoplasts. However, CA did not induce any significant changes in the organelle structure of other root cells, apart from increased vacuolization. CA toxicity was also demonstrated by its effect on cell cycle activity, endoreduplication intensity, and modifications of cyclins CycA2, CycD2, and histone HisH3 gene expression. In contrast, the arrangement of microtubules was not altered by CA. Treatment of maize seedlings with CA did not completely arrest mitotic activity, although the frequency of dividing cells was reduced. Furthermore, prolonged CA treatment increased the proportion of endopolyploid cells in the root tip. Cytological malformations were accompanied by an induction of oxidative stress in root cells, which manifested as enhanced accumulation of H2O2. Exposure of maize seedlings to CA resulted in an increased concentration of auxin and stimulated ethylene emission. Taken together, these findings suggested that the inhibition of root growth by CA may be a consequence of stress-induced morphogenic responses.

  12. Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: from structure to gene expression.

    PubMed

    Soltys, Dorota; Rudzińska-Langwald, Anna; Kurek, Wojciech; Szajko, Katarzyna; Sliwinska, Elwira; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-05-01

    Cyanamide (CA) is a phytotoxic compound produced by four Fabaceae species: hairy vetch, bird vetch, purple vetch and black locust. Its toxicity is due to complex activity that involves the modification of both cellular structures and physiological processes. To date, CA has been investigated mainly in dicot plants. The goal of this study was to investigate the effects of CA in the restriction of the root growth of maize (Zea mays), representing the monocot species. CA (3mM) reduced the number of border cells in the root tips of maize seedlings and degraded their protoplasts. However, CA did not induce any significant changes in the organelle structure of other root cells, apart from increased vacuolization. CA toxicity was also demonstrated by its effect on cell cycle activity, endoreduplication intensity, and modifications of cyclins CycA2, CycD2, and histone HisH3 gene expression. In contrast, the arrangement of microtubules was not altered by CA. Treatment of maize seedlings with CA did not completely arrest mitotic activity, although the frequency of dividing cells was reduced. Furthermore, prolonged CA treatment increased the proportion of endopolyploid cells in the root tip. Cytological malformations were accompanied by an induction of oxidative stress in root cells, which manifested as enhanced accumulation of H2O2. Exposure of maize seedlings to CA resulted in an increased concentration of auxin and stimulated ethylene emission. Taken together, these findings suggested that the inhibition of root growth by CA may be a consequence of stress-induced morphogenic responses. PMID:24709147

  13. Low-molecular weight protein profiling of genetically modified maize using fast liquid chromatography electrospray ionization and time-of-flight mass spectrometry.

    PubMed

    Koc, Anna; Cañuelo, Ana; Garcia-Reyes, Juan F; Molina-Diaz, Antonio; Trojanowicz, Marek

    2012-06-01

    In this work, the use of liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC-TOFMS) has been evaluated for the profiling of relatively low-molecular weight protein species in both genetically modified (GM) and non-GM maize. The proposed approach consisted of a straightforward sample fractionation with different water and ethanol-based buffer solutions followed by separation and detection of the protein species using liquid chromatography with a small particle size (1.8 μm) C(18) column and electrospray-time-of-flight mass spectrometry detection in the positive ionization mode. The fractionation of maize reference material containing different content of transgenic material (from 0 to 5% GM) led to five different fractions (albumins, globulins, zeins, zein-like glutelins, and glutelins), all of them containing different protein species (from 2 to 52 different species in each fraction). Some relevant differences in the quantity and types of protein species were observed in the different fractions of the reference material (with different GM contents) tested, thus revealing the potential use of the proposed approach for fast protein profiling and to detect tentative GMO markers in maize.

  14. Development and Interlaboratory Validation of a Simple Screening Method for Genetically Modified Maize Using a ΔΔC(q)-Based Multiplex Real-Time PCR Assay.

    PubMed

    Noguchi, Akio; Nakamura, Kosuke; Sakata, Kozue; Sato-Fukuda, Nozomi; Ishigaki, Takumi; Mano, Junichi; Takabatake, Reona; Kitta, Kazumi; Teshima, Reiko; Kondo, Kazunari; Nishimaki-Mogami, Tomoko

    2016-04-19

    A number of genetically modified (GM) maize events have been developed and approved worldwide for commercial cultivation. A screening method is needed to monitor GM maize approved for commercialization in countries that mandate the labeling of foods containing a specified threshold level of GM crops. In Japan, a screening method has been implemented to monitor approved GM maize since 2001. However, the screening method currently used in Japan is time-consuming and requires generation of a calibration curve and experimental conversion factor (C(f)) value. We developed a simple screening method that avoids the need for a calibration curve and C(f) value. In this method, ΔC(q) values between the target sequences and the endogenous gene are calculated using multiplex real-time PCR, and the ΔΔC(q) value between the analytical and control samples is used as the criterion for determining analytical samples in which the GM organism content is below the threshold level for labeling of GM crops. An interlaboratory study indicated that the method is applicable independently with at least two models of PCR instruments used in this study.

  15. Low-molecular weight protein profiling of genetically modified maize using fast liquid chromatography electrospray ionization and time-of-flight mass spectrometry.

    PubMed

    Koc, Anna; Cañuelo, Ana; Garcia-Reyes, Juan F; Molina-Diaz, Antonio; Trojanowicz, Marek

    2012-06-01

    In this work, the use of liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC-TOFMS) has been evaluated for the profiling of relatively low-molecular weight protein species in both genetically modified (GM) and non-GM maize. The proposed approach consisted of a straightforward sample fractionation with different water and ethanol-based buffer solutions followed by separation and detection of the protein species using liquid chromatography with a small particle size (1.8 μm) C(18) column and electrospray-time-of-flight mass spectrometry detection in the positive ionization mode. The fractionation of maize reference material containing different content of transgenic material (from 0 to 5% GM) led to five different fractions (albumins, globulins, zeins, zein-like glutelins, and glutelins), all of them containing different protein species (from 2 to 52 different species in each fraction). Some relevant differences in the quantity and types of protein species were observed in the different fractions of the reference material (with different GM contents) tested, thus revealing the potential use of the proposed approach for fast protein profiling and to detect tentative GMO markers in maize. PMID:22740254

  16. Development and Interlaboratory Validation of a Simple Screening Method for Genetically Modified Maize Using a ΔΔC(q)-Based Multiplex Real-Time PCR Assay.

    PubMed

    Noguchi, Akio; Nakamura, Kosuke; Sakata, Kozue; Sato-Fukuda, Nozomi; Ishigaki, Takumi; Mano, Junichi; Takabatake, Reona; Kitta, Kazumi; Teshima, Reiko; Kondo, Kazunari; Nishimaki-Mogami, Tomoko

    2016-04-19

    A number of genetically modified (GM) maize events have been developed and approved worldwide for commercial cultivation. A screening method is needed to monitor GM maize approved for commercialization in countries that mandate the labeling of foods containing a specified threshold level of GM crops. In Japan, a screening method has been implemented to monitor approved GM maize since 2001. However, the screening method currently used in Japan is time-consuming and requires generation of a calibration curve and experimental conversion factor (C(f)) value. We developed a simple screening method that avoids the need for a calibration curve and C(f) value. In this method, ΔC(q) values between the target sequences and the endogenous gene are calculated using multiplex real-time PCR, and the ΔΔC(q) value between the analytical and control samples is used as the criterion for determining analytical samples in which the GM organism content is below the threshold level for labeling of GM crops. An interlaboratory study indicated that the method is applicable independently with at least two models of PCR instruments used in this study. PMID:27010783

  17. Interlaboratory study of qualitative PCR methods for genetically modified maize events MON810, bt11, GA21, and CaMV P35S.

    PubMed

    Takabatake, Reona; Takashima, Kaori; Kurashima, Takeyo; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi; Koiwa, Tomohiro; Akiyama, Hiroshi; Teshima, Reiko; Futo, Satoshi; Minegishi, Yasutaka

    2013-01-01

    Qualitative PCR methods for the genetically modified (GM) maize events MON810, Bt11, and GA21, and the 35S promoter (P35S) region of the cauliflower mosaic virus (CaMV) were evaluated in an interlaboratory study. Real-time PCR-based quantitative methods for these GM events using the same primer pairs had already been validated in previous studies. Fifteen laboratories in Japan participated in this interlaboratory study. Each participant extracted DNA from blind samples, performed qualitative PCR assays, and then detected the PCR products with agarose gel electrophoresis. The specificity, sensitivity, and false-negative and false-positive rates of these methods were determined with different concentrations of GM mixing samples. LODs of these methods for MON810, Bt11, GA21, and the P35S segment calculated as the amount of MON810 were 0.2, 0.2, 0.1, and 0.2% or less, respectively, indicating that the LODs of MON810, Bt11, and P35S were lower than 10 copies, and the LOD of GA21 was lower than 25 copies of maize haploid genome. The current study demonstrated that the qualitative methods would be fit for the detection and identification of these GM maize events and the P35S segment. PMID:23767360

  18. Microtubule-Associated Protein SBgLR Facilitates Storage Protein Deposition and Its Expression Leads to Lysine Content Increase in Transgenic Maize Endosperm

    PubMed Central

    Liu, Chen; Li, Shixue; Yue, Jing; Xiao, Wenhan; Zhao, Qian; Zhu, Dengyun; Yu, Jingjuan

    2015-01-01

    Maize (Zea mays) seed is deficient in protein and lysine content. Many studies have been made to improve the nutritional quality of maize seeds. Previously, we reported the role of a natural lysine-rich protein gene SBgLR in increasing protein and lysine content. However, how the SBgLR improves lysine and protein content remains unclear. Here, the reasons and possible mechanism for SBgLR in protein and lysine improvement have been analyzed and discussed. Through seed-specific expression of SBgLR, we obtained transgenic maize with the simultaneously increased lysine and protein contents. High-protein and high-lysine characters were stably inherited across generations. The expression of SBgLR in maize kernels increased the accumulation of both zeins and non-zein proteins. Transmission electron microscopy showed that the number of protein bodies (PBs) was increased obviously in SBgLR transgenic immature endosperms with the morphology and structure of PBs unchanged. The proteinaceous matrix was more abundant in transgenic mature endosperms under scanning electron microscopy. The stabilities of zein and lysine-rich non-zein genes were also increased in transgenic endosperms. Finally, the potential application of SBgLR in maize nutrient improvement was evaluated. This study shows that a cytoskeleton-associated protein has potential applicable value in crop nutrient improving, and provided a feasible strategy for improvement of maize grain quality. PMID:26703573

  19. Seed-Specific Expression of the Arabidopsis AtMAP18 Gene Increases both Lysine and Total Protein Content in Maize

    PubMed Central

    Chang, Yujie; Shen, Erli; Wen, Liuying; Yu, Jingjuan; Zhu, Dengyun; Zhao, Qian

    2015-01-01

    Lysine is the most limiting essential amino acid for animal nutrition in maize grains. Expression of naturally lysine-rich protein genes can increase the lysine and protein contents in maize seeds. AtMAP18 from Arabidopsis thaliana encoding a microtubule-associated protein with high-lysine content was introduced into the maize genome with the seed-specific promoter F128. The protein and lysine contents of different transgenic offspring were increased prominently in the six continuous generations investigated. Expression of AtMAP18 increased both zein and non-zein protein in the transgenic endosperm. Compared with the wild type, more protein bodies were observed in the endosperm of transgenic maize. These results implied that, as a cytoskeleton binding protein, AtMAP18 facilitated the formation of protein bodies, which led to accumulation of both zein and non-zein proteins in the transgenic maize grains. Furthermore, F1 hybrid lines with high lysine, high protein and excellent agronomic traits were obtained by hybridizing T6 transgenic offspring with other wild type inbred lines. This article provides evidence supporting the use of cytoskeleton-associated proteins to improve the nutritional value of maize. PMID:26580206

  20. The regulation of gene expression in transformed maize aleurone and endosperm protoplasts. Analysis of promoter activity, intron enhancement, and mRNA untranslated regions on expression.

    PubMed

    Gallie, D R; Young, T E

    1994-11-01

    Gene expression in the aleurone and endosperm is highly regulated during both seed development and germination. Studies of alpha-amylase expression in the aleurone of barley (Hordeum vulgare) have generated the current paradigm for hormonal control of gene expression in germinating cereal grain. Gene expression studies in both the aleurone and endosperm tissues of maize (Zea mays) seed have been hampered because of a lack of an efficient transformation system. We report here the rapid isolation of protoplasts from maize aleurone and endosperm tissue, their transformation using polyethylene glycol or electroporation, and the regulation of gene expression in these cells. Adh1 promoter activity was reduced relative to the 35S promoter in aleurone and endosperm protoplasts compared to Black Mexican Sweet suspension cells in which it was nearly as strong as the 35S promoter. Intron-mediated stimulation of expression was substantially higher in transformed aleurone or endosperm protoplasts than in cell-suspension culture protoplasts, and the data suggest that the effect of an intron may be affected by cell type. To examine cytoplasmic regulation, the 5' and 3' untranslated regions from a barley alpha-amylase were fused to the firefly luciferase-coding region, and their effect on translation and mRNA stability was examined following the delivery of in vitro synthesized mRNA to aleurone and endosperm protoplasts. The alpha-amylase untranslated regions regulated translational efficiency in a tissue-specific manner, increasing translation in aleurone or endosperm protoplasts but not in maize or carrot cell-suspension protoplasts, in animal cells, or in in vitro translation lysates.

  1. Involving Undergraduates in the Annotation and Analysis of Global Gene Expression Studies: Creation of a Maize Shoot Apical Meristem Expression Database

    PubMed Central

    Buckner, Brent; Beck, Jon; Browning, Kate; Fritz, Ashleigh; Grantham, Lisa; Hoxha, Eneda; Kamvar, Zhian; Lough, Ashley; Nikolova, Olga; Schnable, Patrick S.; Scanlon, Michael J.; Janick-Buckner, Diane

    2007-01-01

    Through a multi-university and interdisciplinary project we have involved undergraduate biology and computer science research students in the functional annotation of maize genes and the analysis of their microarray expression patterns. We have created a database to house the results of our functional annotation of >4400 genes identified as being differentially regulated in the maize shoot apical meristem (SAM). This database is located at http://sam.truman.edu and is now available for public use. The undergraduate students involved in constructing this unique SAM database received hands-on training in an intellectually challenging environment, which has prepared them for graduate and professional careers in biological sciences. We describe our experiences with this project as a model for effective research-based teaching of undergraduate biology and computer science students, as well as for a rich professional development experience for faculty at predominantly undergraduate institutions. PMID:17409087

  2. Maize variety and method of production

    DOEpatents

    Pauly, Markus; Hake, Sarah; Kraemer, Florian J

    2014-05-27

    The disclosure relates to a maize plant, seed, variety, and hybrid. More specifically, the disclosure relates to a maize plant containing a Cal-1 allele, whose expression results in increased cell wall-derived glucan content in the maize plant. The disclosure also relates to crossing inbreds, varieties, and hybrids containing the Cal-1 allele to produce novel types and varieties of maize plants.

  3. Maize (Zea mays L.) seedling leaf nuclear proteome and differentially expressed proteins between a hybrid and its parental lines.

    PubMed

    Guo, Baojian; Chen, Yanhong; Li, Chuan; Wang, Tianya; Wang, Rui; Wang, Bo; Hu, Sha; Du, Xiaofen; Xing, Hongyan; Song, Xiao; Yao, Yingyin; Sun, Qixin; Ni, Zhongfu

    2014-05-01

    To better understand the underlying molecular basis of leaf development in maize, a reference map of nuclear proteins in basal region of seedling leaf was established using a combination of 2DE and MALDI-TOF-MS. In total, 441 reproducible protein spots in nuclear proteome of maize leaf basal region were detected with silver staining in a pH range of 3-10, among which 203 spots corresponding to 163 different proteins were identified. As expected, proteins implicated in RNA and protein-associated functions were overrepresented in nuclear proteome. Remarkably, a high percentage (10%) of proteins was identified to be involved in cell division and growth. In addition, comparative nuclear proteomic analysis in leaf basal region of highly heterotic hybrid Mo17/B73 and its parental lines was also performed and 52 of 445 (11.69%) detected protein spots were differentially expressed between the hybrid and its parental lines, among which 16 protein spots displayed nonadditively expressed pattern. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of nuclear proteins, which may be responsible for the observed leaf size heterosis.

  4. Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The corn smut fungus, Ustilago maydis, is a global pathogen responsible for extensive agricultural losses. Control of corn smut using traditional breeding has met with limited success because natural resistance to U. maydis is organ specific and involves numerous maize genes. Here, we present a tran...

  5. In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize

    PubMed Central

    2011-01-01

    The glycoside hydrolase family 5 endocellulase, E1 (Cel5A), from Acidothermus cellulolyticus was transformed into both Nicotiana tabacum and Zea mays with expression targeted to the cell wall under a constitutive promoter. Here we explore the possibility that in planta expression of endocellulases will allow these enzymes to access their substrates during cell wall construction, rendering cellulose more amenable to pretreatment and enzyme digestion. Tobacco and maize plants were healthy and developed normally compared with the wild type (WT). After thermochemical pretreatment and enzyme digestion, transformed plants were clearly more digestible than WT, requiring lower pretreatment severity to achieve comparable conversion levels. Furthermore, the decreased recalcitrance was not due to post-pretreatment residual E1 activity and could not be reproduced by the addition of exogenous E1 to the biomass prior to pretreatment, indicating that the expression of E1 during cell wall construction altered the inherent recalcitrance of the cell wall. PMID:21269444

  6. The profilin multigene family of maize: differential expression of three isoforms.

    PubMed

    Staiger, C J; Goodbody, K C; Hussey, P J; Valenta, R; Drøbak, B K; Lloyd, C W

    1993-10-01

    Profilin is a small (12-15 kDa) actin- and phospholipid-binding protein previously known only from studies on animals and lower eukaryotes but recently identified as a birch pollen allergen. Here we have identified and characterized three members of the profilin multigene family from the plant Zea mays. Two cDNAs isolated from a maize pollen library (ZmPRO 1 and ZmPRO 3) each have a single, large open reading frame encoding a putative polypeptide 131 amino acids long with a predicted molecular weight of approximately 14 kDa. A third maize pollen cDNA (ZmPRO 2) has two in-frame translation initiation codons. Use of the first ATG would result in a polypeptide 137 amino acids long with a molecular weight of 14.8 kDa. The three maize profilins are highly homologous to each other (> 90% nucleotide and amino acid sequence identity) as well as other plant profilins but show far less similarity (30-40% amino acid sequence identity) to animal and lower eukaryote profilins. Multiple sequence alignments indicate that only nine residues are shared by all eukaryotic profilins examined. However, limited comparisons reveal domains in the NH2 and COOH termini that have a high degree of similarity suggesting functional conservation. The maize gene family size is estimated to contain three to six members based on Southern blot experiments with gene-specific and coding region probes. Northern blot analysis demonstrates that the three maize profilin cDNAs characterized here are utilized in a tissue-specific manner and are anther or pollen specific. PMID:8252067

  7. Interlaboratory transfer of a PCR multiplex method for simultaneous detection of four genetically modified maize lines: Bt11, MON810, T25, and GA21.

    PubMed

    Hernández, Marta; Rodríguez-Lázaro, David; Zhang, David; Esteve, Teresa; Pla, Maria; Prat, Salomé

    2005-05-01

    The number of cultured hectares and commercialized genetically modified organisms (GMOs) has increased exponentially in the past 9 years. Governments in many countries have established a policy of labeling all food and feed containing or produced by GMOs. Consequently, versatile, laboratory-transferable GMO detection methods are in increasing demand. Here, we describe a qualitative PCR-based multiplex method for simultaneous detection and identification of four genetically modified maize lines: Bt11, MON810, T25, and GA21. The described system is based on the use of five primers directed to specific sequences in these insertion events. Primers were used in a single optimized multiplex PCR reaction, and sequences of the amplified fragments are reported. The assay allows amplification of the MON810 event from the 35S promoter to the hsp intron yielding a 468 bp amplicon. Amplification of the Bt11 and T25 events from the 35S promoter to the PAT gene yielded two different amplicons of 280 and 177 bp, respectively, whereas amplification of the 5' flanking region of the GA21 gave rise to an amplicon of 72 bp. These fragments are clearly distinguishable in agarose gels and have been reproduced successfully in a different laboratory. Hence, the proposed method comprises a rapid, simple, reliable, and sensitive (down to 0.05%) PCR-based assay, suitable for detection of these four GM maize lines in a single reaction.

  8. Molecular cloning, characterization and differential expression of novel phytocystatin gene during tropospheric ozone stress in maize (Zea mays) leaves.

    PubMed

    Ahmad, Rafiq; Zuily-Fodil, Yasmine; Passaquet, Chantal; Ali Khan, Sabaz; Repellin, Anne

    2015-03-01

    In this study, a full-length cDNA encoding a novel phytocystatin gene, designated CC14, was identified in maize leaves. The CC14 gene sequence reported in this study has been deposited in the GenBank database (accession number JF290478). The CC14 gene was cloned into an expression vector pET30 EK/LIC and was then transformed into Escherichia coli strain BL21 (DE3) pLysS to produce a recombinant CC14 protein. The recombinant protein was purified by nickel nitrilotriacetic acid affinity chromatography after induction with 1 mM IPTG. The purified CC14 protein was electrophoresed on SDS-PAGE and a protein 25 kDa in size was observed. Antiprotease activities of the purified recombinant CC14 protein against cysteine proteases and commercially available papain were tested. The results showed that CC14 purified protein suppressed 100% activity of papain and 57-86% plant cysteine protease activity. Moreover, an upregulation of CC14 gene expression was observed after 20 days of ozone stress in maize leaves. Together, these observations concurred to conclude that CC14 gene could potentially be used as a basis for the development of transgenic crops and natural pesticides that resist biotic and abiotic stresses.

  9. Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases.

    PubMed

    Carrillo, Laura; Martinez, Manuel; Ramessar, Koreen; Cambra, Inés; Castañera, Pedro; Ortego, Felix; Díaz, Isabel

    2011-01-01

    Phytocystatins are inhibitors of cysteine-proteases from plants putatively involved in plant defence based on their capability of inhibit heterologous enzymes. We have previously characterised the whole cystatin gene family members from barley (HvCPI-1 to HvCPI-13). The aim of this study was to assess the effects of barley cystatins on two phytophagous spider mites, Tetranychus urticae and Brevipalpus chilensis. The determination of proteolytic activity profile in both mite species showed the presence of the cysteine-proteases, putative targets of cystatins, among other enzymatic activities. All barley cystatins, except HvCPI-1 and HvCPI-7, inhibited in vitro mite cathepsin L- and/or cathepsin B-like activities, HvCPI-6 being the strongest inhibitor for both mite species. Transgenic maize plants expressing HvCPI-6 protein were generated and the functional integrity of the cystatin transgene was confirmed by in vitro inhibitory effect observed against T. urticae and B. chilensis protein extracts. Feeding experiments impaired on transgenic lines performed with T. urticae impaired mite development and reproductive performance. Besides, a significant reduction of cathepsin L-like and/or cathepsin B-like activities was observed when the spider mite fed on maize plants expressing HvCPI-6 cystatin. These findings reveal the potential of barley cystatins as acaricide proteins to protect plants against two important mite pests.

  10. FUM Gene Expression Profile and Fumonisin Production by Fusarium verticillioides Inoculated in Bt and Non-Bt Maize.

    PubMed

    Rocha, Liliana O; Barroso, Vinícius M; Andrade, Ludmila J; Pereira, Gustavo H A; Ferreira-Castro, Fabiane L; Duarte, Aildson P; Michelotto, Marcos D; Correa, Benedito

    2015-01-01

    This study aimed to determine the levels of fumonisins produced by Fusarium verticillioides and FUM gene expression on Bt (Bacillus thuringiensis) and non-Bt maize, post harvest, during different periods of incubation. Transgenic hybrids 30F35 YG, 2B710 Hx and their isogenic (30F35 and 2B710) were collected from the field and a subset of 30 samples selected for the experiments. Maize samples were sterilized by gamma radiation at a dose of 20 kGy. Samples were then inoculated with F. verticillioides and analyzed under controlled conditions of temperature and relative humidity for fumonisin B1 and B2 (FB1 and FB2) production and FUM1, FUM3, FUM6, FUM7, FUM8, FUM13, FUM14, FUM15, and FUM19 expression. 2B710 Hx and 30F35 YG kernel samples were virtually intact when compared to the non-Bt hybrids that came from the field. Statistical analysis showed that FB1 production was significantly lower in 30F35 YG and 2B710 Hx than in the 30F35 and 2B710 hybrids (P < 0.05). However, there was no statistical difference for FB2 production (P > 0.05). The kernel injuries observed in the non-Bt samples have possibly facilitated F. verticillioides penetration and promoted FB1 production under controlled conditions. FUM genes were expressed by F. verticillioides in all of the samples. However, there was indication of lower expression of a few FUM genes in the Bt hybrids; and a weak association between FB1 production and the relative expression of some of the FUM genes were observed in the 30F35 YG hybrid. PMID:26779158

  11. FUM Gene Expression Profile and Fumonisin Production by Fusarium verticillioides Inoculated in Bt and Non-Bt Maize

    PubMed Central

    Rocha, Liliana O.; Barroso, Vinícius M.; Andrade, Ludmila J.; Pereira, Gustavo H. A.; Ferreira-Castro, Fabiane L.; Duarte, Aildson P.; Michelotto, Marcos D.; Correa, Benedito

    2016-01-01

    This study aimed to determine the levels of fumonisins produced by Fusarium verticillioides and FUM gene expression on Bt (Bacillus thuringiensis) and non-Bt maize, post harvest, during different periods of incubation. Transgenic hybrids 30F35 YG, 2B710 Hx and their isogenic (30F35 and 2B710) were collected from the field and a subset of 30 samples selected for the experiments. Maize samples were sterilized by gamma radiation at a dose of 20 kGy. Samples were then inoculated with F. verticillioides and analyzed under controlled conditions of temperature and relative humidity for fumonisin B1 and B2 (FB1 and FB2) production and FUM1, FUM3, FUM6, FUM7, FUM8, FUM13, FUM14, FUM15, and FUM19 expression. 2B710 Hx and 30F35 YG kernel samples were virtually intact when compared to the non-Bt hybrids that came from the field. Statistical analysis showed that FB1 production was significantly lower in 30F35 YG and 2B710 Hx than in the 30F35 and 2B710 hybrids (P < 0.05). However, there was no statistical difference for FB2 production (P > 0.05). The kernel injuries observed in the non-Bt samples have possibly facilitated F. verticillioides penetration and promoted FB1 production under controlled conditions. FUM genes were expressed by F. verticillioides in all of the samples. However, there was indication of lower expression of a few FUM genes in the Bt hybrids; and a weak association between FB1 production and the relative expression of some of the FUM genes were observed in the 30F35 YG hybrid. PMID:26779158

  12. Characterization and expression of transcripts induced by oxygen deprivation in maize (Zea mays L.).

    PubMed Central

    Peschke, V M; Sachs, M M

    1994-01-01

    Until recently, the only genes described in plants induced by oxygen deprivation (anoxia or hypoxia) encoded enzymes of glucose-phosphate metabolism. In the present study, two flooding-induced maize (Zea mays L.) genes that may serve a different function have been identified. These genes, with unique kinetics of mRNA induction under flooding conditions, were not induced by heat, cold, or salt stress or by seedling death. The predicted protein sequence of one gene, wusl1005, is similar to that of several other plant genes, including a nasturtium (Tropaeolum majus L.) xyloglucan-endo-transglycosylase. The predicted protein sequence of the other gene showed no significant homology to genes of known function, indicating that both of these genes may play novel roles in the maize response to oxygen deprivation. PMID:7909162

  13. Gene expression profiling for food safety assessment: examples in potato and maize.

    PubMed

    Dijk, Jeroen P van; Leifert, Carlo; Barros, Eugenia; Kok, Esther J

    2010-12-01

    Since the mid 1990s, microarray analysis has become one of the few tools that can analyze the entire contents of a cell regarding a specific information type. Especially since the development of whole genome microarrays the technique can be considered truly holistic. Most DNA based microarrays are used for the analysis of the total of messenger RNAs (transcriptome) and provide a snap-shot of what's going on in a cell population at the time of sampling. Within the last few years also full genome plant microarrays have become available for several crop species. With these it has been shown that several growing conditions can be separated based on their transcriptome pattern, such as location, year of harvest and agricultural input system, but also different cultivars of the same crop species, including genetically modified ones. A database comprising expression levels of the transcriptome in many different circumstances with a history of safe use would be a good comparator for evaluation of new agricultural practices or cultivars, genetically modified or otherwise obtained. New techniques as next generation sequencing may overcome issues on throughput time and cost, standard operation procedures and array design for individual crops.

  14. Expression analysis of stress-related genes in kernels of different maize (Zea mays L.) inbred lines with different resistance to aflatoxin contamination.

    PubMed

    Jiang, Tingbo; Zhou, Boru; Luo, Meng; Abbas, Hamed K; Kemerait, Robert; Lee, Robert Dewey; Scully, Brian T; Guo, Baozhu

    2011-06-01

    This research examined the expression patterns of 94 stress-related genes in seven maize inbred lines with differential expressions of resistance to aflatoxin contamination. The objective was to develop a set of genes/probes associated with resistance to A. flavus and/or aflatoxin contamination. Ninety four genes were selected from previous gene expression studies with abiotic stress to test the differential expression in maize lines, A638, B73, Lo964, Lo1016, Mo17, Mp313E, and Tex6, using real-time RT-PCR. Based on the relative-expression levels, the seven maize inbred lines clustered into two different groups. One group included B73, Lo1016 and Mo17, which had higher levels of aflatoxin contamination and lower levels of overall gene expression. The second group which included Tex6, Mp313E, Lo964 and A638 had lower levels of aflatoxin contamination and higher overall levels of gene expressions. A total of six "cross-talking" genes were identified between the two groups, which are highly expressed in the resistant Group 2 but down-regulated in susceptible Group 1. When further subjected to drought stress, Tex6 expressed more genes up-regulated and B73 has fewer genes up-regulated. The transcript patterns and interactions measured in these experiments indicate that the resistant mechanism is an interconnected process involving many gene products and transcriptional regulators, as well as various host interactions with environmental factors, particularly, drought and high temperature. PMID:22069724

  15. Data presenting a modified bacterial expression vector for expressing and purifying Nus solubility-tagged proteins.

    PubMed

    Gupta, Nidhi; Wu, Heng; Terman, Jonathan R

    2016-09-01

    Bacteria are the predominant source for producing recombinant proteins but while many exogenous proteins are expressed, only a fraction of those are soluble. We have found that a new actin regulatory enzyme Mical is poorly soluble when expressed in bacteria but the use of a Nus fusion protein tag greatly increases its solubility. However, available vectors containing a Nus tag have been engineered in a way that hinders the separation of target proteins from the Nus tag during protein purification. We have now used recombinant DNA approaches to overcome these issues and reengineer a Nus solubility tag-containing bacterial expression vector. The data herein present a modified bacterial expression vector useful for expressing proteins fused to the Nus solubility tag and separating such target proteins from the Nus tag during protein purification. PMID:27547802

  16. Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction.

    PubMed

    Sun, Wei; Chen, Hao; Wang, Juan; Sun, Hong Wei; Yang, Shu Ke; Sang, Ya Lin; Lu, Xing Bo; Xu, Xiao Hui

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) play important roles in stress responses and development in plants. Maize (Zea mays), an important cereal crop, is a model plant species for molecular studies. In the last decade, several MAPKs have been identified in maize; however, their functions have not been studied extensively. Genome-wide identification and expression analysis of maize MAPK genes could provide valuable information for understanding their functions. In this study, 20 non-redundant maize MAPK genes (ZmMPKs) were identified via a genome-wide survey. Phylogenetic analysis of MAPKs from maize, rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), and tomato (Solanum lycopersicum) classified them into four major classes. ZmMPKs in the same class had similar domains, motifs, and genomic structures. Gene duplication investigations suggested that segmental duplications made a large contribution to the expansion of ZmMPKs. A number of cis-acting elements related to plant development and response to stress and hormones were identified in the promoter regions of ZmMPKs. Furthermore, transcript profile analysis in eight tissues and organs at various developmental stages demonstrated that most ZmMPKs were preferentially expressed in reproductive tissues and organs. The transcript abundance of most ZmMPKs changed significantly under salt, drought, cold, or abscisic acid (ABA) treatments, implying that they might participate in abiotic stress and ABA signaling. These expression analyses indicated that ZmMPKs might serve as linkers between abiotic stress signaling and plant reproduction. Our data will deepen our understanding of the complexity of the maize MAPK gene family and provide new clues to investigate their functions.

  17. Baculovirus expression of the maize mitochondrial protein URF13 confers insecticidal activity in cell cultures and larvae.

    PubMed Central

    Korth, K L; Levings, C S

    1993-01-01

    The URF13 protein, which is encoded by the mitochondrial gene T-urf13, is responsible for cytoplasmic male sterility and pathotoxin sensitivity in the Texas male-sterile cytoplasm (cms-T) of maize. Mitochondrial sensitivity to two host-specific fungal toxins (T toxins) is mediated by the interaction of URF13 and T toxins to form pores in the inner mitochondrial membrane. A carbamate insecticide, methomyl, mimics the effects of T toxins on isolated cms-T mitochondria. URF13 was expressed in Spodoptera frugiperda (fall army-worm) cells (Sf9) in culture and in Trichoplusia ni (cabbage looper) larvae with a baculovirus vector. In insect cells, URF13 forms oligomeric structures in the membrane and confers T toxin or methomyl sensitivity. Adding T toxin or methomyl to Sf9 cells producing URF13 causes permeabilization of plasma membranes. In addition, URF13 is toxic to insect cells grown in culture without T toxins or methomyl; even a T-toxin-insensitive mutant form of URF13 is lethal to cell cultures. Baculoviruses expressing URF13 are lethal to T. ni larvae, at times postinjection comparable to those obtained by injecting a baculovirus expressing an insect neurotoxin. This result suggests that URF13 could be useful as a biological control agent for insect pests. Our data indicate that URF13 has two independent mechanisms for toxicity, one that is mediated by T toxin and methomyl and one that is independent of these toxins. Similarly, male sterility and toxin sensitivity in cms-T maize may be due to independent mechanisms. Images Fig. 1 Fig. 2 Fig. 5 Fig. 6 PMID:8475086

  18. Genes and Small RNA Transcripts Exhibit Dosage-Dependent Expression Pattern in Maize Copy-Number Alterations.

    PubMed

    Zuo, Tao; Zhang, Jianbo; Lithio, Andrew; Dash, Sudhansu; Weber, David F; Wise, Roger; Nettleton, Dan; Peterson, Thomas

    2016-07-01

    Copy-number alterations are widespread in animal and plant genomes, but their immediate impact on gene expression is still unclear. In animals, copy-number alterations usually exhibit dosage effects, except for sex chromosomes which tend to be dosage compensated. In plants, genes within small duplications (<100 kb) often exhibit dosage-dependent expression, whereas large duplications (>50 Mb) are more often dosage compensated. However, little or nothing is known about expression in moderately-sized (1-50 Mb) segmental duplications, and about the response of small RNAs to dosage change. Here, we compared maize (Zea mays) plants with two, three, and four doses of a 14.6-Mb segment of chromosome 1 that contains ∼300 genes. Plants containing the duplicated segment exhibit dosage-dependent effects on ear length and flowering time. Transcriptome analyses using GeneChip and RNA-sequencing methods indicate that most expressed genes and unique small RNAs within the duplicated segments exhibit dosage-dependent transcript levels. We conclude that dosage effect is the predominant regulatory response for both genes and unique small RNA transcripts in the segmental dosage series we tested. To our knowledge this is the first analysis of small RNA expression in plant gene dosage variants. Because segmental duplications comprise a significant proportion of eukaryotic genomes, these findings provide important new insight into the regulation of genes and small RNAs in response to dosage changes. PMID:27129738

  19. Subacute effects of maize-expressed vaccine protein, Escherichia coli heat-labile enterotoxin subunit B (LTB), on the Springtail, Folsomia candida , and the earthworm, Eisenia fetida.

    PubMed

    Kosaki, Hirofumi; Wolt, Jeffrey D; Wang, Kan; Coats, Joel R

    2008-12-10

    The ecotoxicological effects of transgenic maize-expressed vaccine protein, Escherichia coli heat-labile enterotoxin subunit B (LTB), on two soil invertebrates were studied under laboratory settings. After being reared for 28 days on LTB-maize-treated soils, no apparent mortality of the springtail, Folsomia candida , or the earthworm, Eisenia fetida , was observed at levels well above conservatively projected estimated environmental concentrations. Therefore, it is concluded that there would be no acutely toxic effect of LTB to these species. As for the subacute effect, no significant differences of F. candida mean reproduction and E. fetida mean growth were observed between LTB-maize-treated samples and non-GM-maize-treated controls. In addition, no LTB was detected in the E. fetida whole-body extraction assay, which indicates there was no tendency for bioaccumulation. On the basis of these observations, it is predicted that any adverse effects of LTB-maize on F. candida and E. fetida would be minimal, if any.

  20. The iojap gene in maize

    SciTech Connect

    Martienssen, Robert

    2001-12-01

    The classical maize mutant iojap (Iodent japonica) has variegated green and white leaves. Green sectors have cells with normal chloroplasts whereas white sectors have cells where plastids fail to differentiate. These mutant plastids, when transmitted through the female gametophyte, do not recover in the presence of wild type Iojap. We cloned the Ij locus, and we have investigated the mechanism of epigenetic inheritance and phenotypic expression. More recently, a modifier of this type of variegation, ''Inhibitor of striate'', has also been cloned. Both the iojap and inhibitor of striate proteins have homologs in bacteria and are members of ancient conserved families found in multiple species. These tools can be used to address fundamental questions of inheritance and variegation associated with this classical conundrum of maize genetics. Since the work of Rhoades there has been considerable speculation concerning the nature of the Iojap gene product, the origin of leaf variegation and the mechanism behind the material inheritance of defective plastids. This has made Iojap a textbook paradigm for cytoplasmic inheritance and nuclear-organellar interaction for almost 50 years. Cloning of the Iojap gene in maize, and homologs in other plants and bacteria, provides a new means to address the origin of heteroplastidity, variegation and cytoplasmic inheritance in higher plants.

  1. Nitrogen-Deficiency Stress Induces Protein Expression Differentially in Low-N Tolerant and Low-N Sensitive Maize Genotypes.

    PubMed

    Nazir, Muslima; Pandey, Renu; Siddiqi, Tariq O; Ibrahim, Mohamed M; Qureshi, Mohammad I; Abraham, Gerard; Vengavasi, Krishnapriya; Ahmad, Altaf

    2016-01-01

    Nitrogen (N) is essential for proper plant growth and its application has proven to be critical for agricultural produce. However, for unavoidable economic and environmental problems associated with excessive use of N-fertilizers, it is an urgent demand to manage application of fertilizers. Improving the N-use efficiency (NUE) of crop plants to sustain productivity even at low N levels is the possible solution. In the present investigation, contrasting low-N sensitive (HM-4) and low-N tolerant (PEHM-2) genotypes were identified and used for comparative proteome-profiling of leaves under optimum and low N as well as restoration of low N on 3rd (NR3) and 5th (NR5) days after re-supplying N. The analysis of differential expression pattern of proteins was performed by 2-D gel electrophoresis. Significant variations in the expression of proteins were observed under low N, which were genotype specific. In the leaf proteome, 25 spots were influenced by N treatment and four spots were different between the two genotypes. Most of the proteins that were differentially accumulated in response to N level and were involved in photosynthesis and metabolism, affirming the relationship between N and carbon metabolism. In addition to this, greater intensity of some defense proteins in the low N tolerant genotype was found that may have a possible role in imparting it tolerance under N starvation conditions. The new insights generated on maize proteome in response to N-starvation and restoration would be useful toward improvement of NUE in maize. PMID:27047497

  2. Nitrogen-Deficiency Stress Induces Protein Expression Differentially in Low-N Tolerant and Low-N Sensitive Maize Genotypes

    PubMed Central

    Nazir, Muslima; Pandey, Renu; Siddiqi, Tariq O.; Ibrahim, Mohamed M.; Qureshi, Mohammad I.; Abraham, Gerard; Vengavasi, Krishnapriya; Ahmad, Altaf

    2016-01-01

    Nitrogen (N) is essential for proper plant growth and its application has proven to be critical for agricultural produce. However, for unavoidable economic and environmental problems associated with excessive use of N-fertilizers, it is an urgent demand to manage application of fertilizers. Improving the N-use efficiency (NUE) of crop plants to sustain productivity even at low N levels is the possible solution. In the present investigation, contrasting low-N sensitive (HM-4) and low-N tolerant (PEHM-2) genotypes were identified and used for comparative proteome-profiling of leaves under optimum and low N as well as restoration of low N on 3rd (NR3) and 5th (NR5) days after re-supplying N. The analysis of differential expression pattern of proteins was performed by 2-D gel electrophoresis. Significant variations in the expression of proteins were observed under low N, which were genotype specific. In the leaf proteome, 25 spots were influenced by N treatment and four spots were different between the two genotypes. Most of the proteins that were differentially accumulated in response to N level and were involved in photosynthesis and metabolism, affirming the relationship between N and carbon metabolism. In addition to this, greater intensity of some defense proteins in the low N tolerant genotype was found that may have a possible role in imparting it tolerance under N starvation conditions. The new insights generated on maize proteome in response to N-starvation and restoration would be useful toward improvement of NUE in maize. PMID:27047497

  3. Efficacy evaluation of two transgenic maize events expressing fused proteins to CrylAb-susceptible and -resistant Ostrinia furnacalis (Lepidoptera: Crambidae).

    PubMed

    Chang, X; Liu, G G; He, K L; Shen, Z C; Peng, Y F; Ye, G Y

    2013-12-01

    The Asian corn borer, Ostrinia furnacalis (GuenCe), is a major pest of maize in China. Transgenic Bt maize could provide an effective way to control this pest. However, the potential of resistance evolution has been documented in the laboratory-a CrylAb-resistant strain of Asian corn borer (Asian corn borer-AbR) could survive well on two Bt maize events, that is, MON810 and Bt11. Pyramided transgenic crops with multiple dissimilar Bt insecticidal proteins offer a superior route for pests control compared with that with one Bt single gene. In this study, two novel transgenic Bt maize events (N30 and V3), which contained a fused gene Cry1Ab/Cry2Aj and CrylAb /Vip3DA, respectively, were evaluated for their efficacy on protection against CrylAb-susceptible Asian corn borer (Asian corn borer-BtS) as well as their potential for dealing with the Asian corn borer-AbR. In laboratory bioassay, no neonate larvae of Asian corn borer-BtS fed on the whorl leaves, tassels, husks, silks, and kernels of N30 and V3 could survive at 96 h after infestation. In contrast, only 2.0-8.7% larvae died as they fed on non-Bt maize tissues. As Asian corn borer-AbR neonate larvae fed on N30 and V3 silks and kernels, 95.0% even more larvae were killed at 96 h after infestation, and all died at 168 h after infestation, while 10.0-11.67% larvae survived on non-Bt control. In the field test under artificial infestation at middle whorl leaf and silking stages of maize, there were no significant leaf, silk, and stalk damage on Bt maize plants by comparison with severe leaf feeding, stalk born, and ear damage in control, in addition, the expression profiles of a fused protein of CrylAb/Cry2Aj or CrylAb/Vip3DA in different tissues of N30 and V3 were also confirmed. In conclusion, it is clear that both Bt maize events (N30 and V3) show great potential for protecting maize from attack by Asian corn borer that has resistance to Cry1Ab protein. PMID:24498757

  4. High Expression of the Tonoplast Aquaporin ZmTIP1 in Epidermal and Conducting Tissues of Maize1

    PubMed Central

    Barrieu, François; Chaumont, François; Chrispeels, Maarten J.

    1998-01-01

    Aquaporins are integral membrane proteins of the tonoplast and the plasma membrane that facilitate the passage of water through these membranes. Because of their potentially important role in regulating water flow in plants, studies documenting aquaporin gene expression in specialized tissues involved in water and solute transport are important. We used in situ hybridization to examine the expression pattern of the tonoplast aquaporin ZmTIP1 in different organs of maize (Zea mays L.). This tonoplast water channel is highly expressed in the root epidermis, the root endodermis, the small parenchyma cells surrounding mature xylem vessels in the root and the stem, phloem companion cells and a ring of cells around the phloem strand in the stem and the leaf sheath, and the basal endosperm transfer cells in developing kernels. We postulate that the high level of expression of ZmTIP1 in these tissues facilitates rapid flow of water through the tonoplast to permit osmotic equilibration between the cytosol and the vacuolar content, and to permit rapid transcellular water flow through living cells when required. PMID:9701571

  5. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath's cell chloroplasts ultrastructure in maize.

    PubMed

    Vaculík, Marek; Pavlovič, Andrej; Lux, Alexander

    2015-10-01

    Silicon was shown to alleviate the negative effects of various biotic and abiotic stresses on plant growth. Although the positive role of Si on toxic and heavy metal Cd has been already described, the mechanisms have been explained only partially and still remain unclear. In the present study we investigated the effect of Si on photosynthetic-related processes in maize exposed to two different levels of Cd via measurements of net photosynthetic rate (AN), chlorophyll a fluorescence and pigment analysis, as well as studies of leaf tissue anatomy and cell ultrastructure using bright-field and transmission electron microscopy. We found that Si actively alleviated the toxic syndromes of Cd by increasing AN, effective photochemical quantum yield of photosystem II (ϕPSII) and content of assimilation pigments, although did not decrease the concentration of Cd in leaf tissues. Cadmium did not affect the leaf anatomy and ultrastructure of leaf mesophyll's cell chloroplasts; however, Cd negatively affected thylakoid formation in chloroplasts of bundle sheath cells, and this was alleviated by Si. Improved thylakoid formation in bundle sheath's cell chloroplasts may contribute to Si-induced enhancement of photosynthesis and related increase in biomass production in C4 plant maize.

  6. A Modified Sparse Representation Method for Facial Expression Recognition.

    PubMed

    Wang, Wei; Xu, LiHong

    2016-01-01

    In this paper, we carry on research on a facial expression recognition method, which is based on modified sparse representation recognition (MSRR) method. On the first stage, we use Haar-like+LPP to extract feature and reduce dimension. On the second stage, we adopt LC-K-SVD (Label Consistent K-SVD) method to train the dictionary, instead of adopting directly the dictionary from samples, and add block dictionary training into the training process. On the third stage, stOMP (stagewise orthogonal matching pursuit) method is used to speed up the convergence of OMP (orthogonal matching pursuit). Besides, a dynamic regularization factor is added to iteration process to suppress noises and enhance accuracy. We verify the proposed method from the aspect of training samples, dimension, feature extraction and dimension reduction methods and noises in self-built database and Japan's JAFFE and CMU's CK database. Further, we compare this sparse method with classic SVM and RVM and analyze the recognition effect and time efficiency. The result of simulation experiment has shown that the coefficient of MSRR method contains classifying information, which is capable of improving the computing speed and achieving a satisfying recognition result. PMID:26880878

  7. Expression and RNA splicing of the maize glutathione S-transferase Bronze2 gene is regulated by cadmium and other stresses.

    PubMed Central

    Marrs, K A; Walbot, V

    1997-01-01

    The Bronze2 (Bz2) gene in maize (Zea mays) encodes a glutathione S-transferase that performs the last genetically defined step in anthocyanin biosynthesis--tagging anthocyanin precursors with glutathione, allowing for recognition and entry of anthocyanins into the vacuole. Here we show that Bz2 gene expression is highly induced by heavy metals such as cadmium. Treatment of maize seedlings with cadmium results in a 20-fold increase in Bz2 message accumulation and a 50-fold increase in the presence of the unspliced, intron-containing transcript. The increase in message levels during cadmium stress appears to result, at least in part, from activation of an alternative mRNA start site approximately 200 nucleotides upstream of the normal start site; this site is not used in unstressed or heat-stressed tissues. The effect of cadmium on the RNA splicing of Bz2 seems to be specific: splicing of other intron-containing maize genes, including a maize actin gene under the control of the cadmium-inducible Bz2 promoter, is unaffected by cadmium stress. Conversely, Bz2 intron splicing is not affected by other stress conditions that induce Bz2 gene expression, such as abscisic acid, auxin, or cold stress. Surprisingly, the increase in Bz2 mRNA during cadmium stress does not result in an increase in Bz2 glutathione S-transferase activity. We propose that an alternative protein may be encoded by Bz2 that has a role during responses to heavy metals. PMID:9008391

  8. Ectopic Expression of a Maize Hybrid Down-Regulated Gene ZmARF25 Decreases Organ Size by Affecting Cellular Proliferation in Arabidopsis

    PubMed Central

    Meng, Lingxue; Xing, Jiewen; Wang, Tianya; Yang, Hua; Yao, Yingyin; Peng, Huiru; Hu, Zhaorong; Sun, Qixin; Ni, Zhongfu

    2014-01-01

    Heterosis is associated with differential gene expression between hybrids and their parental lines, and the genes involved in cell proliferation played important roles. AtARF2 is a general cell proliferation repressor in Arabidopsis. In our previous study, two homologues (ZmARF10 and ZmARF25) of AtARF2 were identified in maize, but their relationship with heterosis was not elucidated. Here, the expression patterns of ZmARF10 and ZmARF25 in seedling leaves of maize hybrids and their parental lines were analyzed. The results of qRT-PCR exhibited that ZmARF25 was down-regulated in leaf basal region of hybrids. Moreover, overexpression of ZmARF25 led to reduced organ size in Arabidopsis, which was mainly due to the decrease in cell number, not cell size. In addition, the cell proliferation related genes AtANT, AtGIF1 and AtGRF5 were down-regulated in 35S::ZmARF25 transgenic lines. Collectively, we proposed that the down-regulation of ZmARF25 in maize hybrid may accelerate cell proliferation and promote leaf development, which, in turn, contributes to the observed leaf size heterosis in maize. PMID:24756087

  9. Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identify novel genes expressed during vegetative, infectious, and reproductive growth

    PubMed Central

    Bluhm, Burton H; Dhillon, Braham; Lindquist, Erika A; Kema, Gert HJ; Goodwin, Stephen B; Dunkle, Larry D

    2008-01-01

    Background The ascomycete fungus Cercospora zeae-maydis is an aggressive foliar pathogen of maize that causes substantial losses annually throughout the Western Hemisphere. Despite its impact on maize production, little is known about the regulation of pathogenesis in C. zeae-maydis at the molecular level. The objectives of this study were to generate a collection of expressed sequence tags (ESTs) from C. zeae-maydis and evaluate their expression during vegetative, infectious, and reproductive growth. Results A total of 27,551 ESTs was obtained from five cDNA libraries constructed from vegetative and sporulating cultures of C. zeae-maydis. The ESTs, grouped into 4088 clusters and 531 singlets, represented 4619 putative unique genes. Of these, 36% encoded proteins similar (E value ≤ 10-05) to characterized or annotated proteins from the NCBI non-redundant database representing diverse molecular functions and biological processes based on Gene Ontology (GO) classification. We identified numerous, previously undescribed genes with potential roles in photoreception, pathogenesis, and the regulation of development as well as Zephyr, a novel, actively transcribed transposable element. Differential expression of selected genes was demonstrated by real-time PCR, supporting their proposed roles in vegetative, infectious, and reproductive growth. Conclusion Novel genes that are potentially involved in regulating growth, development, and pathogenesis were identified in C. zeae-maydis, providing specific targets for characterization by molecular genetics and functional genomics. The EST data establish a foundation for future studies in evolutionary and comparative genomics among species of Cercospora and other groups of plant pathogenic fungi. PMID:18983654

  10. Expression of Heat Shock Protein Genes in Different Developmental Stages and After Temperature Stress in the Maize Weevil (Coleoptera: Curculionidae).

    PubMed

    Tungjitwitayakul, Jatuporn; Tatun, Nujira; Vajarasathira, Boongeua; Sakurai, Sho

    2015-06-01

    The maize weevil, Sitophilus zeamais Motschulsky, is a major pest of rice and other postharvest grain stocks in tropical countries. Heating and cooling treatments have been adopted to control this pest. Because heat shock protein (hsp) genes respond to temperature stress, we examined the association of hsp genes with development and thermal stress in S. zeamais. The temperature response of the insect to heat and cold treatments was assessed at four developmental stages: egg, larva, pupa, and adult. LT50 values at high temperatures were similar among the four developmental stages, while adults were the most tolerant to low temperatures, and eggs, larvae, and pupae exhibited similar LT50 values. Expression levels of three hsps--Szhsp70, Szhsc70, and Szhsp90--fluctuated substantially throughout the four stages at a rearing temperature of 28°C. Heat shock and cold shock increased the expression of all three hsps, and the highest upregulation was observed at 40°C, although the intensity of upregulation varied among the three genes: strongly in Szhsp70, moderately in Szhsp90, and slightly in Szhsc70. Basal expression of the three hsps at 28°C and gene responses to heat and cold shock also varied significantly at the tissue level.

  11. Maize databases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter is a succinct overview of maize data held in the species-specific database MaizeGDB (the Maize Genomics and Genetics Database), and selected multi-species data repositories, such as Gramene/Ensembl Plants, Phytozome, UniProt and the National Center for Biotechnology Information (NCBI), ...

  12. Answers to critics: Why there is a long term toxicity due to a Roundup-tolerant genetically modified maize and to a Roundup herbicide.

    PubMed

    Séralini, Gilles-Eric; Mesnage, Robin; Defarge, Nicolas; Gress, Steeve; Hennequin, Didier; Clair, Emilie; Malatesta, Manuela; de Vendômois, Joël Spiroux

    2013-03-01

    Our recent work (Séralini et al., 2012) remains to date the most detailed study involving the life-long consumption of an agricultural genetically modified organism (GMO). This is true especially for NK603 maize for which only a 90-day test for commercial release was previously conducted using the same rat strain (Hammond et al., 2004). It is also the first long term detailed research on mammals exposed to a highly diluted pesticide in its total formulation with adjuvants. This may explain why 75% of our first criticisms arising within a week, among publishing authors, come from plant biologists, some developing patents on GMOs, even if it was a toxicological paper on mammals, and from Monsanto Company who owns both the NK603 GM maize and Roundup herbicide (R). Our study has limits like any one, and here we carefully answer to all criticisms from agencies, consultants and scientists, that were sent to the Editor or to ourselves. At this level, a full debate is biased if the toxicity tests on mammals of NK603 and R obtained by Monsanto Company remain confidential and thus unavailable in an electronic format for the whole scientific community to conduct independent scrutiny of the raw data. In our article, the conclusions of long-term NK603 and Roundup toxicities came from the statistically highly discriminant findings at the biochemical level in treated groups in comparison to controls, because these findings do correspond in an blinded analysis to the pathologies observed in organs, that were in turn linked to the deaths by anatomopathologists. GM NK603 and R cannot be regarded as safe to date. PMID:23146697

  13. Answers to critics: Why there is a long term toxicity due to a Roundup-tolerant genetically modified maize and to a Roundup herbicide.

    PubMed

    Séralini, Gilles-Eric; Mesnage, Robin; Defarge, Nicolas; Gress, Steeve; Hennequin, Didier; Clair, Emilie; Malatesta, Manuela; de Vendômois, Joël Spiroux

    2013-03-01

    Our recent work (Séralini et al., 2012) remains to date the most detailed study involving the life-long consumption of an agricultural genetically modified organism (GMO). This is true especially for NK603 maize for which only a 90-day test for commercial release was previously conducted using the same rat strain (Hammond et al., 2004). It is also the first long term detailed research on mammals exposed to a highly diluted pesticide in its total formulation with adjuvants. This may explain why 75% of our first criticisms arising within a week, among publishing authors, come from plant biologists, some developing patents on GMOs, even if it was a toxicological paper on mammals, and from Monsanto Company who owns both the NK603 GM maize and Roundup herbicide (R). Our study has limits like any one, and here we carefully answer to all criticisms from agencies, consultants and scientists, that were sent to the Editor or to ourselves. At this level, a full debate is biased if the toxicity tests on mammals of NK603 and R obtained by Monsanto Company remain confidential and thus unavailable in an electronic format for the whole scientific community to conduct independent scrutiny of the raw data. In our article, the conclusions of long-term NK603 and Roundup toxicities came from the statistically highly discriminant findings at the biochemical level in treated groups in comparison to controls, because these findings do correspond in an blinded analysis to the pathologies observed in organs, that were in turn linked to the deaths by anatomopathologists. GM NK603 and R cannot be regarded as safe to date.

  14. Enhanced tolerance to low temperature in tobacco by over-expression of a new maize protein phosphatase 2C, ZmPP2C2.

    PubMed

    Hu, Xiaoli; Liu, Lixia; Xiao, Beilei; Li, Dapeng; Xing, Xin; Kong, Xiangpei; Li, Dequan

    2010-10-15

    Low temperature is one of the most common environmental stresses affecting plant growth and agricultural production. Serine/threonine protein phosphatases 2C (PP2Cs) have been suggested to play an important role in stress signaling. To identify potential new member of the PP2C proteins in maize and investigate its functions for stress responses, the ZmPP2C2 gene, encoding a new PP2C protein from maize roots, was cloned by RT-PCR and RACE-PCR. Its constitutive expression in roots, stems and leaves of maize seedlings was detected by RNA gel blot, and its regulation in response to cold stress was also examined. To further evaluate its function in the cold stress response, we over-expressed the ZmPP2C2 gene in tobacco under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter, and assessed a series of physiological changes in wild type and transgenic plants under low temperatures. Compared with wild type tobacco under cold stress, plants that over-expressed ZmPP2C2 displayed higher germination speed and rate, higher antioxidant enzyme (SOD, POD, CAT) activities, with lower cold-induced electrolyte leakage and malondialdehyde (MDA) contents. These results show that over-expression of ZmPP2C2 in tobacco enhanced tolerance to cold stress, suggesting that this new gene, ZmPP2C2, may act as a positive regulator of cold resistance in plants.

  15. Reconstruction of Metabolic Pathways, Protein Expression, and Homeostasis Machineries across Maize Bundle Sheath and Mesophyll Chloroplasts: Large-Scale Quantitative Proteomics Using the First Maize Genome Assembly1[W][OA

    PubMed Central

    Friso, Giulia; Majeran, Wojciech; Huang, Mingshu; Sun, Qi; van Wijk, Klaas J.

    2010-01-01

    Chloroplasts in differentiated bundle sheath (BS) and mesophyll (M) cells of maize (Zea mays) leaves are specialized to accommodate C4 photosynthesis. This study provides a reconstruction of how metabolic pathways, protein expression, and homeostasis functions are quantitatively distributed across BS and M chloroplasts. This yielded new insights into cellular specialization. The experimental analysis was based on high-accuracy mass spectrometry, protein quantification by spectral counting, and the first maize genome assembly. A bioinformatics workflow was developed to deal with gene models, protein families, and gene duplications related to the polyploidy of maize; this avoided overidentification of proteins and resulted in more accurate protein quantification. A total of 1,105 proteins were assigned as potential chloroplast proteins, annotated for function, and quantified. Nearly complete coverage of primary carbon, starch, and tetrapyrole metabolism, as well as excellent coverage for fatty acid synthesis, isoprenoid, sulfur, nitrogen, and amino acid metabolism, was obtained. This showed, for example, quantitative and qualitative cell type-specific specialization in starch biosynthesis, arginine synthesis, nitrogen assimilation, and initial steps in sulfur assimilation. An extensive overview of BS and M chloroplast protein expression and homeostasis machineries (more than 200 proteins) demonstrated qualitative and quantitative differences between M and BS chloroplasts and BS-enhanced levels of the specialized chaperones ClpB3 and HSP90 that suggest active remodeling of the BS proteome. The reconstructed pathways are presented as detailed flow diagrams including annotation, relative protein abundance, and cell-specific expression pattern. Protein annotation and identification data, and projection of matched peptides on the protein models, are available online through the Plant Proteome Database. PMID:20089766

  16. Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development

    PubMed Central

    Wang, Hongxia; Yang, Jun; Zhang, Min; Fan, Weijuan; Firon, Nurit; Pattanaik, Sitakanta; Yuan, Ling; Zhang, Peng

    2016-01-01

    There is no direct evidence of the effect of lignin metabolism on early storage root development in sweet potato. In this study, we found that heterologous expression of the maize leaf color (Lc) gene in sweet potato increased anthocyanin pigment accumulation in the whole plant and resulted in reduced size with an increased length/width ratio, low yield and less starch content in the early storage roots. RT-PCR analysis revealed dramatic up-regulation of the genes involved in the lignin biosynthesis pathway in developing storage roots, leading to greater lignin content in the Lc transgenic lines, compared to the wild type. This was also evidenced by the enhanced lignification of vascular cells in the early storage roots. Furthermore, increased expression of the β-amylase gene in leaves and storage roots also accelerated starch degradation and increased the sugar use efficiency, providing more energy and carbohydrate sources for lignin biosynthesis in the Lc transgenic sweet potato. Lesser starch accumulation was observed in the developing storage roots at the initiation stage in the Lc plants. Our study provides experimental evidence of the basic carbohydrate metabolism underlying the development of storage roots, which is the transformation of lignin biosynthesis to starch biosynthesis. PMID:26727353

  17. Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development.

    PubMed

    Wang, Hongxia; Yang, Jun; Zhang, Min; Fan, Weijuan; Firon, Nurit; Pattanaik, Sitakanta; Yuan, Ling; Zhang, Peng

    2016-01-01

    There is no direct evidence of the effect of lignin metabolism on early storage root development in sweet potato. In this study, we found that heterologous expression of the maize leaf color (Lc) gene in sweet potato increased anthocyanin pigment accumulation in the whole plant and resulted in reduced size with an increased length/width ratio, low yield and less starch content in the early storage roots. RT-PCR analysis revealed dramatic up-regulation of the genes involved in the lignin biosynthesis pathway in developing storage roots, leading to greater lignin content in the Lc transgenic lines, compared to the wild type. This was also evidenced by the enhanced lignification of vascular cells in the early storage roots. Furthermore, increased expression of the β-amylase gene in leaves and storage roots also accelerated starch degradation and increased the sugar use efficiency, providing more energy and carbohydrate sources for lignin biosynthesis in the Lc transgenic sweet potato. Lesser starch accumulation was observed in the developing storage roots at the initiation stage in the Lc plants. Our study provides experimental evidence of the basic carbohydrate metabolism underlying the development of storage roots, which is the transformation of lignin biosynthesis to starch biosynthesis. PMID:26727353

  18. Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development.

    PubMed

    Wang, Hongxia; Yang, Jun; Zhang, Min; Fan, Weijuan; Firon, Nurit; Pattanaik, Sitakanta; Yuan, Ling; Zhang, Peng

    2016-01-01

    There is no direct evidence of the effect of lignin metabolism on early storage root development in sweet potato. In this study, we found that heterologous expression of the maize leaf color (Lc) gene in sweet potato increased anthocyanin pigment accumulation in the whole plant and resulted in reduced size with an increased length/width ratio, low yield and less starch content in the early storage roots. RT-PCR analysis revealed dramatic up-regulation of the genes involved in the lignin biosynthesis pathway in developing storage roots, leading to greater lignin content in the Lc transgenic lines, compared to the wild type. This was also evidenced by the enhanced lignification of vascular cells in the early storage roots. Furthermore, increased expression of the β-amylase gene in leaves and storage roots also accelerated starch degradation and increased the sugar use efficiency, providing more energy and carbohydrate sources for lignin biosynthesis in the Lc transgenic sweet potato. Lesser starch accumulation was observed in the developing storage roots at the initiation stage in the Lc plants. Our study provides experimental evidence of the basic carbohydrate metabolism underlying the development of storage roots, which is the transformation of lignin biosynthesis to starch biosynthesis.

  19. Occurrence of maize detritus and a transgenic insecticidal protein (Cry1Ab) within the stream network of an agricultural landscape

    PubMed Central

    Tank, Jennifer L.; Rosi-Marshall, Emma J.; Royer, Todd V.; Whiles, Matt R.; Griffiths, Natalie A.; Frauendorf, Therese C.; Treering, David J.

    2010-01-01

    Widespread planting of maize throughout the agricultural Midwest may result in detritus entering adjacent stream ecosystems, and 63% of the 2009 US maize crop was genetically modified to express insecticidal Cry proteins derived from Bacillus thuringiensis. Six months after harvest, we conducted a synoptic survey of 217 stream sites in Indiana to determine the extent of maize detritus and presence of Cry1Ab protein in the stream network. We found that 86% of stream sites contained maize leaves, cobs, husks, and/or stalks in the active stream channel. We also detected Cry1Ab protein in stream-channel maize at 13% of sites and in the water column at 23% of sites. We found that 82% of stream sites were adjacent to maize fields, and Geographical Information Systems analyses indicated that 100% of sites containing Cry1Ab-positive detritus in the active stream channel had maize planted within 500 m during the previous crop year. Maize detritus likely enters streams throughout the Corn Belt; using US Department of Agriculture land cover data, we estimate that 91% of the 256,446 km of streams/rivers in Iowa, Illinois, and Indiana are located within 500 m of a maize field. Maize detritus is common in low-gradient stream channels in northwestern Indiana, and Cry1Ab proteins persist in maize leaves and can be measured in the water column even 6 mo after harvest. Hence, maize detritus, and associated Cry1Ab proteins, are widely distributed and persistent in the headwater streams of a Corn Belt landscape. PMID:20876106

  20. Occurrence of maize detritus and a transgenic insecticidal protein (Cry1Ab) within the stream network of an agricultural landscape.

    PubMed

    Tank, Jennifer L; Rosi-Marshall, Emma J; Royer, Todd V; Whiles, Matt R; Griffiths, Natalie A; Frauendorf, Therese C; Treering, David J

    2010-10-12

    Widespread planting of maize throughout the agricultural Midwest may result in detritus entering adjacent stream ecosystems, and 63% of the 2009 US maize crop was genetically modified to express insecticidal Cry proteins derived from Bacillus thuringiensis. Six months after harvest, we conducted a synoptic survey of 217 stream sites in Indiana to determine the extent of maize detritus and presence of Cry1Ab protein in the stream network. We found that 86% of stream sites contained maize leaves, cobs, husks, and/or stalks in the active stream channel. We also detected Cry1Ab protein in stream-channel maize at 13% of sites and in the water column at 23% of sites. We found that 82% of stream sites were adjacent to maize fields, and Geographical Information Systems analyses indicated that 100% of sites containing Cry1Ab-positive detritus in the active stream channel had maize planted within 500 m during the previous crop year. Maize detritus likely enters streams throughout the Corn Belt; using US Department of Agriculture land cover data, we estimate that 91% of the 256,446 km of streams/rivers in Iowa, Illinois, and Indiana are located within 500 m of a maize field. Maize detritus is common in low-gradient stream channels in northwestern Indiana, and Cry1Ab proteins persist in maize leaves and can be measured in the water column even 6 mo after harvest. Hence, maize detritus, and associated Cry1Ab proteins, are widely distributed and persistent in the headwater streams of a Corn Belt landscape.

  1. Histone Acetylation is Involved in Gibberellin-Regulated sodCp Gene Expression in Maize Aleurone Layers.

    PubMed

    Hou, Haoli; Wang, Pu; Zhang, Hao; Wen, Huan; Gao, Fei; Ma, Ningjie; Wang, Qing; Li, Lijia

    2015-11-01

    The cereal aleurone layer plays an important role in seed germination, and reactive oxygen species (ROS) in aleurone layers act as crucial signal molecules in this progression. Recent studies have revealed that epigenetic modification is involved in plant development and seed germination. However, little is known about a possible relationship between histone modification and the ROS signaling pathway in cereal aleurone layers during seed germination. Here, we found that the expression of both histone acetyltransferases (HATs) and histone deacetylases (HDACs) was increased gradually during seed germination, accompanied by an increase in global acetylation levels of histones H3 and H4 in maize aleurone layers. The acetylation was found to be promoted by GA(3) and suppressed by ABA. However, when the HDAC inhibitor trichostatin A (TSA) was used, the increased H3K9ac and H4K5ac level correlated with an inhibition of the germination. These results indicated that the overall histone acetylation in the aleurone layers is not required for germination. Similarly these two hormones, GA(3) and ABA, exerted opposed effects on the expression of the ROS-related gene sodCp. Furthermore, chromatin immunoprecipitation experiments showed that the promoter region of the sodCp gene was hyperacetylated during germination, and this acetylation was promoted by GA(3) and inhibited by both ABA and TSA. These results suggested that GA(3)-mediated expression of the sodCp gene in aleurone layers is associated with histone hyperacetylation on the promoter and coding region of this gene, consequently leading to an accumulation of H(2)O(2) which regulated production of α-amylase during seed germination.

  2. Identification, and Functional and Expression Analyses of the CorA/MRS2/MGT-Type Magnesium Transporter Family in Maize.

    PubMed

    Li, Hongyou; Du, Hanmei; Huang, Kaifeng; Chen, Xin; Liu, Tianyu; Gao, Shibin; Liu, Hailan; Tang, Qilin; Rong, Tingzhao; Zhang, Suzhi

    2016-06-01

    Magnesium (Mg(2+)) is an essential macronutrient for plant growth and development, and the CorA/MRS2/MGT-type Mg(2+) transporters play important roles in maintaining Mg(2+) homeostasis in plants. Although the MRS2/MGT genes have been identified in two model plant species, Arabidopsis and rice, a comprehensive analysis of the MRS2/MGT gene family in other plants is lacking. In this work, 12 putative MRS2/MGT genes (ZmMGT1- ZmMGT12) were identified in maize and all of them were classified into five distinct subfamilies by phylogenetic analysis. A complementation assay in the Salmonella typhimurium MM281 strain showed that five representatives of the 12 members possess Mg(2+) transport abilities. Inhibition of ZmMGT protein activity using the hexaamminecobalt (III) (Co-Hex) inhibitor indicated that the ZmMGT protein mediated both low-affinity and high-affinity Mg(2+) transport in maize. A semi-quantitative reverse transcription-PCR (RT-PCR) analysis revealed that eight genes were constitutively expressed in all of the detected tissues, with one being specifically expressed in roots and three having no detectable expression signals. A quantitative RT-PCR analysis showed that some ZmMGT members displayed differential responses to Mg(2+) deficiency and aluminum (Al) stress. Furthermore, root growth inhibition and Mg(2+) accumulation analyses in two maize inbred lines, which conferred different levels of Al tolerance, revealed that ZmMGT proteins contributed to the Al resistance of the Al tolerance genotype. We hypothesize that ZmMGT family members function as Mg(2+) transporters and may play a role in linking Mg(2+) deficiency and Al stress responses. Our results will be valuable in a further analysis of the important biological functions of ZmMGT members in maize. PMID:27084594

  3. Multicellular structures developing during maize microspore culture express endosperm and embryo-specific genes and show different embryogenic potentialities.

    PubMed

    Massonneau, Agnes; Coronado, Maria-José; Audran, Arthur; Bagniewska, Agnieszka; Mòl, Rafal; Testillano, Pilar S; Goralski, Grzegorz; Dumas, Christian; Risueño, Maria-Carmen; Matthys-Rochon, Elisabeth

    2005-07-01

    During maize pollen embryogenesis, a range of multicellular structures are formed. Using different approaches, the "nature" of these structures has been determined in terms of their embryogenic potential. In situ molecular identification techniques for gene transcripts and products, and a novel cell tracking system indicated the presence of embryogenic (embryo-like structures, ELS) and non-embryogenic (callus-like structures, CLS) structures that occurred for short periods within the cultures. Some multicellular structures with a compact appearance generated embryos. RT-PCR and fluorescence in situ hybridization (FISH) with confocal microscopy techniques using specific gene markers of the endosperm (ZmESR2, ZmAE3) and embryo (LTP2 and ZmOCL1, ZmOCL3) revealed "embryo" and "endosperm" potentialities in these various multicellular structures present in the cultures. The results presented here showed distinct and specific patterns of gene expression. Altogether, the results demonstrate the presence of different molecules on both embryonic and non-embryonic structures. Their possible roles are discussed in the context of a parallel between embryo/endosperm interactions in planta and embryonic and non-embryonic structure interrelations under in vitro conditions.

  4. Molecular characterization and expression profile of methionine sulfoxide reductase gene family in maize (Zea mays) under abiotic stresses.

    PubMed

    Zhu, Jiantang; Ding, Pengcheng; Li, Qingqing; Gao, YanKun; Chen, Fanguo; Xia, Guangmin

    2015-05-15

    Methionine (Met) oxidation to methionine sulfoxide (MetSO) is a common form of damage caused by reactive oxygen species (ROS) accumulation via various environmental stresses. Methionine sulfoxide reductase (MSR) repairs oxidized Met and protects organisms from oxidative damage. Two types of MSR, A and B, have been identified based on substrate stereo specificity; they share no sequence similarity. In the present study, we characterized six genes encoding the putative MSR from two public databases. We compared them with MSRs from 6 species, and evaluated molecular characterization, phylogenetic analysis, tertiary structure and conserved motifs. On the basis of in silico and the qRT-PCR experimental data, we analyzed cDNA sequences and expression patterns of ZmMSR genes in different organs in maize. We found that ZmMSR genes were induced by polyethylene glycol (PEG) and NaCl, both known to generate oxidative stress. The results show that MSRs are conserved in different species, suggesting that MSRs across different species share common mechanisms related to diverse defense responses.

  5. Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci

    PubMed Central

    2014-01-01

    Background The identification of QTL involved in heterosis formation is one approach to unravel the not yet fully understood genetic basis of heterosis - the improved agronomic performance of hybrid F1 plants compared to their inbred parents. The identification of candidate genes underlying a QTL is important both for developing markers and determining the molecular genetic basis of a trait, but remains difficult owing to the large number of genes often contained within individual QTL. To address this problem in heterosis analysis, we applied a meta-analysis strategy for grain yield (GY) of Zea mays L. as example, incorporating QTL-, hybrid field-, and parental gene expression data. Results For the identification of genes underlying known heterotic QTL, we made use of tight associations between gene expression pattern and the trait of interest, identified by correlation analyses. Using this approach genes strongly associated with heterosis for GY were discovered to be clustered in pericentromeric regions of the complex maize genome. This suggests that expression differences of sequences in recombination-suppressed regions are important in the establishment of heterosis for GY in F1 hybrids and also in the conservation of heterosis for GY across genotypes. Importantly functional analysis of heterosis-associated genes from these genomic regions revealed over-representation of a number of functional classes, identifying key processes contributing to heterosis for GY. Based on the finding that the majority of the analyzed heterosis-associated genes were addtitively expressed, we propose a model referring to the influence of cis-regulatory variation on heterosis for GY by the compensation of fixed detrimental expression levels in parents. Conclusions The study highlights the utility of a meta-analysis approach that integrates phenotypic and multi-level molecular data to unravel complex traits in plants. It provides prospects for the identification of genes relevant for

  6. Development, Optimization, and Evaluation of a Duplex Droplet Digital PCR Assay To Quantify the T-nos/hmg Copy Number Ratio in Genetically Modified Maize.

    PubMed

    Félix-Urquídez, Dalmira; Pérez-Urquiza, Melina; Valdez Torres, José-Benigno; León-Félix, Josefina; García-Estrada, Raymundo; Acatzi-Silva, Abraham

    2016-01-01

    Certified reference materials (CRMs) are required to guarantee the reliability of analytical measurements. The CRMs available in the field of genetically modified organisms (GMOs) are characterized using real-time polymerase chain reaction (qPCR). This technology has limited application, because of its dependence on a calibrant. The objective of this study was to obtain a method with higher metrological quality, to characterize the CRMs for their contents of T-nos/hmg copy number ratio in maize. A duplex droplet digital PCR (ddPCR) assay was developed and optimized by a central composite design. The developed method achieved an absolute limit of detection (LOD) of 11 cP T-nos, a relative LOD of 0.034%, a limit of quantification (LOQ) of 23 cP (relative LOQ of 0.08%), and a dynamic range of 0.08%-100% T-nos/hmg ratio. The specificity and applicability of the assay were established for the analysis of low T-nos concentrations (0.9%) in several corn varieties. The convenience of DNA digestion to reduce measurement bias in the case of multiple-copy binding was confirmed through an enzymatic restriction assay. Given its overall performance, this method can be used to characterize CRM candidates for their contents of T-nos/hmg ratio. PMID:26605751

  7. Development, Optimization, and Evaluation of a Duplex Droplet Digital PCR Assay To Quantify the T-nos/hmg Copy Number Ratio in Genetically Modified Maize.

    PubMed

    Félix-Urquídez, Dalmira; Pérez-Urquiza, Melina; Valdez Torres, José-Benigno; León-Félix, Josefina; García-Estrada, Raymundo; Acatzi-Silva, Abraham

    2016-01-01

    Certified reference materials (CRMs) are required to guarantee the reliability of analytical measurements. The CRMs available in the field of genetically modified organisms (GMOs) are characterized using real-time polymerase chain reaction (qPCR). This technology has limited application, because of its dependence on a calibrant. The objective of this study was to obtain a method with higher metrological quality, to characterize the CRMs for their contents of T-nos/hmg copy number ratio in maize. A duplex droplet digital PCR (ddPCR) assay was developed and optimized by a central composite design. The developed method achieved an absolute limit of detection (LOD) of 11 cP T-nos, a relative LOD of 0.034%, a limit of quantification (LOQ) of 23 cP (relative LOQ of 0.08%), and a dynamic range of 0.08%-100% T-nos/hmg ratio. The specificity and applicability of the assay were established for the analysis of low T-nos concentrations (0.9%) in several corn varieties. The convenience of DNA digestion to reduce measurement bias in the case of multiple-copy binding was confirmed through an enzymatic restriction assay. Given its overall performance, this method can be used to characterize CRM candidates for their contents of T-nos/hmg ratio.

  8. Use of Mutant-Assisted Gene Identification and Characterization (MAGIC) to identify novel genetic loci that modify the maize hypersensitive response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The partially-dominant, autoactive maize disease resistance gene Rp1-D21 causes hypersensitive response (HR) lesions to form spontaneously on the leaves and stem in the absence of pathogen recognition. The maize nested association mapping (NAM) population consists of 25 200-line subpopulations each...

  9. Comparison of Conventional, Modified Single Seed Descent, and Doubled Haploid Breeding Methods for Maize Inbred Line Development Using GEM Breeding Crosses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding crosses from the Germplasm Enhancement of Maize (GEM) project between exotic accessions and elite Corn Belt Dent inbreds provide a unique opportunity for broadening the genetic base of the United States maize crop by incorporating favorable exotic alleles in elite genetic backgrounds. Genet...

  10. MaizeGDB update: new tools, data and interface for the maize model organism database.

    PubMed

    Andorf, Carson M; Cannon, Ethalinda K; Portwood, John L; Gardiner, Jack M; Harper, Lisa C; Schaeffer, Mary L; Braun, Bremen L; Campbell, Darwin A; Vinnakota, Abhinav G; Sribalusu, Venktanaga V; Huerta, Miranda; Cho, Kyoung Tak; Wimalanathan, Kokulapalan; Richter, Jacqueline D; Mauch, Emily D; Rao, Bhavani S; Birkett, Scott M; Sen, Taner Z; Lawrence-Dill, Carolyn J

    2016-01-01

    MaizeGDB is a highly curated, community-oriented database and informatics service to researchers focused on the crop plant and model organism Zea mays ssp. mays. Although some form of the maize community database has existed over the last 25 years, there have only been two major releases. In 1991, the original maize genetics database MaizeDB was created. In 2003, the combined contents of MaizeDB and the sequence data from ZmDB were made accessible as a single resource named MaizeGDB. Over the next decade, MaizeGDB became more sequence driven while still maintaining traditional maize genetics datasets. This enabled the project to meet the continued growing and evolving needs of the maize research community, yet the interface and underlying infrastructure remained unchanged. In 2015, the MaizeGDB team completed a multi-year effort to update the MaizeGDB resource by reorganizing existing data, upgrading hardware and infrastructure, creating new tools, incorporating new data types (including diversity data, expression data, gene models, and metabolic pathways), and developing and deploying a modern interface. In addition to coordinating a data resource, the MaizeGDB team coordinates activities and provides technical support to the maize research community. MaizeGDB is accessible online at http://www.maizegdb.org.

  11. MaizeGDB update: new tools, data and interface for the maize model organism database.

    PubMed

    Andorf, Carson M; Cannon, Ethalinda K; Portwood, John L; Gardiner, Jack M; Harper, Lisa C; Schaeffer, Mary L; Braun, Bremen L; Campbell, Darwin A; Vinnakota, Abhinav G; Sribalusu, Venktanaga V; Huerta, Miranda; Cho, Kyoung Tak; Wimalanathan, Kokulapalan; Richter, Jacqueline D; Mauch, Emily D; Rao, Bhavani S; Birkett, Scott M; Sen, Taner Z; Lawrence-Dill, Carolyn J

    2016-01-01

    MaizeGDB is a highly curated, community-oriented database and informatics service to researchers focused on the crop plant and model organism Zea mays ssp. mays. Although some form of the maize community database has existed over the last 25 years, there have only been two major releases. In 1991, the original maize genetics database MaizeDB was created. In 2003, the combined contents of MaizeDB and the sequence data from ZmDB were made accessible as a single resource named MaizeGDB. Over the next decade, MaizeGDB became more sequence driven while still maintaining traditional maize genetics datasets. This enabled the project to meet the continued growing and evolving needs of the maize research community, yet the interface and underlying infrastructure remained unchanged. In 2015, the MaizeGDB team completed a multi-year effort to update the MaizeGDB resource by reorganizing existing data, upgrading hardware and infrastructure, creating new tools, incorporating new data types (including diversity data, expression data, gene models, and metabolic pathways), and developing and deploying a modern interface. In addition to coordinating a data resource, the MaizeGDB team coordinates activities and provides technical support to the maize research community. MaizeGDB is accessible online at http://www.maizegdb.org. PMID:26432828

  12. MaizeGDB update: new tools, data and interface for the maize model organism database

    PubMed Central

    Andorf, Carson M.; Cannon, Ethalinda K.; Portwood, John L.; Gardiner, Jack M.; Harper, Lisa C.; Schaeffer, Mary L.; Braun, Bremen L.; Campbell, Darwin A.; Vinnakota, Abhinav G.; Sribalusu, Venktanaga V.; Huerta, Miranda; Cho, Kyoung Tak; Wimalanathan, Kokulapalan; Richter, Jacqueline D.; Mauch, Emily D.; Rao, Bhavani S.; Birkett, Scott M.; Sen, Taner Z.; Lawrence-Dill, Carolyn J.

    2016-01-01

    MaizeGDB is a highly curated, community-oriented database and informatics service to researchers focused on the crop plant and model organism Zea mays ssp. mays. Although some form of the maize community database has existed over the last 25 years, there have only been two major releases. In 1991, the original maize genetics database MaizeDB was created. In 2003, the combined contents of MaizeDB and the sequence data from ZmDB were made accessible as a single resource named MaizeGDB. Over the next decade, MaizeGDB became more sequence driven while still maintaining traditional maize genetics datasets. This enabled the project to meet the continued growing and evolving needs of the maize research community, yet the interface and underlying infrastructure remained unchanged. In 2015, the MaizeGDB team completed a multi-year effort to update the MaizeGDB resource by reorganizing existing data, upgrading hardware and infrastructure, creating new tools, incorporating new data types (including diversity data, expression data, gene models, and metabolic pathways), and developing and deploying a modern interface. In addition to coordinating a data resource, the MaizeGDB team coordinates activities and provides technical support to the maize research community. MaizeGDB is accessible online at http://www.maizegdb.org. PMID:26432828

  13. Identification of differentially expressed genes at two key endosperm development stages using two maize inbreds with large and small grain and integration with detected QTL for grain weight.

    PubMed

    Liu, Y Y; Li, J Z; Li, Y L; Wei, M G; Cui, Q X; Wang, Q L

    2010-08-01

    Maize endosperm accounts for more than 80% of the grain weight. Cell division and grain filling are the two key stages for endosperm development. Previous studies showed that gene expression during differential stages in endosperm development is greatly different. However, information on systematic identification and characterization of the differentially expressed genes between the two stages are limited. In this study, suppression subtractive hybridization (SSH) was used to generate four subtracted cDNA libraries for the two stages using two maize inbreds with large and small grain. Totally, 4,784 differentially expressed sequence tags (ESTs) were sequenced and 902 were non-redundant, which consisted of 344 unique ESTs. Among them 192 had high sequence similarity to the GenBank entries and represent diverse of functional categories, such as metabolism, cell growth/division, transcription, signal transduction, protein destination/storage, protein synthesis and others. The expression patterns of 75.7% SSH-derived cDNAs were confirmed by reverse Northern blot and semi-quantitative reverse transcription polymerase chain reaction, and exhibited the similar results (75.0%). Genes differentially expressed between two key stages for the two inbreds were involved in diverse physiological process pathway, which might be responsible for the formation of grain weight. 43.8% (70 of the 160 unique ESTs) of the identified ESTs were assigned to 39 chromosome bins distributed over all ten maize chromosomes. Eleven ESTs were found to co-localize with previous detected QTLs for grain weight, which might be considered as the candidate genes of grain weight for further study.

  14. Transgenic tobacco expressing a modified spider peptide inhibits the growth of plant pathogens and insect larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene encoding lycotoxin I, an amphipathic pore-forming peptide, was modified to increase oral toxicity to insects. One of the most active modified genes was then constitutively expressed in tobacco (Nicotiana tabacum) and transformants were evaluated for insect and disease resistance. Pathogenic...

  15. Effect of post-silking drought on nitrogen partitioning and gene expression patterns of glutamine synthetase and asparagine synthetase in two maize (Zea mays L.) varieties.

    PubMed

    Li, Yajun; Wang, Meiling; Zhang, Fengxia; Xu, Yadong; Chen, Xiaohong; Qin, Xiaoliang; Wen, Xiaoxia

    2016-05-01

    Glutamine synthetase (GS) and asparagine synthetase (AS) are proposed to have important function in plant nitrogen (N) remobilization, but their roles under drought stress are not well defined. In this study, the expression dynamics of GS and AS genes were analyzed in two maize varieties (ZD958 and NH101) in relation to post-silking drought stress induced nitrogen partitioning. ZD958 was a 'stay-green' variety with 5% nitrogen harvest index (NHI) lower than NH101. From silking to maturity, the amount of nitrogen remobilized from ear-leaves in ZD958 was evidently lower than NH101, and post-silking drought stress increased the nitrogen remobilization for both varieties. In ear-leaves, the expression of ZmGln1-3 was enhanced under drought stress. Three AS genes (ZmAS1, ZmAS2 and ZmAS3) were differentially regulated by post-silking drought treatment, of which the expression of ZmAS3 was stimulated at late stage of leaf senescence. In NH101, the expression level of ZmAS3 was markedly higher than that in ZD958. In developing grains, there were no significant differences in expression patterns of GS and AS genes between well water and drought treated plants. Drought stress altered maize N partitioning at the whole-plant level, and the up-regulation of GS and AS genes may contribute to the higher leaf nitrogen remobilization when exposed to drought treatments. PMID:26913793

  16. Effect of post-silking drought on nitrogen partitioning and gene expression patterns of glutamine synthetase and asparagine synthetase in two maize (Zea mays L.) varieties.

    PubMed

    Li, Yajun; Wang, Meiling; Zhang, Fengxia; Xu, Yadong; Chen, Xiaohong; Qin, Xiaoliang; Wen, Xiaoxia

    2016-05-01

    Glutamine synthetase (GS) and asparagine synthetase (AS) are proposed to have important function in plant nitrogen (N) remobilization, but their roles under drought stress are not well defined. In this study, the expression dynamics of GS and AS genes were analyzed in two maize varieties (ZD958 and NH101) in relation to post-silking drought stress induced nitrogen partitioning. ZD958 was a 'stay-green' variety with 5% nitrogen harvest index (NHI) lower than NH101. From silking to maturity, the amount of nitrogen remobilized from ear-leaves in ZD958 was evidently lower than NH101, and post-silking drought stress increased the nitrogen remobilization for both varieties. In ear-leaves, the expression of ZmGln1-3 was enhanced under drought stress. Three AS genes (ZmAS1, ZmAS2 and ZmAS3) were differentially regulated by post-silking drought treatment, of which the expression of ZmAS3 was stimulated at late stage of leaf senescence. In NH101, the expression level of ZmAS3 was markedly higher than that in ZD958. In developing grains, there were no significant differences in expression patterns of GS and AS genes between well water and drought treated plants. Drought stress altered maize N partitioning at the whole-plant level, and the up-regulation of GS and AS genes may contribute to the higher leaf nitrogen remobilization when exposed to drought treatments.

  17. Changes in endogenous gene transcript and protein levels in maize plants expressing the soybean ferritin transgene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic agricultural crops with increased nutritive value present prospects for contributing to public health. However, their acceptance is poor in many countries due to the perception that genetic modification may cause unintended effects on expression of native genes in the host plant. Here, w...

  18. Characterization of the inaA gene and expression of ice nucleation phenotype in Pantoea ananatis isolates from Maize White Spot disease.

    PubMed

    Miller, A M; Figueiredo, J E F; Linde, G A; Colauto, N B; Paccola-Meirelles, L D

    2016-01-01

    Maize White Spot (MWS), a foliar disease caused by Pantoea ananatis, could cause up to 60% yield loss. Some strains of P. ananatis harboring the ice nucleation gene inaA catalyze the formation of ice nuclei, causing tissue damage at temperatures slightly below freezing. Little is known about the relationship between the presence of the ina gene in this maize pathogen and its expression during the phenomenon of ice nucleus formation. Here, we attempted to verify the presence of the inaA gene and the expression of phenotype in vitro. The identity of the isolates and the presence of the inaA gene were determined by P. ananatis species-specific primers. The expression of the inaA gene was assessed in vitro by the visualization of ice-crystal formation in water at subzero temperatures. A total of ninety P. ananatis isolates from MWS lesions were characterized. The presence of the inaA gene was confirmed by gel electrophoresis of the 350-400-bp PCR products. The inaA primers did not lead to DNA fragment amplification in three isolates. The ice nucleation phenotype was expressed in 83.34% of the isolates carrying the inaA gene. Our study showed that the ice nucleation in P. ananatis isolated from MWS lesions was dependent on the presence of a functional ina gene in the genome. We also found evidence indicating that some P. ananatis strains have a mutated form of the inaA gene, producing a non-functional ice nucleation protein. This is the first report on inaA gene characterization in P. ananatis isolates from Maize White Spot. PMID:26985943

  19. Stable Carbon Isotope Discrimination Is under Genetic Control in the C4 Species Maize with Several Genomic Regions Influencing Trait Expression1[W

    PubMed Central

    Gresset, Sebastian; Westermeier, Peter; Rademacher, Svenja; Ouzunova, Milena; Presterl, Thomas; Westhoff, Peter; Schön, Chris-Carolin

    2014-01-01

    In plants with C4 photosynthesis, physiological mechanisms underlying variation in stable carbon isotope discrimination (Δ13C) are largely unknown, and genetic components influencing Δ13C have not been described. We analyzed a maize (Zea mays) introgression library derived from two elite parents to investigate whether Δ13C is under genetic control in this C4 species. High-density genotyping with the Illumina MaizeSNP50 Bead Chip was used for a detailed structural characterization of 89 introgression lines. Phenotypic analyses were conducted in the field and in the greenhouse for kernel Δ13C as well as plant developmental and photosynthesis-related traits. Highly heritable significant genetic variation for Δ13C was detected under field and greenhouse conditions. For several introgression library lines, Δ13C values consistently differed from the recurrent parent within and across the two phenotyping platforms. Δ13C was significantly associated with 22 out of 164 analyzed genomic regions, indicating a complex genetic architecture of Δ13C. The five genomic regions with the largest effects were located on chromosomes 1, 2, 6, 7, and 9 and explained 55% of the phenotypic variation for Δ13C. Plant development stage had no effect on Δ13C expression, as phenotypic as well as genotypic correlations between Δ13C, flowering time, and plant height were not significant. To our knowledge, this is the first study demonstrating Δ13C to be under polygenic control in the C4 species maize. PMID:24280436

  20. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants

    PubMed Central

    Sénéchal, Fabien; Wattier, Christopher; Rustérucci, Christine; Pelloux, Jérôme

    2014-01-01

    Understanding the changes affecting the plant cell wall is a key element in addressing its functional role in plant growth and in the response to stress. Pectins, which are the main constituents of the primary cell wall in dicot species, play a central role in the control of cellular adhesion and thereby of the rheological properties of the wall. This is likely to be a major determinant of plant growth. How the discrete changes in pectin structure are mediated is thus a key issue in our understanding of plant development and plant responses to changes in the environment. In particular, understanding the remodelling of homogalacturonan (HG), the most abundant pectic polymer, by specific enzymes is a current challenge in addressing its fundamental role. HG, a polymer that can be methylesterified or acetylated, can be modified by HGMEs (HG-modifying enzymes) which all belong to large multigenic families in all species sequenced to date. In particular, both the degrees of substitution (methylesterification and/or acetylation) and polymerization can be controlled by specific enzymes such as pectin methylesterases (PMEs), pectin acetylesterases (PAEs), polygalacturonases (PGs), or pectate lyases-like (PLLs). Major advances in the biochemical and functional characterization of these enzymes have been made over the last 10 years. This review aims to provide a comprehensive, up to date summary of the recent data concerning the structure, regulation, and function of these fascinating enzymes in plant development and in response to biotic stresses. PMID:25056773

  1. Transcriptional Regulation of Zein Gene Expression in Maize through the Additive and Synergistic Action of opaque2, Prolamine-Box Binding Factor, and O2 Heterodimerizing Proteins

    PubMed Central

    Zhang, Zhiyong; Yang, Jun; Wu, Yongrui

    2015-01-01

    Maize (Zea mays) zeins are some of the most abundant cereal seed storage proteins (SSPs). Their abundance influences kernel hardness but compromises its nutritional quality. Transcription factors regulating the expression of zein and other SSP genes in cereals are endosperm-specific and homologs of maize opaque2 (O2) and prolamine-box binding factor (PBF). This study demonstrates that the ubiquitously expressed transcription factors, O2 heterodimerizing proteins (OHPs), specifically regulate 27-kD γ-zein gene expression (through binding to an O2-like box in its promoter) and interact with PBF. The zein content of double mutants OhpRNAi;o2 and PbfRNAi;o2 and the triple mutant PbfRNAi;OhpRNAi;o2 is reduced by 83, 89, and 90%, respectively, compared with the wild type. The triple mutant developed the smallest zein protein bodies, which were merely one-tenth the wild type’s size. Total protein levels in these mutants were maintained in a relatively constant range through proteome rebalancing. These data show that OHPs, O2, and PBF are master regulators of zein storage protein synthesis, acting in an additive and synergistic mode. The differential expression patterns of OHP and O2 genes may cause the slight differences in the timing of 27-kD γ-zein and 22-kD α-zein accumulation during protein body formation. PMID:25901087

  2. Nurr1 expression is modified by inflammation in microglia.

    PubMed

    Lallier, Scott W; Graf, Amanda E; Waidyarante, Gavisha R; Rogers, Lynette K

    2016-10-19

    Advances in neonatal care have allowed premature infants to survive at earlier gestational ages, but they are often afflicted with neurological delays or deficits. Maternal inflammation has been identified as a major risk factor for premature birth and once born, infants often require supplemental oxygen for survival. Nurr1 (NR4A2) is an orphan nuclear receptor with no known binding site and is essential for the growth of midbrain dopamine neurons. Others have reported that Nurr1 can act as an anti-inflammatory transcription factor in microglia and astrocytes and respond lipopolysaccharide (LPS). We have previously reported decreased numbers of oligodendrocytes and increased numbers of microglia in the mice exposed to both maternal inflammation and neonatal hyperoxia in the perinatal period. These studies tested the hypothesis that the combined exposures to inflammation and hyperoxia would increase Nurr1 expression in microglia in our mouse model and in an immortalized microglia cell line, BV2 cells. Our data indicate that Nurr1 protein expression is increased at postnatal day 0 and postnatal day 28 in whole-brain homogenates from mice exposed to LPS and hyperoxia. Alternatively, Nurr1 message is decreased at postnatal day 60 in isolated microglia, indicating that the increases in whole-brain homogenates may be due to other cell types. In BV2 cells, Nurr1 message in increased by exposure to hyperoxia, but this increase is attenuated in cells exposed to both LPS and hyperoxia. Although Nurr1 regulation is not straightforward, these data indicate that Nurr1 expression is increased in whole-brain homogenates in response to inflammation, but is decreased in isolated primary microglia and BV2 cells in response to similar inflammation. Our data support the hypothesis that Nurr1 expression may play a significant role in regulating inflammation in the brain and understanding the complex regulation of Nurr1 could lead to new therapeutic strategies. PMID:27532877

  3. Nurr1 expression is modified by inflammation in microglia

    PubMed Central

    Lallier, Scott W.; Graf, Amanda E.; Waidyarante, Gavisha R.

    2016-01-01

    Advances in neonatal care have allowed premature infants to survive at earlier gestational ages, but they are often afflicted with neurological delays or deficits. Maternal inflammation has been identified as a major risk factor for premature birth and once born, infants often require supplemental oxygen for survival. Nurr1 (NR4A2) is an orphan nuclear receptor with no known binding site and is essential for the growth of midbrain dopamine neurons. Others have reported that Nurr1 can act as an anti-inflammatory transcription factor in microglia and astrocytes and respond lipopolysaccharide (LPS). We have previously reported decreased numbers of oligodendrocytes and increased numbers of microglia in the mice exposed to both maternal inflammation and neonatal hyperoxia in the perinatal period. These studies tested the hypothesis that the combined exposures to inflammation and hyperoxia would increase Nurr1 expression in microglia in our mouse model and in an immortalized microglia cell line, BV2 cells. Our data indicate that Nurr1 protein expression is increased at postnatal day 0 and postnatal day 28 in whole-brain homogenates from mice exposed to LPS and hyperoxia. Alternatively, Nurr1 message is decreased at postnatal day 60 in isolated microglia, indicating that the increases in whole-brain homogenates may be due to other cell types. In BV2 cells, Nurr1 message in increased by exposure to hyperoxia, but this increase is attenuated in cells exposed to both LPS and hyperoxia. Although Nurr1 regulation is not straightforward, these data indicate that Nurr1 expression is increased in whole-brain homogenates in response to inflammation, but is decreased in isolated primary microglia and BV2 cells in response to similar inflammation. Our data support the hypothesis that Nurr1 expression may play a significant role in regulating inflammation in the brain and understanding the complex regulation of Nurr1 could lead to new therapeutic strategies. PMID:27532877

  4. A modified consumer inkjet for spatiotemporal control of gene expression.

    PubMed

    Cohen, Daniel J; Morfino, Roberto C; Maharbiz, Michel M

    2009-01-01

    This paper presents a low-cost inkjet dosing system capable of continuous, two-dimensional spatiotemporal regulation of gene expression via delivery of diffusible regulators to a custom-mounted gel culture of E. coli. A consumer-grade, inkjet printer was adapted for chemical printing; E. coli cultures were grown on 750 microm thick agar embedded in micro-wells machined into commercial compact discs. Spatio-temporal regulation of the lac operon was demonstrated via the printing of patterns of lactose and glucose directly into the cultures; X-Gal blue patterns were used for visual feedback. We demonstrate how the bistable nature of the lac operon's feedback, when perturbed by patterning lactose (inducer) and glucose (inhibitor), can lead to coordination of cell expression patterns across a field in ways that mimic motifs seen in developmental biology. Examples of this include sharp boundaries and the generation of traveling waves of mRNA expression. To our knowledge, this is the first demonstration of reaction-diffusion effects in the well-studied lac operon. A finite element reaction-diffusion model of the lac operon is also presented which predicts pattern formation with good fidelity. PMID:19763256

  5. A modified consumer inkjet for spatiotemporal control of gene expression.

    PubMed

    Cohen, Daniel J; Morfino, Roberto C; Maharbiz, Michel M

    2009-09-18

    This paper presents a low-cost inkjet dosing system capable of continuous, two-dimensional spatiotemporal regulation of gene expression via delivery of diffusible regulators to a custom-mounted gel culture of E. coli. A consumer-grade, inkjet printer was adapted for chemical printing; E. coli cultures were grown on 750 microm thick agar embedded in micro-wells machined into commercial compact discs. Spatio-temporal regulation of the lac operon was demonstrated via the printing of patterns of lactose and glucose directly into the cultures; X-Gal blue patterns were used for visual feedback. We demonstrate how the bistable nature of the lac operon's feedback, when perturbed by patterning lactose (inducer) and glucose (inhibitor), can lead to coordination of cell expression patterns across a field in ways that mimic motifs seen in developmental biology. Examples of this include sharp boundaries and the generation of traveling waves of mRNA expression. To our knowledge, this is the first demonstration of reaction-diffusion effects in the well-studied lac operon. A finite element reaction-diffusion model of the lac operon is also presented which predicts pattern formation with good fidelity.

  6. Characterization of New Maize Genes Putatively Involved in Cytokinin Metabolism and Their Expression during Osmotic Stress in Relation to Cytokinin Levels1[W

    PubMed Central

    Vyroubalová, Šárka; Václavíková, Kateřina; Turečková, Veronika; Novák, Ondřej; Šmehilová, Mária; Hluska, Tomáš; Ohnoutková, Ludmila; Frébort, Ivo; Galuszka, Petr

    2009-01-01

    Plant hormones, cytokinins (CKs), have been for a long time considered to be involved in plant responses to stress. However, their exact roles in processes linked to stress signalization and acclimatization to adverse environmental conditions are unknown. In this study, expression profiles of the entire gene families of CK biosynthetic and degradation genes in maize (Zea mays) during development and stress responses are described. Transcript abundance of particular genes is discussed in relation to the levels of different CK metabolites. Salt and osmotic stresses induce expression of some CK biosynthetic genes in seedlings of maize, leading to a moderate increase of active forms of CKs lasting several days during acclimatization to stress. A direct effect of CKs to mediate activation of stress responses does not seem to be possible due to the slow changes in metabolite levels. However, expression of genes involved in cytokinin signal transduction is uniformly down-regulated within 0.5 h of stress induction by an unknown mechanism. cis-Zeatin and its derivatives were found to be the most abundant CKs in young maize seedlings. We demonstrate that levels of this zeatin isomer are significantly enhanced during early stress response and that it originates independently from de novo biosynthesis in stressed tissues, possibly by elevated specific RNA degradation. By enhancing their CK levels, plants could perhaps undergo a reduction of growth rates maintained by abscisic acid accumulation in stressed tissues. A second role for cytokinin receptors in sensing turgor response is hypothesized besides their documented function in CK signaling. PMID:19641027

  7. An efficient virus-induced gene silencing vector for maize functional genomics research.

    PubMed

    Wang, Rong; Yang, Xinxin; Wang, Nian; Liu, Xuedong; Nelson, Richard S; Li, Weimin; Fan, Zaifeng; Zhou, Tao

    2016-04-01

    Maize is a major crop whose rich genetic diversity provides an advanced resource for genetic research. However, a tool for rapid transient gene function analysis in maize that may be utilized in most maize cultivars has been lacking, resulting in reliance on time-consuming stable transformation and mutation studies to obtain answers. We developed an efficient virus-induced gene silencing (VIGS) vector for maize based on a naturally maize-infecting cucumber mosaic virus (CMV) strain, ZMBJ-CMV. An infectious clone of ZMBJ-CMV was constructed, and a vascular puncture inoculation method utilizing Agrobacterium was optimized to improve its utility for CMV infection of maize. ZMBJ-CMV was then modified to function as a VIGS vector. The ZMBJ-CMV vector induced mild to moderate symptoms in many maize lines, making it useful for gene function studies in critically important maize cultivars, such as the sequenced reference inbred line B73. Using this CMV VIGS system, expression of two endogenous genes, ZmPDS and ZmIspH, was found to be decreased by 75% and 78%, respectively, compared with non-silenced tissue. Inserts with lengths of 100-300 bp produced the most complete transcriptional and visual silencing phenotypes. Moreover, genes related to autophagy, ZmATG3 and ZmATG8a, were also silenced, and it was found that they function in leaf starch degradation. These results indicate that our ZMBJ-CMV VIGS vector provides a tool for rapid and efficient gene function studies in maize. PMID:26921244

  8. New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity.

    PubMed

    Séralini, Gilles-Eric; Cellier, Dominique; de Vendomois, Joël Spiroux

    2007-05-01

    Health risk assessment of genetically modified organisms (GMOs) cultivated for food or feed is under debate throughout the world, and very little data have been published on mid- or long-term toxicological studies with mammals. One of these studies performed under the responsibility of Monsanto Company with a transgenic corn MON863 has been subjected to questions from regulatory reviewers in Europe, where it was finally approved in 2005. This necessitated a new assessment of kidney pathological findings, and the results remained controversial. An Appeal Court action in Germany (Münster) allowed public access in June 2005 to all the crude data from this 90-day rat-feeding study. We independently re-analyzed these data. Appropriate statistics were added, such as a multivariate analysis of the growth curves, and for biochemical parameters comparisons between GMO-treated rats and the controls fed with an equivalent normal diet, and separately with six reference diets with different compositions. We observed that after the consumption of MON863, rats showed slight but dose-related significant variations in growth for both sexes, resulting in 3.3% decrease in weight for males and 3.7% increase for females. Chemistry measurements reveal signs of hepatorenal toxicity, marked also by differential sensitivities in males and females. Triglycerides increased by 24-40% in females (either at week 14, dose 11% or at week 5, dose 33%, respectively); urine phosphorus and sodium excretions diminished in males by 31-35% (week 14, dose 33%) for the most important results significantly linked to the treatment in comparison to seven diets tested. Longer experiments are essential in order to indicate the real nature and extent of the possible pathology; with the present data it cannot be concluded that GM corn MON863 is a safe product. PMID:17356802

  9. New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity.

    PubMed

    Séralini, Gilles-Eric; Cellier, Dominique; de Vendomois, Joël Spiroux

    2007-05-01

    Health risk assessment of genetically modified organisms (GMOs) cultivated for food or feed is under debate throughout the world, and very little data have been published on mid- or long-term toxicological studies with mammals. One of these studies performed under the responsibility of Monsanto Company with a transgenic corn MON863 has been subjected to questions from regulatory reviewers in Europe, where it was finally approved in 2005. This necessitated a new assessment of kidney pathological findings, and the results remained controversial. An Appeal Court action in Germany (Münster) allowed public access in June 2005 to all the crude data from this 90-day rat-feeding study. We independently re-analyzed these data. Appropriate statistics were added, such as a multivariate analysis of the growth curves, and for biochemical parameters comparisons between GMO-treated rats and the controls fed with an equivalent normal diet, and separately with six reference diets with different compositions. We observed that after the consumption of MON863, rats showed slight but dose-related significant variations in growth for both sexes, resulting in 3.3% decrease in weight for males and 3.7% increase for females. Chemistry measurements reveal signs of hepatorenal toxicity, marked also by differential sensitivities in males and females. Triglycerides increased by 24-40% in females (either at week 14, dose 11% or at week 5, dose 33%, respectively); urine phosphorus and sodium excretions diminished in males by 31-35% (week 14, dose 33%) for the most important results significantly linked to the treatment in comparison to seven diets tested. Longer experiments are essential in order to indicate the real nature and extent of the possible pathology; with the present data it cannot be concluded that GM corn MON863 is a safe product.

  10. Dynamic expression of chromatin modifiers during developmental transitions in mouse preimplantation embryos

    PubMed Central

    Nestorov, Peter; Hotz, Hans-Rudolf; Liu, Zichuan; Peters, Antoine H.F.M.

    2015-01-01

    During mouse preimplantation development, major changes in cell fate are accompanied by extensive alterations of gene expression programs. Embryos first transition from a maternal to zygotic program and subsequently specify the pluripotent and the trophectodermal cell lineages. These processes are regulated by key transcription factors, likely in cooperation with chromatin modifiers that control histone and DNA methylation. To characterize the spatiotemporal expression of chromatin modifiers in relation to developmental transitions, we performed gene expression profiling of 156 genes in individual oocytes and single blastomeres of developing mouse embryos until the blastocyst stage. More than half of the chromatin modifiers displayed either maternal or zygotic expression. We also detected lineage-specific expression of several modifiers, including Ezh1, Prdm14, Scmh1 and Tet1 underscoring possible roles in cell fate decisions. Members of the SET-domain containing SMYD family showed differential gene expression during preimplantation development. We further observed co-expression of genes with opposing biochemical activities, such as histone methyltransferases and demethylases, suggesting the existence of a dynamic chromatin steady-state during preimplantation development. PMID:26403153

  11. Biofilm modifies expression of ribonucleotide reductase genes in Escherichia coli.

    PubMed

    Cendra, Maria del Mar; Juárez, Antonio; Torrents, Eduard

    2012-01-01

    Ribonucleotide reductase (RNR) is an essential enzyme for all living organisms since is the responsible for the last step in the synthesis of the four deoxyribonucleotides (dNTPs) necessary for DNA replication and repair. In this work, we have investigated the expression of the three-RNR classes (Ia, Ib and III) during Escherichia coli biofilm formation. We show the temporal and spatial importance of class Ib and III RNRs during this process in two different E. coli wild-type strains, the commensal MG1655 and the enteropathogenic and virulent E2348/69, the prototype for the enteropathogenic E. coli (EPEC). We have established that class Ib RNR, so far considered cryptic, play and important role during biofilm formation. The implication of this RNR class under the specific growth conditions of biofilm formation is discussed. PMID:23050019

  12. Constitutive expression of fluorescent protein by Aspergillus var. niger and Aspergillus carbonarius to monitor fungal colonization in maize plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus niger and A. carbonarius are two species in the Aspergillus section Nigri (black-spored aspergilli) frequently associated with peanut (Arachis hypogea), maize (Zea mays), and other plants as pathogens. These infections are symptomless and as such are major concerns since some black aspe...

  13. Transcriptomic analyses indicate that maize ligule development recapitulates gene expression patterns that occur during lateral organ initiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of multicellular organisms proceeds via the correct interpretation of positional information to establish boundaries that separate developmental fields with distinct identities. The maize (Zea mays) leaf is an ideal system to study plant morphogenesis as it is subdivided into a proximal ...

  14. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize

    SciTech Connect

    Zabala, G.; Gabay-Laughnan, S.; Laughnan, J.R.

    1997-10-01

    The mitochondrial genomes of maize plants exhibiting S-type cytoplasmic male sterility (cms-S) contain a repeated DNA region designated R. This region was found to be rearranged in the mitochondria of all cms-S cytoplasmically revertant fertile plants in all nuclear backgrounds analyzed. A 1.6-kb mRNA transcribed from the R region in mitochondria of sterile plants was absent from all cytoplasmic revertants examined. The nuclear gene Rf3, which suppresses the cms-S phenotype, was found to have a specific effect on the expression of the R sequence; the abundance of the major R transcripts, including the cms-S-specific 1.6-kb mRNA, is decreased in mitochrondria of restored plants. Nucleotide sequence analysis of R has revealed similarities to the R1 plasmid found in some South American maize races with RU cytoplasm, the the M1 plasmid found in one source of Zea luxurians teosinte, to the atp9 mitochondrial gene and its 3{prime} flanking sequence, and also to a region 3{prime} to the orf221 gene. The derived amino acid sequence of the R region predicts two open reading frames (ORFs). These ORFs contain the similarities to R1, M1, atp9 and orf221. The present report reveals the chimeric nature of the R region, describes the complex effect of Rf3 on the expression of the R sequence and implicates R in the sterile phenotype of cms-S maize. 66 refs., 10 figs., 1 tab.

  15. Universal primer-multiplex-polymerase chain reaction (UP-M-PCR) and capillary electrophoresis-laser-induced fluorescence analysis for the simultaneous detection of six genetically modified maize lines.

    PubMed

    Zhang, Chunjiao; Xu, Wentao; Zhai, Zhifang; Luo, Yunbo; Yan, Xinghua; Zhang, Nan; Huang, Kunlun

    2011-05-25

    To meet the labeling and traceability requirement of genetically modified (GM) maize and their products for trade and regulation, it is essential to develop a specific detection method for monitoring the presence of GM content. In this work, six GM maize lines, including GA21, Bt11, NK603, Bt176, Mir604, and Mon810, were simultaneously detected by universal primer-multiplex-polymerase chain reaction (UP-M-PCR), and the amplicons for the six event-specific genes as well as the endogenous Ivr gene were successfully separated by the method of capillary electrophoresis-laser-induced fluorescence (CE-LIF). The UP-M-PCR method overcame the disadvantages in conventional M-PCR, such as complex manipulation, lower sensitivity, amplification disparity resulting from different primers, etc., and in combination with CE-LIF, it obtained a high sensitivity of 0.1 ng for both single and mixed DNA samples. The established method can be widely used for the qualitative identification of the GM maize lines.

  16. Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection

    PubMed Central

    Campo, Sonia; Peris-Peris, Cristina; Montesinos, Laura; Peñas, Gisela; Messeguer, Joaquima; San Segundo, Blanca

    2012-01-01

    14-3-3 proteins are found in all eukaryotes where they act as regulators of diverse signalling pathways associated with a wide range of biological processes. In this study the functional characterization of the ZmGF14-6 gene encoding a maize 14-3-3 protein is reported. Gene expression analyses indicated that ZmGF14-6 is up-regulated by fungal infection and salt treatment in maize plants, whereas its expression is down-regulated by drought stress. It is reported that rice plants constitutively expressing ZmGF14-6 displayed enhanced tolerance to drought stress which was accompanied by a stronger induction of drought-associated rice genes. However, rice plants expressing ZmGF14-6 either in a constitutive or under a pathogen-inducible regime showed a higher susceptibility to infection by the fungal pathogens Fusarium verticillioides and Magnaporthe oryzae. Under infection conditions, a lower intensity in the expression of defence-related genes occurred in ZmGF14-6 rice plants. These findings support that ZmGF14-6 positively regulates drought tolerance in transgenic rice while negatively modulating the plant defence response to pathogen infection. Transient expression assays of fluorescently labelled ZmGF14-6 protein in onion epidermal cells revealed a widespread distribution of ZmGF14-6 in the cytoplasm and nucleus. Additionally, colocalization experiments of fluorescently labelled ZmGF14-6 with organelle markers, in combination with cell labelling with the endocytic tracer FM4-64, revealed a subcellular localization of ZmGF14-6 in the early endosomes. Taken together, these results improve our understanding of the role of ZmGF14-6 in stress signalling pathways, while indicating that ZmGF14-6 inversely regulates the plant response to biotic and abiotic stresses. PMID:22016430

  17. Functional expression of miraculin, a taste-modifying protein in Escherichia coli.

    PubMed

    Matsuyama, Tomomi; Satoh, Makiko; Nakata, Rieko; Aoyama, Takashi; Inoue, Hiroyasu

    2009-04-01

    Miraculin isolated from red berries of Richadella dulcifica, a native shrub of West Africa, has the unusual property of modifying a sour taste into a sweet one. This homodimer protein consists of two glycosylated polypeptides that are cross-linked by a disulfide bond. Recently, functional expression of miraculin was reported in host cells with the ability to glycosylate proteins, such as lettuce, tomato and the microbe Aspergillus oryzae, but not Escherichia coli. Thus, a question remains as to whether glycosylation of miraculin is essential for its taste-modifying properties. Here we show that recombinant miraculin expressed in E. coli has taste-modifying properties as a homodimer, not as a monomer, indicating that glycosylation is not essential for the taste-modifying property. PMID:19122203

  18. Functional expression of the taste-modifying protein, miraculin, in transgenic lettuce.

    PubMed

    Sun, Hyeon-Jin; Cui, Min-Long; Ma, Biao; Ezura, Hiroshi

    2006-01-23

    Taste-modifying proteins are a natural alternative to artificial sweeteners and flavor enhancers and have been used in some cultures for centuries. The taste-modifying protein, miraculin, has the unusual property of being able to modify a sour taste into a sweet taste. Here, we report the use of a plant expression system for the production of miraculin. A synthetic gene encoding miraculin was placed under the control of constitutive promoters and transferred to lettuce. Expression of this gene in transgenic lettuce resulted in the accumulation of significant amounts of miraculin protein in the leaves. The miraculin expressed in transgenic lettuce possessed sweetness-inducing activity. These results demonstrate that the production of miraculin in edible plants can be a good alternative strategy to enhance the availability of this protein. PMID:16406368

  19. Establishment of cereal endosperm expression domains: identification and properties of a maize transfer cell-specific transcription factor, ZmMRP-1.

    PubMed

    Gómez, Elisa; Royo, Joaquín; Guo, Yan; Thompson, Richard; Hueros, Gregorio

    2002-03-01

    In maize, cells at the base of the endosperm are transformed into transfer cells that facilitate nutrient uptake by the developing seed. ZmMRP-1 is the first transfer cell-specific transcriptional activator to be identified. The protein it encodes contains nuclear localization signals and a MYB-related DNA binding domain. A single gene copy is present in maize, mapping to a locus on chromosome 8. ZmMRP-1 is first expressed soon after fertilization, when the endosperm is still a multinuclear coenocyte. The transcript accumulates in the basal nucleocytoplasmic domain that gives rise to transfer cells after cellularization. The transcript can be detected throughout transfer cell development, but it is not found in mature cells. ZmMRP-1 strongly transactivates the promoters of two unrelated transfer cell-specific genes. The properties of ZmMRP-1 are consistent with it being a determinant of transfer cell-specific expression. Possible roles for ZmMRP-1 in the regulation of endosperm and transfer cell differentiation are discussed.

  20. Comparison of drought stress response and gene expression between a GM maize variety and a near-isogenic non-GM variety.

    PubMed

    Gullì, Mariolina; Salvatori, Elisabetta; Fusaro, Lina; Pellacani, Claudia; Manes, Fausto; Marmiroli, Nelson

    2015-01-01

    Maize MON810, grown and commercialised worldwide, is the only cultivated GM event in the EU. Maize MON810, variety DKC6575, and the corresponding near-isogenic line Tietar were studied in different growth conditions, to compare their behaviour in response to drought. Main photosynthetic parameters were significantly affected by drought stress in both GM and non-GM varieties to a similar extent. Though DKC6575 (GM) had a greater sensitivity in the early phase of stress response as compared with Tietar (non-GM), after six days of stress they behaved similarly, and both varieties recovered from stress damage. Profiling gene expression in water deficit regimes and in a generalised drought stress condition showed an up-regulation of many stress-responsive genes, but a greater number of differentially expressed genes was observed in Tietar, with genes belonging to transcription factor families and genes encoding heat shock proteins, late embryogenesis abundant proteins and detoxification enzymes. Since induction of these genes have been indicated from the literature as typical of stress responses, their activation in Tietar rather than in DKC6575 may be reminiscent of a more efficient response to drought. DKC6575 was also analysed for the expression of the transgene CryIAb (encoding the delta-endotoxin insecticidal protein) in water deficit conditions. In all the experiments, the CryIAb transcript was not influenced by drought stress, but was expressed at a constant level. This suggests that though possessing a different pattern of sensitivity to stress, the GM variety maintains the same expression level for the transgene. PMID:25692547

  1. Comparison of Drought Stress Response and Gene Expression between a GM Maize Variety and a Near-Isogenic Non-GM Variety

    PubMed Central

    Gullì, Mariolina; Salvatori, Elisabetta; Fusaro, Lina; Pellacani, Claudia; Manes, Fausto; Marmiroli, Nelson

    2015-01-01

    Maize MON810, grown and commercialised worldwide, is the only cultivated GM event in the EU. Maize MON810, variety DKC6575, and the corresponding near-isogenic line Tietar were studied in different growth conditions, to compare their behaviour in response to drought. Main photosynthetic parameters were significantly affected by drought stress in both GM and non-GM varieties to a similar extent. Though DKC6575 (GM) had a greater sensitivity in the early phase of stress response as compared with Tietar (non-GM), after six days of stress they behaved similarly, and both varieties recovered from stress damage. Profiling gene expression in water deficit regimes and in a generalised drought stress condition showed an up-regulation of many stress-responsive genes, but a greater number of differentially expressed genes was observed in Tietar, with genes belonging to transcription factor families and genes encoding heat shock proteins, late embryogenesis abundant proteins and detoxification enzymes. Since induction of these genes have been indicated from the literature as typical of stress responses, their activation in Tietar rather than in DKC6575 may be reminiscent of a more efficient response to drought. DKC6575 was also analysed for the expression of the transgene CryIAb (encoding the delta-endotoxin insecticidal protein) in water deficit conditions. In all the experiments, the CryIAb transcript was not influenced by drought stress, but was expressed at a constant level. This suggests that though possessing a different pattern of sensitivity to stress, the GM variety maintains the same expression level for the transgene. PMID:25692547

  2. Quantitation of 35S promoter in maize DNA extracts from genetically modified organisms using real-time polymerase chain reaction, part 2: interlaboratory study.

    PubMed

    Feinberg, Max; Fernandez, Sophie; Cassard, Sylvanie; Bertheau, Yves

    2005-01-01

    The European Committee for Standardization (CEN) and the European Network of GMO Working Laboratories have proposed development of a modular strategy for stepwise validation of complex analytical techniques. When applied to the quantitation of genetically modified organisms (GMOs) in food products, the instrumental quantitation step of the technique is separately validated from the DNA extraction step to better control the sources of uncertainty and facilitate the validation of GMO-specific polymerase chain reaction (PCR) tests. This paper presents the results of an interlaboratory study on the quantitation step of the method standardized by CEN for the detection of a regulatory element commonly inserted in GMO maize-based foods. This is focused on the quantitation of P35S promoter through using the quantitative real-time PCR (QRT-PCR). Fifteen French laboratories participated in the interlaboratory study of the P35S quantitation operating procedure on DNA extract samples using either the thermal cycler ABI Prism 7700 (Applied Biosystems, Foster City, CA) or Light Cycler (Roche Diagnostics, Indianapolis, IN). Attention was focused on DNA extract samples used to calibrate the method and unknown extract samples. Data were processed according to the recommendations of ISO 5725 standard. Performance criteria, obtained using the robust algorithm, were compared to the classic data processing after rejection of outliers by the Cochran and Grubbs tests. Two laboratories were detected as outliers by the Grubbs test. The robust precision criteria gave values between the classical values estimated before and after rejection of the outliers. Using the robust method, the relative expanded uncertainty by the quantitation method is about 20% for a 1% Bt176 content, whereas it can reach 40% for a 0.1% Bt176. The performances of the quantitation assay are relevant to the application of the European regulation, which has an accepted tolerance interval of about +/-50%. These data

  3. Effects of an active immunization on the immune response of laying Japanese quail (Coturnix coturnix japonica) fed with or without genetically modified Bacillus thuringiensis-maize.

    PubMed

    Scholtz, N D; Halle, I; Dänicke, S; Hartmann, G; Zur, B; Sauerwein, H

    2010-06-01

    Potentially adverse effects of diets containing transgenic plants are a concern for many consumers, particularly in Europe. For Bacillus thuringiensis-maize, several studies in livestock and poultry showed that the zootechnical data provide no indication for such adverse effects. These studies were all done in homeostatic situations; it remained open whether a deflection of the regulatory physiological systems might yield divergent dynamic responses in B. thuringiensis-maize-fed animals. We therefore tested the effect of an active immunization using BSA as antigen in a feeding regimen with or without B. thuringiensis-maize using quail as a model organism. Newly hatched Japanese quail were randomly allocated to 2 groups (n=120 per group) fed with diets containing either B. thuringiensis-maize or isogenic maize of the same cultivar. The diets did not differ in concentrations of the mycotoxins deoxynivalenol and zearalenone, which were both far below guidance values. After 16 wk on the experimental diets, one-half of each group was immunized against BSA. The remaining birds were injected with saline. Thirty-six hours after the injection, half of the BSA-injected subgroup (n=30) and half of the saline subgroup (n=30) from B. thuringiensis-maize- and isogenic-fed birds were killed and blood samples were collected and analyzed for serum zinc levels, indicative for acute phase response. For determining IgY-mediated immune responses, eggs were collected every other week for 6 wk after the injections from the remaining birds and total IgY concentrations and BSA-specific IgY titers were measured in egg yolk. The BSA injections did not elicit significant decreases of serum zinc concentrations. The serum zinc levels were significantly higher in B. thuringiensis-maize-fed quail. Expectedly, total IgY as well as BSA-specific IgY titers increased with time in the BSA-immunized quail. The response of both variables to the BSA injection did not differ between the feeding groups

  4. Increased levels of reactive oxygen species and expression of a cytoplasmic aconitase/iron regulatory protein 1 homolog during the early response of maize pulvini to gravistimulation.

    PubMed

    Clore, A M; Doore, S M; Tinnirello, S M N

    2008-01-01

    The maize (Zea mays L.) stem pulvinus is a disc of tissue located apical to each node that functions to return a tipped stem to a more upright position via increased cell elongation on its lower side. We investigated the possibility that reactive oxygen species (ROS) and hydrogen peroxide (H2O2), in particular, are involved in the gravitropic response of the pulvinus prior to initiation of the growth response by employing the cytochemical stain 3,3'-diaminobenzidine (DAB). DAB polymers were found in the bundle sheath cells of gravistimulated pulvini in association with amyloplasts after 1 min of gravistimulation, and the signal spread throughout the cytosol of these cells by 30 min. Furthermore, treatment of maize stem explants containing pulvini with 1 mm H2O2 on their upper sides caused reversal of bending polarity. Similar, though less dramatic, results were obtained via application of 1 mm ascorbic acid to the lower side of the explants. In addition, we determined that a maize cytoplasmic aconitase/iron regulatory protein 1 (IRP1) homolog is up-regulated in the pulvinus bundle sheath cells after gravistimulation using suppressive subtractive hybridization PCR (SSH PCR), real-time RT-PCR and in situ hybridization. Although we do not yet know the role of the IRP1 homolog in the pulvinus, the protein is known to be a redox sensor in other systems. Collectively, our results point to an increase in ROS quite early in the gravitropic signalling pathway and its possible role in determining the direction of bending of the pulvini. We speculate that an ROS burst may serve to link the physical phenomenon of amyloplast sedimentation to the changes in cellular biochemistry and gene expression that facilitate directional growth. PMID:18004982

  5. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize.

    PubMed

    Shen, Bo; Allen, William B; Zheng, Peizhong; Li, Changjiang; Glassman, Kimberly; Ranch, Jerry; Nubel, Douglas; Tarczynski, Mitchell C

    2010-07-01

    Increasing seed oil production is a major goal for global agriculture to meet the strong demand for oil consumption by humans and for biodiesel production. Previous studies to increase oil synthesis in plants have focused mainly on manipulation of oil pathway genes. As an alternative to single-enzyme approaches, transcription factors provide an attractive solution for altering complex traits, with the caveat that transcription factors may face the challenge of undesirable pleiotropic effects. Here, we report that overexpression of maize (Zea mays) LEAFY COTYLEDON1 (ZmLEC1) increases seed oil by as much as 48% but reduces seed germination and leaf growth in maize. To uncouple oil increase from the undesirable agronomic traits, we identified a LEC1 downstream transcription factor, maize WRINKLED1 (ZmWRI1). Overexpression of ZmWRI1 results in an oil increase similar to overexpression of ZmLEC1 without affecting germination, seedling growth, or grain yield. These results emphasize the importance of field testing for developing a commercial high-oil product and highlight ZmWRI1 as a promising target for increasing oil production in crops.

  6. Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine.

    PubMed

    Ewen, S W; Pusztai, A

    1999-10-16

    Diets containing genetically modified (GM) potatoes expressing the lectin Galanthus nivalis agglutinin (GNA) had variable effects on different parts of the rat gastrointestinal tract. Some effects, such as the proliferation of the gastric mucosa, were mainly due to the expression of the GNA transgene. However, other parts of the construct or the genetic transformation (or both) could also have contributed to the overall biological effects of the GNA-GM potatoes, particularly on the small intestine and caecum.

  7. Induced resistance responses in maize.

    PubMed

    Morris, S W; Vernooij, B; Titatarn, S; Starrett, M; Thomas, S; Wiltse, C C; Frederiksen, R A; Bhandhufalck, A; Hulbert, S; Uknes, S

    1998-07-01

    Systemic acquired resistance (SAR) is a widely distributed plant defense system that confers broad-spectrum disease resistance and is accompanied by coordinate expression of the so-called SAR genes. This type of resistance and SAR gene expression can be mimicked with chemical inducers of resistance. Here, we report that chemical inducers of resistance are active in maize. Chemical induction increases resistance to downy mildew and activates expression of the maize PR-1 and PR-5 genes. These genes are also coordinately activated by pathogen infection and function as indicators of the defense reaction. Specifically, after pathogen infection, the PR-1 and PR-5 genes are induced more rapidly and more strongly in an incompatible than in a compatible interaction. In addition, we show that monocot lesion mimic plants also express these defense-related genes and that they have increased levels of salicylic acid after lesions develop, similar to pathogeninfected maize plants. The existence of chemically inducible disease resistance and PR-1 and PR-5 gene expression in maize indicates that maize is similar to dicots in many aspects of induced resistance. This reinforces the notion of an ancient plant-inducible defense pathway against pathogen attack that is shared between monocots and dicots.

  8. Development of multiplex PCR method for simultaneous detection of four events of genetically modified maize: DAS-59122-7, MIR604, MON863 and MON88017.

    PubMed

    Oguchi, Taichi; Onishi, Mari; Mano, Junichi; Akiyama, Hiroshi; Teshima, Reiko; Futo, Satoshi; Furui, Satoshi; Kitta, Kazumi

    2010-01-01

    A novel multiplex PCR method was developed for simultaneous event-specific detection of four events of GM maize, i.e., DAS-59122-7, MIR604, MON88017, and MON863. The single laboratory examination of analytical performance using simulated DNA mixtures containing GM DNA at various concentrations in non-GM DNA suggested that the limits of detection (LOD) of the multiplex PCR method were 0.16% for MON863, MIR604, and MON88017, and 0.078% for DAS-59122-7. We previously developed a nonaplex (9plex) PCR method for eight events of GM maize, i.e., Bt11, Bt176, GA21, MON810, MON863, NK603, T25, and TC1507. Together with the nonaplex PCR method, the newly developed method enabled the detection and identification of eleven GM maize events that are frequently included in commercial GM seed used in Japan. In addition, this combinational analysis may be useful for the identification of combined event products of GM maize. PMID:20595789

  9. Comparison of Conventional, Modified Single Seed Descent, and Double Haploid Breeding Methods for Maize Inbred Line Development Using GEM Breeding Crosses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Good choice of germplasm, breeding methods, and careful evaluation are essential for maize inbred line and hybrid development. Choice of germplasm is particularly important since it may limit genetic gain given even the best breeding methodology and selection strategies. Exotic germplasm has the pot...

  10. Breeding Specialty Starch Maize Using Exotic Genetic Resources for Gene Discovery of Novel Alleles and Modifiers with Materials Generated from the USDA-ARS GEM Project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amylomaize VII, a class of High Amylose Maize with at least 70% of the kernel starch composed of the linear amylose polymer, has had numerous food and industrial applications including the manufacturing of biodegradable plastics, adhesives and candies. More recently it has been found to be a signi...

  11. Development of multiplex PCR method for simultaneous detection of four events of genetically modified maize: DAS-59122-7, MIR604, MON863 and MON88017.

    PubMed

    Oguchi, Taichi; Onishi, Mari; Mano, Junichi; Akiyama, Hiroshi; Teshima, Reiko; Futo, Satoshi; Furui, Satoshi; Kitta, Kazumi

    2010-01-01

    A novel multiplex PCR method was developed for simultaneous event-specific detection of four events of GM maize, i.e., DAS-59122-7, MIR604, MON88017, and MON863. The single laboratory examination of analytical performance using simulated DNA mixtures containing GM DNA at various concentrations in non-GM DNA suggested that the limits of detection (LOD) of the multiplex PCR method were 0.16% for MON863, MIR604, and MON88017, and 0.078% for DAS-59122-7. We previously developed a nonaplex (9plex) PCR method for eight events of GM maize, i.e., Bt11, Bt176, GA21, MON810, MON863, NK603, T25, and TC1507. Together with the nonaplex PCR method, the newly developed method enabled the detection and identification of eleven GM maize events that are frequently included in commercial GM seed used in Japan. In addition, this combinational analysis may be useful for the identification of combined event products of GM maize.

  12. A transgenic-cloned pig model expressing non-fluorescent modified Plum

    PubMed Central

    NAGAYA, Masaki; WATANABE, Masahito; KOBAYASHI, Mirina; NAKANO, Kazuaki; ARAI, Yoshikazu; ASANO, Yoshinori; TAKEISHI, Toki; UMEKI, Ikuma; FUKUDA, Tooru; YASHIMA, Sayaka; TAKAYANAGI, Shuko; WATANABE, Nobuyuki; ONODERA, Masafumi; MATSUNARI, Hitomi; UMEYAMA, Kazuhiro; NAGASHIMA, Hiroshi

    2016-01-01

    Genetically modified pigs that express fluorescent proteins such as green and red fluorescent proteins have become indispensable biomedical research tools in recent years. Cell or tissue transplantation studies using fluorescent markers should be conducted, wherein the xeno-antigenicity of the fluorescent proteins does not affect engraftment or graft survival. Thus, we aimed to create a transgenic (Tg)-cloned pig that was immunologically tolerant to fluorescent protein antigens. In the present study, we generated a Tg-cloned pig harboring a derivative of Plum modified by a single amino acid substitution in the chromophore. The cells and tissues of this Tg-cloned pig expressing the modified Plum (mPlum) did not fluoresce. However, western blot and immunohistochemistry analyses clearly showed that the mPlum had the same antigenicity as Plum. Thus, we have obtained primary proof of principle for creating a cloned pig that is immunologically tolerant to fluorescent protein antigens. PMID:27396383

  13. Reinventing MaizeGDB

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Maize Database (MaizeDB) to the Maize Genetics and Genomics Database (MaizeGDB) turns 20 this year, and such a significant milestone must be celebrated! With the release of the B73 reference sequence and more sequenced genomes on the way, the maize community needs to address various opportunitie...

  14. NPH3- and PGP-like genes are exclusively expressed in the apical tip region essential for blue-light perception and lateral auxin transport in maize coleoptiles

    PubMed Central

    Matsuda, Satomi; Kajizuka, Tomomi; Kadota, Akeo; Nishimura, Takeshi; Koshiba, Tomokazu

    2011-01-01

    Phototropic curvature results from differential growth on two sides of the elongating shoot, which is explained by asymmetrical indole-3-acetic acid (IAA) distribution. Using 2 cm maize coleoptile segments, 1st positive phototropic curvature was confirmed here after 8 s irradiation with unilateral blue light (0.33 μmol m−2 s−1). IAA was redistributed asymmetrically by approximately 20 min after photo-stimulation. This asymmetric distribution was initiated in the top 0–3 mm region and was then transmitted to lower regions. Application of the IAA transport inhibitor, 1-N-naphthylphthalamic acid (NPA), to the top 2 mm region completely inhibited phototropic curvature, even when auxin was simultaneously applied below the NPA-treated zone. Thus, lateral IAA movement occurred only within the top 0–3 mm region after photo-stimulation. Localized irradiation experiments indicated that the photo-stimulus was perceived in the apical 2 mm region. The results suggest that this region harbours key components responsible for photo-sensing and lateral IAA transport. In the present study, it was found that the NPH3- and PGP-like genes were exclusively expressed in the 0–2 mm region of the tip, whereas PHOT1 and ZmPIN1a, b, and c were expressed relatively evenly along the coleoptile, and ZmAUX1, ZMK1, and ZmSAURE2 were strongly expressed in the elongation zone. These results suggest that the NPH3-like and PGP-like gene products have a key role in photo-signal transduction and regulation of the direction of auxin transport after blue light perception by phot1 at the very tip region of maize coleoptiles. PMID:21459767

  15. NPH3- and PGP-like genes are exclusively expressed in the apical tip region essential for blue-light perception and lateral auxin transport in maize coleoptiles.

    PubMed

    Matsuda, Satomi; Kajizuka, Tomomi; Kadota, Akeo; Nishimura, Takeshi; Koshiba, Tomokazu

    2011-06-01

    Phototropic curvature results from differential growth on two sides of the elongating shoot, which is explained by asymmetrical indole-3-acetic acid (IAA) distribution. Using 2 cm maize coleoptile segments, 1st positive phototropic curvature was confirmed here after 8 s irradiation with unilateral blue light (0.33 μmol m(-2) s(-1)). IAA was redistributed asymmetrically by approximately 20 min after photo-stimulation. This asymmetric distribution was initiated in the top 0-3 mm region and was then transmitted to lower regions. Application of the IAA transport inhibitor, 1-N-naphthylphthalamic acid (NPA), to the top 2 mm region completely inhibited phototropic curvature, even when auxin was simultaneously applied below the NPA-treated zone. Thus, lateral IAA movement occurred only within the top 0-3 mm region after photo-stimulation. Localized irradiation experiments indicated that the photo-stimulus was perceived in the apical 2 mm region. The results suggest that this region harbours key components responsible for photo-sensing and lateral IAA transport. In the present study, it was found that the NPH3- and PGP-like genes were exclusively expressed in the 0-2 mm region of the tip, whereas PHOT1 and ZmPIN1a, b, and c were expressed relatively evenly along the coleoptile, and ZmAUX1, ZMK1, and ZmSAURE2 were strongly expressed in the elongation zone. These results suggest that the NPH3-like and PGP-like gene products have a key role in photo-signal transduction and regulation of the direction of auxin transport after blue light perception by phot1 at the very tip region of maize coleoptiles. PMID:21459767

  16. Silencing of Inducible Immunoproteasome Subunit Expression by Chemically Modified siRNA and shRNA.

    PubMed

    Gvozdeva, Olga V; Prassolov, Vladimir S; Zenkova, Marina A; Vlassov, Valentin V; Chernolovskaya, Elena L

    2016-08-01

    Overexpression of inducible subunits of immunoproteasome is related to pathogenesis of some chronic diseases. Specific inhibition of the immunosubunits may be used for the treatment of these diseases and RNA interference is one of the potent methods used in this area. We designed 2'-O-methyl modified siRNAs with selectively protected nuclease-sensitive sites, which efficiently silence LMP2, LMP7, and MECL-1 genes expression. To provide stable long-lasting inhibition of target genes, short-hairpin RNAs (shRNA) expressed by lentiviral vectors were constructed. Our results demonstrated that chemically modified siRNAs inhibited the expression of target genes with similar efficiency or with efficiency exceeding that of corresponding shRNAs and provide silencing effect for 5 days.

  17. Characteristics and expression patterns of histone-modifying enzyme systems in the migratory locust.

    PubMed

    Guo, Siyuan; Jiang, Feng; Yang, Pengcheng; Liu, Qing; Wang, Xianhui; Kang, Le

    2016-09-01

    The density-dependent phase polyphenism in locusts offers an excellent model to investigate the epigenetic regulatory mechanisms underlying phenotypic plasticity. In this study, we identified histone-modifying enzymes mediating histone post-translational modifications, which serve as a major regulatory mechanism of epigenetic processes, on the basis of the whole genome sequence of the migratory locust, Locusta migratoria. We confirmed the existence of various functional histone modifications in the locusts. Compared with other sequenced insect genomes, the locust genome contains a richer repertoire of histone-modifying enzymes. Several locust histone-modifying enzymes display vertebrate-like characteristics, such as the presence of a Sirt3-like gene and multiple alternative splicing of GCN5 gene. Most histone-modifying enzymes are highly expressed in the eggs or in the testis tissues of male adults. Several histone deacetylases and H3K4-specific methyltransferases exhibit differential expression patterns in brain tissues between solitarious and gregarious locusts. These results reveal the main characteristics of histone-modifying enzymes and provide important cues for understanding the epigenetic mechanisms underlying phase polyphenism in locusts. PMID:27343382

  18. Genome-Wide Identification and Expression Profiling Analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB Auxin Transporter Gene Families in Maize (Zea mays L.) under Various Abiotic Stresses

    PubMed Central

    Sun, Tao; Zhang, Lei; Yang, Yanjun; Qi, Jianshuang; Yan, Shufeng; Han, Xiaohua; Wang, Huizhong; Shen, Chenjia

    2015-01-01

    The auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) (together with PIN-like proteins) and efflux/conditional P-glycoprotein (ABCB) are major protein families involved in auxin polar transport. However, how they function in responses to exogenous auxin and abiotic stresses in maize is largely unknown. In this work, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmLAX, ZmPIN, ZmPILS and ZmABCB family genes from maize. The results showed that five ZmLAXs, fifteen ZmPINs, nine ZmPILSs and thirty-five ZmABCBs were mapped on all ten maize chromosomes. Highly diversified gene structures, nonconservative transmembrane helices and tissue-specific expression patterns suggested the possibility of function diversification for these genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression patterns of ZmLAX, ZmPIN, ZmPILS and ZmABCB genes under exogenous auxin and different environmental stresses. The expression levels of most ZmPIN, ZmPILS, ZmLAX and ZmABCB genes were induced in shoots and were reduced in roots by various abiotic stresses (drought, salt and cold stresses). The opposite expression response patterns indicated the dynamic auxin transport between shoots and roots under abiotic stresses. Analysis of the expression patterns of ZmPIN, ZmPILS, ZmLAX and ZmABCB genes under drought, salt and cold treatment may help us to understand the possible roles of maize auxin transporter genes in responses and tolerance to environmental stresses. PMID:25742625

  19. Maize: Overview

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is an important cereal crop that is well-suited to industrial agriculture, both in grain production and in grain utilization. Starch, protein and oil are the three major components of the grain. Several processing methods yield many different food ingredients. In addition, whole grain is pr...

  20. Effect of Stacked Insecticidal Cry Proteins from Maize Pollen on Nurse Bees (Apis mellifera carnica) and Their Gut Bacteria

    PubMed Central

    Härtel, Stephan; Näther, Astrid; Dohrmann, Anja B.; Steffan-Dewenter, Ingolf; Tebbe, Christoph C.

    2013-01-01

    Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees. PMID:23533634

  1. Effect of stacked insecticidal Cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria.

    PubMed

    Hendriksma, Harmen P; Küting, Meike; Härtel, Stephan; Näther, Astrid; Dohrmann, Anja B; Steffan-Dewenter, Ingolf; Tebbe, Christoph C

    2013-01-01

    Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees. PMID:23533634

  2. Reshaping of the maize transcriptome by domestication.

    PubMed

    Swanson-Wagner, Ruth; Briskine, Roman; Schaefer, Robert; Hufford, Matthew B; Ross-Ibarra, Jeffrey; Myers, Chad L; Tiffin, Peter; Springer, Nathan M

    2012-07-17

    Through domestication, humans have substantially altered the morphology of Zea mays ssp. parviglumis (teosinte) into the currently recognizable maize. This system serves as a model for studying adaptation, genome evolution, and the genetics and evolution of complex traits. To examine how domestication has reshaped the transcriptome of maize seedlings, we used expression profiling of 18,242 genes for 38 diverse maize genotypes and 24 teosinte genotypes. We detected evidence for more than 600 genes having significantly different expression levels in maize compared with teosinte. Moreover, more than 1,100 genes showed significantly altered coexpression profiles, reflective of substantial rewiring of the transcriptome since domestication. The genes with altered expression show a significant enrichment for genes previously identified through population genetic analyses as likely targets of selection during maize domestication and improvement; 46 genes previously identified as putative targets of selection also exhibit altered expression levels and coexpression relationships. We also identified 45 genes with altered, primarily higher, expression in inbred relative to outcrossed teosinte. These genes are enriched for functions related to biotic stress and may reflect responses to the effects of inbreeding. This study not only documents alterations in the maize transcriptome following domestication, identifying several genes that may have contributed to the evolution of maize, but highlights the complementary information that can be gained by combining gene expression with population genetic analyses.

  3. Event-specific detection of stacked genetically modified maize Bt11 x GA21 by UP-M-PCR and real-time PCR.

    PubMed

    Xu, Wentao; Yuan, Yanfang; Luo, Yunbo; Bai, Weibin; Zhang, Chunjiao; Huang, Kunlun

    2009-01-28

    More and more stacked GMOs have been developed for more improved functional properties and/or a stronger intended characteristic, such as antipest, improved product efficiency etc. Bt11 x GA21 is a new kind of stacked GM maize developed by Monsanto Company. Since there are no unique flanking sequences in stacked GMOs, up to now, no appropriate method has been reported to accurately detect them. In this passage, a novel universal primer multiplex PCR (UP-M-PCR) was developed and applied as a rapid screening method for the simultaneous detection of five target sequences (NOS, 35S, Bt11 event, GA21 event, and IVR) in maize Bt11 x GA21. This method overcame the disadvantages rooted deeply in conventional multiplex PCR such as complex manipulation, lower sensitivity, self-inhibition and amplification disparity resulting from different primers. What's more, it got a high specificity and had a detection limit of 0.1% (approximates to 38 haploid genome copies). Furthermore, real-time PCR combined with multivariate statistical analysis was used for accurate quantification of stacked GM maize Bt11 x GA21 in 100% GM maize mixture (Bt11 x GA21, Bt11 and GA21). Detection results showed that this method could accurately validate the content of Bt11, GA21 and Bt11 x GA21 in 100% GM mixture with a detection limit of 0.5% (approximates to 200 haploid genome copies) and a low relative standard deviation <5%. All the data proved that this method may be widely applied in event-specific detection of other stacked GMOs in GM-mixture.

  4. Expression of human beta defensin 4 in genetically modified keratinocytes enhances antimicrobial activity.

    PubMed

    Smiley, Andrea K; Gardner, Jason; Klingenberg, Jennifer M; Neely, Alice N; Supp, Dorothy M

    2007-01-01

    Defensins are cationic peptides of the innate host defense system with antimicrobial activity against many of the microorganisms commonly found in burn units. Beta defensins are variably expressed in the epithelia of skin and other organs. Human beta defensin 4 reportedly has antimicrobial activity against Pseudomonas aeruginosa and is not normally expressed in intact skin. Genetic modification was used to ectopically express human beta defensin 4 in cultured primary epidermal keratinocytes. Keratinocytes expressing human beta defensin 4 showed significantly elevated antimicrobial activity against clinically-isolated P. aeruginosa compared with controls. These results suggest that genetic modification of keratinocytes can increase their resistance to microbial contamination. Bioengineered skin replacements containing human beta defensin 4-modified keratinocytes may be useful for transplantation to contaminated burn wounds.

  5. Plastin 3 Expression Does Not Modify Spinal Muscular Atrophy Severity in the ∆7 SMA Mouse

    PubMed Central

    Wang, Xueyong; Le, Thanh T.; Le, Hao T.; Beattie, Christine E.; Rich, Mark M.; Burghes, Arthur H. M.

    2015-01-01

    Spinal muscular atrophy is caused by loss of the SMN1 gene and retention of SMN2. The SMN2 copy number inversely correlates with phenotypic severity and is a modifier of disease outcome. The SMN2 gene essentially differs from SMN1 by a single nucleotide in exon 7 that modulates the incorporation of exon 7 into the final SMN transcript. The majority of the SMN2 transcripts lack exon 7 and this leads to a SMN protein that does not effectively oligomerize and is rapidly degraded. However the SMN2 gene does produce some full-length SMN and the SMN2 copy number along with how much full-length SMN the SMN2 gene makes correlates with severity of the SMA phenotype. However there are a number of discordant SMA siblings that have identical haplotypes and SMN2 copy number yet one has a milder form of SMA. It has been suggested that Plastin3 (PLS3) acts as a sex specific phenotypic modifier where increased expression of PLS3 modifies the SMA phenotype in females. To test the effect of PLS3 overexpression we have over expressed full-length PLS3 in SMA mice. To ensure no disruption of functionality or post-translational processing of PLS3 we did not place a tag on the protein. PLS3 protein was expressed under the Prion promoter as we have shown previously that SMN expression under this promoter can rescue SMA mice. High levels of PLS3 mRNA were expressed in motor neurons along with an increased level of PLS3 protein in total spinal cord, yet there was no significant beneficial effect on the phenotype of SMA mice. Specifically, neither survival nor the fundamental electrophysiological aspects of the neuromuscular junction were improved upon overexpression of PLS3 in neurons. PMID:26134627

  6. An upstream open reading frame represses expression of Lc, a member of the R/B family of maize transcriptional activators

    SciTech Connect

    Damiani, R.D. Jr.; Wessler, S.R. )

    1993-09-01

    The R/B genes of maize encode a family of basic helix-loop-helix proteins that determine where and when the anthocyanin-pigment pathway will be expressed in the plant. Previous studies showed that allelic diversity among family members reflects differences in gene expression, specifically in transcription initiation. The authors present evidence that the R gene Lc is under translational control. They demonstrate that the 235-nt transcript leader of Lc represses expression 25- to 30-fold in an in vivo assay. Repression is mediated by the presence in cis of a 38-codon upstream open reading frame. Furthermore, the coding capacity of the upstream open reading frame influences the magnitude of repression. It is proposed that translational control does not contribute to tissue specificity but prevents overexpression of the Lc protein. The diversity of promoter and 5' untranslated leader sequences among the R/B genes provides an opportunity to study the coevolution of transcriptional and translational mechanisms of gene regulation. 36 refs., 5 figs.

  7. Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress

    PubMed Central

    Zhao, Xiongwei; Nie, Shujun; Li, Yuhua; Zhang, Zhiming; Shen, Yaou; Chen, Qi; Lu, Yanli; Lan, Hai; Zhou, Shufeng; Gao, Shibin; Pan, Guangtang; Lin, Haijian

    2016-01-01

    Nitrogen (N) is an essential nutrient for plants, and it directly affects grain yield and protein content in cereal crops. Plant root systems are not only critical for anchorage in the soil, but also for N acquisition. Therefore, genes controlling root development might also affect N uptake by plants. In this study, the responses of nitrogen on root architecture of mutant rtcs and wild-type of maize were investigated by morphological and physiological analysis. Subsequently, we performed a comparative RNA-Seq analysis to compare gene expression profiles between mutant rtcs roots and wild-type roots under different N conditions. We identified 786 co-modulated differentially expressed genes (DEGs) related to root development. These genes participated in various metabolic processes. A co-expression cluster analysis and a cis-regulatory motifs analysis revealed the importance of the AP2-EREBP transcription factor family in the rtcs-dependent regulatory network. Some genotype-specific DEGs contained at least one LBD motif in their promoter region. Further analyses of the differences in gene transcript levels between rtcs and wild-type under different N conditions revealed 403 co-modulated DEGs with distinct functions. A comparative analysis revealed that the regulatory network controlling root development also controlled gene expression in response to N-deficiency. Several AP2-EREBP family members involved in multiple hormone signaling pathways were among the DEGs. These transcription factors might play important roles in the rtcs-dependent regulatory network related to root development and the N-deficiency response. Genes encoding the nitrate transporters NRT2-1, NAR2.1, NAR2.2, and NAR2.3 showed much higher transcript levels in rtcs than in wild-type under normal-N conditions. This result indicated that the LBD gene family mainly functions as transcriptional repressors, as noted in other studies. In summary, using a comparative RNA-Seq-based approach, we identified

  8. Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress.

    PubMed

    He, Xiujing; Ma, Haixia; Zhao, Xiongwei; Nie, Shujun; Li, Yuhua; Zhang, Zhiming; Shen, Yaou; Chen, Qi; Lu, Yanli; Lan, Hai; Zhou, Shufeng; Gao, Shibin; Pan, Guangtang; Lin, Haijian

    2016-01-01

    Nitrogen (N) is an essential nutrient for plants, and it directly affects grain yield and protein content in cereal crops. Plant root systems are not only critical for anchorage in the soil, but also for N acquisition. Therefore, genes controlling root development might also affect N uptake by plants. In this study, the responses of nitrogen on root architecture of mutant rtcs and wild-type of maize were investigated by morphological and physiological analysis. Subsequently, we performed a comparative RNA-Seq analysis to compare gene expression profiles between mutant rtcs roots and wild-type roots under different N conditions. We identified 786 co-modulated differentially expressed genes (DEGs) related to root development. These genes participated in various metabolic processes. A co-expression cluster analysis and a cis-regulatory motifs analysis revealed the importance of the AP2-EREBP transcription factor family in the rtcs-dependent regulatory network. Some genotype-specific DEGs contained at least one LBD motif in their promoter region. Further analyses of the differences in gene transcript levels between rtcs and wild-type under different N conditions revealed 403 co-modulated DEGs with distinct functions. A comparative analysis revealed that the regulatory network controlling root development also controlled gene expression in response to N-deficiency. Several AP2-EREBP family members involved in multiple hormone signaling pathways were among the DEGs. These transcription factors might play important roles in the rtcs-dependent regulatory network related to root development and the N-deficiency response. Genes encoding the nitrate transporters NRT2-1, NAR2.1, NAR2.2, and NAR2.3 showed much higher transcript levels in rtcs than in wild-type under normal-N conditions. This result indicated that the LBD gene family mainly functions as transcriptional repressors, as noted in other studies. In summary, using a comparative RNA-Seq-based approach, we identified

  9. Impact of Bt maize pollen (MON810) on lepidopteran larvae living on accompanying weeds.

    PubMed

    Gathmann, Achim; Wirooks, Ludger; Hothorn, Ludwig A; Bartsch, Detlef; Schuphan, Ingolf

    2006-08-01

    Environmental risks of Bt maize, particularly pollen drift from Bt maize, were assessed for nontarget lepidopteran larvae in maize field margins. In our experimental approach, we carried out 3-year field trials on 6 ha total. Three treatments were used in a randomized block design with eight replications resulting in 24 plots: (i) near-isogenic control variety without insecticide (control), (ii) near-isogenic control variety with chemical insecticide (Baytroid) and (iii) Bt maize expressing the recombinant toxin. We established a weed strip (20 x 1 m) in every plot consisting of a Chenopodium album (goosefoot)/Sinapis alba (mustard) mixture. In these strips we measured diversity and abundance of lepidopteran larvae during maize bloom and pollen shed. C. album hosted five species but all in very low densities; therefore data were not suitable for statistical analysis. S. alba hosted nine species in total. Most abundant were Plutella xylostella and Pieris rapae. For these species no differences were detected between the Bt treatment and the control, but the chemical insecticide treatment reduced larval abundance significantly. Conclusions regarding experimental methodology and results are discussed in regard to environmental risk assessment and monitoring of genetically modified organisms. PMID:16842436

  10. Development of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) on pollen from Bt-transgenic and conventional maize.

    PubMed

    Meissle, Michael; Zünd, Jan; Waldburger, Mario; Romeis, Jörg

    2014-01-01

    Maize (Zea mays) pollen is highly nutritious and can be used by predatory arthropods to supplement or replace a carnivorous diet. We demonstrate that maize pollen can be utilized by larvae of the green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae) under laboratory conditions. Complete development on maize pollen was not possible, but 25% of neonates reached the third instar. When only one instar was fed with pollen and the other two instars with eggs of Ephestia kuehniella (Lepidoptera: Pyralidae), 58-87% of the larvae reached the pupal stage. The experiments included pollen produced by nine cultivars: three genetically modified (GM) cultivars expressing the Bacillus thuringiensis proteins Cry1Ab or Cry3Bb1, their corresponding non-transformed near-isolines, and three conventional cultivars. Maize cultivars were grown in two batches in a glasshouse. Their pollen differed by up to 59% in total protein content, 25% in C:N ratio, and 14% in grain diameter, but the differences were inconsistent and depended on the batch. Lacewing performance was not affected by maize cultivar. For environmental risk assessment of GM plants, in planta studies must consider the variability among conventional cultivars, individual plants, batches, and environmental conditions when evaluating the ecological significance of differences observed between GM and near-isolines. PMID:25082074

  11. Identification of trans-dominant modifiers of Prat expression in Drosophila melanogaster.

    PubMed

    Malmanche, Nicolas; Clark, Denise V

    2003-08-01

    The first committed step in the purine de novo synthesis pathway is performed by amidophosphoribosyltransferase (EC 2.4.2.14) or Prat. Drosophila melanogaster Prat is an essential gene with a promoter that lacks a TATA-box and initiator element and has multiple transcription start sites with a predominant start site. To study the regulation of Prat expression in the adult eye, we used the Prat:bw reporter gene, in which the Prat coding region was replaced with the brown (bw) coding region. The pale-orange eye color of a single copy of Prat:bw prompted us to use a multicopy array of Prat:bw that was derived using P transposase mutagenesis and produces a darker-orange eye color in a bw(D); st genetic background. We used a 13-copy array of Prat:bw as a tool to recover dominant EMS-induced mutations that affect the expression of the transgene. After screening 21,000 F(1)s for deviation from the orange eye color, we isolated 23 dominant modifiers: 21 suppressors (1 Y-linked, 5 X-linked, 4 2-linked, and 11 3-linked) and 2 enhancers (1 2-linked and 1 3-linked). Quantification of their effect on endogenous Prat gene expression, using RT-PCR in young adult fly heads, identifies a subset of modifiers that are candidates for genes involved in regulating Prat expression. PMID:12930749

  12. Importance of rare taxa for bacterial diversity in the rhizosphere of Bt- and conventional maize varieties

    PubMed Central

    Dohrmann, Anja B; Küting, Meike; Jünemann, Sebastian; Jaenicke, Sebastian; Schlüter, Andreas; Tebbe, Christoph C

    2013-01-01

    Ribosomal 16S rRNA gene pyrosequencing was used to explore whether the genetically modified (GM) Bt-maize hybrid MON 89034 × MON 88017, expressing three insecticidal recombinant Cry proteins of Bacillus thuringiensis, would alter the rhizosphere bacterial community. Fine roots of field cultivated Bt-maize and three conventional maize varieties were analyzed together with coarse roots of the Bt-maize. A total of 547 000 sequences were obtained. Library coverage was 100% at the phylum and 99.8% at the genus rank. Although cluster analyses based on relative abundances indicated no differences at higher taxonomic ranks, genera abundances pointed to variety specific differences. Genera-based clustering depended solely on the 49 most dominant genera while the remaining 461 rare genera followed a different selection. A total of 91 genera responded significantly to the different root environments. As a benefit of pyrosequencing, 79 responsive genera were identified that might have been overlooked with conventional cloning sequencing approaches owing to their rareness. There was no indication of bacterial alterations in the rhizosphere of the Bt-maize beyond differences found between conventional varieties. B. thuringiensis-like phylotypes were present at low abundance (0.1% of Bacteria) suggesting possible occurrence of natural Cry proteins in the rhizospheres. Although some genera indicated potential phytopathogenic bacteria in the rhizosphere, their abundances were not significantly different between conventional varieties and Bt-maize. With an unprecedented sensitivity this study indicates that the rhizosphere bacterial community of a GM maize did not respond abnormally to the presence of three insecticidal proteins in the root tissue. PMID:22791236

  13. Network analysis of maize RNA transport pathway genes associated with maize resistance to aflatoxin accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is a pathogenic fungus producing alfatoxins that cause significant economic losses in maize production. This study analyzes the differences in expression levels of maize genes in response to A. flavus infection and aflatoxin accumulation. Identification of defense related genes an...

  14. The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis

    PubMed Central

    Tollot, Marie; Assmann, Daniela; Becker, Christian; Altmüller, Janine; Dutheil, Julien Y.; Wegner, Carl-Eric; Kahmann, Regine

    2016-01-01

    The biotrophic basidiomycete fungus Ustilago maydis causes smut disease in maize. Hallmarks of the disease are large tumors that develop on all aerial parts of the host in which dark pigmented teliospores are formed. We have identified a member of the WOPR family of transcription factors, Ros1, as major regulator of spore formation in U. maydis. ros1 expression is induced only late during infection and hence Ros1 is neither involved in plant colonization of dikaryotic fungal hyphae nor in plant tumor formation. However, during late stages of infection Ros1 is essential for fungal karyogamy, massive proliferation of diploid fungal cells and spore formation. Premature expression of ros1 revealed that Ros1 counteracts the b-dependent filamentation program and induces morphological alterations resembling the early steps of sporogenesis. Transcriptional profiling and ChIP-seq analyses uncovered that Ros1 remodels expression of about 30% of all U. maydis genes with 40% of these being direct targets. In total the expression of 80 transcription factor genes is controlled by Ros1. Four of the upregulated transcription factor genes were deleted and two of the mutants were affected in spore development. A large number of b-dependent genes were differentially regulated by Ros1, suggesting substantial changes in this regulatory cascade that controls filamentation and pathogenic development. Interestingly, 128 genes encoding secreted effectors involved in the establishment of biotrophic development were downregulated by Ros1 while a set of 70 “late effectors” was upregulated. These results indicate that Ros1 is a master regulator of late development in U. maydis and show that the biotrophic interaction during sporogenesis involves a drastic shift in expression of the fungal effectome including the downregulation of effectors that are essential during early stages of infection. PMID:27332891

  15. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression.

    PubMed

    Suter, Melissa; Abramovici, Adi; Showalter, Lori; Hu, Min; Shope, Cynthia Do; Varner, Michael; Aagaard-Tillery, Kjersti

    2010-10-01

    The metabolic pathways used by higher-eukaryotic organisms to deal with potentially carcinogenic xenobiotic compounds from tobacco smoke have been well characterized. Carcinogenic compounds such as polycyclic aromatic hydrocarbons are metabolized sequentially in 2 phases: in phase I, CYP1A1 catalyzes conversion into harmful hydrophilic DNA adducts, whereas in phase II, GSTT1 enables excretion via conjugation into polar electrophiles. In an effort to understand susceptibility to in utero tobacco exposure, we previously characterized known metabolic functional polymorphisms and demonstrated that although deletion of fetal GSTT1 significantly modified birth weight in smokers, no polymorphism fully accounted for fetal growth restriction. Because smoking up-regulates CYP1A1 expression, we hypothesized that nonallelic (epigenetic) dysregulation of placental CYP1A1 expression via alterations in DNA methylation (meCpG) may further modify fetal growth. In the present article, we compared placental expression of multiple CYP family members among gravidae and observed significantly increased CYP1A1 expression among smokers relative to controls (4.4-fold, P < .05). To fully characterize CYP1A1 meCpG status, bisulfite modification and sequencing of the entire proximal 1-kilobase promoter (containing 59 CpG sites) were performed. CpG sites immediately proximal to the 5′-xenobiotic response element transcription factor binding element were significantly hypomethylated among smokers (55.6% vs 45.9% meCpG, P = .027), a finding that uniquely correlated with placental gene expression (r = 0.737, P = .007). Thus, in utero tobacco exposure significantly increases placental CYP1A1 expression in association with differential methylation at a critical xenobiotic response element. PMID:20462615

  16. SNORD116 and SNORD115 change expression of multiple genes and modify each other's activity.

    PubMed

    Falaleeva, Marina; Surface, Justin; Shen, Manli; de la Grange, Pierre; Stamm, Stefan

    2015-11-10

    The loss of two gene clusters encoding small nucleolar RNAs, SNORD115 and SNORD116 contribute to Prader-Willi syndrome (PWS), the most common syndromic form of obesity in humans. SNORD115 and SNORD116 are considered to be orphan C/D box snoRNAs (SNORDs) as they do not target rRNAs or snRNAs. SNORD115 exhibits sequence complementarity towards the serotonin receptor 2C, but SNORD116 shows no extended complementarities to known RNAs. To identify molecular targets, we performed genome-wide array analysis after overexpressing SNORD115 and SNORD116 in HEK 293T cells, either alone or together. We found that SNORD116 changes the expression of over 200 genes. SNORD116 mainly changed mRNA expression levels. Surprisingly, we found that SNORD115 changes SNORD116's influence on gene expression. In similar experiments, we compared gene expression in post-mortem hypothalamus between individuals with PWS and aged-matched controls. The synopsis of these experiments resulted in 23 genes whose expression levels were influenced by SNORD116. Together our results indicate that SNORD115 and SNORD116 influence expression levels of multiple genes and modify each other activity. PMID:26220404

  17. Differentially expressed epigenome modifiers, including Aurora kinase A and B, in immune cells of rheumatoid arthritis

    PubMed Central

    Glant, Tibor T.; Besenyei, Timea; Kádár, András; Kurkó, Júlia; Tryniszewska, Beata; Gál, János; Soós, Györgyi; Szekanecz, Zoltán; Hoffmann, Gyula; Block, Joel A.; Katz, Robert S.; Mikecz, Katalin; Rauch, Tibor A.

    2014-01-01

    Objective The aim of this study was to identify epigenetic factors that are implicated in the pathogenesis of rheumatoid arthritis (RA) and to explore the therapeutic potential of the targeted inhibition of these factors. Methods PCR arrays were utilized to investigate the expression profile of genes that encod key epigenetic regulator enzymes. Mononuclear cells from RA patients and mice were monitored for gene expression changes, in association with arthritis development in murine models of RA. Selected genes were further characterized by quantitative real-time PCR, Western blot and flow cytometry methods. The targeted inhibition of the upregulated enzymes was studied in arthritic mice. Results A set of genes with arthritis-specific expression was identified by the PCR arrays. Aurora kinase A and B, both of which were highly expressed in arthritic mice and treatment naïve RA patients, were selected for detailed analysis. Elevated Aurora kinase expression was accompanied with an increased phosphorylation of histone H3, which promotes proliferation of T lymphocytes. Treatment with VX-680, a pan-Aurora kinase inhibitor, promoted B cell apoptosis, provided significant protection against the onset, and attenuated the inflammatory reactions in arthritic mice. Conclusions Arthritis development is accompanied the changes in the expression of a number of epigenome-modifying enzymes. Drug-induced downregulation of the Aurora kinases, among other targets, seems to be sufficient to treat experimental arthritis. Development of new therapeutics that target the Aurora kinases can potentially improve RA management. PMID:23653330

  18. The auxin-deficient defective kernel18 (dek18) mutation alters the expression of seed-specific biosynthethic genes in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dek18 mutant of maize has decreased auxin content in kernels. Molecular and functional characterization of this mutant line offers the possibility to better understand auxin biology in maize seed development. Seeds of the dek18 mutants are smaller compared to wild type seeds and the vegetative d...

  19. Molecular interactions and immune responses between maize fine streak virus and the leafhopper vector G. nigrifrons through differential expression and RNA interference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize fine streak virus (MFSV) is an emerging virus of maize that is transmitted by an insect vector, the leafhopper called Graminella nigrifrons. Virus transmission by the leafhopper requires that the virus enter into and multiply in insect cells, tissues and organs before being transmitted to a ne...

  20. Induction of a protective immune response to rabies virus in sheep after oral immunization with transgenic maize, expressing the rabies virus glycoprotein.

    PubMed

    Loza-Rubio, Elizabeth; Rojas-Anaya, Edith; López, Juan; Olivera-Flores, María Teresa; Gómez-Lim, Miguel; Tapia-Pérez, Graciela

    2012-08-10

    The introduction of exogenous genes into plants permits the development of a new generation of biological products, i.e., edible vaccines. Cereals, especially maize, have been the systems of choice for the expression of antigenic proteins because the proteins can be expressed at high levels in the kernel and stored for prolonged periods without excessive deterioration. The utilization of plant-derived antigens for oral delivery provides an alternative strategy for the control of pathogens in animals compared to the current vaccine administration methods, such as injection. However, there is some doubt about the efficacy of these types of vaccines in polygastric animals due to the features of their digestive system. Here, we report the efficacy of an edible vaccine against rabies evaluated in sheep. Kernels containing different doses of G protein (0.5, 1, 1.5 and 2mg) were given in a single dose by the oral route. Cumulative survival was better in groups that received 2mg of G protein and for the positive control (inactivated rabies vaccine); this observation was supported by the presence of neutralizing antibodies. Animals in the control group died after challenge. The degree of protection achieved for 2mg of G protein was comparable to that conferred by a commercial vaccine. In conclusion, this is the first study in which an orally administered edible vaccine showed efficacy in a polygastric model.

  1. Regulation of Protein Degradation and Protease Expression by Mannose in Maize Root Tips. Pi Sequestration by Mannose May Hinder the Study of Its Signaling Properties

    PubMed Central

    Brouquisse, Renaud; Evrard, Adeline; Rolin, Dominique; Raymond, Philippe; Roby, Claude

    2001-01-01

    The effects of mannose (Man) and glucose (Glc) on central metabolism, proteolysis, and expression of the root starvation-induced protease (RSIP; F. James, R. Brouquisse, C. Suire, A. Pradet, P. Raymond [1996] Biochem J 320: 283–292) were investigated in maize (Zea mays L. cv DEA) root tips. Changes in metabolite concentrations (sugars, ester-phosphates, adenine nucleotides, and amino acids) were monitored using in vivo and in vitro 13C- and 31P-NMR spectroscopy, in parallel with the changes in respiration rates, protein contents, proteolytic activities, and RSIP amounts. The inhibition of proteolysis, the decrease in proteolytic activities, and the repression of RSIP expression triggered by Man, at concentrations usually used to study sugar signaling (2 and 10 mm), were found to be related to a drop of energy metabolism, primarily due to a Man-induced Pi sequestration. However, when supplied at low concentration (2 mm) and with the adequate phosphate concentration (30 mm), energy metabolism was restored and Man repressed proteolysis similarly to Glc, when provided at the same concentration. These results indicate that Man should be used with caution as a Glc analog to study signalization by sugars in plants because possible signaling effects may be hindered by Pi sequestration. PMID:11244127

  2. What modifies the expression of personality tendencies? Defining basic domains of situation variables.

    PubMed

    Saucier, Gerard; Bel-Bahar, Tarik; Fernandez, Cynthia

    2007-06-01

    A taxonomy of personality-relevant situations will provide a valuable complement to the taxonomy of personality attributes. To identify some of the most important modifying factors, we asked laypersons what modifies expression of their own traits. Spontaneously generated situation descriptors were elicited from 77 university students, leading to over 7,000 reports of situations. We determined the most frequently occurring words and phrases, and developed initial classification categories. Next, we tested the reliability of the categories, and made refinements to focus on those that proved most reliable. Based on results, we propose that situation descriptions involve at least four separable broad domains of variables--locations, associations, activities, and passively experienced processes--each of which appears to have distinct linguistic markers.

  3. Inhibitory effect of modified 5'-capped short RNA fragments on influenza virus RNA polymerase gene expression.

    PubMed

    Tado, M; Abe, T; Hatta, T; Ishikawa, M; Nakada, S; Yokota, T; Takaku, H

    2001-11-01

    We have shown previously that the 5'-capped short phosphodiester RNA fragments, Cap decoy, (Gm 12 nt) are potent inhibitors of influenza virus RNA polymerase gene expression. Here we investigate the modified capped RNA derivative containing phosphorothioate oligonucleotides (Cap decoy) as a potential influenza virus RNA polymerase inhibitor. The modified 5'-capped short phosphorothioate RNA fragments (Gms 12-15 nt) with the 5'-capped structure (m7GpppGm) were synthesized by T7 RNA polymerase. The 5'-capped short RNA fragments (Gms 12-15 nt) were encapsulated in liposome particulates and tested for their inhibitory effects on influenza virus RNA polymerase gene expression in the clone 76 cells. The 12-15 nt long Gms RNA fragments showed highly inhibitory effects. By contrast, the inhibitory effects of the 13 nt long short RNA fragments (Gm 13 nt) were considerably less in comparison with the 5'-capped short phosphorothioate RNA fragments (Gms 12-15 nt). In particular, the various Gms RNA chain lengths showed no significant differences in the inhibition of influenza virus RNA polymerase gene expression. Furthermore, the capped RNA with a phosphorothioate backbone was resistant to nuclease activity. These phosphorothioate RNA fragments exhibited higher inhibitory activity than the 5'-capped short RNA fragments (Gm 12 nt). These decoys may prove to be useful in anti-influenza virus therapeutics. PMID:12018680

  4. Efficient, Glucose Responsive, and Islet-Specific Transgene Expression by a Modified Rat Insulin Promoter

    PubMed Central

    Chai, Renjie; Chen, Shuyuan; Ding, Jiahuan; Grayburn, Paul A

    2009-01-01

    This study was done to improve efficiency and islet specificity of the rat insulin promoter (RIP). Various rat insulin promoter lengths were prepared and tested in vitro to drive luciferase reporter gene expression in INS1-cells, alpha-cells, acinar cells, ductal cells, and fibroblasts. The CMV promoter was used as a positive control. In addition, the DsRed reporter gene was administered in vivo to rat pancreas by ultrasound-targeted microbubble destruction (UTMD). Confocal microscopy was used to detect the presence and distribution of DsRed within the pancreas after UTMD. A modified RIP3.1 promoter, which includes portions of the insulin gene after its transcription start site is 5-fold more active in INS-1 cells than the full length RIP promoter or the CMV promoter. RIP3.1 is regulated by glucose level and various islet transcription factors in vitro, and exhibits activity in alpha-cells, but not exocrine cells. In vivo delivery of RIP3.1-DsRed resulted in expression of DsRed protein in beta-cells, and to a lesser extent alpha cells under normal glucose conditions. No DsRed signal was present in exocrine pancreas under RIP3.1. A modified rat insulin promoter, RIP3.1, efficiently and specifically directs gene expression to endocrine pancreas. PMID:19727136

  5. An analysis of variation in expression of neurofibromatosis (NF) type I (NFI): Evidence for modifying genes

    SciTech Connect

    Easton, D.F.; Ponder, B.A.J. ); Huson, S.M. ); Ponder, M.A. )

    1993-08-01

    Neurofibromatosis (NF) type 1 (NF1) is notable for its variable expression. To determine whether variation in expression has an inherited component, the authors examined 175 individuals in 48 NF families, including six MZ twin pairs. Three quantitative traits were scored - number of cafe-au-lait patches, number of cutaneous neurofibromas, and head circumference; and five binary traits were scored - the presence or absence of plexiform neurofibromas, optic gliomas, scoliosis, epilepsy, and referral for remedial education. For cafe-au-lait patches and neurofibromas, correlation was highest between MZ twins, less high between first-degree relatives, and lower still between more distant relatives. The high correlation between distant relatives suggests that the type of mutation at the NF1 locus itself plays only a minor role. All of the five binary traits, with the exception of plexiformneurofibromas, also showed significant familial clustering. The familial effects for these traits were consistent with polygenic effects, but there were insufficient data to rule out other models, including a significant effect of different NF1 mutations. There was no evidence of any association between the different traits in affected individuals. The authors conclude that the phenotypic expression of NF1 is to a large extent determined by the genotype at other [open quotes]modifying[close quotes] loci and that these modifying genes are trait specific. 22 refs., 8 tabs.

  6. Growth of an Aspergillus flavus transformant expressing Escherichia coli beta-glucuronidase in maize kernels resistant to aflatoxin production.

    PubMed

    Brown, R L; Cleveland, T E; Payne, G A; Woloshuk, C P; White, D G

    1997-01-01

    Kernels of a maize inbred that demonstrated resistance to aflatoxin production in previous studies were inoculated with an Aspergillus flavus strain containing the Escherichia coli beta-D-glucuronidase reporter gene linked to a beta-tubulin gene promoter and assessed for both fungal growth and aflatoxin accumulation. Prior to inoculation, kernels were pin-wounded through the pericarp to the endosperm, pin-wounded in the embryo region, or left unwounded. After 7 days incubation with the fungus, beta-glucuronidase activity (fungal growth) in the kernels was quantified using a fluorogenic assay and aflatoxin B content of the same kernels was analyzed. Kernels of a susceptible inbred, similarly treated, served as controls. Results indicate a positive relationship between aflatoxin levels and the amount of fungal growth. However, resistant kernels wounded through the pericarp to the endosperm before inoculation supported an increase in aflatoxin B over levels observed in nonwounded kernels, without an increase in fungal growth. Wounding kernels of the resistant inbred through the embryo resulted in both the greatest fungal growth and the highest levels of aflatoxin B1 for this genotype. Maintenance of resistance to aflatoxin B1 in endosperm-wounded kernels may be due to the action of a mechanism which limits fungal access to the kernel embryo. PMID:10465048

  7. Defining the SUMO System in Maize: SUMOylation Is Up-Regulated during Endosperm Development and Rapidly Induced by Stress.

    PubMed

    Augustine, Robert C; York, Samuel L; Rytz, Thérèse C; Vierstra, Richard D

    2016-07-01

    In response to abiotic and biotic challenges, plants rapidly attach small ubiquitin-related modifier (SUMO) to a large collection of nuclear proteins, with studies in Arabidopsis (Arabidopsis thaliana) linking SUMOylation to stress tolerance via its modification of factors involved in chromatin and RNA dynamics. Despite this importance, little is known about SUMOylation in crop species. Here, we describe the plant SUMO system at the phylogenetic, biochemical, and transcriptional levels with a focus on maize (Zea mays). In addition to canonical SUMOs, land plants encode a loosely constrained noncanonical isoform and a variant containing a long extension upstream of the signature β-grasp fold, with cereals also expressing a novel diSUMO polypeptide bearing two SUMO β-grasp domains in tandem. Maize and other cereals also synthesize a unique SUMO-conjugating enzyme variant with more restricted expression patterns that is enzymatically active despite a distinct electrostatic surface. Maize SUMOylation primarily impacts nuclear substrates, is strongly induced by high temperatures, and displays a memory that suppresses subsequent conjugation. Both in-depth transcript and conjugate profiles in various maize organs point to tissue/cell-specific functions for SUMOylation, with potentially significant roles during embryo and endosperm maturation. Collectively, these studies define the organization of the maize SUMO system and imply important functions during seed development and stress defense. PMID:27208252

  8. Defining the SUMO System in Maize: SUMOylation Is Up-Regulated during Endosperm Development and Rapidly Induced by Stress.

    PubMed

    Augustine, Robert C; York, Samuel L; Rytz, Thérèse C; Vierstra, Richard D

    2016-07-01

    In response to abiotic and biotic challenges, plants rapidly attach small ubiquitin-related modifier (SUMO) to a large collection of nuclear proteins, with studies in Arabidopsis (Arabidopsis thaliana) linking SUMOylation to stress tolerance via its modification of factors involved in chromatin and RNA dynamics. Despite this importance, little is known about SUMOylation in crop species. Here, we describe the plant SUMO system at the phylogenetic, biochemical, and transcriptional levels with a focus on maize (Zea mays). In addition to canonical SUMOs, land plants encode a loosely constrained noncanonical isoform and a variant containing a long extension upstream of the signature β-grasp fold, with cereals also expressing a novel diSUMO polypeptide bearing two SUMO β-grasp domains in tandem. Maize and other cereals also synthesize a unique SUMO-conjugating enzyme variant with more restricted expression patterns that is enzymatically active despite a distinct electrostatic surface. Maize SUMOylation primarily impacts nuclear substrates, is strongly induced by high temperatures, and displays a memory that suppresses subsequent conjugation. Both in-depth transcript and conjugate profiles in various maize organs point to tissue/cell-specific functions for SUMOylation, with potentially significant roles during embryo and endosperm maturation. Collectively, these studies define the organization of the maize SUMO system and imply important functions during seed development and stress defense.

  9. RNA splicing manipulation: strategies to modify gene expression for a variety of therapeutic outcomes.

    PubMed

    Wilton, Steve D; Fletcher, Susan

    2011-08-01

    Antisense oligomers initially showed promise as compounds to modify gene expression, primarily through RNaseH induced degradation of the target transcript. Expansion of the field has led to new chemistries capable of invoking different mechanisms, including suppression of protein synthesis by translational blockade and gene silencing using short interfering RNAs. It is now apparent that the majority of the eukaryotic genome is transcribed and non-protein coding RNAs have been implicated in the regulation of gene expression at many levels. This review considers potential therapeutic applications of antisense oligomers to modify gene expression, primarily by interfering with the process of exon recognition and intron removal during gene transcript splicing. While suppression of gene expression will be necessary to address some conditions, it is likely that antisense oligomer splice modification will have extensive clinical application. Pre-mRNA splicing is a tightly co-ordinated, multifactorial process that can be disrupted by antisense oligomers in a highly specific manner to suppress aberrant splicing, remove exons to by-pass nonsense or frame-shifting mutations or influence exon selection to alter spliceoform ratios. Manipulation of splicing patterns has been applied to a diverse range of conditions, including b-thalassemia, Duchenne muscular dystrophy, spinal muscular atrophy and certain cancers. Alternative exon usage has been identified as a major mechanism for generating diversity from a limited repertoire of genes in higher eukaryotes. Considering that the majority of all human primary gene transcripts are reportedly alternatively spliced, intervention at the level of pre-mRNA processing is likely to become increasingly significant in the fight against genetic and acquired disorders.

  10. Analysis of gene expression and histone modification between C4 and non-C4 homologous genes of PPDK and PCK in maize.

    PubMed

    Dong, Xiu-Mei; Li, Yuan; Chao, Qing; Shen, Jie; Gong, Xiu-Jie; Zhao, Biligen-Gaowa; Wang, Bai-Chen

    2016-07-01

    More efficient photosynthesis has allowed C4 plants to adapt to more diverse ecosystems (such as hot and arid conditions) than C3 plants. To better understand C4 photosynthesis, we investigated the expression patterns of C4 genes (C4PPDK and PCK1) and their non-C4 homologous genes (CyPPDK1, CyPPDK2, and PCK2) in the different organs of maize (Zea mays). Both C4 genes and non-C4 genes showed organ-dependent expression patterns. The mRNA levels of C4 genes were more abundant in leaf organ than in seeds at 25 days after pollination (DAP), while non-C4 genes were mainly expressed in developing seeds. Further, acetylation of histone H3 lysine 9 (H3K9ac) positively correlates with mRNA levels of C4 genes (C4PPDK and PCK1) in roots, stems, leaves, and seeds at 25 DAP, acetylation of histone H4 lysine 5 (H4K5ac) in the promoter regions of both C4 (C4PPDK and PCK1) and non-C4 genes (CyPPDK1, CyPPDK2, and PCK2) correlated well with their transcripts abundance in stems. In photosynthetic organs (stems and leaves), dimethylation of histone H3 lysine 9 (H3K9me2) negatively correlated with mRNA levels of both C4 and non-C4 genes. Taken together, our data suggest that histone modification was involved in the transcription regulation of both C4 genes and non-C4 genes, which might provide a clue of the functional evolution of C4 genes. PMID:27161567

  11. Soluble Invertase Expression Is an Early Target of Drought Stress during the Critical, Abortion-Sensitive Phase of Young Ovary Development in Maize1

    PubMed Central

    Andersen, Mathias Neumann; Asch, Folkard; Wu, Yong; Jensen, Christian Richardt; Næsted, Henrik; Mogensen, Vagn Overgaard; Koch, Karen Elaine

    2002-01-01

    To distinguish their roles in early kernel development and stress, expression of soluble (Ivr2) and insoluble (Incw2) acid invertases was analyzed in young ovaries of maize (Zea mays) from 6 d before (−6 d) to 7 d after pollination (+7 d) and in response to perturbation by drought stress treatments. The Ivr2 soluble invertase mRNA was more abundant than the Incw2 mRNA throughout pre- and early post-pollination development (peaking at +3 d). In contrast, Incw2 mRNAs increased only after pollination. Drought repression of the Ivr2 soluble invertase also preceded changes in Incw2, with soluble activity responding before pollination (−4 d). Distinct profiles of Ivr2 and Incw2 mRNAs correlated with respective enzyme activities and indicated separate roles for these invertases during ovary development and stress. In addition, the drought-induced decrease and developmental changes of ovary hexose to sucrose ratio correlated with activity of soluble but not insoluble invertase. Ovary abscisic acid levels were increased by severe drought only at −6 d and did not appear to directly affect Ivr2 expression. In situ analysis showed localized activity and Ivr2 mRNA for soluble invertase at sites of phloem-unloading and expanding maternal tissues (greatest in terminal vascular zones and nearby cells of pericarp, pedicel, and basal nucellus). This early pattern of maternal invertase localization is clearly distinct from the well-characterized association of insoluble invertase with the basal endosperm later in development. This localization, the shifts in endogenous hexose to sucrose environment, and the distinct timing of soluble and insoluble invertase expression during development and stress collectively indicate a key role and critical sensitivity of the Ivr2 soluble invertase gene during the early, abortion-susceptible phase of development. PMID:12376627

  12. Isolation of high-quality RNA from grains of different maize varieties.

    PubMed

    Messias, Rafael da Silva; Galli, Vanessa; Buss, Julieti Huch; Borowski, Joyce Moura; Nora, Leonardo; e Silva, Sérgio Delmar dos Anjos; Margis, Rogério; Rombaldi, Cesar Valmor

    2014-10-01

    The study of gene expression in maize varieties represents a powerful tool aiming to increase vitamin A precursors. However, the isolation of RNA from different maize varieties is challenging because these varieties show different levels of polysaccharides, and most methods available for RNA isolation are inappropriate for grain samples. The polysaccharides co-purify and co-precipitate with RNA during isolation, resulting in low-quality RNA, compromising the use of RNA in subsequent applications. Thus, a cetyltrimethylammonium bromide (CTAB)-based method was adapted in this study and compared with six methods for RNA isolation, including commercial reagents and RNA and DNA isolation kits, in order to identify the most appropriate for maize grains from different varieties. Most of the methods evaluated were considered inadequate due to limitations in terms of purity and/or quantity of the isolated RNA, which affected the efficiency of subsequent RT-qPCR analysis, resulting in nonamplification of β-carotene hydroxylase gene (HYD3) or high deviation among replicates. However, the CTAB modified method allowed the study to obtain intact RNA, with high quality and quantity, from 25 maize varieties. Furthermore, this RNA was successfully used to evaluate the expression of HYD3 gene by real-time qualitative polymerase chain reaction (RT-qPCR), and thus represents a simple, efficient, and low-cost strategy.

  13. Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation

    PubMed Central

    Jin, Minliang; Liu, Haijun; He, Cheng; Fu, Junjie; Xiao, Yingjie; Wang, Yuebin; Xie, Weibo; Wang, Guoying; Yan, Jianbing

    2016-01-01

    Gene expression variation largely contributes to phenotypic diversity and constructing pan-transcriptome is considered necessary for species with complex genomes. However, the regulation mechanisms and functional consequences of pan-transcriptome is unexplored systematically. By analyzing RNA-seq data from 368 maize diverse inbred lines, we identified almost one-third nuclear genes under expression presence and absence variation, which tend to play regulatory roles and are likely regulated by distant eQTLs. The ePAV was directly used as “genotype” to perform GWAS for 15 agronomic phenotypes and 526 metabolic traits to efficiently explore the associations between transcriptomic and phenomic variations. Through a modified assembly strategy, 2,355 high-confidence novel sequences with total 1.9 Mb lengths were found absent within reference genome. Ten randomly selected novel sequences were fully validated with genomic PCR, including another two NBS_LRR candidates potentially affect flavonoids and disease-resistance. A simulation analysis suggested that the pan-transcriptome of the maize whole kernel is approaching a maximum value of 63,000 genes, and through developing two test-cross populations and surveying several most important yield traits, the dispensable genes were shown to contribute to heterosis. Novel perspectives and resources to discover maize quantitative trait variations were provided to better understand the kernel regulation networks and to enhance maize breeding. PMID:26729541

  14. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers.

    PubMed

    Hutchison, W D; Burkness, E C; Mitchell, P D; Moon, R D; Leslie, T W; Fleischer, S J; Abrahamson, M; Hamilton, K L; Steffey, K L; Gray, M E; Hellmich, R L; Kaster, L V; Hunt, T E; Wright, R J; Pecinovsky, K; Rabaey, T L; Flood, B R; Raun, E S

    2010-10-01

    Transgenic maize engineered to express insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) has become widely adopted in U.S. agriculture. In 2009, Bt maize was planted on more than 22.2 million hectares, constituting 63% of the U.S. crop. Using statistical analysis of per capita growth rate estimates, we found that areawide suppression of the primary pest Ostrinia nubilalis (European corn borer) is associated with Bt maize use. Cumulative benefits over 14 years are an estimated $3.2 billion for maize growers in Illinois, Minnesota, and Wisconsin, with more than $2.4 billion of this total accruing to non-Bt maize growers. Comparable estimates for Iowa and Nebraska are $3.6 billion in total, with $1.9 billion for non-Bt maize growers. These results affirm theoretical predictions of pest population suppression and highlight economic incentives for growers to maintain non-Bt maize refugia for sustainable insect resistance management.

  15. A recombinant canine distemper virus expressing a modified rabies virus glycoprotein induces immune responses in mice.

    PubMed

    Li, Zhili; Wang, Jigui; Yuan, Daoli; Wang, Shuang; Sun, Jiazeng; Yi, Bao; Hou, Qiang; Mao, Yaping; Liu, Weiquan

    2015-06-01

    Canine distemper virus (CDV) and rabies virus (RV) are two important pathogens of the dog. CDV, a member of the morbillivirus genus, has shown promise as an expression vector. The glycoprotein from RV is a main contributor to protective immunity and capable of eliciting the production of virus-neutralizing antibodies. In this study, we recovered an attenuated strain of canine distemper virus and constructed a recombinant virus, rCDV-RV-G, expressing a modified (R333Q) rabies virus glycoprotein (RV-G) of RV Flury strain LEP. RV-G expression by the recombinant viruses was confirmed. Furthermore, G was proved to be incorporated into the surface of CDV particles. While replication of the recombinant virus was slightly reduced compared with the parental CDV, it stably expressed the RV-G over ten serial passages. Inoculation of mice induced specific neutralizing antibodies against both RV-G and CDV. Therefore, the rCDV-RV-G has the potential as a vaccine that may be used to control rabies virus infection in dogs and other animals. PMID:25764477

  16. High level protein expression in mammalian cells using a safe viral vector: modified vaccinia virus Ankara.

    PubMed

    Hebben, Matthias; Brants, Jan; Birck, Catherine; Samama, Jean-Pierre; Wasylyk, Bohdan; Spehner, Danièle; Pradeau, Karine; Domi, Arban; Moss, Bernard; Schultz, Patrick; Drillien, Robert

    2007-12-01

    Vaccinia virus vectors are attractive tools to direct high level protein synthesis in mammalian cells. In one of the most efficient strategies developed so far, the gene to be expressed is positioned downstream of a bacteriophage T7 promoter within the vaccinia genome and transcribed by the T7 RNA polymerase, also encoded by the vaccinia virus genome. Tight regulation of transcription and efficient translation are ensured by control elements of the Escherichia coli lactose operon and the encephalomyocarditis virus leader sequence, respectively. We have integrated such a stringently controlled expression system, previously used successfully in a standard vaccinia virus backbone, into the modified vaccinia virus Ankara strain (MVA). In this manner, proteins of interest can be produced in mammalian cells under standard laboratory conditions because of the inherent safety of the MVA strain. Using this system for expression of beta-galactosidase, about 15 mg protein could be produced from 10(8) BHK21 cells over a 24-h period, a value 4-fold higher than the amount produced from an identical expression system based on a standard vaccinia virus strain. In another application, we employed the MVA vector to produce human tubulin tyrosine ligase and demonstrate that this protein becomes a major cellular protein upon induction conditions and displays its characteristic enzymatic activity. The MVA vector should prove useful for many other applications in which mammalian cells are required for protein production. PMID:17892951

  17. Modified PCR methods for 3' end amplification from serial analysis of gene expression (SAGE) tags.

    PubMed

    Xu, Wang-Jie; Wang, Zhao-Xia; Qiao, Zhong-Dong

    2009-05-01

    Serial analysis of gene expression (SAGE) is a powerful technique to study gene expression at the genome level. However, a disadvantage of the shortness of SAGE tags is that it prevents further study of SAGE library data, thus limiting extensive application of the SAGE method in gene expression studies. However, this problem can be solved by extension of the SAGE tags to 3' cDNAs. Therefore, several methods based on PCR have been developed to generate a 3' longer fragment cDNA corresponding to a SAGE tag. The list of modified methods is extensive, and includes rapid RT-PCR analysis of unknown SAGE tags (RAST-PCR), generation of longer cDNA fragments from SAGE tags for gene identification (GLGI), a high-throughput GLGI procedure, reverse SAGE (rSAGE), two-step analysis of unknown SAGE tags (TSAT-PCR), etc. These procedures are constantly being updated because they have characteristics and advantages that can be shared. Development of these methods has promoted the widespread use of the SAGE technique, and has accelerated the speed of studies of large-scale gene expression.

  18. Recurrent selection for transgene expression levels in maize results in proxy selection for a native gene with the same promoter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High expression levels of a transgene can be very useful, making a transgene easier to evaluate for safety and efficacy. High expression levels can also increase the economic benefit of the production of high value proteins in transgenic plants. The goal of this research is to determine if recurre...

  19. Genome-wide analysis of the maize (Zea may L.) CPP-like gene family and expression profiling under abiotic stress.

    PubMed

    Song, X Y; Zhang, Y Y; Wu, F C; Zhang, L

    2016-01-01

    Cysteine-rich polycomb-like (CPP) proteins are members of a small family of transcription factors, which have been identified and characterized in Arabidopsis, rice, and soybean. In this study, we investigated CPP-like genes in the maize genome. The results revealed 13 putative CPP-like genes, which were found to encode 17 distinct transcripts and were distributed unequally on 7 of 10 maize chromosomes. Analysis of phylogenetic relationships showed that Arabidopsis, rice, and maize CPP-like transcription factors can be grouped into two subfamilies. We also used real-time RT-PCR to evaluate changes in the transcript levels of ZmCPP genes in response to abiotic stresses (heat, cold, salt, and drought stresses). These findings provide an overview of the evolution of the ZmCPP gene family, which will aid in the functional characterization of CPP-like genes in maize growth and development. PMID:27525875

  20. Maize Adh-1 promoter sequences control anaerobic regulation: addition of upstream promoter elements from constitutive genes is necessary for expression in tobacco

    PubMed Central

    Ellis, J.G.; Llewellyn, D.J.; Dennis, E.S.; Peacock, W.J.

    1987-01-01

    The promoter region of a maize alcohol dehydrogenase gene (Adh-1) was linked to a reporter gene encoding chloramphenicol acetyl transferase (CAT) and transformed stably into tobacco cells using T-DNA vectors. No CAT enzyme activity could be detected in transgenic tobacco plants unless upstream promoter elements from the octopine synthase gene or the cauliflower mosaic virus 35S promoter were supplied in addition to the maize promoter region. CAT enzyme activity and transcription of the chimaeric gene were then readily detected after anaerobic induction. The first 247 bp upstream of the translation initiation codon of the maize Adh-1 gene were sufficient to impose anaerobic regulation on the hybrid gene and S1 nuclease mapping confirmed mRNA initiation is from the normal maize Adh-1 transcription start point. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6. PMID:15981329

  1. Temporal shift of circadian-mediated gene expression and carbon fixation contributes to biomass heterosis in maize hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterosis has been widely used in agriculture, but the molecular mechanism for this remains largely elusive. In Arabidopsis hybrids and allopolyploids, increased photosynthetic and metabolic activities are linked to altered expression of circadian clock regulators, including CIRCADIAN CLOCK ASSOCIAT...

  2. Gene flow scenarios with transgenic maize in Mexico.

    PubMed

    Serratos-Hernández, José-Antonio; Islas-Gutiérrez, Fabián; Buendía-Rodríguez, Enrique; Berthaud, Julien

    2004-01-01

    Maize diversity is widespread in Mexico and it has been stewarded by campesinos in small communities until the present. With the arrival of transgenic maize, the objective of this study is to analyze possible scenarios that could result if genetically modified maize were not regulated and openly available in Mexico. By applying a simple logistic model based on the conditions of maize production in Mexico, the dispersion of transgenic maize in different situations within fields of farmers is described. In traditional open systems of freely exchanged seed within communities it is concluded that the most likely outcome of GM maize release is the incorporation of transgenes in the genome of Mexican germplasm and possibly in that of teosinte.

  3. Vancomycin modifies the expression of the agr system in multidrug-resistant Staphylococcus aureus clinical isolates

    PubMed Central

    Cázares-Domínguez, Vicenta; Ochoa, Sara A.; Cruz-Córdova, Ariadnna; Rodea, Gerardo E.; Escalona, Gerardo; Olivares, Alma L.; Olivares-Trejo, José de Jesús; Velázquez-Guadarrama, Norma; Xicohtencatl-Cortes, Juan

    2015-01-01

    Staphylococcus aureus is an opportunistic pathogen that colonizes human hosts and causes a wide variety of diseases. Two interacting regulatory systems called agr (accessory gene regulator) and sar (staphylococcal accessory regulator) are involved in the regulation of virulence factors. The aim of this study was to evaluate the effect of vancomycin on hld and spa gene expression during the exponential and post-exponential growth phases in multidrug-resistant (MDR) S. aureus. Methods: Antibiotic susceptibility was evaluated by the standard microdilution method. The phylogenetic profile was obtained by pulsed-field gel electrophoresis (PFGE). Polymorphisms of agr and SCCmec (staphylococcal cassette chromosome mec) were analyzed by multiplex polymerase chain reaction (PCR). The expression levels of hld and spa were analyzed by reverse transcription-PCR. An enzyme-linked immunosorbent assay (ELISA) was performed to detect protein A, and biofilm formation was analyzed via crystal violet staining. Results: In total, 60.60% (20/33) of S. aureus clinical isolates were MDR. Half (10/20) of the MDR S. aureus isolates were distributed in subcluster 10, with >90% similarity among them. In the isolates of this subcluster, a high prevalence (100%) for the agrII and the cassette SCCmec II polymorphisms was found. Our data showed significant increases in hld expression during the post-exponential phase in the presence and absence of vancomycin. Significant increases in spa expression, protein A production and biofilm formation were observed during the post-exponential phase when the MDR S. aureus isolates were challenged with vancomycin. Conclusion: The polymorphism agrII, which is associated with nosocomial isolates, was the most prevalent polymorphism in MDR S. aureus. Additionally, under our study conditions, vancomycin modified hld and spa expression in these clinical isolates. Therefore, vancomycin may regulate alternative systems that jointly participate in the regulation of

  4. Analysis of transgenic wheat (Triticum aestivum L.) harboring a maize (Zea mays L.) gene for plastid EF-Tu: segregation pattern, expression and effects of the transgene.

    PubMed

    Fu, Jianming; Ristic, Zoran

    2010-06-01

    We previously reported that transgenic wheat (Triticum aestivum L.) carrying a maize (Zea mays L.) gene (Zmeftu1) for chloroplast protein synthesis elongation factor, EF-Tu, displays reduced thermal aggregation of leaf proteins, reduced injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation following exposure to heat stress (18 h at 45 degrees C) [Fu et al. in Plant Mol Biol 68:277-288, 2008]. In the current study, we investigated the segregation pattern and expression of the transgene Zmeftu1 and determined the grain yield of transgenic plants after exposure to a brief heat stress (18 h at 45 degrees C). We also assessed thermal aggregation of soluble leaf proteins in transgenic plants, testing the hypothesis that increased levels of EF-Tu will lead to a non-specific protection of leaf proteins against thermal aggregation. The transgenic wheat displayed a single-gene pattern of segregation of Zmeftu1. Zmeftu1 was expressed, and the transgenic plants synthesized and accumulated three anti-EF-Tu cross-reacting polypeptides of similar molecular mass but different pI, suggesting the possibility of posttranslational modification of this protein. The transgenic plants also showed better grain yield after exposure to heat stress compared with their non-transgenic counterparts. Soluble leaf proteins of various molecular masses displayed lower thermal aggregation in transgenic than in non-transgenic wheat. The results suggest that overexpression of chloroplast EF-Tu can be beneficial to wheat tolerance to heat stress. Moreover, the results also support the hypothesis that EF-Tu contributes to heat tolerance by acting as a molecular chaperone and protecting heat-labile proteins from thermal aggregation in a non-specific manner.

  5. Antibiotic resistance and multidrug-resistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage.

    PubMed

    Wacher-Rodarte, Maria Del Carmen; Trejo-Muñúzuri, Tanya Paulina; Montiel-Aguirre, Jesús Fernando; Drago-Serrano, Maria Elisa; Gutiérrez-Lucas, Raúl L; Castañeda-Sánchez, Jorge Ismael; Sainz-Espuñes, Teresita

    2016-05-01

    Pozol is a handcrafted nonalcoholic Mayan beverage produced by the spontaneous fermentation of maize dough by lactic acid bacteria. Lactic acid bacteria (LAB) are carriers of chromosomal encoded multidrug-resistant efflux pumps genes that can be transferred to pathogens and/or confer resistance to compounds released during the fermentation process causing food spoiling. The aim of this study was to evaluate the antibiotic sensibility and the transcriptional expression of ABC-type efflux pumps in LAB isolated from pozol that contributes to multidrug resistance. Analysis of LAB and Staphylococcus (S.) aureus ATCC 29213 and ATCC 6538 control strains to antibiotic susceptibility, minimal inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) to ethidium bromide were based in "standard methods" whereas the ethidium bromide efflux assay was done by fluorometric assay. Transcriptional expression of efflux pumps was analyzed by RT-PCR. LAB showed antibiotic multiresistance profiles, moreover, Lactococcus (L.) lactis and Lactobacillus (L.) plantarum displayed higher ethidium bromide efflux phenotype than S. aureus control strains. Ethidium bromide resistance and ethidium bromide efflux phenotypes were unrelated with the overexpression of lmrD in L. lactics, or the underexpression of lmrA in L. plantarum and norA in S. aureus. These findings suggest that, moreover, the analyzed efflux pumps genes, other unknown redundant mechanisms may underlie the antibiotic resistance and the ethidium bromide efflux phenotype in L. lactis and L. plantarum. Phenotypic and molecular drug multiresistance assessment in LAB may improve a better selection of the fermentation starter cultures used in pozol, and to control the antibiotic resistance widespread and food spoiling for health safety.

  6. Antibiotic resistance and multidrug-resistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage.

    PubMed

    Wacher-Rodarte, Maria Del Carmen; Trejo-Muñúzuri, Tanya Paulina; Montiel-Aguirre, Jesús Fernando; Drago-Serrano, Maria Elisa; Gutiérrez-Lucas, Raúl L; Castañeda-Sánchez, Jorge Ismael; Sainz-Espuñes, Teresita

    2016-05-01

    Pozol is a handcrafted nonalcoholic Mayan beverage produced by the spontaneous fermentation of maize dough by lactic acid bacteria. Lactic acid bacteria (LAB) are carriers of chromosomal encoded multidrug-resistant efflux pumps genes that can be transferred to pathogens and/or confer resistance to compounds released during the fermentation process causing food spoiling. The aim of this study was to evaluate the antibiotic sensibility and the transcriptional expression of ABC-type efflux pumps in LAB isolated from pozol that contributes to multidrug resistance. Analysis of LAB and Staphylococcus (S.) aureus ATCC 29213 and ATCC 6538 control strains to antibiotic susceptibility, minimal inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) to ethidium bromide were based in "standard methods" whereas the ethidium bromide efflux assay was done by fluorometric assay. Transcriptional expression of efflux pumps was analyzed by RT-PCR. LAB showed antibiotic multiresistance profiles, moreover, Lactococcus (L.) lactis and Lactobacillus (L.) plantarum displayed higher ethidium bromide efflux phenotype than S. aureus control strains. Ethidium bromide resistance and ethidium bromide efflux phenotypes were unrelated with the overexpression of lmrD in L. lactics, or the underexpression of lmrA in L. plantarum and norA in S. aureus. These findings suggest that, moreover, the analyzed efflux pumps genes, other unknown redundant mechanisms may underlie the antibiotic resistance and the ethidium bromide efflux phenotype in L. lactis and L. plantarum. Phenotypic and molecular drug multiresistance assessment in LAB may improve a better selection of the fermentation starter cultures used in pozol, and to control the antibiotic resistance widespread and food spoiling for health safety. PMID:27247772

  7. Disease-modifying factors in hereditary angioedema: an RNA expression-based screening

    PubMed Central

    2013-01-01

    infectious diseases as a modifying factor for HAE severity, large-scale studies would be needed to statistically associate such expression pattern to the development of this rare disease. PMID:23688356

  8. The Cry1Ab Protein Has Minor Effects on the Arbuscular Mycorrhizal Fungal Communities after Five Seasons of Continuous Bt Maize Cultivation

    PubMed Central

    Shu, Yinghua; Zhang, Yanyan; Feng, Yuanjiao; Wang, Jianwu

    2015-01-01

    The cultivation of genetically modified plants (GMP) has raised concerns regarding the plants’ ecological safety. A greenhouse experiment was conducted to assess the impact of five seasons of continuous Bt (Bacillus thuringiensis) maize cultivation on the colonisation and community structure of the non-target organisms arbuscular mycorrhizal fungi (AMF) in the maize roots, bulk soils and rhizospheric soils using the terminal restriction fragment length polymorphism (T-RFLP) analysis of the 28S ribosomal DNA and sequencing methods. AMF colonisation was significantly higher in the two Bt maize lines that express Cry1Ab, 5422Bt1 (event Bt11) and 5422CBCL (MON810) than in the non-Bt isoline 5422. No significant differences were observed in the diversity of the AMF community between the roots, bulk soils and rhizospheric soils of the Bt and non-Bt maize cultivars. The AMF genus Glomus was dominant in most of the samples, as detected by DNA sequencing. A clustering analysis based on the DNA sequence data suggested that the sample types (i.e., the samples from the roots, bulk soils or rhizospheric soils) might have greater influence on the AMF community phylotypes than the maize cultivars. This study indicated that the Cry1Ab protein has minor effects on the AMF communities after five seasons of continuous Bt maize cultivation. PMID:26717324

  9. The Cry1Ab Protein Has Minor Effects on the Arbuscular Mycorrhizal Fungal Communities after Five Seasons of Continuous Bt Maize Cultivation.

    PubMed

    Zeng, Huilan; Tan, Fengxiao; Shu, Yinghua; Zhang, Yanyan; Feng, Yuanjiao; Wang, Jianwu

    2015-01-01

    The cultivation of genetically modified plants (GMP) has raised concerns regarding the plants' ecological safety. A greenhouse experiment was conducted to assess the impact of five seasons of continuous Bt (Bacillus thuringiensis) maize cultivation on the colonisation and community structure of the non-target organisms arbuscular mycorrhizal fungi (AMF) in the maize roots, bulk soils and rhizospheric soils using the terminal restriction fragment length polymorphism (T-RFLP) analysis of the 28S ribosomal DNA and sequencing methods. AMF colonisation was significantly higher in the two Bt maize lines that express Cry1Ab, 5422Bt1 (event Bt11) and 5422CBCL (MON810) than in the non-Bt isoline 5422. No significant differences were observed in the diversity of the AMF community between the roots, bulk soils and rhizospheric soils of the Bt and non-Bt maize cultivars. The AMF genus Glomus was dominant in most of the samples, as detected by DNA sequencing. A clustering analysis based on the DNA sequence data suggested that the sample types (i.e., the samples from the roots, bulk soils or rhizospheric soils) might have greater influence on the AMF community phylotypes than the maize cultivars. This study indicated that the Cry1Ab protein has minor effects on the AMF communities after five seasons of continuous Bt maize cultivation.

  10. Overexpression of an Acidic Endo-β-1,3-1,4-glucanase in Transgenic Maize Seed for Direct Utilization in Animal Feed

    PubMed Central

    Zhou, Xiaojin; Chen, Rumei; Yang, Peilong; Meng, Qingchang; Meng, Kun; Luo, Huiying; Yuan, Jianhua; Yao, Bin; Zhang, Wei

    2013-01-01

    Background Incorporation of exogenous glucanase into animal feed is common practice to remove glucan, one of the anti-nutritional factors, for efficient nutrition absorption. The acidic endo-β-1,3-1,4-glucanase (Bgl7A) from Bispora sp. MEY-1 has excellent properties and represents a potential enzyme supplement to animal feed. Methodology/Principal Findings Here we successfully developed a transgenic maize producing a high level of Bgl7AM (codon modified Bgl7A) by constructing a recombinant vector driven by the embryo-specific promoter ZM-leg1A. Southern and Western blot analysis indicated the stable integration and specific expression of the transgene in maize seeds over four generations. The β-glucanase activity of the transgenic maize seeds reached up to 779,800 U/kg, about 236-fold higher than that of non-transgenic maize. The β-glucanase derived from the transgenic maize seeds had an optimal pH of 4.0 and was stable at pH 1.0–8.0, which is in agreement with the normal environment of digestive tract. Conclusion/Significance Our study offers a transgenic maize line that could be directly used in animal feed without any glucanase production, purification and supplementation, consequently simplifying the feed enzyme processing procedure. PMID:24391711

  11. The Cry1Ab Protein Has Minor Effects on the Arbuscular Mycorrhizal Fungal Communities after Five Seasons of Continuous Bt Maize Cultivation.

    PubMed

    Zeng, Huilan; Tan, Fengxiao; Shu, Yinghua; Zhang, Yanyan; Feng, Yuanjiao; Wang, Jianwu

    2015-01-01

    The cultivation of genetically modified plants (GMP) has raised concerns regarding the plants' ecological safety. A greenhouse experiment was conducted to assess the impact of five seasons of continuous Bt (Bacillus thuringiensis) maize cultivation on the colonisation and community structure of the non-target organisms arbuscular mycorrhizal fungi (AMF) in the maize roots, bulk soils and rhizospheric soils using the terminal restriction fragment length polymorphism (T-RFLP) analysis of the 28S ribosomal DNA and sequencing methods. AMF colonisation was significantly higher in the two Bt maize lines that express Cry1Ab, 5422Bt1 (event Bt11) and 5422CBCL (MON810) than in the non-Bt isoline 5422. No significant differences were observed in the diversity of the AMF community between the roots, bulk soils and rhizospheric soils of the Bt and non-Bt maize cultivars. The AMF genus Glomus was dominant in most of the samples, as detected by DNA sequencing. A clustering analysis based on the DNA sequence data suggested that the sample types (i.e., the samples from the roots, bulk soils or rhizospheric soils) might have greater influence on the AMF community phylotypes than the maize cultivars. This study indicated that the Cry1Ab protein has minor effects on the AMF communities after five seasons of continuous Bt maize cultivation. PMID:26717324

  12. Effects of overexpression of PKAc genes on expressions of lignin-modifying enzymes by Pleurotus ostreatus.

    PubMed

    Toyokawa, Chihana; Shobu, Misaki; Tsukamoto, Rie; Okamura, Saki; Honda, Yoichi; Kamitsuji, Hisatoshi; Izumitsu, Kousuke; Suzuki, Kazumi; Irie, Toshikazu

    2016-09-01

    We studied the role of genes encoding the cAMP-dependent protein kinase A catalytic subunit (PKAc) in the ligninolytic system in Pleurotus ostreatus. The wild-type P. ostreatus strain PC9 has two PKAc-encoding genes: PKAc1 and PKAc2 (protein ID 114122 and 85056). In the current study, PKAc1 and PKAc2 were fused with a β-tubulin promoter and introduced into strain PC9 to produce the overexpression strains PKAc1-97 and PKAc2-69. These strains showed significantly higher transcription levels of isozyme genes encoding lignin-modifying enzymes than strain PC9, but the specific gene expression patterns differed between the two recombinant strains. Both recombinants showed 2.05-2.10-fold faster degradation of beechwood lignin than strain PC9. These results indicate that PKAc plays an important role in inducing the wood degradation system in P. ostreatus. PMID:26979984

  13. Purification and physico-chemical characterisation of genetically modified phytases expressed in Aspergillus awamori.

    PubMed

    Martin, Judith A; Murphy, Richard A; Power, Ronan F G

    2006-09-01

    Two heterologous phytases from Aspergillus awamori and Aspergillus fumigatus obtained from submerged cultures of genetically modified fungal strains in addition to two commercially available phytase preparations (Allzyme and Natuphos phytases) were purified to homogeneity using a combination of ultrafiltration, gel filtration and ion exchange. The purified preparations were used in subsequent characterisation studies, in which Western Immunoblot analysis, pH and temperature optima, thermal stability and substrate specificity were assessed. A. fumigatus phyA phytase expressed in A. awamori exhibited activity over a broad pH range together with an increased temperature optimum, and slightly enhanced thermal stability compared to the other phytases tested, and is thus a promising candidate for animal feed applications. This particular phytase retains activity over a wide range of pH values characteristic of the digestive tract and could conceivably be more suited to the increasingly higher feed processing temperatures being utilised today, than the corresponding phytases from Aspergillus niger. PMID:16243522

  14. Genes and small RNA transcripts exhibit dosage-dependent expression pattern in maize copy-number alterations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copy-number alterations are widespread in animal and plant genomes, but their immediate impact on gene expression is still unclear. In animals, copy-number alterations usually exhibit dosage effects, except for sex chromosomes that tend to be dosage compensated. In plants, genes within small duplica...

  15. Evaluation of resistance to aflatoxin contamination in kernels of maize genotypes using a GFP-expressing Aspergillus flavus strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of resistance or susceptibility of corn inbreds to infection by Aspergillus flavus was evaluated by a kernel screening assay. A GFP-expressing strain of A. flavus was used to accomplish this study to measure fungal spread and aflatoxin levels in real time. Among the four inbreds tested, ...

  16. MaizeCyc: Metabolic networks in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MaizeCyc is a catalog of known and predicted metabolic and transport pathways that enables plant researchers to graphically represent the metabolome of maize (Zea mays), thereby supporting integrated systems-biology analysis. Supported analyses include molecular and genetic/phenotypic profiling (e.g...

  17. PUNCTATE VASCULAR EXPRESSION1 Is a Novel Maize Gene Required for Leaf Pattern Formation That Functions Downstream of the Trans-Acting Small Interfering RNA Pathway1[C][W][OA

    PubMed Central

    Zhang, Xiaolan; Douglas, Ryan N.; Strable, Josh; Lee, Michelle; Buckner, Brent; Janick-Buckner, Diane; Schnable, Patrick S.; Timmermans, Marja C.P.; Scanlon, Michael J.

    2012-01-01

    The maize (Zea mays) gene RAGGED SEEDLING2-R (RGD2-R) encodes an ARGONAUTE7-like protein required for the biogenesis of trans-acting small interfering RNA, which regulates the accumulation of AUXIN RESPONSE FACTOR3A transcripts in shoots. Although dorsiventral polarity is established in the narrow and cylindrical leaves of rgd2-R mutant plants, swapping of adaxial/abaxial epidermal identity occurs and suggests a model wherein RGD2 is required to coordinate dorsiventral and mediolateral patterning in maize leaves. Laser microdissection-microarray analyses of the rgd2-R mutant shoot apical meristem identified a novel gene, PUNCTATE VASCULAR EXPRESSION1 (PVE1), that is down-regulated in rgd2-R mutant apices. Transcripts of PVE1 provide an early molecular marker for vascular morphogenesis. Reverse genetic analyses suggest that PVE1 functions during vascular development and in mediolateral and dorsiventral patterning of maize leaves. Molecular genetic analyses of PVE1 and of rgd2-R;pve1-M2 double mutants suggest a model wherein PVE1 functions downstream of RGD2 in a pathway that intersects and interacts with the trans-acting small interfering RNA pathway. PMID:22669891

  18. Early transcriptomic adaptation to Na₂CO₃ stress altered the expression of a quarter of the total genes in the maize genome and exhibited shared and distinctive profiles with NaCl and high pH stresses.

    PubMed

    Zhang, Li-Min; Liu, Xiang-Guo; Qu, Xin-Ning; Yu, Ying; Han, Si-Ping; Dou, Yao; Xu, Yao-Yao; Jing, Hai-Chun; Hao, Dong-Yun

    2013-11-01

    Sodium carbonate (Na₂CO₃) presents a huge challenge to plants by the combined damaging effects of Na⁺, high pH, and CO₃²⁻. Little is known about the cellular responses to Na₂CO₃ stress. In this study, the transcriptome of maize (Zea mays L. cv. B73) roots exposed to Na₂CO₃ stress for 5 h was compared with those of NaCl and NaOH stresses. The expression of 8,319 genes, representing over a quarter of the total number of genes in the maize genome, was altered by Na₂CO₃ stress, and the downregulated genes (5,232) outnumbered the upregulated genes (3,087). The effects of Na₂CO₃ differed from those of NaCl and NaOH, primarily by downregulating different categories of genes. Pathways commonly altered by Na₂CO₃, NaCl, and NaOH were enriched in phenylpropanoid biosynthesis, oxidation of unsaturated fatty acids, ATP-binding cassette (ABC) transporters, as well as the metabolism of secondary metabolites. Genes for brassinosteroid biosynthesis were specifically upregulated by Na₂CO₃, while genes involved in ascorbate and aldarate metabolism, protein processing in the endoplasmic reticulum and by N-glycosylation, fatty acid biosynthesis, and the circadian rhythm were downregulated. This work provides the first holistic picture of early transcriptomic adaptation to Na₂CO₃ stress, and highlights potential molecular pathways that could be manipulated to improve tolerance in maize.

  19. Modulation of chromatin modifying factors' gene expression in embryonic and induced pluripotent stem cells.

    PubMed

    Luzzani, Carlos; Solari, Claudia; Losino, Noelia; Ariel, Waisman; Romorini, Leonardo; Bluguermann, Carolina; Sevlever, Gustavo; Barañao, Lino; Miriuka, Santiago; Guberman, Alejandra

    2011-07-15

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are a promising source of cells for regenerative medicine because of their potential of self renew and differentiation. Multiple evidences highlight the relationship of chromatin remodeling with stem cell properties, differentiation programs and reprogramming for iPSC obtention. With the purpose of finding chromatin modifying factors relevant to these processes, and based on ChIP on chip studies, we selected several genes that could be modulated by Oct4, Sox2 and Nanog, critical transcription factors in stem cells, and studied their expression profile along the differentiation in mouse and human ESCs, and in mouse iPSCs. In this work, we analyzed the expression of Gcn5l2, GTF3C3, TAF15, ATF7IP, Myst2, HDAC2, HDAC3, HDAC5, HDAC10, SUV39H2, Jarid2, and Bmi-1. We found some genes from different functional groups that were highly modulated, suggesting that they could be relevant both in the undifferentiated state and during differentiation. These findings could contribute to the comprehension of molecular mechanisms involved in pluripotency, early differentiation and reprogramming. We believe that a deeper knowledge of the epigenetic regulation of ESC will allow improving somatic cell reprogramming for iPSC obtention and differentiation protocols optimization.

  20. Analysis of expressed sequence tags from Maize mosaic rhabdovirus-infected gut tissues of Peregrinus maidis reveals the presence of key components of insect innate immunity.

    PubMed

    Whitfield, A E; Rotenberg, D; Aritua, V; Hogenhout, S A

    2011-04-01

    The corn planthopper, Peregrinus maidis, causes direct feeding damage to plants and transmits Maize mosaic rhabdovirus (MMV) in a persistent-propagative manner. MMV must cross several insect tissue layers for successful transmission to occur, and the gut serves as an important barrier for rhabdovirus transmission. In order to facilitate the identification of proteins that may interact with MMV either by facilitating acquisition or responding to virus infection, we generated and analysed the gut transcriptome of P. maidis. From two normalized cDNA libraries, we generated a P. maidis gut transcriptome composed of 20,771 expressed sequence tags (ESTs). Assembly of the sequences yielded 1860 contigs and 14,032 singletons, and biological roles were assigned to 5793 (36%). Comparison of P. maidis ESTs with other insect amino acid sequences revealed that P. maidis shares greatest sequence similarity with another hemipteran, the brown planthopper Nilaparvata lugens. We identified 202 P. maidis transcripts with putative homology to proteins associated with insect innate immunity, including those implicated in the Toll, Imd, JAK/STAT, Jnk and the small-interfering RNA-mediated pathways. Sequence comparisons between our P. maidis gut EST collection and the currently available National Center for Biotechnology Information EST database collection for Ni. lugens revealed that a pathogen recognition receptor in the Imd pathway, peptidoglycan recognition protein-long class (PGRP-LC), is present in these two members of the family Delphacidae; however, these recognition receptors are lacking in the model hemipteran Acyrthosiphon pisum. In addition, we identified sequences in the P. maidis gut transcriptome that share significant amino acid sequence similarities with the rhabdovirus receptor molecule, acetylcholine receptor (AChR), found in other hosts. This EST analysis sheds new light on immune response pathways in hemipteran guts that will be useful for further dissecting innate

  1. Regulation of the expression of NADP-malic enzyme by UV-B, red and far-red light in maize seedlings.

    PubMed

    Casati, P; Drincovich, M F; Edwards, G E; Andreo, C S

    1999-10-01

    The induction of nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME) in etiolated maize (Zea mays) seedlings by UV-B and UV-A radiation, and different levels of photosynthetically active radiation (PAR, 400-700 nm) was investigated by measuring changes in activity, protein quantity and RNA levels as a function of intensity and duration of exposure to the different radiations. Under low levels of PAR, exposure to UV-B radiation but not UV-A radiation for 6 to 24 h caused a marked increase in the enzyme levels similar to that observed under high PAR in the absence of UV-B. UV-B treatment of green leaves following a 12-h dark period also caused an increase in NADP-ME expression. Exposure to UV-B radiation for only 5 min resulted in a rapid increase of the enzyme, followed by a more gradual rise with longer exposure up to 6 h. Low levels of red light for 5 min or 6 h were also effective in inducing NADP-ME activity equivalent to that obtained with UV-B radiation. A 5-min exposure to far-red light following UV-B or red light treatment reversed the induction of NADP-ME, and this effect could be eliminated by further treatment with UV-B or red light. These results indicate that physiological levels of UV-B radiation can have a positive effect on the induction of this photosynthetic enzyme. The reducing power and pyruvate generated by the activity of NADP-ME may be used for respiration, in cellular repair processes and as substrates for fatty acid synthesis required for membrane repair.

  2. Ectopic over-expression of the maize beta-glucosidase Zm-p60.1 perturbs cytokinin homeostasis in transgenic tobacco.

    PubMed

    Kiran, Nagavalli S; Polanská, Lenka; Fohlerová, Radka; Mazura, Pavel; Válková, Martina; Smeral, Miloslav; Zouhar, Jan; Malbeck, Jirí; Dobrev, Petre I; Machácková, Ivana; Brzobohaty, Bretislav

    2006-01-01

    The activity of the phytohormone cytokinin depends on a complex interplay of factors such as its metabolism, transport, stability, and cellular/tissue localization. O-glucosides of zeatin-type cytokinins are postulated to be storage and/or transport forms, and are readily deglucosylated. Transgenic tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) plants were constructed over-expressing Zm-p60.1, a maize beta-glucosidase capable of releasing active cytokinins from O- and N3-glucosides, to analyse its potential to perturb zeatin metabolism in planta. Zm-p60.1 in chloroplasts isolated from transgenic leaves has an apparent K(m) more than 10-fold lower than the purified enzyme in vitro. Adult transgenic plants grown in the absence of exogenous zeatin were morphologically indistinguishable from the wild type although differences in phytohormone levels were observed. When grown on medium containing zeatin, inhibition of root elongation was apparent in all seedlings 14 d after sowing (DAS). Between 14 and 21 DAS, the transgenic seedlings accumulated fresh weight leading later (28-32 DAS) to ectopic growths at the base of the hypocotyl. The development of ectopic structures correlated with the presence of the enzyme as demonstrated by histochemical staining. Cytokinin quantification showed that transgenic seedlings grown on medium containing zeatin accumulate active metabolites like zeatin riboside and zeatin riboside phosphate and this might lead to the observed changes. The presence of the enzyme around the base of the hypocotyl and later, in the ectopic structures themselves, suggests that the development of these structures is due to the perturbance in zeatin metabolism caused by the ectopic presence of Zm-p60.1.

  3. Leaf senescence is delayed in tobacco plants expressing the maize knotted1 gene under the control of a wound-inducible promoter.

    PubMed

    Luo, Keming; Deng, Wei; Xiao, Yuehua; Zheng, Xuelian; Li, Yi; Pei, Yan

    2006-11-01

    To extend the shelf life of freshly harvested vegetables and cut flowers, a maize homeobox gene Knotted1 (kn1) was placed under the control of a wound-inducible promoter win3.12 from hybrid poplar (Populus trichocarpa x P. deltoides) and introduced into tobacco plants (Nicotiana tabacum cv. Xanthi). Transgenic win3.12::kn1 plants were morphologically normal. A leaf-detachment assay demonstrated that senescence in win3.12::kn1 leaves could be delayed by at least 2 weeks compared with wild type leaves. Furthermore, all leaves of win3.12::kn1 shoots remained green and healthy 3 weeks after excision and incubation in water, while older leaves of control shoots senesced under the same conditions. Additionally, a number of adventitious roots produced at the cut ends of wild type shoots after a 3-week incubation, but much a less number of adventitious roots appeared in win3.12::kn1 shoots. The delay in senescence was also confirmed by a higher total chlorophyll (a + b) content in win3.12::kn1 leaves relative to that of the control plants. RT-PCR analysis showed that the kn1 transcript was detected in win3.12::kn1 leaves with wounding treatment, but otherwise was not observed in leaves of wild type and unwounded transgenic plants. The results presented here indicate that expression of kn1 gene driven by the wound-inducible promoter win3.12 is potentially useful to delay senescence of vegetable crops and commercial horticulture after harvest.

  4. Association of hemicellulose- and pectin-modifying gene expression with Eucalyptus globulus secondary growth.

    PubMed

    Goulao, Luis F; Vieira-Silva, Sara; Jackson, Phil A

    2011-08-01

    Wood properties are ultimately related to the morphology and biophysical properties of the xylem cell wall. Although the cellulose and lignin biosynthetic pathways have been extensively studied, modifications of other wall matrix components during secondary growth have attracted relatively less attention. In this work, thirty-eight new Eucalyptus cDNAs encoding cell wall-modifying proteins from nine candidate families that act on the cellulose-hemicellulose and pectin networks were cloned and their gene expression was investigated throughout the developing stem. Semi-quantitative RT-PCR revealed distinct, gene-specific transcription patterns for each clone, allowing the identification of genes up-regulated in xylem or phloem of stem regions undergoing secondary growth. Some genes, namely an endo-1,4-beta-glucanase, one mannan-hydrolase and three pectin methylesterases showed transcription in juvenile and also in mature stages of wood development. The patterns of gene expression using samples from tension and opposite wood disclosed a general trend for up-regulation in tension wood and/or down-regulation in opposite wood. Localised gene expression of two selected representative clones, EGl-XTH1 and EGl-XTH4, obtained through in situ hybridization confirms the RT-PCR results and association with secondary xylem formation. Likewise, immunolocalisation studies with the anti-pectin antibody (JIM5) also supported the idea that the development of tissue-specific pectin characteristics is important during secondary growth. These results emphasize an involvement of hemicellulose and pectin biochemistry in wood formation, suggesting that the controlled and localised modification of these polysaccharides may define cell properties and architecture and thus, contribute to determining different biophysical characteristics of Eucalyptus wood.

  5. Comparative population genomics of maize domestication and improvement.

    PubMed

    Hufford, Matthew B; Xu, Xun; van Heerwaarden, Joost; Pyhäjärvi, Tanja; Chia, Jer-Ming; Cartwright, Reed A; Elshire, Robert J; Glaubitz, Jeffrey C; Guill, Kate E; Kaeppler, Shawn M; Lai, Jinsheng; Morrell, Peter L; Shannon, Laura M; Song, Chi; Springer, Nathan M; Swanson-Wagner, Ruth A; Tiffin, Peter; Wang, Jun; Zhang, Gengyun; Doebley, John; McMullen, Michael D; Ware, Doreen; Buckler, Edward S; Yang, Shuang; Ross-Ibarra, Jeffrey

    2012-06-03

    Domestication and plant breeding are ongoing 10,000-year-old evolutionary experiments that have radically altered wild species to meet human needs. Maize has undergone a particularly striking transformation. Researchers have sought for decades to identify the genes underlying maize evolution, but these efforts have been limited in scope. Here, we report a comprehensive assessment of the evolution of modern maize based on the genome-wide resequencing of 75 wild, landrace and improved maize lines. We find evidence of recovery of diversity after domestication, likely introgression from wild relatives, and evidence for stronger selection during domestication than improvement. We identify a number of genes with stronger signals of selection than those previously shown to underlie major morphological changes. Finally, through transcriptome-wide analysis of gene expression, we find evidence both consistent with removal of cis-acting variation during maize domestication and improvement and suggestive of modern breeding having increased dominance in expression while targeting highly expressed genes.

  6. The influence of fertilizer level and spore density on arbuscular mycorrhizal colonization of transgenic Bt 11 maize (Zea mays) in experimental microcosms.

    PubMed

    Cheeke, Tanya E; Pace, Brian A; Rosenstiel, Todd N; Cruzan, Mitchell B

    2011-02-01

    Crop plants genetically modified for the expression of Bacillus thuringiensis (Bt) insecticidal toxins have broad appeal for reducing insect damage in agricultural systems, yet questions remain about the impact of Bt plants on symbiotic soil organisms. Here, arbuscular mycorrhizal fungal (AMF) colonization of transgenic maize isoline Bt 11 (expressing Cry1Ab) and its non-Bt parental line (Providence) was evaluated under different fertilizer level and spore density scenarios. In a three-way factorial design, Bt 11 and non-Bt maize were inoculated with 0, 40, or 80 spores of Glomus mosseae and treated weekly with 'No' (0 g L(-1) ), 'Low' (0.23 g L(-1) ), or 'High' (1.87 g L(-1) ) levels of a complete fertilizer and grown for 60 days in a greenhouse. While no difference in AMF colonization was detected between the Bt 11 and Providence maize cultivars in the lower spore/higher fertilizer treatments, microcosm experiments demonstrated a significant reduction in AMF colonization in Bt 11 maize roots in the 80 spore treatments when fertilizer was limited. These results confirm previous work indicating an altered relationship between this Bt 11 maize isoline and AMF and demonstrate that the magnitude of this response is strongly dependent on both nutrient supply and AMF spore inoculation level.

  7. Defining the SUMO System in Maize: SUMOylation Is Up-Regulated during Endosperm Development and Rapidly Induced by Stress1[OPEN

    PubMed Central

    Augustine, Robert C.; Rytz, Thérèse C.

    2016-01-01

    In response to abiotic and biotic challenges, plants rapidly attach small ubiquitin-related modifier (SUMO) to a large collection of nuclear proteins, with studies in Arabidopsis (Arabidopsis thaliana) linking SUMOylation to stress tolerance via its modification of factors involved in chromatin and RNA dynamics. Despite this importance, little is known about SUMOylation in crop species. Here, we describe the plant SUMO system at the phylogenetic, biochemical, and transcriptional levels with a focus on maize (Zea mays). In addition to canonical SUMOs, land plants encode a loosely constrained noncanonical isoform and a variant containing a long extension upstream of the signature β-grasp fold, with cereals also expressing a novel diSUMO polypeptide bearing two SUMO β-grasp domains in tandem. Maize and other cereals also synthesize a unique SUMO-conjugating enzyme variant with more restricted expression patterns that is enzymatically active despite a distinct electrostatic surface. Maize SUMOylation primarily impacts nuclear substrates, is strongly induced by high temperatures, and displays a memory that suppresses subsequent conjugation. Both in-depth transcript and conjugate profiles in various maize organs point to tissue/cell-specific functions for SUMOylation, with potentially significant roles during embryo and endosperm maturation. Collectively, these studies define the organization of the maize SUMO system and imply important functions during seed development and stress defense. PMID:27208252

  8. Tracing transgenic maize as affected by breadmaking process and raw material for the production of a traditional maize bread, broa.

    PubMed

    Fernandes, Telmo J R; Oliveira, M Beatriz P P; Mafra, Isabel

    2013-05-01

    Broa is a maize bread highly consumed and appreciated, especially in the north and central zones of Portugal. In the manufacturing of broa, maize flour and maize semolina might be used, besides other cereals such as wheat and rye. Considering the needs for genetically modified organism (GMO) traceability in highly processed foods, the aim of this work was to assess DNA degradation, DNA amplification and GMO quantification along breadmaking process of broa. DNA degradation was noticed by its decrease of integrity after dough baking and in all parts of bread sampling. The PCR amplification results of extracted DNA from the three distinct maize breads (broa 1, 2 and 3) showed that sequences for maize invertase gene and for events MON810 and TC1507 were easily detected with strong products. Real-time PCR revealed that quantification of GMO was feasible in the three different breads and that sampling location of baked bread might have a limited influence since the average quantitative results of both events after baking were very close to the actual values in the case of broa 1 (prepared with maize semolina). In the other two maize breads subjected to the same baking treatment, the contents of MON810 maize were considerably underestimated, leading to the conclusion that heat-processing was not the responsible parameter for that distortion, but the size of particle and mechanical processing of raw maize play also a major role in GMO quantification. PMID:23265541

  9. Tracing transgenic maize as affected by breadmaking process and raw material for the production of a traditional maize bread, broa.

    PubMed

    Fernandes, Telmo J R; Oliveira, M Beatriz P P; Mafra, Isabel

    2013-05-01

    Broa is a maize bread highly consumed and appreciated, especially in the north and central zones of Portugal. In the manufacturing of broa, maize flour and maize semolina might be used, besides other cereals such as wheat and rye. Considering the needs for genetically modified organism (GMO) traceability in highly processed foods, the aim of this work was to assess DNA degradation, DNA amplification and GMO quantification along breadmaking process of broa. DNA degradation was noticed by its decrease of integrity after dough baking and in all parts of bread sampling. The PCR amplification results of extracted DNA from the three distinct maize breads (broa 1, 2 and 3) showed that sequences for maize invertase gene and for events MON810 and TC1507 were easily detected with strong products. Real-time PCR revealed that quantification of GMO was feasible in the three different breads and that sampling location of baked bread might have a limited influence since the average quantitative results of both events after baking were very close to the actual values in the case of broa 1 (prepared with maize semolina). In the other two maize breads subjected to the same baking treatment, the contents of MON810 maize were considerably underestimated, leading to the conclusion that heat-processing was not the responsible parameter for that distortion, but the size of particle and mechanical processing of raw maize play also a major role in GMO quantification.

  10. Hippocampal chromatin-modifying enzymes are pivotal for scopolamine-induced synaptic plasticity gene expression changes and memory impairment.

    PubMed

    Singh, Padmanabh; Konar, Arpita; Kumar, Ashish; Srivas, Sweta; Thakur, Mahendra K

    2015-08-01

    The amnesic potential of scopolamine is well manifested through synaptic plasticity gene expression changes and behavioral paradigms of memory impairment. However, the underlying mechanism remains obscure and consequently ideal therapeutic target is lacking. In this context, chromatin-modifying enzymes, which regulate memory gene expression changes, deserve major attention. Therefore, we analyzed the expression of chromatin-modifying enzymes and recovery potential of enzyme modulators in scopolamine-induced amnesia. Scopolamine administration drastically up-regulated DNA methyltransferases (DNMT1) and HDAC2 expression while CREB-binding protein (CBP), DNMT3a and DNMT3b remained unaffected. HDAC inhibitor sodium butyrate and DNMT inhibitor Aza-2'deoxycytidine recovered scopolamine-impaired hippocampal-dependent memory consolidation with concomitant increase in the expression of synaptic plasticity genes Brain-derived neurotrophic factor (BDNF) and Arc and level of histone H3K9 and H3K14 acetylation and decrease in DNA methylation level. Sodium butyrate showed more pronounced effect than Aza-2'deoxycytidine and their co-administration did not exhibit synergistic effect on gene expression. Taken together, we showed for the first time that scopolamine-induced up-regulation of chromatin-modifying enzymes, HDAC2 and DNMT1, leads to gene expression changes and consequent decline in memory consolidation. Our findings on the action of scopolamine as an epigenetic modulator can pave a path for ideal therapeutic targets. We propose the following putative pathway for scopolamine-mediated memory impairment; scopolamine up-regulates hippocampal DNMT1 and HDAC2 expression, induces methylation and deacetylation of BDNF and Arc promoter, represses gene expression and eventually impairs memory consolidation. On the other hand, Aza-2 and NaB inhibit DNMT1 and HDAC2 respectively, up-regulate BDNF and Arc expression and recover memory consolidation. We elucidate the action of

  11. Gene expression regulation in the plant growth promoting Bacillus atrophaeus UCMB-5137 stimulated by maize root exudates.

    PubMed

    Mwita, Liberata; Chan, Wai Yin; Pretorius, Theresa; Lyantagaye, Sylvester L; Lapa, Svitlana V; Avdeeva, Lilia V; Reva, Oleg N

    2016-09-15

    Despite successful use of Plant Growth Promoting Rhizobacteria (PGPR) in agriculture, little is known about specific mechanisms of gene regulation facilitating the effective communication between bacteria and plants during plant colonization. Active PGPR strain Bacillus atrophaeus UCMB-5137 was studied in this research. RNA sequencing profiles were generated in experiments where root exudate stimulations were used to mimic interactions between bacteria and plants. It was found that the gene regulation in B. atrophaeus UCMB-5137 in response to the root exudate stimuli differed from the reported gene regulation at similar conditions in B. amyloliquefaciens FZB42, which was considered as a paradigm PGPR. This difference was explained by hypersensitivity of UCMB-5137 to the root exudate stimuli impelling it to a sessile root colonization behavior through the CcpA-CodY-AbrB regulation. It was found that the transcriptional factor DegU also could play an important role in gene regulations during plant colonization. A significant stress caused by the root exudates on in vitro cultivated B. atrophaeus UCMB-5137 was noticed and discussed. Multiple cases of conflicted gene regulations showed scantiness of our knowledge on the regulatory network in Bacillus. Some of these conflicted regulations could be explained by interference of non-coding RNA (ncRNA). Search through differential expressed intergenic regions revealed 49 putative loci of ncRNA regulated by the root exudate stimuli. Possible target mRNA were predicted and a general regulatory network of B. atrophaeus UCMB-5137 genome was designed. PMID:27259668

  12. Expression in yeast of the T-urf13 protein from Texas male-sterile maize mitochondria confers sensitivity to methomyl and to Texas-cytoplasm-specific fungal toxins.

    PubMed

    Huang, J; Lee, S H; Lin, C; Medici, R; Hack, E; Myers, A M

    1990-02-01

    The mitochondrial gene T-urf13 from maize (Zea mays L.) with Texas male-sterile (T) cytoplasm codes for a unique 13 kd polypeptide, T-URF13, which is implicated in cytoplasmic male sterility and sensitivity to the insecticide methomyl and to host-specific fungal toxins produced by Helminthosporium maydis race T (HmT toxin) and Phyllosticta maydis (Pm toxin). A chimeric gene coding for T-URF13 fused to the mitochondrial targeting peptide from the Neurospora crassa ATP synthase subunit 9 precursor was constructed. Expression of this gene in the yeast Saccharomyces cerevisiae yielded a polypeptide that was translocated into the membrane fraction of mitochondria and processed to give a protein the same size as maize T-URF13. Methomyl, HmT toxin and Pm toxin inhibited growth of yeast cells expressing the gene fusion on medium containing glycerol as sole carbon source and stimulated respiration with NADH as substrate by isolated mitochondria from these cells. These effects were not observed in yeast cells expressing T-URF13 without a targeting peptide. The results show that T-URF13 is sufficient to confer sensitivity to methomyl and the fungal toxins in a heterologous eukaryotic system, and suggest that mitochondrial localization of T-URF13 is critical for these functions.

  13. Quantitative Changes in Gimap3 and Gimap5 Expression Modify Mitochondrial DNA Segregation in Mice

    PubMed Central

    Jokinen, Riikka; Lahtinen, Taina; Marttinen, Paula; Myöhänen, Maarit; Ruotsalainen, Pilvi; Yeung, Nicolas; Shvetsova, Antonina; Kastaniotis, Alexander J.; Hiltunen, J. Kalervo; Öhman, Tiina; Nyman, Tuula A.; Weiler, Hartmut; Battersby, Brendan J.

    2015-01-01

    Mammalian mitochondrial DNA (mtDNA) is a high-copy maternally inherited genome essential for aerobic energy metabolism. Mutations in mtDNA can lead to heteroplasmy, the co-occurence of two different mtDNA variants in the same cell, which can segregate in a tissue-specific manner affecting the onset and severity of mitochondrial dysfunction. To investigate mechanisms regulating mtDNA segregation we use a heteroplasmic mouse model with two polymorphic neutral mtDNA haplotypes (NZB and BALB) that displays tissue-specific and age-dependent selection for mtDNA haplotypes. In the hematopoietic compartment there is selection for the BALB mtDNA haplotype, a phenotype that can be modified by allelic variants of Gimap3. Gimap3 is a tail-anchored member of the GTPase of the immunity-associated protein (Gimap) family of protein scaffolds important for leukocyte development and survival. Here we show how the expression of two murine Gimap3 alleles from Mus musculus domesticus and M. m. castaneus differentially affect mtDNA segregation. The castaneus allele has incorporated a uORF (upstream open reading frame) in-frame with the Gimap3 mRNA that impairs translation and imparts a negative effect on the steady-state protein abundance. We found that quantitative changes in the expression of Gimap3 and the paralogue Gimap5, which encodes a lysosomal protein, affect mtDNA segregation in the mouse hematopoietic tissues. We also show that Gimap3 localizes to the endoplasmic reticulum and not mitochondria as previously reported. Collectively these data show that the abundance of protein scaffolds on the endoplasmic reticulum and lysosomes are important to the segregation of the mitochondrial genome in the mouse hematopoietic compartment. PMID:25808953

  14. Comparative diversity of arthropods on Bt maize and non-Bt maize in two different cropping systems in South Africa.

    PubMed

    Truter, J; Van Hamburg, H; Van Den Berg, J

    2014-02-01

    The biodiversity of an agroecosystem is not only important for its intrinsic value but also because it influences ecological functions that are vital for crop production in sustainable agricultural systems and the surrounding environment. A concern about genetically modified (GM) crops is the potential negative impact that such crops could have on diversity and abundance of nontarget organisms, and subsequently on ecosystem functions. Therefore, it is essential to assess the potential environmental risk of the release of a GM crop and to study its effect on species assemblages within that ecosystem. Assessment of the impact of Bt maize on the environment is hampered by the lack of basic checklists of species present in maize agroecosystems. The aims of the study were to compile a checklist of arthropods that occur on maize in South Africa and to compare the diversity and abundance of arthropods and functional groups on Bt maize and non-Bt maize. Collections of arthropods were carried out during two growing seasons on Bt maize and non-Bt maize plants at two localities. Three maize fields were sampled per locality during each season. Twenty plants, each of Bt maize and non-Bt maize, were randomly selected from the fields at each site. The arthropods collected during this study were classified to morphospecies level and grouped into the following functional groups: detritivores, herbivores, predators, and parasitoids. Based on feeding strategy, herbivores and predators were further divided into sucking herbivores or predators (piercing-sucking mouthparts) and chewing herbivores or predators (chewing mouthparts). A total of 8,771 arthropod individuals, comprising 288 morphospecies and presenting 20 orders, were collected. Results from this short-term study indicated that abundance and diversity of arthropods in maize and the different functional guilds were not significantly affected by Bt maize, either in terms of diversity or abundance.

  15. Subchronic feeding study of grain from herbicide-tolerant maize DP-Ø9814Ø-6 in Sprague-Dawley rats.

    PubMed

    Appenzeller, Laura M; Munley, Susan M; Hoban, Denise; Sykes, Greg P; Malley, Linda A; Delaney, Bryan

    2009-09-01

    This 13-week feeding study conducted in Sprague-Dawley rats evaluated the potential health effects from long-term consumption of a rodent diet formulated with grain from genetically modified (GM), herbicide-tolerant maize DP-Ø9814Ø-6 (98140; trade name Optimum GAT (Optimum GAT is a registered trademark of Pioneer Hi-Bred)). Metabolic inactivation of the herbicidal active ingredient glyphosate was conferred by genomic integration and expression of a gene-shuffled acetylase coding sequence, gat4621, from Bacillus licheniformis; tolerance to acetolactate synthase (ALS) inhibiting herbicides was conferred by overexpression of a modified allele (zm-hra) of the endogenous maize ALS enzyme that is resilient to inactivation. Milled maize grain from untreated (98140) and herbicide-treated (98140+Gly/SU) plants, the conventional non-transgenic, near-isogenic control (091), and three commercial non-transgenic reference hybrids (33J56, 33P66, and 33R77) was substituted at concentrations of 35-38% w/w into a common rodent chow formula (PMI) Nutrition International, LLC Certified Rodent LabDiet 5002) and fed to rats (12/sex/group) for at least 91 consecutive days. Compared with rats fed diets containing grain from the conventional near-isogenic control maize, no adverse effects were observed in rats fed diets containing grain from 98140 or 98140+Gly/SU maize with respect to standard nutritional performance metrics and OECD 408-compliant toxicological response variables [OECD, 1998. Section 4 (Part 408), Health Effects: Repeated Dose 90-Day Oral Toxicity Study in Rodents, Guideline for the Testing of Chemicals. Organisation of Economic Co-operation and Development, Paris, France]. These results support the comparative safety and nutritional value of maize grain from genetically modified Optimum GAT and conventional, non-transgenic hybrid field corn.

  16. Embryo Microinjection of Selenomethionine Reduces Hatchability and Modifies Oxidant Responsive Gene Expression in Zebrafish

    NASA Astrophysics Data System (ADS)

    Thomas, J. K.; Janz, D. M.

    2016-05-01

    In previous studies we demonstrated that exposure to selenomethionine (SeMet) causes developmental toxicities in zebrafish (Danio rerio). The objectives of this study were to establish a dose-response relationship for developmental toxicities in zebrafish after embryo microinjection of Se (8, 16 or 32 μg/g dry mass of eggs) in the form of SeMet, and to investigate potential underlying mechanism(s) of SeMet-induced developmental toxicities. A dose-dependent increase in frequencies of mortality and total deformities, and reduced hatchability were observed in zebrafish exposed to excess Se via embryo microinjection. The egg Se concentration causing 20% mortality was then used to investigate transcript abundance of proteins involved in antioxidant protection and methylation. Excess Se exposure modified gene expression of oxidant-responsive transcription factors (nuclear factor erythroid 2-related factor nrf2a and nrf2b), and enzymes involved in cellular methylation (methionine adenosyltransferase mat1a and mat2ab) in zebrafish larvae. Notably, excess Se exposure up-regulated transcript abundance of aryl hydrocarbon receptor 2 (ahr2), a signalling pathway involved in the toxicity of dioxin-related compounds. Our findings suggest that oxidative stress or modification of methylation, or a combination of these mechanisms, might be responsible for Se-induced developmental toxicities in fishes.

  17. Embryo Microinjection of Selenomethionine Reduces Hatchability and Modifies Oxidant Responsive Gene Expression in Zebrafish

    PubMed Central

    Thomas, J. K.; Janz, D. M.

    2016-01-01

    In previous studies we demonstrated that exposure to selenomethionine (SeMet) causes developmental toxicities in zebrafish (Danio rerio). The objectives of this study were to establish a dose-response relationship for developmental toxicities in zebrafish after embryo microinjection of Se (8, 16 or 32 μg/g dry mass of eggs) in the form of SeMet, and to investigate potential underlying mechanism(s) of SeMet-induced developmental toxicities. A dose-dependent increase in frequencies of mortality and total deformities, and reduced hatchability were observed in zebrafish exposed to excess Se via embryo microinjection. The egg Se concentration causing 20% mortality was then used to investigate transcript abundance of proteins involved in antioxidant protection and methylation. Excess Se exposure modified gene expression of oxidant-responsive transcription factors (nuclear factor erythroid 2-related factor nrf2a and nrf2b), and enzymes involved in cellular methylation (methionine adenosyltransferase mat1a and mat2ab) in zebrafish larvae. Notably, excess Se exposure up-regulated transcript abundance of aryl hydrocarbon receptor 2 (ahr2), a signalling pathway involved in the toxicity of dioxin-related compounds. Our findings suggest that oxidative stress or modification of methylation, or a combination of these mechanisms, might be responsible for Se-induced developmental toxicities in fishes. PMID:27210033

  18. Allergenicity assessment of genetically-modified tobacco expressing salt tolerance cbl gene.

    PubMed

    Verma, Alok Kumar; Kumar, Sandeep; Chaudhari, Bhushan P; Tuteja, Narendra; Das, Mukul; Dwivedi, Premendra D

    2014-09-01

    It is mandatory to assess the allergenic potential of genetically modified (GM) crops before their commercialization. Recently, a transgene [Calcineurin B-like (CBL) protein] has been introduced into tobacco plant to make the crop salt resistance. Therefore, it was felt necessary to assess the allergenic potential of the cbl gene product, which was introduced and expressed in Nicotiana tabacum (tobacco) plant and compared the allergenic effects with the wild-type (WT) counterpart. Bioinformatic analysis revealed that there was no significant sequence homology with known allergens. Also, no difference between the protein digestibility profiles of GM and WT tobacco was found. Rapid digestion of CBL protein (Mol Wt 35 kDa) by simulated gastric fluid (SGF) indicated reduced chances of this protein to induce allergenicity. In addition, BALB/c mice sensitized by intraperitoneal administration of WT and GM tobacco protein showed comparable levels of clinical score, specific IgE, IgG1, histamine level, similar effect on different organs as well as IgE binding proteins. These findings indicate that insertion of cbl gene in tobacco did not cause any additional allergic risk to consumer and the GM and native tobacco proteins behave similarly in both in vitro and in vivo situations even after genetic modification.

  19. Distinct function of COAR and B3 domains of maize VP1 in induction of ectopic gene expression and plant developmental phenotypes in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize VP1 enhancement of ABA sensitivity in roots is B3 independent. ABA and VP1 mediated suppression of auxin induced lateral root development is B3 independent. Arabidopsis transgenic system to delineate B3 dependent and COAR domain dependent regulatory functions of VP1. Analyses of ectopic ABA re...

  20. Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity.

    PubMed

    Sindhu, Anoop; Langewisch, Tiffany; Olek, Anna; Multani, Dilbag S; McCann, Maureen C; Vermerris, Wilfred; Carpita, Nicholas C; Johal, Gurmukh

    2007-12-01

    The maize (Zea mays) brittle stalk2 (bk2) is a recessive mutant, the aerial parts of which are easily broken. The bk2 phenotype is developmentally regulated and appears 4 weeks after planting, at about the fifth-leaf stage. Before this time, mutants are indistinguishable from wild-type siblings. Afterward, all organs of the bk2 mutants turn brittle, even the preexisting ones, and they remain brittle throughout the life of the plant. Leaf tension assays and bend tests of the internodes show that the brittle phenotype does not result from loss of tensile strength but from loss in flexibility that causes the tissues to snap instead of bend. The Bk2 gene was cloned by a combination of transposon tagging and a candidate gene approach and found to encode a COBRA-like protein similar to rice (Oryza sativa) BC1 and Arabidopsis (Arabidopsis thaliana) COBRA-LIKE4. The outer periphery of the stalk has fewer vascular bundles, and the sclerids underlying the epidermis possess thinner secondary walls. Relative cellulose content is not strictly correlated with the brittle phenotype. Cellulose content in mature zones of bk2 mature stems is lowered by 40% but is about the same as wild type in developing stems. Although relative cellulose content is lowered in leaves after the onset of the brittle phenotype, total wall mass as a proportion of dry mass is either unchanged or slightly increased, indicating a compensatory increase in noncellulosic carbohydrate mass. Fourier transform infrared spectra indicated an increase in phenolic ester content in the walls of bk2 leaves and stems. Total content of lignin is unaffected in bk2 juvenile leaves before or after appearance of the brittle phenotype, but bk2 mature and developing stems are markedly enriched in lignin compared to wild-type stems. Despite increased lignin in bk2 stems, loss of staining with phloroglucinol and ultraviolet autofluorescence is observed in vascular bundles and sclerid layers. Consistent with the infrared

  1. Strategies used for genetically modifying bacterial genome: ite-directed mutagenesis, gene inactivation, and gene over-expression*

    PubMed Central

    Xu, Jian-zhong; Zhang, Wei-guo

    2016-01-01

    With the availability of the whole genome sequence of Escherichia coli or Corynebacterium glutamicum, strategies for directed DNA manipulation have developed rapidly. DNA manipulation plays an important role in understanding the function of genes and in constructing novel engineering bacteria according to requirement. DNA manipulation involves modifying the autologous genes and expressing the heterogenous genes. Two alternative approaches, using electroporation linear DNA or recombinant suicide plasmid, allow a wide variety of DNA manipulation. However, the over-expression of the desired gene is generally executed via plasmid-mediation. The current review summarizes the common strategies used for genetically modifying E. coli and C. glutamicum genomes, and discusses the technical problem of multi-layered DNA manipulation. Strategies for gene over-expression via integrating into genome are proposed. This review is intended to be an accessible introduction to DNA manipulation within the bacterial genome for novices and a source of the latest experimental information for experienced investigators. PMID:26834010

  2. Expression of PAT and NPT II proteins during the developmental stages of a genetically modified pepper developed in Korea.

    PubMed

    Kim, Hyo Jin; Lee, Si Myung; Kim, Jae Kwang; Ryu, Tae Hun; Suh, Seok Cheol; Cho, Hyun Suk

    2010-10-27

    Estimation of the protein levels introduced in a biotechnology-derived product is conducted as part of an overall safety assessment. An enzyme-linked immunosorbent assay (ELISA) was used to analyze phosphinothricin acetyltransferase (PAT) and neomycin phosphotransferase II (NPT II) protein expression in a genetically modified (GM) pepper plant developed in Korea. PAT and NPT II expression levels, based on both dry weight and fresh weight, were variable among different plant generations and plant sections from isolated genetically modified organism (GMO) fields at four developmental stages. PAT expression was highest in leaves at anthesis (11.44 μg/gdw and 2.17 μg/gfw) and lowest in roots (0.12 μg/gdw and 0.01 μg/gfw). NPT II expression was also highest in leaves at anthesis (17.31 μg/gdw and 3.41 μg/gfw) and lowest in red pepper (0.65 μg/gdw and 0.12 μg/gfw). In pollen, PAT expression was 0.59-0.62 μg/gdw, while NPT II was not detected. Both PAT and NPT II showed a general pattern of decreased expression with progression of the growing season. As expected, PAT and NPT II protein expression was not detectable in control pepper plants.

  3. Bt maize and integrated pest management--a European perspective.

    PubMed

    Meissle, Michael; Romeis, Jörg; Bigler, Franz

    2011-09-01

    The European corn borer (Ostrinia nubilalis), the Mediterranean corn borer (Sesamia nonagrioides) and the western corn rootworm (Diabrotica virgifera virgifera) are the main arthropod pests in European maize production. Practised pest control includes chemical control, biological control and cultural control such as ploughing and crop rotation. A pest control option that is available since 1996 is maize varieties that are genetically engineered (GE) to produce insecticidal compounds. GE maize varieties available today express one or several genes from Bacillus thuringiensis (Bt) that target corn borers or corn rootworms. Incentives to growing Bt maize are simplified farm operations, high pest control efficiency, improved grain quality and ecological benefits. Limitations include the risk of resistance evolution in target pest populations, risk of secondary pest outbreaks and increased administration to comply with licence agreements. Growers willing to plant Bt maize in the European Union (EU) often face the problem that authorisation is denied. Only one Bt maize transformation event (MON810) is currently authorised for commercial cultivation, and some national authorities have banned cultivation. Spain is the only EU member state where Bt maize adoption levels are currently delivering farm income gains near full potential levels. In an integrated pest management (IPM) context, Bt maize can be regarded as a preventive (host plant resistance) or a responsive pest control measure. In any case, Bt maize is a highly specific tool that efficiently controls the main pests and allows combination with other preventive or responsive measures to solve other agricultural problems including those with secondary pests.

  4. Modified recombinant adenoviruses increase porcine circovirus 2 capsid protein expression and induce enhanced immune responses in mice.

    PubMed

    Li, D L; Huang, Y; Chang, L L; DU, Q; Chen, Y; Wang, T T; Luo, X M; Zhao, X M; Tong, D W

    2016-01-01

    Porcine circovirus type 2 (PCV2) is the primary viral pathogen of porcine circovirus associated disease (PCVAD) and vaccination is an important method to prevent and control the disease. The expression of PCV2 capsid protein (Cap) in adenovirus vector system has been investigated, but the poor immune responses limit its application. In this study, transcriptional enhancer element largest intron of the human cytomegalovirus (Intron A) and woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) were applied to increase the immunogenicity of PCV2 Cap adenovirus-based vaccine. Western blot and indirect immunofluorescence assay (IFA) analysis showed that modified adenoviruses with Intron A and WPRE alone or both could significantly increase the expression of Cap compared to the unmodified adenoviruses. Furthermore, the humoral and cellular immune responses of the constructed recombinant adenoviruses were evaluated in mice. Indirect ELISA, virus neutralizing test and western blot showed that modified adenoviruses elicited higher humoral immune responses than unmodified adenovirus, and Intron A-WPRE-modified virus immunized group had better immune response than the others. Besides, the results of lymphocyte proliferation response and cytokines release assay showed that enhanced cellular immune responses were induced by modified adenoviruses. These results demonstrated that Intron A and WPRE significantly improved the expression of the Cap protein in adenovirus vector system and enhanced the immune responses in mice, making the adenovirus vector system more applicable against PCV2. PMID:27640437

  5. Transcriptional activity of transposable elements in maize

    PubMed Central

    2010-01-01

    Background Mobile genetic elements represent a high proportion of the Eukaryote genomes. In maize, 85% of genome is composed by transposable elements of several families. First step in transposable element life cycle is the synthesis of an RNA, but few is known about the regulation of transcription for most of the maize transposable element families. Maize is the plant from which more ESTs have been sequenced (more than two million) and the third species in total only after human and mice. This allowed us to analyze the transcriptional activity of the maize transposable elements based on EST databases. Results We have investigated the transcriptional activity of 56 families of transposable elements in different maize organs based on the systematic search of more than two million expressed sequence tags. At least 1.5% maize ESTs show sequence similarity with transposable elements. According to these data, the patterns of expression of each transposable element family is variable, even within the same class of elements. In general, transcriptional activity of the gypsy-like retrotransposons is higher compared to other classes. Transcriptional activity of several transposable elements is specially high in shoot apical meristem and sperm cells. Sequence comparisons between genomic and transcribed sequences suggest that only a few copies are transcriptionally active. Conclusions The use of powerful high-throughput sequencing methodologies allowed us to elucidate the extent and character of repetitive element transcription in maize cells. The finding that some families of transposable elements have a considerable transcriptional activity in some tissues suggests that, either transposition is more frequent than previously expected, or cells can control transposition at a post-transcriptional level. PMID:20973992

  6. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize.

    PubMed

    Zhang, Deshan; Zhang, Chaochun; Tang, Xiaoyan; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R; Davies, William J; Shen, Jianbo

    2016-01-01

    Root growth is influenced by soil nutrients and neighbouring plants, but how these two drivers affect root interactions and regulate plant growth dynamics is poorly understood. Here, interactions between the roots of maize (Zea mays) and faba bean (Vicia faba) are characterized. Maize was grown alone (maize) or with maize (maize/maize) or faba bean (maize/faba bean) as competitors under five levels of phosphorus (P) supply, and with homogeneous or heterogeneous P distribution. Maize had longer root length and greater shoot biomass and P content when grown with faba bean than with maize. At each P supply rate, faba bean had a smaller root system than maize but greater exudation of citrate and acid phosphatase, suggesting a greater capacity to mobilize P in the rhizosphere. Heterogeneous P availability enhanced the root-length density of maize but not faba bean. Maize root proliferation in the P-rich patches was associated with increased shoot P uptake. Increased P availability by localized P application or by the presence of faba bean exudation stimulated root morphological plasticity and increased shoot growth in maize in the maize/faba bean mixture, suggesting that root interactions of neighbouring plants can be modified by increased P availability.

  7. The human rs1050286 polymorphism alters LOX-1 expression through modifying miR-24 binding.

    PubMed

    Morini, Elena; Rizzacasa, Barbara; Pucci, Sabina; Polidoro, Chiara; Ferrè, Fabrizio; Caporossi, Daniela; Helmer Citterich, Manuela; Novelli, Giuseppe; Amati, Francesca

    2016-01-01

    The up-regulation of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), encoded by the OLR1 gene, plays a fundamental role in the pathogenesis of atherosclerosis. Moreover, OLR1 polymorphisms were associated with increased susceptibility to acute myocardial infarction (AMI) and coronary artery diseases (CAD). In these pathologies, the identification of therapeutic approaches that can inhibit or reduce LOX-1 overexpression is crucial. Predictive analysis showed a putative hsa-miR-24 binding site in the 3'UTR of OLR1, 'naturally' mutated by the presence of the rs1050286 single nucleotide polymorphism (SNP). Luciferase assays revealed that miR-24 targets OLR1 3'UTR-G, but not 3'UTR-A (P < 0.0005). The functional relevance of miR-24 in regulating the expression of OLR1 was established by overexpressing miR-24 in human cell lines heterozygous (A/G, HeLa) and homozygous (A/A, HepG2) for rs1050286 SNP. Accordingly, HeLa (A/G), but not HepG2 (A/A), showed a significant down-regulation of OLR1 both at RNA and protein level. Our results indicate that rs1050286 SNP significantly affects miR-24 binding affinity to the 3'UTR of OLR1, causing a more efficient post-transcriptional gene repression in the presence of the G allele. On this basis, we considered that OLR1 rs1050286 SNP may contribute to modify OLR1 susceptibility to AMI and CAD, so ORL1 SNPs screening could help to stratify patients risk. PMID:26542080

  8. Overexpression of a Fungal β-Mannanase from Bispora sp. MEY-1 in Maize Seeds and Enzyme Characterization

    PubMed Central

    Meng, Qingchang; Meng, Kun; Zhang, Wei; Zhou, Xiaojin; Luo, Huiying; Chen, Rumei; Yang, Peilong; Yao, Bin

    2013-01-01

    Background Mannans and heteromannans are widespread in plants cell walls and are well-known as anti-nutritional factors in animal feed. To remove these factors, it is common practice to incorporate endo-β-mannanase into feed for efficient nutrition absorption. The objective of this study was to overexpress a β-mannanase gene directly in maize, the main ingredient of animal feed, to simplify the process of feed production. Methodology/Principal Findings The man5A gene encoding an excellent β-mannanase from acidophilic Bispora sp. MEY-1 was selected for heterologous overexpression. Expression of the modified gene (man5As) was driven by the embryo-specific promoter ZM-leg1A, and the transgene was transferred to three generations by backcrossing with commercial inbred Zheng58. Its exogenous integration into the maize embryonic genome and tissue specific expression in seeds were confirmed by PCR and Southern blot and Western blot analysis, respectively. Transgenic plants at BC3 generation showed agronomic traits statistically similar to Zheng58 except for less plant height (154.0 cm vs 158.3 cm). The expression level of MAN5AS reached up to 26,860 units per kilogram of maize seeds. Compared with its counterpart produced in Pichia pastoris, seed-derived MAN5AS had higher temperature optimum (90°C), and remained more β-mannanase activities after pelleting at 80°C, 100°C or 120°C. Conclusion/Significance This study shows the genetically stable overexpression of a fungal β-mannanase in maize and offers an effective and economic approach for transgene containment in maize for direct utilization without any purification or supplementation procedures. PMID:23409143

  9. Effects of tobacco genetically modified to express protease inhibitor bovine spleen trypsin inhibitor on non-target soil organisms.

    PubMed

    O'Callaghan, Maureen; Brownbridge, Michael; Stilwell, Wendy B; Gerard, Emily M; Burgess, Elisabeth P J; Barraclough, Emma I; Christeller, John T

    2007-01-01

    Effects of tobacco genetically modified to express the protease inhibitor bovine spleen trypsin inhibitor (BSTI) were examined in laboratory assays against three earthworm and one collembolan species. BSTI is a serine protease inhibitor that can bind to the digestive trypsins of insects feeding on modified plants, resulting in reduced growth and survival. Protease inhibitors are active against a broad range of insects, so may have a large impact on non-target organisms. Survival and fecundity of the collembolan Folsomia candida were unaffected by consumption of artificial diet containing BSTI-expressing tobacco leaf or powdered freeze-dried BSTI-expressing tobacco leaf that was added to soil. Similarly, mortality and growth of earthworms Aporrectodea caliginosa and Lumbricus rubellus did not differ significantly between soil augmented with BSTI-expressing tobacco leaves or unmodified control leaves. The redworm Eisenia fetida gained less weight when provided with BSTI-expressing leaves in one assay, but when the experiment was repeated, there was no significant difference between treatments. BSTI-expressing tobacco and unmodified control leaves decomposed at the same rate, indicating that the inhibitor had no effect on the overall function of the decomposer community of micro-flora and fauna in soil. PMID:18001685

  10. Effects of tobacco genetically modified to express protease inhibitor bovine spleen trypsin inhibitor on non-target soil organisms.

    PubMed

    O'Callaghan, Maureen; Brownbridge, Michael; Stilwell, Wendy B; Gerard, Emily M; Burgess, Elisabeth P J; Barraclough, Emma I; Christeller, John T

    2007-01-01

    Effects of tobacco genetically modified to express the protease inhibitor bovine spleen trypsin inhibitor (BSTI) were examined in laboratory assays against three earthworm and one collembolan species. BSTI is a serine protease inhibitor that can bind to the digestive trypsins of insects feeding on modified plants, resulting in reduced growth and survival. Protease inhibitors are active against a broad range of insects, so may have a large impact on non-target organisms. Survival and fecundity of the collembolan Folsomia candida were unaffected by consumption of artificial diet containing BSTI-expressing tobacco leaf or powdered freeze-dried BSTI-expressing tobacco leaf that was added to soil. Similarly, mortality and growth of earthworms Aporrectodea caliginosa and Lumbricus rubellus did not differ significantly between soil augmented with BSTI-expressing tobacco leaves or unmodified control leaves. The redworm Eisenia fetida gained less weight when provided with BSTI-expressing leaves in one assay, but when the experiment was repeated, there was no significant difference between treatments. BSTI-expressing tobacco and unmodified control leaves decomposed at the same rate, indicating that the inhibitor had no effect on the overall function of the decomposer community of micro-flora and fauna in soil.

  11. Evaluation of analytical methods for carotenoid extraction from biofortified maize (Zea mays sp.).

    PubMed

    Howe, Julie A; Tanumihardjo, Sherry A

    2006-10-18

    Biofortification of maize with beta-carotene has the potential to improve vitamin A status in vitamin A deficient populations where maize is a staple crop. Accurate assessment of provitamin A carotenoids in maize must be performed to direct breeding efforts. The objective was to evaluate carotenoid extraction methods and determine essential steps for use in countries growing biofortified maize. The most reproducible method based on coefficient of variation and extraction efficiency was a modification of Kurilich and Juvik (1999). Heat and saponification are required to release carotenoids from biofortified maize and remove oils interfering with chromatographic analysis. For maize samples with high oil content, additional base may be added to ensure complete saponification without compromising results. Degradation of internal standard before carotenoids were released from the maize matrix required the addition of internal standard after heating to prevent overestimation of carotenoids. This modified method works well for lutein, zeaxanthin, beta-cryptoxanthin, alpha-carotene, and beta-carotene. PMID:17032000

  12. MaizeGDB, the maize model organism database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MaizeGDB is the maize research community's database for maize genetic and genomic information. In this seminar I will outline our current endeavors including a full website redesign, the status of maize genome assembly and annotation projects, and work toward genome functional annotation. Mechanis...

  13. Assessment of real-time PCR based methods for quantification of pollen-mediated gene flow from GM to conventional maize in a field study.

    PubMed

    Pla, Maria; La Paz, José-Luis; Peñas, Gisela; García, Nora; Palaudelmàs, Montserrat; Esteve, Teresa; Messeguer, Joaquima; Melé, Enric

    2006-04-01

    Maize is one of the main crops worldwide and an increasing number of genetically modified (GM) maize varieties are cultivated and commercialized in many countries in parallel to conventional crops. Given the labeling rules established e.g. in the European Union and the necessary coexistence between GM and non-GM crops, it is important to determine the extent of pollen dissemination from transgenic maize to other cultivars under field conditions. The most widely used methods for quantitative detection of GMO are based on real-time PCR, which implies the results are expressed in genome percentages (in contrast to seed or grain percentages). Our objective was to assess the accuracy of real-time PCR based assays to accurately quantify the contents of transgenic grains in non-GM fields in comparison with the real cross-fertilization rate as determined by phenotypical analysis. We performed this study in a region where both GM and conventional maize are normally cultivated and used the predominant transgenic maize Mon810 in combination with a conventional maize variety which displays the characteristic of white grains (therefore allowing cross-pollination quantification as percentage of yellow grains). Our results indicated an excellent correlation between real-time PCR results and number of cross-fertilized grains at Mon810 levels of 0.1-10%. In contrast, Mon810 percentage estimated by weight of grains produced less accurate results. Finally, we present and discuss the pattern of pollen-mediated gene flow from GM to conventional maize in an example case under field conditions. PMID:16604462

  14. Assessment of real-time PCR based methods for quantification of pollen-mediated gene flow from GM to conventional maize in a field study.

    PubMed

    Pla, Maria; La Paz, José-Luis; Peñas, Gisela; García, Nora; Palaudelmàs, Montserrat; Esteve, Teresa; Messeguer, Joaquima; Melé, Enric

    2006-04-01

    Maize is one of the main crops worldwide and an increasing number of genetically modified (GM) maize varieties are cultivated and commercialized in many countries in parallel to conventional crops. Given the labeling rules established e.g. in the European Union and the necessary coexistence between GM and non-GM crops, it is important to determine the extent of pollen dissemination from transgenic maize to other cultivars under field conditions. The most widely used methods for quantitative detection of GMO are based on real-time PCR, which implies the results are expressed in genome percentages (in contrast to seed or grain percentages). Our objective was to assess the accuracy of real-time PCR based assays to accurately quantify the contents of transgenic grains in non-GM fields in comparison with the real cross-fertilization rate as determined by phenotypical analysis. We performed this study in a region where both GM and conventional maize are normally cultivated and used the predominant transgenic maize Mon810 in combination with a conventional maize variety which displays the characteristic of white grains (therefore allowing cross-pollination quantification as percentage of yellow grains). Our results indicated an excellent correlation between real-time PCR results and number of cross-fertilized grains at Mon810 levels of 0.1-10%. In contrast, Mon810 percentage estimated by weight of grains produced less accurate results. Finally, we present and discuss the pattern of pollen-mediated gene flow from GM to conventional maize in an example case under field conditions.

  15. Maize Genetic Resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the resources held at the Maize Genetics Cooperation • Stock Center in detail and also provides some information about the North Central Regional Plant Introduction Station (NCRPIS) in Ames, IA, Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT) in Mexico, and the N...

  16. MAIZE ALLELIC DIVERSITY PROJECT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Of the estimated 250-300 races of maize, only 24 races are represented in materials utilized by the Germplasm Enhancement of Maize (GEM) project, a collaborative effort between USDA-ARS and public and private sector research scientists. This is largely a result of poor performance of many races in ...

  17. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil.

    PubMed

    Bernardi, Daniel; Salmeron, Eloisa; Horikoshi, Renato Jun; Bernardi, Oderlei; Dourado, Patrick Marques; Carvalho, Renato Assis; Martinelli, Samuel; Head, Graham P; Omoto, Celso

    2015-01-01

    Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105

  18. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil

    PubMed Central

    Bernardi, Daniel; Salmeron, Eloisa; Horikoshi, Renato Jun; Bernardi, Oderlei; Dourado, Patrick Marques; Carvalho, Renato Assis; Martinelli, Samuel; Head, Graham P.; Omoto, Celso

    2015-01-01

    Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105

  19. Inhibition of maize histone deacetylases by HC toxin, the host-selective toxin of Cochliobolus carbonum.

    PubMed Central

    Brosch, G; Ransom, R; Lechner, T; Walton, J D; Loidl, P

    1995-01-01

    HC toxin, the host-selective toxin of the maize pathogen Cochliobolus carbonum, inhibited maize histone deacetylase (HD) at 2 microM. Chlamydocin, a related cyclic tetrapeptide, also inhibited HD activity. The toxins did not affect histone acetyltransferases. After partial purification of histone deacetylases HD1-A, HD1-B, and HD2 from germinating maize embryos, we demonstrated that the different enzymes were similarly inhibited by the toxins. Inhibitory activities were reversibly eliminated by treating toxins with 2-mercaptoethanol, presumably by modifying the carbonyl group of the epoxide-containing amino acid Aeo (2-amino-9,10-epoxy-8-oxodecanoic acid). Kinetic studies revealed that inhibition of HD was of the uncompetitive type and reversible. HC toxin, in which the epoxide group had been hydrolyzed, completely lost its inhibitory activity; when the carbonyl group of Aeo had been reduced to the corresponding alcohol, the modified toxin was less active than native toxin. In vivo treatment of embryos with HC toxin caused the accumulation of highly acetylated histone H4 subspecies and elevated acetate incorporation into H4 in susceptible-genotype embryos but not in the resistant genotype. HDs from chicken and the myxomycete Physarum polycephalum were also inhibited, indicating that the host selectivity of HC toxin is not determined by its inhibitory effect on HD. Consistent with these results, we propose a model in which HC toxin promotes the establishment of pathogenic compatibility between C. carbonum and maize by interfering with reversible histone acetylation, which is implicated in the control of fundamental cellular processes, such as chromatin structure, cell cycle progression, and gene expression. PMID:8535144

  20. Molecular hydrogen regulates gene expression by modifying the free radical chain reaction-dependent generation of oxidized phospholipid mediators

    PubMed Central

    Iuchi, Katsuya; Imoto, Akemi; Kamimura, Naomi; Nishimaki, Kiyomi; Ichimiya, Harumi; Yokota, Takashi; Ohta, Shigeo

    2016-01-01

    We previously showed that H2 acts as a novel antioxidant to protect cells against oxidative stress. Subsequently, numerous studies have indicated the potential applications of H2 in therapeutic and preventive medicine. Moreover, H2 regulates various signal transduction pathways and the expression of many genes. However, the primary targets of H2 in the signal transduction pathways are unknown. Here, we attempted to determine how H2 regulates gene expression. In a pure chemical system, H2 gas (approximately 1%, v/v) suppressed the autoxidation of linoleic acid that proceeds by a free radical chain reaction, and pure 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (PAPC), one of the major phospholipids, was autoxidized in the presence or absence of H2. H2 modified the chemical production of the autoxidized phospholipid species in the cell-free system. Exposure of cultured cells to the H2-dependently autoxidized phospholipid species reduced Ca2+ signal transduction and mediated the expression of various genes as revealed by comprehensive microarray analysis. In the cultured cells, H2 suppressed free radical chain reaction-dependent peroxidation and recovered the increased cellular Ca2+, resulting in the regulation of Ca2+-dependent gene expression. Thus, H2 might regulate gene expression via the Ca2+ signal transduction pathway by modifying the free radical-dependent generation of oxidized phospholipid mediators. PMID:26739257

  1. Development of Genetically Modified Chinese Hamster Ovary Host Cells for the Enhancement of Recombinant Tissue Plasminogen Activator Expression

    PubMed Central

    Rahimpour, Azam; Ahani, Roshanak; Najaei, Azita; Adeli, Ahmad; Barkhordari, Farzaneh; Mahboudi, Fereidoun

    2016-01-01

    Background Chinese hamster ovary (CHO) cells are the most commonly used host system for the expression of high quality recombinant proteins. However, the development of stable, high-yielding CHO cell lines is a major bottleneck in the industrial manufacturing of therapeutic proteins. Therefore, different strategies such as the generation of more efficient expression vectors and establishment of genetically engineered host cells have been employed to increase the efficiency of cell line development. In order to examine the possibility of generating improved CHO host cells, cell line engineering approaches were developed based on ceramide transfer protein (CERT), and X-box binding protein 1s (XBP1s). Methods CHO cells were transfected with CERT S132A, a mutant variant of CERT which is resistant to phosphorylation, or XBP1s expression plasmids, and then stable cell pools were generated. Transient expression of t-PA was examined in engineered cell pools in comparison to un-modified CHO host cells. Results Overexpression of CERT S132A led to the enhancement of recombinant tissue plasminogen activator (t-PA) expression in transient expression by 50%. On the other hand, it was observed that the ectopic expression of the XBP1s, did not improve the t-PA expression level. Conclusion The results obtained in this study indicate successful development of the improved CHO host cells through CERT S132A overexpression. PMID:27547109

  2. Potential subchronic food safety of the stacked trait transgenic maize GH5112E-117C in Sprague-Dawley rats.

    PubMed

    Han, Shiwen; Zou, Shiying; He, Xiaoyun; Huang, Kunlun; Mei, Xiaohong

    2016-08-01

    The food safety of stacked trait genetically modified (GM) maize GH5112E-117C containing insect-resistance gene Cry1Ah and glyphosate-resistant gene G2-aroA was evaluated in comparison to non-GM Hi-II maize fed to Sprague-Dawley rats during a 90-day subchronic feeding study. Three different dietary concentrations (12.5, 25 and 50 %, w/w) of the GM maize were used or its corresponding non-GM maize. No biologically significant differences in the animals' clinical signs, body weights, food consumption, hematology, clinical chemistry, organ weights and histopathology were found between the stacked trait GM maize groups, and the non-GM maize groups. The results of the 90-day subchronic feeding study demonstrated that the stacked trait GM maize GH5112E-117C is as safe as the conventional non-GM maize Hi-II. PMID:26919987

  3. Potential subchronic food safety of the stacked trait transgenic maize GH5112E-117C in Sprague-Dawley rats.

    PubMed

    Han, Shiwen; Zou, Shiying; He, Xiaoyun; Huang, Kunlun; Mei, Xiaohong

    2016-08-01

    The food safety of stacked trait genetically modified (GM) maize GH5112E-117C containing insect-resistance gene Cry1Ah and glyphosate-resistant gene G2-aroA was evaluated in comparison to non-GM Hi-II maize fed to Sprague-Dawley rats during a 90-day subchronic feeding study. Three different dietary concentrations (12.5, 25 and 50 %, w/w) of the GM maize were used or its corresponding non-GM maize. No biologically significant differences in the animals' clinical signs, body weights, food consumption, hematology, clinical chemistry, organ weights and histopathology were found between the stacked trait GM maize groups, and the non-GM maize groups. The results of the 90-day subchronic feeding study demonstrated that the stacked trait GM maize GH5112E-117C is as safe as the conventional non-GM maize Hi-II.

  4. Production of a Highly Protease-Resistant Fungal α-Galactosidase in Transgenic Maize Seeds for Simplified Feed Processing

    PubMed Central

    Zhou, Xiaojin; Zhang, Wei; Xu, Xiaolu; Chen, Rumei; Meng, Qingchang; Yuan, Jianhua; Yang, Peilong; Yao, Bin

    2015-01-01

    Raffinose-family oligosaccharide (RFO) in soybeans is one of the major anti-nutritional factors for poultry and livestocks. α-Galactosidase is commonly supplemented into the animal feed to hydrolyze α-1,6-galactosidic bonds on the RFOs. To simplify the feed processing, a protease-resistant α-galactosidase encoding gene from Gibberella sp. strain F75, aga-F75, was modified by codon optimization and heterologously expressed in the embryos of transgentic maize driven by the embryo-specific promoter ZM-leg1A. The progenies were produced by backcrossing with the commercial inbred variety Zheng58. PCR, southern blot and western blot analysis confirmed the stable integration and tissue specific expression of the modified gene, aga-F75m, in seeds over four generations. The expression level of Aga-F75M reached up to 10,000 units per kilogram of maize seeds. In comparison with its counterpart produced in Pichia pastoris strain GS115, maize seed-derived Aga-F75M showed a lower temperature optimum (50°C) and lower stability over alkaline pH range, but better thermal stability at 60°C to 70°C and resistance to feed pelleting inactivation (80°C). This is the first report of producing α-galactosidase in transgenic plant. The study offers an effective and economic approach for direct utilization of α-galactosidase-producing maize without any purification or supplementation procedures in the feed processing. PMID:26053048

  5. Production of a Highly Protease-Resistant Fungal α-Galactosidase in Transgenic Maize Seeds for Simplified Feed Processing.

    PubMed

    Yang, Wenxia; Zhang, Yuhong; Zhou, Xiaojin; Zhang, Wei; Xu, Xiaolu; Chen, Rumei; Meng, Qingchang; Yuan, Jianhua; Yang, Peilong; Yao, Bin

    2015-01-01

    Raffinose-family oligosaccharide (RFO) in soybeans is one of the major anti-nutritional factors for poultry and livestocks. α-Galactosidase is commonly supplemented into the animal feed to hydrolyze α-1,6-galactosidic bonds on the RFOs. To simplify the feed processing, a protease-resistant α-galactosidase encoding gene from Gibberella sp. strain F75, aga-F75, was modified by codon optimization and heterologously expressed in the embryos of transgentic maize driven by the embryo-specific promoter ZM-leg1A. The progenies were produced by backcrossing with the commercial inbred variety Zheng58. PCR, southern blot and western blot analysis confirmed the stable integration and tissue specific expression of the modified gene, aga-F75m, in seeds over four generations. The expression level of Aga-F75M reached up to 10,000 units per kilogram of maize seeds. In comparison with its counterpart produced in Pichia pastoris strain GS115, maize seed-derived Aga-F75M showed a lower temperature optimum (50 °C) and lower stability over alkaline pH range,