Sample records for modified multi-stage bubble

  1. A 1-1/2-level on-chip-decoding bubble memory chip design

    NASA Technical Reports Server (NTRS)

    Chen, T. T.

    1975-01-01

    Design includes multi-channel replicator which can reduce chip-writing requirement, selective annihilating switch which can effectively annihilate bubbles with minimum delay, and modified transfer switch which can be used as selective steering-type decoder.

  2. Removal of hazardous gaseous pollutants from industrial flue gases by a novel multi-stage fluidized bed desulfurizer.

    PubMed

    Mohanty, C R; Adapala, Sivaji; Meikap, B C

    2009-06-15

    Sulfur dioxide and other sulfur compounds are generated as primary pollutants from the major industries such as sulfuric acid plants, cupper smelters, catalytic cracking units, etc. and cause acid rain. To remove the SO(2) from waste flue gas a three-stage counter-current multi-stage fluidized bed adsorber was developed as desulfurization equipment and operated in continuous bubbling fluidization regime for the two-phase system. This paper represents the desulfurization of gas mixtures by chemical sorption of sulfur dioxide on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of the multi-stage fluidized bed reactor are of high mass transfer and high gas-solid residence time that can enhance the removal of acid gas at low temperature by dry method. Experiments were carried out in the bubbling fluidization regime supported by visual observation. The effects of the operating parameters such as sorbent (lime) flow rate, superficial gas velocity, and the weir height on SO(2) removal efficiency in the multistage fluidized bed are reported. The results have indicated that the removal efficiency of the sulfur dioxide was found to be 65% at high solid flow rate (2.0 kg/h) corresponding to lower gas velocity (0.265 m/s), wier height of 70 mm and SO(2) concentration of 500 ppm at room temperature.

  3. Installation and service manual for the U.S. Geological Survey manometers

    USGS Publications Warehouse

    Craig, James D.

    1983-01-01

    The purpose of this manual is to describe the installation, operation, and maintenance of the bubble-gage manometers currently (1982) used by the U.S. Geological Survey. Other applications of these devices, such as the long manometer and differential manometer, are discussed, and accessories available for them are described. The bubble gage (water-stage manometer with gas-purge system) described in the Installation and Service Manual, October 1962, has been extensively modified and developed into the STACOM (stabilized and temperature compensated) device. This chapter is the manual for the STACOM unit and an update of the manual for the screw-type bubble gage. A parts list is included for both units.

  4. Generating Singlet Oxygen Bubbles: A New Mechanism for Gas-Liquid Oxidations in Water

    PubMed Central

    Bartusik, Dorota; Aebisher, David; Ghafari, BiBi

    2012-01-01

    Laser-coupled microphotoreactors were developed to bubble singlet oxygen [1O2 (1Δg)] into an aqueous solution containing an oxidizable compound. The reactors consisted of custom-modified SMA fiber-optic receptacles loaded with 150-μm silicon phthalocyanine glass sensitizer particles, where the particles were isolated from direct contact with water by a membrane adhesively bonded to the bottom of each device. A tube fed O2 gas to the reactor chambers. In the presence of O2, singlet oxygen was generated by illuminating the sensitizer particles with 669-nm light from an optical fiber coupled to the top of the reactor. The generated 1O2 was transported through the membrane by the O2 stream and formed bubbles in solution. In solution, singlet oxygen reacted with probe compounds (either 9,10-anthracene dipropionate dianion, trans-2-methyl-2-pentanoate anion, N-benzoyl-D,L-methionine, and N-acetyl-D,L-methionine) to give oxidized products in two stages. The early stage was rapid and showed that 1O2 transfer occurred via bubbles mainly in the bulk water solution. The later stage was slow, it arose only from 1O2-probe molecule contact at the gas/liquid interface. A mechanism is proposed that involves 1O2 mass transfer and solvation, where smaller bubbles provide better penetration of 1O2 into the flowing stream due to higher surface-to-volume contact between the probe molecules and 1O2. PMID:22260325

  5. Informative frame detection from wireless capsule video endoscopic images

    NASA Astrophysics Data System (ADS)

    Bashar, Md. Khayrul; Mori, Kensaku; Suenaga, Yasuhito; Kitasaka, Takayuki; Mekada, Yoshito

    2008-03-01

    Wireless capsule endoscopy (WCE) is a new clinical technology permitting the visualization of the small bowel, the most difficult segment of the digestive tract. The major drawback of this technology is the high amount of time for video diagnosis. In this study, we propose a method for informative frame detection by isolating useless frames that are substantially covered by turbid fluids or their contamination with other materials, e.g., faecal, semi-processed or unabsorbed foods etc. Such materials and fluids present a wide range of colors, from brown to yellow, and/or bubble-like texture patterns. The detection scheme, therefore, consists of two stages: highly contaminated non-bubbled (HCN) frame detection and significantly bubbled (SB) frame detection. Local color moments in the Ohta color space are used to characterize HCN frames, which are isolated by the Support Vector Machine (SVM) classifier in Stage-1. The rest of the frames go to the Stage-2, where Laguerre gauss Circular Harmonic Functions (LG-CHFs) extract the characteristics of the bubble-structures in a multi-resolution framework. An automatic segmentation method is designed to extract the bubbled regions based on local absolute energies of the CHF responses, derived from the grayscale version of the original color image. Final detection of the informative frames is obtained by using threshold operation on the extracted regions. An experiment with 20,558 frames from the three videos shows the excellent average detection accuracy (96.75%) by the proposed method, when compared with the Gabor based- (74.29%) and discrete wavelet based features (62.21%).

  6. HAER Level II Documentation of Launch Complexes 1/2, 3/4, 9/10, 14, and 34 at Cape Canaveral Air Force Station, Florida

    DTIC Science & Technology

    2016-06-01

    Helium was used for first stage pressurization, for upper-stage in-flight storage spheres, and for liquid oxygen tank bubbling to prevent temperature ...LOX liquid oxygen MFL Missile Firing Laboratory MIPR Military Interdepartmental Purchase Request MTTP multi-service tactics, techniques, and...TR-16-1 vi Introduction Background Congress codified the National Historic Preservation Act of 1966 (NHPA), the nation’s most effective cultural

  7. Argon Bubble Transport and Capture in Continuous Casting with an External Magnetic Field Using GPU-Based Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Jin, Kai

    Continuous casting produces over 95% of steel in the world today, hence even small improvements to this important industrial process can have large economic impact. In the continuous casting of steel process, argon gas is usually injected at the slide gate or stopper rod to prevent clogging, but entrapped bubbles may cause defects in the final product. Many defects in this process are related to the transient fluid flow in the mold region of the caster. Electromagnetic braking (EMBr) device is often used at high casting speed to modify the mold flow, reduce the surface velocity and fluctuation. This work studies the physics in continuous casting process including effects of EMBr on the motion of fluid flow in the mold region, and transport and capture of bubbles in the solidification processes. A computational effective Reynolds-averaged Navier-Stokes (RANS) model and a high fidelity Large Eddy Simulation (LES) model are used to understand the motion of the molten steel flow. A general purpose multi-GPU Navier-Stokes solver, CUFLOW, is developed. A Coherent-Structure Smagorinsky LES model is implemented to model the turbulent flow. A two-way coupled Lagrangian particle tracking model is added to track the motion of argon bubbles. A particle/bubble capture model based on force balance at dendrite tips is validated and used to study the capture of argon bubbles by the solidifying steel shell. To investigate the effects of EMBr on the turbulent molten steel flow and bubble transport, an electrical potential method is implemented to solve the magnetohydrodynamics equations. Volume of Fluid (VOF) simulations are carried out to understand the additional resistance force on moving argon bubbles caused by adding transverse magnetic field. A modified drag coefficient is extrapolated from the results and used in the two-way coupled Eulerian-Lagrangian model to predict the argon bubble transport in a caster with EMBr. A hook capture model is developed to understand the effects of hooks on argon bubble capture.

  8. Bubbles in extended inflation and multi-production of universes

    NASA Astrophysics Data System (ADS)

    Sakai, Nobuyuki; Maeda, Kei-ichi

    Developing the thin-wall method of Israel, we present a formalism to investigate bubble dynamics in generalized Einstein theories. We derive the equations of motion for a bubble, finding that the space-time inside a bubble is always inhomogeneous. Applying this formalism to extended inflation, we find the following two results: (1) Any true vacuum bubble expands, contrary to the results of Goldwirth-Zaglauer, who claim that bubbles created initially later collapse. We show that their initial conditions for collapsing bubbles are physically inconsistent. (2) Concerning the global space-time structure of the Universe in extended inflation, we show that worm-holes are produced as in old inflation, resulting in the multi-production of universes.

  9. Note: Modified anvil design for improved reliability in DT-Cup experiments.

    PubMed

    Hunt, Simon A; Dobson, David P

    2017-12-01

    The Deformation T-Cup (DT-Cup) is a modified 6-8 multi-anvil apparatus capable of controlled strain-rate deformation experiments at pressures greater than 18 GPa. Controlled strain-rate deformation was enabled by replacing two of the eight cubic "second-stage" anvils with hexagonal cross section deformation anvils and modifying the "first-stage" wedges. However, with these modifications approximately two-thirds of experiments end with rupture of the hexagonal anvils. By replacing the hexagonal anvils with cubic anvils and, split, deformation wedge extensions, we restore the massive support to the deformation anvils that were inherent in the original multi-anvil design and prevent deformation anvil failure. With the modified parts, the DT-Cup has an experimental success rate that is similar to that of a standard hydrostatic 6-8 multi-anvil apparatus.

  10. Fermi Bubbles: an elephant in the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Malyshev, Dmitry

    2017-03-01

    The Fermi bubbles are one of the most remarkable features in the gamma-ray sky revealed by the Fermi Large Area Telescope (LAT). The nature of the gamma-ray emission and the origin of the bubbles are still open questions. In this note, we will review some basic features of leptonic and hadronic modes of gamma-ray production. At the moment, gamma rays are our best method to study the bubbles, but in order to resolve the origin of the bubbles multi-wavelength and multi-messenger observations will be crucial.

  11. Formation of electron energy spectra during magnetic reconnection in laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Lu, Quanming; Huang, Can; Dong, Quanli; Wang, Huanyu; Fan, Feibin; Sheng, Zhengming; Wang, Shui; Zhang, Jie

    2017-10-01

    Energetic electron spectra formed during magnetic reconnection between two laser-produced plasma bubbles are investigated by the use of two-dimensional particle-in-cell simulations. It is found that the evolution of such an interaction between the two plasma bubbles can be separated into two distinct stages: squeezing and reconnection stages. In the squeezing stage, when the two plasma bubbles expand quickly and collide with each other, the magnetic field in the inflow region is greatly enhanced. In the second stage, a thin current sheet is formed between the two plasma bubbles, and then, magnetic reconnection occurs therein. During the squeezing stage, electrons are heated in the perpendicular direction by betatron acceleration due to the enhancement of the magnetic field around the plasma bubbles. Meanwhile, non-thermal electrons are generated by the Fermi mechanism when these electrons bounce between the two plasma bubbles approaching quickly and get accelerated mainly by the convective electric field associated with the plasma bubbles. During the reconnection stage, electrons get further accelerated mainly by the reconnection electric field in the vicinity of the X line. When the expanding speed of the plasma bubbles is sufficiently large, the formed electron energy spectra have a kappa distribution, where the lower energy part satisfies a Maxwellian function and the higher energy part is a power-law distribution. Moreover, the increase in the expanding speed will result in the hardening of formed power-law spectra in both the squeezing and reconnection stages.

  12. Study on the bubble transport mechanism in an acoustic standing wave field.

    PubMed

    Xi, Xiaoyu; Cegla, Frederic B; Lowe, Michael; Thiemann, Andrea; Nowak, Till; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander

    2011-12-01

    The use of bubbles in applications such as surface chemistry, drug delivery, and ultrasonic cleaning etc. has been enormously popular in the past two decades. It has been recognized that acoustically-driven bubbles can be used to disturb the flow field near a boundary in order to accelerate physical or chemical reactions on the surface. The interactions between bubbles and a surface have been studied experimentally and analytically. However, most of the investigations focused on violently oscillating bubbles (also known as cavitation bubble), less attention has been given to understand the interactions between moderately oscillating bubbles and a boundary. Moreover, cavitation bubbles were normally generated in situ by a high intensity laser beam, little experimental work has been carried out to study the translational trajectory of a moderately oscillating bubble in an acoustic field and subsequent interactions with the surface. This paper describes the design of an ultrasonic test cell and explores the mechanism of bubble manipulation within the test cell. The test cell consists of a transducer, a liquid medium and a glass backing plate. The acoustic field within the multi-layered stack was designed in such a way that it was effectively one dimensional. This was then successfully simulated by a one dimensional network model. The model can accurately predict the impedance of the test cell as well as the mode shape (distribution of particle velocity and stress/pressure field) within the whole assembly. The mode shape of the stack was designed so that bubbles can be pushed from their injection point onto a backing glass plate. Bubble radial oscillation was simulated by a modified Keller-Miksis equation and bubble translational motion was derived from an equation obtained by applying Newton's second law to a bubble in a liquid medium. Results indicated that the bubble trajectory depends on the acoustic pressure amplitude and initial bubble size: an increase of pressure amplitude or a decrease of bubble size forces bubbles larger than their resonant size to arrive at the target plate at lower heights, while the trajectories of smaller bubbles are less influenced by these factors. The test cell is also suitable for testing the effects of drag force on the bubble motion and for studying the bubble behavior near a surface. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. A translating stage system for µ-PIV measurements surrounding the tip of a migrating semi-infinite bubble.

    PubMed

    Smith, B J; Yamaguchi, E; Gaver, D P

    2010-01-01

    We have designed, fabricated and evaluated a novel translating stage system (TSS) that augments a conventional micro particle image velocimetry (µ-PIV) system. The TSS has been used to enhance the ability to measure flow fields surrounding the tip of a migrating semi-infinite bubble in a glass capillary tube under both steady and pulsatile reopening conditions. With conventional µ-PIV systems, observations near the bubble tip are challenging because the forward progress of the bubble rapidly sweeps the air-liquid interface across the microscopic field of view. The translating stage mechanically cancels the mean bubble tip velocity, keeping the interface within the microscope field of view and providing a tenfold increase in data collection efficiency compared to fixed-stage techniques. This dramatic improvement allows nearly continuous observation of the flow field over long propagation distances. A large (136-frame) ensemble-averaged velocity field recorded with the TSS near the tip of a steadily migrating bubble is shown to compare well with fixed-stage results under identical flow conditions. Use of the TSS allows the ensemble-averaged measurement of pulsatile bubble propagation flow fields, which would be practically impossible using conventional fixed-stage techniques. We demonstrate our ability to analyze these time-dependent two-phase flows using the ensemble-averaged flow field at four points in the oscillatory cycle.

  14. Trypan blue staining of the anterior capsule under an air bubble with a modified cannula.

    PubMed

    Toprak, Ahmet Baris; Erkin, Esin Fatma; Guler, Cenap

    2003-01-01

    To attain good visibility of the anterior capsule in the advanced or white cataract, trypan blue 0.1% is used to stain the anterior capsule. The dye is usually injected under an air bubble. However, it is difficult to inject the dye properly due to capillary forces. An ordinary anterior chamber cannula was modified and its coverage area increased to facilitate the staining of the anterior capsule under an air bubble. The anterior capsule was stained properly by using the modified cannula in all of the cases.

  15. A multi-stage heuristic algorithm for matching problem in the modified miniload automated storage and retrieval system of e-commerce

    NASA Astrophysics Data System (ADS)

    Wang, Wenrui; Wu, Yaohua; Wu, Yingying

    2016-05-01

    E-commerce, as an emerging marketing mode, has attracted more and more attention and gradually changed the way of our life. However, the existing layout of distribution centers can't fulfill the storage and picking demands of e-commerce sufficiently. In this paper, a modified miniload automated storage/retrieval system is designed to fit these new characteristics of e-commerce in logistics. Meanwhile, a matching problem, concerning with the improvement of picking efficiency in new system, is studied in this paper. The problem is how to reduce the travelling distance of totes between aisles and picking stations. A multi-stage heuristic algorithm is proposed based on statement and model of this problem. The main idea of this algorithm is, with some heuristic strategies based on similarity coefficients, minimizing the transportations of items which can not arrive in the destination picking stations just through direct conveyors. The experimental results based on the cases generated by computers show that the average reduced rate of indirect transport times can reach 14.36% with the application of multi-stage heuristic algorithm. For the cases from a real e-commerce distribution center, the order processing time can be reduced from 11.20 h to 10.06 h with the help of the modified system and the proposed algorithm. In summary, this research proposed a modified system and a multi-stage heuristic algorithm that can reduce the travelling distance of totes effectively and improve the whole performance of e-commerce distribution center.

  16. Efficient Multi-Stage Time Marching for Viscous Flows via Local Preconditioning

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Wood, William A.; vanLeer, Bram

    1999-01-01

    A new method has been developed to accelerate the convergence of explicit time-marching, laminar, Navier-Stokes codes through the combination of local preconditioning and multi-stage time marching optimization. Local preconditioning is a technique to modify the time-dependent equations so that all information moves or decays at nearly the same rate, thus relieving the stiffness for a system of equations. Multi-stage time marching can be optimized by modifying its coefficients to account for the presence of viscous terms, allowing larger time steps. We show it is possible to optimize the time marching scheme for a wide range of cell Reynolds numbers for the scalar advection-diffusion equation, and local preconditioning allows this optimization to be applied to the Navier-Stokes equations. Convergence acceleration of the new method is demonstrated through numerical experiments with circular advection and laminar boundary-layer flow over a flat plate.

  17. A modified resistance equation for modeling underwater spark discharge with salinity and high pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Pengfei; Roy, Subrata, E-mail: roy@ufl.edu

    2014-05-07

    This work investigates the performance of underwater spark discharge relating to bubble growth and decay under high pressure and with salinity conditions by introducing a modified form of the resistance equation. Here, we study salinity influence on circuit parameters by fitting the experimental data for which gap resistance is much larger in conductive water than in dielectric water. Accordingly, the resistance equation is modified by considering the influence of both plasma and its surrounding liquid. Thermal radiation effect of the bubble is also studied by comparing two different radiation models. Numerical results predict a larger bubble pressure for saline watermore » but a reduced size and a smaller bubble cycle at a greater water depth. Such study may be useful in many saltwater applications, including that for deep sea conditions.« less

  18. Large Eddy Simulations of Electromagnetic Braking Effects on Argon Bubble Transport and Capture in a Steel Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Jin, Kai; Vanka, Surya P.; Thomas, Brian G.

    2018-02-01

    In continuous casting of steel, argon gas is often injected to prevent clogging of the nozzle, but the bubbles affect the flow pattern, and may become entrapped to form defects in the final product. Further, an electromagnetic field is frequently applied to induce a braking effect on the flow field and modify the inclusion transport. In this study, a previously validated GPU-based in-house code CUFLOW is used to investigate the effect of electromagnetic braking on turbulent flow, bubble transport, and capture. Well-resolved large eddy simulations are combined with two-way coupled Lagrangian computations of the bubbles. The drag coefficient on the bubbles is modified to account for the effects of the magnetic field. The distribution of the argon bubbles, capture, and escape rates, are presented and compared with and without the magnetic field. The bubble capture patterns are also compared with results of a previous RANS model as well as with plant measurements.

  19. Large Eddy Simulations of Electromagnetic Braking Effects on Argon Bubble Transport and Capture in a Steel Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Jin, Kai; Vanka, Surya P.; Thomas, Brian G.

    2018-06-01

    In continuous casting of steel, argon gas is often injected to prevent clogging of the nozzle, but the bubbles affect the flow pattern, and may become entrapped to form defects in the final product. Further, an electromagnetic field is frequently applied to induce a braking effect on the flow field and modify the inclusion transport. In this study, a previously validated GPU-based in-house code CUFLOW is used to investigate the effect of electromagnetic braking on turbulent flow, bubble transport, and capture. Well-resolved large eddy simulations are combined with two-way coupled Lagrangian computations of the bubbles. The drag coefficient on the bubbles is modified to account for the effects of the magnetic field. The distribution of the argon bubbles, capture, and escape rates, are presented and compared with and without the magnetic field. The bubble capture patterns are also compared with results of a previous RANS model as well as with plant measurements.

  20. Physics of beer tapping.

    PubMed

    Rodríguez-Rodríguez, Javier; Casado-Chacón, Almudena; Fuster, Daniel

    2014-11-21

    The popular bar prank known in colloquial English as beer tapping consists in hitting the top of a beer bottle with a solid object, usually another bottle, to trigger the foaming over of the former within a few seconds. Despite the trick being known for a long time, to the best of our knowledge, the phenomenon still lacks scientific explanation. Although it seems natural to think that shock-induced cavitation enhances the diffusion of CO2 from the supersaturated bulk liquid into the bubbles by breaking them up, the subtle mechanism by which this happens remains unknown. Here, we show that the overall foaming-over process can be divided into three stages where different physical phenomena take place in different time scales: namely, the bubble-collapse (or cavitation) stage, the diffusion-driven stage, and the buoyancy-driven stage. In the bubble-collapse stage, the impact generates a train of expansion-compression waves in the liquid that leads to the fragmentation of preexisting gas cavities. Upon bubble fragmentation, the sudden increase of the interface-area-to-volume ratio enhances mass transfer significantly, which makes the bubble volume grow by a large factor until CO2 is locally depleted. At that point buoyancy takes over, making the bubble clouds rise and eventually form buoyant vortex rings whose volume grows fast due to the feedback between the buoyancy-induced rising speed and the advection-enhanced CO2 transport from the bulk liquid to the bubble. The physics behind this explosive process sheds insight into the dynamics of geological phenomena such as limnic eruptions.

  1. Physics of Beer Tapping

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, Javier; Casado-Chacón, Almudena; Fuster, Daniel

    2014-11-01

    The popular bar prank known in colloquial English as beer tapping consists in hitting the top of a beer bottle with a solid object, usually another bottle, to trigger the foaming over of the former within a few seconds. Despite the trick being known for a long time, to the best of our knowledge, the phenomenon still lacks scientific explanation. Although it seems natural to think that shock-induced cavitation enhances the diffusion of CO2 from the supersaturated bulk liquid into the bubbles by breaking them up, the subtle mechanism by which this happens remains unknown. Here, we show that the overall foaming-over process can be divided into three stages where different physical phenomena take place in different time scales: namely, the bubble-collapse (or cavitation) stage, the diffusion-driven stage, and the buoyancy-driven stage. In the bubble-collapse stage, the impact generates a train of expansion-compression waves in the liquid that leads to the fragmentation of preexisting gas cavities. Upon bubble fragmentation, the sudden increase of the interface-area-to-volume ratio enhances mass transfer significantly, which makes the bubble volume grow by a large factor until CO2 is locally depleted. At that point buoyancy takes over, making the bubble clouds rise and eventually form buoyant vortex rings whose volume grows fast due to the feedback between the buoyancy-induced rising speed and the advection-enhanced CO2 transport from the bulk liquid to the bubble. The physics behind this explosive process sheds insight into the dynamics of geological phenomena such as limnic eruptions.

  2. Wetting of soap bubbles on hydrophilic, hydrophobic, and superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Arscott, Steve

    2013-06-01

    Wetting of sessile bubbles on various wetting surfaces (solid and liquid) has been studied. A model is presented for the apparent contact angle of a sessile bubble based on a modified Young's equation--the experimental results agree with the model. Wetting a hydrophilic surface results in a bubble contact angle of 90° whereas using a superhydrophobic surface one observes 134°. For hydrophilic surfaces, the bubble angle diminishes with bubble radius whereas on a superhydrophobic surface, the bubble angle increases. The size of the plateau borders governs the bubble contact angle, depending on the wetting of the surface.

  3. High-Throughput Fabrication of Quality Nanofibers Using a Modified Free Surface Electrospinning.

    PubMed

    Shao, Zhongbiao; Yu, Liang; Xu, Lan; Wang, Mingdi

    2017-12-01

    Based on bubble electrospinning (BE), a modified free surface electrospinning (MFSE) using a cone-shaped air nozzle combined with a solution reservoir made of copper tubes was presented to increase the production of quality nanofibers. In the MFSE process, sodium dodecyl benzene sulfonates (SDBS) were added in the electrospun solution to generate bubbles on a liquid surface. The effects of applied voltage and generated bubbles on the morphology and production of nanofibers were investigated experimentally and theoretically. The theoretical analysis results of the electric field were in good agreement with the experimental data and showed that the quality and production of nanofibers were improved with the increase of applied voltage, and the generated bubbles would decrease the quality and production of nanofibers.

  4. High-Throughput Fabrication of Quality Nanofibers Using a Modified Free Surface Electrospinning

    NASA Astrophysics Data System (ADS)

    Shao, Zhongbiao; Yu, Liang; Xu, Lan; Wang, Mingdi

    2017-07-01

    Based on bubble electrospinning (BE), a modified free surface electrospinning (MFSE) using a cone-shaped air nozzle combined with a solution reservoir made of copper tubes was presented to increase the production of quality nanofibers. In the MFSE process, sodium dodecyl benzene sulfonates (SDBS) were added in the electrospun solution to generate bubbles on a liquid surface. The effects of applied voltage and generated bubbles on the morphology and production of nanofibers were investigated experimentally and theoretically. The theoretical analysis results of the electric field were in good agreement with the experimental data and showed that the quality and production of nanofibers were improved with the increase of applied voltage, and the generated bubbles would decrease the quality and production of nanofibers.

  5. Blended-Wing-Body (BWB) Fuselage Structural Design for Weight Reduction

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.

    2005-01-01

    Structural analysis and design of efficient pressurized fuselage configurations for the advanced Blended-Wing-Body (BWB) flight vehicle is a challenging problem. Unlike a conventional cylindrical pressurized fuselage, stress level in a box type BWB fuselage is an order of magnitude higher, because internal pressure primarily results in bending stress instead of skin-membrane stress. In addition, resulting deformation of aerodynamic surface could significantly affect performance advantages provided by lifting body. The pressurized composite conformal multi-lobe tanks of X-33 type space vehicle also suffered from similar problem. In the earlier BWB design studies, Vaulted Ribbed Shell (VLRS), Flat Ribbed Shell (FRS); Vaulted shell Honeycomb Core (VLHC) and Flat sandwich shell Honeycomb Core (FLHC) concepts were studied. The flat and vaulted ribbed shell concepts were found most efficient. In a recent study, a set of composite sandwich panel and cross-ribbed panel were analyzed. Optimal values of rib and skin thickness, rib spacing, and panel depth were obtained for minimal weight under stress and buckling constraints. In addition, a set of efficient multi-bubble fuselage (MBF) configuration concept was developed. The special geometric configuration of this concept allows for balancing internal cabin pressure load efficiently, through membrane stress in inner-stiffened shell and inter-cabin walls, while the outer-ribbed shell prevents buckling due to external resultant compressive loads. The initial results from these approximate finite element analyses indicate progressively lower maximum stresses and deflections compared to the earlier study. However, a relative comparison of the FEM weight per unit floor area of the segment unit indicates that the unit weights are still relatively higher that the conventional B777 type cylindrical or A380 type elliptic fuselage design. Due to the manufacturing concern associated with multi-bubble fuselage, a Y braced box-type fuselage alternative with special resin-film injected (RFI) stitched carbon composite with foam-core was designed by Boeing under a NASA research contract for the 480 passenger version. It is shown that this configuration can be improved to a modified multi-bubble fuselage which has better stress distribution, for same material and dimension.

  6. Shock/vortex interaction and vortex-breakdown modes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  7. Modified Right Heart Contrast Echocardiography Versus Traditional Method in Diagnosis of Right-to-Left Shunt: A Comparative Study.

    PubMed

    Wang, Yi; Zeng, Jie; Yin, Lixue; Zhang, Mei; Hou, Dailun

    2016-01-01

    The purpose of this study was to evaluate the reliability, effectiveness, and safety of modified right heart contrast transthoracic echocardiography (cTTE) in comparison with the traditional method. We performed a modified right heart cTTE using saline mixed with a small sample of patient's own blood. Samples were agitated with varying intensity. This study protocol involved microscopic analysis and patient evaluation. 1. Microscopic analysis: After two contrast samples had been agitated 10 or 20 times, they underwent a comparison of bubble size, bubble number, and red blood cell morphology. 2. Patient analysis: 40 patients with suspected RLS (right- to-left shunt) were enrolled. All patients underwent right heart contrast echocardiography. Oxygen saturation, transit time and duration, presence of RLS, change in indirect bilirubin and urobilinogen concentrations were compared afterward. Modified method generated more bubbles (P<0.05), but the differences in bubble size were not significant (P>0.05). Twenty-four patients were diagnosed with RLS (60%) using the modified method compared to 16 patients (40%) with the traditional method. The transit time of ASb20 group was the shortest (P<0.05). However, the duration time in this group was much longer (P<0.05). Also, in semi-quantitative analysis mean rank of RLS was higher after injecting the modified contrast agent agitated 20 times (P<0.05). Modified right heart contrast echocardiography is a reliable, effective and safe method of detecting cardiovascular RLS.

  8. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion

    NASA Astrophysics Data System (ADS)

    Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T.; Taleyarkhan, Rusi P.

    2005-10-01

    This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting shock waves in both phases, which converge toward and reflect from the center of the bubble, causing dissociation, ionization, and other related plasma physics phenomena during the final stage of bubble collapse. For a vapor bubble in a deuterated organic liquid (e.g., acetone), during the final stage of collapse there is a nanoscale region (diameter ˜100nm) near the center of the bubble in which, for a fraction of a picosecond, the temperatures and densities are extremely high (˜108K and ˜10g/cm3, respectively) such that thermonuclear fusion may take place. To quantify this, the kinetics of the local deuterium/deuterium (D/D) nuclear fusion reactions was used in the HYDRO code to determine the intensity of the fusion reactions. Numerical HYDRO code simulations of the bubble implosion process have been carried out for the experimental conditions used by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] at Oak Ridge National Laboratory. The results show good agreement with the experimental data on bubble fusion that was measured in chilled deuterated acetone.

  9. Predicting the Performance of an Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Steinke, R. J.

    1986-01-01

    Stage-stacking computer code (STGSTK) developed for predicting off-design performance of multi-stage axial-flow compressors. Code uses meanline stagestacking method. Stage and cumulative compressor performance calculated from representative meanline velocity diagrams located at rotor inlet and outlet meanline radii. Numerous options available within code. Code developed so user modify correlations to suit their needs.

  10. Bubble induced flow field modulation for pool boiling enhancement over a tubular surface

    NASA Astrophysics Data System (ADS)

    Raghupathi, P. A.; Joshi, I. M.; Jaikumar, A.; Emery, T. S.; Kandlikar, S. G.

    2017-06-01

    We demonstrate the efficacy of using a strategically placed enhancement feature to modify the trajectory of bubbles nucleating on a horizontal tubular surface to increase both the critical heat flux (CHF) and the heat transfer coefficient (HTC). The CHF on a plain tube is shown to be triggered by a local dryout at the bottom of the tube due to vapor agglomeration. To mitigate this effect and delay CHF, the nucleating bubble trajectory is modified by incorporating a bubble diverter placed axially at the bottom of the tube. The nucleating bubble at the base of the diverter experiences a tangential evaporation momentum force (EMF) which causes the bubble to grow sideways away from the tube and avoid localized bubble patches that are responsible for CHF initiation. High speed imaging confirmed the lateral displacement of the bubbles away from the diverter closely matched with the theoretical predictions using EMF and buoyancy forces. Since the EMF is stronger at higher heat fluxes, bubble displacement increases with heat flux and results in the formation of separate liquid-vapor pathways wherein the liquid enters almost unobstructed at the bottom and the vapor bubble leaves sideways. Experimental results yielded CHF and HTC enhancements of ˜60% and ˜75%, respectively, with the diverter configuration when compared to a plain tube. This work can be used for guidance in developing enhancement strategies to effectively modulate the liquid-vapor flow around the heater surface at various locations to enhance HTC and CHF.

  11. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system

    NASA Astrophysics Data System (ADS)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai

    2015-07-01

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.

  12. Early Warning Signals of Financial Crises with Multi-Scale Quantile Regressions of Log-Periodic Power Law Singularities.

    PubMed

    Zhang, Qun; Zhang, Qunzhi; Sornette, Didier

    2016-01-01

    We augment the existing literature using the Log-Periodic Power Law Singular (LPPLS) structures in the log-price dynamics to diagnose financial bubbles by providing three main innovations. First, we introduce the quantile regression to the LPPLS detection problem. This allows us to disentangle (at least partially) the genuine LPPLS signal and the a priori unknown complicated residuals. Second, we propose to combine the many quantile regressions with a multi-scale analysis, which aggregates and consolidates the obtained ensembles of scenarios. Third, we define and implement the so-called DS LPPLS Confidence™ and Trust™ indicators that enrich considerably the diagnostic of bubbles. Using a detailed study of the "S&P 500 1987" bubble and presenting analyses of 16 historical bubbles, we show that the quantile regression of LPPLS signals contributes useful early warning signals. The comparison between the constructed signals and the price development in these 16 historical bubbles demonstrates their significant predictive ability around the real critical time when the burst/rally occurs.

  13. A comparison of multi-metal deposition processes utilising gold nanoparticles and an evaluation of their application to 'low yield' surfaces for finger mark development.

    PubMed

    Fairley, C; Bleay, S M; Sears, V G; NicDaeid, N

    2012-04-10

    This paper reports a comparison of the effectiveness and practicality of using different multi-metal deposition processes for finger mark development. The work investigates whether modifications can be made to improve the performance of the existing process published by Schnetz. Secondly, we compare the ability of different multi-metal deposition processes to develop finger marks on a range of surfaces with that of other currently used development processes. All published multi-metal deposition processes utilise an initial stage of colloidal gold deposition followed by enhancement of the marks with using a physical developer. All possible combinations of colloidal gold and physical developer stages were tested. The method proposed by Schnetz was shown to be the most effective process, however a modification which reduced the pH of the enhancement solution was revealed to provide the best combination of effectiveness and practicality. In trials comparing the modified formulation with vacuum metal deposition, superglue and powder suspensions on surfaces which typically give low finger mark yields (cling film, plasticised vinyl, leather and masking tape), the modified method produced significantly better results over existing processes for cling film and plasticised vinyl. The modified formulation was found to be ineffective on both masking tape and leather. It is recommended that further tests be carried out on the modified multi-metal deposition formulation to establish whether it could be introduced for operational work on cling film material in particular. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Simulations of Bubble Motion in an Oscillating Liquid

    NASA Astrophysics Data System (ADS)

    Kraynik, A. M.; Romero, L. A.; Torczynski, J. R.

    2010-11-01

    Finite-element simulations are used to investigate the motion of a gas bubble in a liquid undergoing vertical vibration. The effect of bubble compressibility is studied by comparing "compressible" bubbles that obey the ideal gas law with "incompressible" bubbles that are taken to have constant volume. Compressible bubbles exhibit a net downward motion away from the free surface that does not exist for incompressible bubbles. Net (rectified) velocities are extracted from the simulations and compared with theoretical predictions. The dependence of the rectified velocity on ambient gas pressure, bubble diameter, and bubble depth are in agreement with the theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Microhydrodynamics of flotation processes in the sea surface layer

    NASA Astrophysics Data System (ADS)

    Grammatika, Marianne; Zimmerman, William B.

    2001-10-01

    The uppermost surface of the ocean forms a peculiarly important ecosystem, the sea surface microlayer (SML). Comprising the top 1-1000 μm of the ocean surface, the SML concentrates many chemical substances, particularly those that are surface active. Important economically as a nursery for fish eggs and larvae, the SML unfortunately is also especially vulnerable to pollution. Contaminants that settle out from the air, have low solubility, or attach to floatable matter tend to accumulate in the SML. Bubbles contribute prominently to the dynamics of air-sea exchanges, playing an important role in geochemical cycling of material in the upper ocean and SML. In addition to the movement of bubbles, the development of a bubble cloud interrelates with the single particle dynamics of all other bubbles and particles. In the early sixties, several in situ oceanographic techniques revealed an "unbelievably immense" number of coastal bubbles of radius 15-300 μm. The spatial and temporal variation of bubble numbers were studied; acoustical oceanographers now use bubbles as tracers to determine ocean processes near the ocean surface. Sea state and rain noises have both been definitively ascribed to the radiation from huge numbers of infant micro bubbles [The Acoustic Bubble. Academic Press, San Diego]. Our research programme aims at constructing a hydrodynamic model for particle transport processes occurring at the microscale, in multi-phase flotation suspensions. Current research addresses bubble and floc microhydrodynamics as building blocks for a microscale transport model. This paper reviews sea surface transport processes in the microlayer and the lower atmosphere, and identifies those amenable to microhydrodynamic modelling and simulation. It presents preliminary simulation results including the multi-body hydrodynamic mobility functions for the modelling of "dynamic bubble filters" and floc suspensions. Hydrodynamic interactions versus spatial anisotropy and size of particle clouds are investigated.

  16. Fabrication of magnetic bubble memory overlay

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Self-contained magnetic bubble memory overlay is fabricated by process that employs epitaxial deposition to form multi-layered complex of magnetically active components on single chip. Overlay fabrication comprises three metal deposition steps followed by subtractive etch.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, M.-L., E-mail: marie-laure.david@univ-poitiers.fr; Pailloux, F.; Canadian Centre for Electron Microscopy, Mc Master University, 1280 Main Street West, Hamilton, Ontario L8S 4M1

    We demonstrate that the helium density and corresponding pressure can be modified in single nano-scale bubbles embedded in semiconductors by using the electron beam of a scanning transmission electron microscope as a multifunctional probe: the measurement probe for imaging and chemical analysis and the irradiation source to modify concomitantly the pressure in a controllable way by fine tuning of the electron beam parameters. The control of the detrapping rate is achieved by varying the experimental conditions. The underlying physical mechanisms are discussed; our experimental observations suggest that the helium detrapping from bubbles could be interpreted in terms of direct ballisticmore » collisions, leading to the ejection of the helium atoms from the bubble.« less

  18. Analysis of non-enzymatically glycated peptides: neutral-loss-triggered MS3 versus multi-stage activation tandem mass spectrometry

    PubMed Central

    Zhang, Qibin; Petyuk, Vladislav A.; Schepmoes, Athena A.; Orton, Daniel J.; Monroe, Matthew E.; Yang, Feng; Smith, Richard D.; Metz, Thomas O.

    2009-01-01

    Non-enzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. While electron transfer dissociation (ETD) has been shown to outperform collision-induced dissociation (CID) in sequencing glycated peptides by tandem mass spectrometry, ETD instrumentation is not yet widely available and often suffers from significantly lower sensitivity than CID. In this study, we evaluated different advanced CID techniques (i.e., neutral-loss-triggered MS3 and multi-stage activation) during liquid chromatography/multi-stage mass spectrometric (LC/MSn) analyses of Amadori-modified peptides enriched from human serum glycated in vitro. During neutral-loss-triggered MS3 experiments, MS3 scans triggered by neutral losses of 3 H2O or 3 H2O + HCHO produced similar results in terms of glycated peptide identifications. However, neutral losses of 3 H2O resulted in significantly more glycated peptide identifications during multi-stage activation experiments. Overall, the multi-stage activation approach produced more glycated peptide identifications, while the neutral-loss-triggered MS3 approach resulted in much higher specificity. Both techniques are viable alternatives to ETD for identifying glycated peptides. PMID:18763275

  19. Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation

    NASA Astrophysics Data System (ADS)

    Mahabadi, Nariman; Zheng, Xianglei; Yun, Tae Sup; van Paassen, Leon; Jang, Jaewon

    2018-02-01

    Gas bubbles can be naturally generated or intentionally introduced in sediments. Gas bubble migration and trapping affect the rate of gas emission into the atmosphere or modify the sediment properties such as hydraulic and mechanical properties. In this study, the migration and trapping of gas bubbles are simulated using the pore-network model extracted from the 3D X-ray image of in situ sediment. Two types of bubble size distribution (mono-sized and distributed-sized cases) are used in the simulation. The spatial and statistical bubble size distribution, residual gas saturation, and hydraulic conductivity reduction due to the bubble trapping are investigated. The results show that the bubble size distribution becomes wider during the gas bubble migration due to bubble coalescence for both mono-sized and distributed-sized cases. And the trapped bubble fraction and the residual gas saturation increase as the bubble size increases. The hydraulic conductivity is reduced as a result of the gas bubble trapping. The reduction in hydraulic conductivity is apparently observed as bubble size and the number of nucleation points increase.

  20. Viscous decay of nonlinear oscillations of a spherical bubble at large Reynolds number

    NASA Astrophysics Data System (ADS)

    Smith, W. R.; Wang, Q. X.

    2017-08-01

    The long-time viscous decay of large-amplitude bubble oscillations is considered in an incompressible Newtonian fluid, based on the Rayleigh-Plesset equation. At large Reynolds numbers, this is a multi-scaled problem with a short time scale associated with inertial oscillation and a long time scale associated with viscous damping. A multi-scaled perturbation method is thus employed to solve the problem. The leading-order analytical solution of the bubble radius history is obtained to the Rayleigh-Plesset equation in a closed form including both viscous and surface tension effects. Some important formulae are derived including the following: the average energy loss rate of the bubble system during each cycle of oscillation, an explicit formula for the dependence of the oscillation frequency on the energy, and an implicit formula for the amplitude envelope of the bubble radius as a function of the energy. Our theory shows that the energy of the bubble system and the frequency of oscillation do not change on the inertial time scale at leading order, the energy loss rate on the long viscous time scale being inversely proportional to the Reynolds number. These asymptotic predictions remain valid during each cycle of oscillation whether or not compressibility effects are significant. A systematic parametric analysis is carried out using the above formula for the energy of the bubble system, frequency of oscillation, and minimum/maximum bubble radii in terms of the Reynolds number, the dimensionless initial pressure of the bubble gases, and the Weber number. Our results show that the frequency and the decay rate have substantial variations over the lifetime of a decaying oscillation. The results also reveal that large-amplitude bubble oscillations are very sensitive to small changes in the initial conditions through large changes in the phase shift.

  1. Border-Crossing Model for the Diffusive Coarsening of Wet Foams

    NASA Astrophysics Data System (ADS)

    Durian, Douglas; Schimming, Cody

    For dry foams, the transport of gas from small high-pressure bubbles to large low-pressure bubbles is dominated by diffusion across the thin soap films separating neighboring bubbles. For wetter foams, the film areas become smaller as the Plateau borders and vertices inflate with liquid. So-called ``border-blocking'' models can explain some features of wet-foam coarsening based on the presumption that the inflated borders totally block the gas flux; however, this approximation dramatically fails in the wet/unjamming limit where the bubbles become close-packed spheres. Here, we account for the ever-present border-crossing flux by a new length scale defined by the average gradient of gas concentration inside the borders. We argue that it is proportional to the geometric average of film and border thicknesses, and we verify this scaling and the numerical prefactor by numerical solution of the diffusion equation. Then we show how the dA / dt =K0 (n - 6) von Neumann law is modified by the appearance of terms that depend on bubble size and shape as well as the concentration gradient length scale. Finally, we use the modified von Neumann law to compute the growth rate of the average bubble, which is not constant.

  2. Simultaneous observation of nascent plasma and bubble induced by laser ablation in water with various pulse durations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, Ayaka, E-mail: atamura@hiroshima-u.ac.jp; Matsumoto, Ayumu; Nishi, Naoya

    2015-05-07

    We investigate the effects of pulse duration on the dynamics of the nascent plasma and bubble induced by laser ablation in water. To examine the relationship between the nascent plasma and the bubble without disturbed by shot-to-shot fluctuation, we observe the images of the plasma and the bubble simultaneously by using two intensified charge coupled device detectors. We successfully observe the images of the plasma and bubble during the pulsed-irradiation, when the bubble size is as small as 20 μm. The light-emitting region of the plasma during the laser irradiation seems to exceed the bubble boundary in the case of themore » short-pulse (30-ns pulse) irradiation, while the size of the plasma is significantly smaller than that of the bubble in the case of the long-pulse (100-ns pulse) irradiation. The results suggest that the extent of the plasma quenching in the initial stage significantly depends on the pulse duration. Also, we investigate how the plasma-bubble relationship in the very early stage affects the shape of the atomic spectral lines observed at the later delay time of 600 ns. The present work gives important information to obtain high quality spectra in the application of underwater laser-induced breakdown spectroscopy, as well as to clarify the mechanism of liquid-phase laser ablation.« less

  3. Early Warning Signals of Financial Crises with Multi-Scale Quantile Regressions of Log-Periodic Power Law Singularities

    PubMed Central

    Zhang, Qun; Zhang, Qunzhi; Sornette, Didier

    2016-01-01

    We augment the existing literature using the Log-Periodic Power Law Singular (LPPLS) structures in the log-price dynamics to diagnose financial bubbles by providing three main innovations. First, we introduce the quantile regression to the LPPLS detection problem. This allows us to disentangle (at least partially) the genuine LPPLS signal and the a priori unknown complicated residuals. Second, we propose to combine the many quantile regressions with a multi-scale analysis, which aggregates and consolidates the obtained ensembles of scenarios. Third, we define and implement the so-called DS LPPLS Confidence™ and Trust™ indicators that enrich considerably the diagnostic of bubbles. Using a detailed study of the “S&P 500 1987” bubble and presenting analyses of 16 historical bubbles, we show that the quantile regression of LPPLS signals contributes useful early warning signals. The comparison between the constructed signals and the price development in these 16 historical bubbles demonstrates their significant predictive ability around the real critical time when the burst/rally occurs. PMID:27806093

  4. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.

    1999-01-01

    The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a forming bubble decreases, as the superficial liquid velocity is in-creased. Furthermore, it is shown that the void fraction of the resulting two-phase flow increases with volumetric gas flow rate Q(sub d), pipe diameter and gas injection nozzle diameter, while they decrease with surrounding liquid flow. The important role played by flowing liquid in detaching bubbles in a reduced gravity environment is thus emphasized. We observe that the void fraction can be accurately controlled by using single nozzle gas injection, rather than by employing multiple port injection, since the later system gives rise to unpredictable coalescence of adjacent bubbles. It is of interest to note that empirical bubble size and corresponding void fraction are somewhat smaller for the co-flow geometry than the cross-flow configuration at similar flow conditions with similar pipe and nozzle diameters. In order to supplement the empirical data, a theoretical model is employed to study single bubble generation in the dynamic (Q(sub d) = 1 - 1000 cu cm/s) and bubbly flow regime within the framework of the co-flow configuration. This theoretical model is based on an overall force balance acting on the bubble during the two stages of generation, namely the expansion and the detachment stage. Two sets of forces, one aiding and the other inhibiting bubble detachment are identified. Under conditions of reduced gravity, gas momentum flux enhances, while the surface tension force at the air injection nozzle tip inhibits bubble detachment. In parallel, liquid drag and inertia can act as both attaching and detaching forces, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with our experimental results. However, at higher superficial liquid velocities, as the bubble loses its spherical form, empirical bubble size no longer matches the theoretical predictions. In summary, we have developed a combined experimental and theoretical work, which describes the complex process of bubble generation and resulting two-phase flow in a microgravity environment. Results of the present study can be used in a wide range of space-based applications, such as thermal energy and power generation, propulsion, cryogenic storage and long duration life support systems, necessary for programs such as NASA's Human Exploration for the Development of Space (HEDS).

  5. Numerical investigation of shock induced bubble collapse in water

    NASA Astrophysics Data System (ADS)

    Apazidis, N.

    2016-04-01

    A semi-conservative, stable, interphase-capturing numerical scheme for shock propagation in heterogeneous systems is applied to the problem of shock propagation in liquid-gas systems. The scheme is based on the volume-fraction formulation of the equations of motion for liquid and gas phases with separate equations of state. The semi-conservative formulation of the governing equations ensures the absence of spurious pressure oscillations at the material interphases between liquid and gas. Interaction of a planar shock in water with a single spherical bubble as well as twin adjacent bubbles is investigated. Several stages of the interaction process are considered, including focusing of the transmitted shock within the deformed bubble, creation of a water-hammer shock as well as generation of high-speed liquid jet in the later stages of the process.

  6. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    NASA Astrophysics Data System (ADS)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  7. Balance Training with Wii Fit Plus for Community-Dwelling Persons 60 Years and Older.

    PubMed

    Roopchand-Martin, Sharmella; McLean, Roshé; Gordon, Carron; Nelson, Gail

    2015-06-01

    This study sought to determine the effect of 6 weeks of training, using activities from the Nintendo(®) (Kyoto, Japan) "Wii™ Fit Plus" disc, on balance in community-dwelling Jamaicans 60 years and older. A single group pretest/posttest design was used. Thirty-three subjects enrolled and 28 completed the study. Participants completed 30-minute training sessions on the Nintendo "Wii Fit" twice per week for 6 weeks. Activities used included "Obstacle Course," "Penguin Slide," "Soccer Heading," "River Bubble," "Snow Board," "Tilt Table," "Skate Board," and "Yoga Single Tree Pose." Balance was assessed with the Berg Balance Scale, the Multi Directional Reach Test, the Star Excursion Balance Test and the Modified Clinical Test for Sensory Integration in Balance. There was significant improvement in the mean Berg Balance Scale score (P=0.004), Star Excursion Balance Test score (SEBT) (P<0.001 both legs), and Multi Directional Reach Test score (P=0.002). There was no significant change on the Modified Clinical Test for Sensory Integration in Balance. Balance games on the Nintendo "Wii Fit Plus" disc can be used as a tool for balance training in community-dwelling persons 60 years of age and older.

  8. Space-Based Three-Dimensional Imaging of Equatorial Plasma Bubbles: Advancing the Understanding of Ionospheric Density Depletions and Scintillation

    DTIC Science & Technology

    2012-03-28

    Scintillation 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Comberiate, Joseph M. 5e. TASK NUMBER 5f. WORK...bubble climatology. A tomographic reconstruction technique was modified and applied to SSUSI data to reconstruct three-dimensional cubes of ionospheric... modified and applied to SSUSI data to reconstruct three-dimensional cubes of ionospheric electron density. These data cubes allowed for 3-D imaging of

  9. A multi-functional bubble-based microfluidic system

    PubMed Central

    Khoshmanesh, Khashayar; Almansouri, Abdullah; Albloushi, Hamad; Yi, Pyshar; Soffe, Rebecca; Kalantar-zadeh, Kourosh

    2015-01-01

    Recently, the bubble-based systems have offered a new paradigm in microfluidics. Gas bubbles are highly flexible, controllable and barely mix with liquids, and thus can be used for the creation of reconfigurable microfluidic systems. In this work, a hydrodynamically actuated bubble-based microfluidic system is introduced. This system enables the precise movement of air bubbles via axillary feeder channels to alter the geometry of the main channel and consequently the flow characteristics of the system. Mixing of neighbouring streams is demonstrated by oscillating the bubble at desired displacements and frequencies. Flow control is achieved by pushing the bubble to partially or fully close the main channel. Patterning of suspended particles is also demonstrated by creating a large bubble along the sidewalls. Rigorous analytical and numerical calculations are presented to describe the operation of the system. The examples presented in this paper highlight the versatility of the developed bubble-based actuator for a variety of applications; thus providing a vision that can be expanded for future highly reconfigurable microfluidics. PMID:25906043

  10. Vortex shedding within laminar separation bubbles forming over an airfoil

    NASA Astrophysics Data System (ADS)

    Kirk, Thomas M.; Yarusevych, Serhiy

    2017-05-01

    Vortex shedding within laminar separation bubbles forming over the suction side of a NACA 0018 airfoil is studied through a combination of high-speed flow visualization and boundary layer measurements. Wind tunnel experiments are performed at a chord-based Reynolds number of 100,000 and four angles of attack. The high-speed flow visualization is complemented by quantitative velocity and surface pressure measurements. The structures are shown to originate from the natural amplification of small-amplitude disturbances, and the shear layer roll-up is found to occur coherently across the span. However, significant cycle-to-cycle variations are observed in vortex characteristics, including shedding period and roll-up location. The formation of the roll-up vortices precedes the later stages of transition, during which these structures undergo significant deformations and breakdown to smaller scales. During this stage of flow development, vortex merging is also observed. The results provide new insight into the development of coherent structures in separation bubbles and their relation to the overall bubble dynamics and mean bubble topology.

  11. Revealing the Location of the Mixing Layer in a Hot Bubble

    NASA Astrophysics Data System (ADS)

    Guerrero, M. A.; Fang, X.; Chu, Y.-H.; Toalá, J. A.; Gruendl, R. A.

    2017-10-01

    The fast stellar winds can blow bubbles in the circumstellar material ejected from previous phases of stellar evolution. These are found at different scales, from planetary nebulae (PNe) around stars evolving to the white dwarf stage, to Wolf-Rayet (WR) bubbles and up to large-scale bubbles around massive star clusters. In all cases, the fast stellar wind is shock-heated and a hot bubble is produced. Processes of mass evaporation and mixing of nebular material and heat conduction occurring at the mixing layer between the hot bubble and the optical nebula are key to determine the thermal structure of these bubbles and their evolution. In this contribution we review our current understanding of the X-ray observations of hot bubbles in PNe and present the first spatially-resolved study of a mixing layer in a PN.

  12. Two-Dimensional Numerical Simulations of Ultrasound in Liquids with Gas Bubble Agglomerates: Examples of Bubbly-Liquid-Type Acoustic Metamaterials (BLAMMs)

    PubMed Central

    Vanhille, Christian

    2017-01-01

    This work deals with a theoretical analysis about the possibility of using linear and nonlinear acoustic properties to modify ultrasound by adding gas bubbles of determined sizes in a liquid. We use a two-dimensional numerical model to evaluate the effect that one and several monodisperse bubble populations confined in restricted areas of a liquid have on ultrasound by calculating their nonlinear interaction. The filtering of an input ultrasonic pulse performed by a net of bubbly-liquid cells is analyzed. The generation of a low-frequency component from a single cell impinged by a two-frequency harmonic wave is also studied. These effects rely on the particular dispersive character of attenuation and nonlinearity of such bubbly fluids, which can be extremely high near bubble resonance. They allow us to observe how gas bubbles can change acoustic signals. Variations of the bubbly medium parameters induce alterations of the effects undergone by ultrasound. Results suggest that acoustic signals can be manipulated by bubbles. This capacity to achieve the modification and control of sound with oscillating gas bubbles introduces the concept of bubbly-liquid-based acoustic metamaterials (BLAMMs). PMID:28106748

  13. Two-Dimensional Numerical Simulations of Ultrasound in Liquids with Gas Bubble Agglomerates: Examples of Bubbly-Liquid-Type Acoustic Metamaterials (BLAMMs).

    PubMed

    Vanhille, Christian

    2017-01-17

    This work deals with a theoretical analysis about the possibility of using linear and nonlinear acoustic properties to modify ultrasound by adding gas bubbles of determined sizes in a liquid. We use a two-dimensional numerical model to evaluate the effect that one and several monodisperse bubble populations confined in restricted areas of a liquid have on ultrasound by calculating their nonlinear interaction. The filtering of an input ultrasonic pulse performed by a net of bubbly-liquid cells is analyzed. The generation of a low-frequency component from a single cell impinged by a two-frequency harmonic wave is also studied. These effects rely on the particular dispersive character of attenuation and nonlinearity of such bubbly fluids, which can be extremely high near bubble resonance. They allow us to observe how gas bubbles can change acoustic signals. Variations of the bubbly medium parameters induce alterations of the effects undergone by ultrasound. Results suggest that acoustic signals can be manipulated by bubbles. This capacity to achieve the modification and control of sound with oscillating gas bubbles introduces the concept of bubbly-liquid-based acoustic metamaterials (BLAMMs).

  14. Bubble Formation at a Submerged Orifice in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.

    1994-01-01

    The dynamic regime of gas injection through a circular plate orifice into an ideally wetting liquid is considered, when successively detached bubbles may be regarded as separate identities. In normal gravity and at relatively low gas flow rates, a growing bubble is modeled as a spherical segment touching the orifice perimeter during the whole time of its evolution. If the flow rate exceeds a certain threshold value, another stage of the detachment process takes place in which an almost spherical gas envelope is connected with the orifice by a nearly cylindrical stem that lengthens as the bubble rises above the plate. The bubble shape resembles then that of a mushroom and the upper envelope continues to grow until the gas supply through the stem is completely cut off. Such a stage is always present under conditions of sufficiently low gravity, irrespective of the flow rate. Two major reasons make for bubble detachment: the buoyancy force and the force due to the momentum inflow into the bubble with the injected gas. The former force dominates the process at normal gravity whereas the second one plays a key role under negligible gravity conditions. It is precisely this fundamental factor that conditions the drastic influence on bubble growth and detachment that changes in gravity are able to cause. The frequency of bubble formation is proportional to and the volume of detached bubbles is independent of the gas flow rate in sufficiently low gravity, while at normal and moderately reduced gravity conditions the first variable slightly decreases and the second one almost linearly increases as the flow rate grows. Effects of other parameters, such as the orifice radius, gas and liquid densities, and surface tension are discussed.

  15. Rational Speculative Bubble Size in Gold, Hang Seng, S&P 500 and Nikkei 225 Index During Year 2008 to 2016

    NASA Astrophysics Data System (ADS)

    Borhan, Nurharyanti; Halim, Nurfadhlina Abdul; Amir, W. Ahmad Wan Muhammad

    2017-09-01

    A rational speculative bubble is a surge in asset prices that exceed its intrinsic value. Rational speculative bubbles are among the ascription which may lead to the collapse of an economic system. Rational speculative bubble cannot be created but it comes into existence when assets started to be traded. Financial rational speculative bubble and burst have negative effect on the economy and markets. Financial rational speculative bubbles are difficult to detect. This study aims to shows the size of rational speculative bubble in four markets, which are gold, Hang Seng, S&P500 and Nikkei 225 during year 2008 to 2016. In this study, generalized Johansen-Ledoit-Sornette model are used to find the size of the rational speculative bubble. Bubble detection is important for both sides of macro-economic decision makers and to the trader. Especially for a trading system that requires detailed knowledge about the time and the stage of the bubble burst.

  16. Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped, and random perturbations

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi-Rui; Zhang, You-Sheng; Tian, Bao-Lin

    2018-03-01

    Implicit large eddy simulations of two-dimensional Rayleigh-Taylor instability at different density ratios (i.e., Atwood number A =0.05 , 0.5, and 0.9) are conducted to investigate the late-time dynamics of bubbles. To produce a flow field full of bounded, semibounded, and chaotic bubbles, three problems with distinct perturbations are simulated: (I) periodic sinusoidal perturbation, (II) isolated W-shaped perturbation, and (III) random short-wave perturbations. The evolution of height h , velocity v , and diameter D of the (dominant) bubble with time t are formulated and analyzed. In problem I, during the quasisteady stage, the simulations confirm Goncharov's prediction of the terminal speed v∞=Fr√{A g λ /(1 +A ) } , where Fr=1 /√{3 π } . Moreover, the diameter D at this stage is found to be proportional to the initial perturbation wavelength λ as D ≈λ . This differed from Daly's simulation result of D =λ (1 +A )/2 . In problem II, a W-shaped perturbation is designed to produce a bubble environment similar to that of chaotic bubbles in problem III. We obtain a similar terminal speed relationship as above, but Fr is replaced by Frw≈0.63 . In problem III, the simulations show that h grows quadratically with the bubble acceleration constant α ≡h /(A g t2)≈0.05 , and D expands self-similarly with a steady aspect ratio β ≡D /h ≈(1 +A )/2 , which differs from existing theories. Therefore, following the mechanism of self-similar growth, we derive a relationship of β =4 α (1 +A ) /Frw2 to relate the evolution of chaotic bubbles in problem III to that of semibounded bubbles in problem II. The validity of this relationship highlights the fact that the dynamics of chaotic bubbles in problem III are similar to the semibounded isolated bubbles in problem II, but not to that of bounded periodic bubbles in problem I.

  17. In-situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts

    NASA Astrophysics Data System (ADS)

    Masotta, M.; Ni, H.; Keppler, H.

    2013-12-01

    Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in-situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1100 to 1240 °C and 1 bar, obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (<20 MPa in basalt and andesite, ca. 100 MPa in rhyodacite), probably due to heterogeneous nucleation of bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate (GR) ranges from 3.4*10-6 to 5.2*10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density (NB) at nucleation ranges from 1.8*108 to 7.9*107 cm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble-size distribution (BSD) through time, the BSD's of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSD's may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and explosive eruptions.

  18. Field testing model predictions of foam coverage and bubble content in the surf zone

    NASA Astrophysics Data System (ADS)

    Shi, F.; Kirby, J. T.; Ma, G.; Holman, R. A.; Chickadel, C. C.

    2012-12-01

    Field-scale modeling of surfzone bubbles and foam coverage is challenging in terms of the computational intensity of multi-phase bubble models based on Navier-Stokes/VOF formulation. In this study, we developed the NHWAVE-bubble package, which includes a 3D non-hydrostatic wave model NHWAVE (Ma et al., 2012), a multi-phase bubble model and a foam model. NHWAVE uses a surface and bottom following sigma coordinate system, making it more applicable to 3D modeling of nearshore waves and circulation in a large-scale field domain. It has been extended to include a multiphase description of polydisperse bubble populations following the approach applied in a 3D VOF model by Ma et al. (2012). A model of a foam layer on the water surface is specified in the model package using a shallow water formulation based on a balance of drag forces due to wind and water column motion. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The model is applied in a field scale domain at FRF, Duck, NC where optical data in either visible band (ARGUS) or infrared band were collected during 2010 Surf Zone Optics experiments. The decay of image brightness or intensity following the passage of wave crests is presumably tied to both decay of bubble populations and foam coverage after passage of a broken wave crest. Infrared imagery is likely to provide more detailed information which could separate active breaking from passive foam decay on the surface. Model results will be compared with the measurements with an attention to distinguishing between active generation and passive decay of the foam signature on the water surface.

  19. Oceanic Gas Bubble Measurements Using an Acoustic Bubble Spectrometer

    NASA Astrophysics Data System (ADS)

    Wilson, S. J.; Baschek, B.; Deane, G.

    2008-12-01

    Gas bubble injection by breaking waves contributes significantly to the exchange of gases between atmosphere and ocean at high wind speeds. In this respect, CO2 is primarily important for the global ocean and climate, while O2 is especially relevant for ecosystems in the coastal ocean. For measuring oceanic gas bubble size distributions, a commercially available Dynaflow Acoustic Bubble Spectrometer (ABS) has been modified. Two hydrophones transmit and receive selected frequencies, measuring attenuation and absorption. Algorithms are then used to derive bubble size distributions. Tank test were carried out in order to test the instrument performance.The software algorithms were compared with Commander and Prosperetti's method (1989) of calculating sound speed ratio and attenuation for a known bubble distribution. Additional comparisons with micro-photography were carried out in the lab and will be continued during the SPACE '08 experiment in October 2008 at Martha's Vineyard Coastal Observatory. The measurements of gas bubbles will be compared to additional parameters, such as wind speed, wave height, white cap coverage, or dissolved gases.

  20. Influence of the Fluid on the Parameters and Limits of Bubble Detonation

    NASA Astrophysics Data System (ADS)

    Pinaev, A. V.; Prokhorov, E. S.

    2017-12-01

    The compression and inflammation of reactive gas bubbles in bubble detonation waves have been studied, and the considerable influence of the fluid (liquid or vapor) on the detonation parameters has been found. It has been shown numerically that the final values of the pressure and temperature significantly decrease if the temperature dependence of the adiabatic index is taken into account at the compression stage. The parameters of reactive gas combustion products in the bubble have been calculated in terms of an equilibrium model, and the influence of the fluid that remains in the bubble in the form of microdroplets and vapor on these parameters has been investigated.

  1. Surface tension effects on the behavior of a cavity growing, collapsing, and rebounding near a rigid wall.

    PubMed

    Zhang, Zhen-yu; Zhang, Hui-sheng

    2004-11-01

    Surface tension effects on the behavior of a pure vapor cavity or a cavity containing some noncondensible contents, which is growing, collapsing, and rebounding axisymmetrically near a rigid wall, are investigated numerically by the boundary integral method for different values of dimensionless stand-off parameter gamma, buoyancy parameter delta, and surface tension parameter beta. It is found that at the late stage of the collapse, if the resultant action of the Bjerknes force and the buoyancy force is not small, surface tension will not have significant effects on bubble behavior except that the bubble collapse time is shortened and the liquid jet becomes wider. If the resultant action of the two force is small enough, surface tension will have significant and in some cases substantial effects on bubble behavior, such as changing the direction of the liquid jet, making a new liquid jet appear, in some cases preventing the bubble from rebound before jet impact, and in other cases causing the bubble to rebound or even recollapse before jet impact. The mechanism of surface tension effects on the collapsing behavior of a cavity has been analyzed. The mechanisms of some complicated phenomena induced by surface tension effects are illustrated by analysis of the computed velocity fields and pressure contours of the liquid flow outside the bubble at different stages of the bubble evolution.

  2. Border-crossing model for the diffusive coarsening of two-dimensional and quasi-two-dimensional wet foams

    NASA Astrophysics Data System (ADS)

    Schimming, C. D.; Durian, D. J.

    2017-09-01

    For dry foams, the transport of gas from small high-pressure bubbles to large low-pressure bubbles is dominated by diffusion across the thin soap films separating neighboring bubbles. For wetter foams, the film areas become smaller as the Plateau borders and vertices inflate with liquid. So-called "border-blocking" models can explain some features of wet-foam coarsening based on the presumption that the inflated borders totally block the gas flux; however, this approximation dramatically fails in the wet or unjamming limit where the bubbles become close-packed spheres and coarsening proceeds even though there are no films. Here, we account for the ever-present border-crossing flux by a new length scale defined by the average gradient of gas concentration inside the borders. We compute that it is proportional to the geometric average of film and border thicknesses, and we verify this scaling by numerical solution of the diffusion equation. We similarly consider transport across inflated vertices and surface Plateau borders in quasi-two-dimensional foams. And we show how the d A /d t =K0(n -6 ) von Neumann law is modified by the appearance of terms that depend on bubble size and shape as well as the concentration gradient length scales. Finally, we use the modified von Neumann law to compute the growth rate of the average bubble area, which is not constant.

  3. A modified low-temperature wafer bonding method using spot pressing bonding technique and water glass adhesive layer

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Wang, Shengkai; Wang, Yinghui; Chen, Dapeng

    2018-02-01

    A modified low-temperature wafer bonding method using a spot pressing bonding technique and a water glass adhesive layer is proposed. The electrical properties of the water glass layer has been studied by capacitance-voltage (C-V) and electric current-voltage (I-V) measurements. It is found that the adhesive layer can be regarded as a good insulator in terms of leakage current density. The bonding mechanism and the motion of bubbles during the thermal treatment are investigated. The dominant factor for the bubble motion in the modified bonding process is the gradient of pressure introduced by the spot pressing force. It is proved that the modified method achieves low-temperature adhesive bonding, minimizes the effect of water desorption, and provides good bonding performance.

  4. Bubble Departure from Metal-Graphite Composite Surfaces and Its Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Yang, W-J.; Zhang, Nengli

    2010-01-01

    The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed.

  5. Soap bubbles in paintings: Art and science

    NASA Astrophysics Data System (ADS)

    Behroozi, F.

    2008-12-01

    Soap bubbles became popular in 17th century paintings and prints primarily as a metaphor for the impermanence and fragility of life. The Dancing Couple (1663) by the Dutch painter Jan Steen is a good example which, among many other symbols, shows a young boy blowing soap bubbles. In the 18th century the French painter Jean-Simeon Chardin used soap bubbles not only as metaphor but also to express a sense of play and wonder. In his most famous painting, Soap Bubbles (1733/1734) a translucent and quavering soap bubble takes center stage. Chardin's contemporary Charles Van Loo painted his Soap Bubbles (1764) after seeing Chardin's work. In both paintings the soap bubbles have a hint of color and show two bright reflection spots. We discuss the physics involved and explain how keenly the painters have observed the interaction of light and soap bubbles. We show that the two reflection spots on the soap bubbles are images of the light source, one real and one virtual, formed by the curved surface of the bubble. The faint colors are due to thin film interference effects.

  6. Swelling and gas release in oxide fuels during fast temperature transients

    NASA Astrophysics Data System (ADS)

    Dollins, C. C.; Jursich, M.

    1982-05-01

    A previously reported intergranular swelling and gas release model for oxide fuels has been modified to predict fission gas behavior during fast temperature transients. Under steady state or slowly varying conditions it has been assumed in the previous model that the pressure caused by the fission gas within the gas bubbles is in equilibrium with the surface tension of the bubbles. During a fast transient, however, net vacancy migration to the bubbles may be insufficient to maintain this equilibrium. In order to ascertain the net vacancy flow, it is necessary to model the point defect behavior in the fuel. Knowing the net flow of vacancies to the bubble and the bubble size, the bubble diffusivity can be determined and the long range migration of the gas out of the fuel can be calculated. The model has also been modified to allow release of all the gas on the grain boundaries during a fast temperature transient. The gas release predicted by the revised model shows good agreement to fast transient gas release data from an EBR-II TREAT H-3 (Transient Reactor Test Facility) test. Agreement has also been obtained between predictions using the model and gas release data obtained by Argonne National Laboratory from out-of-reactor transient heating experiments on irradiated UO 2. It was found necessary to increase the gas bubble diffusivity used in the model by a factor of thirty during the transient to provide agreement between calculations and measurements. Other workers have also found that such an increase is necessary for agreement and attribute the increased diffusivity to yielding at the bubble surface due to the increased pressure.

  7. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08835 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  8. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08778 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  9. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08775 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  10. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08773 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  11. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08822 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  12. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08831 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  13. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08805 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  14. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08784 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  15. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08836 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  16. Bubble formed as a result of a Zeolite Crystal Growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-12-14

    ISS006-E-08799 (14 December 2002) --- View of a bubble formed as a result of a Zeolite Crystal Growth (ZCG) experiment in the Destiny laboratory on the International Space Station (ISS). Expedition Six Commander Kenneth D. Bowersox used a Space Station drill to mix 12 Zeolite samples in clear tubes. Scientists on the ground watching on TV noticed bubbles in the samples. Bowersox used a modified mixing procedure to process autoclaves to isolate bubbles. He re-inserted the samples in the ZCG furnace in Express Rack 2 in the U.S. laboratory/Destiny. This experiment has shown that the bubbles could cause larger number of smaller deformed crystals to grow. Bowersox rotated the samples so that the heavier fluid was thrown to the outside while the lighter bubbles stayed on the inside.

  17. Modified Silicone-Rubber Tooling For Molding Composite Parts

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Snoha, John J.; Weiser, Erik S.

    1995-01-01

    Reduced-thermal-expansion, reduced-bulk-modulus silicone rubber for use in mold tooling made by incorporating silica powder into silicone rubber. Pressure exerted by thermal expansion reduced even further by allowing air bubbles to remain in silicone rubber instead of deaerating it. Bubbles reduce bulk modulus of material.

  18. Carbon dioxide induced bubble formation in a CH4-CO2-H2O ternary system: a molecular dynamics simulation study.

    PubMed

    Sujith, K S; Ramachandran, C N

    2016-02-07

    The extraction of methane from its hydrates using carbon dioxide involves the decomposition of the hydrate resulting in a CH4-CO2-H2O ternary solution. Using classical molecular dynamics simulations, we investigate the evolution of dissolved gas molecules in the ternary system at different concentrations of CO2. Various compositions considered in the present study resemble the solution formed during the decomposition of methane hydrates at the initial stages of the extraction process. We find that the presence of CO2 aids the formation of CH4 bubbles by causing its early nucleation. Elucidation of the composition of the bubble revealed that in ternary solutions with high concentration of CO2, mixed gas bubbles composed of CO2 and CH4 are formed. To understand the role of CO2 in the nucleation of CH4 bubbles, the structure of the bubble formed was analyzed, which revealed that there is an accumulation of CO2 at the interface of the bubble and the surrounding water. The aggregation of CO2 at the bubble-water interface occurs predominantly when the concentration of CO2 is high. Radial distribution function for the CH4-CO2 pair indicates that there is an increasingly favorable direct contact between dissolved CH4 and CO2 molecules in the bubble-water interface. It is also observed that the presence of CO2 at the interface results in the decrease in surface tension. Thus, CO2 leads to greater stability of the bubble-water interface thereby bringing down the critical size of the bubble nuclei. The results suggest that a rise in concentration of CO2 helps in the removal of dissolved CH4 thereby preventing the accumulation of methane in the liquid phase. Thus, the presence of CO2 is predicted to assist the decomposition of methane hydrates in the initial stages of the replacement process.

  19. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    NASA Astrophysics Data System (ADS)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  20. Modified big-bubble technique compared to manual dissection deep anterior lamellar keratoplasty in the treatment of keratoconus.

    PubMed

    Knutsson, Karl Anders; Rama, Paolo; Paganoni, Giorgio

    2015-08-01

    To evaluate the clinical findings and results of manual dissection deep anterior lamellar keratoplasty (DALK) compared to a modified big-bubble DALK technique in eyes affected by keratoconus. Sixty eyes of 60 patients with keratoconus were treated with one of the two surgical techniques manual DALK (n = 30); big-bubble DALK (n = 30). The main outcomes measured were visual acuity, corneal topographic parameters, thickness of residual stroma and endothelial cell density (ECD). Patients were examined postoperatively at 1 month, 6 months, 1 year and 1 month after suture removal. Final best spectacle-corrected visual acuity (BSCVA) measured 1 month after suture removal was 0.11 ± 0.08 LogMAR in the big-bubble group compared to 0.13 ± 0.08 in the manual DALK group (p = 0.227). In patients treated with the big-bubble technique without complications (Descemet's membrane completely bared), the stromal residue was not measureable. Mean stromal residual thickness in the manual DALK group was 30.50 ± 27.60 μm. Data analysis of the manual DALK group demonstrated a significant correlation between BSCVA and residual stromal thickness; lower residual stromal thickness correlated with better BSCVA values (Spearman ρ = 0.509, p = 0.018). Postoperative ECD was similar in both groups at all intervals, with no statistically significant differences. In both groups, ECD loss was only significant during the 1- to 6-month interval (p = 0.001 and p < 0.001 in the big-bubble DALK and manual DALK groups, respectively). Manual DALK provides comparable results to big-bubble DALK. Big-bubble DALK permits faster visual recovery and is a surgical technique, which can be easily converted to manual DALK in cases of unsuccessful 'big-bubble' formation. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  1. Interaction mechanism of double bubbles in hydrodynamic cavitation

    NASA Astrophysics Data System (ADS)

    Li, Fengchao; Cai, Jun; Huai, Xiulan; Liu, Bin

    2013-06-01

    Bubble-bubble interaction is an important factor in cavitation bubble dynamics. In this paper, the dynamic behaviors of double cavitation bubbles driven by varying pressure field downstream of an orifice plate in hydrodynamic cavitation reactor are examined. The bubble-bubble interaction between two bubbles with different radii is considered. We have shown the different dynamic behaviors between double cavitation bubbles and a single bubble by solving two coupling nonlinear equations using the Runge-Kutta fourth order method with adaptive step size control. The simulation results indicate that, when considering the role of the neighbor smaller bubble, the oscillation of the bigger bubble gradually exhibits a lag in comparison with the single-bubble case, and the extent of the lag becomes much more obvious as time goes by. This phenomenon is more easily observed with the increase of the initial radius of the smaller bubble. In comparison with the single-bubble case, the oscillation of the bigger bubble is enhanced by the neighbor smaller bubble. Especially, the pressure pulse of the bigger bubble rises intensely when the sizes of two bubbles approach, and a series of peak values for different initial radii are acquired when the initial radius ratio of two bubbles is in the range of 0.9˜1.0. Although the increase of the center distance between two bubbles can weaken the mutual interaction, it has no significant influence on the enhancement trend. On the one hand, the interaction between two bubbles with different radii can suppress the growth of the smaller bubble; on the other hand, it also can enhance the growth of the bigger one at the same time. The significant enhancement effect due to the interaction of multi-bubbles should be paid more attention because it can be used to reinforce the cavitation intensity for various potential applications in future.

  2. Dynamics of primary and secondary microbubbles created by laser-induced breakdown of an optically trapped nanoparticle

    PubMed Central

    Arita, Y.; Antkowiak, M.; Venugopalan, V.; Gunn-Moore, F. J.; Dholakia, K.

    2012-01-01

    Laser-induced breakdown of an optically trapped nanoparticle is a unique system for studying cavitation dynamics. It offers additional degrees of freedom, namely the nanoparticle material, its size, and the relative position between the laser focus and the center of the optically trapped nanoparticle. We quantify the spatial and temporal dynamics of the cavitation and secondary bubbles created in this system and use hydrodynamic modeling to quantify the observed dynamic shear stress of the expanding bubble. In the final stage of bubble collapse, we visualize the formation of multiple submicrometer secondary bubbles around the toroidal bubble on the substrate. We show that the pattern of the secondary bubbles typically has its circular symmetry broken along an axis whose unique angle rotates over time. This is a result of vorticity along the jet towards the boundary upon bubble collapse near solid boundaries. PMID:22400669

  3. An Empirical Derivation of the Run Time of the Bubble Sort Algorithm.

    ERIC Educational Resources Information Center

    Gonzales, Michael G.

    1984-01-01

    Suggests a moving pictorial tool to help teach principles in the bubble sort algorithm. Develops such a tool applied to an unsorted list of numbers and describes a method to derive the run time of the algorithm. The method can be modified to run the times of various other algorithms. (JN)

  4. Preparation and characterization of a novel silicon-modified nanobubble

    PubMed Central

    Li, Maotong; Zhou, Meijun; Li, Fei; Huang, Xiuxian; Pan, Min; Xue, Li

    2017-01-01

    Nanobubbles (NBs) opened a new field of ultrasound imaging. There is still no practical method to control the diameter of bubbles. In this study, we developed a new method to control the size by incorporating of silicon hybrid lipids into the bubble membrane. The range of particle size of resulting NBs is between 523.02 ± 46.45 to 857.18 ± 82.90, smaller than the conventional microbubbles. The size of resulting NBs increased with the decrease in amount of silicon hybrid lipids, indicating the diameter of NBs can be regulated through modulating the ratio of silicon hybrid lipids in the bubble shell. Typical harmonic signals could be detected. The in vitro and in vivo ultrasound imaging experiments demonstrated these silicon-modified NBs had significantly improved ultrasound contrast enhancement abilities. Cytotoxicity assays revealed that these NBs had no obvious cytotoxicity to the 293 cell line at the tested bubble concentration. Our results showed that the novel NBs could use as nanoscale ultrasound contrast agents, providing the foundation for NBs in future applications including contrast-enhanced imaging and drug/gene delivery. PMID:28557995

  5. Dissolution of spherical cap CO2 bubbles attached to flat surfaces in air-saturated water

    NASA Astrophysics Data System (ADS)

    Peñas, Pablo; Parrales, Miguel A.; Rodriguez-Rodriguez, Javier

    2014-11-01

    Bubbles attached to flat surfaces immersed in quiescent liquid environments often display a spherical cap (SC) shape. Their dissolution is a phenomenon commonly observed experimentally. Modelling these bubbles as fully spherical may lead to an inaccurate estimate of the bubble dissolution rate. We develop a theoretical model for the diffusion-driven dissolution or growth of such multi-component SC gas bubbles under constant pressure and temperature conditions. Provided the contact angle of the bubble with the surface is large, the concentration gradients in the liquid may be approximated as spherically symmetric. The area available for mass transfer depends on the instantaneous bubble contact angle, whose dynamics is computed from the adhesion hysteresis model [Hong et al., Langmuir, vol. 27, 6890-6896 (2011)]. Numerical simulations and experimental measurements on the dissolution of SC CO2 bubbles immersed in air-saturated water support the validity of our model. We verify that contact line pinning slows down the dissolution rate, and the fact that any bubble immersed in a saturated gas-liquid solution eventually attains a final equilibrium size. Funded by the Spanish Ministry of Economy and Competitiveness through Grant DPI2011-28356-C03-0.

  6. Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.

    PubMed

    Xi, Xiaoyu; Cegla, Frederic; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander

    2014-04-01

    The interaction of acoustically driven bubbles with a wall is important in many applications of ultrasound and cavitation, as the close boundary can severely alter the bubble dynamics. In this paper, the non-spherical surface oscillations of bubbles near a surface in a weak acoustic standing wave field are investigated experimentally and numerically. The translation, the volume, and surface mode oscillations of bubbles near a flat glass surface were observed by a high speed camera in a standing wave cell at 46.8 kHz. The model approach is based on a modified Keller-Miksis equation coupled to surface mode amplitude equations in the first order, and to the translation equations. Modifications are introduced due to the adjacent wall. It was found that a bubble's oscillation mode can change in the presence of the wall, as compared to the bubble in the bulk liquid. In particular, the wall shifts the instability pressure thresholds to smaller driving frequencies for fixed bubble equilibrium radii, or to smaller equilibrium radii for fixed excitation frequency. This can destabilize otherwise spherical bubbles, or stabilize bubbles undergoing surface oscillations in the bulk. The bubble dynamics observed in experiment demonstrated the same trend as the theoretical results.

  7. In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts

    NASA Astrophysics Data System (ADS)

    Masotta, M.; Ni, H.; Keppler, H.

    2014-02-01

    Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1,100 to 1,240 °C and 0.1 MPa (1 bar), obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (<60 MPa in basalt and andesite, 200 MPa in rhyodacite), probably due to heterogeneous nucleation of bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate ( G R) ranges from 3.4 × 10-6 to 5.2 × 10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density ( N B) at nucleation ranges from 7.9 × 104 mm-3 to 1.8 × 105 mm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble size distribution (BSD) through time, the BSDs of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSDs may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and explosive eruptions.

  8. Gas depletion through single gas bubble diffusive growth and its effect on subsequent bubbles

    NASA Astrophysics Data System (ADS)

    Moreno Soto, Alvaro; Prosperetti, Andrea; Lohse, Detlef; van der Meer, Devaraj; Physics of Fluid Group Collaboration; MCEC Netherlands CenterMultiscale Catalytic Energy Conversion Collaboration

    2016-11-01

    In weakly supersaturated mixtures, bubbles are known to grow quasi-statically as diffusion-driven mass transfer governs the process. In the final stage of the evolution, before detachment, there is an enhancement of mass transfer, which changes from diffusion to natural convection. Once the bubble detaches, it leaves behind a gas-depleted area. The diffusive mass transfer towards that region cannot compensate for the amount of gas which is taken away by the bubble. Consequently, the consecutive bubble will grow in an environment which contains less gas than for the previous one. This reduces the local supersaturation of the mixture around the nucleation site, leading to a reduced bubble growth rate. We present quantitative experimental data on this effect and the theoretical model for depletion during the bubble growth rate. This work was supported by the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation programme funded by the Ministry of Education, Culture and Science of the government of the Netherlands.

  9. The effect of dissolve gas concentration in the initial growth stage of multi cavitation bubbles. Differences between vacuum degassing and ultrasound degassing.

    PubMed

    Yanagida, Hirotaka

    2008-04-01

    The sonochemical luminescence intensity from luminol was measured at a sampling rate of several kilohertz. This was noted at three different periods: first, the latent period in which no light emission occurs at all; second, the increased emission period from the start of light emission to the time when a steady state is reached; and third, the steady state period in which light emission occurs at the steady state value. When irradiated with ultrasound of different intensities, the times of the latent period and increased emission period are shorter for higher ultrasound intensities. To know how the dissolved oxygen content is involved in early-stage cavitation growth, an experiment was conducted using solutions with varying dissolved oxygen contents from 100% to 37%. For dissolved air content of 50% or less, it was found that the latent period was 30 times longer in a saturated condition. It was also found that the increased emission period was 10 times longer. However, the emission intensity in the steady state did not change at all even when the initial dissolved gas concentration of the sample was changed. From this, it was found that the reuse of collapsed bubbles takes place efficiently in the steady state. Dissolved oxygen was reduced by the use of a vacuum pump and by the degassing action of ultrasound, and it was discovered that the behavior of transient emission differed for the two ways of degassing.

  10. An Analysis of Bubble Deformation by a Sphere Relevant to the Measurements of Bubble-Particle Contact Interaction and Detachment Forces.

    PubMed

    Sherman, H; Nguyen, A V; Bruckard, W

    2016-11-22

    Atomic force microscopy makes it possible to measure the interacting forces between individual colloidal particles and air bubbles, which can provide a measure of the particle hydrophobicity. To indicate the level of hydrophobicity of the particle, the contact angle can be calculated, assuming that no interfacial deformation occurs with the bubble retaining a spherical profile. Our experimental results obtained using a modified sphere tensiometry apparatus to detach submillimeter spherical particles show that deformation of the bubble interface does occur during particle detachment. We also develop a theoretical model to describe the equilibrium shape of the bubble meniscus at any given particle position, based on the minimization of the free energy of the system. The developed model allows us to analyze high-speed video captured during detachment. In the system model deformation of the bubble profile is accounted for by the incorporation of a Lagrange multiplier into both the Young-Laplace equation and the force balance. The solution of the bubble profile matched to the high-speed video allows us to accurately calculate the contact angle and determine the total force balance as a function of the contact point of the bubble on the particle surface.

  11. Calculation of Thermodynamic Parameters and Degree of Ionization of Nitrogen and Its Mixtures with Argon in Typical Single-Bubble Sonoluminescence Conditions

    NASA Astrophysics Data System (ADS)

    Borisenok, V. A.; Medvedev, A. B.

    2017-12-01

    The results of numerical simulation of the behavior of a system consisting of a spherical bubble filled with nitrogen or its mixtures with argon and surrounding water under external influence typical of experimental study of single-bubble sonoluminescence are presented. Comparison of the results of calculations and experiments shows that gas heated at the bubble compression stage cannot be regarded as the only source of radiation. This circumstance requires the presence of other, basic, sources. In the polarization model, this is the channel of electrical breakdown in a liquid. Possible electrical effects accompanying the liquid-solid phase transformation in water near the moment of the maximum compression of the bubble are assumed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qibin; Petyuk, Vladislav A.; Schepmoes, Athena A.

    Non-enzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. While electron transfer dissociation (ETD) has been shown to outperform collision-induced dissociation (CID) in sequencing glycated peptides by tandem mass spectrometry, ETD instrumentation is not yet available in all laboratories. In this study, we evaluated different advanced CID techniques (i.e., neutral-loss triggered MS3 and multi-stage activation) during LC-MSn analyses of Amadori-modified peptides enriched from human serum glycated in vitro. During neutral-loss triggered MS3 experiments, MS3 scans triggered by neutral-losses of 3 H2O or 3 H2O + HCHO produced similar results in terms of glycatedmore » peptide identifications. However, neutral losses of 3 H2O resulted in significantly more glycated peptide identifications during multi-stage activation experiments. Overall, the multi-stage activation approach produced more glycated peptide identifications, while the neutral-loss triggered MS3 approach resulted in much higher specificity. Both techniques offer a viable alternative to ETD for identifying glycated peptides when that method is unavailable.« less

  13. Bubble Size Distribution in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  14. The effect of gravity-induced pressure gradient on bubble luminescence

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Dorsaz, Nicolas; Tinguely, Marc; Farhat, Mohamed

    2014-11-01

    The violent collapse of a bubble can heat up its gaseous contents to temperatures exceeding those on the sun's surface, resulting in a short luminescence flash. Occurring at the very moment of the collapse, luminescence must be highly sensitive to the bubble geometry at the preceding final stage. This represents an important feature as any pressure anisotropy in the surrounding liquid will result in a deformation of an initially spherical bubble, inducing a micro-jet that pierces the bubble and makes it experience a toroidal collapse. We therefore present these as complementary phenomena by investigating the link between jets and luminescence of laser-generated single bubbles. Through ultra-high-speed imaging, the micro-jet formation and evolution of a single bubble are observed with unprecedented detail, whilst the bubble light emission is analyzed by means of a spectrometer. The bubble energy and the micro-jet size are controlled by adjusting the laser-pulse and by varying the gravity level aboard ESA parabolic flights, respectively. We here provide systematic evidence on how bubble-jets suppress luminescence in a considerable manner, even in normal gravity where the jet is barely observable. We conclude that gravity must be accounted for in accurate models of luminescence.

  15. Multi-Scale Porous Ultra High Temperature Ceramics

    DTIC Science & Technology

    2015-01-08

    different techniques: replica, particle stabilized foams, ice templating (freeze casting) and partial sintering. The pore morphology (closed-bubble...the porosity, pore size, shape and morphology . X-Ray Tomography was used to study their 3D microstructure. The 3D microstructures captured with...four different techniques: replica, particle stabilized foams, ice templating (freeze casting) and partial sintering. The pore morphology (closed-bubble

  16. Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis

    DOE PAGES

    Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; ...

    2015-10-09

    The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in themore » mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.« less

  17. Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor

    NASA Astrophysics Data System (ADS)

    Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.

  18. Wall function treatment for bubbly boundary layers at low void fractions.

    PubMed

    Soares, Daniel V; Bitencourt, Marcelo C; Loureiro, Juliana B R; Silva Freire, Atila P

    2018-01-01

    The present work investigates the role of different treatments of the lower boundary condition on the numerical prediction of bubbly flows. Two different wall function formulations are tested against experimental data obtained for bubbly boundary layers: (i) a new analytical solution derived through asymptotic techniques and (ii) the previous formulation of Troshko and Hassan (IJHMT, 44, 871-875, 2001a). A modified k-e model is used to close the averaged Navier-Stokes equations together with the hypothesis that turbulence can be modelled by a linear superposition of bubble and shear induced eddy viscosities. The work shows, in particular, how four corrections must the implemented in the standard single-phase k-e model to account for the effects of bubbles. The numerical implementation of the near wall functions is made through a finite elements code.

  19. TEM and XAS investigation of fission gas behaviors in U-Mo alloy fuels through ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Zang, Hang; Yun, Di; Mo, Kun; Wang, Kunpeng; Mohamed, Walid; Kirk, Marquis A.; Velázquez, Daniel; Seibert, Rachel; Logan, Kevin; Terry, Jeffrey; Baldo, Peter; Yacout, Abdellatif M.; Liu, Wenbo; Zhang, Bo; Gao, Yedong; Du, Yang; Liu, Jing

    2017-10-01

    In this study, smaller-grained (hundred nano-meter size grain) and larger-grained (micro-meter size grain) U-10Mo specimens have been irradiated (implanted) with 250 keV Xe+ beam and were in situ characterized by TEM. Xe bubbles were not seen in the specimen after an implantation fluence of 2 × 1020 ions/m2 at room temperature. Nucleation of Xe bubbles happened during heating of the specimen to a final temperature of 300 °C. By comparing measured Xe bubble statistics, the nucleation and growth behaviors of Xe bubbles were investigated in smaller-grained and larger-grained U-10Mo specimens. A multi-atom kind of nucleation mechanism has been observed in both specimens. X-ray Absorption spectroscopy showed the edge position in the bubbles to be the same as that of Xe gas. The size of Xe bubbles has been shown to be bigger in larger-grained specimens than in smaller-grained specimens at the same implantation conditions.

  20. Numerical studies of cavitation erosion on an elastic-plastic material caused by shock-induced bubble collapse

    NASA Astrophysics Data System (ADS)

    Turangan, C. K.; Ball, G. J.; Jamaluddin, A. R.; Leighton, T. G.

    2017-09-01

    We present a study of shock-induced collapse of single bubbles near/attached to an elastic-plastic solid using the free-Lagrange method, which forms the latest part of our shock-induced collapse studies. We simulated the collapse of 40 μm radius single bubbles near/attached to rigid and aluminium walls by a 60 MPa lithotripter shock for various scenarios based on bubble-wall separations, and the collapse of a 255 μm radius bubble attached to aluminium foil with a 65 MPa lithotripter shock. The coupling of the multi-phases, compressibility, axisymmetric geometry and elastic-plastic material model within a single solver has enabled us to examine the impingement of high-speed liquid jets from the shock-induced collapsing bubbles, which imposes an extreme compression in the aluminium that leads to pitting and plastic deformation. For certain scenarios, instead of the high-speed jet, a radially inwards flow along the aluminium surface contracts the bubble to produce a `mushroom shape'. This work provides methods for quantifying which parameters (e.g. bubble sizes and separations from the solid) might promote or inhibit erosion on solid surfaces.

  1. Modeling of single film bubble and numerical study of the plateau structure in foam system

    NASA Astrophysics Data System (ADS)

    Sun, Zhong-guo; Ni, Ni; Sun, Yi-jie; Xi, Guang

    2018-02-01

    The single-film bubble has a special geometry with a certain amount of gas shrouded by a thin layer of liquid film under the surface tension force both on the inside and outside surfaces of the bubble. Based on the mesh-less moving particle semi-implicit (MPS) method, a single-film double-gas-liquid-interface surface tension (SDST) model is established for the single-film bubble, which characteristically has totally two gas-liquid interfaces on both sides of the film. Within this framework, the conventional surface free energy surface tension model is improved by using a higher order potential energy equation between particles, and the modification results in higher accuracy and better symmetry properties. The complex interface movement in the oscillation process of the single-film bubble is numerically captured, as well as typical flow phenomena and deformation characteristics of the liquid film. In addition, the basic behaviors of the coalescence and connection process between two and even three single-film bubbles are studied, and the cases with bubbles of different sizes are also included. Furthermore, the classic plateau structure in the foam system is reproduced and numerically proved to be in the steady state for multi-bubble connections.

  2. Combustion dynamics of low vapour pressure nanofuel droplets

    NASA Astrophysics Data System (ADS)

    Pandey, Khushboo; Chattopadhyay, Kamanio; Basu, Saptarshi

    2017-07-01

    Multiscale combustion dynamics, shape oscillations, secondary atomization, and precipitate formation have been elucidated for low vapour pressure nanofuel [n-dodecane seeded with alumina nanoparticles (NPs)] droplets. Dilute nanoparticle loading rates (0.1%-1%) have been considered. Contrary to our previous studies of ethanol-water blend (high vapour pressure fuel), pure dodecane droplets do not exhibit internal boiling after ignition. However, variation in surface tension due to temperature causes shape deformations for pure dodecane droplets. In the case of nanofuels, intense heat release from the enveloping flame leads to the formation of micron-size aggregates (of alumina NPS) which serve as nucleation sites promoting heterogeneous boiling. Three boiling regimes (A, B, and C) have been identified with varying bubble dynamics. We have deciphered key mechanisms responsible for the growth, transport, and rupture of the bubbles. Bubble rupture causes ejections of liquid droplets termed as secondary atomization. Ejection of small bubbles (mode 1) resembles the classical vapour bubble collapse mechanism near a flat free surface. However, large bubbles induce severe shape deformations as well as bulk oscillations. Rupture of large bubbles results in high speed liquid jet formation which undergoes Rayleigh-Plateau tip break-up. Both modes contribute towards direct fuel transfer from the droplet surface to flame envelope bypassing diffusion limitations. Combustion lifetime of nanofuel droplets consequently has two stages: stage I (where bubble dynamics are dominant) and stage II (formation of gelatinous mass due to continuous fuel depletion; NP agglomeration). In the present work, variation of flame dynamics and spatio-temporal heat release (HR) have been analysed using high speed OH* chemiluminescence imaging. Fluctuations in droplet shape and flame heat release are found to be well correlated. Droplet flame is bifurcated in two zones (I and II). Flame response is manifested in two frequency ranges: (i) buoyant flame flickering and (ii) auxiliary frequencies arising from high intensity secondary ejections due to bubble ruptures. Addition of alumina NPs enhances the heat absorption rate and ensures the rapid transfer of fuel parcels (detached daughter droplets) from droplet surface to flame front through secondary ejections. Therefore, average HR shows an increasing trend with particle loading rate (PLR). The perikinetic agglomeration model is used to explain the formation of gelatinous sheath during the last phase of droplet burning. Gelatinous mass formed results in bubble entrapment. SEM images of combustion precipitates show entrapped bubble cavities along with surface and sub-surface blowholes. Morphology of combustion precipitate shows a strong variation with PLRs. We have established the coupling mechanisms among heat release, shape oscillations, and secondary atomizations that underline the combustion behaviour of such low vapour pressure nanofuels.

  3. Leptonic v.s. Hadronic Origin of the Gamma-ray Emission of the Fermi bubbles: Updates from Fermi-LAT and Forecast for Future Gamma-ray Telescopes

    NASA Astrophysics Data System (ADS)

    Su, Meng

    2014-06-01

    Data from the Fermi-LAT revealed two large gamma-ray bubbles, extending 50 degrees above and below the Galactic center, with a width of about 40 degrees in longitude. Such structure has been confirmed with multi-wavelength observations. With the most up to date Fermi-LAT data analysis, I will show that the Fermi bubbles have a spectral cutoff at both low energy < 1 GeV and high energy > 150 GeV. Detailed analysis of the spectral features will help us to distinguish the leptonic origin from hadronic origin of the gamma-ray emission from the bubbles. I will also describe what we expect to learn about the bubbles from future gamma-ray telescopes after Fermi, with an emphasis on Dark Matter Particle Explorer and Pair Production Gamma-ray Unit.

  4. Star formation in shells of colliding multi-SNe bubbles

    NASA Astrophysics Data System (ADS)

    Vasiliev, Evgenii O.; Shchekinov, Yuri A.

    2017-12-01

    It is believed that when bubbles formed by multiple supernovae explosions interact with one another, they stimulate star formation in overlapping shells. We consider the evolution of a shocked layer formed by the collision of two identical bubbles each of which originated from OB clusters of ˜ 50 members and ˜ 50 pc. The clusters are separated by 200-400 pc.We found that depending on evolutionary status of colliding bubbles the shocked layer can either be destroyed into diffuse lumps, or be fragmented into dense clumps: the former occurs in collisions of young bubbles with continuing supernovae explosions, and the latter occurs in older bubble interactions.We argue that fragmentation efficiency in shells depends on external heating: for a heating rate <˜ 1.7×10-24 erg s-1 the number of fragments formed in a collision of two old bubbles reaches several tens at t ˜ 4 Myr, while a heating rate >˜ 7 × 10-24 erg s-1 prevents fragmentation. The clumps formed in freely expanding parts of bubbles are gradually destroyed and disappear on t <˜ 1 Myr,whereas those formed in the overlapping shells survive much longer. Because of this the number of fragments in an isolated bubble begins to decrease after reaching a maximum, while in collision of two old bubbles it fluctuates around 60-70 until longer than t ˜ 5 Myr.

  5. Numerical study of gravity effects on phase separation in a swirl chamber.

    PubMed

    Hsiao, Chao-Tsung; Ma, Jingsen; Chahine, Georges L

    2016-01-01

    The effects of gravity on a phase separator are studied numerically using an Eulerian/Lagrangian two-phase flow approach. The separator utilizes high intensity swirl to separate bubbles from the liquid. The two-phase flow enters tangentially a cylindrical swirl chamber and rotate around the cylinder axis. On earth, as the bubbles are captured by the vortex formed inside the swirl chamber due to the centripetal force, they also experience the buoyancy force due to gravity. In a reduced or zero gravity environment buoyancy is reduced or inexistent and capture of the bubbles by the vortex is modified. The present numerical simulations enable study of the relative importance of the acceleration of gravity on the bubble capture by the swirl flow in the separator. In absence of gravity, the bubbles get stratified depending on their sizes, with the larger bubbles entering the core region earlier than the smaller ones. However, in presence of gravity, stratification is more complex as the two acceleration fields - due to gravity and to rotation - compete or combine during the bubble capture.

  6. User settings on dive computers: reliability in aiding conservative diving.

    PubMed

    Sayer, Martin D J; Azzopardi, Elaine; Sieber, Arne

    2016-06-01

    Divers can make adjustments to diving computers when they may need or want to dive more conservatively (e.g., diving with a persistent (patent) foramen ovale). Information describing the effects of these alterations or how they compare to other methods, such as using enriched air nitrox (EANx) with air dive planning tools, is lacking. Seven models of dive computer from four manufacturers (Mares, Suunto, Oceanic and UWATEC) were subjected to single square-wave compression profiles (maximum depth: 20 or 40 metres' sea water, msw), single multi-level profiles (maximum depth: 30 msw; stops at 15 and 6 msw), and multi-dive series (two dives to 30 msw followed by one to 20 msw). Adjustable settings were employed for each dive profile; some modified profiles were compared against stand-alone use of EANx. Dives were shorter or indicated longer decompression obligations when conservative settings were applied. However, some computers in default settings produced more conservative dives than others that had been modified. Some computer-generated penalties were greater than when using EANx alone, particularly at partial pressures of oxygen (PO₂) below 1.40 bar. Some computers 'locked out' during the multi-dive series; others would continue to support decompression with, in some cases, automatically-reduced levels of conservatism. Changing reduced gradient bubble model values on Suunto computers produced few differences. The range of possible adjustments and the non-standard computer response to them complicates the ability to provide accurate guidance to divers wanting to dive more conservatively. The use of EANx alone may not always generate satisfactory levels of conservatism.

  7. Flow Behavior Around a Fast-Starting Robotic Fish

    NASA Astrophysics Data System (ADS)

    Ma, Ganzhong; Currier, Todd; Modarres-Sadeghi, Yahya

    2017-11-01

    A robotic fish is used to study the flow behavior around the body of a fast-starting fish as it experiences a fast-start. The robotic fish is designed and built emulating a Northern Pike, Esox Lucius, which can accelerate at up to 245 m/s2. In previous studies, we had focused on the flow around the tail during the fast-start, by using a tail which acted flexibly in the preparatory stage and rigidly in the propulsive stage. We have extended that study by including the fish body in the experimental setup, where the body can bend into a C-shape, so that the influence of the body motion on the resulting flow around the structure can be understood as well. In the tests, the fish can rotate about a vertical axis, where a multi-axis force sensor measures flow forces acting on the body. Synchronized with the force measurement, flow visualizations using bubble image velocimetry are conducted, and the observed shed vortices are related to the peak forces observed during the maneuver.

  8. Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows

    NASA Astrophysics Data System (ADS)

    Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro

    2015-11-01

    Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.

  9. Freezing Bubbles

    NASA Astrophysics Data System (ADS)

    Kingett, Christian; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan

    2017-11-01

    The two-stage freezing process of a liquid droplet on a substrate is well known; however, how bubbles freeze has not yet been studied. We first deposited bubbles on a silicon substrate that was chilled at temperatures ranging from -10 °C to -40 °C, while the air was at room temperature. We observed that the freeze front moved very slowly up the bubble, and in some cases, even came to a complete halt at a critical height. This slow freezing front propagation can be explained by the low thermal conductivity of the thin soap film, and can be observed more clearly when the bubble size or the surface temperature is increased. This delayed freezing allows the frozen portion of the bubble to cool the air within the bubble while the top part is still liquid, which induces a vapor pressure mismatch that either collapses the top or causes the top to pop. In cases where the freeze front reaches the top of the bubble, a portion of the top may melt and slowly refreeze; this can happen more than just once for a single bubble. We also investigated freezing bubbles inside of a freezer where the air was held at -20 °C. In this case, the bubbles freeze quickly and the ice grows radially from nucleation sites instead of perpendicular to the surface, which provides a clear contrast with the conduction limited room temperature bubbles.

  10. Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum

    NASA Technical Reports Server (NTRS)

    Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc

    2008-01-01

    Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.

  11. Experimental and numerical study of the effects of a wall on the coalescence and collapse of bubble pairs

    NASA Astrophysics Data System (ADS)

    Han, Rui; Zhang, A.-Man; Li, Shuai; Zong, Zhi

    2018-04-01

    Two-bubble interaction is the most fundamental problem in multi-bubbles dynamics, which is crucial in many practical applications involving air-gun arrays and underwater explosions. In this paper, we experimentally and numerically investigate coalescence, collapse, and rebound of non-buoyant bubble pairs below a rigid wall. Two oscillating vapor bubbles with similar size are generated simultaneously near a rigid wall in axisymmetric configuration using the underwater electric discharge method, and the physical process is captured by a high-speed camera. Numerical simulations are conducted based on potential flow theory coupled with the boundary integral method. Our numerical results show excellent agreement with the experimental data until the splashing of the jet impact sets in. With different ranges of γbw (the dimensionless distance between the rigid wall and the nearest bubble center), the interaction between the coalesced bubble and the rigid wall is divided into three types, i.e., "weak," "intermediate," and "strong." As γbw decreases, the contact point of the two axial jets migrates toward the wall. In "strong interaction" cases, only an upward jet towards the upper rigid wall forms and a secondary jet with a larger width appears at the base of the first jet. The collapsing coalesced bubble in a toroidal form splits into many smaller bubbles due to the instabilities and presents as bubble clouds during the rebounding phase, which may lead to a weakened pressure wave because the focusing energy associated with the collapsing bubble is disintegrated.

  12. Analysis of airfoil transitional separation bubbles

    NASA Technical Reports Server (NTRS)

    Davis, R. L.; Carter, J. E.

    1984-01-01

    A previously developed local inviscid-viscous interaction technique for the analysis of airfoil transitional separation bubbles, ALESEP (Airfoil Leading Edge Separation) has been modified to utilize a more accurate windward finite difference procedure in the reversed flow region, and a natural transition/turbulence model has been incorporated for the prediction of transition within the separation bubble. Numerous calculations and experimental comparisons are presented to demonstrate the effects of the windward differencing scheme and the natural transition/turbulence model. Grid sensitivity and convergence capabilities of this inviscid-viscous interaction technique are briefly addressed. A major contribution of this report is that with the use of windward differencing, a second, counter-rotating eddy has been found to exist in the wall layer of the primary separation bubble.

  13. Influence of cavitation bubble growth by rectified diffusion on cavitation-enhanced HIFU

    NASA Astrophysics Data System (ADS)

    Okita, Kohei; Sugiyama, Kazuyasu; Takagi, Shu; Matsumoto, Yoichiro

    2017-11-01

    Cavitation is becoming increasingly important in therapeutic ultrasound applications such as diagnostic, tumor ablation and lithotripsy. Mass transfer through gas-liquid interface due to rectified diffusion is important role in an initial stage of cavitation bubble growth. In the present study, influences of the rectified diffusion on cavitation-enhanced high-intensity focused ultrasound (HIFU) was investigated numerically. Firstly, the mass transfer rate of gas from the surrounding medium to the bubble was examined as function of the initial bubble radius and the driving pressure amplitude. As the result, the pressure required to bubble growth was decreases with increasing the initial bubble radius. Next, the cavitation-enhanced HIFU, which generates cavitation bubbles by high-intensity burst and induces the localized heating owing to cavitation bubble oscillation by low-intensity continuous waves, was reproduced by the present simulation. The heating region obtained by the simulation is agree to the treatment region of an in vitro experiment. Additionally, the simulation result shows that the localized heating is enhanced by the increase of the equilibrium bubble size due to the rectified diffusion. This work was supported by JSPS KAKENHI Grant Numbers JP26420125,JP17K06170.

  14. On shapes and motion of an elongated bubble in downward liquid pipe flow

    NASA Astrophysics Data System (ADS)

    Fershtman, A.; Babin, V.; Barnea, D.; Shemer, L.

    2017-11-01

    In stagnant liquid, or in a steady upward liquid pipe flow, an elongated (Taylor) bubble has a symmetric shape. The translational velocity of the bubble is determined by buoyancy and the liquid velocity profile ahead of it. In downward flow, however, the symmetry of the bubble nose can be lost. Taylor bubble motion in downward flow is important in numerous applications such as chemical plants and cooling systems that often contain countercurrent gas-liquid flow. In the present study, the relation between the Taylor bubble shape and its translational velocity is investigated experimentally in a vertical pipe for various downward liquid flow rates. At higher downward velocities, the bubble may be forced by the background flow to propagate downward against buoyancy. In order to include those cases as well in our experimental analysis, the bubbles were initially injected into stagnant liquid, whereas the downward flow was initiated at a later stage. This experimental procedure allowed us to identify three distinct modes of translational velocities for a given downward background liquid flow; each velocity corresponds to a different bubble shape. Hydrodynamic mechanisms that govern the transition between the modes observed in the present study are discussed.

  15. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density

    NASA Astrophysics Data System (ADS)

    Yu, C. X.; Xue, C.; Liu, J.; Hu, X. Y.; Liu, Y. Y.; Ye, W. H.; Wang, L. F.; Wu, J. F.; Fan, Z. F.

    2018-01-01

    In this article, multiple eigen-systems including linear growth rates and eigen-functions have been discovered for the Rayleigh-Taylor instability (RTI) by numerically solving the Sturm-Liouville eigen-value problem in the case of two-dimensional plane geometry. The system called the first mode has the maximal linear growth rate and is just extensively studied in literature. Higher modes have smaller eigen-values, but possess multi-peak eigen-functions which bring on multiple pairs of vortices in the vorticity field. A general fitting expression for the first four eigen-modes is presented. Direct numerical simulations show that high modes lead to appearances of multi-layered spike-bubble pairs, and lots of secondary spikes and bubbles are also generated due to the interactions between internal spikes and bubbles. The present work has potential applications in many research and engineering areas, e.g., in reducing the RTI growth during capsule implosions in inertial confinement fusion.

  16. Optimized scheme in coal-fired boiler combustion based on information entropy and modified K-prototypes algorithm

    NASA Astrophysics Data System (ADS)

    Gu, Hui; Zhu, Hongxia; Cui, Yanfeng; Si, Fengqi; Xue, Rui; Xi, Han; Zhang, Jiayu

    2018-06-01

    An integrated combustion optimization scheme is proposed for the combined considering the restriction in coal-fired boiler combustion efficiency and outlet NOx emissions. Continuous attribute discretization and reduction techniques are handled as optimization preparation by E-Cluster and C_RED methods, in which the segmentation numbers don't need to be provided in advance and can be continuously adapted with data characters. In order to obtain results of multi-objections with clustering method for mixed data, a modified K-prototypes algorithm is then proposed. This algorithm can be divided into two stages as K-prototypes algorithm for clustering number self-adaptation and clustering for multi-objective optimization, respectively. Field tests were carried out at a 660 MW coal-fired boiler to provide real data as a case study for controllable attribute discretization and reduction in boiler system and obtaining optimization parameters considering [ maxηb, minyNOx ] multi-objective rule.

  17. Interaction of lithotripter shockwaves with single inertial cavitation bubbles

    PubMed Central

    Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K.; Khoo, Boo Cheong; Szeri, Andrew J.; Calvisi, Michael L.; Sankin, Georgy N.; Zhong, Pei

    2008-01-01

    The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave–bubble interaction are discussed. PMID:19018296

  18. Interaction of lithotripter shockwaves with single inertial cavitation bubbles.

    PubMed

    Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K; Khoo, Boo Cheong; Szeri, Andrew J; Calvisi, Michael L; Sankin, Georgy N; Zhong, Pei

    2007-01-01

    The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave-bubble interaction are discussed.

  19. Scalable and reusable micro-bubble removal method to flatten large-area 2D materials

    NASA Astrophysics Data System (ADS)

    Pham, Phi H. Q.; Quach, Nhi V.; Li, Jinfeng; Burke, Peter J.

    2018-04-01

    Bubbles generated during electro-delamination and chemical etch during large-area two-dimensional (2D) material transfer has been shown to cause rippling, and consequently, results in tears and wrinkles in the transferred film. Here, we demonstrate a scalable and reusable method to remove surface adhered micro-bubbles by using hydrophobic surfaces modified by self-assembled monolayers (SAMs). Bubble removal allows the 2D film to flatten out and prevents the formation of defects. Electrical characterization was used to verify improved transfer quality and was confirmed by increased field-effect mobility and decreased sheet resistance. Raman spectroscopy was also used to validate enhanced electrical quality following transfer. The bubble removal method can be applied to an assortment of 2D materials using diverse hydrophobic SAM variants. Our studies can be integrated into large scale applications and will lead to improved large-area 2D electronics in general.

  20. Bubble dynamics inside an outgassing hydrogel confined in a Hele-Shaw cell.

    PubMed

    Haudin, Florence; Noblin, Xavier; Bouret, Yann; Argentina, Médéric; Raufaste, Christophe

    2016-08-01

    We report an experimental study of bubble dynamics in a non-Newtonian fluid subjected to a pressure decrease. The fluid is a hydrogel, composed of water and a synthetic clay, prepared and sandwiched between two glass plates in a Hele-Shaw geometry. The rheological properties of the material can be tuned by the clay concentration. As the imposed pressure decreases, the gas initially dissolved in the hydrogel triggers bubble formation. Different stages of the process are observed: bubble nucleation, growth, interaction, and creation of domains by bubble contact or coalescence. Initially bubble behave independently. They are trapped and advected by the mean deformation of the hydrogel, and the bubble growth is mainly driven by the diffusion of the dissolved gas through the hydrogel and its outgassing at the reactive-advected hydrogel-bubble interface. In this regime, the rheology of the fluid does not play a significant role on the bubble growth. A model is proposed and gives a simple scaling that relates the bubble growth rate and the imposed pressure. Carbon dioxide is shown to be the gas at play, and the hydrogel is degassing at the millimeter scale as a water solution does at a smaller scale. Later, bubbles are not independent anymore. The growth rate decreases, and the morphology becomes more anisotropic as bubbles interact because they are separated by a distance smaller than the individual stress field extension. Our measurements show that the interaction distance scales with the bubbles' size.

  1. Multi-instrumental Study of Storm-induced Ionospheric Irregularities at Midlatitudes

    NASA Astrophysics Data System (ADS)

    Cherniak, I.; Zakharenkova, I.; Sokolovskiy, S. V.

    2017-12-01

    We present multi-instrumental analysis of the unusually intense plasma density irregularities occurred over European midlatitudes during geomagnetic storm of 22-23 June 2015. We combine GPS/GLONASS observations derived from the dense ground-based networks ( 1500 stations) with in situ plasma density onboard Swarm and DMSP satellites and COSMIC Radio Occultation (RO) ionospheric electron density profiles. During this geomagnetic storm, the strong ionospheric irregularities of auroral origin were registered over the Northern Europe sub-auroral and midlatitudes. Meanwhile, another kind of ionospheric irregularities of equatorial origin reached European midlatitudes from the south. The prompt penetration electric fields caused the occurrence of plasma bite-outs in the post-sunset sector over the Western Africa low latitudes and extension of the large-scale plasma bubbles toward Europe. Using GPS/GLONASS observations, the plasma bubble signatures were mapped in Europe. They were observed for more than 8 h (20-04 UT) and covered a broad area within 30o-40o N and 20o W-10o E. In this region, the steep plasma gradients, as large as 5-10 TECU/degree, and numerous embedded deep plasma depletions were developed on the background of high plasma density. For low latitude region, the bite-out signature was recognized in the form of the significantly modified shape of the COSMIC-derived ionospheric electron density profiles. These unique results were confirmed by the in situ density and upward-looking GPS data onboard the Swarm satellites at 500 km altitude, in situ density measured by DMSP and ground-based absolute TEC observations. It was found that close similarity between in situ Ne and Swarm-derived topside vertical TEC suggests that plasma density enhancements and depletions are developed in the topside ionosphere (>500 km). The intensity of plasma gradients at different altitudes was also estimated by COSMIC-based measurements of GPS signal intensity and phase fluctuations as well as by rate of TEC changes on COSMIC-GPS links. Occurrence of the plasma bubbles in Europe affected GNSS measurements over number of reference stations and led to performance degradation of SBAS EGNOS.

  2. Extreme conditions in a dissolving air nanobubble

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru

    2016-07-01

    Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10-15. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution.

  3. Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection

    NASA Astrophysics Data System (ADS)

    Qin, Shijie; Chu, Ning; Yao, Yan; Liu, Jingting; Huang, Bin; Wu, Dazhuan

    2017-03-01

    To investigate the stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection, both experiments and simulations of bubble drag reduction (BDR) have been conducted in this paper. Drag reductions at various flow speeds and air injection rates have been tested in cavitation tunnel experiments. Visualization of bubble flow pattern is implemented synchronously. The computational fluid dynamics (CFD) method, in the framework of Eulerian-Eulerian two fluid modeling, coupled with population balance model (PBM) is used to simulate the bubbly flow along the flat plate. A wide range of bubble sizes considering bubble breakup and coalescence is modeled based on experimental bubble distribution images. Drag and lift forces are fully modeled based on applicable closure models. Both predicted drag reductions and bubble distributions are in reasonable concordance with experimental results. Stream-wise distribution of BDR is revealed based on CFD-PBM numerical results. In particular, four distinct regions with different BDR characteristics are first identified and discussed in this study. Thresholds between regions are extracted and discussed. And it is highly necessary to fully understand the stream-wise distribution of BDR in order to establish a universal scaling law. Moreover, mechanism of stream-wise distribution of BDR is analysed based on the near-wall flow parameters. The local drag reduction is a direct result of near-wall max void fraction. And the near-wall velocity gradient modified by the presence of bubbles is considered as another important factor for bubble drag reduction.

  4. Dynamic Modeling and Control Studies of a Two-Stage Bubbling Fluidized Bed Adsorber-Reactor for Solid-Sorbent CO{sub 2} Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modekurti, Srinivasarao; Bhattacharyya, Debangsu; Zitney, Stephen E.

    2013-07-31

    A one-dimensional, non-isothermal, pressure-driven dynamic model has been developed for a two-stage bubbling fluidized bed (BFB) adsorber-reactor for solid-sorbent carbon dioxide (CO{sub 2}) capture using Aspen Custom Modeler® (ACM). The BFB model for the flow of gas through a continuous phase of downward moving solids considers three regions: emulsion, bubble, and cloud-wake. Both the upper and lower reactor stages are of overflow-type configuration, i.e., the solids leave from the top of each stage. In addition, dynamic models have been developed for the downcomer that transfers solids between the stages and the exit hopper that removes solids from the bottom ofmore » the bed. The models of all auxiliary equipment such as valves and gas distributor have been integrated with the main model of the two-stage adsorber reactor. Using the developed dynamic model, the transient responses of various process variables such as CO{sub 2} capture rate and flue gas outlet temperatures have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the incoming flue gas from pulverized coal-fired power plants. In control studies, the performance of a proportional-integral-derivative (PID) controller, feedback-augmented feedforward controller, and linear model predictive controller (LMPC) are evaluated for maintaining the overall CO{sub 2} capture rate at a desired level in the face of typical disturbances.« less

  5. Further experimentation on bubble generation during transformer overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oommen, T.V.

    1992-03-01

    This report covers additional work done during 1990 and 1991 on gas bubble generation under overload conditions. To improve visual bubble detection, a single disc coil was used. To further improve detection, a corona device was also used which signaled the onset of corona activity in the early stages of bubble formation. A total of fourteen model tests were conducted, half of which used the Inertaire system, and the remaining, a conservator (COPS). Moisture content of paper in the coil varied from 1.0% to 8.0%; gas (nitrogen) content varied from 1.0% to 8.8%. The results confirmed earlier observations that themore » mathematical bubble prediction model was not valid for high gas content model with relatively low moisture levels in the coil. An empirical relationship was formulated to accurately predict bubble evolution temperatures from known moisture and gas content values. For low moisture content models (below 2%), the simple Piper relationship was sufficient to predict bubble evolution temperatures, regardless of gas content. Moisture in the coil appears to be the key factor in bubble generation. Gas blanketed (Inertaire) systems do not appear to be prone to premature bubble generation from overloads as previously thought. The new bubble prediction model reveals that for a coil with 2% moisture, the bubble evolution temperature would be about 140{degrees}C. Since old transformers in service may have as much as 2% moisture in paper, the 140{degrees}C bubble evolution temperature may be taken as the lower limit of bubble evolution temperature under overload conditions for operating transformers. Drier insulation would raise the bubble evolution temperature.« less

  6. Design and Construction of Multi-Variable Vortex-Ring Bubble Generator for Use in Interactive Exhibit

    DTIC Science & Technology

    2013-12-01

    providing the opportunity to teach complex subjects related to stable and unstable equilibrium, stochastic systems, and conservation laws. The...bubbles through adjustment of three variables. The seal pressure, actuating pressure, and cycle time of the triggering solenoid valve each contribute to...stable and unstable equilibrium, stochastic systems, and conservation laws. The diaphragm valve designed in this thesis provides the centerpiece for

  7. A theoretical method for selecting space craft and space suit atmospheres.

    PubMed

    Vann, R D; Torre-Bueno, J R

    1984-12-01

    A theoretical method for selecting space craft and space suit atmospheres assumes that gas bubbles cause decompression sickness and that the risk increases when a critical bubble volume is exceeded. The method is consistent with empirical decompression exposures for humans under conditions of nitrogen equilibrium between the lungs and tissues. Space station atmospheres are selected so that flight crews may decompress immediately from sea level to station pressure without preoxygenation. Bubbles form as a result of this decompression but are less than the critical volume. The bubbles are absorbed during an equilibration period after which immediate transition to suit pressure is possible. Exercise after decompression and incomplete nitrogen equilibrium are shown to increase bubble size, and limit the usefulness of one previously tested stage decompression procedure for the Shuttle. The method might be helpful for evaluating decompression procedures before testing.

  8. Acoustic methods for cavitation mapping in biomedical applications

    NASA Astrophysics Data System (ADS)

    Wan, M.; Xu, S.; Ding, T.; Hu, H.; Liu, R.; Bai, C.; Lu, S.

    2015-12-01

    In recent years, cavitation is increasingly utilized in a wide range of applications in biomedical field. Monitoring the spatial-temporal evolution of cavitation bubbles is of great significance for efficiency and safety in biomedical applications. In this paper, several acoustic methods for cavitation mapping proposed or modified on the basis of existing work will be presented. The proposed novel ultrasound line-by-line/plane-by-plane method can depict cavitation bubbles distribution with high spatial and temporal resolution and may be developed as a potential standard 2D/3D cavitation field mapping method. The modified ultrafast active cavitation mapping based upon plane wave transmission and reception as well as bubble wavelet and pulse inversion technique can apparently enhance the cavitation to tissue ratio in tissue and further assist in monitoring the cavitation mediated therapy with good spatial and temporal resolution. The methods presented in this paper will be a foundation to promote the research and development of cavitation imaging in non-transparent medium.

  9. Sizes of nanobubbles from nucleation rate measurements

    NASA Astrophysics Data System (ADS)

    Wilemski, G.

    2003-03-01

    In homogeneous bubble nucleation, the critical nucleus typically has nanometer dimensions. The volume V of a critical bubble can be determined from the simple equation (partial W/partial p)_T=V, where W is the reversible work of nucleus formation and p is the ambient pressure of the liquid phase in which bubble formation is occurring. The relation, W/kT=-ln J+ln A, where J is the steady state nucleation rate and A is the weakly pressure-dependent kinetic prefactor, allows V to be determined from rate measurements. The original derivation of this equation for V from the nucleation theorem was limited to one-component, ideal gas bubbles with a gas density much smaller than that of the ambient liquid. [D. Kashchiev, Nucleation: basic theory with applications (Butterworth-Heinemann, Oxford, 2000) p. 226.] The result is actually much more general, and it will be shown that it applies to multi-component, nonideal gas bubbles, provided the same density inequality holds. When the bubble phase and liquid densities are comparable, a more complicated, but also general and rigorous result is found.

  10. Analytical study of the acoustic field in a spherical resonator for single bubble sonoluminescence.

    PubMed

    Dellavale, Damián; Urteaga, Raúl; Bonetto, Fabián J

    2010-01-01

    The acoustic field in the liquid within a spherical solid shell is calculated. The proposed model takes into account Stoke's wave equation in the viscous fluid, the membrane theory to describe the solid shell motion and the energy loss through the external couplings of the system. A point source at the resonator center is included to reproduce the acoustic emission of a sonoluminescence bubble. Particular calculations of the resulting acoustic field are performed for viscous liquids of interest in single bubble sonoluminescence. The model reveals that in case of radially symmetric modes of low frequency, the quality factor is mainly determined by the acoustic energy flowing through the mechanical coupling of the resonator. Alternatively, for high frequency modes the quality factor is mainly determined by the viscous dissipation in the liquid. Furthermore, the interaction between the bubble acoustic emission and the resonator modes is analyzed. It was found that the bubble acoustic emission produces local maxima in the resonator response. The calculated amplitudes and relative phases of the harmonics constituting the bubble acoustic environment can be used to improve multi-frequency driving in sonoluminescence.

  11. Perturbations of the magnetic induction in a bubbly liquid metal flow

    NASA Astrophysics Data System (ADS)

    Guichou, Rafael; Tordjeman, Philippe; Bergez, Wladimir; Zamansky, Remi; Paumel, Kevin

    2017-11-01

    The presence of bubbles in liquid metal flow subject to AC magnetic field modifies the distribution of eddy currents in the fluid. This situation is encountered in metallurgy and nuclear industry for Sodium Fast Reactors. We will show that the perturbation of the eddy currents can be measured by an Eddy Current Flowmeter coupled with a lock-in amplifier. The experiments point out that the demodulated signal allows to detect the presence of a single bubble in the flow. The signal is sensitive both to the diameter and the relative position of the bubble. Then, we will present a model of a potential perturbation of the current density caused by a bubble and the distortion of the magnetic field. The eddy current distribution is calculated from the induction equation. This model is derived from a potential flow around a spherical particle. The total vector potential is the sum of the vector potential in the liquid metal flow without bubbles and the perturbated vector potential due to the presence of a bubble. The model is then compared to the experimental measurements realized with the eddy current flow meter for various bubble diameters in galinstan. The very good agreement between model and experiments validates the relevance of the perturbative approach.

  12. Expansion of a compressible gas bubble in Stokes flow

    NASA Astrophysics Data System (ADS)

    Pozrikidis, C.

    2001-09-01

    The flow-induced deformation of an inviscid bubble occupied by a compressible gas and suspended in an ambient viscous liquid is considered at low Reynolds numbers with particular reference to the pressure developing inside the bubble. Ambient fluid motion alters the bubble pressure with respect to that established in the quiescent state, and requires the bubble to expand or contract according to an assumed equation of state. When changes in the bubble volume are prohibited by a global constraint on the total volume of the flow, the ambient pressure is modified while the bubble pressure remains constant during the deformation. A numerical method is developed for evaluating the pressure inside a two-dimensional bubble in an ambient Stokes flow on the basis of the normal component of the interfacial force balance involving the capillary pressure, the normal viscous stress, and the pressure at the free surface on the side of the liquid; the last is computed by evaluating a strongly singular integral. Dynamical simulations of bubble deformation are performed using the boundary integral method properly implemented to remove the multiplicity of solutions due to the a priori unknown rate of expansion, and three particular problems are discussed in detail: the shrinkage of a bubble at a specified rate, the deformation of a bubble subject to simple shear flow, and the deformation of a bubble subject to a purely elongational flow. In the case of shrinkage, it is found that the surface tension plays a critical role in determining the behaviour of the bubble pressure near the critical time when the bubble disappears. In the case of shear or elongational flow, it is found that the bubble contracts during an initial period of deformation from the circular shape, and then it expands to obtain a stationary shape whose area is higher than that assumed in the quiescent state. Expansion may destabilize the bubble by raising the capillary number above the critical threshold under which stationary shapes can be found.

  13. Electrohydrodynamic bubbling: an alternative route to fabricate porous structures of silk fibroin based materials.

    PubMed

    Ekemen, Zeynep; Ahmad, Zeeshan; Stride, Eleanor; Kaplan, David; Edirisinghe, Mohan

    2013-05-13

    Conventional fabrication techniques and structures employed in the design of silk fibroin (SF) based porous materials provide only limited control over pore size and require several processing stages. In this study, it is shown that, by utilizing electrohydrodynamic bubbling, not only can new hollow spherical structures of SF be formed in a single step by means of bubbles, but the resulting bubbles can serve as pore generators when dehydrated. The bubble characteristics can be controlled through simple adjustments to the processing parameters. Bubbles with diameters in the range of 240-1000 μm were fabricated in controlled fashion. FT-IR characterization confirmed that the rate of air infused during processing enhanced β-sheet packing in SF at higher flow rates. Dynamic mechanical analysis also demonstrated a correlation between air flow rate and film tensile strength. Results indicate that electrohydrodynamically generated SF and their composite bubbles can be employed as new tools to generate porous structures in a controlled manner with a range of potential applications in biocoatings and tissue engineering scaffolds.

  14. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    NASA Astrophysics Data System (ADS)

    Rest, J.; Hofman, G. L.; Kim, Yeon Soo

    2009-04-01

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  15. Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis.

    PubMed

    Wang, Sijia; Wu, Ning

    2014-04-01

    Bubble propulsion and self-diffusiophoresis are two common mechanisms that can drive autonomous motion of microparticles in hydrogen peroxide. Although microtubular particles, when coated with platinum in their interior concave surfaces, can propel due to the formation and release of bubbles from one end, the convex Janus particles usually do not generate any visible bubble. They move primarily due to the self-diffusiophoresis. Coincidentally, the platinum films on those particles were typically coated by physical evaporation. In this paper, we use a simple chemical deposition method to make platinum-polystyrene Janus dimers. Surprisingly, those particles are propelled by periodic growth and collapse of bubbles on the platinum-coated lobes. We find that both high catalytic activity and rough surface are necessary to change the propulsion mode from self-diffusiophoresis to bubble propulsion. Our Janus dimers, with combined geometric and interfacial anisotropy, also exhibit distinctive motions at the respective stages of bubble growth and collapse, which differ by 5-6 orders of magnitude in time. Our study not only provides insight into the link between self-diffusiophoresis and bubble propulsion but also reveals the intriguing impacts of the combined geometric and interfacial anisotropy on self-propulsion of particles.

  16. A Modified Jaeger's Method for Measuring Surface Tension.

    ERIC Educational Resources Information Center

    Ntibi, J. Effiom-Edem

    1991-01-01

    A static method of measuring the surface tension of a liquid is presented. Jaeger's method is modified by replacing the pressure source with a variable pressure head. By using this method, stationary air bubbles are obtained thus resulting in controllable external parameters. (Author/KR)

  17. Taylor bubbles at high viscosity ratios: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar

    2015-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  18. Steady State Vapor Bubble in Pool Boiling

    PubMed Central

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  19. Mathematical and experimental modelling of the dynamic bubble processes occurring in a two-phase cyclonic separation device

    NASA Astrophysics Data System (ADS)

    Schrage, Dean Stewart

    1998-11-01

    This dissertation presents a combined mathematical and experimental analysis of the fluid dynamics of a gas- liquid, dispersed-phase cyclonic separation device. The global objective of this research is to develop a simulation model of separation process in order to predict the void fraction field within a cyclonic separation device. The separation process is approximated by analyzing the dynamic motion of many single-bubbles, moving under the influence of the far-field, interacting with physical boundaries and other bubbles. The dynamic motion of the bubble is described by treating the bubble as a point-mass and writing an inertial force balance, equating the force applied to the bubble-point-location to the inertial acceleration of the bubble mass (also applied to the point-location). The forces which are applied to the bubble are determined by an integration of the surface pressure over the bubble. The surface pressure is coupled to the intrinsic motion of the bubble, and is very difficult to obtain exactly. However, under moderate Reynolds number, the wake trailing a bubble is small and the near-field flow field can be approximated as an inviscid flow field. Unconventional potential flow techniques are employed to solve for the surface pressure; the hydrodyamic forces are described as a hydrodynamic mass tensor operating on the bubble acceleration vector. The inviscid flow model is augmented with adjunct forces which describe: drag forces, dynamic lift, far-field pressure forces. The dynamic equations of motion are solved both analytically and numerically for the bubble trajectory in specific flow field examples. A validation of these equations is performed by comparing to an experimentally-derived trajectory of a single- bubble, which is released into a cylindrical Couette flow field (inner cylinder rotating) at varying positions. Finally, a simulation of a cyclonic separation device is performed by extending the single-bubble dynamic model to a multi-bubble ensemble. A simplified model is developed to predict the effects of bubble-interaction. The simulation qualitatively depicts the separation physics encountered in an actual cyclonic separation device, supporting the original tenet that the separation process can be approximated by the collective motions of single- bubbles.

  20. Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles

    NASA Astrophysics Data System (ADS)

    KM3NeT Collaboration; Adrián-Martínez, S.; Ageron, M.; Aguilar, J. A.; Aharonian, F.; Aiello, S.; Albert, A.; Alexandri, M.; Ameli, F.; Anassontzis, E. G.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A.; Aubert, J.-J.; Bakker, R.; Ball, A. E.; Barbarino, G.; Barbarito, E.; Barbato, F.; Baret, B.; de Bel, M.; Belias, A.; Bellou, N.; Berbee, E.; Berkien, A.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Bigourdan, B.; Billault, M.; de Boer, R.; Boer Rookhuizen, H.; Bonori, M.; Borghini, M.; Bou-Cabo, M.; Bouhadef, B.; Bourlis, G.; Bouwhuis, M.; Bradbury, S.; Brown, A.; Bruni, F.; Brunner, J.; Brunoldi, M.; Busto, J.; Cacopardo, G.; Caillat, L.; Calvo Díaz-Aldagalán, D.; Calzas, A.; Canals, M.; Capone, A.; Carr, J.; Castorina, E.; Cecchini, S.; Ceres, A.; Cereseto, R.; Chaleil, Th.; Chateau, F.; Chiarusi, T.; Choqueuse, D.; Christopoulou, P. E.; Chronis, G.; Ciaffoni, O.; Circella, M.; Cocimano, R.; Cohen, F.; Colijn, F.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Costa, M.; Coyle, P.; Craig, J.; Creusot, A.; Curtil, C.; D'Amico, A.; Damy, G.; De Asmundis, R.; De Bonis, G.; Decock, G.; Decowski, P.; Delagnes, E.; De Rosa, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drogou, J.; Drouhin, D.; Druillole, F.; Drury, L.; Durand, D.; Durand, G. A.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Espinosa, V.; Etiope, G.; Favali, P.; Felea, D.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fotiou, A.; Fritsch, U.; Gajanana, D.; Garaguso, R.; Gasparini, G. P.; Gasparoni, F.; Gautard, V.; Gensolen, F.; Geyer, K.; Giacomelli, G.; Gialas, I.; Giordano, V.; Giraud, J.; Gizani, N.; Gleixner, A.; Gojak, C.; Gómez-González, J. P.; Graf, K.; Grasso, D.; Grimaldi, A.; Groenewegen, R.; Guédé, Z.; Guillard, G.; Guilloux, F.; Habel, R.; Hallewell, G.; van Haren, H.; van Heerwaarden, J.; Heijboer, A.; Heine, E.; Hernández-Rey, J. J.; Herold, B.; Hillebrand, T.; van de Hoek, M.; Hogenbirk, J.; Hößl, J.; Hsu, C. C.; Imbesi, M.; Jamieson, A.; Jansweijer, P.; de Jong, M.; Jouvenot, F.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karolak, M.; Katz, U. F.; Kavatsyuk, O.; Keller, P.; Kiskiras, Y.; Klein, R.; Kok, H.; Kontoyiannis, H.; Kooijman, P.; Koopstra, J.; Kopper, C.; Korporaal, A.; Koske, P.; Kouchner, A.; Koutsoukos, S.; Kreykenbohm, I.; Kulikovskiy, V.; Laan, M.; La Fratta, C.; Lagier, P.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Leisos, A.; Lenis, D.; Leonora, E.; Le Provost, H.; Lim, G.; Llorens, C. D.; Lloret, J.; Löhner, H.; Lo Presti, D.; Lotrus, P.; Louis, F.; Lucarelli, F.; Lykousis, V.; Malyshev, D.; Mangano, S.; Marcoulaki, E. C.; Margiotta, A.; Marinaro, G.; Marinelli, A.; Mariş, O.; Markopoulos, E.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Marvaldi, J.; Masullo, R.; Maurin, G.; Migliozzi, P.; Migneco, E.; Minutoli, S.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Monmarthe, E.; Morganti, M.; Mos, S.; Motz, H.; Moudden, Y.; Mul, G.; Musico, P.; Musumeci, M.; Naumann, Ch.; Neff, M.; Nicolaou, C.; Orlando, A.; Palioselitis, D.; Papageorgiou, K.; Papaikonomou, A.; Papaleo, R.; Papazoglou, I. A.; Păvălaş, G. E.; Peek, H. Z.; Perkin, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Priede, I. G.; Psallidas, A.; Rabouille, C.; Racca, C.; Radu, A.; Randazzo, N.; Rapidis, P. A.; Razis, P.; Real, D.; Reed, C.; Reito, S.; Resvanis, L. K.; Riccobene, G.; Richter, R.; Roensch, K.; Rolin, J.; Rose, J.; Roux, J.; Rovelli, A.; Russo, A.; Russo, G. V.; Salesa, F.; Samtleben, D.; Sapienza, P.; Schmelling, J.-W.; Schmid, J.; Schnabel, J.; Schroeder, K.; Schuller, J.-P.; Schussler, F.; Sciliberto, D.; Sedita, M.; Seitz, T.; Shanidze, R.; Simeone, F.; Siotis, I.; Sipala, V.; Sollima, C.; Sparnocchia, S.; Spies, A.; Spurio, M.; Staller, T.; Stavrakakis, S.; Stavropoulos, G.; Steijger, J.; Stolarczyk, Th.; Stransky, D.; Taiuti, M.; Taylor, A.; Thompson, L.; Timmer, P.; Tonoiu, D.; Toscano, S.; Touramanis, C.; Trasatti, L.; Traverso, P.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Urbano, F.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Viola, S.; Vivolo, D.; Wagner, S.; Werneke, P.; White, R. J.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zhukov, V.; Zonca, E.; Zornoza, J. D.; Zúñiga, J.

    2013-02-01

    A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50° above and below the Galactic centre (the "Fermi bubbles"). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km3 neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km3 of instrumented volume. The effect of a possible lower cutoff is also considered.

  1. Neurocognitive stages of spatial cognitive mapping measured during free exploration of a large-scale virtual environment.

    PubMed

    Plank, Markus; Snider, Joseph; Kaestner, Erik; Halgren, Eric; Poizner, Howard

    2015-02-01

    Using a novel, fully mobile virtual reality paradigm, we investigated the EEG correlates of spatial representations formed during unsupervised exploration. On day 1, subjects implicitly learned the location of 39 objects by exploring a room and popping bubbles that hid the objects. On day 2, they again popped bubbles in the same environment. In most cases, the objects hidden underneath the bubbles were in the same place as on day 1. However, a varying third of them were misplaced in each block. Subjects indicated their certainty that the object was in the same location as the day before. Compared with bubble pops revealing correctly placed objects, bubble pops revealing misplaced objects evoked a decreased negativity starting at 145 ms, with scalp topography consistent with generation in medial parietal cortex. There was also an increased negativity starting at 515 ms to misplaced objects, with scalp topography consistent with generation in inferior temporal cortex. Additionally, misplaced objects elicited an increase in frontal midline theta power. These findings suggest that the successive neurocognitive stages of processing allocentric space may include an initial template matching, integration of the object within its spatial cognitive map, and memory recall, analogous to the processing negativity N400 and theta that support verbal cognitive maps in humans. Copyright © 2015 the American Physiological Society.

  2. Wall slipping behavior of foam with nanoparticle-armored bubbles and its flow resistance factor in cracks.

    PubMed

    Lv, Qichao; Li, Zhaomin; Li, Binfei; Husein, Maen; Shi, Dashan; Zhang, Chao; Zhou, Tongke

    2017-07-11

    In this work, wall slipping behavior of foam with nanoparticle-armored bubbles was first studied in a capillary tube and the novel multiphase foam was characterized by a slipping law. A crack model with a cuboid geometry was then used to compare with the foam slipping results from the capillary tube and also to evaluate the flow resistance factor of the foam. The results showed that the slipping friction force F FR in the capillary tube significantly increased by addition of modified SiO 2 nanoparticles, and an appropriate power law exponents by fitting F FR vs. Capillary number, Ca, was 1/2. The modified nanoparticles at the surface were bridged together and formed a dense particle "armor" surrounding the bubble, and the interconnected structures of the "armor" with strong steric integrity made the surface solid-like, which was in agreement with the slip regime associated with rigid surface. Moreover, as confirmed by 3D microscopy, the roughness of the bubble surface increased with nanoparticle concentration, which in turn increased the slipping friction force. Compared with pure SDBS foam, SDBS/SiO 2 foam shows excellent stability and high flow resistance in visual crack. The resistance factor of SiO 2 /SDBS foam increased as the wall surface roughness increased in core cracks.

  3. Formation of hollow nanoshells in solution-based reactions via collision coalescence of nanobubble-particle systems

    NASA Astrophysics Data System (ADS)

    Vongehr, Sascha; Tang, Shaochun

    2016-06-01

    Research on hollow nanoshells has, for years, claimed to involve free, pre-existing nanobubbles as soft templates. It is a challenge to demonstrate this due to the difficulty of in situ observation during solution-based reactions. We show that no available free-bubble theory can describe the mysterious behavior of the bubble number density n. A new mechanism of collision coalescence of bubble-particle systems is suggested to form hollow nanoshells. By approximating relative velocity as ˜R -z (R is bubble radius), numerical simulations can reproduce the counterintuitive observations in the regime 1 < z < 2. We discuss the mechanism based on successful synthesis of grain-monolayer thin, fractal-like incomplete, multi-metallic nanoshells with superior catalytic activity. The behaviors of n, R, and shell thickness h are closely reproduced by z = 1.6.

  4. Further experimentation on bubble generation during transformer overload. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oommen, T.V.

    1992-03-01

    This report covers additional work done during 1990 and 1991 on gas bubble generation under overload conditions. To improve visual bubble detection, a single disc coil was used. To further improve detection, a corona device was also used which signaled the onset of corona activity in the early stages of bubble formation. A total of fourteen model tests were conducted, half of which used the Inertaire system, and the remaining, a conservator (COPS). Moisture content of paper in the coil varied from 1.0% to 8.0%; gas (nitrogen) content varied from 1.0% to 8.8%. The results confirmed earlier observations that themore » mathematical bubble prediction model was not valid for high gas content model with relatively low moisture levels in the coil. An empirical relationship was formulated to accurately predict bubble evolution temperatures from known moisture and gas content values. For low moisture content models (below 2%), the simple Piper relationship was sufficient to predict bubble evolution temperatures, regardless of gas content. Moisture in the coil appears to be the key factor in bubble generation. Gas blanketed (Inertaire) systems do not appear to be prone to premature bubble generation from overloads as previously thought. The new bubble prediction model reveals that for a coil with 2% moisture, the bubble evolution temperature would be about 140{degrees}C. Since old transformers in service may have as much as 2% moisture in paper, the 140{degrees}C bubble evolution temperature may be taken as the lower limit of bubble evolution temperature under overload conditions for operating transformers. Drier insulation would raise the bubble evolution temperature.« less

  5. The Speed of Axial Propagation of a Cylindrical Bubble Through a Cylindrical Vortex

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    Inspired by the rapid elongation of air columns injected into vortices by dolphins, we present an exact inviscid solution for the axial speed (assumed steady) of propagation of the tip of a semi-infinite cylindrical bubble along the axis of a cylindrical vortex. The bubble is assumed to be held at constant pressure by being connected to a reservoir, the lungs of the dolphin, say. For a given bubble pressure, there is a modest critical rotation rate above which steadily propagating bubbles exist. For a bubble at ambient pressure, the propagation speed of the bubble (relative to axial velocity within the vortex) varies between 0.5 and 0.6 of the maximum rotational speed of the vortex. Surprisingly, the bubble tip can propagate (almost as rapidly) even when the pressure minimum in the vortex core is greater than the bubble pressure; in this case, solutions exhibit a dimple on the nose of the bubble. A situation important for incipient vortex cavitation, and one which dolphins also demonstrate, is elongation of a free bubble, i.e., one whose internal pressure may vary. Under the assumption that the acceleration term is small (checked a posteriori), the steady solution is applied at each instant during the elongation. Three types of behavior are then possible depending on physical parameters and initial conditions: (A) Unabated elongation with slowly increasing bubble pressure, and nearly constant volume. Volume begins to decrease in the late stages. (B1) Elongation with decreasing bubble pressure. A limit point of the steady solution is encountered at a finite bubble length. (B2) Unabated elongation with decreasing bubble pressure and indefinite creation of volume. This is made possible by the existence of propagating solutions at bubble pressures below the minimum vortex pressure. As the bubble stretches, its radius initially decreases but then becomes constant; this is also observed in experiments on incipient vortex cavitation.

  6. Evaluation of stability and size distribution of sunflower oil-coated micro bubbles for localized drug delivery.

    PubMed

    Filho, Walter Duarte de Araujo; Schneider, Fábio Kurt; Morales, Rigoberto E M

    2012-09-20

    Micro bubbles were initially introduced as contrast agents for ultrasound examinations as they are able to modify the signal-to-noise ratio in imaging, thus improving the assessment of clinical information on human tissue. Recent developments have demonstrated the feasibility of using these bubbles as drug carriers in localized delivery. In micro fluidics devices for generation of micro bubbles, the bubbles are formed at interface of liquid gas through a strangulation process. A device that uses these features can produce micro bubbles with small size dispersion in a single step. A T-junction micro fluidic device constructed using 3D prototyping was made for the production of mono dispersed micro bubbles. These micro bubbles use sunflower oil as a lipid layer. Stability studies for micro bubbles with diameters different generated from a liquid phase of the same viscosity were conducted to evaluate whether micro bubbles can be used as drug carriers. The biocompatibility of coating layer, the ability to withstand environmental pressure variations combined with echogenicity, are key factors that they can safely play the role of drug transporters. The normal distribution curve with small dispersion of the diameter of bubbles validates the process of generating micro bubbles with low value of variation coefficient, i.e., 0.381 at 1.90%. The results also showed the feasibility of using sunflower oil as the lipid matrix with stable population of bubbles over 217 minutes for micro bubbles with an average diameter of 313.04 μm and 121 minutes for micro bubbles with an average diameter of 73.74 μm, considering bubbles with air as gaseous phase. The results indicate that the micro fluidic device designed can be used for producing micro bubbles with low variation coefficient using sunflower oil as a coating of micro bubbles. These carriers were stable for periods of time that are long enough for clinical applications even when regular air is used as the gas phase. Improved stability can be achieved when biocompatible gas with lower permeability is used.

  7. Experimental and Theoretical Investigations of Cavitation in Water

    NASA Technical Reports Server (NTRS)

    Ackeret, J.

    1945-01-01

    The cavitation in nozzles on airfoils of various shape and on a sphere are experimentally investigated. The limits of cavitation and the extension of the zone of the bubbles in different stages of cavitation are photographically established. The pressure in the bubble area is constant and very low, jumping to high values at the end of the area. The analogy with the gas compression shock is adduced and discussed. The collapse of the bubbles under compression shock produces very high pressures internally, which must be contributory factors to corrosion. The pressure required for purely mechanical corrosion is also discussed.

  8. Evaluation of 9.5 PSIA as a suit pressure for prolonged extravehicular activity

    NASA Technical Reports Server (NTRS)

    Dixon, G. A.; Krutz, R.

    1986-01-01

    A study was undertaken to determine if a pressure of 9.5 psia would aid against the occurrence of decompression sickness in both males and females (without prebreathing or stage decompression requirements) during a typical simulated extravehicular activity scenario. Twenty percent of the male subjects produced grades 1 and 2 bubbles while females did not produce bubble signals at all. It is concluded that a pressure of 9.5 psia can protect the astronaut from both formation of severe bubbling and development of bends symptoms when exposed to these study conditions.

  9. From Rising Bubble to RNA/DNA and Bacteria

    NASA Astrophysics Data System (ADS)

    Marks, Roman; Cieszyńska, Agata; Wereszka, Marzena; Borkowski, Wojciech

    2017-04-01

    In this study we have focused on the movement of rising bubbles in a salty water body. Experiments reviled that free buoyancy movement of bubbles forces displacement of ions, located on the outer side of the bubble wall curvatures. During the short moment of bubble passage, all ions in the vicinity of rising bubble, are separated into anions that are gathered on the bubble upper half sphere and cations that slip along the bottom concave half-sphere of a bubble and develop a sub-bubble vortex. The principle of ions separation bases on the differences in displacement resistance. In this way, relatively heavier and larger, thus more resistant to displacement anions are gathered on the rising bubble upper half sphere, while smaller and lighter cations are assembled on the bottom half sphere and within the sub-bubble vortex. The acceleration of motion generates antiparallel rotary of bi-ionic domains, what implies that anions rotate in clockwise (CW) and cationic in counter-clockwise (CCW) direction. Then, both rotational systems may undergo splicing and extreme condensing by bi-pirouette narrowing of rotary. It is suggested that such double helix motion of bi-ionic domains creates RNA/DNA molecules. Finally, when the bubble reaches the water surface it burst and the preprocessed RNA/DNA matter is ejected into the droplets. Since that stage, droplet is suspended in positively charged troposphere, thus the cationic domain is located in the droplet center, whilst negative ions are attracted to configure the outer areola. According to above, the present study implies that the rising bubbles in salty waters may incept synergistic processing of matter resulting in its rotational/spherical organization that led to assembly of RNA/DNA molecules and bacteria cells.

  10. The role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling artifact.

    PubMed

    Simon, Julianna C; Sapozhnikov, Oleg A; Kreider, Wayne; Breshock, Michael; Williams, James C; Bailey, Michael R

    2018-01-09

    The color Doppler ultrasound twinkling artifact, which highlights kidney stones with rapidly changing color, has the potential to improve stone detection; however, its inconsistent appearance has limited its clinical utility. Recently, it was proposed stable crevice bubbles on the kidney stone surface cause twinkling; however, the hypothesis is not fully accepted because the bubbles have not been directly observed. In this paper, the micron or submicron-sized bubbles predicted by the crevice bubble hypothesis are enlarged in kidney stones of five primary compositions by exposure to acoustic rarefaction pulses or hypobaric static pressures in order to simultaneously capture their appearance by high-speed photography and ultrasound imaging. On filming stones that twinkle, consecutive rarefaction pulses from a lithotripter caused some bubbles to reproducibly grow from specific locations on the stone surface, suggesting the presence of pre-existing crevice bubbles. Hyperbaric and hypobaric static pressures were found to modify the twinkling artifact; however, the simple expectation that hyperbaric exposures reduce and hypobaric pressures increase twinkling by shrinking and enlarging bubbles, respectively, largely held for rough-surfaced stones but was inadequate for smoother stones. Twinkling was found to increase or decrease in response to elevated static pressure on smooth stones, perhaps because of the compression of internal voids. These results support the crevice bubble hypothesis of twinkling and suggest the kidney stone crevices that give rise to the twinkling phenomenon may be internal as well as external.

  11. The role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling artifact

    NASA Astrophysics Data System (ADS)

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Kreider, Wayne; Breshock, Michael; Williams, James C., Jr.; Bailey, Michael R.

    2018-01-01

    The color Doppler ultrasound twinkling artifact, which highlights kidney stones with rapidly changing color, has the potential to improve stone detection; however, its inconsistent appearance has limited its clinical utility. Recently, it was proposed stable crevice bubbles on the kidney stone surface cause twinkling; however, the hypothesis is not fully accepted because the bubbles have not been directly observed. In this paper, the micron or submicron-sized bubbles predicted by the crevice bubble hypothesis are enlarged in kidney stones of five primary compositions by exposure to acoustic rarefaction pulses or hypobaric static pressures in order to simultaneously capture their appearance by high-speed photography and ultrasound imaging. On filming stones that twinkle, consecutive rarefaction pulses from a lithotripter caused some bubbles to reproducibly grow from specific locations on the stone surface, suggesting the presence of pre-existing crevice bubbles. Hyperbaric and hypobaric static pressures were found to modify the twinkling artifact; however, the simple expectation that hyperbaric exposures reduce and hypobaric pressures increase twinkling by shrinking and enlarging bubbles, respectively, largely held for rough-surfaced stones but was inadequate for smoother stones. Twinkling was found to increase or decrease in response to elevated static pressure on smooth stones, perhaps because of the compression of internal voids. These results support the crevice bubble hypothesis of twinkling and suggest the kidney stone crevices that give rise to the twinkling phenomenon may be internal as well as external.

  12. Formation of Micro-Scale Gas Pockets From Underwater Wall Orifices

    NASA Astrophysics Data System (ADS)

    Pereira, Francisco A.; Gharib, Morteza

    2012-11-01

    Our experiments examine the formation of micro-scale gas pockets from orifices on walls with hydrophilic and hydrophobic wetting properties. Bubble injection is operated in a liquid at rest at constant flow rate and in a quasi-static regime, and the mechanism of bubble growth is investigated through high speed recordings. The growth dynamics is studied in terms of orifice size, surface wetting properties and buoyancy sign. The bubble formation is characterized by an explosive growth, with a pressure wave that causes the bubble to take highly transient shapes in its very initial stages, before stabilizing as a sphere and growing at a relatively slow rate. In case of positive buoyancy, the bubble elongates with the formation of a neck before detaching from the wall. When buoyancy acts towards the wall, the bubble attaches to the wall and expands laterally with a moving contact line. In presence of hydrophobic surfaces, the bubble attaches immediately to the wall irrespective of buoyancy direction and takes a hemispherical shape, expanding radially along the surface. A force balance is outlined to explain the different figures. The work was performed by FAP while on leave from CNR-INSEAN, and is supported by the Office of Naval Research (ONR).

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.

    We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gasmore » bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.« less

  14. Analysis of transitional separation bubbles on infinite swept wings

    NASA Technical Reports Server (NTRS)

    Davis, R. L.; Carter, J. E.

    1986-01-01

    A previously developed two-dimensional local inviscid-viscous interaction technique for the analysis of airfoil transitional separation bubbles, ALESEP (Airfoil Leading Edge Separation), has been extended for the calculation of transitional separation bubbles over infinite swept wings. As part of this effort, Roberts' empirical correlation, which is interpreted as a separated flow empirical extension of Mack's stability theory for attached flows, has been incorporated into the ALESEP procedure for the prediction of the transition location within the separation bubble. In addition, the viscous procedure used in the ALESEP techniques has been modified to allow for wall suction. A series of two-dimensional calculations is presented as a verification of the prediction capability of the interaction techniques with the Roberts' transition model. Numerical tests have shown that this two-dimensional natural transition correlation may also be applied to transitional separation bubbles over infinite swept wings. Results of the interaction procedure are compared with Horton's detailed experimental data for separated flow over a swept plate which demonstrates the accuracy of the present technique. Wall suction has been applied to a similar interaction calculation to demonstrate its effect on the separation bubble. The principal conclusion of this paper is that the prediction of transitional separation bubbles over two-dimensional or infinite swept geometries is now possible using the present interacting boundary layer approach.

  15. Bubble transport and sticking in gas embolotherapy

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2002-11-01

    Pressure-driven bubble transport in a two-dimensional, bifurcating channel is investigated as a model of gas emboli transport in the microcirculation. Gas emboli are relevant to a number of clinical situations, and our particular interest is a novel gas embolotherapy technique, which involves using gas bubbles to occlude blood flow to tumors. This minimally invasive treatment modality allows selective delivery of emboli. The bubbles originate as 6 micron-diameter liquid droplets of perfluorocarbon (PFC), mixed in saline, and are injected into the vascular system. The droplet forms are small enough to pass through capillary beds, so they can circulate until the next stage of the therapy. By strategically placing an ultrasound source over the artery feeding the tumor, the droplets may be vaporized at that location. Our model is developed using the Stokes equation subject to interfacial and wall boundary conditions, and is solved using the boundary element method. The conditions under which bubbles 'stick' to the channel walls and occlude flow are investigated. Clinically, these results are important because the location and homogeneity of bubble sticking determines the degree of tumor necrosis and the efficacy of the treatment.

  16. Aspects of reheating in first-order inflation

    NASA Technical Reports Server (NTRS)

    Watkins, Richard; Widrow, Lawrence M.

    1991-01-01

    Studied here is reheating in theories where inflation is completed by a first-order phase transition. In the scenarios, the Universe decays from its false vacuum state by bubble nucleation. In the first stage of reheating, vacuum energy is converted into kinetic energy for the bubble walls. To help understand this phase, researchers derive a simple expression for the equation of state of a universe filled with expanding bubbles. Eventually, the bubble walls collide. Researchers present numerical simulations of two-bubble collisions clarifying and extending previous work by Hawking, Moss, and Stewart. The researchers' results indicate that wall energy is efficiently converted into coherent scalar waves. Also discussed is particle production due to quantum effects. These effects lead to the decay of the coherent scalar waves. They also lead to direct particle production during bubble-wall collisions. Researchers calculate particle production for colliding walls in both sine-Gordon and theta (4) theories and show that it is far more efficient in the theta (4) case. The relevance of this work for recently proposed models of first order inflation is discussed.

  17. Migration of air bubbles in ice under a temperature gradient, with application to “Snowball Earth”

    NASA Astrophysics Data System (ADS)

    Dadic, Ruzica; Light, Bonnie; Warren, Stephen G.

    2010-09-01

    To help characterize the albedo of "sea glaciers" on Snowball Earth, a study of the migration rates of air bubbles in freshwater ice under a temperature gradient was carried out in the laboratory. The migration rates of air bubbles in both natural glacier ice and laboratory-grown ice were measured for temperatures between -36°C and -4°C and for bubble diameters of 23-2000 μm. The glacier ice was sampled from a depth near close-off (74 m) in the JEMS2 ice core from Summit, Greenland. Migration rates were measured by positioning thick sections of ice on a temperature gradient stage mounted on a microscope inside a freezer laboratory. The maximum and minimum migration rates were 5.45 μm h-1 (K cm-1)-1 at -4°C and 0.03 μm h-1 (K cm-1)-1 at -36°C. Besides a strong dependence on temperature, migration rates were found to be proportional to bubble size. We think that this is due to the internal air pressure within the bubbles, which may correlate with time since close-off and therefore with bubble size. Migration rates show no significant dependence on bubble shape. Estimates of migration rates computed as a function of bubble depth within sea glaciers indicate that the rates would be low relative to the predicted sublimation rates, such that the ice surface would not lose its air bubbles to net downward migration. It is therefore unlikely that air bubble migration could outrun the advancing sublimation front, transforming glacial ice to a nearly bubble-free ice type, analogous to low-albedo marine ice.

  18. Numerical Modeling of Nanocellular Foams Using Classical Nucleation Theory and Influence Volume Approach

    NASA Astrophysics Data System (ADS)

    Khan, Irfan; Costeux, Stephane; Bunker, Shana; Moore, Jonathan; Kar, Kishore

    2012-11-01

    Nanocellular porous materials present unusual optical, dielectric, thermal and mechanical properties and are thus envisioned to find use in a variety of applications. Thermoplastic polymeric foams show considerable promise in achieving these properties. However, there are still considerable challenges in achieving nanocellular foams with densities as low as conventional foams. Lack of in-depth understanding of the effect of process parameters and physical properties on the foaming process is a major obstacle. A numerical model has been developed to simulate the simultaneous nucleation and bubble growth during depressurization of thermoplastic polymers saturated with supercritical blowing agents. The model is based on the popular ``Influence Volume Approach,'' which assumes a growing boundary layer with depleted blowing agent surrounds each bubble. Classical nucleation theory is used to predict the rate of nucleation of bubbles. By solving the mass balance, momentum balance and species conservation equations for each bubble, the model is capable of predicting average bubble size, bubble size distribution and bulk porosity. The model is modified to include mechanisms for Joule-Thompson cooling during depressurization and secondary foaming. Simulation results for polymer with and without nucleating agents will be discussed and compared with experimental data.

  19. Numerical simulation and experimental validation of the dynamics of multiple bubble merger during pool boiling under microgravity conditions.

    PubMed

    Abarajith, H S; Dhir, V K; Warrier, G; Son, G

    2004-11-01

    Numerical simulation and experimental validation of the growth and departure of multiple merging bubbles and associated heat transfer on a horizontal heated surface during pool boiling under variable gravity conditions have been performed. A finite difference scheme is used to solve the equations governing mass, momentum, and energy in the vapor liquid phases. The vapor-liquid interface is captured by a level set method that is modified to include the influence of phase change at the liquid-vapor interface. Water is used as test liquid. The effects of reduced gravity condition and orientation of the bubbles on the bubble diameter, interfacial structure, bubble merger time, and departure time, as well as local heat fluxes, are studied. In the experiments, multiple vapor bubbles are produced on artificial cavities in the 2-10 micrometer diameter range, microfabricated on the polished silicon wafer with given spacing. The wafer was heated electrically from the back with miniature strain gage type heating elements in order to control the nucleation superheat. The experiments conducted in normal Earth gravity and in the low gravity environment of KC-135 aircraft are used to validate the numerical simulations.

  20. Cavitation in confined water: ultra-fast bubble dynamics

    NASA Astrophysics Data System (ADS)

    Vincent, Olivier; Marmottant, Philippe

    2012-02-01

    In the hydraulic vessels of trees, water can be found at negative pressure. This metastable state, corresponding to mechanical tension, is achieved by evaporation through a porous medium. It can be relaxed by cavitation, i.e. the sudden nucleation of vapor bubbles. Harmful for the tree due to the subsequent emboli of sap vessels, cavitation is on the contrary used by ferns to eject spores very swiftly. We will focus here on the dynamics of the cavitation bubble, which is of primary importance to explain the previously cited natural phenomena. We use the recently developed method of artificial tress, using transparent hydrogels as the porous medium. Our experiments, on water confined in micrometric hydrogel cavities, show an extremely fast dynamics: bubbles are nucleated at the microsecond timescale. For cavities larger than 100 microns, the bubble ``rings'' with damped oscillations at MHz frequencies, whereas for smaller cavities the oscillations become overdamped. This rich dynamics can be accounted for by a model we developed, leading to a modified Rayleigh-Plesset equation. Interestingly, this model predicts the impossibility to nucleate bubbles above a critical confinement that depends on liquid negative pressure and corresponds to approximately 100 nm for 20 MPa tensions.

  1. Bubble gate for in-plane flow control.

    PubMed

    Oskooei, Ali; Abolhasani, Milad; Günther, Axel

    2013-07-07

    We introduce a miniature gate valve as a readily implementable strategy for actively controlling the flow of liquids on-chip, within a footprint of less than one square millimetre. Bubble gates provide for simple, consistent and scalable control of liquid flow in microchannel networks, are compatible with different bulk microfabrication processes and substrate materials, and require neither electrodes nor moving parts. A bubble gate consists of two microchannel sections: a liquid-filled channel and a gas channel that intercepts the liquid channel to form a T-junction. The open or closed state of a bubble gate is determined by selecting between two distinct gas pressure levels: the lower level corresponds to the "open" state while the higher level corresponds to the "closed" state. During closure, a gas bubble penetrates from the gas channel into the liquid, flanked by a column of equidistantly spaced micropillars on each side, until the flow of liquid is completely obstructed. We fabricated bubble gates using single-layer soft lithographic and bulk silicon micromachining procedures and evaluated their performance with a combination of theory and experimentation. We assessed the dynamic behaviour during more than 300 open-and-close cycles and report the operating pressure envelope for different bubble gate configurations and for the working fluids: de-ionized water, ethanol and a biological buffer. We obtained excellent agreement between the experimentally determined bubble gate operational envelope and a theoretical prediction based on static wetting behaviour. We report case studies that serve to illustrate the utility of bubble gates for liquid sampling in single and multi-layer microfluidic devices. Scalability of our strategy was demonstrated by simultaneously addressing 128 bubble gates.

  2. Computation of subsonic flow around airfoil systems with multiple separation

    NASA Technical Reports Server (NTRS)

    Jacob, K.

    1982-01-01

    A numerical method for computing the subsonic flow around multi-element airfoil systems was developed, allowing for flow separation at one or more elements. Besides multiple rear separation also sort bubbles on the upper surface and cove bubbles can approximately be taken into account. Also, compressibility effects for pure subsonic flow are approximately accounted for. After presentation the method is applied to several examples and improved in some details. Finally, the present limitations and desirable extensions are discussed.

  3. Possible high sonic velocity due to the inclusion of gas bubbles in water

    NASA Astrophysics Data System (ADS)

    Banno, T.; Mikada, H.; Goto, T.; Takekawa, J.

    2010-12-01

    If formation water becomes multi-phase by inclusion of gas bubbles, sonic velocities would be strongly influenced. In general, sonic velocities are knocked down due to low bulk moduli of the gas bubbles. However, sonic velocities may increase depending on the size of gas bubbles, when the bubbles in water or other media oscillate due to incoming sonic waves. Sonic waves are scattered by the bubbles and the superposition of the incoming and the scattered waves result in resonant-frequency-dependent behavior. The phase velocity of sonic waves propagating in fluids containing bubbles, therefore, probably depends on their frequencies. This is a typical phenomenon called “wave dispersion.” So far we have studied about the bubble impact on sonic velocity in bubbly media, such as the formation that contains gas bubbles. As a result, it is shown that the bubble resonance effect is a key to analyze the sonic phase velocity increase. Therefore to evaluate the resonance frequency of bubbles is important to solve the frequency response of sonic velocity in formations having bubbly fluids. There are several analytical solutions of the resonance frequency of bubbles in water. Takahira et al. (1994) derived a equation that gives us the resonance frequency considering bubble - bubble interactions. We have used this theory to calculate resonance frequency of bubbles at the previous work. However, the analytical solution of the Takahira’s equation is based on several assumptions. Therefore we used a numerical approach to calculate the bubble resonance effect more precisely in the present study. We used the boundary element method (BEM) to reproduce a bubble oscillation in incompressible liquid. There are several reasons to apply the BEM. Firstly, it arrows us to model arbitrarily sets and shapes of bubbles. Secondly, it is easy to use the BEM to reproduce a boundary-surface between liquid and gas. The velocity potential of liquid surrounding a bubble satisfies the Laplace equation when the liquid is supposed to be incompressible. We got the boundary integral equation from the Laplace equation and solved the boundary integral equation by the BEM. Then, we got the gradient of the velocity potential from the BEM. We used this gradient to get time derivative of the velocity potential from the Bernouii’s equation. And we used the second order Adams-Bashforth method to execute time integration of the velocity potential. We conducted this scheme iteratively to calculate a bubble oscillation. At each time step, we input a pressure change as a sinusoidal wave. As a result, we observed a bubble oscillation following the pressure frequency. We also evaluated the resonance frequency of a bubble by changing the pressure frequency. It showed a good agreement with the analytical solution described above. Our future work is to extend the calculation into plural bubbles condition. We expect that interaction between bubbles becomes strong and resonance frequency of bubbles becomes small when distance between bubbles becomes small.

  4. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation.

    PubMed

    Yap, R K L; Whittaker, M; Diao, M; Stuetz, R M; Jefferson, B; Bulmus, V; Peirson, W L; Nguyen, A V; Henderson, R K

    2014-09-15

    Dissolved air flotation (DAF), an effective treatment method for clarifying algae/cyanobacteria-laden water, is highly dependent on coagulation-flocculation. Treatment of algae can be problematic due to unpredictable coagulant demand during blooms. To eliminate the need for coagulation-flocculation, the use of commercial polymers or surfactants to alter bubble charge in DAF has shown potential, termed the PosiDAF process. When using surfactants, poor removal was obtained but good bubble adherence was observed. Conversely, when using polymers, effective cell removal was obtained, attributed to polymer bridging, but polymers did not adhere well to the bubble surface, resulting in a cationic clarified effluent that was indicative of high polymer concentrations. In order to combine the attributes of both polymers (bridging ability) and surfactants (hydrophobicity), in this study, a commercially-available cationic polymer, poly(dimethylaminoethyl methacrylate) (polyDMAEMA), was functionalised with hydrophobic pendant groups of various carbon chain lengths to improve adherence of polymer to a bubble surface. Its performance in PosiDAF was contrasted against commercially-available poly(diallyl dimethyl ammonium chloride) (polyDADMAC). All synthesised polymers used for bubble surface modification were found to produce positively charged bubbles. When applying these cationic micro-bubbles in PosiDAF, in the absence of coagulation-flocculation, cell removals in excess of 90% were obtained, reaching a maximum of 99% cell removal and thus demonstrating process viability. Of the synthesised polymers, the polymer containing the largest hydrophobic functionality resulted in highly anionic treated effluent, suggesting stronger adherence of polymers to bubble surfaces and reduced residual polymer concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Microbubble transport through a bifurcating vessel network with pulsatile flow.

    PubMed

    Valassis, Doug T; Dodde, Robert E; Esphuniyani, Brijesh; Fowlkes, J Brian; Bull, Joseph L

    2012-02-01

    Motivated by two-phase microfluidics and by the clinical applications of air embolism and a developmental gas embolotherapy technique, experimental and theoretical models of microbubble transport in pulsatile flow are presented. The one-dimensional time-dependent theoretical model is developed from an unsteady Bernoulli equation that has been modified to include viscous and unsteady effects. Results of both experiments and theory show that roll angle (the angle the plane of the bifurcating network makes with the horizontal) is an important contributor to bubble splitting ratio at each bifurcation within the bifurcating network. When compared to corresponding constant flow, pulsatile flow was shown to produce insignificant changes to the overall splitting ratio of the bubble despite the order one Womersley numbers, suggesting that bubble splitting through the vasculature could be modeled adequately with a more modest constant flow model. However, bubble lodging was affected by the flow pulsatility, and the effects of pulsatile flow were evident in the dependence of splitting ratio of bubble length. The ability of bubbles to remain lodged after reaching a steady state in the bifurcations is promising for the effectiveness of gas embolotherapy to occlude blood flow to tumors, and indicates the importance of understanding where lodging will occur in air embolism. The ability to accurately predict the bubble dynamics in unsteady flow within a bifurcating network is demonstrated and suggests the potential for bubbles in microfluidics devices to encode information in both steady and unsteady aspects of their dynamics.

  6. Assessing the Performance of a Machine Learning Algorithm in Identifying Bubbles in Dust Emission

    NASA Astrophysics Data System (ADS)

    Xu, Duo; Offner, Stella S. R.

    2017-12-01

    Stellar feedback created by radiation and winds from massive stars plays a significant role in both physical and chemical evolution of molecular clouds. This energy and momentum leaves an identifiable signature (“bubbles”) that affects the dynamics and structure of the cloud. Most bubble searches are performed “by eye,” which is usually time-consuming, subjective, and difficult to calibrate. Automatic classifications based on machine learning make it possible to perform systematic, quantifiable, and repeatable searches for bubbles. We employ a previously developed machine learning algorithm, Brut, and quantitatively evaluate its performance in identifying bubbles using synthetic dust observations. We adopt magnetohydrodynamics simulations, which model stellar winds launching within turbulent molecular clouds, as an input to generate synthetic images. We use a publicly available three-dimensional dust continuum Monte Carlo radiative transfer code, HYPERION, to generate synthetic images of bubbles in three Spitzer bands (4.5, 8, and 24 μm). We designate half of our synthetic bubbles as a training set, which we use to train Brut along with citizen-science data from the Milky Way Project (MWP). We then assess Brut’s accuracy using the remaining synthetic observations. We find that Brut’s performance after retraining increases significantly, and it is able to identify yellow bubbles, which are likely associated with B-type stars. Brut continues to perform well on previously identified high-score bubbles, and over 10% of the MWP bubbles are reclassified as high-confidence bubbles, which were previously marginal or ambiguous detections in the MWP data. We also investigate the influence of the size of the training set, dust model, evolutionary stage, and background noise on bubble identification.

  7. Self-assembly modified-mushroom nanocomposite for rapid removal of hexavalent chromium from aqueous solution with bubbling fluidized bed.

    PubMed

    Xu, Fei; Liu, Xu; Chen, Yijiao; Zhang, Ke; Xu, Heng

    2016-05-18

    A self-assembled modified Pleurotus Cornucopiae material (SMPM) combined with improved Intermittent Bubbling Fluidized Bed (IBFB) was investigated to remove the hexavalent chromium ions in aqueous solution. After the modification, the powder-like raw material gradually self-assembled together to SMPM, which had crinkly porous structure, improved the Cr-accommodation ability in a sound manner. Optimized by Taguchi method, Cr(VI) removal efficiency was up to 75.91% and 48.01% for 100 mg/L and 500 mg/L initial concentration of Cr(VI), respectively. Results indicated that the metal removal was dependent on dosage of adsorbent, particle diameter and treatment time. The experimental data obtained from the biosorption process was successfully correlated with Freundlich isotherm model. Thermodynamic study indicated the endothermic nature of the process. The results confirmed that self-assembly modified Pleurotus Cornucopiae material could be applied for the removal of heavy metal from wastewater in continuous fluidized bed process.

  8. Self-assembly modified-mushroom nanocomposite for rapid removal of hexavalent chromium from aqueous solution with bubbling fluidized bed

    PubMed Central

    Xu, Fei; Liu, Xu; Chen, Yijiao; Zhang, Ke; Xu, Heng

    2016-01-01

    A self-assembled modified Pleurotus Cornucopiae material (SMPM) combined with improved Intermittent Bubbling Fluidized Bed (IBFB) was investigated to remove the hexavalent chromium ions in aqueous solution. After the modification, the powder-like raw material gradually self-assembled together to SMPM, which had crinkly porous structure, improved the Cr-accommodation ability in a sound manner. Optimized by Taguchi method, Cr(VI) removal efficiency was up to 75.91% and 48.01% for 100 mg/L and 500 mg/L initial concentration of Cr(VI), respectively. Results indicated that the metal removal was dependent on dosage of adsorbent, particle diameter and treatment time. The experimental data obtained from the biosorption process was successfully correlated with Freundlich isotherm model. Thermodynamic study indicated the endothermic nature of the process. The results confirmed that self-assembly modified Pleurotus Cornucopiae material could be applied for the removal of heavy metal from wastewater in continuous fluidized bed process. PMID:27188258

  9. Self-assembly modified-mushroom nanocomposite for rapid removal of hexavalent chromium from aqueous solution with bubbling fluidized bed

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Liu, Xu; Chen, Yijiao; Zhang, Ke; Xu, Heng

    2016-05-01

    A self-assembled modified Pleurotus Cornucopiae material (SMPM) combined with improved Intermittent Bubbling Fluidized Bed (IBFB) was investigated to remove the hexavalent chromium ions in aqueous solution. After the modification, the powder-like raw material gradually self-assembled together to SMPM, which had crinkly porous structure, improved the Cr-accommodation ability in a sound manner. Optimized by Taguchi method, Cr(VI) removal efficiency was up to 75.91% and 48.01% for 100 mg/L and 500 mg/L initial concentration of Cr(VI), respectively. Results indicated that the metal removal was dependent on dosage of adsorbent, particle diameter and treatment time. The experimental data obtained from the biosorption process was successfully correlated with Freundlich isotherm model. Thermodynamic study indicated the endothermic nature of the process. The results confirmed that self-assembly modified Pleurotus Cornucopiae material could be applied for the removal of heavy metal from wastewater in continuous fluidized bed process.

  10. Simulation of the ultrasound-induced growth and collapse of a near-wall bubble

    NASA Astrophysics Data System (ADS)

    Boyd, Bradley; Becker, Sid

    2017-11-01

    In this study, we consider the acoustically driven growth and collapse of a cavitation bubble in a fluid medium exposed to an ultrasound field. The bubble dynamics are modelled using a compressible, inviscid, multiphase model. The numerical scheme consists of a conservative interface capturing scheme which uses the fifth-order WENO reconstruction with a maximum-principle-satisfying and positivity-preserving limiter, and the HLLC approximate Riemann flux. To model the ultrasound input, a moving boundary oscillates through a fixed grid of finite-volume cells. The growth phase of the simulation shows the rapid non-spherical growth of the near-wall bubble. Once the bubble reaches its maximum size and the collapse phase begins, the simulation shows the formation of a jet which penetrates the bubble towards the wall at the later stages of the collapse. For a bubble with an initial radius of 50 μ m and an ultrasound pressure amplitude of 200 kPa, the pressure experienced by the wall increased rapidly nearing the end of the collapse, reaching a peak pressure of 13 MPa. This model is an important development in the field as it represents the physics of acoustic cavitation in more detail than before. This work was supported by the Royal Society of New Zealand's Marsden Fund.

  11. On the dynamics of a shock-bubble interaction

    NASA Technical Reports Server (NTRS)

    Quirk, James J.; Karni, Smadar

    1994-01-01

    We present a detailed numerical study of the interaction of a weak shock wave with an isolated cylindrical gas inhomogenity. Such interactions have been studied experimentally in an attempt to elucidate the mechanisms whereby shock waves propagating through random media enhance mixing. Our study concentrates on the early phases of the interaction process which are dominated by repeated refractions of acoustic fronts at the bubble interface. Specifically, we have reproduced two of the experiments performed by Haas and Sturtevant : M(sub s) = 1.22 planar shock wave, moving through air, impinges on a cylindrical bubble which contains either helium or Refrigerant 22. These flows are modelled using the two-dimensional, compressible Euler equations for a two component fluid (air-helium or air-Refrigerant 22). Although simulations of shock wave phenomena are now fairly commonplace, they are mostly restricted to single component flows. Unfortunately, multi-component extensions of successful single component schemes often suffer from spurious oscillations which are generated at material interfaces. Here we avoid such problems by employing a novel, nonconservative shock-capturing scheme. In addition, we have utilized a sophisticated adaptive mesh refinement algorithm which enables extremely high resolution simulations to be performed relatively cheaply. Thus we have been able to reproduce numerically all the intricate mechanisms that were observed experimentally (e.g., transitions from regular to irregular refraction, cusp formation and shock wave focusing, multi-shock and Mach shock structures, jet formation, etc.), and we can now present an updated description for the dynamics of a shock-bubble interaction.

  12. Prediction of Bubble Diameter at Detachment from a Wall Orifice in Liquid Cross Flow Under Reduced and Normal Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kamotani, Y.

    2003-01-01

    Bubble formation and detachment is an integral part of the two-phase flow science. The objective of the present work is to theoretically investigate the effects of liquid cross-flow velocity, gas flow rate embodied in the momentum flux force, and orifice diameter on bubble formation in a wall-bubble injection configuration. A two-dimensional one-stage theoretical model based on a global force balance on the bubble evolving from a wall orifice in a cross liquid flow is presented in this work. In this model, relevant forces acting on the evolving bubble are expressed in terms of the bubble center of mass coordinates and solved simultaneously. Relevant forces in low gravity included the momentum flux, shear-lift, surface tension, drag and inertia forces. Under normal gravity conditions, the buoyancy force, which is dominant under such conditions, can be added to the force balance. Two detachment criteria were applicable depending on the gas to liquid momentum force ratio. For low ratios, the time when the bubble acceleration in the direction of the detachment angle is greater or equal to zero is calculated from the bubble x and y coordinates. This time is taken as the time at which all the detaching forces that are acting on the bubble are greater or equal to the attaching forces. For high gas to liquid momentum force ratios, the time at which the y coordinate less the bubble radius equals zero is calculated. The bubble diameter is evaluated at this time as the diameter at detachment from the fact that the bubble volume is simply given by the product of the gas flow rate and time elapsed. Comparison of the model s predictions was also made with predictions from a two-dimensional normal gravity model based on Kumar-Kuloor formulation and such a comparison is presented in this work.

  13. Modeling the Losses of Dissolved CO(2) from Laser-Etched Champagne Glasses.

    PubMed

    Liger-Belair, Gérard

    2016-04-21

    Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate definitely impacts champagne tasting by modifying the neuro-physicochemical mechanisms responsible for aroma release and flavor perception. On the basis of theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics, and mass transfer equations, a global model is proposed, depending on various parameters of both the wine and the glass itself, which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses. The question of champagne temperature was closely examined, and its role on the modeled losses of dissolved CO2 was corroborated by a set of experimental data.

  14. Fast selective trapping and release of picoliter droplets in a 3D microfluidic PDMS multi-trap system with bubbles.

    PubMed

    Rambach, Richard W; Biswas, Preetika; Yadav, Ashutosh; Garstecki, Piotr; Franke, Thomas

    2018-02-12

    The selective manipulation and incubation of individual picoliter drops in high-throughput droplet based microfluidic devices still remains challenging. We used a surface acoustic wave (SAW) to induce a bubble in a 3D designed multi-trap polydimethylsiloxane (PDMS) device to manipulate multiple droplets and demonstrate the selection, incubation and on-demand release of aqueous droplets from a continuous oil flow. By controlling the position of the acoustic actuation, individual droplets are addressed and selectively released from a droplet stream of 460 drops per s. A complete trapping and releasing cycle can be as short as 70 ms and has no upper limit for incubation time. We characterize the fluidic function of the hybrid device in terms of electric power, pulse duration and acoustic path.

  15. Light Scattering by Ice Crystals Containing Air Bubbles

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Panetta, R. L.; Yang, P.; Bi, L.

    2014-12-01

    The radiative effects of ice clouds are often difficult to estimate accurately, but are very important for interpretation of observations and for climate modeling. Our understanding of these effects is primarily based on scattering calculations, but due to the variability in ice habit it is computationally difficult to determine the required scattering and absorption properties, and the difficulties are only compounded by the need to include consideration of air and carbon inclusions of the sort frequently observed in collected samples. Much of the previous work on effects of inclusions in ice particles on scattering properties has been conducted with variants of geometric optics methods. We report on simulations of scattering by ice crystals with enclosed air bubbles using the pseudo-spectral time domain method (PSTD) and improved geometric optics method (IGOM). A Bouncing Ball Model (BBM) is proposed as a parametrization of air bubbles, and the results are compared with Monte Carlo radiative transfer calculations. Consistent with earlier studies, we find that air inclusions lead to a smoothing of variations in the phase function, weakening of halos, and a reduction of backscattering. We extend these studies by examining the effects of the particular arrangement of a fixed number of bubbles, as well as the effects of splitting a given number of bubbles into a greater number of smaller bubbles with the same total volume fraction. The result shows that the phase function will not change much for stochastic distributed air bubbles. It also shows that local maxima of phase functions are smoothed out for backward directions, when we break bubbles into small ones, single big bubble scatter favors more forward scattering than multi small internal scatters.

  16. Enhanced kidney stone fragmentation by short delay tandem conventional and modified lithotriptor shock waves: a numerical analysis.

    PubMed

    Tham, Leung-Mun; Lee, Heow Pueh; Lu, Chun

    2007-07-01

    We evaluated the effectiveness of modified lithotriptor shock waves using computer models. Finite element models were used to simulate the propagation of lithotriptor shock waves in human renal calculi in vivo. Kidney stones were assumed to be spherical, homogeneous, isotropic and linearly elastic, and immersed in a continuum fluid. Single and tandem shock wave pulses modified to intensify the collapse of cavitation bubbles near the stone surface to increase fragmentation efficiency and suppress the expansion of intraluminal bubbles for decreased vascular injury were analyzed. The effectiveness of the modified shock waves was assessed by comparing the states of loading in the renal calculi induced by these shock waves to those produced by conventional shock waves. Our numerical simulations revealed that modified shock waves produced marginally lower stresses in spherical renal calculi than those produced by conventional shock waves. Tandem pulses of conventional or modified shock waves produced peak stresses in the front and back halves of the renal calculi. However, the single shock wave pulses generated significant peak stresses in only the back halves of the renal calculi. Our numerical simulations suggest that for direct stress wave induced fragmentation modified shock waves should be as effective as conventional shock waves for fragmenting kidney stones. Also, with a small interval of 20 microseconds between the pulses tandem pulse lithotripsy using modified or conventional shock waves could be considerably more effective than single pulse lithotripsy for fragmenting kidney stones.

  17. Modeling of Vapor Bubble Growth Under Nucleate Boiling Conditions in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.

    1995-01-01

    A dynamic model is developed to describe the evolution of a vapor bubble growing at a nucleation site on a superheated surface under arbitrary gravity. The bubble is separated from the surface by a thin microlayer and grows due to the evaporation from the microlayer interface. The average thickness of the microlayer increases as the bubble expands along the surface if the evaporation rate is lower than some critical value. The corresponding threshold value of the surface temperature has to be associated with the burn-out crisis. Two main reasons make for bubble separation, which are the buoyancy force and a force caused by the vapor momentum that comes to the bubble with vapor molecules. The latter force is somewhat diminished if condensation takes place at the upper bubble surface in subcooled liquids. The action of the said forces is opposed by inertia of the additional mass of liquid as the bubble center rises above the surface and by inertia of liquid being expelled by the growing bubble in radial directions. An extra pressure force arises due to the liquid inflow into the microlayer with a finite velocity. The last force helps in holding the bubble close to the surface during an initial stage of bubble evolution. Two limiting regimes with distinctly different properties can be singled out, depending on which of the forces that favor bubble detachment dominates. Under conditions of moderately reduced gravity, the situation is much the same as in normal gravity, although the bubble detachment volume increases as gravity diminishes. In microgravity, the buoyancy force is negligible. Then the bubble is capable of staying near the surface for a long time, with intensive evaporation from the microlayer. It suggests a drastic change in the physical mechanism of heat removal as gravity falls below a certain sufficiently low level. Inferences of the model and conclusions pertaining to effects caused on heat transfer processes by changes in bubble hydrodynamics induced by gravity are discussed in connection with experimental evidence, both available in current and in as yet unpublished literature.

  18. Thermally activated vapor bubble nucleation: The Landau-Lifshitz-Van der Waals approach

    NASA Astrophysics Data System (ADS)

    Gallo, Mirko; Magaletti, Francesco; Casciola, Carlo Massimo

    2018-05-01

    Vapor bubbles are formed in liquids by two mechanisms: evaporation (temperature above the boiling threshold) and cavitation (pressure below the vapor pressure). The liquid resists in these metastable (overheating and tensile, respectively) states for a long time since bubble nucleation is an activated process that needs to surmount the free energy barrier separating the liquid and the vapor states. The bubble nucleation rate is difficult to assess and, typically, only for extremely small systems treated at an atomistic level of detail. In this work a powerful approach, based on a continuum diffuse interface modeling of the two-phase fluid embedded with thermal fluctuations (fluctuating hydrodynamics), is exploited to study the nucleation process in homogeneous conditions, evaluating the bubble nucleation rates and following the long-term dynamics of the metastable system, up to the bubble coalescence and expansion stages. In comparison with more classical approaches, this methodology allows us on the one hand to deal with much larger systems observed for a much longer time than possible with even the most advanced atomistic models. On the other, it extends continuum formulations to thermally activated processes, impossible to deal with in a purely determinist setting.

  19. Cavitation in ultrasound and shockwave therapy

    NASA Astrophysics Data System (ADS)

    Colonius, Tim

    2014-11-01

    Acoustic waves, especially high-intensity ultrasound and shock waves, are used for medical imaging and intra- and extra-corporeal manipulation of cells, tissue, and urinary calculi. Waves are currently used to treat kidney stone disease, plantar fasciitis, and bone nonunion, and they are being investigated as a technique to ablate cancer tumors and mediate drug delivery. In many applications, acoustic waves induce the expansion and collapse of preexisting or newly cavitating bubbles whose presence can either mediate the generation of localized stresses or lead to collateral damage, depending on how effectively they can be controlled. We describe efforts aimed at simulating the collapse of bubbles, both individually and in clusters, with the aim to characterize the induced mechanical stresses and strains. To simulate collapse of one or a few bubbles, compressible Euler and Navier-Stokes simulations of multi-component materials are performed with WENO-based shock and interface capturing schemes. Repetitive insonification generates numerous bubbles that are difficult to resolve numerically. Such clouds are also important in traditional engineering applications such as caveating hydrofoils. Models that incorporate the dynamics of an unresolved dispersed phase consisting of the bubble cloud are also developed. The results of several model problems including bubble collapse near rigid surfaces, bubble collapse near compliant surfaces and in small capillaries are analyzed. The results are processed to determine the potential for micron-sized preexisting gas bubbles to damage capillaries. The translation of the fundamental fluid dynamics into improvements in the design and clinical application of shockwave lithotripters will be discussed. NIH Grant PO1-DK043881.

  20. [Novel dianostics and therapeutics with ultrasound technologies and nanotechnologies].

    PubMed

    Suzuki, Ryo; Oda, Yusuke; Omata, Daiki; Sawaguchi, Yoshikazu; Negishi, Yoichi; Maruyama, Kazuo

    2013-01-01

    Ultrasound is a good tool for theranostics due to have multi-potency both of diagnostics with sonography and therapeutics with high intensity focused ultrasound (HIFU). In addition, microbubbles and nanobubbles are utilized as not only contrast imaging agent but also enhancer of drug and gene delivery by combination of ultrasound. Recently, we developed novel liposomal nanobubbles (Bubble liposomes) which were containing perfluoropropane. Bubble liposomes induced jet stream by low intensity ultrasound exposure and resulted in enhancing permeability of cell membrane. This phenomenon has been utilized as driving force for drug and gene delivery. On the other hand, the combination of Bubble liposomes and high intensity ultrasound induces strong jet stream and increase temperature. This condition can directly damage to tumor cells, we are applying this for cancer therapy. Therefore, their combination has potency for various cancer therapies such as gene therapy, immunotherapy and hyperthermia. In this review, we discuss about cancer therapy by the combination of Bubble liposomes and ultrasound.

  1. The XMM-Newton View of Wolf-Rayet Bubbles

    NASA Astrophysics Data System (ADS)

    Guerrero, M.; Toala, J.

    2017-10-01

    The powerful stellar winds of Wolf-Rayet (WR) stars blow large bubble into the circumstellar material ejected in previous phases of stellar evolution. The shock of those stellar winds produces X-ray-emitting hot plasmas which tells us about the diffusion of processed material onto the interstellar medium, about processes of heat conduction and turbulent mixing at the interface, about the late stages of stellar evolution, and about the shaping of the circumstellar environment, just before supernova explosions. The unique sensitivity of XMM-Newton has been key for the detection, mapping and spectral analysis of the X-ray emission from the hot bubbles around WR stars. These observations underscore the importance of the structure of the interstellar medium around massive stars, but they have also unveiled unknown phenomena, such as blowouts of hot gas into the interstellar medium or spatially-resolved spectral properties of the hot gas, which disclose inhomogeneous chemical abundances and physical properties across these bubbles.

  2. Investigation of laser induced breakdown in liquid nitromethane using nanosecond shadowgraphy

    NASA Astrophysics Data System (ADS)

    Guo, Wencan; Zheng, Xianxu; Yu, Guoyang; Zhao, Jun; Zeng, Yangyang; Liu, Cangli

    2016-09-01

    A nanosecond time-resolved shadowgraphy is performed to observe a laser-induced breakdown in nitromethane. The digital delays are introduced between a pump beam and an illumination light to achieve a measuring range from 40 ns to 100 ms, which enable us to study the shock wave propagation, bubble dynamics, and other process of the laser-induced breakdown. Compared with distilled water, there are two obvious differences observed in nitromethane: (1) the production of a non-evaporative gas at the final stage, and (2) an absence of the secondary shock wave after the first collapse of the bubble. We also calculated the bubble energy in nitromethane and distilled water under a different incident energy. The results indicate that the bubble energy in nitromethane is more than twice as large as that in water. It is suggested that chemical reactions contribute to the releasing of energy.

  3. Prediction of thickness distribution of thermoformed multilayer ABS/PMMA sheets

    NASA Astrophysics Data System (ADS)

    Jobey, Caroline; Allanic, Nadine; Mousseau, Pierre; Deterre, Rémi

    2016-10-01

    In thermoforming, one of the main difficulties is to avoid the presence of weak thickness in the most deformed zones. After the heating stage, a bubbling step, leading to a first rate of deformation, is often used. In this work, we assess how the initial bubbling deformation can be controlled in order to obtain a homogeneous final thickness of the product. Experiments are performed on a multilayer sheet product. An industrial mould, corresponding to a casing of a non-licensed car, was adapted on a lab thermoformer. After presenting experimental thermal profiles of the multilayer sheets measured during the heating stage, a first geometric model is investigated to predict the thickness distribution. Numerical results are compared with measurements.

  4. The effects of total dissolved gas on chum salmon fry survival, growth, gas bubble disease, and seawater tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Linley, Timothy J.; Cullinan, Valerie I.

    2013-02-01

    Chum salmon Oncorhynchus keta alevin developing in gravel habitats downstream of Bonneville Dam on the Columbia River are exposed to elevated levels of total dissolved gas (TDG) when water is spilled at the dam to move migrating salmon smolts downstream to the Pacific Ocean. Current water quality criteria for the management of dissolved gas in dam tailwaters were developed primarily to protect salmonid smolts and are assumed to be protective of alevin if adequate depth compensation is provided. We studied whether chum salmon alevin exposed to six levels of dissolved gas ranging from 100% to 130% TDG at three developmentmore » periods between hatch and emergence (hereafter early, middle, and late stage) suffered differential mortality, growth, gas bubble disease, or seawater tolerance. Each life stage was exposed for 50 d (early stage), 29 d (middle stage), or 16 d (late stage) beginning at 13, 34, and 37 d post-hatch, respectively, through 50% emergence. The mortality for all stages from exposure to emergence was estimated to be 8% (95% confidence interval (CI) of 4% to 12%) when dissolved gas levels were between 100% and 117% TDG. Mortality significantly increased as dissolved gas levels rose above 117% TDG,; with the lethal concentration that produced 50% mortality (LC50 ) was estimated to be 128.7% TDG (95% CI of 127.2% to 130.2% TDG) in the early and middle stages. By contrast, there was no evidence that dissolved gas level significantly affected growth in any life stage except that the mean wet weight at emergence of early stage fish exposed to 130% TDG was significantly less than the modeled growth of unexposed fish. The proportion of fish afflicted with gas bubble disease increased with increasing gas concentrations and occurred most commonly in the nares and gastrointestinal tract. Early stage fish exhibited higher ratios of filament to lamellar gill chloride cells than late stage fish, and these ratios increased and decreased for early and late stage fish, respectively, as gas levels increased; however, there were no significant differences in mortality between life stages after 96 h in seawater. The study results suggest that current water quality guidelines for the management of dissolved gas appear to offer a conservative level of protection to chum salmon alevin incubating in gravel habitat downstream of Bonneville Dam.« less

  5. Enhancement of ultrasonic disintegration of sewage sludge by aeration.

    PubMed

    Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong

    2016-04-01

    Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge. Copyright © 2015. Published by Elsevier B.V.

  6. A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Hosangadi, A.; Ahuja, V.

    2005-01-01

    A new unsteady, cavitation model is presented wherein the phase change process (bubble growth/collapse) is coupled to the acoustic field in a cryogenic fluid. It predicts the number density and radius of bubbles in vapor clouds by tracking both the aggregate surface area and volume fraction of the cloud. Hence, formulations for the dynamics of individual bubbles (e.g. Rayleigh-Plesset equation) may be integrated within the macroscopic context of a dense vapor cloud i.e. a cloud that occupies a significant fraction of available volume and contains numerous bubbles. This formulation has been implemented within the CRUNCH CFD, which has a compressible real fluid formulation, a multi-element, unstructured grid framework, and has been validated extensively for liquid rocket turbopump inducers. Detailed unsteady simulations of a cavitating ogive in liquid nitrogen are presented where time-averaged mean cavity pressure and temperature depressions due to cavitation are compared with experimental data. The model also provides the spatial and temporal history of the bubble size distribution in the vapor clouds that are shed, an important physical parameter that is difficult to measure experimentally and is a significant advancement in the modeling of dense cloud cavitation.

  7. Study on bubble column humidification and dehumidification system for coal mine wastewater treatment.

    PubMed

    Gao, Penghui; Zhang, Meng; Du, Yuji; Cheng, Bo; Zhang, Donghai

    2018-04-01

    Water is important resource for human survival and development. Coal mine wastewater (CMW) is a byproduct of the process of coal mining, which is about 7.0 × 10 10 m 3 in China in 2016. Considering coal mine wastewater includes different ingredients, a new bubble column humidification and dehumidification system is proposed for CMW treatment. The system is mainly composed of a bubble column humidification and dehumidification unit, solar collector, fan and water tank, in which air is used as a circulating medium. The system can avoid water treatment component blocking for reverse osmosis (RO) and multi effect distillation (MED) dealing with CMW, and produce water greenly. By analysis of heat and mass transfer, the effects of solar radiation, air bubble velocity and mine water temperature on water treatment production characteristics are studied. Compared with other methods, thermal energy consumption (TEC) of bubble column humidification and dehumidification (BCHD) is moderate, which is about 700 kJ/kg (powered by solar energy). The results would provide a new method for CMW treatment and insights into the efficient coal wastewater treatment, besides, it helps to identify the parameters for the technology development in mine water treatment.

  8. Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Jin, K.; Kumar, P.; Vanka, S. P.; Thomas, B. G.

    2016-09-01

    The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong ["Deformation and oscillations of a single gas bubble rising in a narrow vertical tube," Int. J. Therm. Sci. 47, 221-228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.

  9. Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, K.; Kumar, P.; Vanka, S. P., E-mail: spvanka@illinois.edu

    2016-09-15

    The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong [“Deformation and oscillations of a single gasmore » bubble rising in a narrow vertical tube,” Int. J. Therm. Sci. 47, 221–228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.« less

  10. Elutriation characteristics of fine particles from bubbling fluidized bed incineration for sludge cake treatment.

    PubMed

    Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Hung, Chao-Yang; Wu, Chao-Hsiung

    2005-01-01

    In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.

  11. Bubble pump: scalable strategy for in-plane liquid routing.

    PubMed

    Oskooei, Ali; Günther, Axel

    2015-07-07

    We present an on-chip liquid routing technique intended for application in well-based microfluidic systems that require long-term active pumping at low to medium flowrates. Our technique requires only one fluidic feature layer, one pneumatic control line and does not rely on flexible membranes and mechanical or moving parts. The presented bubble pump is therefore compatible with both elastomeric and rigid substrate materials and the associated scalable manufacturing processes. Directed liquid flow was achieved in a microchannel by an in-series configuration of two previously described "bubble gates", i.e., by gas-bubble enabled miniature gate valves. Only one time-dependent pressure signal is required and initiates at the upstream (active) bubble gate a reciprocating bubble motion. Applied at the downstream (passive) gate a time-constant gas pressure level is applied. In its rest state, the passive gate remains closed and only temporarily opens while the liquid pressure rises due to the active gate's reciprocating bubble motion. We have designed, fabricated and consistently operated our bubble pump with a variety of working liquids for >72 hours. Flow rates of 0-5.5 μl min(-1), were obtained and depended on the selected geometric dimensions, working fluids and actuation frequencies. The maximum operational pressure was 2.9 kPa-9.1 kPa and depended on the interfacial tension of the working fluids. Attainable flow rates compared favorably with those of available micropumps. We achieved flow rate enhancements of 30-100% by operating two bubble pumps in tandem and demonstrated scalability of the concept in a multi-well format with 12 individually and uniformly perfused microchannels (variation in flow rate <7%). We envision the demonstrated concept to allow for the consistent on-chip delivery of a wide range of different liquids that may even include highly reactive or moisture sensitive solutions. The presented bubble pump may provide active flow control for analytical and point-of-care diagnostic devices, as well as for microfluidic cells culture and organ-on-chip platforms.

  12. -> Air entrainment and bubble statistics in three-dimensional breaking waves

    NASA Astrophysics Data System (ADS)

    Deike, L.; Popinet, S.; Melville, W. K.

    2016-02-01

    Wave breaking in the ocean is of fundamental importance for quantifying wave dissipation and air-sea interaction, including gas and momentum exchange, and for improving air-sea flux parametrizations for weather and climate models. Here we investigate air entrainment and bubble statistics in three-dimensional breaking waves through direct numerical simulations of the two-phase air-water flow using the Open Source solver Gerris. As in previous 2D simulations, the dissipation due to breaking is found to be in good agreement with previous experimental observations and inertial-scaling arguments. For radii larger than the Hinze scale, the bubble size distribution is found to follow a power law of the radius, r-10/3 and to scale linearly with the time dependent turbulent dissipation rate during the active breaking stage. The time-averaged bubble size distribution is found to follow the same power law of the radius and to scale linearly with the wave dissipation rate per unit length of breaking crest. We propose a phenomenological turbulent bubble break-up model that describes the numerical results and existing experimental results.

  13. Rod-shaped cavitation bubble structure in ultrasonic field.

    PubMed

    Bai, Lixin; Wu, Pengfei; Liu, Huiyu; Yan, Jiuchun; Su, Chang; Li, Chao

    2018-06-01

    Rod-shaped cavitation bubble structure in thin liquid layers in ultrasonic field is investigated experimentally. It is found that cavitation structure successively experiences several stages with the change of the thickness of the thin liquid layer. Rod-shaped structure is a stable structure of the boundary between the cavitation cloud region and the non-cavitation liquid region, which can be formed in two different ways. Cavitation bubbles in a thin liquid layer have a distribution in the thickness direction. The rod-shaped structures tend to crosslink with each other to form stable Y-branch structures. The angle of the Y-branch structure is Gauss distribution with mathematical expectation μ = 119.93. A special rod-shaped cavitation structure with source is also investigated in detail. Due to the pressure gradient in the normal direction, the primary Bjerknes force causes the bubbles in the rod-shaped structure on both sides to converge to the axis. The secondary Bjerknes forces between the bubbles also make the cluster converge, so the large bubbles which are attached to the radiating surface tend to align themselves along the central line. According to the formula deduced in this paper, the variation of curvature of curved rod-shaped structure is qualitatively analyzed. The Y-branch structure of cavitation cloud and Plateau boundary of soap bubbles are compared. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air-bubbles clustered near the wall

    NASA Astrophysics Data System (ADS)

    Lakehal, D.; Métrailler, D.; Reboux, S.

    2017-06-01

    This paper presents Direct Numerical Simulation (DNS) results of a turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air bubbles clustered near the wall (maximum void fraction of α = 8% at y+ ˜ 20). The bubbles were fully resolved using the level set approach built within the CFD/CMFD code TransAT. The fluid properties (air and water) were kept real, including density, viscosity, and surface tension coefficient. The aim of this work is to understand the effects of the bubbles on near-wall turbulence, paving the way towards convective wall-boiling flow studies. The interactions between the gas bubbles and the water stream were studied through an in-depth analysis of the turbulence statistics. The near-wall flow is overall affected by the bubbles, which act like roughness elements during the early phase, prior to their departure from the wall. The average profiles are clearly altered by the bubbles dynamics near the wall, which somewhat contrasts with the findings from similar studies [J. Lu and G. Tryggvason, "Dynamics of nearly spherical bubbles in a turbulent channel upflow," J. Fluid Mech. 732, 166 (2013)], most probably because the bubbles were introduced uniformly in the flow and not concentrated at the wall. The shape of the bubbles measured as the apparent to initial diameter ratio is found to change by a factor of at least two, in particular at the later stages when the bubbles burst out from the boundary layer. The clustering of the bubbles seems to be primarily localized in the zone populated by high-speed streaks and independent of their size. More importantly, the bubbly flow seems to differ from the single-phase flow in terms of turbulent stress distribution and energy exchange, in which all the stress components seem to be increased in the region very close to the wall, by up to 40%. The decay in the energy spectra near the wall was found to be significantly slower for the bubbly flow than for a single-phase flow, which confirms that the bubbles increase the energy at smaller scales. The coherent structures in the boundary layer are broken by the bubbles, which disrupts the formation of long structures, reducing the streamwise integral length scale.

  15. Dynamics of degassing at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Vergniolle, Sylvie; Jaupart, Claude

    1990-03-01

    At Kilauea volcano, Hawaii, the recent long-lived eruptions of Mauna Ulu and Pu'u O'o have occurred in two major stages, defining a characteristic eruptive pattern. The first stage consists of cyclic changes of activity between episodes of "fire fountaining" and periods of quiescence or effusion of vesicular lava. The second stage consists only of continuous effusion of lava. We suggest that these features reflect the dynamics of magma degassing in a chamber which empties into a narrow conduit. In the volcano chamber, gas bubbles rise through magma and accumulate at the roof in a foam layer. The foam flows toward the conduit, and its shape is determined by a dynamic balance between the input of bubbles from below and the output into the conduit. The foam thickness is proportional to (μlQ/ɛ2 ρl g)1/4, where μ l and ρl are the viscosity and density of magma, ɛ is the gas volume fraction in the foam, g is the acceleration of gravity, and Q is the gas flux. The bubbles in the foam deform under the action of buoyancy, and the maximum permissible foam thickness is hc = 2σ/ɛρlgR, where σ is the coefficient of surface tension and R is the original bubble radius. If this critical thickness is reached, the foam collapses into a large gas pocket which erupts into the conduit. Foam accumulation then resumes, and a new cycle begins. The attainment of the foam collapse threshold requires a gas flux in excess of a critical value which depends on viscosity, surface tension, and bubble size. Hence two different eruption regimes are predicted: (1) alternating regimes of foam buildup and collapse leading to the periodic eruption of large gas volumes and (2) steady foam flow at the roof leading to continuous bubbly flow in the conduit. The essential result is that the continuous process of degassing can lead to discontinuous eruptive behavior. Data on eruption rates and repose times between fountaining phases from the 1969 Mauna UIu and the 1983-1986 Pu'u O'o eruptions yield constraints on three key variables. The area of the chamber roof must be a few tens of square kilometers, with a minimum value of about 8 km2. Magma reservoirs of similar dimensions are imaged by seismic attenuation tomography below the east rift zone. Close to the roof, the gas volume fraction is a few percent, and the gas bubbles have diameters lying between 0.1 and 0.6 mm. These estimates are close to the predictions of models for bubble nucleation and growth in basaltic melts, as well as to the observations on deep submarine basalts. The transition between cyclic and continuous activity occurs when the mass flux of gas becomes lower than a critical value of the order of 103 kg/s. In this model, changes of eruptive regime reflect changes in the amount and size of bubbles which reach the chamber roof.

  16. Assessment of the Effects of Plasma Bubbles on GAIM-GM

    DTIC Science & Technology

    2011-09-01

    m / s , 230 m / s was chosen as a realistic upper bound that fit well into the modified IFM grid resolution. The sun...to a second condition where the bubbles would form at 2000 LT and then allowed to super-rotate at 230 m / s , or 7.5 degrees/hr, depicted in Figure 7...moving east at 230 m / s . Units are in TEC electrons per square meter. ( a ) 00UT (b) 01UT (c) 02UT (d) 03 UT (e) 04UT (f) 05UT 1 1 2 1

  17. ON A CORONAL BLOWOUT JET: THE FIRST OBSERVATION OF A SIMULTANEOUSLY PRODUCED BUBBLE-LIKE CME AND A JET-LIKE CME IN A SOLAR EVENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Yuandeng; Liu Yu; Su Jiangtao

    2012-02-01

    The coronal blowout jet is a peculiar category among various jet phenomena, in which the sheared base arch, often carrying a small filament, experiences a miniature version of blowout eruption that produces large-scale coronal mass ejection (CME). In this paper, we report such a coronal blowout jet with high-resolution multi-wavelength and multi-angle observations taken from Solar Dynamics Observatory, Solar Terrestrial Relations Observatory, and Big Bear Solar Observatory. For the first time, we find that simultaneous bubble-like and jet-like CMEs were dynamically related to the blowout jet that showed cool and hot components next to each other. Our observational results indicatemore » that (1) the cool component resulted from the eruption of the filament contained within the jet's base arch, and it further caused the bubble-like CME; (2) the jet-like CME was associated with the hot component, which was the outward moving heated plasma generated by the reconnection of the base arch and its ambient open field lines. On the other hand, bifurcation of the jet's cool component was also observed, which resulted from the uncoupling of the erupting filament's two legs that were highly twisted at the very beginning. Based on these results, we propose a model to interpret the coronal blowout jet, in which the external reconnection not only produces the jet-like CME, but also leads to the rising of the filament. Subsequently, internal reconnection starts underneath the rising filament and thereby causes the bubble-like CME.« less

  18. Equatorial Plasma Bubbles: Effect of Thermospheric Winds Modulated by DE3 Tidal Waves

    NASA Astrophysics Data System (ADS)

    Sidorova, L. N.; Filippov, S. V.

    2018-03-01

    A hypothesis about the effect of the tropospheric source on the longitudinal distributions of the equatorial plasma bubbles observed in the topside ionosphere was proposed earlier. It was supposed that this influence is transferred mainly by the thermospheric winds modulated by the DE3 tropospheric tidal waves. This conclusion was based on the discovered high degree correlation ( R ≅ 0.79) between the variations of the longitudinal distribution of the plasma bubbles and the neutral atmospheric density. In this work, the hypothesis of the effect of the thermospheric tidal waves on the plasma bubbles at the stage of their generation is subjected to further verification. With this purpose, the longitudinal distributions of the frequency of the plasma bubble observations at the different ionospheric altitudes ( 600 km, ROCSAT-1; 1100 km, ISS-b) are analyzed; their principal similarity is revealed. Comparative analysis of these distributions with the longitudinal profile of the deviations of the zonal thermospheric wind ( 400 km, CHAMP) modulated by the DE3 tidal wave is carried out; their considerable correlation ( R ≅ 0.69) is revealed. We conclude that the longitudinal variations of the zonal wind associated with DE3 tidal waves can effect the longitudinal variations in the appearance frequency of the initial "seeding" perturbations, which further evolve into the plasma bubbles.

  19. Surface activity of lipid extract surfactant in relation to film area compression and collapse.

    PubMed

    Schürch, S; Schürch, D; Curstedt, T; Robertson, B

    1994-08-01

    The physical properties of modified porcine surfactant (Curosurf), isolated from minced lungs by extraction with chloroform-methanol and further purified by liquid-gel chromatography, were investigated with the captive bubble technique. Bubble size, and thus the surface tension of an insoluble film at the bubble surface, is altered by changing the pressure within the closed bubble chamber. The film surface tension and area are determined from the shape (height and diameter) of the bubble. Adsorption of fresh Curosurf is characterized by stepwise decreases in surface tension, which can easily be observed by sudden quick movements of the bubble apex. These "adsorption clicks" imply a cooperative movement of large collective units of molecules, approximately 10(14) (corresponding to approximately 120 ng of phospholipid) or approximately 10(18) molecules/m2, into the interface during adsorption. Films formed in this manner are already highly enriched in dipalmitoyl phosphatidylcholine, as seen by the extremely low compressibility, close to that of dipalmitoyl phosphatidylcholine. Near-zero minimum tensions are obtained, even at phospholipid concentrations as low as 50 micrograms/ml. During dynamic cycling (20-50 cycles/min), low minimum surface tensions, good film stability, low compressibility, and maximum surface tensions between 30 and 40 mN/m are possible only if the films are not overcompressed near zero surface tension; i.e., the overall film area compression should not substantially exceed 30%.

  20. Carbonate Mineral Assemblages as Inclusions in Yakutian Diamonds: TEM Verifications

    NASA Astrophysics Data System (ADS)

    Logvinova, A. M.; Wirth, R.; Sobolev, N. V.; Taylor, L. A.

    2014-12-01

    Carbonate mineral inclusions are quite rare in diamonds from the upper mantle, but are evidence for a carbonate abundance in the mantle. It is believed that such carbonatitic inclusions originated from high-density fluids (HDFs) that were enclosed in diamond during its growth. Using TEM and EPMA, several kinds of carbonate inclusions have been identified in Yakutian diamonds : aragonite, dolomite, magnesite, Ba-, Sr-, and Fe-rich carbonates. Most of them are represented by multi-phase inclusions of various chemically distinct carbonates, rich in Ca, Mg, and K and associated with minor amounts of silicate, oxide, saline, and volatile phases. Volatiles, leaving some porosity, played a significant role in the diamond growth. A single crystal of aragonite (60μm) is herein reported for the first time. This inclusion is located in the center of a diamond from the Komsomolskaya pipe. Careful CL imaging reveals the total absence of cracks around the aragonite inclusion - i.e., closed system. This inclusion has been identified by X-ray diffraction and microprobe analysis. At temperatures above 1000 0C, aragonite is only stable at high pressures of 5-6 GPa. Inside this aragonite, we observed nanocrystalline inclusions of titanite, Ni-rich sulfide, magnetite, water-bearing Mg-silicate, and fluid bubbles. Dolomite is common in carbonate multi-phase inclusions in diamonds from the Internatsionalnaya, Yubileinaya, and Udachnaya kimberlite pipes. Alluvial diamonds of the northeastern Siberian Platform are divided into two groups based on the composition of HDFs: 1) Mg-rich multi-phase inclusions (60% magnesite + dolomite + Fe-spinel + Ti-silicate + fluid bubbles); and 2) Ca-rich multi-phase inclusions (Ca,Ba-, Ca,Sr-, Ca,Fe-carbonates + Ti-silicate + Ba-apatite + fluid bubbles). High-density fluids also contain K. Volatiles in the fluid bubbles are represented by water, Cl, F, S, CO2, CH4, and heavy hydrocarbons. Origin of the second group of HDFs may be related to the non-silicate carbonatitic melt. We consider the primary hydrous, Сa-rich and Mg-poor carbonate melts as having formed in subducted oceanic crust. Variations of carbonate-inclusion compositions among diamonds indicate the variability in the source media during the formation of diamond and may be the result of metasomatic interaction with host rocks.

  1. Exploiting Radiation Damage to Map Proteins in Nucleoprotein Complexes: The Internal Structure of Bacteriophage T7

    PubMed Central

    Cheng, Naiqian; Wu, Weimin; Watts, Norman R.; Steven, Alasdair C.

    2014-01-01

    In the final stage of radiation damage in cryo-electron microscopy of proteins, bubbles of hydrogen gas are generated. Proteins embedded in DNA bubble sooner than free-standing proteins and DNA does not bubble under the same conditions. These properties make it possible to distinguish protein from DNA. Here we explored the scope of this technique (“bubblegram imaging”) by applying it to bacteriophage T7, viewed as a partially defined model system. T7 has a thin-walled icosahedral capsid, 60 nm in diameter, with a barrel-shaped protein core under one of its twelve vertices (the portal vertex). The core is densely wrapped with DNA but details of their interaction and how their injection into a host bacterium is coordinated are lacking. With short (10 sec) intervals between exposures of 17 electrons/Å2 each, bubbling starts in the third exposure, with 1 – 4 bubbles nucleating in the core: in subsequent exposures, these bubbles grow and merge. A 3D reconstruction from fifth-exposure images depicts a bipartite cylindrical gas cloud in the core. In its portal-proximal half, the axial region is gaseous whereas in the portal-distal half, it is occupied by a 3 nm-wide dense rod. We propose that they respectively represent core protein and an end of the packaged genome, poised for injection into a host cell. Single bubbles at other sites may represent residual scaffolding protein. Thus, bubbling depends on dose rate, protein amount, and tightness of the DNA seal. PMID:24345345

  2. Multi-fluid CFD analysis in Process Engineering

    NASA Astrophysics Data System (ADS)

    Hjertager, B. H.

    2017-12-01

    An overview of modelling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Particular emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for some gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columns and stirred tanks.

  3. Experimental evidence of a bubble-merger regime for the Rayleigh-Taylor Instability at the ablation front

    NASA Astrophysics Data System (ADS)

    Casner, A.; Liberatore, S.; Masse, L.; Martinez, D.; Haan, S. W.; Kane, J.; Moore, A. S.; Seugling, R.; Farrell, M.; Giraldez, E.; Nikroo, A.; Smalyuk, V. A.; Remington, B. A.

    2016-05-01

    Under the Discovery Science program, the longer pulses and higher laser energies provided by the National Ignition Facility (NIF) have been harnessed to study, first time in indirect-drive, the highly nonlinear stage of the Rayleigh-Taylor Instability (RTI) at the ablation front. A planar plastic package with pre-imposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled gold radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μm thick foil, a factor 3x larger than previously achieved on other laser facilities. As a consequence, we have measured the ablative RTI in transition from the weakly nonlinear stage up to the deep nonlinear stage for various initial conditions. A bubble merger regime has been observed and the ablative stabilization strength varied by changing the plastic dopant from iodine to germanium.

  4. Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles

    NASA Astrophysics Data System (ADS)

    Lou, Wentao; Zhu, Miaoyong

    2013-06-01

    A computation fluid dynamics-population balance model (CFD-PBM) coupled model has been proposed to investigate the bubbly plume flow and inclusion behavior including growth, size distribution, and removal in gas-stirred ladles, and some new and important phenomena and mechanisms were presented. For the bubbly plume flow, a modified k- ɛ model with extra source terms to account for the bubble-induced turbulence was adopted to model the turbulence, and the bubble turbulent dispersion force was taken into account to predict gas volume fraction distribution in the turbulent gas-stirred system. For inclusion behavior, the phenomena of inclusions turbulent random motion, bubbles wake, and slag eye forming on the molten steel surface were considered. In addition, the multiple mechanisms both that promote inclusion growth due to inclusion-inclusion collision caused by turbulent random motion, shear rate in turbulent eddy, and difference inclusion Stokes velocities, and the mechanisms that promote inclusion removal due to bubble-inclusion turbulence random collision, bubble-inclusion turbulent shear collision, bubble-inclusion buoyancy collision, inclusion own floatation near slag-metal interface, bubble wake capture, and wall adhesion were investigated. The importance of different mechanisms and total inclusion removal ratio under different conditions, and the distribution of inclusion number densities in ladle, were discussed and clarified. The results show that at a low gas flow rate, the inclusion growth is mainly attributed to both turbulent shear collision and Stokes collision, which is notably affected by the Stokes collision efficiency, and the inclusion removal is mainly attributed to the bubble-inclusion buoyancy collision and inclusion own floatation near slag-metal interface. At a higher gas flow rate, the inclusions appear as turbulence random motion in bubbly plume zone, and both the inclusion-inclusion and inclusion-bubble turbulent random collisions become important for inclusion growth and removal. With the increase of the gas flow rate, the total removal ratio increases, but when the gas flow rate exceeds 200 NL/min in 150-ton ladle, the total removal ration almost does not change. For the larger size inclusions, the number density in bubbly plume zone is less than that in the sidewall recirculation zones, but for the small size inclusions, the distribution of number density shows the opposite trend.

  5. Modeling of sonochemistry in water in the presence of dissolved carbon dioxide.

    PubMed

    Authier, Olivier; Ouhabaz, Hind; Bedogni, Stefano

    2018-07-01

    CO 2 capture and utilization (CCU) is a process that captures CO 2 emissions from sources such as fossil fuel power plants and reuses them so that they will not enter the atmosphere. Among the various ways of recycling CO 2 , reduction reactions are extensively studied at lab-scale. However, CO 2 reduction by standard methods is difficult. Sonochemistry may be used in CO 2 gas mixtures bubbled through water subjected to ultrasound waves. Indeed, the sonochemical reduction of CO 2 in water has been already investigated by some authors, showing that fuel species (CO and H 2 ) are obtained in the final products. The aim of this work is to model, for a single bubble, the close coupling of the mechanisms of bubble dynamics with the kinetics of gas phase reactions in the bubble that can lead to CO 2 reduction. An estimation of time-scales is used to define the controlling steps and consequently to solve a reduced model. The calculation of the concentration of free radicals and gases formed in the bubble is undertaken over many cycles to look at the effects of ultrasound frequency, pressure amplitude, initial bubble radius and bubble composition in CO 2 . The strong effect of bubble composition on the CO 2 reduction rate is confirmed in accordance with experimental data from the literature. When the initial fraction of CO 2 in the bubble is low, bubble growth and collapse are slightly modified with respect to simulation without CO 2 , and chemical reactions leading to CO 2 reduction are promoted. However, the peak collapse temperature depends on the thermal properties of the CO 2 and greatly decreases as the CO 2 increases in the bubble. The model shows that initial bubble radius, ultrasound frequency and pressure amplitude play a critical role in CO 2 reduction. Hence, in the case of a bubble with an initial radius of around 5 μm, CO 2 reduction appears to be more favorable at a frequency around 300 kHz than at a low frequency of around 20 kHz. Finally, the industrial application of ultrasound to CO 2 reduction in water would be largely dependent on sonochemical efficiency. Under the conditions tested, this process does not seem to be sufficiently efficient. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A theory for protein dynamics: Global anisotropy and a normal mode approach to local complexity

    NASA Astrophysics Data System (ADS)

    Copperman, Jeremy; Romano, Pablo; Guenza, Marina

    2014-03-01

    We propose a novel Langevin equation description for the dynamics of biological macromolecules by projecting the solvent and all atomic degrees of freedom onto a set of coarse-grained sites at the single residue level. We utilize a multi-scale approach where molecular dynamic simulations are performed to obtain equilibrium structural correlations input to a modified Rouse-Zimm description which can be solved analytically. The normal mode solution provides a minimal basis set to account for important properties of biological polymers such as the anisotropic global structure, and internal motion on a complex free-energy surface. This multi-scale modeling method predicts the dynamics of both global rotational diffusion and constrained internal motion from the picosecond to the nanosecond regime, and is quantitative when compared to both simulation trajectory and NMR relaxation times. Utilizing non-equilibrium sampling techniques and an explicit treatment of the free-energy barriers in the mode coordinates, the model is extended to include biologically important fluctuations in the microsecond regime, such as bubble and fork formation in nucleic acids, and protein domain motion. This work supported by the NSF under the Graduate STEM Fellows in K-12 Education (GK-12) program, grant DGE-0742540 and NSF grant DMR-0804145, computational support from XSEDE and ACISS.

  7. Reduction of Bubble Cavitation by Modifying the Diffraction Wave from a Lithotripter Aperture

    PubMed Central

    2012-01-01

    Abstract Purpose A new method was devised to suppress the bubble cavitation in the lithotripter focal zone to reduce the propensity of shockwave-induced renal injury. Materials and Methods An edge extender was designed and fabricated to fit on the outside of the ellipsoidal reflector of an electrohydraulic lithotripter to disturb the generation of diffraction wave at the aperture, but with little effect on the acoustic field inside the reflector. Results Although the peak negative pressures at the lithotripter focus using the edge extender at 20 kV were similar to that of the original configuration (-11.1±0.9 vs −10.6±0.7 MPa), the duration of the tensile wave was shortened significantly (3.2±0.54 vs 5.83±0.56 μs, P<0.01). There is no difference, however, in both the amplitude and duration of the compressive shockwaves between these two configurations as well as the −6 dB beam width in the focal plane. The significant suppression effect of bubble cavitation was confirmed by the measured bubble collapse time using passive cavitation detection. At the lithotripter focus, while only about 30 shocks were needed to rupture a blood vessel phantom using the original HM-3 reflector at 20 kV, no damage could be produced after 300 shocks using the edge extender. Meanwhile, the original HM-3 lithotripter at 20 kV can achieve a stone comminution efficiency of 50.4±2.0% on plaster-of-Paris stone phantom after 200 shocks, which is comparable to that of using the edge extender (46.8±4.1%, P=0.005). Conclusions Modifying the diffraction wave at the lithotripter aperture can suppress the shockwave-induced bubble cavitation with significant reduced damage potential on the vessel phantom but satisfactory stone comminution ability. PMID:22332839

  8. Helium-filled soap bubbles tracing fidelity in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Faleiros, David Engler; Tuinstra, Marthijn; Sciacchitano, Andrea; Scarano, Fulvio

    2018-03-01

    The use of helium-filled soap bubbles (HFSB) as flow tracers for particle image velocimetry (PIV) and particle tracking velocimetry (PTV) to measure the properties of turbulent boundary layers is investigated in the velocity range from 30 to 50 m/s. The experiments correspond to momentum thickness-based Reynolds numbers of 3300 and 5100. A single bubble generator delivers nearly neutrally buoyant HFSB to seed the air flow developing over the flat plate. The HFSB motion analysis is performed by PTV using single-frame multi-exposure recordings. The measurements yield the local velocity and turbulence statistics. Planar two-component-PIV measurements with micron-sized droplets (DEHS) conducted under the same conditions provide reference data for the quantities of interest. In addition, the behavior of air-filled soap bubbles is studied where the effect of non-neutral buoyancy is more pronounced. The mean velocity profiles as well as the turbulent stresses obtained with HFSB are in good agreement with the flow statistics obtained with DEHS particles. The study illustrates that HFSB tracers can be used to determine the mean velocity and the turbulent fluctuations of turbulent boundary layers above a distance of approximately two bubble diameters from the wall. This work broadens the current range of application of HFSB from external aerodynamics of large-scale-PIV experiments towards wall-bounded turbulence.

  9. In vivo bubble nucleation probability in sheep brain tissue.

    PubMed

    Gateau, J; Aubry, J-F; Chauvet, D; Boch, A-L; Fink, M; Tanter, M

    2011-11-21

    Gas nuclei exist naturally in living bodies. Their activation initiates cavitation activity, and is possible using short ultrasonic excitations of high amplitude. However, little is known about the nuclei population in vivo, and therefore about the rarefaction pressure required to form bubbles in tissue. A novel method dedicated to in vivo investigations was used here that combines passive and active cavitation detection with a multi-element linear ultrasound probe (4-7 MHz). Experiments were performed in vivo on the brain of trepanated sheep. Bubble nucleation was induced using a focused single-element transducer (central frequency 660 kHz, f-number = 1) driven by a high power (up to 5 kW) electric burst of two cycles. Successive passive recording and ultrafast active imaging were shown to allow detection of a single nucleation event in brain tissue in vivo. Experiments carried out on eight sheep allowed statistical studies of the bubble nucleation process. The nucleation probability was evaluated as a function of the peak negative pressure. No nucleation event could be detected with a peak negative pressure weaker than -12.7 MPa, i.e. one order of magnitude higher than the recommendations based on the mechanical index. Below this threshold, bubble nucleation in vivo in brain tissues is a random phenomenon.

  10. The Feedback of Star Formation Based on Large-scale Spectroscopic Mapping Technology

    NASA Astrophysics Data System (ADS)

    Li, H. X.

    2017-05-01

    Star Formation is a fundamental topic in astrophysics. Although there is a popular model of low-mass star formation, every step of the process is full of physical and chemical complexity. One of the key questions is the dynamical feedback during the process of star formation. The answer of this question will help us to understand the star formation and the evolution of molecular clouds. We have identified outflows and bubbles in the Taurus molecular cloud based on the ˜ 100 deg2 Five College Radio Astronomy Observatory 12CO(1-0) and 13CO(1-0) maps and the Spitzer young stellar object (YSO) catalog. In the main 44 deg2 area of Taurus, we found 55 outflows, of which 31 were previously unknown. We also found 37 bubbles in the entire 100 deg2 area of Taurus, all of which had not been identified before. After visual inspection, we developed an interactive IDL pipeline to confirm the outflows and bubbles. This sample covers a contiguous region with a linear spatial dynamic range of ˜ 1000. Among the 55 outflows, we found that bipolar, monopolar redshifted, and monopolar blueshifted outflows account for 45%, 44%, and 11%, respectively. There are more red lobes than blue ones. The occurrence of more red lobes may result from the fact that Taurus is thin. Red lobes tend to be smaller and younger. The total mass and energy of red lobes are similar to blue lobes on average. There are 3 expanding bubbles and 34 broken bubbles among all the bubbles in Taurus. There are more outflow-driving YSOs in Class I, Flat, and Class II while few outflow-driving YSOs in Class III, which indicates that outflows more likely appear in the earlier stage (Class I) than in the later phase (Class III) of star formation. There are more bubble-driving YSOs of Class II and Class III while there are few bubble-driving YSOs of Class I and Flat, implying that the bubble structures are more likely to occur in the later stage of star formation. The total kinetic energy of the identified outflows is estimated to be ˜ 3.9 × 1045 erg, which is 1% of the cloud turbulent energy. The total kinetic energy of the detected bubbles is estimated to be ˜ 9.2 × 1046 erg, which is 29% of the turbulent energy of Taurus. The energy injection rate from the outflows is ˜ 1.3 × 1033 erg s-1, 0.4-2 times the turbulent dissipation rate of the cloud. The energy injection rate from bubbles is ˜ 6.4 × 1033 erg s-1, 2-10 times the turbulent dissipation rate of the cloud. The gravitational binding energy of the cloud is ˜ 1.5 × 1048 erg, 385 and 16 times the energy of outflows and bubbles, respectively. We conclude that neither outflows nor bubbles can provide sufficient energy to balance the overall gravitational binding energy and the turbulent energy of Taurus. However, in the current epoch, stellar feedback is sufficient to maintain the observed turbulence in Taurus. We studied the methods of spectral data processing for large-scale surveys, which is helpful in developing the data-processing software of FAST (Five-hundred-meter Aperture Spherical radio Telescope).

  11. Numerical investigation of homogeneous cavitation nucleation in a microchannel

    NASA Astrophysics Data System (ADS)

    Lyu, Xiuxiu; Pan, Shucheng; Hu, Xiangyu; Adams, Nikolaus A.

    2018-06-01

    The physics of nucleation in water is an important issue for many areas, ranging from biomedical to engineering applications. Within the present study, we investigate numerically homogeneous nucleation in a microchannel induced by shock reflection to gain a better understanding of the mechanism of homogeneous nucleation. The liquid expands due to the reflected shock and homogeneous cavitation nuclei are generated. An Eulerian-Lagrangian approach is employed for modeling this process in a microchanel. Two-dimensional axisymmetric Euler equations are solved for obtaining the time evolution of shock, gas bubble, and the ambient fluid. The dynamics of dispersed vapor bubbles is coupled with the surrounding fluid in a Lagrangian framework, describing bubble location and bubble size variation. Our results reproduce nuclei distributions at different stages of homogeneous nucleation and are in good agreement with experimental results. We obtain numerical data for the negative pressure that water can sustain under the process of homogeneous nucleation. An energy transformation description for the homogeneous nucleation inside a microchannel flow is derived and analyzed in detail.

  12. Multi-Stage Mass Spectrometry Analysis of Sugar-Conjugated β-Turn Structures to be Used as Probes in Autoimmune Diseases

    NASA Astrophysics Data System (ADS)

    Giangrande, Chiara; Auberger, Nicolas; Rentier, Cédric; Papini, Anna Maria; Mallet, Jean-Maurice; Lavielle, Solange; Vinh, Joëlle

    2016-04-01

    Synthetic sugar-modified peptides were identified as antigenic probes in the context of autoimmune diseases. The aim of this work is to provide a mechanistic study on the fragmentation of different glycosylated analogs of a synthetic antigenic probe able to detect antibodies in a subpopulation of multiple sclerosis patients. In particular the N-glucosylated type I' β-turn peptide structure called CSF114(Glc) was used as a model to find signature fragmentations exploring the potential of multi-stage mass spectrometry by MALDI-LTQ Orbitrap. Here we compare the fragmentation of the glucosylated form of the synthetic peptide CSF114(Glc), bearing a glucose moiety on an asparagine residue, with less or non- immunoreactive forms, bearing different sugar-modifications, such as CSF114(GlcNAc), modified with a residue of N-acetylglucosamine, and CSF114[Lys7(1-deoxyfructopyranosyl)], this last one modified with a 1-deoxyfructopyranosyl moiety on a lysine at position 7. The analysis was set up using a synthetic compound specifically deuterated on the C-1 to compare its fragmentation with the fragmentation of the undeuterated form, and thus ascertain with confidence the presence on an Asn(Glc) within a peptide sequence. At the end of the study, our analysis led to the identification of signature neutral losses inside the sugar moieties to characterize the different types of glycosylation/glycation. The interest of this study lies in the possibility of applyimg this approach to the discovery of biomarkers and in the diagnosis of autoimmune diseases.

  13. Multi-Stage Mass Spectrometry Analysis of Sugar-Conjugated β-Turn Structures to be Used as Probes in Autoimmune Diseases.

    PubMed

    Giangrande, Chiara; Auberger, Nicolas; Rentier, Cédric; Papini, Anna Maria; Mallet, Jean-Maurice; Lavielle, Solange; Vinh, Joëlle

    2016-04-01

    Synthetic sugar-modified peptides were identified as antigenic probes in the context of autoimmune diseases. The aim of this work is to provide a mechanistic study on the fragmentation of different glycosylated analogs of a synthetic antigenic probe able to detect antibodies in a subpopulation of multiple sclerosis patients. In particular the N-glucosylated type I' β-turn peptide structure called CSF114(Glc) was used as a model to find signature fragmentations exploring the potential of multi-stage mass spectrometry by MALDI-LTQ Orbitrap. Here we compare the fragmentation of the glucosylated form of the synthetic peptide CSF114(Glc), bearing a glucose moiety on an asparagine residue, with less or non- immunoreactive forms, bearing different sugar-modifications, such as CSF114(GlcNAc), modified with a residue of N-acetylglucosamine, and CSF114[Lys(7)(1-deoxyfructopyranosyl)], this last one modified with a 1-deoxyfructopyranosyl moiety on a lysine at position 7. The analysis was set up using a synthetic compound specifically deuterated on the C-1 to compare its fragmentation with the fragmentation of the undeuterated form, and thus ascertain with confidence the presence on an Asn(Glc) within a peptide sequence. At the end of the study, our analysis led to the identification of signature neutral losses inside the sugar moieties to characterize the different types of glycosylation/glycation. The interest of this study lies in the possibility of applyimg this approach to the discovery of biomarkers and in the diagnosis of autoimmune diseases. Graphical Abstract .

  14. Visualizing the Histotripsy Process: Bubble Cloud-Cancer Cell Interactions in a Tissue-Mimicking Environment.

    PubMed

    Vlaisavljevich, Eli; Maxwell, Adam; Mancia, Lauren; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2016-10-01

    Histotripsy is a non-invasive ultrasonic ablation method that uses cavitation to mechanically fractionate tissue into acellular debris. With a sufficient number of pulses, histotripsy can completely fractionate tissue into a liquid-appearing homogenate with no cellular structures. The location, shape and size of lesion formation closely match those of the cavitation cloud. Previous work has led to the hypothesis that the rapid expansion and collapse of histotripsy bubbles fractionate tissue by inducing large stress and strain on the tissue structures immediately adjacent to the bubbles. In the work described here, the histotripsy bulk tissue fractionation process is visualized at the cellular level for the first time using a custom-built 2-MHz transducer incorporated into a microscope stage. A layer of breast cancer cells were cultured within an optically transparent fibrin-based gel phantom to mimic cells inside a 3-D extracellular matrix. To test the hypothesis, the cellular response to single and multiple histotripsy pulses was investigated using high-speed optical imaging. Bubbles were always generated in the extracellular space, and significant cell displacement/deformation was observed for cells directly adjacent to the bubble during both bubble expansion and collapse. The largest displacements were observed during collapse for cells immediately adjacent to the bubble, with cells moving more than 150-300 μm in less than 100 μs. Cells often underwent multiple large deformations (>150% strain) over multiple pulses, resulting in the bisection of cells multiple times before complete removal. To provide theoretical support to the experimental observations, a numerical simulation was conducted using a single-bubble model, which indicated that histotripsy exerts the largest strains and cell displacements in the regions immediately adjacent to the bubble. The experimental and simulation results support our hypothesis, which helps to explain the formation of the sharp lesions formed in histotripsy therapy localized to the regions directly exposed to the bubbles. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Multi-level assessment protocol (MAP) for adoption in multi-site clinical trials

    PubMed Central

    Guydish, J.; Manser, S.T.; Jessup, M.; Tajima, B.; Sears, C.; Montini, T.

    2010-01-01

    The National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN) is intended to test promising drug abuse treatment models in multi-site clinical trials, and to support adoption of new interventions into clinical practice. Using qualitative research methods we asked: How might the technology of multi-site clinical trials be modified to better support adoption of tested interventions? A total of 42 participants, representing 8 organizational levels ranging from clinic staff to clinical trial leaders, were interviewed about their role in the clinical trial, its interactions with clinics, and intervention adoption. Among eight clinics participating in the clinical trial, we found adoption of the tested intervention in one clinic only. In analysis of interview data we identified four conceptual themes which are likely to affect adoption and may be informative in future multi-site clinical trials. We offer the conclusion that planning for adoption in the early stages of protocol development will better serve the aim of integrating new interventions into practice. PMID:20890376

  16. Molecular mechanism for cavitation in water under tension

    PubMed Central

    Menzl, Georg; Gonzalez, Miguel A.; Geiger, Philipp; Caupin, Frédéric; Abascal, José L. F.; Dellago, Christoph

    2016-01-01

    Despite its relevance in biology and engineering, the molecular mechanism driving cavitation in water remains unknown. Using computer simulations, we investigate the structure and dynamics of vapor bubbles emerging from metastable water at negative pressures. We find that in the early stages of cavitation, bubbles are irregularly shaped and become more spherical as they grow. Nevertheless, the free energy of bubble formation can be perfectly reproduced in the framework of classical nucleation theory (CNT) if the curvature dependence of the surface tension is taken into account. Comparison of the observed bubble dynamics to the predictions of the macroscopic Rayleigh–Plesset (RP) equation, augmented with thermal fluctuations, demonstrates that the growth of nanoscale bubbles is governed by viscous forces. Combining the dynamical prefactor determined from the RP equation with CNT based on the Kramers formalism yields an analytical expression for the cavitation rate that reproduces the simulation results very well over a wide range of pressures. Furthermore, our theoretical predictions are in excellent agreement with cavitation rates obtained from inclusion experiments. This suggests that homogeneous nucleation is observed in inclusions, whereas only heterogeneous nucleation on impurities or defects occurs in other experiments. PMID:27803329

  17. Study on bubbly flow behavior in natural circulation reactor by thermal-hydraulic simulation tests with SF6-Gas and ethanol liquid

    NASA Astrophysics Data System (ADS)

    Kondo, Yoshiyuki; Suga, Keishi; Hibi, Koki; Okazaki, Toshihiko; Komeno, Toshihiro; Kunugi, Tomoaki; Serizawa, Akimi; Yoneda, Kimitoshi; Arai, Takahiro

    2009-02-01

    An advanced experimental technique has been developed to simulate two-phase flow behavior in a light water reactor (LWR). The technique applies three kinds of methods; (1) use of sulfur-hexafluoride (SF6) gas and ethanol (C2H5OH) liquid at atmospheric temperature and a pressure less than 1.0MPa, where the fluid properties are similar to steam-water ones in the LWR, (2) generation of bubble with a sintering tube, which simulates bubble generation on heated surface in the LWR, (3) measurement of detailed bubble distribution data with a bi-optical probe (BOP), (4) and measurement of liquid velocities with the tracer liquid. This experimental technique provides easy visualization of flows by using a large scale experimental apparatus, which gives three-dimensional flows, and measurement of detailed spatial distributions of two-phase flow. With this technique, we have carried out experiments simulating two-phase flow behavior in a single-channel geometry, a multi-rod-bundle one, and a horizontal-tube-bundle one on a typical natural circulation reactor system. Those experiments have clarified a) a flow regime map in a rod bundle on the transient region between bubbly and churn flow, b) three-dimensional flow behaviour in rod-bundles where inter-subassembly cross-flow occurs, c) bubble-separation behavior with consideration of reactor internal structures. The data have given analysis models for the natural circulation reactor design with good extrapolation.

  18. Experimental investigation of sound generation by a protuberance in a laminar boundary layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, M.; Asai, M.; Inasawa, A.

    2014-08-15

    Sound radiation from a two-dimensional protuberance glued on the wall in a laminar boundary layer was investigated experimentally at low Mach numbers. When the protuberance was as high as the boundary-layer thickness, a feedback-loop mechanism set in between protuberance-generated sound and Tollmien-Schlichting (T-S) waves generated by the leading-edge receptivity to the upstream-propagating sound. Although occurrence of a separation bubble immediately upstream of the protuberance played important roles in the evolution of instability waves into vortices interacting with the protuberance, the frequency of tonal vortex sound was determined by the selective amplification of T-S waves in the linear instability stage upstreammore » of the separation bubble and was not affected by the instability of the separation bubble.« less

  19. Magnetic field and radiative transfer modelling of a quiescent prominence

    NASA Astrophysics Data System (ADS)

    Gunár, S.; Schwartz, P.; Dudík, J.; Schmieder, B.; Heinzel, P.; Jurčák, J.

    2014-07-01

    Aims: The aim of this work is to analyse the multi-instrument observations of the June 22, 2010 prominence to study its structure in detail, including the prominence-corona transition region and the dark bubble located below the prominence body. Methods: We combined results of the 3D magnetic field modelling with 2D prominence fine structure radiative transfer models to fully exploit the available observations. Results: The 3D linear force-free field model with the unsheared bipole reproduces the morphology of the analysed prominence reasonably well, thus providing useful information about its magnetic field configuration and the location of the magnetic dips. The 2D models of the prominence fine structures provide a good representation of the local plasma configuration in the region dominated by the quasi-vertical threads. However, the low observed Lyman-α central intensities and the morphology of the analysed prominence suggest that its upper central part is not directly illuminated from the solar surface. Conclusions: This multi-disciplinary prominence study allows us to argue that a large part of the prominence-corona transition region plasma can be located inside the magnetic dips in small-scale features that surround the cool prominence material located in the dip centre. We also argue that the dark prominence bubbles can be formed because of perturbations of the prominence magnetic field by parasitic bipoles, causing them to be devoid of the magnetic dips. Magnetic dips, however, form thin layers that surround these bubbles, which might explain the occurrence of the cool prominence material in the lines of sight intersecting the prominence bubbles. Movie and Appendix A are available in electronic form at http://www.aanda.org

  20. A Comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization.

    PubMed

    Cao, Jianglin; Wang, Ying; Chen, Chunyang; Yu, Fei; Ma, Jie

    2018-05-15

    Capacitive deionization (CDI) is a technology used to remove salt from brackish water, and it is an energy-saving, low-cost method compared with other methods, such as reverse osmosis, multi-stage ash distillation and electrodialysis. In this paper, three-dimensional (3D) graphene hydrogels modified with single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) were synthesized by a one-step water bath method to increase the conductivity of materials and reduce the aggregation of the graphene sheets. The CDI performance differences between the two materials were compared and discussed. The results suggested that SWCNTs/rGO had a higher electrosorption capacity (48.73 mg/g) than MWCNTs/rGO, and this was attributed to its high specific surface area (308.37 m 2 /g), specific capacity (36.35 F/g), and smaller charge transfer resistance compared with those of the MWCNTs/rGO electrode. The results indicate SWCNTs/rGO is a promising and suitable material for CDI technology and we provide basic guidance for further CNTs/graphene composite research. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. The Spatially Uniform Spectrum of the Fermi Bubbles: The Leptonic Active Galactic Nucleus Jet Scenario

    NASA Astrophysics Data System (ADS)

    Yang, H.-Y. K.; Ruszkowski, M.

    2017-11-01

    The Fermi bubbles are among the most important findings of the Fermi Gamma-ray Space Telescope; however, their origin is still elusive. One of the unique features of the bubbles is that their gamma-ray spectrum, including a high-energy cutoff at ˜110 GeV and the overall shape of the spectrum, is nearly spatially uniform. The high-energy spectral cutoff is suggestive of a leptonic origin due to synchrotron and inverse-Compton cooling of cosmic-ray (CR) electrons; however, even for a leptonic model, it is not obvious why the spectrum should be spatially uniform. In this work, we investigate the bubble formation in the leptonic active galactic nucleus (AGN) jet scenario using a new CRSPEC module in FLASH that allows us to track the evolution of a CR spectrum during the simulations. We show that the high-energy cutoff is caused by fast electron cooling near the Galactic center (GC) when the jets were launched. Afterwards, the dynamical timescale becomes the shortest among all relevant timescales, and therefore the spectrum is essentially advected with only mild cooling losses. This could explain why the bubble spectrum is nearly spatially uniform: the CRs from different parts of the bubbles as seen today all share the same origin near the GC at an early stage of the bubble expansion. We find that the predicted CR spatial and spectral distribution can simultaneously match the normalization, spectral shape, and high-energy cutoff of the observed gamma-ray spectrum and their spatial uniformity, suggesting that past AGN jet activity is a likely mechanism for the formation of the Fermi bubbles.

  2. Verification of an altitude decompression sickness prevention protocol for Shuttle operations utilizing a 10.s psi pressure stage

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Horrigan, D. J., Jr.; Conkin, J.; Hadley, A. T., III

    1984-01-01

    Three test series involving 173-man tess were conducted to define and verify a pre-extravehicular activity (EVA) denitrogenation procedure that would provide acceptable protection against altitude decompression sickness while minimizing the required duration of oxygen (O2) prebreathe in the suit prior to EVA. The tests also addressed the safety, in terms of incidence of decompression sickness, of conducting EVA's on consecutive days rather than on alternate days. The tests were conducted in an altitude chamber, subjects were selected as representative of the astronaut population, and EVA periods were simulated by reducing the chamber pressure to suit pressure while the subjects breathed O2 with masks and worked at EVA representative work rates. A higher than anticipated incidence of both venous bubbles (55%) and symptoms (26%) was measured following all denitrogenation protocols in this test. For the most part, symptoms were very minor and stabilized, diminished, or disappeared in the six-hour tests. Instances of clear, possible, or potential systemic symptoms were encountered only after use of the unmodified 10.2 psi protocol and not after the modified 10.2 psi protocol, the 3.5-hour O2 prebreathed protocol, or the 4.0-hour O2 prebreathe protocol. The high incidence of symptoms is ascribed to the type and duration of exercise and the sensitivity of the reporting technique to minor symptoms. Repeated EVA exposures after only 17 hours did not increase symptom or bubble incidence.

  3. Damage of Elastomeric Matrix Composites (EMC-rubbers) Under Static Loading Conditions: Experimental and Numerical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayari, F.; Supmeca/LISMMA-Paris, School of Mechanical and Manufacturing Engineering; Bayraktar, E.

    2011-01-17

    Elastomeric matrix composites (EMC-rubbers) are considered as isotropic hyper elastic incompressible materials under static loading conditions. As a rubber material element cannot be extended to an infinite stretch ratio, a damage mechanism at large strain is considered. The phenomenon of cavitation plays an important role in the damage of EMCs and influences the toughening mechanism of rubber-modified plastics. Indeed, cavitation in elastomers is thought to be initiated from flaws, which grow primarily due to a hydrostatic tensile stress and ahead of the crack; there will not only be a high stress perpendicular to the plane of the crack but alsomore » significant stress components in the other direction. However, there exists historically much discussion on the evolution of the cavitation in elastomers under monotonic and/or static solicitation. Mainly, cavitation instability occurs when the stress levels are sufficiently high so that the void expansion rate becomes infinitely large. Many research works have been performed to understand the effects of rubber cavitation on toughening of plastics. In fact, the cavitation phenomenon is not well known in detail. The most popular idea states that the cavitation is related to the existence of the gas bubbles trapped in the material during the production stage and the growing of the cavities would then be the result of the growing gas bubbles. Further, instable failure mechanism at the end of the cavitation is not well known too.« less

  4. Expression of endogenous proteins in maize hybrids in a multi-location field trial in India.

    PubMed

    Gutha, Linga R; Purushottam, Divakar; Veeramachaneni, Aruna; Tigulla, Sarita; Kodappully, Vikas; Enjala, Chandana; Rajput, Hitendrasinh; Anderson, Jennifer; Hong, Bonnie; Schmidt, Jean; Bagga, Shveta

    2018-05-17

    Genetically modified (GM) crops undergo large scale multi-location field trials to characterize agronomics, composition, and the concentration of newly expressed protein(s) [herein referred to as transgenic protein(s)]. The concentration of transgenic proteins in different plant tissues and across the developmental stages of the plant is considered in the safety assessment of GM crops. Reference or housekeeping proteins are expected to maintain a relatively stable expression pattern in healthy plants given their role in cellular functions. Understanding the effects of genotype, growth stage and location on the concentration of endogenous housekeeping proteins may provide insight into the contribution these factors could have on transgenic protein concentrations in GM crops. The concentrations of three endogenous proteins (actin, elongation factor 1-alpha, and glyceraldehyde 3-phosphate dehydrogenase) were measured in several different maize hybrids grown across multiple field locations over 2 years. Leaf samples were collected from healthy plants at three developmental stages across the growing seasons, and protein concentrations were quantified by indirect enzyme-linked immunosorbent assay (ELISA) for each protein. In general, the concentrations of these three endogenous proteins were relatively consistent across hybrid backgrounds, when compared within one growth stage and location (2-26%CV), whereas the concentrations of proteins in the same hybrid and growth stage across different locations were more variable (12-64%CV). In general, the protein concentrations in 2013 and 2014 show similar trends in variability. Some degree of variability in protein concentrations should be expected for both transgenic and endogenous plant-expressed proteins. In the case of GM crops, the potential variation in protein concentrations due to location effects is captured in the current model of multi-location field testing.

  5. Dynamics of Ultrasound Contrast Agents and Nonlinear Acoustic Waves: Experiments, Modeling, and Theories

    NASA Astrophysics Data System (ADS)

    Xia, Lang

    Bubbles occur in many natural and biological flows as well as in numerous industrial phenomena, such as pumps, propellers, turbines, and chemical processing plants. They have been widely studied in the past leading to a large body of literature. However, bubbles appearing in different situations differ significantly in their physical characteristics and behaviors. Recently, bubbles of diameter less than 10 micrometers have found applications in diagnostic ultrasound imaging. These microbubble-based ultrasound contrast agents (UCA) are intravenously administered in patients before ultrasound imaging. Due to the compressive gas core, they generate substantial ultrasound echoes leading to significant enhancement of image quality and contrast. Free bubbles of a micrometer diameter experience a large surface tension induced Laplace pressure leading to their quick dissolution in milliseconds. UCAs are stabilized by coating them with a shell of lipids, polymers, proteins, and other surface-active materials and changing the gas content from air to a high molecular weight low solubility gas such as perfluorocarbon. The past literature of bubble dynamics are mostly restricted to free bubbles. The stabilizing shell of UCAs, however, critically affects their dynamics. In this thesis, we performed acoustic characterization of several UCAs coated with polymer and lipids. We experimentally measured their acoustic attenuation and scattering, of which the data were used in mathematical models to determine shell properties and nonlinear dynamics. Several different interfacial rheological models were employed. Experimental acoustic characterization was also extended to a novel type of nanoparticle suspension--polymersomes, vesicles encapsulated by amphiphilic polymers. The later part of the thesis is devoted to modeling the effects of the presence of coated microbubbles to the overall effective bulk properties of bubbly liquids. Introduction of microbubbles in the liquids does not only modify the bulk properties of the medium (bubbly liquids) but also significantly changes the natures of the propagating waves (e.g., the sound velocity in bubble suspension was found to be as low as 20 m/s). We investigate the nonlinear nature of the acoustic wave in bubbly liquids. Specifically, we theoretically show that microbubbles could change the nonlinearity of the medium, characterized by quantity B/A.

  6. Robust set-point regulation for ecological models with multiple management goals.

    PubMed

    Guiver, Chris; Mueller, Markus; Hodgson, Dave; Townley, Stuart

    2016-05-01

    Population managers will often have to deal with problems of meeting multiple goals, for example, keeping at specific levels both the total population and population abundances in given stage-classes of a stratified population. In control engineering, such set-point regulation problems are commonly tackled using multi-input, multi-output proportional and integral (PI) feedback controllers. Building on our recent results for population management with single goals, we develop a PI control approach in a context of multi-objective population management. We show that robust set-point regulation is achieved by using a modified PI controller with saturation and anti-windup elements, both described in the paper, and illustrate the theory with examples. Our results apply more generally to linear control systems with positive state variables, including a class of infinite-dimensional systems, and thus have broader appeal.

  7. Time-resolved particle image velocimetry measurements of the 3D single-mode Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Xu, Qian

    The Richtmyer-Meshkov Instability (RMI) (Commun. Pure Appl. Math 23, 297-319, 1960; Izv. Akad. Nauk. SSSR Maekh. Zhidk. Gaza. 4, 151-157, 1969) occurs due to an impulsive acceleration acting on a perturbed interface between two fluids of different densities. In the experiments presented in this thesis, single mode 3D RMI experiments are performed. An oscillating speaker generates a single mode sinusoidal initial perturbation at an interface of two gases, air and SF6. A Mach 1.19 shock wave accelerates the interface and generates the Richtmyer-Meshkov Instability. Both gases are seeded with propylene glycol particles which are illuminated by an Nd: YLF pulsed laser. Three high-speed video cameras record image sequences of the experiment. Particle Image Velocimetry (PIV) is applied to measure the velocity field. Measurements of the amplitude for both spike and bubble are obtained, from which the growth rate is measured. For both spike and bubble experiments, amplitude and growth rate match the linear stability theory at early time, but fall into a non-linear region with amplitude measurements lying between the modified 3D Sadot et al. model ( Phys. Rev. Lett. 80, 1654-1657, 1998) and the Zhang & Sohn model (Phys. Fluids 9. 1106-1124, 1997; Z. Angew. Math Phys 50. 1-46, 1990) at late time. Amplitude and growth rate curves are found to lie above the modified 3D Sadot et al. model and below Zhang & Sohn model for the spike experiments. Conversely, for the bubble experiments, both amplitude and growth rate curves lie above the Zhang & Sohn model, and below the modified 3D Sadot et al. model. Circulation is also calculated using the vorticity and velocity fields from the PIV measurements. The calculated circulation are approximately equal and found to grow with time, a result that differs from the modified Jacobs and Sheeley's circulation model (Phys. Fluids 8, 405-415, 1996).

  8. Short term evaluation of respiratory effort by premature infants supported with bubble nasal continuous airway pressure using Seattle-PAP and a standard bubble device

    PubMed Central

    Welty, Stephen E.; Rusin, Craig G.; Stanberry, Larissa I.; Mandy, George T.; Gest, Alfred L.; Ford, Jeremy M.; Backes, Carl H.; Richardson, C. Peter; Howard, Christopher R.; Hansen, Thomas N.

    2018-01-01

    Background Almost one million prematurely born infants die annually from respiratory insufficiency, predominantly in countries with limited access to respiratory support for neonates. The primary hypothesis tested in the present study was that a modified device for bubble nasal continuous positive airway pressure (Bn-CPAP) would provide lower work of spontaneous breathing, estimated by esophageal pressure-rate products. Methods Infants born <32 weeks gestation and stable on Bn-CPAP with FiO2 <0.30 were studied within 72 h following delivery. Esophageal pressures during spontaneous breathing were measured during 2 h on standard Bn-CPAP, then 2 h with Bn-CPAP using a modified bubble device presently termed Seattle-PAP, which produces a different pattern of pressure fluctuations and which provided greater respiratory support in preclinical studies, then 2 h on standard Bn-CPAP. Results All 40 infants enrolled completed the study and follow-up through 36 wks post menstrual age or hospital discharge, whichever came first. No infants were on supplemental oxygen at completion of follow-up. No infants developed pneumothoraces or nasal trauma, and no adverse events attributed to the study were observed. Pressure-rate products on the two devices were not different, but effort of breathing, assessed by areas under esophageal pressure-time curves, was lower with Seattle-PAP than with standard Bn-CPAP. Conclusion Use of Seattle-PAP to implement Bn-CPAP lowers the effort of breathing exerted even by relatively healthy spontaneously breathing premature neonates. Whether the lower effort of breathing observed with Seattle-PAP translates to improvements in neonatal mortality or morbidity will need to be determined by studies in appropriate patient populations. PMID:29590143

  9. Antitumor effect of nuclear factor-κB decoy transfer by mannose-modified bubble lipoplex into macrophages in mouse malignant ascites

    PubMed Central

    Kono, Yusuke; Kawakami, Shigeru; Higuchi, Yuriko; Maruyama, Kazuo; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2014-01-01

    Patients with malignant ascites (MAs) display several symptoms, such as dyspnea, nausea, pain, and abdominal tenderness, resulting in a significant reduction in their quality of life. Tumor-associated macrophages (TAMs) play a crucial role in MA progression. Because TAMs have a tumor-promoting M2 phenotype, conversion of the M2 phenotypic function of TAMs would be promising for MA treatment. Nuclear factor-κB (NF-κB) is a master regulator of macrophage polarization. Here, we developed targeted transfer of a NF-κB decoy into TAMs by ultrasound (US)-responsive, mannose-modified liposome/NF-κB decoy complexes (Man-PEG bubble lipoplexes) in a mouse peritoneal dissemination model of Ehrlich ascites carcinoma. In addition, we investigated the effects of NF-κB decoy transfection into TAMs on MA progression and mouse survival rates. Intraperitoneal injection of Man-PEG bubble lipoplexes and US exposure transferred the NF-κB decoy into TAMs effectively. When the NF-κB decoy was delivered into TAMs by this method in the mouse peritoneal dissemination model, mRNA expression of the Th2 cytokine interleukin (IL)-10 in TAMs was decreased significantly. In contrast, mRNA levels of Th1 cytokines (IL-12, tumor necrosis factor-α, and IL-6) were increased significantly. Moreover, the expression level of vascular endothelial growth factor in ascites was suppressed significantly, and peritoneal angiogenesis showed a reduction. Furthermore, NF-κB decoy transfer into TAMs significantly decreased the ascitic volume and number of Ehrlich ascites carcinoma cells in ascites, and prolonged mouse survival. In conclusion, we transferred a NF-κB decoy efficiently by Man-PEG bubble lipoplexes with US exposure into TAMs, which may be a novel approach for MA treatment. PMID:24850474

  10. Effect of surface mobility on the particle sliding along a bubble or a solid sphere.

    PubMed

    Wang, Weixing; Zhou, Zhiang; Nandakumar, K; Xu, Zhenghe; Masliyah, Jacob H

    2003-03-01

    The sliding velocity of glass beads on a spherical surface, made either of an air bubble or of a glass sphere held stationary, is measured to investigate the effect of surface mobility on the particle sliding velocity. The sliding process is recorded with a digital camera and analyzed frame by frame. The sliding glass bead was found to accelerate with increasing angular position on the collector's surface. It reaches a maximum velocity at an angular position of about 100 degrees and then, under certain conditions, the glass bead leaves the surface of the collector. The sliding velocity of the glass bead depends strongly on the surface mobility of a bubble, decreasing with decreasing surface mobility. By a mobile surface we mean one which cannot set up resistive forces to an applied stress on the surface. The sliding velocity on a rigid surface, such as a glass sphere, is much lower than that on a mobile bubble surface. The sliding velocity can be described through a modified Stokes equation. A numerical factor in the modified Stokes equation is determined by fitting the experimental data and is found to increase with decreasing surface mobility. Hydrophobic glass beads sliding on a hydrophobic glass sphere were found to stick at the point of impact without sliding if the initial angular position of the impact is less than some specific angle, which is defined as the critical sticking angle. The sticking of the glass beads can be attributed to the capillary contracting force created by the formation of a cavity due to spontaneous receding of the nonwetting liquid from the contact zone. The relationship between the critical sticking angle and the particle size is established based on the Yushchenko [J. Colloid Interface Sci. 96 (1983) 307] analysis.

  11. Magnetite Scavenging and the Buoyancy of Bubbles in Magmas

    NASA Astrophysics Data System (ADS)

    Gualda, G. A.; Ghiorso, M. S.

    2005-12-01

    It is generally assumed that when eruptions are triggered, magmas are bubble-free, and all the vesicularity observed in pumice is due to nucleation and growth during ascent. However, decompression experiments show that bubbles tend to nucleate on magnetite crystals at relatively low supersaturation, and there is convincing evidence that an exsolved gas phase was present during much of the evolution of the Bishop magma. The fate of pre-eruptive bubbles depends directly on their buoyancy, which can be strongly modified by the presence of crystals attached to the bubble-melt interface. That crystals tend to attach to bubbles is indicated by experiments and observations, and can be explained theoretically. Whether, however, crystals and bubbles can be held together by interface forces is yet uncertain, and we use the available knowledge on surface energies to explore this problem. We call adhesion energy the surface energy change due to attachment of a crystal to a bubble. We show that sticking a bubble to a mineral substrate is always energetically favored over keeping bubble and mineral separate. Because the adhesion energy is a strong function of the wetting angle, different minerals will be more strongly attached to bubbles than others. In particular, oxide minerals will attach to a given bubble much more strongly than any silicates. One interesting consequence of the attachment of grains to a bubble is that this can cause these bubble-crystal pairs to be neutrally buoyant, preventing bubble rise and crystal sinking. The criterion for buoyancy of a bubble-crystal pair can be calculated as the condition when the apparent weight of the crystal and the bubble are opposite and equal. If a bubble-mineral pair is to remain joined, the binding force has to be provided by the adhesion force, which is also a strong function of the wetting angle. Since the adhesion force is linear on R, and the buoyancy force is proportional to R cubed, there is a critical bubble radius below which the adhesion force will be strong enough to keep the pair together. Using the available experimental data, we show that crystals as large as 1 mm in diameter could be attached to bubbles and form neutrally buoyant pairs. The presence of multiple crystals in a single bubble would allow bubbles larger than the critical size to become neutrally buoyant. Under the limiting assumption that all magnetite crystals form neutrally buoyant pairs with bubbles, it is possible to compute the maximum gas volume fraction that can be stored as neutrally buoyant bubble-magnetite aggregates. The total abundance of magnetite is only ca. 0.1 vol. %, which yields maximum gas volume fractions on the order of 0.1-0.2 vol. %. About 2-3 vol % of gas can be accounted for if all minerals form neutrally-buoyant aggregates. These values are orders of magnitude lower than the abundance of exsolved gas inferred from melt inclusions in the Bishop magma. Nonetheless, our recent observation of one such aggregate in the early-erupted Bishop Tuff suggests that this is indeed a viable mechanism for storing exsolved gas in magmas. The inevitable conclusion is that a range of pre-eruptive bubbles existed, from magnetite-free, but only a very small fraction of them could have magnetite crystals attached to them. Our treatment shows that there should be an intrinsic association between magnetite crystals and bubbles. However, study our tomography datasets shows that most magnetite crystals are free of bubbles. Not only is this surprising; the puzzling conclusion is that nucleation away from crystals (homogeneous nucleation?) is favored over heterogeneous nucleation on crystal substrates.

  12. A variational approach to the strongly nonlinear regime of the Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Toshio

    The Rayleigh-Taylor instability is the instability of the interface between two fluids of different densities. When a heavy fluid is superposed over a light fluid. small disturbances on the interface develop into a complex form with heavy fluid ``fingers'' and light fluid ``bubbles.'' We propose a variational method for the description of the evolution of the fingers and bubbles in the late stage of the instability. In this method, the fluid region is represented as the image of a time-dependent conformal mapping; the dynamics of the mapping is determined by the least action principle for the Lagrangian. i.e., the kinetic energy minus the potential energy. The evolution of a single finger and bubble is investigated by this method. We first consider a symmetric finger and bubble in a zero gravitational field. We derive an integrable Hamiltonian system with two degrees of freedom that governs the dynamics of the symmetric finger and bubble. We present a general solution of the system. The solution predicts the linear growth of the finger and the saturation of the bubble growth. It is shown that this solution is asymptotically exact. We consider a symmetric finger and bubble with perturbations. We show that the dynamics of the finger and bubble and that of the perturbations are decoupled. We next consider an inclined finger and bubble in a zero gravitational field. We derive a Hamiltonian system with four degrees of freedom that governs the dynamics of the inclined finger and bubble. The system has four integrals of motion, one of them depends on time explicitly. When there is no lateral motion, the system reduces to an integrable Hamiltonian system with three degrees of freedom. A general solution of the system is presented. The solution predicts the linear growth of the finger toward a direction and the saturation of the bubble growth. Finally, we consider a symmetric finger and bubble in a uniform gravitational field. We derive a Hamiltonian system with two degrees of freedom that governs the dynamics of the symmetric finger and bubble. Since the system includes a potential energy term, it is not integrable in general. However, we present a general solution in the case of the total energy being zero. This case corresponds to an interesting case where the evolution starts from a flat surface. The solution predicts that the finger grows as the square of time, and the bubble as the square root of time.

  13. Probing the Mechanical Strength of an Armored Bubble and Its Implication to Particle-Stabilized Foams

    NASA Astrophysics Data System (ADS)

    Taccoen, Nicolas; Lequeux, François; Gunes, Deniz Z.; Baroud, Charles N.

    2016-01-01

    Bubbles are dynamic objects that grow and rise or shrink and disappear, often on the scale of seconds. This conflicts with their uses in foams where they serve to modify the properties of the material in which they are embedded. Coating the bubble surface with solid particles has been demonstrated to strongly enhance the foam stability, although the mechanisms for such stabilization remain mysterious. In this paper, we reduce the problem of foam stability to the study of the behavior of a single spherical bubble coated with a monolayer of solid particles. The behavior of this armored bubble is monitored while the ambient pressure around it is varied, in order to simulate the dissolution stress resulting from the surrounding foam. We find that above a critical stress, localized dislocations appear on the armor and lead to a global loss of the mechanical stability. Once these dislocations appear, the armor is unable to prevent the dissolution of the gas into the surrounding liquid, which translates into a continued reduction of the bubble volume, even for a fixed overpressure. The observed route to the armor failure therefore begins from localized dislocations that lead to large-scale deformations of the shell until the bubble completely dissolves. The critical value of the ambient pressure that leads to the failure depends on the bubble radius, with a scaling of Δ Pcollapse∝R-1 , but does not depend on the particle diameter. These results disagree with the generally used elastic models to describe particle-covered interfaces. Instead, the experimental measurements are accounted for by an original theoretical description that equilibrates the energy gained from the gas dissolution with the capillary energy cost of displacing the individual particles. The model recovers the short-wavelength instability, the scaling of the collapse pressure with bubble radius, and the insensitivity to particle diameter. Finally, we use this new microscopic understanding to predict the aging of particle-stabilized foams, by applying classical Ostwald ripening models. We find that the smallest armored bubbles should fail, as the dissolution stress on these bubbles increases more rapidly than the armor strength. Both the experimental and theoretical results can readily be generalized to more complex particle interactions and shell structures.

  14. Collins Cryocooler Design for Zero-Boil Storage of Liquid Hydrogen and Oxygen in Space

    NASA Astrophysics Data System (ADS)

    Segado, M. A.; Hannon, C. L.; Brisson, J. G.

    2010-04-01

    Several models of multi-stage cryocoolers are developed for zero-boil-off storage of liquid hydrogen and oxygen in space. The thermodynamic cycles are based on a modified Collins cycle being developed by MIT and AMTI, and each configuration is optimized for maximum efficiency by varying the mass flows, heat exchanger UA distribution, and other variables where applicable, subject to the required heat loads of 100 W at 100 K and 20 W at 25 K. By using double expanders connected in series with the heat loads in one or more stages of the cooler, we were able to achieve predicted efficiency gains of 10-24% over single expander designs.

  15. Advanced readout methods for superheated emulsion detectors

    NASA Astrophysics Data System (ADS)

    d'Errico, F.; Di Fulvio, A.

    2018-05-01

    Superheated emulsions develop visible vapor bubbles when exposed to ionizing radiation. They consist in droplets of a metastable liquid, emulsified in an inert matrix. The formation of a bubble cavity is accompanied by sound waves. Evaporated bubbles also exhibit a lower refractive index, compared to the inert gel matrix. These two physical phenomena have been exploited to count the number of evaporated bubbles and thus measure the interacting radiation flux. Systems based on piezoelectric transducers have been traditionally used to acquire the acoustic (pressure) signals generated by bubble evaporation. Such systems can operate at ambient noise levels exceeding 100 dB; however, they are affected by a significant dead time (>10 ms). An optical readout technique relying on the scattering of light by neutron-induced bubbles has been recently improved in order to minimize measurement dead time and ambient noise sensitivity. Beams of infra-red light from light-emitting diode (LED) sources cross the active area of the detector and are deflected by evaporated bubbles. The scattered light correlates with bubble density. Planar photodiodes are affixed along the detector length in optimized positions, allowing the detection of scattered light from the bubbles and minimizing the detection of direct light from the LEDs. A low-noise signal-conditioning stage has been designed and realized to amplify the current induced in the photodiodes by scattered light and to subtract the background signal due to intrinsic scattering within the detector matrix. The proposed amplification architecture maximizes the measurement signal-to-noise ratio, yielding a readout uncertainty of 6% (±1 SD), with 1000 evaporated bubbles in a detector active volume of 150 ml (6 cm detector diameter). In this work, we prove that the intensity of scattered light also relates to the bubble size, which can be controlled by applying an external pressure to the detector emulsion. This effect can be exploited during the readout procedure to minimize shadowing effects between bubbles, which become severe when the latter are several thousands. The detector we used in this work is based on superheated C-318 (octafluorocyclobutane), emulsified in 100 μm ± 10% (1 SD) diameter drops in an inert matrix of approximately 150 ml. The detector was operated at room temperature and ambient pressure.

  16. Tension of Liquids by Shockwaves

    NASA Astrophysics Data System (ADS)

    Utkin, A. V.; Sosikov, V. A.

    2009-12-01

    Experimental investigations of dynamic tension of liquids (water, ethanol, glycerol, hexane, hexadecane, pentadecane, and transformer oil) under shock waves have been made. The method of spall strength measurements was applied and wave profiles were registered by laser interferometer VISAR. It was found that negative pressures in liquids were almost independent from the value of stain rate when the temperature was far from melting point. But near the melting point the spall strength of water, hexadecane, pentadecane, and glycerol is a strong function of strain rate and shock-wave amplitude. The process of cavitation in hexadecane and methanol is double-staged. At the first stage formation of cavities starts, and a kinked of free velocity profile is observed. At the second stage the cavity growth rate increases and the spall-pulse occurs. The theory of homogeneous bubble nucleation was used to explain the experimental results. It was observed for water that spall-pulse amplitude may be higher than the shock wave amplitude. To explain this phenomenon the model of failure kinetics, taking into account the inertial bubbles growth, has been proposed.

  17. Research and application of high performance GPES rigid foam composite plastic insulation boards

    NASA Astrophysics Data System (ADS)

    sun, Hongming; xu, Hongsheng; Han, Feifei

    2017-09-01

    A new type of heat insulation board named GPES was prepared by several polymers and modified nano-graphite particles, injecting high-pressure supercritical CO2. Compared with the traditional thermal insulation material, GPES insulation board has higher roundness bubble and thinner bubble wall. Repeatability and reproducibility tests show that melting knot, dimensional stability, strength and other physical properties are significantly better than traditional organic heat insulation materials. Especially the lower and more stable thermal conductivity of GPES can significantly reduce thermal insulation layer thickness. Obviously GPES is the best choice of insulation materials with the implement of 75% and higher energy efficiency standard.

  18. Computational investigations of streamers in a single bubble suspended in distilled water under atmospheric pressure conditions

    NASA Astrophysics Data System (ADS)

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan

    2016-09-01

    We present a computational model of nanosecond streamers generated in helium bubbles immersed in distilled water at the atmospheric pressure conditions. The model is based on the self-consistent, multispecies and the continuum description of plasma and takes into account the presence of water vapor in the gas bubble for a more accurate description of the kinetics of the discharge. We find that the dynamic characteristics of the streamer discharge are completely different at low and high over voltages. We observe that the polarity of the trigger voltage has a substantial effect on initiation, transition and evolution stages of streamers with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages due to the presence of multiple streamers. We also find that the presence of water vapor significantly influences the distribution of the dominant species in the streamer trail and has a profound effect on the flux of the dominant species to the bubble wall. The research reported in this publication was supported by Competitive Research Funding from King Abdullah University of Science and Technology (KAUST).

  19. Pre-breakdown phenomena and discharges in a gas-liquid system

    NASA Astrophysics Data System (ADS)

    Tereshonok, D. V.; Babaeva, N. Yu; Naidis, G. V.; Panov, V. A.; Smirnov, B. M.; Son, E. E.

    2018-04-01

    In this paper, we investigate pre-breakdown and breakdown phenomena in gas-liquid systems. Cavitation void formation and breakdown in bubbles immersed in liquids are studied numerically, while complete breakdown of bubbled water is studied in experiments. It is shown that taking into account the dependence of water dielectric constant on electric field strength plays the same important role for cavitation void appearance under the action of electrostriction forces as the voltage rise time. It is also shown that the initial stage of breakdown in deformed bubbles immersed in liquid strongly depends on spatial orientation of the bubbles relative to the external electric field. The effect of immersed microbubbles, distributed in bulk water, on breakdown time and voltage is studied experimentally. At the breakdown voltage, the slow ‘thermal’ mechanism is changed by the fast ‘streamer-leader’ showing a decrease in breakdown time by two orders of magnitude by introducing microbubbles (0.1% of volumetric gas content) into the water. In addition, the plasma channel is found to pass between nearby microbubbles, exhibiting some ‘guidance’ effect.

  20. Potential Flow Model for Compressible Stratified Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Rydquist, Grant; Reckinger, Scott; Owkes, Mark; Wieland, Scott

    2017-11-01

    The Rayleigh-Taylor Instability (RTI) is an instability that occurs when a heavy fluid lies on top of a lighter fluid in a gravitational field, or a gravity-like acceleration. It occurs in many fluid flows of a highly compressive nature. In this study potential flow analysis (PFA) is used to model the early stages of RTI growth for compressible fluids. In the localized region near the bubble tip, the effects of vorticity are negligible, so PFA is applicable, as opposed to later stages where the induced velocity due to vortices generated from the growth of the instability dominate the flow. The incompressible PFA is extended for compressibility effects by applying the growth rate and the associated perturbation spatial decay from compressible linear stability theory. The PFA model predicts theoretical values for a bubble terminal velocity for single-mode compressible RTI, dependent upon the Atwood (A) and Mach (M) numbers, which is a parameter that measures both the strength of the stratification and intrinsic compressibility. The theoretical bubble terminal velocities are compared against numerical simulations. The PFA model correctly predicts the M dependence at high A, but the model must be further extended to include additional physics to capture the behavior at low A. Undergraduate Scholars Program - Montana State University.

  1. Numerical investigations on unstable direct contact condensation of cryogenic fluids

    NASA Astrophysics Data System (ADS)

    Jayachandran, K. N.; Arnab, Roy; Parthasarathi, Ghosh

    2017-02-01

    A typical problem of Direct Contact Condensation (DCC) occurs at the liquid oxygen (LOX) booster turbopump exit of oxidiser rich staged combustion cycle based semi-cryogenic rocket engines, where the hot gas mixture (predominantly oxygen and small amounts of combustion products) that runs the turbine mixes with LOX from the pump exit. This complex multiphase phenomena leads to the formation of solid CO2 & H2O, which is undesirable for the functioning of the main LOX turbopump. As a starting point for solving this complex problem, in this study, the hot gas mixture is taken as pure oxygen and hence, DCC of pure oxygen vapour jets in subcooled liquid oxygen is simulated using the commercial CFD package ANSYS CFX®. A two fluid model along with the thermal phase change model is employed for capturing the heat and mass transfer effects. The study mainly focuses on the subsonic DCC bubbling regime, which is reported as unstable with bubble formation, elongation, necking and collapsing effects. The heat transfer coefficients over a period of time have been computed and the various stages of bubbling have been analysed with the help of vapour volume fraction and pressure profiles. The results obtained for DCC of oxygen vapour-liquid mixtures is in qualitative agreement with the experimental results on DCC of steam-water mixtures.

  2. Gaining consensus on family carer needs when caring for someone dying at home to develop the Carers' Alert Thermometer (CAT): a modified Delphi study.

    PubMed

    Knighting, Katherine; O'Brien, Mary R; Roe, Brenda; Gandy, Rob; Lloyd-Williams, Mari; Nolan, Mike; Jack, Barbara A

    2016-01-01

    To report a multi-phase modified Delphi study conducted with carers and professionals to identify the priority areas for inclusion in an alert screening tool for carers providing support to someone dying at home. Internationally, there is a growing emphasis on increasing choice for patients who wish to die at home which relies heavily on care provided by the unpaid family carers. Family carers can have high levels of unmet needs comprising their psychological and physical health and their ability to provide effective care and support. Development of an alert tool to identify carers' needs in everyday practice required identification and consensus of the priority areas of need for inclusion. Multi-phase modified Delphi study and instrument development. Qualitative and quantitative data collection took place between 2011-2013 with 111 carers and 93 professionals to identify carers' needs and gain consensus on the priority areas for inclusion in the alert tool. An expert panel stage and final evidence review post-Delphi were used. The Delphi panels had high levels of agreement and consensus. Ten areas of carer need across two themes of 'the current caring situation' and 'the carer's own health and well-being' were prioritized for inclusion in the alert tool. An optional end-of-life planning question was included following the final stages. The results provide evidence of carers' needs to be assessed, areas for consideration in the education of those who support carers and someone dying at home and targeting of services, while demonstrating the usefulness and adaptability of the Delphi method. © 2015 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  3. MODELING MICROBUBBLE DYNAMICS IN BIOMEDICAL APPLICATIONS*

    PubMed Central

    CHAHINE, Georges L.; HSIAO, Chao-Tsung

    2012-01-01

    Controlling microbubble dynamics to produce desirable biomedical outcomes when and where necessary and avoid deleterious effects requires advanced knowledge, which can be achieved only through a combination of experimental and numerical/analytical techniques. The present communication presents a multi-physics approach to study the dynamics combining viscous- in-viscid effects, liquid and structure dynamics, and multi bubble interaction. While complex numerical tools are developed and used, the study aims at identifying the key parameters influencing the dynamics, which need to be included in simpler models. PMID:22833696

  4. Pulsed depressed collector

    DOEpatents

    Kemp, Mark A

    2015-11-03

    A high power RF device has an electron beam cavity, a modulator, and a circuit for feed-forward energy recovery from a multi-stage depressed collector to the modulator. The electron beam cavity include a cathode, an anode, and the multi-stage depressed collector, and the modulator is configured to provide pulses to the cathode. Voltages of the electrode stages of the multi-stage depressed collector are allowed to float as determined by fixed impedances seen by the electrode stages. The energy recovery circuit includes a storage capacitor that dynamically biases potentials of the electrode stages of the multi-stage depressed collector and provides recovered energy from the electrode stages of the multi-stage depressed collector to the modulator. The circuit may also include a step-down transformer, where the electrode stages of the multi-stage depressed collector are electrically connected to separate taps on the step-down transformer.

  5. Drainage and Stratification Kinetics of Foam Films

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Sharma, Vivek

    2014-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Foam lifetime, drainage kinetics and stability are strongly influenced by surfactant type (ionic vs non-ionic), and added proteins, particles or polymers modify typical responses. The rate at which fluid drains out from a foam film, i.e. drainage kinetics, is determined in the last stages primarily by molecular interactions and capillarity. Interestingly, for certain low molecular weight surfactants, colloids and polyelectrolyte-surfactant mixtures, a layered ordering of molecules, micelles or particles inside the foam films leads to a stepwise thinning phenomena called stratification. Though stratification is observed in many confined systems including foam films containing particles or polyelectrolytes, films containing globular proteins seem not to show this behavior. Using a Scheludko-type cell, we experimentally study the drainage and stratification kinetics of horizontal foam films formed by protein-surfactant mixtures, and carefully determine how the presence of proteins influences the hydrodynamics and thermodynamics of foam films.

  6. Understanding the use of continuous oscillating positive airway pressure (bubble CPAP) to treat neonatal respiratory disease: an engineering approach.

    PubMed

    Manilal-Reddy, P I; Al-Jumaily, A M

    2009-01-01

    A continuous oscillatory positive airway pressure with pressure oscillations incidental to the mean airway pressure (bubble CPAP) is defined as a modified form of traditional continuous positive airway pressure (CPAP) delivery where pressure oscillations in addition to CPAP are administered to neonates with lung diseases. The mechanical effect of the pressure oscillations on lung performance is investigated by formulating mathematical models of a typical bubble CPAP device and a simple representation of a neonatal respiratory system. Preliminary results of the respiratory system's mechanical response suggest that bubble CPAP may improve lung performance by minimizing the respiratory system impedance and that the resonant frequency of the respiratory system may be a controlling factor. Additional steps in terms of clinical trials and a more complex respiratory system model are required to gain a deeper insight into the mechanical receptiveness of the respiratory system to pressure oscillations. However, the current results are promising in that they offer a deeper insight into the trends of variations that can be expected in future extended models as well as the model philosophies that need to be adopted to produce results that are compatible with experimental verification.

  7. A Targeting Microbubble for Ultrasound Molecular Imaging

    PubMed Central

    Yeh, James Shue-Min; Sennoga, Charles A.; McConnell, Ellen; Eckersley, Robert; Tang, Meng-Xing; Nourshargh, Sussan; Seddon, John M.; Haskard, Dorian O.; Nihoyannopoulos, Petros

    2015-01-01

    Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described, may possess properties (i)–(iii) desired for clinical applications. PMID:26161541

  8. Multi-frequency and polarimetric radar backscatter signatures for discrimination between agricultural crops at the Flevoland experimental test site

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Villasenor, J.; Klein, J. D.

    1991-01-01

    We describe the calibration and analysis of multi-frequency, multi-polarization radar backscatter signatures over an agriculture test site in the Netherlands. The calibration procedure involved two stages: in the first stage, polarimetric and radiometric calibrations (ignoring noise) were carried out using square-base trihedral corner reflector signatures and some properties of the clutter background. In the second stage, a novel algorithm was used to estimate the noise level in the polarimetric data channels by using the measured signature of an idealized rough surface with Bragg scattering (the ocean in this case). This estimated noise level was then used to correct the measured backscatter signatures from the agriculture fields. We examine the significance of several key parameters extracted from the calibrated and noise-corrected backscatter signatures. The significance is assessed in terms of the ability to uniquely separate among classes from 13 different backscatter types selected from the test site data, including eleven different crops, one forest and one ocean area. Using the parameters with the highest separation for a given class, we use a hierarchical algorithm to classify the entire image. We find that many classes, including ocean, forest, potato, and beet, can be identified with high reliability, while the classes for which no single parameter exhibits sufficient separation have higher rates of misclassification. We expect that modified decision criteria involving simultaneous consideration of several parameters increase performance for these classes.

  9. Giga-electronvolt electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Masson-Laborde, P. E.; Mo, M. Z.; Ali, A.; Fourmaux, S.; Lassonde, P.; Kieffer, J. C.; Rozmus, W.; Teychenné, D.; Fedosejevs, R.

    2014-12-01

    We show through experiments that a transition from laser wakefield acceleration (LWFA) regime to a plasma wakefield acceleration (PWFA) regime can drive electrons up to energies close to the GeV level. Initially, the acceleration mechanism is dominated by the bubble created by the laser in the nonlinear regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, leading to a depletion of the laser pulse, whose transverse ponderomotive force is not able to sustain the bubble anymore, the high energy dense bunch of electrons propagating inside bubble will drive its own wakefield by a PWFA regime. This wakefield will be able to trap and accelerate a population of electrons up to the GeV level during this second stage. Three dimensional particle-in-cell simulations support this analysis and confirm the scenario.

  10. Giga-electronvolt electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masson-Laborde, P. E., E-mail: paul-edouard.masson-laborde@cea.fr; Teychenné, D.; Mo, M. Z.

    2014-12-15

    We show through experiments that a transition from laser wakefield acceleration (LWFA) regime to a plasma wakefield acceleration (PWFA) regime can drive electrons up to energies close to the GeV level. Initially, the acceleration mechanism is dominated by the bubble created by the laser in the nonlinear regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, leading to a depletion of the laser pulse, whose transverse ponderomotive force is not able to sustain the bubble anymore, the high energy dense bunch of electrons propagating inside bubble will drive its ownmore » wakefield by a PWFA regime. This wakefield will be able to trap and accelerate a population of electrons up to the GeV level during this second stage. Three dimensional particle-in-cell simulations support this analysis and confirm the scenario.« less

  11. Pairwise Force SPH Model for Real-Time Multi-Interaction Applications.

    PubMed

    Yang, Tao; Martin, Ralph R; Lin, Ming C; Chang, Jian; Hu, Shi-Min

    2017-10-01

    In this paper, we present a novel pairwise-force smoothed particle hydrodynamics (PF-SPH) model to enable simulation of various interactions at interfaces in real time. Realistic capture of interactions at interfaces is a challenging problem for SPH-based simulations, especially for scenarios involving multiple interactions at different interfaces. Our PF-SPH model can readily handle multiple types of interactions simultaneously in a single simulation; its basis is to use a larger support radius than that used in standard SPH. We adopt a novel anisotropic filtering term to further improve the performance of interaction forces. The proposed model is stable; furthermore, it avoids the particle clustering problem which commonly occurs at the free surface. We show how our model can be used to capture various interactions. We also consider the close connection between droplets and bubbles, and show how to animate bubbles rising in liquid as well as bubbles in air. Our method is versatile, physically plausible and easy-to-implement. Examples are provided to demonstrate the capabilities and effectiveness of our approach.

  12. Investigating the explosivity of shallow sub-aqueous basaltic eruptions

    NASA Astrophysics Data System (ADS)

    Murtagh, R.; White, J. D. L.

    2009-04-01

    Volcanic eruptions produce pyroclasts containing vesicles, clearly implying exsolution of volatiles from the magma has occurred. Our aim is to understand the textural characteristics of vesiculated clasts as a quantitative indicator of the eruptive behaviour of a volcano. Assessing water's role in volatile degassing and outgassing has been and is being well documented for terrestrial eruptions; the same cannot be said, however, for their shallow subaqueous counterparts. The eruptive behaviour of Surtseyan volcanoes, which include both subaqueous and subaerial phases (for example, the type-location Surtsey, Iceland in 1963) is under investigation here and for good reason. Volcanic eruptions during which water and basaltic magma come into contact appear to ignite violent eruptions of many of the small "monogenetic" volcanoes so abundant on Earth. A key problem remains that detailed conditions of water-magma interactions are not yet fully understood. Field samples obtained from exposed sequences deposited originally in a subaqueous environment allow for the necessary analysis of lapilli. With the aid of experimental data, mathematical modelling and terrestrial analogues the ambition is to unravel volatile degassing, ascent histories and fragmentation processes, allowing us ultimately to identify both the role water plays in the explosivity of shallow subaqueous eruptions, and the rise history of magma to the point of interaction. The first site, Pahvant Butte is located in southwest Utah, U.S. It is a well preserved tuff cone overlying a subaqueously deposited mound of glassy ash composed of sideromelane and tachylite. It was erupted under ~85m of water into Lake Bonneville approximately 15,300 years ago. Our focus is on samples collected from a well-bedded, broadly scoured coarse ash and lapilli lithofacies on the eastern flank of the edifice. Vesicularity indices span from 52.6% - 60.8%, with very broad vesicularity ranges, 20.6% - 81.0% for one extreme sample. The diverse nature of the vesicularity is reflected also in SEM images. Dense clasts display textures with isolated, tiny, serrate-edged bubbles, while mean- and high-vesicularity clasts display more numerous, medium-sized, rounded bubbles. Based on these observations, fragmentation at various stages of a complex vesiculation history is suggested. The second site, Black Point, is situated in eastern California, U.S. Another emergent volcano, it was erupted into Lake Russell ~13,000 years ago. Similar to Pahvant Butte, its unconsolidated mound consists of glassy ash and lapilli and is topped by indurated, palagonitized tuff ring/cone deposits. A well exposed quarry section on the southeast slopes of the edifice is considered here. Sub-horizontal beds display pinch and swell structures and some cross-stratification. Vesicularity indices extend from 58.7% - 66.6% while vesicularity ranges are broad, 27.8% - 79.7% for example. The higher overall vesicularity implies higher rates of ascent and eruption discharge, a conclusion supported by textural features of bubbles in this section such as a population of uniformly sized small vesicles. Bubble nucleation and growth in an ascending parcel of magma is controlled both by decompression and diffusion of oversaturated volatiles as the magma rises. Bubble growth plays a major role in controlling eruption behaviour and we can obtain useful quantitative records of vesicle size data through thin section imaging and analysis. Vesicle size data can be expressed as number per area (NA), number per volume (NV), cumulative number density (N(>L)), volume fraction, cumulative volume fraction and vesicle size distribution (VSD). Not only can the trends and patterns of bubble size reveal insights into eruptive styles, intensity; bubble nucleation, growth, coalescence and deformation, they can also be analysed with other information to infer volatile content and degassing record. High vesicle number densities have been interpreted as being the result of rapid bubble nucleation at high supersaturations. Homogenous bubble nucleation is symptomatic of large supersaturations and high decompression values, whereas heterogeneous bubble nucleation on pre-existing microlites may occur at much lower saturation and decompression values. The spatial density of bubble nuclei controls the rate of diffusion-limited bubble growth and growth of volatile depletion shells around bubbles. Results thus far are restricted to the Pahvant Butte sample suite and indicate low bubble number densities, which could be reflecting a high connectivity of bubbles; polymodal volume fraction distributions, indicating bubble coalescence and multiple stages of bubble nucleation; VSD plots display curved trends further supporting the theory that bubble coalescence and other ripening processes have occurred. These vesicle-population characteristics are most similar to those reported from Stromboli. Despite this similarity, eruption style, energetics and dispersal are unique to subaqueous eruptions, and are inferred to be equivalent to those that formed the subaqueous base of Surtsey volcano.

  13. A multi-stage drop-the-losers design for multi-arm clinical trials.

    PubMed

    Wason, James; Stallard, Nigel; Bowden, Jack; Jennison, Christopher

    2017-02-01

    Multi-arm multi-stage trials can improve the efficiency of the drug development process when multiple new treatments are available for testing. A group-sequential approach can be used in order to design multi-arm multi-stage trials, using an extension to Dunnett's multiple-testing procedure. The actual sample size used in such a trial is a random variable that has high variability. This can cause problems when applying for funding as the cost will also be generally highly variable. This motivates a type of design that provides the efficiency advantages of a group-sequential multi-arm multi-stage design, but has a fixed sample size. One such design is the two-stage drop-the-losers design, in which a number of experimental treatments, and a control treatment, are assessed at a prescheduled interim analysis. The best-performing experimental treatment and the control treatment then continue to a second stage. In this paper, we discuss extending this design to have more than two stages, which is shown to considerably reduce the sample size required. We also compare the resulting sample size requirements to the sample size distribution of analogous group-sequential multi-arm multi-stage designs. The sample size required for a multi-stage drop-the-losers design is usually higher than, but close to, the median sample size of a group-sequential multi-arm multi-stage trial. In many practical scenarios, the disadvantage of a slight loss in average efficiency would be overcome by the huge advantage of a fixed sample size. We assess the impact of delay between recruitment and assessment as well as unknown variance on the drop-the-losers designs.

  14. Computational Fluid Dynamics Modeling of Bubbling in a Viscous Fluid for Validation of Waste Glass Melter Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abboud, Alexander William; Guillen, Donna Post

    2016-01-01

    At the Hanford site, radioactive waste stored in underground tanks is slated for vitrification for final disposal. A comprehensive knowledge of the glass batch melting process will be useful in optimizing the process, which could potentially reduce the cost and duration of this multi-billion dollar cleanup effort. We are developing a high-fidelity heat transfer model of a Joule-heated ceramic lined melter to improve the understanding of the complex, inter-related processes occurring with the melter. The glass conversion rates in the cold cap layer are dependent on promoting efficient heat transfer. In practice, heat transfer is augmented by inserting air bubblersmore » into the molten glass. However, the computational simulations must be validated to provide confidence in the solutions. As part of a larger validation procedure, it is beneficial to split the physics of the melter into smaller systems to validate individually. The substitution of molten glass for a simulant liquid with similar density and viscosity at room temperature provides a way to study mixing through bubbling as an isolated effect without considering the heat transfer dynamics. The simulation results are compared to experimental data obtained by the Vitreous State Laboratory at the Catholic University of America using bubblers placed within a large acrylic tank that is similar in scale to a pilot glass waste melter. Comparisons are made for surface area of the rising air bubbles between experiments and CFD simulations for a variety of air flow rates and bubble injection depths. Also, computed bubble rise velocity is compared to a well-accepted expression for bubble terminal velocity.« less

  15. Sound field measurement in a double layer cavitation cluster by rugged miniature needle hydrophones.

    PubMed

    Koch, Christian

    2016-03-01

    During multi-bubble cavitation the bubbles tend to organize themselves into clusters and thus the understanding of properties and dynamics of clustering is essential for controlling technical applications of cavitation. Sound field measurements are a potential technique to provide valuable experimental information about the status of cavitation clouds. Using purpose-made, rugged, wide band, and small-sized needle hydrophones, sound field measurements in bubble clusters were performed and time-dependent sound pressure waveforms were acquired and analyzed in the frequency domain up to 20 MHz. The cavitation clusters were synchronously observed by an electron multiplying charge-coupled device (EMCCD) camera and the relation between the sound field measurements and cluster behaviour was investigated. Depending on the driving power, three ranges could be identified and characteristic properties were assigned. At low power settings no transient and no or very low stable cavitation activity can be observed. The medium range is characterized by strong pressure peaks and various bubble cluster forms. At high power a stable double layer was observed which grew with further increasing power and became quite dynamic. The sound field was irregular and the fundamental at driving frequency decreased. Between the bubble clouds completely different sound field properties were found in comparison to those in the cloud where the cavitation activity is high. In between the sound field pressure amplitude was quite small and no collapses were detected. Copyright © 2015. Published by Elsevier B.V.

  16. The Effects of Theory of Mind Training on the False Belief Understanding of Deaf and Hard-of-Hearing Students in Prekindergarten and Kindergarten.

    PubMed

    Tucci, Stacey L; Easterbrooks, Susan R; Lederberg, Amy R

    2016-07-01

    Data from a growing number of research studies indicate that children with hearing loss are delayed in Theory of Mind (ToM) development when compared to their typically developing, hearing peers. While other researchers have studied the developmental trajectories of ToM in school-age students who are deaf, a limited number have addressed the need for interventions for this population. The present study extends the current research on ToM interventions to the Prekindergarten and Kindergarten levels. This study used a single-case multiple baseline design to examine the effects of a ToM intervention on participants' false belief understanding as well as outcomes on a near generalization measure and a far generalization measure. A ToM thought bubble intervention (i.e., a visual representation of what people are thinking) developed by Wellman and Peterson (2013 Deafness, thought bubbles, and theory-of-mind development. Developmental Psychology, 49, 2357-2367) was modified in key areas. Results from the Single-Case Design portion of the study indicate a functional, or causal, relation between the ToM intervention and the participants' acquisition of the targeted skills in each stage although progress was not uniform. Results from the pre-post assessments indicate that the children did make progress up the scale. These results inform the field in regard to the efficacy and feasibility of a ToM intervention for young deaf children. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Multi-stage decoding for multi-level block modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1991-01-01

    In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  18. Waste treatment of kraft effluents by white-rot fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, R.

    1996-10-01

    The residual lignin in unbleached kraft pulp is commonly removed to afford a fully bleached pulp through a multi-stage bleaching process consisting of chlorination and alkaline-extraction stages. The effluent from such a bleaching process is of growing environmental concern because it shows a dark brown color and contains numerous chlorinated organic substances. Moreover, this effluent is not easily recycled within a mill recovery system because of the potential corrosion problems created by its high chlorine content. White-rot fungi have even heavily modified lignin such as kraft lignin and atoms demonstrated that kraft bleaching effluent can be rot fungi, in particular,more » Trametes versicolor and this review lecture, the possibility of the application of kraft effluents will be discussed.« less

  19. Profiles of electrified drops and bubbles

    NASA Technical Reports Server (NTRS)

    Basaran, O. A.; Scriven, L. E.

    1982-01-01

    Axisymmetric equilibrium shapes of conducting drops and bubbles, (1) pendant or sessile on one face of a circular parallel-plate capacitor or (2) free and surface-charged, are found by solving simultaneously the free boundary problem consisting of the augmented Young-Laplace equation for surface shape and the Laplace equation for electrostatic field, given the surface potential. The problem is nonlinear and the method is a finite element algorithm employing Newton iteration, a modified frontal solver, and triangular as well as quadrilateral tessellations of the domain exterior to the drop in order to facilitate refined analysis of sharply curved drop tips seen in experiments. The stability limit predicted by this computer-aided theoretical analysis agrees well with experiments.

  20. Method for eliminating gas blocking in electrokinetic pumping systems

    DOEpatents

    Arnold, Don W.; Paul, Phillip H.; Schoeniger, Joseph S.

    2001-09-11

    A method for eliminating gas bubble blockage of current flow during operation of an electrokinetic pump. By making use of the ability to modify the surface charge on the porous dielectric medium used in electrokinetic pumps, it becomes possible to place electrodes away from the pressurized region of the electrokinetic pump. While gas is still generated at the electrodes they are situated such that the generated gas can escape into a larger buffer reservoir and not into the high pressure region of the pump where the gas bubbles can interrupt current flow. Various combinations of porous dielectric materials and ionic conductors can be used to create pumps that have desirable electrical, material handling, and flow attributes.

  1. Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel learning.

    PubMed

    Shi, Jun; Liu, Xiao; Li, Yan; Zhang, Qi; Li, Yingjie; Ying, Shihui

    2015-10-30

    Electroencephalography (EEG) based sleep staging is commonly used in clinical routine. Feature extraction and representation plays a crucial role in EEG-based automatic classification of sleep stages. Sparse representation (SR) is a state-of-the-art unsupervised feature learning method suitable for EEG feature representation. Collaborative representation (CR) is an effective data coding method used as a classifier. Here we use CR as a data representation method to learn features from the EEG signal. A joint collaboration model is established to develop a multi-view learning algorithm, and generate joint CR (JCR) codes to fuse and represent multi-channel EEG signals. A two-stage multi-view learning-based sleep staging framework is then constructed, in which JCR and joint sparse representation (JSR) algorithms first fuse and learning the feature representation from multi-channel EEG signals, respectively. Multi-view JCR and JSR features are then integrated and sleep stages recognized by a multiple kernel extreme learning machine (MK-ELM) algorithm with grid search. The proposed two-stage multi-view learning algorithm achieves superior performance for sleep staging. With a K-means clustering based dictionary, the mean classification accuracy, sensitivity and specificity are 81.10 ± 0.15%, 71.42 ± 0.66% and 94.57 ± 0.07%, respectively; while with the dictionary learned using the submodular optimization method, they are 80.29 ± 0.22%, 71.26 ± 0.78% and 94.38 ± 0.10%, respectively. The two-stage multi-view learning based sleep staging framework outperforms all other classification methods compared in this work, while JCR is superior to JSR. The proposed multi-view learning framework has the potential for sleep staging based on multi-channel or multi-modality polysomnography signals. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Multi-wavelength investigations on feedback of massive star formation

    NASA Astrophysics Data System (ADS)

    Yuan, Jinghua

    2014-05-01

    In the course of massive star formation, outflows, ionizing radiation and intense stellar winds could heavily affect their adjacent environs and natal clouds. There are several outstanding open questions related to these processes: i) whether they can drive turbulence in molecular clouds; ii) whether they are able to trigger star formation; iii) whether they can destroy natal clouds to terminate star formation at low efficiencies. This thesis investigates feedback in different stages of massive star formation. Influence of such feedback to the ambient medium has been revealed. A new type of millimeter methanol maser is detected for the first time. An uncommon bipolar outflow prominent in the mid-infrared is discovered. And features of triggered star formation are found on the border of an infrared bubble and in the surroundings of a Herbig Be star. Extended green objects (EGOs) are massive outflow candidates showing prominent shocked features in the mid-infrared. We have carried out a high resolution study of the EGO G22.04+0.22 (hereafter, G22) based on archived SMA data. Continuum and molecular lines at 1.3 mm reveal that G22 is still at a hot molecular core stage. A very young multi-polar outflow system is detected, which is interacting with the adjacent dense gas. Anomalous emission features from CH3OH (8,-1,8 - 7,0,7) and CH3OH (4,2,2 - 3,1,2) are proven to be millimeter masers. It is the first time that maser emission of CH3OH (8,-1,8 - 7,0,7) at 218.440 GHz is detected in a massive star-forming region. Bipolar outflows have been revealed and investigated almost always in the microwave or radio domain. It's sort of rare that hourglass-shaped morphology be discovered in the mid-infrared. Based on GLIMPSE data, we have discovered a bipolar object resembling an hourglass at 8.0 um. It is found to be associated with IRAS 18114-1825. Analysis based on fitted SED, optical spectroscopy, and infrared color indices suggests IRAS 18114-1825 is an uncommon bipolar outflow driven by a massive protostar. Multi-wavelength observations based on classical tracers of outflows are highly necessary. Extensive investigations of IRAS 18114-1825 may contribute to our understanding of massive star formation in early stage.

  3. Effect of Marangoni Convection Generated by Voids on Segregation During Low-G and 1-G Solidification

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Fripp, A.; Rashidnia, N.; deGroh, H.

    1999-01-01

    Solidification experiments, especially microgravity solidification experiments are often hampered by the evolution of unwanted voids or bubbles in the melt. Although these voids and/or bubbles are highly undesirable, there are currently no effective means of preventing their formation or eliminating their adverse effects, particularly, during low-g experiments. Marangoni Convection caused by these voids can drastically change the transport processes in the melt and, therefore, introduce enormous difficulties in interpreting the results of the space investigations. Recent microgravity experiments by Matthiesen, Andrews, and Fripp are all good examples of how the presence of voids and bubbles affect the outcome of costly space experiments and significantly increase the level of difficulty in interpreting their results. In this work we examine mixing caused by Marangoni convection generated by voids and bubbles in the melt during both 1-g and low-g solidification experiments. The objective of the research is to perform a detailed and comprehensive combined numerical-experimental study of Marangoni convection caused by voids during the solidification process and to show how it can affect segregation and growth conditions by modifying the flow, temperature, and species concentration fields in the melt. While Marangoni convection generated by bubbles and voids in the melt can lead to rapid mixing that would negate the benefits of microgravity processing, it could be exploited in some terrestrial processing to ensure effective communication between a melt/solid interface and a gas phase stoichiometry control zone. Thus we hope that this study will not only aid us in interpreting the results of microgravity solidification experiments hampered by voids and bubbles but to guide us in devising possible means of minimizing the adverse effects of Marangoni convection in future space experiments or of exploiting its beneficial mixing features in ground-based solidification.

  4. The Dependence of the Ultrasound-Induced Blood-Brain Barrier Opening Characteristics on Microbubble Size In Vivo

    NASA Astrophysics Data System (ADS)

    Choi, James J.; Feshitan, Jameel A.; Wang, Shougang; Tung, Yao-Sheng; Baseri, Babak; Borden, Mark A.; Konofagou, Elisa E.

    2009-04-01

    Recent neuropharmaceutical developments have led to potent disease-modifying drugs. In spite of these advancements, most agents cannot traverse the blood-brain barrier (BBB) and deposit in the brain. Focused ultrasound (FUS) with microbubbles has been shown to induce noninvasive, localized, and transient BBB opening. Although promising, safety and efficacy concerns still remain. Previously reported experiments used conventional imaging contrast agents that have a wide size distribution. In this study, we hypothesize that BBB opening characteristics are dependent on bubble diameter. A 25 μl bolus of in-house manufactured, lipid-shelled bubbles with either 1-2 or 4-5 μm diameter ranges was injected intravenously. Pulsed FUS (frequency: 1.5 MHz, peak-negative pressure: 146-607 kPa, duty cycle: 20%, duration: 1-min) was then applied to the left hippocampus of mice (n = 16) in vivo through the intact skin and skull. MRI or fluorescence microscopy was used to determine BBB opening. Contrast-enhanced (Omniscan™; 0.75 mL; molecular weight: 574 Da) MRI (9.4-T) was acquired on multiple days after sonication to determine BBB opening and closing. Fluorescence microscopy was also used to determine the feasibility of delivering large, 3 kDa dextran compounds through the BBB. The BBB opening acoustic pressure threshold for the 4-5μm bubbles was in the 146-304 kPa range while the threshold for the 1-2μm bubbles was higher. In conclusion, FUS-induced BBB opening and closing was shown to be dependent on the bubble diameter indicating the possibility of specifically designing bubbles to enhance this therapeutic application.

  5. Steering air bubbles with an add-on vacuum layer for biopolymer membrane biofabrication in PDMS microfluidics.

    PubMed

    Pham, Phu; Vo, Thanh; Luo, Xiaolong

    2017-01-17

    Membrane functionality is crucial in microfluidics for realizing operations such as filtration, separation, concentration, signaling among cells and gradient generation. Currently, common methods often sandwich commercially available membranes in multi-layer devices, or use photopolymerization or temperature-induced gelation to fabricate membrane structures in one-layer devices. Biofabrication offers an alternative to forming membrane structures with biomimetic materials and mechanisms in mild conditions. We have recently developed a biofabrication strategy to form parallel biopolymer membranes in gas-permeable polydimethylsiloxane (PDMS) microfluidic devices, which used positive pressure to dissipate air bubbles through PDMS to initiate membrane formation but required careful pressure balancing between two flows. Here, we report a technical innovation by simply placing as needed an add-on PDMS vacuum layer on PDMS microfluidic devices to dissipate air bubbles and guide the biofabrication of biopolymer membranes. Vacuuming through PDMS was simply achieved by either withdrawing a syringe or releasing a squeezed nasal aspirator. Upon vacuuming, air bubbles dissipated within minutes, membranes were effortlessly formed, and the add-on vacuum layer can be removed. Subsequent membrane growth could be robustly controlled with the flows and pH of solutions. This new process is user-friendly and has achieved a 100% success rate in more than 200 trials in membrane biofabrication.

  6. Multi-stage decoding of multi-level modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Costello, Daniel J., Jr.

    1991-01-01

    Various types of multi-stage decoding for multi-level modulation codes are investigated. It is shown that if the component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding of the code is very small, only a fraction of dB loss in signal to noise ratio at a bit error rate (BER) of 10(exp -6).

  7. Acoustic Droplet Vaporization in Biology and Medicine

    PubMed Central

    Pitt, William G.

    2013-01-01

    This paper reviews the literature regarding the use of acoustic droplet vaporization (ADV) in clinical applications of imaging, embolic therapy, and therapeutic delivery. ADV is a physical process in which the pressure waves of ultrasound induce a phase transition that causes superheated liquid nanodroplets to form gas bubbles. The bubbles provide ultrasonic imaging contrast and other functions. ADV of perfluoropentane was used extensively in imaging for preclinical trials in the 1990s, but its use declined rapidly with the advent of other imaging agents. In the last decade, ADV was proposed and explored for embolic occlusion therapy, drug delivery, aberration correction, and high intensity focused ultrasound (HIFU) sensitization. Vessel occlusion via ADV has been explored in rodents and dogs and may be approaching clinical use. ADV for drug delivery is still in preclinical stages with initial applications to treat tumors in mice. Other techniques are still in preclinical studies but have potential for clinical use in specialty applications. Overall, ADV has a bright future in clinical application because the small size of nanodroplets greatly reduces the rate of clearance compared to larger contrast agent bubbles and yet provides the advantages of ultrasonographic contrast, acoustic cavitation, and nontoxicity of conventional perfluorocarbon contrast agent bubbles. PMID:24350267

  8. Cavitation studies in microgravity

    NASA Astrophysics Data System (ADS)

    Kobel, Philippe; Obreschkow, Danail; Farhat, Mohamed; Dorsaz, Nicolas; de Bosset, Aurele

    The hydrodynamic cavitation phenomenon is a major source of erosion for many industrial systems such as cryogenic pumps for rocket propulsion, fast ship propellers, hydraulic pipelines and turbines. Erosive processes are associated with liquid jets and shockwaves emission fol-lowing the cavity collapse. Yet, fundamental understanding of these processes requires further cavitation studies inside various geometries of liquid volumes, as the bubble dynamics strongly depends the surrounding pressure field. To this end, microgravity represents a unique platform to produce spherical fluid geometries and remove the hydrostatic pressure gradient induced by gravity. The goal of our first experiment (flown on ESA's parabolic flight campaigns 2005 and 2006) was to study single bubble dynamics inside large spherical water drops (having a radius between 8 and 13 mm) produced in microgravity. The water drops were created by a micro-pump that smoothly expelled the liquid through a custom-designed injector tube. Then, the cavitation bubble was generated through a fast electrical discharge between two electrodes immersed in the liquid from above. High-speed imaging allowed to analyze the implications of isolated finite volumes and spherical free surfaces on bubble evolution, liquid jets formation and shock wave dynamics. Of particular interest are the following results: (A) Bubble lifetimes are shorter than in extended liquid volumes, which could be explain by deriving novel corrective terms to the Rayleigh-Plesset equation. (B) Transient crowds of micro-bubbles (smaller than 1mm) appeared at the instants of shockwaves emission. A comparison between high-speed visualizations and 3D N-particle simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion. The aim of our future microgravity experiment is to assess the direct effects of gravity on cavitation bubble collapse through a comparison of single cavitation bubbles collapsing in mi-crogravity, normal gravity, and hypergravity. In particular, we shall investigate the shape of the bubble in its final collapse stage and the amount of energy dissipated in the dominant collapse channels, such as liquid jet, shock wave, and rebound bubble. The highly spherical bubbles will be produced via a point-like plasma generated by a high power laser beam. One major hypothesis that we will test is an increase in shock wave energy with decreasing gravity as a consequence of the higher final sphericity and suppression of liquid jets. To support this, we introduce an analytical model for the gravity-perturbed asymmetric collapse of spherical bubbles, and demonstrate that all initially spherical bubbles develop a gravity-related vertical jet along their collapse.

  9. Numerical modeling of the 3D dynamics of ultrasound contrast agent microbubbles using the boundary integral method

    NASA Astrophysics Data System (ADS)

    Wang, Qianxi; Manmi, Kawa; Calvisi, Michael L.

    2015-02-01

    Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet directions for the coated and uncoated bubble are similar but the jet width and jet velocity are smaller for a coated bubble. The effects of shell thickness and shell viscosity are analyzed and determined to affect the bubble dynamics, including jet development.

  10. Development of fluorous lipid-based nanobubbles for efficiently containing perfluoropropane.

    PubMed

    Oda, Yusuke; Suzuki, Ryo; Mori, Tatsuya; Takahashi, Hideyo; Natsugari, Hideaki; Omata, Daiki; Unga, Johan; Uruga, Hitoshi; Sugii, Mutsumi; Kawakami, Shigeru; Higuchi, Yuriko; Yamashita, Fumiyoshi; Hashida, Mitsuru; Maruyama, Kazuo

    2015-06-20

    Nano-/microbubbles are expected not only to function as ultrasound contrast agents but also as ultrasound-triggered enhancers in gene and drug delivery. Notably, nanobubbles have the ability to pass through tumor vasculature and achieve passive tumor targeting. Thus, nanobubbles would be an attractive tool for use as ultrasound-mediated cancer theranostics. However, the amounts of gas carried by nanobubbles are generally lower than those carried by microbubbles because nanobubbles have inherently smaller volumes. In order to reduce the injection volume and to increase echogenicity, it is important to develop nanobubbles with higher gas content. In this study, we prepared 5 kinds of fluoro-lipids and used these reagents as surfactants to generate "Bubble liposomes", that is, liposomes that encapsulate nanobubbles such that the lipids serve as stabilizers between the fluorous gas and water phases. Bubble liposome containing 1-stearoyl-2-(18,18-difluoro)stearoyl-sn-glycero-3-phosphocholine carried 2-fold higher amounts of C3F8 compared to unmodified Bubble liposome. The modified Bubble liposome also exhibited increased echogenicity by ultrasonography. These results demonstrated that the inclusion of fluoro-lipid is a promising tool for generating nanobubbles with increased efficiency of fluorous gas carrier. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A review of volatile compounds in tektites, and carbon content and isotopic composition of moldavite glass

    NASA Astrophysics Data System (ADS)

    Žák, Karel; SkáLA, Roman; Šanda, Zdeněk.; Mizera, Jiří.

    2012-06-01

    Tektites, natural silica-rich glasses produced during impact events, commonly contain bubbles. The paper reviews published data on pressure and composition of a gas phase contained in the tektite bubbles and data on other volatile compounds which can be released from tektites by either high-temperature melting or by crushing or milling under vacuum. Gas extraction from tektites using high-temperature melting generally produced higher gas yield and different gas composition than the low-temperature extraction using crushing or milling under vacuum. The high-temperature extraction obviously releases volatiles not only from the bubbles, but also volatile compounds contained directly in the glass. Moreover, the gas composition can be modified by reactions between the released gases and the glass melt. Published data indicate that besides CO2 and/or CO in the bubbles, another carbon reservoir is present directly in the tektite glass. To clarify the problem of carbon content and carbon isotopic composition of the tektite glass, three samples from the Central European tektite strewn field—moldavites—were analyzed. The samples contained only 35-41 ppm C with δ13C values in the range from -28.5 to -29.9‰ VPDB. This indicates that terrestrial organic matter was a dominant carbon source during moldavite formation.

  12. Infrared dust bubble CS51 and its interaction with the surrounding interstellar medium

    NASA Astrophysics Data System (ADS)

    Das, Swagat R.; Tej, Anandmayee; Vig, Sarita; Liu, Hong-Li; Liu, Tie; Ishwara Chandra, C. H.; Ghosh, Swarna K.

    2017-12-01

    A multiwavelength investigation of the southern infrared dust bubble CS51 is presented in this paper. We probe the associated ionized, cold dust, molecular and stellar components. Radio continuum emission mapped at 610 and 1300 MHz, using the Giant Metrewave Radio Telescope, India, reveals the presence of three compact emission components (A, B, and C) apart from large-scale diffuse emission within the bubble interior. Radio spectral index map shows the co-existence of thermal and non-thermal emission components. Modified blackbody fits to the thermal dust emission using Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver data is performed to generate dust temperature and column density maps. We identify five dust clumps associated with CS51 with masses and radius in the range 810-4600 M⊙ and 1.0-1.9 pc, respectively. We further construct the column density probability distribution functions of the surrounding cold dust which display the impact of ionization feedback from high-mass stars. The estimated dynamical and fragmentation time-scales indicate the possibility of collect and collapse mechanism in play at the bubble border. Molecular line emission from the Millimeter Astronomy Legacy Team 90 GHz survey is used to understand the nature of two clumps which show signatures of expansion of CS51.

  13. Influence of electrical double-layer interaction on coal flotation.

    PubMed

    Harvey, Paul A; Nguyen, Anh V; Evans, Geoffrey M

    2002-06-15

    In the early 1930s it was first reported that inorganic electrolytes enhance the floatability of coal and naturally hydrophobic minerals. To date, explanations of coal flotation in electrolytes have not been entirely clear. This research investigated the floatability of coal in NaCl and MgCl2 solutions using a modified Hallimond tube to examine the role of the electrical double-layer interaction between bubbles and particles. Flotation of coal was highly dependent on changes in solution pH, type of electrolyte, and electrolyte concentration. Floatability of coal in electrolyte solutions was seen not to be entirely controlled by the electrical double-layer interaction. Coal flotation in low electrolyte concentration solutions decreases with increase in concentration, not expected from the theory since the electrical double layer is compressed, resulting in diminishing the (electrical double layer) repulsion between the bubble and the coal particles. Unlike in low electrolyte concentration solutions, coal flotation in high electrolyte concentration solutions increases with increase in electrolyte concentration. Again, this behavior of coal flotation in high electrolyte concentration solutions cannot be quantitatively explained using the electrical double-layer interaction. Possible mechanisms are discussed in terms of the bubston (i.e., bubble stabilized by ions) phenomenon, which explains the existence of the submicron gas bubbles on the hydrophobic coal surface.

  14. Flow analysis from PIV in engraved champagne tasting glasses: flute versus coupe

    NASA Astrophysics Data System (ADS)

    Beaumont, Fabien; Liger-Belair, Gérard; Polidori, Guillaume

    2015-08-01

    Glass shape, and especially its open aperture, is suspected to play an important role as concerns the kinetics of CO2 and flavor release during champagne tasting. In recent years, much interest has been devoted to depict each and every parameter involved in the release of gaseous CO2 from glasses poured with champagne. One cannot understand the bubbling and aromatic exhalation events in champagne tasting, however, without studying the flow-mixing mechanisms inside the glass. Indeed, a key assumption is that a causal link may exist between flow structures created in the wine due to bubble motion and the process of CO2 release and flavor exhalation. In the present work, two quite emblematic types of champagne drinking vessels are studied. The particle image velocimetry technique has been used in order to reveal the velocity field of the liquid due to the ascending bubble-driven flow for both glasses poured with champagne. The contribution of glass shape on the flow patterns and CO2 release in both glasses are discussed by the use of experimental results. The results show that the continuous flow of ascending bubbles strongly modifies the mixing and convection conditions of the surrounding liquid medium whose behavior is strongly glass shape dependent.

  15. Cavitation clouds created by shock scattering from bubbles during histotripsy

    PubMed Central

    Maxwell, Adam D.; Wang, Tzu-Yin; Cain, Charles A.; Fowlkes, J. Brian; Sapozhnikov, Oleg A.; Bailey, Michael R.; Xu, Zhen

    2011-01-01

    Histotripsy is a therapy that focuses short-duration, high-amplitude pulses of ultrasound to incite a localized cavitation cloud that mechanically breaks down tissue. To investigate the mechanism of cloud formation, high-speed photography was used to observe clouds generated during single histotripsy pulses. Pulses of 5−20 cycles duration were applied to a transparent tissue phantom by a 1-MHz spherically focused transducer. Clouds initiated from single cavitation bubbles that formed during the initial cycles of the pulse, and grew along the acoustic axis opposite the propagation direction. Based on these observations, we hypothesized that clouds form as a result of large negative pressure generated by the backscattering of shockwaves from a single bubble. The positive-pressure phase of the wave inverts upon scattering and superimposes on the incident negative-pressure phase to create this negative pressure and cavitation. The process repeats with each cycle of the incident wave, and the bubble cloud elongates toward the transducer. Finite-amplitude propagation distorts the incident wave such that the peak-positive pressure is much greater than the peak-negative pressure, which exaggerates the effect. The hypothesis was tested with two modified incident waves that maintained negative pressure but reduced the positive pressure amplitude. These waves suppressed cloud formation which supported the hypothesis. PMID:21973343

  16. Production of the biopesticide azadirachtin by hairy root cultivation of Azadirachta indica in liquid-phase bioreactors.

    PubMed

    Srivastava, Smita; Srivastava, Ashok K

    2013-11-01

    Batch cultivation of Azadirachta indica hairy roots was carried out in different liquid-phase bioreactor configurations (stirred-tank, bubble column, bubble column with polypropylene basket, and polyurethane foam disc as root supports) to investigate possible scale-up of the A. indica hairy root culture for in vitro production of the biopesticide azadirachtin. The hairy roots failed to grow in the conventional bioreactor designs (stirred tank and bubble column). However, modified bubble column reactor (with polyurethane foam as root support) configuration facilitated high-density culture of A. indica hairy roots with a biomass production of 9.2 g l(-1)dry weight and azadirachtin yield of 3.2 mg g(-1) leading to a volumetric productivity of azadirachtin as 1.14 mg l(-1) day(-1). The antifeedant activity in the hairy roots was also evaluated by no choice feeding tests with known concentrations of the hairy root powder and its solvent extract separately on the desert locust Schistocerca gregaria. The hairy root powder and its solvent extract demonstrated a high level of antifeedant activity (with an antifeedant index of 97 % at a concentration of 2 % w/v and 83 % at a concentration of 0.05 % (w/v), respectively, in ethanol).

  17. Interaction of strong converging shock wave with SF6 gas bubble

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhai, ZhiGang; Luo, XiSheng

    2018-06-01

    Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.

  18. Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing.

    PubMed

    Parhizkar, Maryam; Stride, Eleanor; Edirisinghe, Mohan

    2014-07-21

    This work investigates the generation of monodisperse microbubbles using a microfluidic setup combined with electrohydrodynamic processing. A basic T-junction microfluidic device was modified by applying an electrical potential difference across the outlet channel. A model glycerol air system was selected for the experiments. In order to investigate the influence of the electric field strength on bubble formation, the applied voltage was increased systematically up to 21 kV. The effect of solution viscosity and electrical conductivity was also investigated. It was found that with increasing electrical potential difference, the size of the microbubbles reduced to ~25% of the capillary diameter whilst their size distribution remained narrow (polydispersity index ~1%). A critical value of 12 kV was found above which no further significant reduction in the size of the microbubbles was observed. The findings suggest that the size of the bubbles formed in the T-junction (i.e. in the absence of the electric field) is strongly influenced by the viscosity of the solution. The eventual size of bubbles produced by the composite device, however, was only weakly dependent upon viscosity. Further experiments, in which the solution electrical conductivity was varied by the addition of a salt indicated that this had a much stronger influence upon bubble size.

  19. Is the wall of a cellulose fiber saturated with liquid whether or not permeable with CO2 dissolved molecules? Application to bubble nucleation in champagne wines.

    PubMed

    Liger-Belair, Gérard; Topgaard, Daniel; Voisin, Cédric; Jeandet, Philippe

    2004-05-11

    In this paper, the transversal diffusion coefficient D perpendicular of CO2 dissolved molecules through the wall of a hydrated cellulose fiber was approached, from the liquid bulk diffusion coefficient of CO2 dissolved molecules modified by an obstruction factor. The porous network between the cellulose microfibrils of the fiber wall was assumed being saturated with liquid. We retrieved information from previous NMR experiments on the self-diffusion of water in cellulose fibers to reach an order of magnitude for the transversal diffusion coefficient of CO2 molecules through the fiber wall. A value of about D perpendicular approximately 0.2D0 was proposed, D0 being the diffusion coefficient of CO2 molecules in the liquid bulk. Because most of bubble nucleation sites in a glass poured with carbonated beverage are cellulose fibers cast off from paper or cloth which floated from the surrounding air, or remaining from the wiping process, this result directly applies to the kinetics of carbon dioxide bubble formation from champagne and sparkling wines. If the cellulose fiber wall was impermeable with regard to CO2 dissolved molecules, it was suggested that the kinetics of bubbling would be about three times less than it is.

  20. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  1. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A., E-mail: kojima.atsushi@jaea.go.jp; Hanada, M.; Tobari, H.

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltagemore » holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.« less

  2. Highly integrated autonomous lab-on-a-chip device for on-line and in situ determination of environmental chemical parameters.

    PubMed

    Martinez-Cisneros, Cynthia; da Rocha, Zaira; Seabra, Antonio; Valdés, Francisco; Alonso-Chamarro, Julián

    2018-06-05

    The successful integration of sample pretreatment stages, sensors, actuators and electronics in microfluidic devices enables the attainment of complete micro total analysis systems, also known as lab-on-a-chip devices. In this work, we present a novel monolithic autonomous microanalyzer that integrates microfluidics, electronics, a highly sensitive photometric detection system and a sample pretreatment stage consisting on an embedded microcolumn, all in the same device, for on-line determination of relevant environmental parameters. The microcolumn can be filled/emptied with any resin or powder substrate whenever required, paving the way for its application to several analytical processes: separation, pre-concentration or ionic-exchange. To promote its autonomous operation, avoiding issues caused by bubbles in photometric detection systems, an efficient monolithic bubble removal structure was also integrated. To demonstrate its feasibility, the microanalyzer was successfully used to determine nitrate and nitrite in continuous flow conditions, providing real time and continuous information.

  3. A non-oscillatory energy-splitting method for the computation of compressible multi-fluid flows

    NASA Astrophysics Data System (ADS)

    Lei, Xin; Li, Jiequan

    2018-04-01

    This paper proposes a new non-oscillatory energy-splitting conservative algorithm for computing multi-fluid flows in the Eulerian framework. In comparison with existing multi-fluid algorithms in the literature, it is shown that the mass fraction model with isobaric hypothesis is a plausible choice for designing numerical methods for multi-fluid flows. Then we construct a conservative Godunov-based scheme with the high order accurate extension by using the generalized Riemann problem solver, through the detailed analysis of kinetic energy exchange when fluids are mixed under the hypothesis of isobaric equilibrium. Numerical experiments are carried out for the shock-interface interaction and shock-bubble interaction problems, which display the excellent performance of this type of schemes and demonstrate that nonphysical oscillations are suppressed around material interfaces substantially.

  4. Impact of red giant/AGB winds on active galactic nucleus jet propagation

    NASA Astrophysics Data System (ADS)

    Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.

    2017-10-01

    Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to the mass-load of the jet and thus affect its dynamics. Shear layer mass-entrainment could be important. The interaction structure can be a source of significant non-thermal emission.

  5. Finite-sized gas bubble motion in a blood vessel: Non-Newtonian effects

    PubMed Central

    Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S.; Eckmann, David M.

    2009-01-01

    We have numerically investigated the axisymmetric motion of a finite-sized nearly occluding air bubble through a shear-thinning Casson fluid flowing in blood vessels of circular cross section. The numerical solution entails solving a two-layer fluid model—a cell-free layer and a non-Newtonian core together with the gas bubble. This problem is of interest to the field of rheology and for gas embolism studies in health sciences. The numerical method is based on a modified front-tracking method. The viscosity expression in the Casson model for blood (bulk fluid) includes the hematocrit [the volume fraction of red blood cells (RBCs)] as an explicit parameter. Three different flow Reynolds numbers, Reapp=ρlUmaxd/μapp, in the neighborhood of 0.2, 2, and 200 are investigated. Here, ρl is the density of blood, Umax is the centerline velocity of the inlet Casson profile, d is the diameter of the vessel, and μapp is the apparent viscosity of whole blood. Three different hematocrits have also been considered: 0.45, 0.4, and 0.335. The vessel sizes considered correspond to small arteries, and small and large arterioles in normal humans. The degree of bubble occlusion is characterized by the ratio of bubble to vessel radius (aspect ratio), λ, in the range 0.9≤λ≤1.05. For arteriolar flow, where relevant, the Fahraeus-Lindqvist effects are taken into account. Both horizontal and vertical vessel geometries have been investigated. Many significant insights are revealed by our study: (i) bubble motion causes large temporal and spatial gradients of shear stress at the “endothelial cell” (EC) surface lining the blood vessel wall as the bubble approaches the cell, moves over it, and passes it by; (ii) rapid reversals occur in the sign of the shear stress (+ → − → +) imparted to the cell surface during bubble motion; (iii) large shear stress gradients together with sign reversals are ascribable to the development of a recirculation vortex at the rear of the bubble; (iv) computed magnitudes of shear stress gradients coupled with their sign reversals may correspond to levels that cause injury to the cell by membrane disruption through impulsive compression and stretching; and (v) for the vessel sizes and flow rates investigated, gravitational effects are negligible. PMID:18851139

  6. Effect of Marangoni Convection Generated by Voids on Segregation During Low-G and 1-G Solidification

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Fripp, A.; Rashidnia, N.; deGroh, H.

    2001-01-01

    Solidification experiments, especially microgravity solidification experiments, are often compromised by the evolution of unwanted voids or bubbles in the melt. Although these voids and/or bubbles are highly undesirable, there is currently no effective means of preventing their formation or of eliminating their adverse effects, particularly during microgravity experiments. Marangoni convection caused by these voids can drastically change the transport processes in the melt. Recent microgravity experiments by Matthiesen (1) Andrews (2) and Fripp (3) are perfect examples of how voids and bubbles can affect the outcome of costly space experiments and significantly increase the level of difficulty in interpreting their results. Formation of bubbles have caused problems in microgravity experiments for a long time. Even in the early Skylab mission an unexpectedly large number of bubbles were detected in the four materials processing experiments reported by Papazian and Wilcox (4). They demonstrated that while during ground-based tests bubbles were seen to detach from the interface easily and float to the top of the melt, in low-gravity tests no detachment from the interface occurred and large voids were grown in the crystal. More recently, the lead-tin-telluride crystal growth experiment of Fripp et al.(3) flown aboard the USMP-3 mission has provided very interesting results. The purpose of the study was to investigate the effect of natural convection on the solidification process by growing the samples at different orientations with respect to the gravitational field. Large pores and voids were found in the three solid crystal samples processed in space. Post-growth characterization of the compositional profiles of the cells indicated considerable levels of mixing even in the sample grown in the hot-on-top stable configuration. The mixing was attributed to thermocapillary convection caused by the voids and bubbles which evolved during growth. Since the thermocapillary convection is orientation-independent, diffusion-controlled growth was not possible in any of the samples, even the top-heated one. These results are consistent with recent studies of thermocapillary convection generated by a bubble on a heated surface undertaken by Kassemi and Rashidnia (5-7) where it is numerically and experimentally shown that the thermocapillary flow generated by a bubble in a model fluid (silicone oil) can drastically modify the temperature field through vigorous mixing of the fluid around it, especially under microgravity conditions.

  7. Flow in linearly sheared two-dimensional foams: From bubble to bulk scale.

    PubMed

    Katgert, Gijs; Latka, Andrzej; Möbius, Matthias E; van Hecke, Martin

    2009-06-01

    We probe the flow of two-dimensional (2D) foams, consisting of a monolayer of bubbles sandwiched between a liquid bath and glass plate, as a function of driving rate, packing fraction, and degree of disorder. First, we find that bidisperse, disordered foams exhibit strongly rate-dependent and inhomogeneous (shear-banded) velocity profiles, while monodisperse ordered foams are also shear banded but essentially rate independent. Second, we adapt a simple model [E. Janiaud, D. Weaire, and S. Hutzler, Phys. Rev. Lett. 97, 038302 (2006)] based on balancing the averaged drag forces between the bubbles and the top plate F[over ]_{bw} and the averaged bubble-bubble drag forces F[over ]_{bb} by assuming that F[over ]_{bw} approximately v;{2/3} and F[over ]_{bb} approximately ( partial differential_{y}v);{beta} , where v and ( partial differential_{y}v) denote average bubble velocities and gradients. This model captures the observed rate-dependent flows for beta approximately 0.36 , and the rate independent flows for beta approximately 0.67 . Third, we perform independent rheological measurements of F[over ]_{bw} and F[over ]_{bb} , both for ordered and disordered systems, and find these to be fully consistent with the forms assumed in the simple model. Disorder thus leads to a modified effective exponent beta . Fourth, we vary the packing fraction phi of the foam over a substantial range and find that the flow profiles become increasingly shear banded when the foam is made wetter. Surprisingly, the model describes flow profiles and rate dependence over the whole range of packing fractions with the same power-law exponents-only a dimensionless number k that measures the ratio of the prefactors of the viscous drag laws is seen to vary with packing fraction. We find that k approximately (phi-phi_{c});{-1} , where phi_{c} approximately 0.84 corresponds to the 2D jamming density, and suggest that this scaling follows from the geometry of the deformed facets between bubbles in contact. Overall, our work shows that the presence of disorder qualitatively changes the effective bubble-bubble drag forces and suggests a route to rationalize aspects of the ubiquitous Herschel-Bulkley (power-law) rheology observed in a wide range of disordered materials.

  8. Exploring the Use of Three-Dimensional Multi-User Virtual Environments for Online Problem-Based Learning

    ERIC Educational Resources Information Center

    Omale, Nicholas M.

    2010-01-01

    This exploratory case study examines how three media attributes in 3-D MUVEs--avatars, 3-D spaces and bubble dialogue boxes--affect interaction in an online problem-based learning (PBL) activity. The study participants were eleven undergraduate students enrolled in a 200-level, three-credit-hour technology integration course at a Midwestern…

  9. Bispectrum from open inflation

    NASA Astrophysics Data System (ADS)

    Sugimura, Kazuyuki; Komatsu, Eiichiro

    2013-11-01

    We calculate the bispectrum of primordial curvature perturbations, ζ, generated during ``open inflation.'' Inflation occurs inside a bubble nucleated via quantum tunneling from the background false vacuum state. Our universe lives inside the bubble, which can be described as a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) universe with negative spatial curvature, undergoing slow-roll inflation. We pay special attention to the issue of an initial state for quantum fluctuations. A ``vacuum state'' defined by a positive-frequency mode in de Sitter space charted by open coordinates is different from the Euclidean vacuum (which is equivalent to the so-called ``Bunch-Davies vacuum'' defined by a positive-frequency mode in de Sitter space charted by flat coordinates). Quantum tunneling (bubble nucleation) then modifies the initial state away from the original Euclidean vacuum. While most of the previous study on modifications of the initial quantum state introduces, by hand, an initial time at which the quantum state is modified as well as the form of the modification, an effective initial time naturally emerges and the form is fixed by quantum tunneling in open inflation models. Therefore, open inflation enables a self-consistent computation of the effect of a modified initial state on the bispectrum. We find a term which goes as langleζk1ζk2ζk3ranglepropto1/k12k34 in the so-called squeezed configurations, k3 << k1 ≈ k2, in agreement with the previous study on modifications of the initial state. The bispectrum in the exact folded limit, e.g., k1 = k2+k3, is also enhanced and remains finite. However, these terms are exponentially suppressed when the wavelength of ζ is smaller than the curvature radius of the universe. The leading-order bispectrum is equal to the usual one from single-field slow-roll inflation; the terms specific for open inflation arise only in the sub-leading order when the wavelength of ζ is smaller than the curvature radius.

  10. Active submarine eruption of boninite in the northeastern Lau Basin

    NASA Astrophysics Data System (ADS)

    Resing, Joseph A.; Rubin, Kenneth H.; Embley, Robert W.; Lupton, John E.; Baker, Edward T.; Dziak, Robert P.; Baumberger, Tamara; Lilley, Marvin D.; Huber, Julie A.; Shank, Timothy M.; Butterfield, David A.; Clague, David A.; Keller, Nicole S.; Merle, Susan G.; Buck, Nathaniel J.; Michael, Peter J.; Soule, Adam; Caress, David W.; Walker, Sharon L.; Davis, Richard; Cowen, James P.; Reysenbach, Anna-Louise; Thomas, Hans

    2011-11-01

    Subduction of oceanic crust and the formation of volcanic arcs above the subduction zone are important components in Earth's geological and geochemical cycles. Subduction consumes and recycles material from the oceanic plates, releasing fluids and gases that enhance magmatic activity, feed hydrothermal systems, generate ore deposits and nurture chemosynthetic biological communities. Among the first lavas to erupt at the surface from a nascent subduction zone are a type classified as boninites. These lavas contain information about the early stages of subduction, yet because most subduction systems on Earth are old and well-established, boninite lavas have previously only been observed in the ancient geological record. Here we observe and sample an active boninite eruption occurring at 1,200m depth at the West Mata submarine volcano in the northeast Lau Basin, southwest Pacific Ocean. We find that large volumes of H2O, CO2 and sulphur are emitted, which we suggest are derived from the subducting slab. These volatiles drive explosive eruptions that fragment rocks and generate abundant incandescent magma-skinned bubbles and pillow lavas. The eruption has been ongoing for at least 2.5 years and we conclude that this boninite eruption is a multi-year, low-mass-transfer-rate eruption. Thus the Lau Basin may provide an important site for the long-term study of submarine volcanic eruptions related to the early stages of subduction.

  11. Lumped Multi-Bubble Analysis of Injection Cooling System for Storage of Cryogenic Liquids

    NASA Astrophysics Data System (ADS)

    Saha, Pritam; Sandilya, Pavitra

    2017-12-01

    Storage of cryogenic liquids is a critical issue in many cryogenic applications. Subcooling of the liquid by bubbling a gas has been suggested to extend the storage period by reducing the boil-off loss. Liquid evaporation into the gas may cause liquid subcooling by extracting the latent heat of vaporization from the liquid. The present study aims at studying the factors affecting the liquid subcooling during gas injection. A lumped parameter model is presented to capture the effects of bubble dynamics (coalescence, breakup, deformation etc.) on the heat and mass transport between the gas and the liquid. The liquid subcooling has been estimated as a function of the key operating variables such as gas flow rate and gas injection temperature. Numerical results have been found to predict the change in the liquid temperature drop reasonably well when compared with the previously reported experimental results. This modelling approach can therefore be used in gauging the significance of various process variables on the liquid subcooling by injection cooling, as well as in designing and rating an injection cooling system.

  12. First Observations of a Foreshock Bubble at Earth: Implications for Magnetospheric Activity and Energetic Particle Acceleration

    NASA Technical Reports Server (NTRS)

    Turner, D. L.; Omidi, N.; Sibeck, D. G.; Angelopoulos, V.

    2011-01-01

    Earth?s foreshock, which is the quasi-parallel region upstream of the bow shock, is a unique plasma region capable of generating several kinds of large-scale phenomena, each of which can impact the magnetosphere resulting in global effects. Interestingly, such phenomena have also been observed at planetary foreshocks throughout our solar system. Recently, a new type of foreshock phenomena has been predicted: foreshock bubbles, which are large-scale disruptions of both the foreshock and incident solar wind plasmas that can result in global magnetospheric disturbances. Here we present unprecedented, multi-point observations of foreshock bubbles at Earth using a combination of spacecraft and ground observations primarily from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, and we include detailed analysis of the events? global effects on the magnetosphere and the energetic ions and electrons accelerated by them, potentially by a combination of first and second order Fermi and shock drift acceleration processes. This new phenomena should play a role in energetic particle acceleration at collisionless, quasi-parallel shocks throughout the Universe.

  13. Control of treatment size in cavitation-enhanced high-intensity focused ultrasound using radio-frequency echo signals

    NASA Astrophysics Data System (ADS)

    Tomiyasu, Kentaro; Takagi, Ryo; Iwasaki, Ryosuke; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    In high-intensity focused ultrasound (HIFU) treatment, controlling the ultrasound dose at each focal target spot is important because it is a problem that the length of the coagulated region in front of the focal point deviates owing to the differences in absorption in each focal target spot and attenuation in the intervening tissues. In this study, the detected changes in the power spectra of HIFU echoes were used by controlling the HIFU duration in the “trigger HIFU” sequence with the aim to increase coagulation size through the enhancement of the ultrasonic heating by the cavitation induced by the preceding extremely high intensity short “trigger” pulse. The result shows that this method can be used to detect boiling bubbles and the following generated cavitation bubbles at their early stage. By automatically stopping HIFU exposure immediately after detecting the bubbles, overheating was prevented and the deviation of the length of the coagulated region was reduced.

  14. Crystal Structures of the E. coli Transcription Initiation Complexes with a Complete Bubble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Yuhong; Steitz, Thomas A.

    2015-05-01

    During transcription initiation, RNA polymerase binds to promoter DNA to form an initiation complex containing a DNA bubble and enters into abortive cycles of RNA synthesis before escaping the promoter to transit into the elongation phase for processive RNA synthesis. Here we present the crystal structures of E. coli transcription initiation complexes containing a complete transcription bubble and de novo synthesized RNA oligonucleotides at about 6-Å resolution. The structures show how RNA polymerase recognizes DNA promoters that contain spacers of different lengths and reveal a bridging interaction between the 5'-triphosphate of the nascent RNA and the σ factor that maymore » function to stabilize the short RNA-DNA hybrids during the early stage of transcription initiation. The conformation of the RNA oligonucleotides and the paths of the DNA strands in the complete initiation complexes provide insights into the mechanism that controls both the abortive and productive RNA synthesis.« less

  15. Real-time observation of the initiation of RNA polymerase II transcription.

    PubMed

    Fazal, Furqan M; Meng, Cong A; Murakami, Kenji; Kornberg, Roger D; Block, Steven M

    2015-09-10

    Biochemical and structural studies have shown that the initiation of RNA polymerase II transcription proceeds in the following stages: assembly of the polymerase with general transcription factors and promoter DNA in a 'closed' preinitiation complex (PIC); unwinding of about 15 base pairs of the promoter DNA to form an 'open' complex; scanning downstream to a transcription start site; synthesis of a short transcript, thought to be about 10 nucleotides long; and promoter escape. Here we have assembled a 32-protein, 1.5-megadalton PIC derived from Saccharomyces cerevisiae, and observe subsequent initiation processes in real time with optical tweezers. Contrary to expectation, scanning driven by the transcription factor IIH involved the rapid opening of an extended transcription bubble, averaging 85 base pairs, accompanied by the synthesis of a transcript up to the entire length of the extended bubble, followed by promoter escape. PICs that failed to achieve promoter escape nevertheless formed open complexes and extended bubbles, which collapsed back to closed or open complexes, resulting in repeated futile scanning.

  16. Multi-stage decoding for multi-level block modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao

    1991-01-01

    Various types of multistage decoding for multilevel block modulation codes, in which the decoding of a component code at each stage can be either soft decision or hard decision, maximum likelihood or bounded distance are discussed. Error performance for codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. It was found that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. It was found that the difference in performance between the suboptimum multi-stage soft decision maximum likelihood decoding of a modulation code and the single stage optimum decoding of the overall code is very small, only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  17. New clinical staging for pharyngeal surgery in obstructive sleep apnea patients.

    PubMed

    Vidigal, Tatiana Aguiar; Haddad, Fernanda Louise Martinho; Cabral, Rafael Ferreira Pacheco; Oliveira, Maria Claudia Soares; Cavalcante, Ricardo Rodrigues; Bittencourt, Lia Rita Azeredo; Tufik, Sergio; Gregório, Luis Carlos

    2014-01-01

    The success of pharyngeal surgery in the treatment of obstructive sleep apnea syndrome depends on the appropriate selection of patients. To propose a new staging for indication of pharyngeal surgery in obstructive sleep apnea syndrome. A total of 54 patients undergoing extended tonsillectomy were retrospectively included, divided into six stages. Stage I: patients with palatine tonsils grade 3/4 and modified Mallampati index 1/2; stage II: palatine tonsils 3/4 and modified Mallampati index 3/4; stage III: palatine tonsils 1/2 and modified Mallampati index 1/2; stage IV: palatine tonsils 1/2 and modified Mallampati index 3/4; stage V: body mass index ≥40 kg/m(2) with palatine tonsils 3/4 and modified Mallampati index 1, 2, 3, or 4. Stage VI: body mass index ≥40 with palatine tonsils 1/2 and modified Mallampati index 1, 2, 3, or 4. The surgical success rates were 88.9%, 75.0%, 35.7%, 38.5%, and 100.0% in stages I-V. The presence of hypertrophic palatine tonsils was the anatomical factor in common in the most successful stages (I, II, and V), regardless of body mass index. Although the modified Mallampati index classes 3 and 4 reduced the success rate of surgery in patients with hypertrophic tonsils (stage II), the presence of modified Mallampati index classes 1 and 2 did not favor surgical success in patients with normal tonsils (stage III). Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  18. Three-Dimensional Macroporous Polypyrrole-Derived Graphene Electrode Prepared by the Hydrogen Bubble Dynamic Template for Supercapacitors and Metal-Free Catalysts.

    PubMed

    Yang, Xiaoqing; Liu, Anran; Zhao, Yuewu; Lu, Huijia; Zhang, Yuanjian; Wei, Wei; Li, Ying; Liu, Songqin

    2015-10-28

    We report a general method for the fabrication of three-dimensional (3D) macroporous graphene/conducting polymer modified electrode and nitrogen-doped graphene modified electrode. This method involves three consecutive steps. First, the 3D macroporous graphene (3D MG) electrode was fabricated electrochemically by reducing graphene oxide dispersion on different conducting substrates and used hydrogen bubbles as the dynamic template. The morphology and pore size of 3D MG could be governed by the use of surfactants and the dynamics of bubble generation and departure. Second, 3D macroporous graphene/polypyrrole (MGPPy) composites were constructed via directly electropolymerizing pyrrole monomer onto the networks of 3D MG. Due to the benefit of the good conductivity of 3D MG and pseudocapacitance of PPy, the composites manifest outstanding area specific capacitance of 196 mF cm(-2) at a current density of 1 mA cm(-2). The symmetric supercapacitor device assembled by the composite materials had a good capacity property. Finally, the nitrogen-doped MGPPy (N-MGPPy or MGPPy-X) with 3D macroporous nanostructure and well-regulated nitrogen doping was prepared via thermal treatment of the composites. The resultant N-MGPPy electrode was explored as a good electrocatalyst for the oxygen reduction reaction (ORR) with the current density value of 5.56 mA cm(-2) (-0.132 V vs Ag/AgCl). Moreover, the fuel tolerance and durability under the electrochemical environment of the N-MGPPy catalyst were found to be superior to the Pt/C catalyst.

  19. Experimental and numerical investigation of reactive shock-accelerated flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonazza, Riccardo

    2016-12-20

    The main goal of this program was to establish a qualitative and quantitative connection, based on the appropriate dimensionless parameters and scaling laws, between shock-induced distortion of astrophysical plasma density clumps and their earthbound analog in a shock tube. These objectives were pursued by carrying out laboratory experiments and numerical simulations to study the evolution of two gas bubbles accelerated by planar shock waves and compare the results to available astrophysical observations. The experiments were carried out in an vertical, downward-firing shock tube, 9.2 m long, with square internal cross section (25×25 cm 2). Specific goals were to quantify themore » effect of the shock strength (Mach number, M) and the density contrast between the bubble gas and its surroundings (usually quantified by the Atwood number, i.e. the dimensionless density difference between the two gases) upon some of the most important flow features (e.g. macroscopic properties; turbulence and mixing rates). The computational component of the work performed through this program was aimed at (a) studying the physics of multi-phase compressible flows in the context of astrophysics plasmas and (b) providing a computational connection between laboratory experiments and the astrophysical application of shock-bubble interactions. Throughout the study, we used the FLASH4.2 code to run hydrodynamical and magnetohydrodynamical simulations of shock bubble interactions on an adaptive mesh.« less

  20. Origin of accelerated and hindered sedimentation of two particles in wet foam.

    PubMed

    Jing, Zefeng; Feng, Chenchen; Wang, Shuzhong; Xu, Donghai

    2018-03-20

    To explore the origin of interactional settling behaviors of multi-particles in wet foam, the sedimentation of two particles placed one above the other as well as placed side by side is studied. According to the average settling velocity in experiment and the average settling drag force of the two particles in numerical simulation, we show that the particles display accelerated sedimentation as placed one above the other while they display hindered sedimentation in the case of the ones positioned side by side. Furthermore, the evolution of structure and force parameters of the bubbles, such as T1 topological events, displacement vector and principal stress fields, shows that the reciprocal action between the foam and the settling particles placed side by side is more significant. The different levels of interplay for these two settling cases also give rise to the diverse changes of bubble pressure response. The bubble pressure component of the average drag force is higher for the particles placed side by side. Especially, for the first time, it reveals that these interactional sedimentation behaviors in the foam are mainly attributed to the changed pressure of bubbles caused by these settling particles at the mesoscopic level. The present results may suggest potential explanations to the cause of the complex accelerated or hindered sedimentation of more particles in wet foam.

  1. Stability Analysis of an Encapsulated Microbubble against Gas Diffusion

    PubMed Central

    Katiyar, Amit; Sarkar, Kausik

    2009-01-01

    Linear stability analysis is performed for a mathematical model of diffusion of gases from an encapsulated microbubble. It is an Epstein-Plesset model modified to account for encapsulation elasticity and finite gas permeability. Although, bubbles, containing gases other than air is considered, the final stable bubble, if any, contains only air, and stability is achieved only when the surrounding medium is saturated or oversaturated with air. In absence of encapsulation elasticity, only a neutral stability is achieved for zero surface tension, the other solution being unstable. For an elastic encapsulation, different equilibrium solutions are obtained depending on the saturation level and whether the surface tension is smaller or higher than the elasticity. For an elastic encapsulation, elasticity can stabilize the bubble. However, imposing a non-negativity condition on the effective surface tension (consisting of reference surface tension and the elastic stress) leads to an equilibrium radius which is only neutrally stable. If the encapsulation can support net compressive stress, it achieves actual stability. The linear stability results are consistent with our recent numerical findings. Physical mechanisms for the stability or instability of various equilibriums are provided. PMID:20005522

  2. Dynamics and acoustics of a cavitating Venturi flow using a homogeneous air-propylene glycol mixture

    NASA Astrophysics Data System (ADS)

    Navarrete, M.; Naude, J.; Mendez, F.; Godínez, F. A.

    2015-12-01

    Dynamics and acoustics generated in a cavitating Venturi tube are followed up as a function of the input power of a centrifugal pump. The pump of 5 hp with a modified impeller to produce uniform bubbly flow, pumps 70 liters of propylene glycol in a closed loop (with a water cooling system), in which the Venturi is arranged. The goal was to obtain correlations among acoustical emission, dynamics of the shock waves and the light emission from cavitation bubbles. The instrumentation includes: two piezoelectric transducers, a digital camera, a high-speed video camera, and photomultipliers. As results, we show the cavitation patterns as function of the pump power, and a graphical template of the distribution of the Venturi conditions as a function of the cavitation parameter. Our observations show for the first time the sudden formation of bubble clouds in the straight portion of the pipe after the diverging section of the Venturi. We assume that this is due to pre-existing of nuclei-cloud structures which suddenly grow up by the tensile tails of propagating shock waves (producing a sudden drop in pressure).

  3. A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Hosangadi, Ashvin; Ahuja, Vineet

    2005-01-01

    Contents include the following: Background on thermal effects in cavitation. Physical properties of hydrogen. Multi-phase cavitation with thermal effect. Solution procedure. Cavitation model overview. Cavitation source terms. New cavitation model. Source term for bubble growth. One equation les model. Unsteady ogive simulations: liquid nitrogen. Unsteady incompressible flow in a pipe. Time averaged cavity length for NACA15 flowfield.

  4. Protective immunity provided by a new modified SERA protein peptide: its immunogenetic characteristics and correlation with 3D structure.

    PubMed

    Bermúdez, Adriana; Moreno-Vranich, Armando; Patarroyo, Manuel E

    2012-07-01

    The serine repeat antigen (SERA) protein is a leading candidate molecule for inclusion as a component in a multi-antigen, multi-stage, minimal subunit-based, chemically synthesised anti-malarial vaccine. Peptides having high red blood cell binding affinity (known as HABPs) have been identified in this protein. The 6733 HABP was located in the C-terminal portion of the 47-kDa fragment while HABP 6754 was located in the C-terminal region of the 56-kDa fragment. These conserved HABPs failed to induce an immune response. Critical red blood cell binding residues and/or their neighbours (assessed by glycine-analogue scanning) were replaced by others having the same mass, volume and surface but different polarity, rendering some of them highly immunogenic when assessed by antibody production against the parasite or its proteins and protection-inducers against experimental challenge with a highly infectious Aotus monkey-adapted Plasmodium falciparum strain. This manuscript presents some modified HABPs as vaccine candidate components for enriching our tailor-made anti-malarial vaccine repertoire, as well as their 3D structure obtained by 1H-NMR displaying a short-structured region, differently from the native ones having random structures.

  5. Atomistic simulations of dislocation dynamics in δ-Pu-Ga alloys

    NASA Astrophysics Data System (ADS)

    Karavaev, A. V.; Dremov, V. V.; Ionov, G. V.

    2017-12-01

    Molecular dynamics with the modified embedded atom model (MEAM) for interatomic interaction is applied to direct simulations of dislocation dynamics in fcc δ-phase Pu-Ga alloys. First, parameters of the MEAM potential are fitted to accurately reproduce experimental phonon dispersion curves and phonon density of states at ambient conditions. Then the stress-velocity dependence for edge dislocations as well as Pierls stress are obtained in direct MD modeling of dislocation motion using the shear stress relaxation technique. The simulations are performed for different gallium concentrations and the dependence of static yield stress on Ga concentration derived demonstrates good agreement with experimental data. Finally, the influence of radiation defects (primary radiation defects, nano-pores, and radiogenic helium bubbles) on dislocation dynamics is investigated. It is demonstrated that uniformly distributed vacancies and nano-pores have little effect on dislocation dynamics in comparison with that of helium bubbles. The results of the MD simulations evidence that the accumulation of the radiogenic helium in the form of nanometer-sized bubbles is the main factor affecting strength properties during long-term storage. The calculated dependence of static yield stress on helium bubbles concentration for fcc Pu 1 wt .% Ga is in good agreement with that obtained in experiments on accelerated aging. The developed technique of static yield stress evaluation is applicable to δ-phase Pu-Ga alloys with arbitrary Ga concentrations.

  6. Physical conditions for trapping air by a microtrichia-covered insect cuticle during temporary submersion

    NASA Astrophysics Data System (ADS)

    Neumann, Dietrich; Woermann, Dietrich

    2009-08-01

    The intertidal midge Clunio, which reproduces on exposed rocky seashores, becomes enclosed in an irregularly shaped air bubble during short submersion by incoming waves. This water-repellent property of Clunio’s cuticle is caused by a complete cover of hydrophobic microtrichia offering an effective surf tolerance. These microtrichia not only trap a thin air layer above the cuticle but also maintain a larger air bubble between the insect’s ventral side and legs. The effectiveness of the water repellence was quantitatively characterised on the basis of a known model (Crisp and Thorpe, Discuss Faraday Soc 3:210-220, 1948). The parameters of the model are the contact angle θ (>90°) at the contact line of air/water/microtrichia and the distance between individual microtrichia and their radius. When the microtrichia are 1.1 μm apart and have a radius of 0.1 μm and an estimated contact angle θ of 140°, the air layer is stable against hydrostatic pressures of up to 3 m water column. As shown by a modified version of the model, considerably larger air bubbles can be trapped by the microtrichia cover of the legs up to distances of 0.5 mm from the body. The widely spaced (about 8 μm apart) and longer setae of Clunio are not involved in the formation of air layers and air bubble.

  7. Optimization of multi-stage dynamic treatment regimes utilizing accumulated data.

    PubMed

    Huang, Xuelin; Choi, Sangbum; Wang, Lu; Thall, Peter F

    2015-11-20

    In medical therapies involving multiple stages, a physician's choice of a subject's treatment at each stage depends on the subject's history of previous treatments and outcomes. The sequence of decisions is known as a dynamic treatment regime or treatment policy. We consider dynamic treatment regimes in settings where each subject's final outcome can be defined as the sum of longitudinally observed values, each corresponding to a stage of the regime. Q-learning, which is a backward induction method, is used to first optimize the last stage treatment then sequentially optimize each previous stage treatment until the first stage treatment is optimized. During this process, model-based expectations of outcomes of late stages are used in the optimization of earlier stages. When the outcome models are misspecified, bias can accumulate from stage to stage and become severe, especially when the number of treatment stages is large. We demonstrate that a modification of standard Q-learning can help reduce the accumulated bias. We provide a computational algorithm, estimators, and closed-form variance formulas. Simulation studies show that the modified Q-learning method has a higher probability of identifying the optimal treatment regime even in settings with misspecified models for outcomes. It is applied to identify optimal treatment regimes in a study for advanced prostate cancer and to estimate and compare the final mean rewards of all the possible discrete two-stage treatment sequences. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Gas embolotherapy: Bubble evolution in acoustic droplet vaporization and design of a benchtop microvascular model

    NASA Astrophysics Data System (ADS)

    Wong, Zheng Zheng

    This work was motivated by an ongoing development of a potential embolotherapy technique to occlude blood flow to tumors using gas bubbles selectively formed by in vivo acoustic droplet vaporization (ADV) of liquid perfluorocarbon droplets. Mechanisms behind the ADV, transport and lodging of emboli need to be understood before gas embolotherapy can translate to the clinic. Evolution of a bubble from acoustic droplet vaporization in a rigid tube, under physiological and room temperature conditions, was observed via ultra-high speed imaging. Effective radii and radial expansion ratios were obtained by processing the images using Image] software. At physiological temperature, a radial expansion ratio of 5.05 was attained, consistent with theoretical prediction. The initial radial growth rate was linear, after which the growth rate increased proportionally with square root of time. Nondimensionalization revealed that the subsequent growth rate also varied inversely with square root of initial radius. Eventually growth became asymptotic. No collapse was observed. A theoretical model derived from a modified Bernoulli equation, and a computational model by Ye & Bull (2004), were compared respectively with experimental results. Initial growth rates were predicted correctly by both models. Experimental results showed heavy damping of growth rate as the bubble grew towards the wall, whereas both models predicted an overshoot in growth followed by multiple oscillations. The theoretical model broke down near the wall; the computational model gave a reasonable bubble shape near the wall but would require correct initial pressure values to be accurate. At room temperature, the expansion ratio shot to 1.43 initially and oscillated down to 1.11, far below the theoretical prediction. Failure of the bubble to expand fully could be due to unconsumed or condensed liquid perfluorocarbon. A new fabrication method via non-lithographic means was devised to make a circular-lumen microchannel out of PDMS, with a diameter as small as 80 microns to mimic the size of a medium arteriole. The microchannel was endothelialized successfully, with a fairly homogeneous distribution along the length. Cell viability assays confirmed the viability of cells maintained in the microchannel. Bubble motion experiments performed with the benchtop microvascular model demonstrated its feasibility.

  9. Single-stage multi-level construct design incorporating ribs and chest wall reconstruction after en bloc resection of spinal tumour.

    PubMed

    Xiao, Jianru; He, Shaohui; Jiao, Jian; Wan, Wei; Xu, Wei; Zhang, Dan; Liu, Weibo; Zhong, Nanzhe; Liu, Tielong; Wei, Haifeng; Yang, Xinghai

    2018-03-01

    Multi-level reconstruction incorporating the chest wall and ribs is technically demanding after multi-segmental total en bloc spondylectomy (TES) of thoracic spinal tumours. Few surgical techniques are reported for effective reconstruction. A novel and straightforward technical reconstruction through posterior-lateral approach was presented to solve the extensive chest wall defect and prevent occurrences of severe respiratory dysfunctions after performing TES. The preliminary outcomes of surgery were reviewed. Multi-level TES was performed for five patients with primary or recurrent thoracic spinal malignancies through posterior-lateral approach. The involved ribs and chest wall were removed to achieve tumour-free margin. Then titanium mesh with allograft bone and pedicle screw-rod system were adopted for the circumferential spinal reconstruction routinely. Titanium rods were modified accordingly to attach to the screw-rod system proximally, and the distal end of rods was dynamically inserted into the ribs. The mean surgery time was 6.7 hours (range 5-8), with the average blood loss of 3260 ml (range 2300-4500). No severe neurological complications were reported while three patients had complaints of slight numbness of chest skin (no. 1, 3, and 5). No severe respiratory complications occurred during peri-operative period. No implant failure and no local recurrence or distant metastases were observed with an average follow-up of 12.5 months. The single-stage reconstructions incorporating spine and chest wall are straightforward and easy to perform. The preliminary outcomes of co-reconstructions are promising and favourable. More studies and longer follow-up are required to validate this technique.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewangan, L. K.; Janardhan, P.; Baug, T.

    In order to investigate star-formation (SF) processes in extreme environments, we have carried out a multi-wavelength analysis of the mid-infrared bubble N46, which hosts a WN7 Wolf–Rayet (W–R) star. We have used {sup 13}CO line data to trace an expanding shell surrounding the W–R star containing about five condensations within the molecular cloud associated with the bubble. The W–R star is associated with a powerful stellar wind having a mechanical luminosity of ∼4 × 10{sup 37} erg s{sup 1}. A deviation of the H -band starlight mean polarization angles around the bubble has also been traced, indicating the impact ofmore » stellar wind on the surroundings. The Herschel temperature map shows a temperature range of ∼18–24 K toward the five molecular condensations. The photometric analysis reveals that these condensations are associated with the identified clusters of young stellar objects, revealing ongoing SF process. The densest among these five condensations (peak N(H{sub 2}) ∼9.2 × 10{sup 22} cm{sup 2} and A{sub V} ∼ 98 mag) is associated with a 6.7 GHz methanol maser, an infrared dark cloud, and the CO outflow, tracing active massive SF within it. At least five compact radio sources (CRSs) are physically linked with the edges of the bubble, and each of them is consistent with the radio spectral class of a B0V–B0.5V-type star. The ages of the individual infrared counterparts of three CRSs (∼1–2 Myr) and a typical age of WN7 W–R star (∼4 Myr) indicate that the SF activities around the bubble are influenced by the feedback of the W–R star.« less

  11. Photoacoustic shock wave emission and cavitation from structured optical fiber tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammadzadeh, M.; Gonzalez-Avila, S. R.; Ohl, C. D., E-mail: cdohl@ntu.edu.sg

    Photoacoustic waves generated at the tip of an optical fiber consist of a compressive shock wave followed by tensile diffraction waves. These tensile waves overlap along the fiber axis and form a cloud of cavitation bubbles. We demonstrate that shaping the fiber tip through micromachining alters the number and direction of the emitted waves and cavitation clouds. Shock wave emission and cavitation patterns from five distinctively shaped fiber tips have been studied experimentally and compared to a linear wave propagation model. In particular, multiple shock wave emission and generation of strong tension away from the fiber axis have been realizedmore » using modified fiber tips. These altered waveforms may be applied for novel microsurgery protocols, such as fiber-based histotripsy, by utilizing bubble-shock wave interaction.« less

  12. Radiation, Gas and Magnetic Fields: Understanding Accretion Disks with Real Physics

    NASA Astrophysics Data System (ADS)

    Tao, Ted

    2011-01-01

    This dissertation studies some of the fundamental physics ingredients that underlie the theory of astrophysical accretion disks. We begin by focusing on local radiation magnetohydrodynamic instabilities in static, optically thick, vertically stratified media with constant flux mean opacity. Our analysis includes the effects of vertical gradients in a horizontal background magnetic field. Assuming rapid radiative diffusion, we use the zero gas pressure limit as an entry point for investigating the coupling between the photon bubble instability and the Parker instability. We find that the two instabilities transition smoothly into each other at a characteristic wavelength that is approximately equal to the magnetic pressure scale height times the ratio of radiation to magnetic pressure gradient forces. The Parker instability exists for longer wavelengths, while photon bubbles exist for wavelengths shorter than the transition wavelength. We also consider the effects of finite gas pressure on the coupled instabilities. Finite gas pressure introduces an additional short wavelength limit to the Parker-like behavior, and also limits the growth rate of the photon bubble instability to a constant value at high wave numbers. Finally, our analytic infinite wavenumber perturbation calculation strongly suggest that magnetic pressure gradients do not modify the photon bubble growth rate in the asymptotic regime. Our results may explain why photon bubbles have not yet been observed in recent stratified shearing box accretion disk simulations. Photon bubbles may physically exist in simulations with high radiation to gas pressure ratios, but higher spatial resolution will be needed to resolve the asymptotically growing unstable wavelengths. Next, we turn to the effects of local dissipation physics on the spectra and vertical structure of high luminosity stellar mass black hole X-ray binary accretion disks. More specifically, we present spectral calculations of non-LTE accretion disk models. We first use a dissipation profile based on scaling the results of shearing box simulations to a range of annuli parameters. We simultaneously scale the effective temperature, orbital frequency and surface density of a disk annulus according to the standard Shakura & Sunyaev model in order to bring increased dissipation to the disk surface layers (around the photosphere). We find that annuli spectrum transitions directly from that of a modified black body to one characteristic of saturated Compton scattering without first going through an intermediate power law regime as we increased the effective temperature and orbital frequency while decreasing mid-plane surface density. Next, we construct annuli models based on the parameters of a 0.8 Eddington disk orbiting a 6.62 solar mass black hole (with accretion efficiency approximately 0.083) using two modified dissipation profiles that explicitly put more dissipation per unit mass near the disk surface. The new dissipation profiles are qualitatively similar to the one found by Hirose et al. (2009) and produce strong and distinct non-thermal spectral tails. Our models also include physically motivated magnetic acceleration support based once again on scaling the Hirose et al. (2009) results. We present three full-disk spectra each based on one of the dissipation prescriptions. Our most aggressive dissipation profile results in a disk spectrum that is in approximate quantitative agreement with certain observations of the steep power law (SPL) spectral state from some black hole X-ray binaries.

  13. Efficiency of static core turn-off in a system-on-a-chip with variation

    DOEpatents

    Cher, Chen-Yong; Coteus, Paul W; Gara, Alan; Kursun, Eren; Paulsen, David P; Schuelke, Brian A; Sheets, II, John E; Tian, Shurong

    2013-10-29

    A processor-implemented method for improving efficiency of a static core turn-off in a multi-core processor with variation, the method comprising: conducting via a simulation a turn-off analysis of the multi-core processor at the multi-core processor's design stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's design stage includes a first output corresponding to a first multi-core processor core to turn off; conducting a turn-off analysis of the multi-core processor at the multi-core processor's testing stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's testing stage includes a second output corresponding to a second multi-core processor core to turn off; comparing the first output and the second output to determine if the first output is referring to the same core to turn off as the second output; outputting a third output corresponding to the first multi-core processor core if the first output and the second output are both referring to the same core to turn off.

  14. An object-oriented and quadrilateral-mesh based solution adaptive algorithm for compressible multi-fluid flows

    NASA Astrophysics Data System (ADS)

    Zheng, H. W.; Shu, C.; Chew, Y. T.

    2008-07-01

    In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.

  15. A Numerical Simulator for Three-Dimensional Flows Through Vibrating Blade Rows

    NASA Technical Reports Server (NTRS)

    Chuang, H. Andrew; Verdon, Joseph M.

    1998-01-01

    The three-dimensional, multi-stage, unsteady, turbomachinery analysis, TURBO, has been extended to predict the aeroelastic and aeroacoustic response behaviors of a single blade row operating within a cylindrical annular duct. In particular, a blade vibration capability has been incorporated so that the TURBO analysis can be applied over a solution domain that deforms with a vibratory blade motion. Also, unsteady far-field conditions have been implemented to render the computational boundaries at inlet and exit transparent to outgoing unsteady disturbances. The modified TURBO analysis is applied herein to predict unsteady subsonic and transonic flows. The intent is to partially validate this nonlinear analysis for blade flutter applications, via numerical results for benchmark unsteady flows, and to demonstrate the analysis for a realistic fan rotor. For these purposes, we have considered unsteady subsonic flows through a 3D version of the 10th Standard Cascade, and unsteady transonic flows through the first stage rotor of the NASA Lewis, Rotor 67, two-stage fan.

  16. The optimum intermediate pressure of two-stages vapor compression refrigeration cycle for Air-Conditioning unit

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Sihombing, H. V.

    2018-03-01

    Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.

  17. Risk Assessment and scaling for the SLS LOx ET

    NASA Technical Reports Server (NTRS)

    Osipov, Viatcheslav V.; Hafiychuk, Halyna; Devine, Ekaterina V.; Khasin, Michael; Smelyanskiy, Vadim N.

    2012-01-01

    In this report we analyze the transpiration cooling by He bubble injection of the long LOx tank feedline heated by the environment heat. We consider possible hazards that can arise in the proposed design of the SLS core stage where the feedline length is much longer than that used in the Space Shuttle.

  18. Characterization of MWCNT/Nanoclay Binary Nanoparticles Modified Composites and Fatigue Performance Evaluation of Nanoclay Modified Fiber Reinforced Composites

    DTIC Science & Technology

    2014-04-21

    modified with binary nanoparticles consist of multi-walled carbon nanotubes (MWCNTs) and nanoclays together. First, epoxy SC-15 resin was reinforced...modified with binary nanoparticles consist of multi-walled carbon nanotubes (MWCNTs) and nanoclays together. First, epoxy SC-15 resin was reinforced with...7 2.2.1 Carbon Nanotube

  19. A simple mass-conserved level set method for simulation of multiphase flows

    NASA Astrophysics Data System (ADS)

    Yuan, H.-Z.; Shu, C.; Wang, Y.; Shu, S.

    2018-04-01

    In this paper, a modified level set method is proposed for simulation of multiphase flows with large density ratio and high Reynolds number. The present method simply introduces a source or sink term into the level set equation to compensate the mass loss or offset the mass increase. The source or sink term is derived analytically by applying the mass conservation principle with the level set equation and the continuity equation of flow field. Since only a source term is introduced, the application of the present method is as simple as the original level set method, but it can guarantee the overall mass conservation. To validate the present method, the vortex flow problem is first considered. The simulation results are compared with those from the original level set method, which demonstrates that the modified level set method has the capability of accurately capturing the interface and keeping the mass conservation. Then, the proposed method is further validated by simulating the Laplace law, the merging of two bubbles, a bubble rising with high density ratio, and Rayleigh-Taylor instability with high Reynolds number. Numerical results show that the mass is a well-conserved by the present method.

  20. Intravenous Delivery of pDNA and siRNA into Muscle with Bubble Liposomes and Ultrasound

    NASA Astrophysics Data System (ADS)

    Negishi, Yoichi; Sekine, Shohko; Endo, Yoko; Nishijima, Nobuaki; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko

    2010-03-01

    Skeletal muscle is an attractive target tissue for numerous gene therapy strategies. Gene delivery into muscle has been extensively studied. Of the strategies, intravascular delivery of naked pDNA is desirable. Muscle has a high density of capillaries that are in close contact with myofibers. Previously, we developed polyethylene glycol (PEG)-modified liposomes entrapping echo-contrast gas, known as ultrasound (US) imaging gas. We called the liposomes "Bubble liposomes" (BLs). It has been reported that BLs improve the tissue permeability by cavitation on US exposure. Here, we modified the naked pDNA or siRNA transfer method into hind limb muscle through blood vessels using BLs and US. The intravenous delivery of pDNA into muscle can be markedly enhanced when the pDNA is delivered in combination with BLs and US. In addition, the expression of pDNA is high in the US-focused site. Moreover, efficient gene delivery can be achieved by the intravenous delivery of pDNA into muscle with BLs and US. Expression is also down-regulated by delivering siRNA with BLs and US. Thus, this US-mediated BL technique involving veins may be an effective method for gene therapy.

  1. The Neutral Islands during the Late Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Xu, Yidong; Yue, Bin; Chen, Xuelei

    2018-05-01

    The large-scale structure of the ionization field during the epoch of reionization (EoR) can be modeled by the excursion set theory. While the growth of ionized regions during the early stage are described by the ``bubble model'', the shrinking process of neutral regions after the percolation of the ionized region calls for an ``island model''. An excursion set based analytical model and a semi-numerical code (islandFAST) have been developed. The ionizing background and the bubbles inside the islands are also included in the treatment. With two kinds of absorbers of ionizing photons, i.e. the large-scale under-dense neutral islands and the small-scale over-dense clumps, the ionizing background are self-consistently evolved in the model.

  2. Using Computer Simulations to Model Scoria Cone Growth

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Mehta, R. D.

    2016-12-01

    Scoria cones form from the accumulation of scoria delivered by either bursting lava bubbles (Strombolian style eruptions) or the gas thrust of an eruption column (Hawaiian to sub-Plinian style eruption). In this study, we focus on connecting the distribution of scoria delivery to the eventual cone shape rather than the specifics of the mechanism of delivery. For simplicity, we choose to model ballistic paths, that follow the scoria from ejection from crater to landing on the surface and then avalanching down slope. The first stage corresponds to Strombolian-like bursts of the bubble. The second stage only occurs if the angle of repose is greater than 30 degrees. After this condition is met, the scoria particles grain flow downwards until a stable slope is formed. These two stages of the volcanic eruption repeat themselves in the number of phases. We hypothesize that the horizontal travel distance of the ballistic paths, and as a result the width of the volcano, is primarily dependent of the velocity of the particles bursting from the bubble in the crater. Other parameters that may affect the shape of cinder cones are air resistance on ballistic paths, ranges in particle size, ballistic ejection angles, and the total number of particles. Ejection velocity, ejection angle, particle size and air resistance control the delivery distribution of scoria; a similar distribution of scoria can be obtained by sedimentation from columns and the controlling parameters of such (gas thrust velocity, particle density, etc.) can be related to the ballistic delivery in terms of eruption energy and particle characteristics. We present a series of numerical experiments that test our hypotheses by varying different parameters one or more at a time in sets each designed to test a specific hypothesis. Volcano width increases as ejection velocity, ejection angle (measured from surface), or the total number of scoria particles increases. Ongoing investigations seek the controls on crater width.

  3. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel

    2014-04-07

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development suchmore » that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.« less

  4. Nucleate boiling performance evaluation of cavities at mesoscale level

    DOE PAGES

    Mu, Yu-Tong; Chen, Li; He, Ya-Ling; ...

    2016-09-29

    Nucleate boiling heat transfer (NBHT) from enhanced structures is an effective way to dissipate high heat flux. Here, a 3D multi-relaxation-time (MRT) phase-change lattice Boltzmann method in conjunction with conjugated heat transfer treatment is proposed and then applied to the study of cavities behaviours for nucleation on roughened surfaces for an entire ebullition cycle without introducing any artificial disturbance. The bubble departure diameter, departure frequency and total boiling heat transfer rate are also explored. We demonstrate that the cavity shapes show significant influence on the features of NBHT. The total heat transfer rate increases with the cavity mouth and cavitymore » base area while decreases with the increase in cavity bottom wall thickness. The cavity with low wetting can enhance the heat transfer and improve the bubble release frequency.« less

  5. Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array

    NASA Astrophysics Data System (ADS)

    Acconcia, Christopher N.; Jones, Ryan M.; Goertz, David E.; O'Reilly, Meaghan A.; Hynynen, Kullervo

    2017-09-01

    It is well established that high intensity focused ultrasound can be used to disintegrate clots. This approach has the potential to rapidly and noninvasively resolve clot causing occlusions in cardiovascular diseases such as deep vein thrombosis (DVT). However, lack of an appropriate treatment monitoring tool is currently a limiting factor in its widespread adoption. Here we conduct cavitation imaging with a large aperture, sparse hemispherical receiver array during sonothrombolysis with multi-cycle burst exposures (0.1 or 1 ms burst lengths) at 1.51 MHz. It was found that bubble cloud generation on imaging correlated with the locations of clot degradation, as identified with high frequency (30 MHz) ultrasound following exposures. 3D images could be formed at integration times as short as 1 µs, revealing the initiation and rapid development of cavitation clouds. Equating to megahertz frame rates, this is an order of magnitude faster than any other imaging technique available for in vivo application. Collectively, these results suggest that the development of a device to perform DVT therapy procedures would benefit greatly from the integration of receivers tailored to bubble activity imaging.

  6. Simulating shock-bubble interactions at water-gelatin interfaces

    NASA Astrophysics Data System (ADS)

    Adami, Stefan; Kaiser, Jakob; Bermejo-Moreno, Ivan; Adams, Nikolaus

    2016-11-01

    Biomedical problems are often driven by fluid dynamics, as in vivo organisms are usually composed of or filled with fluids that (strongly) affected their physics. Additionally, fluid dynamical effects can be used to enhance certain phenomena or destroy organisms. As examples, we highlight the benign potential of shockwave-driven kidney-stone lithotripsy or sonoporation (acoustic cavitation of microbubbles) to improve drug delivery into cells. During the CTR SummerProgram 2016 we have performed axisymmetric three-phase simulations of a shock hitting a gas bubble in water near a gelatin interface mimicking the fundamental process during sonoporation. We used our multi-resolution finite volume method with sharp interface representation (level-set), WENO-5 shock capturing and interface scale-separation and compared the results with a diffuse-interface method. Qualitatively our simulation results agree well with the reference. Due to the interface treatment the pressure profiles are sharper in our simulations and bubble collapse dynamics are predicted at shorter time-scales. Validation with free-field collapse (Rayleigh collapse) shows very good agreement. The project leading to this application has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No 667483).

  7. Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array.

    PubMed

    Acconcia, Christopher N; Jones, Ryan M; Goertz, David E; O'Reilly, Meaghan A; Hynynen, Kullervo

    2017-09-05

    It is well established that high intensity focused ultrasound can be used to disintegrate clots. This approach has the potential to rapidly and noninvasively resolve clot causing occlusions in cardiovascular diseases such as deep vein thrombosis (DVT). However, lack of an appropriate treatment monitoring tool is currently a limiting factor in its widespread adoption. Here we conduct cavitation imaging with a large aperture, sparse hemispherical receiver array during sonothrombolysis with multi-cycle burst exposures (0.1 or 1 ms burst lengths) at 1.51 MHz. It was found that bubble cloud generation on imaging correlated with the locations of clot degradation, as identified with high frequency (30 MHz) ultrasound following exposures. 3D images could be formed at integration times as short as 1 µs, revealing the initiation and rapid development of cavitation clouds. Equating to megahertz frame rates, this is an order of magnitude faster than any other imaging technique available for in vivo application. Collectively, these results suggest that the development of a device to perform DVT therapy procedures would benefit greatly from the integration of receivers tailored to bubble activity imaging.

  8. Thermal desorption behavior of helium in aged titanium tritide films

    NASA Astrophysics Data System (ADS)

    Cheng, G. J.; Shi, L. Q.; Zhou, X. S.; Liang, J. H.; Wang, W. D.; Long, X. G.; Yang, B. F.; Peng, S. M.

    2015-11-01

    The desorption behavior of helium in TiT(1.5∼1.8)-x3Hex film samples (x = 0.0022-0.22) was investigated by thermal desorption technique in vacuum condition in this paper. The thermal helium desorption spectrometry (THDS) of aging titanium tritide films prepared by electron beam evaporation revealed that, depending on the decayed 3He concentration in the samples, there are more than four states of helium existing in the films. The divided four zones in THDS based on helium states represent respectively: (1) the mobile single helium atoms with low activation energy in all aging samples resulted from the interstitial sites or dissociated from interstitial clusters, loops and dislocations, (2) helium bubbles inside the grain lattices, (3) helium bubbles in the grain boundaries and interconnected networks of dislocations in the helium concentration of 3Hegen/Ti > 0.0094, and (4) helium bubbles near or linked to the film surface by interconnected channel for later aging stage with 3Hegen/Ti > 0.18. The proportion of helium desorption in each zone was estimated, and dissociated energies of helium for different trapping states were given.

  9. GeV Electrons due to a Transition from Laser Wakefield Acceleration to Plasma Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Mo, M. Z.; Masson-Laborde, P.-E.; Ali, A.; Fourmaux, S.; Lassonde, P.; Kieffer, J.-C.; Rozmus, W.; Teychenné, D.; Fedosejevs, R.

    2014-10-01

    The Laser Wakefield Acceleration (LWFA) experiments performed with the 200 TW laser system located at the Canadian Advanced Laser Light Source facility at INRS, Varennes (Québec) observed at relatively high plasma densities (1 × 1019cm-3) electron bunches of GeV energy gain, more than double of the predicted energy using Lu's scaling law. This energy boost phenomena can be attributed to a transition from LWFA regime to a plasma wakefield acceleration (PWFA) regime. In the first stage, the acceleration mechanism is dominated by the bubble created by the laser in the regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, where the laser pulse is depleted and it can no longer sustain the bubble anymore, the dense bunch of high energy electrons propagating inside the bubble will drive its own wakefield in the PWFA regime that can trap and accelerate a secondary population of electrons up to the GeV level. 3D particle-in-cell simulations support this analysis, and confirm the scenario.

  10. The effect of frequency doubled double pulse Nd:YAG laser fiber proximity to the target stone on transient cavitation and acoustic emission.

    PubMed

    Fuh, Eric; Haleblian, George E; Norris, Regina D; Albala, W David M; Simmons, Neal; Zhong, Pei; Preminger, Glenn M

    2007-04-01

    Scant information has been published describing the effect of laser fiber distance from the stone target on the mechanism of calculus fragmentation. Using high speed photography and acoustic emission measurements we characterized the impact of laser fiber proximity on stone comminution. We evaluated the effect of laser fiber distance from the stone target on resultant cavitation bubble formation and shock wave generation. Stone fragmentation was assessed using a FREDDY (frequency doubled double pulse Nd:YAG) (World of Medicine, Orlando, Florida) laser and a holmium laser. The FREDDY laser was operated using a 420 microm fiber at an output energy of 120 and 160 mJ in single and double pulse settings, and a pulse repetition rate of 1 Hz. The holmium laser was operated using a 200 microm fiber at an output energy of 1 to 3 J and a pulse repetition rate of 1 Hz. The surface of a 1 cm square BegoStone (Bego, Bremen, Germany) attached to an X-Y-Z translational stage was aligned perpendicular to the laser fiber, which was immersed in a Lucite tank filled with water at room temperature. An Imacon 200 high speed camera was used to capture transient cavitation bubbles at a framing rate of up to 1,000,000 frames per second. Acoustic emission signals associated with shock waves generated during the rapid expansion and collapse of the cavitation bubble were measured using a 1 MHz focused ultrasound transducer. At laser fiber distances of 3.0 mm or less cavitation bubbles and shock waves were observed with the FREDDY laser. In contrast to the holmium laser, the bubble size and shock wave intensity of the FREDDY laser was inversely related to the fiber-to-stone distance over the range tested (0.5 to 3.0 mm). While bubble size was noted to increase with a larger stone-to-fiber distance using the holmium laser, to consistently generate cavitation bubbles and shock waves using the FREDDY laser the laser fiber should be operated within 3.0 mm of the target stone. These findings have significant implications during clinical laser stone fragmentation.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanada, M., E-mail: hanada.masaya@jaea.go.jp; Kojima, A.; Tobari, H.

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification.more » As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.« less

  12. Nanocrystalline TiO₂ Composite Films for the Photodegradation of Formaldehyde and Oxytetracycline under Visible Light Irradiation.

    PubMed

    Wei, Min; Peng, Xue-Lei; Liu, Qi-Sheng; Li, Fang; Yao, Ming-Ming

    2017-06-14

    In order to effectively photodegradate organic pollutants, ZnO composite and Co-B codoped TiO₂ films were successfully deposited on glass substrates via a modified sol-gel method and a controllable dip-coating technique. Combining with UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PL) analyses, the multi-modification could not only extend the optical response of TiO₂ to visible light region but also decrease the recombination rate of electron-hole pairs. XRD results revealed that the multi-modified TiO₂ film had an anatase-brookite biphase heterostructure. FE-SEM results indicated that the multi-modified TiO₂ film without cracks was composed of smaller round-like nanoparticles compared to pure TiO₂. BET surface area results showed that the specific surface area of pure TiO₂ and the multi-modified TiO₂ sample was 47.8 and 115.8 m²/g, respectively. By degradation of formaldehyde and oxytetracycline, experimental results showed that the multi-modified TiO₂ film had excellent photodegradation performance under visible light irradiation.

  13. Cell-to-Cell Heterogeneity in Cortical Tension Specifies Curvature of Contact Surfaces in Caenorhabditis elegans Embryos

    PubMed Central

    Fujita, Masashi; Onami, Shuichi

    2012-01-01

    In the two-cell stage embryos of Caenorhabditis elegans, the contact surface of the two blastomeres forms a curve that bulges from the AB blastomere to the P1 blastomere. This curve is a consequence of the high intracellular hydrostatic pressure of AB compared with that of P1. However, the higher pressure in AB is intriguing because AB has a larger volume than P1. In soap bubbles, which are a widely used model of cell shape, a larger bubble has lower pressure than a smaller bubble. Here, we reveal that the higher pressure in AB is mediated by its higher cortical tension. The cell fusion experiments confirmed that the curvature of the contact surface is related to the pressure difference between the cells. Chemical and genetic interferences showed that the pressure difference is mediated by actomyosin. Fluorescence imaging indicated that non-muscle myosin is enriched in the AB cortex. The cell killing experiments provided evidence that AB but not P1 is responsible for the pressure difference. Computer simulation clarified that the cell-to-cell heterogeneity of cortical tensions is indispensable for explaining the pressure difference. This study demonstrates that heterogeneity in surface tension results in significant deviations of cell behavior compared to simple soap bubble models, and thus must be taken into consideration in understanding cell shape within embryos. PMID:22253922

  14. Multi-stage internal gear/turbine fuel pump

    DOEpatents

    Maier, Eugen; Raney, Michael Raymond

    2004-07-06

    A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.

  15. Single stage high pressure centrifugal slurry pump

    DOEpatents

    Meyer, John W.; Bonin, John H.; Daniel, Arnold D.

    1984-03-27

    Apparatus is shown for feeding a slurry to a pressurized housing. An impeller that includes radial passages is mounted in the loose fitting housing. The impeller hub is connected to a drive means and a slurry supply means which extends through the housing. Pressured gas is fed into the housing for substantially enveloping the impeller in a bubble of gas.

  16. Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies.

    PubMed

    Beaussart, Audrey; Parkinson, Luke; Mierczynska-Vasilev, Agnieszka; Beattie, David A

    2012-02-15

    The adsorption of three dextrins (a regular wheat dextrin, Dextrin TY, carboxymethyl (CM) Dextrin, and hydroxypropyl (HP) Dextrin) on molybdenite has been investigated using adsorption isotherms, tapping mode atomic force microscopy (TMAFM), contact angle measurements, and dynamic bubble-surface collisions. In addition, the effect of the polymers on the flotation recovery of molybdenite has been determined. The isotherms revealed the importance of molecular weight in determining the adsorbed amounts of the polymers on molybdenite at plateau coverage. TMAFM revealed the morphology of the three polymers, which consisted of randomly dispersed domains with a higher area fraction of surface coverage for the substituted dextrins. The contact angle of polymer-treated molybdenite indicated that polymer layer coverage and hydration influenced the mineral surface hydrophobicity. Bubble-surface collisions indicated that the polymers affected thin film rupture and dewetting rate differently, correlating with differences in the adsorbed layer morphology. Direct correlations were found between the surface coverage of the adsorbed layers, their impact on thin film rupture time, and their impact on flotation recovery, highlighting the paramount role of the polymer morphology in the bubble/particle attachment process and subsequent flotation. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications

    NASA Astrophysics Data System (ADS)

    Czerwinski, Frank; Birsan, Gabriel

    2017-04-01

    The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.

  18. Programmer's reference manual for the VAX-Gerber link software package. Revision 1. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isobe, G.W.

    1985-10-01

    This guide provides the information necessary to edit, modify, and run the VAX-Gerber software link. Since the project is in the testing stage and still being modified, this guide discussess the final desired stage along with the current stage. The current stage is to set up as to allow the programmer to easily modify and update codes as necessary.

  19. The effects of dissolved gas supersaturation on white sturgeon larvae

    USGS Publications Warehouse

    Counihan, T.D.; Miller, Allen I.; Mesa, M.G.; Parsley, M.J.

    2000-01-01

    Spill at dams has caused supersaturation of atmospheric gas in waters of the Columbia and Snake rivers and raised concerns about the effects of dissolved gas supersaturation (DGS) on white sturgeons Acipenser transmontanus. The timing and location of white sturgeon spawning and the dispersal of white sturgeon larvae from incubation areas makes the larval stage potentially vulnerable to the effects of DGS. To assess the effects of DGS on white sturgeon larvae, we exposed larvae to mean total dissolved gas (TDG) levels of 118% and 131% saturation in laboratory bioassay tests. Gas bubble trauma (GBT) was manifested as a gas bubble in the buccal cavity, nares, or both and it first occurred at developmental stages characterized by the formation of the mouth and gills. Exposure times of 15 min were sufficient to elicit these signs in larvae in various stages of development. No mortality was observed in larvae exposed to 118% TDG for 10 d, but 50% mortality occurred after a 13-d exposure to 131% TDG. The signs of GBT we observed resulted in positive buoyancy and alterations in behavior that may affect the dispersal and predation vulnerability of white sturgeon larvae. The exact depth distribution of dispersing white sturgeon larvae in the Columbia River currently is unknown. Thus, our results may represent a worst-case scenario if white sturgeon larvae are dispersed at depths with insufficient hydrostatic pressure to compensate for high TDG levels.

  20. Flexible sequential designs for multi-arm clinical trials.

    PubMed

    Magirr, D; Stallard, N; Jaki, T

    2014-08-30

    Adaptive designs that are based on group-sequential approaches have the benefit of being efficient as stopping boundaries can be found that lead to good operating characteristics with test decisions based solely on sufficient statistics. The drawback of these so called 'pre-planned adaptive' designs is that unexpected design changes are not possible without impacting the error rates. 'Flexible adaptive designs' on the other hand can cope with a large number of contingencies at the cost of reduced efficiency. In this work, we focus on two different approaches for multi-arm multi-stage trials, which are based on group-sequential ideas, and discuss how these 'pre-planned adaptive designs' can be modified to allow for flexibility. We then show how the added flexibility can be used for treatment selection and sample size reassessment and evaluate the impact on the error rates in a simulation study. The results show that an impressive overall procedure can be found by combining a well chosen pre-planned design with an application of the conditional error principle to allow flexible treatment selection. Copyright © 2014 John Wiley & Sons, Ltd.

  1. The effects of stabilizing and destabilizing longitudinal curvature on the structure of turbulent, two-stream mixing layers

    NASA Technical Reports Server (NTRS)

    Plesniak, Michael W.; Johnston, J. P.

    1989-01-01

    The construction and development of the multi-component traversing system and associated control hardware and software are presented. A hydrogen bubble/laser sheet flow visualization technique was developed to visually study the characteristics of the mixing layers. With this technique large-scale rollers arising from the Taylor-Gortler instability and its interaction with the primary Kelvin-Helmholtz structures can be studied.

  2. μ-PIV/Shadowgraphy measurements to elucidate dynamic physicochemical interactions in a multiphase model of pulmonary airway reopening

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Eiichiro

    2010-10-01

    We employ micro-particle image velocimetry (μ-PIV) and shadowgraphy to measure the ensemble-averaged fluid-phase velocity field and interfacial geometry during pulsatile bubble propagation that includes a reverse-flow phase under influence of exogenous lung surfactant (Infasurf). Disease states such as respiratory distress syndrome (RDS) are characterized by insufficient pulmonary surfactant concentrations that enhance airway occlusion and collapse. Subsequent airway reopening, driven by mechanical ventilation, may generate damaging stresses that cause ventilator-induced lung injury (VILI). It is hypothesized that reverse flow may enhance surfactant uptake and protect the lung from VILI. The microscale observations conducted in this study will provide us with a significant understanding of dynamic physicochemical interactions that can be manipulated to reduce the magnitude of this damaging mechanical stimulus during airway reopening. Bubble propagation through a liquid-occluded fused glass capillary tube is controlled by linear-motor-driven syringe pumps that provide mean and sinusoidal velocity components. A translating microscope stage mechanically subtracts the mean velocity of the bubble tip in order to hold the progressing bubble tip in the microscope field of view. To optimize the signal-to-noise ratio near the bubble tip, μ-PIV and shadow images are recorded in separate trials then combined during post-processing with help of a custom-designed micro scale marker. Non-specific binding of Infasurf proteins to the channel wall is controlled by oxidation and chemical treatment of the glass surface. The colloidal stability and dynamic/static surface properties of the Infasurf-PIV particle solution are carefully adjusted based on Langmuir trough measurements. The Finite Time Lyapunov Exponent (FTLE) is computed to provide a Lagrangian perspective for comparison with our boundary element predictions.

  3. [Optimization Study on the Nitrogen and Phosphorus Removal of Modified Two- sludge System Under the Condition of Low Carbon Source].

    PubMed

    Yang, Wei-qiang; Wang, Dong-bo; Li, Xiao-ming; Yang, Qi; Xu, Qiu-xiang; Zhang, Zhi-bei; Li, Zhi-jun; Xiang, Hai-hong; Wang, Ya-li; Sun, Jian

    2016-04-15

    This paper explored the method of resolving insufficient carbon source in urban sewage by comparing and analyzing denitrification and phosphorus removal (NPR) effect between modified two-sludge system and traditional anaerobic-aerobic-anoxic process under the condition of low carbon source wastewater. The modified two-sludge system was the experimental reactor, which was optimized by adding two stages of micro-aeration (aeration rate 0.5 L · mm⁻¹) in the anoxic period of the original two-sludge system, and multi-stage anaerobic-aerobic-anoxic SBR was the control reactor. When the influent COD, ammonia nitrogen, SOP concentration were respectively 200, 35, 10 mg · L⁻¹, the NPR effect of the experimental reactor was hetter than that of thecontrol reactor with the removal efficiency of TN being 94.8% vs 60.9%, and TP removal being 96.5% vs 75%, respectively. The effluent SOP, ammonia, TN concentration of the experimental reactor were 0.35, 0.50, 1.82 mg · L⁻¹, respectively, which could fully meet the first class of A standard of the Pollutants Emission Standard of Urban Wastewater Treatment Firm (GB 18918-2002). Using the optimized treatment process, the largest amounts of nitrogen and phosphorus removal per unit carbon source (as COD) were 0.17 g · g⁻¹ and 0.048 g · g⁻¹ respectively, which could furthest solve the lower carbon concentration in current municipal wastewater.

  4. Vesiculation of rhyolite magma in the IDDP-1 borehole at Krafla, Iceland

    NASA Astrophysics Data System (ADS)

    Trewick, Laura; Tuffen, Hugh; Owen, Jacqueline; Kennedy, Ben; Eichelberger, John; Zierenberg, Robert

    2016-04-01

    In 2009 the IDDP-1 borehole at Krafla, Iceland unexpectedly intersected rhyolitic magma at 2.1 km depth [1,2], providing unprecedented opportunities to investigate silicic melt formation and storage, and potential for powerful geothermal energy production. A key objective is to constrain the nature of the rhyolitic melt and its response to drilling. As no intact core was extracted, evidence is fragmental - from glassy rhyolitic clasts retrieved from the cuttings. These exhibit a range of glass colours, vesicularities and phenocryst contents [1,2]. Here we use benchtop infra-red spectroscopy and petrological microscopy to characterise the H2O concentrations and bubble number densities within diverse glassy clasts, complemented by 1 Atm bubble growth experiments with a heated stage to investigate vesicle growth. Juvenile glassy clasts were divided into three categories (brown>banded>very dark glass). H2O concentrations within clasts showed some spatial variability, with enrichment towards bubble-rich areas that may be resorption-related but could not be adequately characterised with a benchtop source. However, mean values ranged from 1.41-1.68 wt %, with no statistically significant difference between clast types. This is broadly consistent with previous studies [1,2]. Bubble growth rates in all clast types were determined during isothermal dwells at 600, 650 and 700 °C, for which bubbles grew at 0.03-0.09, 0.11-0.31, and 0.46-0.82 μm s-1 respectively. The highest growth rates were measured for the most water-rich clast analysed - a banded clast with mean H2O of 1.68 wt %, and initially-larger bubbles also grew more rapidly. Measured bubble number densities (BNDs) range from 10[11.7] m-3 in banded clasts to 10[13.1] m-3 in very dark clasts, corresponding to decompression rates of ~0.1-1 MPa/s [3], although experimentation on IDDP-1 magma is needed to properly calibrate BNDs as a decompression rate meter. Nonetheless, such decompression rates suggest nucleation occurred over tens-hundreds of seconds, as pressure dropped from magmastatic towards lower borehole values. The duration of vesicle growth was roughly estimated from measured bubble sizes, which range from ~5 μm in very dark clasts to ~30 μm in banded clasts, and extrapolated bubble growth rates at magmatic temperature (900 °C) and appropriate pressure. Results suggest only brief pre-quenching growth occurred, over ~seconds. We therefore propose that magma adjacent to the drill head experienced decompression prior to interception, leading to a brief period of bubble nucleation and a briefer period of growth prior to fragmentation and quenching. The high bubble strain, low bubble number density and largest bubble sizes in banded clasts all point towards slower decompression and more protracted viscous flow in this part of the rhyolitic magma. However, better temporal constraints are required on the extraction of distinct clast types to determine how magma response evolved through time, and better piece together this enigmatic magmatic jigsaw. 1. Elders WA et al. 2011 Geology 39, 231-234. 2. Zierenberg RA et al. 2013 Cont. Mineral. Petrol. 165:327-347. 3. Hamada M et al 2010 Bull. Volcanol., 72, 735-746.

  5. Numerical analysis of thermal stress and dislocation density distributions in large size multi-crystalline silicon ingots during the seeded growth process

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Hoai Thu; Chen, Jyh-Chen; Hu, Chieh; Chen, Chun-Hung; Huang, Yen-Hao; Lin, Huang-Wei; Yu, Andy; Hsu, Bruce

    2017-06-01

    In this study, a global transient numerical simulation of silicon growth from the beginning of the solidification process until the end of the cooling process is carried out modeling the growth of an 800 kg ingot in an industrial seeded directional solidification furnace. The standard furnace is modified by the addition of insulating blocks in the hot zone. The simulation results show that there is a significant decrease in the thermal stress and dislocation density in the modified model as compared to the standard one (a maximal decrease of 23% and 75% along the center line of ingot for thermal stress and dislocation density, respectively). This modification reduces the heating power consumption for solidification of the silicon melt by about 17% and shortens the growth time by about 2.5 h. Moreover, it is found that adjusting the operating conditions of modified model to obtain the lower growth rate during the early stages of the solidification process can lower dislocation density and total heater power.

  6. Quantifying Methane Flux from a Prominent Seafloor Crater with Water Column Imagery Filtering and Bubble Quantification Techniques

    NASA Astrophysics Data System (ADS)

    Mitchell, G. A.; Gharib, J. J.; Doolittle, D. F.

    2015-12-01

    Methane gas flux from the seafloor to atmosphere is an important variable for global carbon cycle and climate models, yet is poorly constrained. Methodologies used to estimate seafloor gas flux commonly employ a combination of acoustic and optical techniques. These techniques often use hull-mounted multibeam echosounders (MBES) to quickly ensonify large volumes of the water column for acoustic backscatter anomalies indicative of gas bubble plumes. Detection of these water column anomalies with a MBES provides information on the lateral distribution of the plumes, the midwater dimensions of the plumes, and their positions on the seafloor. Seafloor plume locations are targeted for visual investigations using a remotely operated vehicle (ROV) to determine bubble emission rates, venting behaviors, bubble sizes, and ascent velocities. Once these variables are measured in-situ, an extrapolation of gas flux is made over the survey area using the number of remotely-mapped flares. This methodology was applied to a geophysical survey conducted in 2013 over a large seafloor crater that developed in response to an oil well blowout in 1983 offshore Papua New Guinea. The site was investigated by multibeam and sidescan mapping, sub-bottom profiling, 2-D high-resolution multi-channel seismic reflection, and ROV video and coring operations. Numerous water column plumes were detected in the data suggesting vigorously active vents within and near the seafloor crater (Figure 1). This study uses dual-frequency MBES datasets (Reson 7125, 200/400 kHz) and ROV video imagery of the active hydrocarbon seeps to estimate total gas flux from the crater. Plumes of bubbles were extracted from the water column data using threshold filtering techniques. Analysis of video images of the seep emission sites within the crater provided estimates on bubble size, expulsion frequency, and ascent velocity. The average gas flux characteristics made from ROV video observations is extrapolated over the number of individual flares detected acoustically and extracted to estimate gas flux from the survey area. The gas flux estimate from the water column filtering and ROV observations yields a range of 2.2 - 6.6 mol CH4 / min.

  7. A multi-technique analysis of deuterium trapping and near-surface precipitate growth in plasma-exposed tungsten

    DOE PAGES

    Kolasinski, Robert; Shimada, Masashi; Oya, Yasuhisa; ...

    2015-08-17

    We examine how deuterium becomes trapped in plasma-exposed tungsten and forms near-surface platelet-shaped precipitates. How these bubbles nucleate and grow, as well as the amount of deuterium trapped within, is crucial for interpreting the experimental database. Here, we use a combined experimental/theoretical approach to provide further insight into the underlying physics. With the Tritium Plasma Experiment, we exposed a series of ITER-gradetungsten samples to high flux D plasmas (up to 1.5 × 10 22 m -2 s -1) at temperatures ranging between 103 and 554 °C. Retention of deuterium trapped in the bulk, assessed through thermal desorption spectrometry, reached amore » maximum at 230 °C and diminished rapidly thereafter for T > 300 °C. Post-mortem examination of the surfaces revealed non-uniform growth of bubbles ranging in diameter between 1 and 10 μm over the surface with a clear correlation with grain boundaries. Electron back-scattering diffraction maps over a large area of the surface confirmed this dependence; grains containing bubbles were aligned with a preferred slip vector along the <111> directions. Focused ion beam profiles suggest that these bubbles nucleated as platelets at depths of 200 nm–1 μm beneath the surface and grew as a result of expansion of sub-surface cracks. Furthermore, to estimate the amount of deuterium trapped in these defects relative to other sites within the material, we applied a continuum-scale treatment of hydrogen isotope precipitation. Additionally, we propose a straightforward model of near-surface platelet expansion that reproduces bubble sizes consistent with our measurements. For the tungsten microstructure considered here, we find that bubbles would only weakly affect migration of D into the material, perhaps explaining why deep trapping was observed in prior studies with plasma-exposed neutron-irradiated specimens. We foresee no insurmountable issues that would prevent the theoretical framework developed here from being extended to a broader range of systems where precipitation of insoluble gases in ion beam or plasma-exposed metals is of interest.« less

  8. Calcaneal Scoring as an Adjunct to Modified Oxford Hip Scores: Prediction of Contralateral Slipped Capital Femoral Epiphysis.

    PubMed

    Nicholson, Allen D; Huez, Coridon M; Sanders, James O; Liu, Raymond W; Cooperman, Daniel R

    2016-03-01

    In 2 recent studies, modified Oxford hip scores of 16 through 18 have been shown to predict an extremely high risk of contralateral slipping in unilateral slipped capital femoral epiphysis (SCFE). However, the modified Oxford system is not widely used. This may be due, in part, to the complexity of the scoring system, difficulty in viewing all 5 radiographic features on a single x-ray and phenotypic variation in the features. Ossification of the calcaneal apophysis provides an osteologic marker of skeletal maturation in relation to peak height velocity and has been described previously. We examine the value of the calcaneal apophyseal ossification sequence for predicting modified Oxford hip scores. We examined 279 pelvis and matching foot x-rays that were taken at the same session from 94 healthy children aged 3 to 18 years. A fellowship-trained pediatric orthopaedist determined the modified Oxford hip score for each hip radiograph. The calcaneal x-rays had been previously graded. Modified Oxford hip scores were compared with calcaneal scores for each set of matched hip and calcaneal x-rays. Stage 0 to 2 calcanei had 94% of corresponding hip radiographs rated as modified Oxford scores of 16 to 18. Stage 3 calcanei had 54% rated as 16 to 18 and 31% rated as scores 19 to 21. Stage 4 calcanei had 31% rated as scores 19 to 21, and 68% rated as scores 22 to 26. Stage 5 calcanei had 100% rated as 22 to 26. Using data from Popejoy and colleagues' study, the weighted risk of contralateral SCFE was 94% for calcaneal stage 0, 86.5% for calcaneal stage 1, 90.3% for calcaneal stage 2, 55.8% for calcaneal stage 3, 6.1% for calcaneal stage 4, and 0 for calcaneal stage 5. Calcaneal stages 0 to 3 correspond entirely to modified Oxford scores indicating elevated risk of contralateral SCFE. The calcaneal scoring system has potential for adjunctive use with the modified Oxford score for prediction of contralateral SCFE.

  9. Aerodynamic study of a small wind turbine with emphasis on laminar and transition flows

    NASA Astrophysics Data System (ADS)

    Niculescu, M. L.; Cojocaru, M. G.; Crunteanu, D. E.

    2016-06-01

    The wind energy is huge but unfortunately, wind turbines capture only a little part of this enormous green energy. Furthermore, it is impossible to put multi megawatt wind turbines in the cities because they generate a lot of noise and discomfort. Instead, it is possible to install small Darrieus and horizontal-axis wind turbines with low tip speed ratios in order to mitigate the noise as much as possible. Unfortunately, the flow around this wind turbine is quite complex because the run at low Reynolds numbers. Therefore, this flow is usually a mixture of laminar, transition and laminar regimes with bubble laminar separation that is very difficult to simulate from the numerical point of view. Usually, transition and laminar regimes with bubble laminar separation are ignored. For this reason, this paper deals with laminar and transition flows in order to provide some brightness in this field.

  10. Configuration of management accounting information system for multi-stage manufacturing

    NASA Astrophysics Data System (ADS)

    Mkrtychev, S. V.; Ochepovsky, A. V.; Enik, O. A.

    2018-05-01

    The article presents an approach to configuration of a management accounting information system (MAIS) that provides automated calculations and the registration of normative production losses in multi-stage manufacturing. The use of MAIS with the proposed configuration at the enterprises of textile and woodworking industries made it possible to increase the accuracy of calculations for normative production losses and to organize accounting thereof with the reference to individual stages of the technological process. Thus, high efficiency of multi-stage manufacturing control is achieved.

  11. [Advances in studies on multi-stage countercurrent extraction technology in traditional Chinese medicine].

    PubMed

    Xie, Zhi-Peng; Liu, Xue-Song; Chen, Yong; Cai, Ming; Qu, Hai-Bin; Cheng, Yi-Yu

    2007-05-01

    Multi-stage countercurrent extraction technology, integrating solvent extraction, repercolation with dynamic and countercurrent extraction, is a novel extraction technology for the traditional Chinese medicine. This solvent-saving, energy-saving and high-extraction-efficiency technology can at the most drive active compounds to diffuse from the herbal materials into the solvent stage by stage by creating concentration differences between the herbal materials and the solvents. This paper reviewed the basic principle, the influence factors and the research progress and trends of the equipments and the application of the multi-stage countercurrent extraction.

  12. Acquisition of the Navy Rapid Airborne Mine Clearance System

    DTIC Science & Technology

    2007-04-11

    will fire a supercavitating * projectile from the MH-60S helicopter using laser targeting. By supercavitating , the projectile maintains its...258 Mod 1 Armor Piercing Fin Stabilized Discarding Sabot Tracer cartridge (the Mod 1 incorporates a modified projectile nose to allow supercavitation ... Supercavitation is the use of cavitation (forcing water to move at extremely high speed) effects to create a bubble of air around the projectile, which enables

  13. Bottom Backscatter from Trapped Bubbles

    DTIC Science & Technology

    1993-07-30

    work included studies of a Blot model for acoustic transmission and reflection, originally developed by Stern, Bedford, and Millwater . 2 Also included...This model was originally developed by Stem, Bedford, and Millwater 7 and later modified to treat gassy sediments. This was done by varying the... Millwater , "Wave Reflection from a Sediment Layer with Depth-Dependent Properties,’ J. Acoust. Soc. Am. 77(5), 1781-1788 (1985). 3. L. M

  14. Evolution of Lyman-α Emitters, Lyman-break Galaxies and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Mori, M.; Umemura, M.

    2008-10-01

    High redshift Lyman-α emitters (LAEs) and Lyman-break galaxies (LBGs) possibly provide a significant key for the embryology of galaxies. LBGs have been argued as candidate progenitors of present-day elliptical galaxies in terms of their observed properties. But, what evolutionary stages LBGs correspond to and how they are related to LAEs are still under debate. Here, we present an ultra-high-resolution hydrodynamic simulation of galaxy formation. We show that, at the earliest stages of less than 3×10^8 years, continual supernova explosions produce multitudinous hot bubbles and cooled HI shells in between. The HI shells radiate intense Lyman-α emission like LAEs. We found that the bubbly structures produced are quite similar to the observed features in the Lyman-α surface brightness distribution of the extended LAEs. After 10^9 years, the galaxy emission is dominated by stellar continuum, exhibiting an LBG-like spectrum. Also, we find that, as a result of purely dynamical evolution over 13 billion years, the properties of this galaxy match those of present-day elliptical galaxies well. It is implied that the major episode of star formation and chemical enrichment in elliptical galaxies is almost completed in the evolutionary path from LAEs to LBGs.

  15. Computer ranking of the sequence of appearance of 73 features of the brain and related structures in staged human embryos during the sixth week of development.

    PubMed

    O'Rahilly, R; Müller, F; Hutchins, G M; Moore, G W

    1987-09-01

    The sequence of events in the development of the brain in human embryos, already published for stages 8-15, is here continued for stages 16 and 17. With the aid of a computerized bubble-sort algorithm, 71 individual embryos were ranked in ascending order of the features present. Whereas these numbered 100 in the previous study, the increasing structural complexity gave 27 new features in the two stages now under investigation. The chief characteristics of stage 16 (approximately 37 postovulatory days) are protruding basal nuclei, the caudal olfactory elevation (olfactory tubercle), the tectobulbar tracts, and ascending fibers to the cerebellum. The main features of stage 17 (approximately 41 postovulatory days) are the cortical nucleus of the amygdaloid body, an intermediate layer in the tectum mesencephali, the posterior commissure, and the habenulo-interpeduncular tract. In addition, a typical feature at stage 17 is the crescentic shape of the lens cavity.

  16. The observable signature of late heating of the Universe during cosmic reionization.

    PubMed

    Fialkov, Anastasia; Barkana, Rennan; Visbal, Eli

    2014-02-13

    Models and simulations of the epoch of reionization predict that spectra of the 21-centimetre transition of atomic hydrogen will show a clear fluctuation peak, at a redshift and scale, respectively, that mark the central stage of reionization and the characteristic size of ionized bubbles. This is based on the assumption that the cosmic gas was heated by stellar remnants-particularly X-ray binaries-to temperatures well above the cosmic microwave background at that time (about 30 kelvin). Here we show instead that the hard spectra (that is, spectra with more high-energy photons than low-energy photons) of X-ray binaries make such heating ineffective, resulting in a delayed and spatially uniform heating that modifies the 21-centimetre signature of reionization. Rather than looking for a simple rise and fall of the large-scale fluctuations (peaking at several millikelvin), we must expect a more complex signal also featuring a distinct minimum (at less than a millikelvin) that marks the rise of the cosmic mean gas temperature above the microwave background. Observing this signal, possibly with radio telescopes in operation today, will demonstrate the presence of a cosmic background of hard X-rays at that early time.

  17. Effect of multi-stage inoculation on the bacterial and fungal community structure during organic municipal solid wastes composting.

    PubMed

    Xi, Beidou; He, Xiaosong; Dang, Qiuling; Yang, Tianxue; Li, Mingxiao; Wang, Xiaowei; Li, Dan; Tang, Jun

    2015-11-01

    In this study, PCR-DGGE method was applied to investigate the impact of multi-stage inoculation treatment on the community composition of bacterial and fungal during municipal solid wastes (MSW) composting process. The results showed that the high temperature period was extended by the multi-stage inoculation treatment, 1day longer than initial-stage inoculation treatment, and 5days longer than non-inoculation treatment. The temperature of the secondary fermentation increased to 51°C with multi-stage inoculation treatment. The multi-stage inoculation method improved the community diversity of bacteria and fungi that the diversity indexes reached the maximum on the 17days and 20days respectively, avoided the competition between inoculations and indigenous microbes, and enhanced the growth of dominant microorganisms. The DNA sequence indicated that various kinds of uncultured microorganisms with determined ratios were detected, which were dominant microbes during the whole fermentation process. These findings call for further researches of compost microbial cultivation technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Multi-stage responsive 4D printed smart structure through varying geometric thickness of shape memory polymer

    NASA Astrophysics Data System (ADS)

    Teoh, Joanne Ee Mei; Zhao, Yue; An, Jia; Chua, Chee Kai; Liu, Yong

    2017-12-01

    Shape memory polymers (SMPs) have gained a presence in additive manufacturing due to their role in 4D printing. They can be printed either in multi-materials for multi-stage shape recovery or in a single material for single-stage shape recovery. When printed in multi-materials, material or material-based design is used as a controlling factor for multi-stage shape recovery. However, when printed in a single material, it is difficult to design multi-stage shape recovery due to the lack of a controlling factor. In this research, we explore the use of geometric thickness as a controlling factor to design smart structures possessing multi-stage shape recovery using a single SMP. L-shaped hinges with a thickness ranging from 0.3-2 mm were designed and printed in four different SMPs. The effect of thickness on SMP’s response time was examined via both experiment and finite element analysis using Ansys transient thermal simulation. A method was developed to accurately measure the response time in millisecond resolution. Temperature distribution and heat transfer in specimens during thermal activation were also simulated and discussed. Finally, a spiral square and an artificial flower consisting of a single SMP were designed and printed with appropriate thickness variation for the demonstration of a controlled multi-stage shape recovery. Experimental results indicated that smart structures printed using single material with controlled thickness parameters are able to achieve controlled shape recovery characteristics similar to those printed with multiple materials and uniform geometric thickness. Hence, the geometric parameter can be used to increase the degree of freedom in designing future smart structures possessing complex shape recovery characteristics.

  19. Aerodynamic Interaction between Delta Wing and Hemisphere-Cylinder in Supersonic Flow

    NASA Astrophysics Data System (ADS)

    Nishino, Atsuhiro; Ishikawa, Takahumi; Nakamura, Yoshiaki

    As future space vehicles, Reusable Launch Vehicle (RLV) needs to be developed, where there are two kinds of RLV: Single Stage To Orbit (SSTO) and Two Stage To Orbit (TSTO). In the latter case, the shock/shock interaction and shock/boundary layer interaction play a key role. In the present study, we focus on the supersonic flow field with aerodynamic interaction between a delta wing and a hemisphere-cylinder, which imitate a TSTO, where the clearance, h, between the delta wing and hemisphere-cylinder is a key parameter. As a result, complicated flow patterns were made clear, including separation bubbles.

  20. Diagnostic-Photographic Determination of Drag/Lift/Torque Coefficients of High Speed Rigid Body in Water Column

    DTIC Science & Technology

    2008-01-01

    various physical processes such as supercavitation and bubbles. A diagnostic- photographic method is developed in this study to determine the drag...nonlinear dynamics, body and multi-phase fluid interaction, supercavitation , and instability theory. The technical application of the hydrodynamics of...uV U ω= = − ×V e e e ei i , (29) where Eq.(9) is used. For a supercavitation area, a correction factor may be

  1. A New Technique for Achieving Impact Velocities Greater Than 10 km/sec

    NASA Astrophysics Data System (ADS)

    Piekutowski, A. J.

    2001-05-01

    This Contractor Report describes and presents the results of work that was done in an attempt to develop an augmented acceleration technique that would launch small projectiles of known shape, mass, and state to velocities of 10 km/sec and higher. The higher velocities were to be achieved by adding a third stage to a conventional two-stage, light-gas gun and using a modified firing cycle for the third stage. The technique did not achieve the desired results and was modified for use during the development program. Since the design of the components used for the augmented-acceleration, three-stage launcher could be readily adapted for use as a three-stage launcher that used a single-stage acceleration cycle; the remainder of the contract period was spent performing test firings using the modified three-stage launcher. Work with the modified three-stage launcher, although not complete, did produce test firings in which an 0.11-g cylindrical nylon projectile was launched to a velocity of 8.65 km/sec.

  2. A New Technique for Achieving Impact Velocities Greater Than 10 km/sec

    NASA Technical Reports Server (NTRS)

    Piekutowski, A. J.; Nolen, Angie (Technical Monitor)

    2001-01-01

    This Contractor Report describes and presents the results of work that was done in an attempt to develop an augmented acceleration technique that would launch small projectiles of known shape, mass, and state to velocities of 10 km/sec and higher. The higher velocities were to be achieved by adding a third stage to a conventional two-stage, light-gas gun and using a modified firing cycle for the third stage. The technique did not achieve the desired results and was modified for use during the development program. Since the design of the components used for the augmented-acceleration, three-stage launcher could be readily adapted for use as a three-stage launcher that used a single-stage acceleration cycle; the remainder of the contract period was spent performing test firings using the modified three-stage launcher. Work with the modified three-stage launcher, although not complete, did produce test firings in which an 0.11-g cylindrical nylon projectile was launched to a velocity of 8.65 km/sec.

  3. A comparative study of the single-mode Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Bai, X.; Deng, X.-L.; Jiang, L.

    2018-07-01

    In this work, the single-mode Richtmyer-Meshkov instability is studied numerically to find a reasonable nonlinear theoretical model which can be applied to predict the interface evolution from the linear stage to the early nonlinear stage. The cut-cell-based sharp-interface methods MuSiC+ (Chang et al. in J Comput Phys 242:946-990, 2013) and CCGF (Bai and Deng in Adv Appl Math Mech 9(5):1052-1075, 2017) are applied to generate numerical results for comparisons. Classical Air-SF6 and Air-Helium conditions are applied in this study, and initial amplitude and Atwood number are varied for comparison. Comparisons to the simulation results from the literature show the applicability of MuSiC+ and CCGF. Comparisons to the nonlinear theoretical models show that ZS (Zhang and Sohn in Phys Lett A 212:149-155, 1996; Phys Fluids 9:1106-1124, 1997), SEA (Sadot et al. in Phys Rev Lett 80:1654-1657, 1998), and DR (Dimonte and Ramaprabhu in Phys Fluids 22:014104, 2010) models are valid for both spike and bubble growth rates, and MIK (Mikaelian in Phys Rev E 67:026319, 2003) and ZG (Zhang and Guo in J Fluid Mech 786:47-61, 2016) models are valid for bubble growth rate, when the initial perturbation is small and the Atwood number is low, but only the DR model is applicable for both spike and bubble growth rates when the initial perturbation amplitude and the Atwood number are large. A new term of non-dimensional initial perturbation amplitude is presented and multiplied to the DR model to get a unified fitted DR model, which gives consistent results to the simulation ones for small and large initial amplitudes.

  4. A comparative study of the single-mode Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Bai, X.; Deng, X.-L.; Jiang, L.

    2017-11-01

    In this work, the single-mode Richtmyer-Meshkov instability is studied numerically to find a reasonable nonlinear theoretical model which can be applied to predict the interface evolution from the linear stage to the early nonlinear stage. The cut-cell-based sharp-interface methods MuSiC+ (Chang et al. in J Comput Phys 242:946-990, 2013) and CCGF (Bai and Deng in Adv Appl Math Mech 9(5):1052-1075, 2017) are applied to generate numerical results for comparisons. Classical Air-SF6 and Air-Helium conditions are applied in this study, and initial amplitude and Atwood number are varied for comparison. Comparisons to the simulation results from the literature show the applicability of MuSiC+ and CCGF. Comparisons to the nonlinear theoretical models show that ZS (Zhang and Sohn in Phys Lett A 212:149-155, 1996; Phys Fluids 9:1106-1124, 1997), SEA (Sadot et al. in Phys Rev Lett 80:1654-1657, 1998), and DR (Dimonte and Ramaprabhu in Phys Fluids 22:014104, 2010) models are valid for both spike and bubble growth rates, and MIK (Mikaelian in Phys Rev E 67:026319, 2003) and ZG (Zhang and Guo in J Fluid Mech 786:47-61, 2016) models are valid for bubble growth rate, when the initial perturbation is small and the Atwood number is low, but only the DR model is applicable for both spike and bubble growth rates when the initial perturbation amplitude and the Atwood number are large. A new term of non-dimensional initial perturbation amplitude is presented and multiplied to the DR model to get a unified fitted DR model, which gives consistent results to the simulation ones for small and large initial amplitudes.

  5. Particle migration and sorting in microbubble streaming flows

    PubMed Central

    Thameem, Raqeeb; Hilgenfeldt, Sascha

    2016-01-01

    Ultrasonic driving of semicylindrical microbubbles generates strong streaming flows that are robust over a wide range of driving frequencies. We show that in microchannels, these streaming flow patterns can be combined with Poiseuille flows to achieve two distinctive, highly tunable methods for size-sensitive sorting and trapping of particles much smaller than the bubble itself. This method allows higher throughput than typical passive sorting techniques, since it does not require the inclusion of device features on the order of the particle size. We propose a simple mechanism, based on channel and flow geometry, which reliably describes and predicts the sorting behavior observed in experiment. It is also shown that an asymptotic theory that incorporates the device geometry and superimposed channel flow accurately models key flow features such as peak speeds and particle trajectories, provided it is appropriately modified to account for 3D effects caused by the axial confinement of the bubble. PMID:26958103

  6. A Multi-Stage Maturity Model for Long-Term IT Outsourcing Relationship Success

    ERIC Educational Resources Information Center

    Luong, Ming; Stevens, Jeff

    2015-01-01

    The Multi-Stage Maturity Model for Long-Term IT Outsourcing Relationship Success, a theoretical stages-of-growth model, explains long-term success in IT outsourcing relationships. Research showed the IT outsourcing relationship life cycle consists of four distinct, sequential stages: contract, transition, support, and partnership. The model was…

  7. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble

    PubMed Central

    Yan, Wenchao; Chen, Liming; Li, Dazhang; Zhang, Lu; Hafz, Nasr A. M.; Dunn, James; Ma, Yong; Huang, Kai; Su, Luning; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    Desktop laser plasma acceleration has proven to be able to generate gigaelectronvolt-level quasi-monoenergetic electron beams. Moreover, such electron beams can oscillate transversely (wiggling motion) in the laser-produced plasma bubble/channel and emit collimated ultrashort X-ray flashes known as betatron radiation with photon energy ranging from kiloelectronvolts to megaelectronvolts. This implies that usually one cannot obtain bright betatron X-rays and high-quality electron beams with low emittance and small energy spread simultaneously in the same accelerating wave bucket. Here, we report the first (to our knowledge) experimental observation of two distinct electron bunches in a single laser shot, one featured with quasi-monoenergetic spectrum and another with continuous spectrum along with large emittance. The latter is able to generate high-flux betatron X-rays. Such is observed only when the laser self-guiding is extended over 4 mm at a fixed plasma density (4 × 1018 cm−3). Numerical simulation reveals that two bunches of electrons are injected at different stages due to the bubble evolution. The first bunch is injected at the beginning to form a stable quasi-monoenergetic electron beam, whereas the second one is injected later due to the oscillation of the bubble size as a result of the change of the laser spot size during the propagation. Due to the inherent temporal synchronization, this unique electron–photon source can be ideal for pump–probe applications with femtosecond time resolution. PMID:24711405

  8. Design and testing of a novel multi-stroke micropositioning system with variable resolutions.

    PubMed

    Xu, Qingsong

    2014-02-01

    Multi-stroke stages are demanded in micro-/nanopositioning applications which require smaller and larger motion strokes with fine and coarse resolutions, respectively. This paper presents the conceptual design of a novel multi-stroke, multi-resolution micropositioning stage driven by a single actuator for each working axis. It eliminates the issue of the interference among different drives, which resides in conventional multi-actuation stages. The stage is devised based on a fully compliant variable stiffness mechanism, which exhibits unequal stiffnesses in different strokes. Resistive strain sensors are employed to offer variable position resolutions in the different strokes. To quantify the design of the motion strokes and coarse/fine resolution ratio, analytical models are established. These models are verified through finite-element analysis simulations. A proof-of-concept prototype XY stage is designed, fabricated, and tested to demonstrate the feasibility of the presented ideas. Experimental results of static and dynamic testing validate the effectiveness of the proposed design.

  9. Aqueous Foam Stabilized by Tricationic Amphiphilic Surfactants

    NASA Astrophysics Data System (ADS)

    Heerschap, Seth; Marafino, John; McKenna, Kristin; Caran, Kevin; Feitosa, Klebert; Kevin Caran's Research Group Collaboration

    2015-03-01

    The unique surface properties of amphiphilic molecules have made them widely used in applications where foaming, emulsifying or coating processes are needed. The development of novel architectures with multi-cephalic/tailed molecules have enhanced their anti-bacterial activity in connection with tail length and the nature of the head group. Here we report on the foamability of two triple head double, tail cationic surfactants (M-1,14,14, M-P, 14,14) and a triple head single tail cationic surfactant (M-1,1,14) and compare them with commercially available single headed, single tailed anionic and cationic surfactants (SDS,CTAB and DTAB). The results show that bubble rupture rate decrease with the length of the carbon chain irrespective of head structure. The growth rate of bubbles with short tailed surfactants (SDS) and longer, single tailed tricationic surfactants (M-1,1,14) was shown to be twice as high as those with longer tailed surfactants (CTAB, M-P,14,14, M-1,14,14). This fact was related to the size variation of bubbles, where the foams made with short tail surfactants exhibited higher polydispersivity than those with short tails. This suggests that foams with tricationic amphiphilics are closed linked to their tail length and generally insensitive to their head structure.

  10. A Diffuse Interface Model with Immiscibility Preservation

    PubMed Central

    Tiwari, Arpit; Freund, Jonathan B.; Pantano, Carlos

    2013-01-01

    A new, simple, and computationally efficient interface capturing scheme based on a diffuse interface approach is presented for simulation of compressible multiphase flows. Multi-fluid interfaces are represented using field variables (interface functions) with associated transport equations that are augmented, with respect to an established formulation, to enforce a selected interface thickness. The resulting interface region can be set just thick enough to be resolved by the underlying mesh and numerical method, yet thin enough to provide an efficient model for dynamics of well-resolved scales. A key advance in the present method is that the interface regularization is asymptotically compatible with the thermodynamic mixture laws of the mixture model upon which it is constructed. It incorporates first-order pressure and velocity non-equilibrium effects while preserving interface conditions for equilibrium flows, even within the thin diffused mixture region. We first quantify the improved convergence of this formulation in some widely used one-dimensional configurations, then show that it enables fundamentally better simulations of bubble dynamics. Demonstrations include both a spherical bubble collapse, which is shown to maintain excellent symmetry despite the Cartesian mesh, and a jetting bubble collapse adjacent a wall. Comparisons show that without the new formulation the jet is suppressed by numerical diffusion leading to qualitatively incorrect results. PMID:24058207

  11. Characteristics of Pool Boiling on Graphite-Copper Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2002-01-01

    Nucleate pool boiling performance of different liquids on graphite-copper composite (Gr-Cu) surfaces has been experimentally studied and modeled. Both highly wetting fluids, such as freon-113 and pentane, and a moderately wetting fluid (water) were tested on the Gr-Cu surfaces with different graphite-fiber volume fractions to reveal the enhancement effects of the composite surfaces on the nucleate pool boiling. Results of the experiments show that the graphite-fiber volume fraction has an optimum value. The Gr-Cu composite surface with 25 percent graphite-fiber volume (f=0.25) has a maximum enhancement effect on the nucleate boiling heat transfer comparing to the pure copper surface. For the highly wetting fluid, the nucleate boiling heat transfer is generally enhanced on the Gr- Cu composite surfaces by 3 to 6 times shown. In the low heat flux region, the enhancement is over 6 times, but in the high heat flux region, the enhancement is reduced to about 40%. For the moderately wetting fluid (water), stronger enhancement of nucleate boiling heat transfer is achieved on the composite surface. It shown the experimental results in which one observes the nucleate boiling heat transfer enhancement of 5 to 10 times in the low heat flux region and an enhancement of 3 to 5 times in the high heat flux region. Photographs of bubble departure during the initial stage of nucleate boiling indicate that the bubbles detached from the composite surface are much smaller in diameter than those detached from the pure copper surface. Typical photographs are presented.It shows that the bubbles departed from the composite surface have diameters of only O(0.1) mm, while those departed from the pure copper surface have diameters of O(1) mm. It is also found that the bubbles depart from the composite surface at a much higher frequency, thus forming vapor columns. These two phenomena combined with high thermal conductivity of the graphite fiber are considered the mechanisms for such a significant augmentation in nucleate boiling heat transfer on the composite surfaces. A physical model is developed to describe the phenomenon of bubble departure from the composite surface: The preferred site of bubble nucleation is the fiber tip because of higher tip temperature than the surrounding copper base and poor wettability of the graphite tip compared with that of the base material (copper). The high evaporation rate near the contact line produces the vapor cutback due to the vapor recoil pushing the three-phase line outwards from the fiber tip, and so a neck of the bubble is formed near the bubble bottom. Evaporation and surface tension accelerate the necking process and finally result in the bubble departure while a new small bubble is formed at the tip when the surface tension pushes the three-phase line back to the tip. The process is schematically shown. The proposed model is based on and confirmed by experimental results.

  12. Long duration X-ray drive hydrodynamics experiments relevant for laboratory astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casner, A.; Martinez, D.; Smalyuk, V.

    The advent of high-power lasers facilities such as the National Ignition Facility (NIF), and the Laser Megajoule (LMJ) in the near future, opens a new era in the field of High Energy Density Laboratory Astrophysics. These versatile laser facilities will provide unique platforms to study the rich physics of nonlinear and turbulent mixing flows. The extended laser pulse duration could be harnessed to accelerate targets over much larger distances and longer time periods than previously achieved. Here, we report on the first results acquired on NIF with the ablative Rayleigh–Taylor Instability (RTI) platform. A 20-ns X-ray drive is tailored tomore » accelerate planar modulated samples into the highly-nonlinear bubble merger regime. Based on the analogy between flames front and ablation front, highly nonlinear RTI measurements at ablation front can provide important insights into the initial deflagration stage of thermonuclear supernova of Type Ia. We also report on an innovative concept used to create even longer drive on multi-beam laser facilities. The multi-barrel hohlraum (Gattling Gun) approach consists, here, of three adjacent cavities, driven in succession in time. This novel concept has been validated on the Omega EP laser system. The three cavities were irradiated with three 6–10 ns pulse UV beams and a 30 ns, 90 eV X-ray radiation drive was measured with the time-resolved X-ray spectrometer μDMX. This concept is promising to investigate the pillar structures in the Eagle Nebula or for photoionization studies which require a steady light source of sufficient duration to recreate relevant physics.« less

  13. Long duration X-ray drive hydrodynamics experiments relevant for laboratory astrophysics

    DOE PAGES

    Casner, A.; Martinez, D.; Smalyuk, V.; ...

    2014-09-20

    The advent of high-power lasers facilities such as the National Ignition Facility (NIF), and the Laser Megajoule (LMJ) in the near future, opens a new era in the field of High Energy Density Laboratory Astrophysics. These versatile laser facilities will provide unique platforms to study the rich physics of nonlinear and turbulent mixing flows. The extended laser pulse duration could be harnessed to accelerate targets over much larger distances and longer time periods than previously achieved. Here, we report on the first results acquired on NIF with the ablative Rayleigh–Taylor Instability (RTI) platform. A 20-ns X-ray drive is tailored tomore » accelerate planar modulated samples into the highly-nonlinear bubble merger regime. Based on the analogy between flames front and ablation front, highly nonlinear RTI measurements at ablation front can provide important insights into the initial deflagration stage of thermonuclear supernova of Type Ia. We also report on an innovative concept used to create even longer drive on multi-beam laser facilities. The multi-barrel hohlraum (Gattling Gun) approach consists, here, of three adjacent cavities, driven in succession in time. This novel concept has been validated on the Omega EP laser system. The three cavities were irradiated with three 6–10 ns pulse UV beams and a 30 ns, 90 eV X-ray radiation drive was measured with the time-resolved X-ray spectrometer μDMX. This concept is promising to investigate the pillar structures in the Eagle Nebula or for photoionization studies which require a steady light source of sufficient duration to recreate relevant physics.« less

  14. Raw water clarification by flotation with microbubbles and nanobubbles generated with a multiphase pump.

    PubMed

    Azevedo, A; Etchepare, R; Rubio, J

    2017-05-01

    Raw water clarification by flotation was studied by injecting air into a centrifugal multiphase pump to generate microbubbles (MBs) and nanobubbles (NBs). Measurements of gas dispersion parameters were performed and optimal conditions were obtained using a pump pressure of 4 bar. Values showed a bubble Sauter diameter of 75 μm, an air holdup of 1.2%, a bubble surface area flux of 34 s -1 and an NB concentration of 1 × 10 8 NBs mL -1 (measuring 220 nm). Then, a study compared flotation with bubbles formed with the multiphase pump (F-MP) to lamellar settling at the clarification stage of a water treatment plant (WTP), in Brazil. The F-MP showed a higher separation efficiency at high hydraulic loads (9-15 m h -1 ), even without the use of a polymer, reaching 2 NTU (10-25 NTU raw water feed), which was much lower than the technical goal of the WTP (5 NTU). The results and the technical aspects are discussed, and it is concluded that the employment of MBs and NBs with pumps widens new research lines and applications in modern flotation.

  15. HOW SIGNIFICANT IS RADIATION PRESSURE IN THE DYNAMICS OF THE GAS AROUND YOUNG STELLAR CLUSTERS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silich, Sergiy; Tenorio-Tagle, Guillermo, E-mail: silich@inaoep.mx

    2013-03-01

    The impact of radiation pressure on the dynamics of the gas in the vicinity of young stellar clusters is thoroughly discussed. The radiation over the thermal/ram pressure ratio time evolution is calculated explicitly and the crucial roles of the cluster mechanical power, the strong time evolution of the ionizing photon flux, and the bolometric luminosity of the exciting cluster are stressed. It is shown that radiation has only a narrow window of opportunity to dominate the wind-driven shell dynamics. This may occur only at early stages of the bubble evolution and if the shell expands into a dusty and/or amore » very dense proto-cluster medium. The impact of radiation pressure on the wind-driven shell always becomes negligible after about 3 Myr. Finally, the wind-driven model results allow one to compare the model predictions with the distribution of thermal pressure derived from X-ray observations. The shape of the thermal pressure profile then allows us to distinguish between the energy and the momentum-dominated regimes of expansion and thus conclude whether radiative losses of energy or the leakage of hot gas from the bubble interior have been significant during bubble evolution.« less

  16. Gas exsolution and bubbles nucleation from the 1669 lava flow of Mount Etna (Italy): evidences from phase-contrast synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Lanzafame, Gabriele; Ferlito, Carmelo; Mancini, Lucia

    2017-04-01

    Bubbles are usually present in lavas, often showing an increase in their size and number from bottom to the top of vertical profile of the flows. Their presence is commonly interpreted as the final phase of the degassing processes starting and massively occurring at depth, before the eruption. In this work we present the results of a detailed study of size, shape and volumetric distribution of bubbles in lavas from the 1669 eruption of Mount Etna (Italy), one of the most voluminous and destructive historic events of this volcano. The lava field produced during this event extends up to 18 km from the craters, and the massive presence of bubbles in lavas sampled many kilometres away from the emission point is in contrast with the models predicting their almost total exsolution from the magma before the eruption, at depth of several kilometres beneath the volcano edifice. Sampling of the 1669 lava field has been performed along the longitudinal profile of the field at increasing distance from the vent. Collected rocks have been analysed by X-ray fluorescence and phase-contrast synchrotron X-ray computed microtomography in order to extract three-dimensional (3D) qualitative and quantitative information on the bubbles network. The use of synchrotron light permitted to investigate small portions of the samples at high spatial and contrast resolution and allowed us to obtain the 3D morphology and distribution of the micro-bubbles present in the lava, avoiding the limitations of the traditional two-dimensional analysis on thin sections. Results indicate that bubbles in lavas are present in various abundance, constituting up to 18% of the rocks volume, and are randomly distributed, with no regards for the distance from the vent. Their casual abundance, morphological characteristics and spatial distribution indicate large nucleation from syn- to post-eruptive stage, during the lava flowing and probably after it halted its run. These observations are in contrast with the general view that considers the magma completely (or largely) degassed and the volcanic gas species (mostly H2O, CO2, SO2) as largely exsolved when magma reaches the surface. On the contrary, results indicate that the exsolution of bubble-forming volcanic gases can occur far from the emission vent and right before the complete solidification of the lava. Finally, this process could easily explain, for the case of 1669 eruption, the impressive fluidity of the lavas, which display pahoehoe morphology 16 km away from the emission vent.

  17. A multi-commuted flow injection system with a multi-channel propulsion unit placed before detection: Spectrophotometric determination of ammonium.

    PubMed

    Oliveira, Sara M; Lopes, Teresa I M S; Tóth, Ildikó V; Rangel, António O S S

    2007-09-26

    A flow system with a multi-channel peristaltic pump placed before the solenoid valves is proposed to overcome some limitations attributed to multi-commuted flow injection systems: the negative pressure can lead to the formation of unwanted air bubbles and limits the use of devices for separation processes (gas diffusion, dialysis or ion-exchange). The proposed approach was applied to the colorimetric determination of ammonium nitrogen. In alkaline medium, ammonium is converted into ammonia, which diffuses over the membrane, causing a pH change and subsequently a colour change in the acceptor stream (bromothymol blue solution). The system allowed the re-circulation of the acceptor solution and was applied to ammonium determination in surface and tap water, providing relative standard deviations lower than 1.5%. A stopped flow approach in the acceptor stream was adopted to attain a low quantification limit (42 microgL(-1)) and a linear dynamic range of 50-1000 microgL(-1) with a determination rate of 20 h(-1).

  18. Adaptation of Decoy Fusion Strategy for Existing Multi-Stage Search Workflows

    NASA Astrophysics Data System (ADS)

    Ivanov, Mark V.; Levitsky, Lev I.; Gorshkov, Mikhail V.

    2016-09-01

    A number of proteomic database search engines implement multi-stage strategies aiming at increasing the sensitivity of proteome analysis. These approaches often employ a subset of the original database for the secondary stage of analysis. However, if target-decoy approach (TDA) is used for false discovery rate (FDR) estimation, the multi-stage strategies may violate the underlying assumption of TDA that false matches are distributed uniformly across the target and decoy databases. This violation occurs if the numbers of target and decoy proteins selected for the second search are not equal. Here, we propose a method of decoy database generation based on the previously reported decoy fusion strategy. This method allows unbiased TDA-based FDR estimation in multi-stage searches and can be easily integrated into existing workflows utilizing popular search engines and post-search algorithms.

  19. Spontaneous cavitation in a Lennard-Jones liquid: Molecular dynamics simulation and the van der Waals-Cahn-Hilliard gradient theory

    NASA Astrophysics Data System (ADS)

    Baidakov, Vladimir G.

    2016-02-01

    The process of bubble nucleation in a Lennard-Jones (LJ) liquid is studied by molecular dynamics (MD) simulation. The bubble nucleation rate J is determined by the mean life-time method at temperatures above that of the triple point in the region of negative pressures. The results of simulation are compared with classical nucleation theory (CNT) and modified classical nucleation theory (MCNT), in which the work of formation of a critical bubble is determined in the framework of the van der Waals-Cahn-Hilliard gradient theory (GT). It has been found that the values of J obtained in MD simulation systematically exceed the data of CNT, and this excess in the nucleation rate reaches 8-10 orders of magnitude close to the triple point temperature. The results of MCNT are in satisfactory agreement with the data of MD simulation. To describe the properties of vapor-phase nuclei in the framework of GT, an equation of state has been built up which describes stable, metastable and labile regions of LJ fluids. The surface tension of critical bubbles γ has been found from CNT and data of MD simulation as a function of the radius of curvature of the surface of tension R*. The dependence γ(R*) has also been calculated from GT. The Tolman length has been determined, which is negative and in modulus equal to ≈(0.1 - 0.2) σ. The paper discusses the applicability of the Tolman formula to the description of the properties of critical nuclei in nucleation.

  20. Pore level visualization of foam flow in a silicon micromodel. SUPRI TR 100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woody, F.; Blunt, M.; Castanier, L.

    This paper is concerned with the behavior of foam in porous media at the pore level. Identical, heterogeneous silicon micromodels, two dimensionally etched to replicate flow in Berea Sandstone, were used. The models, already saturated with varying concentrations of surfactant and, at times, oil were invaded with air. Visual observations were made of these air displacement events in an effort to determine foam flow characteristics with varying surfactant concentrations, and differing surfactants in the presence of oil. These displacement events were recorded on video tape. These tapes are available at the Stanford University Petroleum Research Institute, Stanford, California. The observedmore » air flow characteristics can be broadly classified into two: continuous and discontinuous. Continuous air flow was observed in two phase runs when the micromodel contained no aqueous surfactant solution. Air followed a tortuous path to the outlet, splitting and reconnecting around grains, isolating water located in dead-end or circumvented pores, all without breaking and forming bubbles. No foam was created. Discontinuous air flow occurred in runs containing surfactant - with smaller bubble sizes appearing with higher surfactant concentrations. Air moved through the medium by way of modified bubble train flow where bubbles travel through pore throats and tend to reside more statically in larger pore bodies until enough force is applied to move them along. The lamellae were stable, and breaking and reforming events by liquid drainage and corner flow were observed in higher surfactant concentrations. However, the classic snap-off process, as described by Roof (1973) was not seen at all.« less

  1. Effects of ice crystal surface roughness and air bubble inclusions on cirrus cloud radiative properties from remote sensing perspective

    NASA Astrophysics Data System (ADS)

    Tang, Guanglin; Panetta, R. Lee; Yang, Ping; Kattawar, George W.; Zhai, Peng-Wang

    2017-07-01

    We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape - decreases and then increases - with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element -P12 for scattering angles between 20°-120°, whereas surface roughness has a much weaker effect, increasing -P12 slightly from 60°-120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered.

  2. Dynamical Behavior of Discrete Bubble and Heat Transfer of Nucleate Pool Boiling in Short-Term Microgravity

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Fu

    2012-07-01

    Boiling in microgravity is an increasing significant subject of investigation. Motivation for the study comes not only from many potential space applications due to its high efficiency to transfer high heat flux with liquid-vapor phase change, but also from powerful platform of microgravity to reveal the mechanism of heat transfer underneath the phenomenon of boiling. In the present paper, the growth of a discrete bubble during nucleate pool boiling and heat transfer in short-term microgravity is studied experimentally utilizing the drop tower Beijing. A P-doped N-type square silicon chip with the dimensions of 10x10x0.5 mm ^{3} was used as the heater. Two 0.25-mm diameters copper wires for power supply was soldered to the side surfaces of the chip at the opposite ends. The normal resistant of the chip is 75 Ω. The chip was heated by using Joule effect. A D.C. power supply of constant current was used to input energy to the heater element. A 0.12-mm diameter, T-type thermocouple adhered on the centre of the backside of the chip was used for the measurement of wall temperature, while two other T-type thermocouples were used for the bulk liquid temperature. FC-72 was used as working fluid. The concentration of air was determined by using Henry law as 0.0046 moles gas/mole liquid. The pressure and the bulk liquid temperature in the boiling chamber were nominally 102.0 kPa and 12.0 °C, respectively. The shapes of the bubbles were recorded using a high speed camera at a speed of 250 fps with a shutter speed of 1/2000 s. Based on the image manipulation, the effective diameter of the discrete bubble is obtained. The experiments were conducted utilizing the drop tower Beijing, which can provide a short-term microgravity condition. The residual gravity of 10 ^{-2 ... -3} g _{0} can be maintained throughout the short duration of 3.6 s. To avoid the influence of natural convection in normal gravity environment, the heating switched on at the release of the drop capsule. Moreover, careful choice of the experimental parameters was made to keep the boiling delay time, namely the duration from the beginning of heating to that of steady boiling, no more than 3.0 s. A typical growth of discrete bubble was observed with the heating current of 0.33 A. A discrete bubble appeared at the center of heater surface at 0.644 s after the heating current switched on. It grew gradually at first, and then stayed constantly, even decreases. Finally, it coalesced with other bubbles, and formed a larger coalesced bubble at 0.944 s. It is found that the bubble effective diameter is proportional to the square root of the time at the first stage, which is consistent with the bubble growth model based on classical thermal-controlled mechanism. The proportional coefficient is estimates as 5.6, which is located inside the range reported in the literature, indicating that gravity has a much slight influence on the early period of bubble growth. Large bubble size in microgravity, however, can provide much accurate measurement.

  3. Morphological characteristics of waste polyethylene/polypropylene plastics during pyrolysis and representative morphological signal characterizing pyrolysis stages.

    PubMed

    Wang, H; Chen, D; Yuan, G; Ma, X; Dai, X

    2013-02-01

    In this work, the morphological characteristics of waste polyethylene (PE)/polypropylene (PP) plastics during their pyrolysis process were investigated, and based on their basic image changing patterns representative morphological signals describing the pyrolysis stages were obtained. PE and PP granules and films were used as typical plastics for testing, and influence of impurities was also investigated. During pyrolysis experiments, photographs of the testing samples were taken sequentially with a high-speed infrared camera, and the quantitative parameters that describe the morphological characteristics of these photographs were explored using the "Image Pro Plus (v6.3)" digital image processing software. The experimental results showed that plastics pyrolysis involved four stages: melting, two stages of decomposition which are characterized with bubble formation caused by volatile evaporating, and ash deposition; and each stage was characterized with its own phase changing behaviors and morphological features. Two stages of decomposition are the key step of pyrolysis since they took up half or more of the reaction time; melting step consumed another half of reaction time in experiments when raw materials were heated up from ambient temperatures; and coke-like deposition appeared as a result of decomposition completion. Two morphological signals defined from digital image processing, namely, pixel area of the interested reaction region and bubble ratio (BR) caused by volatile evaporating were found to change regularly with pyrolysis stages. In particular, for all experimental scenarios with plastics films and granules, the BR curves always exhibited a slowly drop as melting started and then a sharp increase followed by a deep decrease corresponding to the first stage of intense decomposition, afterwards a second increase - drop section corresponding to the second stage of decomposition appeared. As ash deposition happened, the BR dropped to zero or very low values. When impurities were involved, the shape of BR curves showed that intense decomposition started earlier but morphological characteristics remained the same. In addition, compared to parameters such as pressure, the BR reflects reaction stages better and its change with pyrolysis process of PE/PP plastics with or without impurities was more intrinsically process correlated; therefore it can be adopted as a signal for pyrolysis process characterization, as well as offering guide to process improvement and reactor design. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. A new gas lesion syndrome in man, induced by 'isobaric gas counterdiffusion'

    NASA Technical Reports Server (NTRS)

    Lambertsen, C. J.; Idicula, J.

    1975-01-01

    Normal men have been found to develop pruritis and gas bubble lesions in the skin, and disruption of vestibular function, when breathing nitrogen or neon with oxygen while surrounded by helium at increased ambient pressure. This phenomenon, which occurs at stable ambient pressures, at 1 or many ATA, has been designated the isobaric gas counterdiffusion syndrome. In a series of analyses and experiments in vivo and in vitro the cause of the syndrome has been established as due to gas accumulation and development of gas bubbles in tissues as a result of differences in selective diffusivities, for various respired and ambient gases, in the tissue substances between capillary blood and the surrounding atmosphere. The phenomenon described in man is an initial stage of a process shown later in animals to progress to continuous, massive, lethal, intravascular gas embolization.

  5. Transmission electron microscopy of a refractory inclusion from the Allende meteorite - Anatomy of a pyroxene

    NASA Astrophysics Data System (ADS)

    Doukhan, N.; Doukhan, J. C.; Poirier, J. P.

    1991-06-01

    A crystal of clinopyroxene from the coarse-grained refractory inclusion Egg 6 of the Allende meteorite has been studied in detail by transmission electron microscopy. The pyroxene crystal contains euhedral, dislocation-free inclusions of pure spinel MgAl2O4, without any topotactic relation to the host. Extensive dislocation walls at equilibrium, characteristic of high-temperature anneal, are present in the crystal. Alteration products are occasionaly observed at the spinel-pyroxene interface close to regions where dislocation walls decorated with bubbles (or voids) are present. The bubbles, often in the shape of tubes along the dislocation lines, are thought to be due to the precipitation of a fluid migrating along the dislocations. The observations are compatible with crystallization of the refractory inclusions from the melt and with the existence of a later stage of metasomatism.

  6. Attenuation of seismic waves in rocks saturated with multiphase fluids: theory and experiments

    NASA Astrophysics Data System (ADS)

    Tisato, N.; Quintal, B.; Chapman, S.; Podladchikov, Y.; Burg, J. P.

    2016-12-01

    Albeit seismic tomography could provide a detailed image of subsurface fluid distribution, the interpretation of the tomographic signals is often controversial and fails in providing a conclusive map of the subsurface saturation. However, tomographic information is important because the upward migration of multiphase fluids through the crust of the Earth can cause hazardous events such as eruptions, explosions, soil-pollution and earthquakes. In addition, multiphase fluids, such as hydrocarbons, represent important resources for economy. Seismic tomography can be improved considering complex elastic moduli and the attenuation of seismic waves (1/Q) that quantifies the energy lost by propagating elastic waves. In particular, a significant portion of the energy carried by the propagating wave is dissipated in saturated media by the wave-induced-fluid-flow (WIFF) and the wave-induced-gas-exsolution-dissolution (WIGED) mechanism. The latter describes how a propagating wave modifies the thermodynamic equilibrium between different fluid phases causing exsolution and dissolution of gas bubbles in the liquid, which in turn causes a significant frequency-dependent 1/Q and moduli dispersion. The WIGED theory was initially postulated for bubbly magmas but was only recently demonstrated and extended to bubbly water. We report the theory and laboratory experiments that have been performed to confirm the WIGED theory. In particular, we present i) attenuation measurements performed by means of the Broad Band Attenuation Vessel on porous media saturated with water and different gases, and ii) numerical experiments validating the laboratory observations. Then, we extend the theory to fluids and pressure-temperature conditions which are typical of phreatomagmatic and hydrocarbon domains and we compare the propagation of seismic waves in bubble-free and bubble-bearing subsurface domains. This work etends the knowledge of attenuation in rocks saturated with multiphase fluid and emphasizes that the WIGED mechanism is very important to image subsurface gas plumes.

  7. Magma deformation and emplacement in rhyolitic dykes

    NASA Astrophysics Data System (ADS)

    McGowan, Ellen; Tuffen, Hugh; James, Mike; Wynn, Peter

    2016-04-01

    Silicic eruption mechanisms are determined by the rheological and degassing behaviour of highly-viscous magma ascending within shallow dykes and conduits. However, we have little knowledge of how magmatic behaviour shifts during eruptions as dykes and conduits evolve. To address this we have analysed the micro- to macro-scale textures in shallow, dissected rhyolitic dykes at the Tertiary Húsafell central volcano in west Iceland. Dyke intrusion at ~3 Ma was associated with the emplacement of subaerial rhyolitic pyroclastic deposits following caldera formation[1]. The dykes are dissected to ~500 m depth, 2-3 m wide, and crop out in two stream valleys with 5-30 m-long exposures. Dykes intrude diverse country rock types, including a welded ignimbrite, basaltic lavas, and glacial conglomerate. Each of the six studied dykes is broadly similar, exhibiting obsidian margins and microcrystalline cores. Dykes within pre-fractured lava are surrounded by external tuffisite vein networks, which are absent from dykes within conglomerate, whereas dykes failed to penetrate the ignimbrite. Obsidian at dyke margins comprises layers of discrete colour. These display dramatic thickness variations and collapsed bubble structures, and are locally separated by zones of welded, brecciated and flow-banded obsidian. We use textural associations to present a detailed model of dyke emplacement and evolution. Dykes initially propagated with the passage of fragmented, gas-charged magma and generation of external tuffisite veins, whose distribution was strongly influenced by pre-existing fractures in the country rock. External tuffisites retained permeability throughout dyke emplacement due to their high lithic content. The geochemically homogenous dykes then evolved via incremental magma emplacement, with shear deformation localised along emplacement boundary layers. Shear zones migrated between different boundary layers, and bubble deformation promoted magma mobility. Brittle-ductile microtextures and bubble populations point towards multi-step and multi-rate magma decompression, and we propose that gas overpressure in bubbles created tensile micro-cracks, whose coalescence culminated in macroscopic fragmentation. Finally, we infer that bubble collapse was associated with both localised brittle magma failure at shallow levels and macroscopic magma fragmentation deeper within the magmatic system. Processes recorded by the Húsafell dyke exposures appear akin to those occurring in the shallow conduits of Chaitén and Cordón Caulle during recent rhyolitic eruptions[2,3]. The field evidence presented here therefore bridges the gap between eruption observations and the deeper geological record, and so provides new insight into conduit evolution during explosive-hybrid-effusive eruptive phases[2,3] and the influence of country rock. The parallels between intrusive dyke textures and those found in extruded silicic lavas suggest that processes recorded in the dykes, including bubble collapse, volatile resorption, thermally-induced vesiculation and the formation of brittle-ductile shear zones, also occur within extrusive flows, contributing to their extreme textural heterogeneity[4]. [1] Saemundsson K & Noll H (1974) Jökull 24, 40-59. [2] Schipper CI et al. (2013) JVGR, 262, 25-37. [3] Castro JC et al. (2014) EPSL, 405, 52-61. [4] Shields JK et al. (2016) JVGR, 310, 137-158.

  8. A stable and convenient protein electrophoresis titration device with bubble removing system.

    PubMed

    Zhang, Qiang; Fan, Liu-Yin; Li, Wen-Lin; Cong, Feng-Song; Zhong, Ran; Chen, Jing-Jing; He, Yu-Chen; Xiao, Hua; Cao, Cheng-Xi

    2017-07-01

    Moving reaction boundary titration (MRBT) has a potential application to immunoassay and protein content analysis with high selectivity. However, air bubbles often impair the accuracy of MRBT, and the leakage of electrolyte greatly decreases the safety and convenience of electrophoretic titration. Addressing these two issues a reliable MRBT device with modified electrolyte chamber of protein titration was designed. Multiphysics computer simulation was conducted for optimization according to two-phase flow. The single chamber was made of two perpendicular cylinders with different diameters. After placing electrophoretic tube, the resident air in the junction next to the gel could be eliminated by a simple fast electrolyte flow. Removing the electrophoretic tube automatically prevented electrolyte leakage at the junction due to the gravity-induced negative pressure within the chamber. Moreover, the numerical simulation and experiments showed that the improved MRBT device has following advantages: (i) easy and rapid setup of electrophoretic tube within 20 s; (ii) simple and quick bubble dissipates from the chamber of titration within 2 s; (iii) no electrolyte leakage from the two chambers: and (iv) accurate protein titration and safe instrumental operation. The developed technique and apparatus greatly improves the performance of the previous MRBT device, and providing a new route toward practical application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Application of the "Full Cavitation Model" to the fundamental study of cavitation in liquid metal processing

    NASA Astrophysics Data System (ADS)

    Lebon, G. S. B.; Pericleous, K.; Tzanakis, I.; Eskin, D.

    2015-01-01

    Ultrasonic cavitation treatment of melt significantly improves the downstream properties and quality of conventional and advanced metallic materials. However, the transfer of this technology has been hindered by difficulties in treating large volumes of liquid metal. To improve the understanding of cavitation processing efficiency, the Full Cavitation Model, which is derived from a reduced form of the Rayleigh-Plesset equation, is modified and applied to the two-phase problem of bubble propagation in liquid melt. Numerical simulations of the sound propagation are performed in the microsecond time scale to predict the maximum and minimum acoustic pressure amplitude fields in the domain. This field is applied to the source term of the bubble transport equation to predict the generation and destruction of cavitation bubbles in a time scale relevant to the fluid flow. The use of baffles to limit flow speed in a launder conduit is studied numerically, to determine the optimum configuration that maximizes the residence time of the liquid in high cavitation activity regions. With this configuration, it is then possible to convert the batch processing of liquid metal into a continuous process. The numerical simulations will be validated against water and aluminium alloy experiments, carried out at Brunel University.

  10. Modified rod-in-tube for high-NA tellurite glass fiber fabrication: materials and technologies.

    PubMed

    Chen, Qiuling; Wang, Hui; Wang, Qingwei; Chen, Qiuping; Hao, Yinlei

    2015-02-01

    In this paper, we report the whole fabrication process for high-numerical aperture (NA) tellurite glass fibers from material preparation to preform fabrication, and eventually, fiber drawing. A tellurite-based high-NA (0.9) magneto-optical glass fiber was drawn successfully and characterized. First, matchable core and cladding glasses were fabricated and matched in terms of physical properties. Second, a uniform bubble-free preform was fabricated by means of a modified rod-in-tube technique. Finally, the fiber drawing process was studied and optimized. The high-NA fibers (∅(core), 40-50 μm and ∅(cladding), 120-130 μm) so obtained were characterized for their geometrical and optical properties.

  11. Process of modifying a cable end

    DOEpatents

    Roose, L.D.

    1995-08-01

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. Disclosed are a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves. 5 figs.

  12. A Spectroscopic Study On Two Glasses With Different Vesicularity From The Astroni Tephra (phlegraean Fields, Italy): Implications On Bubble Expansion

    NASA Astrophysics Data System (ADS)

    Slejko, F. F.; Petrini, R.

    Bubble growth in ascending viscous magmas by volatile exsolution from the melt structure is important in causing the magma fragmentation which determines the trans- form from a lava flow to a pyroclastic explosion. Volatile solubility and speciation in the melt vary during pressure and temperature changes. The pressure drop which oc- curs as a magma rises towards the surface in a volcanic conduit, causes the release of the volatiles dissolved in the melt and the progressive growth in the size of bubbles against the retarding forces to expansion generated by the polymeric interconnections in the silicate melt structure. At some critical growth rate with respect to the relax- ation time of the melt structure, the disruption of the interbubbles walls in the melt marks the fragmentation threshold, with the transition from a viscous bubbly liquid to a fast-uprising gas carrying on fragments of vesiculated magma. Highly polymer- ized, silica-rich melts are characterised by relaxation times which may be long com- pared to the quick growth and deformation of bubbles during rapid magma decom- pression and cooling, and the glassy pumices which form may retain informations on the vesiculation and degassing processes which occurred close to the fragmentation depth. Furthermore, the formation of vesicles during the cooling and decompression of an ascending volatile-supersaturated high-silica magma is strongly favoured by the occurrence of bubble nucleating sites in the melt. In order to investigate the influ- ence of the structure and iron speciation on bubble growth during explosive volcan- ism, a dense glass and a vesiculated pumice glass coexisting in the same pyroclastic unit of the Astroni volcano tephra in the Phlegraean Fields Caldera (4.1-3.8 ka BP) were investigated by 29Si 2D phase adjusted spinning sidebands (PASS) NMR, 1H MAS NMR, electron spin resonance (ESR) and Mössbauer spectroscopy. 29Si 2D PASS spectra show that silicon copolymerizes in the structure dominantly by Q3 and Q4 groups, with partly overlapping chemical shift. Spectrum fittings indicate that the dense glass is characterised by a larger abundance of Q3 species compared to the vesiculated pumice, suggesting a less polymerized structure. 1H MAS spectra reveal a larger amount of hydrogen concentration in the dense glass, partly attributable to structural hydroxyl groups possibly in Q3-OH terminations depolymerizing the glass structure. The less polymerized structure of the dense glass could have allowed an easier volatile exsolution, preventing the bubble formation. The EPR spectra indicate that the Fe3+ has similar surroundings in both samples, suggesting that Fe3+ is likely to occur in both network forming and modifying sites. Nevertheless, the vesiculated glass is characterised by a significantly higher amount of magnetite particles, which could have enhanced the bubble nucleation. Mössbauer spectra show four doublets attributable to ferric iron in both tetrahedral and octahedral sites and ferrous iron only in octahedral coordination. The oxidation of Fe2+ to Fe3+ observed in the vesicu- lated glass with respect to the dense glass could be an evidence of pressure drop with consequent bubble expansion.

  13. Computer ranking of the sequence of appearance of 100 features of the brain and related structures in staged human embryos during the first 5 weeks of development.

    PubMed

    O'Rahilly, R; Müller, F; Hutchins, G M; Moore, G W

    1984-11-01

    The sequence of events in the development of the brain in staged human embryos was investigated in much greater detail than in previous studies by listing 100 features in 165 embryos of the first 5 weeks. Using a computerized bubble-sort algorithm, individual embryos were ranked in ascending order of the features present. This procedure made feasible an appreciation of the slight variation found in the developmental features. The vast majority of features appeared during either one or two stages (about 2 or 3 days). In general, the soundness of the Carnegie system of embryonic staging was amply confirmed. The rhombencephalon was found to show increasing complexity around stage 13, and the postoptic portion of the diencephalon underwent considerable differentiation by stage 15. The need for similar investigations of other systems of the body is emphasized, and the importance of such studies in assessing the timing of congenital malformations and in clarifying syndromic clusters is suggested.

  14. Biological Effects of Acoustic Cavitation

    DTIC Science & Technology

    1985-06-15

    call attention to four important ones: Ter Haar et.al. (25-26] have irradiated live guinea pig legs with therapeutic ultrasound while examining the...eggs and larvae * at various stages in their development with pulsed ultrasound . They have determined that when gas-containing trachea developed in...the organisms, they were extremely suceptable to the ultrasound and large fractions could - be killedý Hemmingsen et.al. [30-311 have observed bubble

  15. Endogenous Price Bubbles in a Multi-Agent System of the Housing Market

    PubMed Central

    2015-01-01

    Economic history shows a large number of boom-bust cycles, with the U.S. real estate market as one of the latest examples. Classical economic models have not been able to provide a full explanation for this type of market dynamics. Therefore, we analyze home prices in the U.S. using an alternative approach, a multi-agent complex system. Instead of the classical assumptions of agent rationality and market efficiency, agents in the model are heterogeneous, adaptive, and boundedly rational. We estimate the multi-agent system with historical house prices for the U.S. market. The model fits the data well and a deterministic version of the model can endogenously produce boom-and-bust cycles on the basis of the estimated coefficients. This implies that trading between agents themselves can create major price swings in absence of fundamental news. PMID:26107740

  16. Influence of dispatching rules on average production lead time for multi-stage production systems.

    PubMed

    Hübl, Alexander; Jodlbauer, Herbert; Altendorfer, Klaus

    2013-08-01

    In this paper the influence of different dispatching rules on the average production lead time is investigated. Two theorems based on covariance between processing time and production lead time are formulated and proved theoretically. Theorem 1 links the average production lead time to the "processing time weighted production lead time" for the multi-stage production systems analytically. The influence of different dispatching rules on average lead time, which is well known from simulation and empirical studies, can be proved theoretically in Theorem 2 for a single stage production system. A simulation study is conducted to gain more insight into the influence of dispatching rules on average production lead time in a multi-stage production system. We find that the "processing time weighted average production lead time" for a multi-stage production system is not invariant of the applied dispatching rule and can be used as a dispatching rule independent indicator for single-stage production systems.

  17. Operation of staged membrane oxidation reactor systems

    DOEpatents

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  18. A new system for assessment of growth using mandibular canine calcification stages and its correlation with modified MP3 stages.

    PubMed

    Hegde, Gautham; Hegde, Nanditha; Kumar, Anil; Keshavaraj

    2014-07-01

    Orthodontic diagnosis and treatment planning for growing children must involve growth prediction, especially in the treatment of skeletal problems. Studies have shown that a strong association exists between skeletal maturity and dental calcification stages. The present study was therefore taken up to provide a simple and practical method for assessing skeletal maturity using a dental periapical film and standard dental X-ray machine, to compare the developmental stages of the mandibular canine with that of developmental stages of modified MP3 and to find out if any correlation exists, to determine if the developmental stages of the mandibular canine alone can be used as a reliable indicator for assessment of skeletal maturity. A total of 160 periapical radiographs, of the mandibular right canine and the MP3 region was taken and assessed according to the Dermirjian's stages of dental calcification and the modified MP3 stages. The correlation coefficient between MP3 stages and developmental stages of mandibular canine was found to be significant in both male and female groups. When the canine calcification stages were compared with the MP3 stages it was found that with the exception of the D stage of canine calcification the remaining stages showed a very high correlation with the modified MP3 stages. The correlation between the mandibular canine calcification stages, and the MP3 stages was found to be significant. The canine calcification could be used as a sole indicator for assessment of skeletal maturity.

  19. Task III: Development of an Effective Computational Methodology for Body Force Representation of High-speed Rotor 37

    NASA Technical Reports Server (NTRS)

    Tan, Choon-Sooi; Suder, Kenneth (Technical Monitor)

    2003-01-01

    A framework for an effective computational methodology for characterizing the stability and the impact of distortion in high-speed multi-stage compressor is being developed. The methodology consists of using a few isolated-blade row Navier-Stokes solutions for each blade row to construct a body force database. The purpose of the body force database is to replace each blade row in a multi-stage compressor by a body force distribution to produce same pressure rise and flow turning. To do this, each body force database is generated in such a way that it can respond to the changes in local flow conditions. Once the database is generated, no hrther Navier-Stokes computations are necessary. The process is repeated for every blade row in the multi-stage compressor. The body forces are then embedded as source terms in an Euler solver. The method is developed to have the capability to compute the performance in a flow that has radial as well as circumferential non-uniformity with a length scale larger than a blade pitch; thus it can potentially be used to characterize the stability of a compressor under design. It is these two latter features as well as the accompanying procedure to obtain the body force representation that distinguish the present methodology from the streamline curvature method. The overall computational procedures have been developed. A dimensional analysis was carried out to determine the local flow conditions for parameterizing the magnitudes of the local body force representation of blade rows. An Euler solver was modified to embed the body forces as source terms. The results from the dimensional analysis show that the body forces can be parameterized in terms of the two relative flow angles, the relative Mach number, and the Reynolds number. For flow in a high-speed transonic blade row, they can be parameterized in terms of the local relative Mach number alone.

  20. A Multi-Stage Longitudinal Comparative Design Stage II Evaluation of the Changing Lives Program: The Life Course Interview (RDA-LCI)

    ERIC Educational Resources Information Center

    Arango, Lisa Lewis; Kurtines, William M.; Montgomery, Marilyn J.; Ritchie, Rachel

    2008-01-01

    The study reported in this article, a Multi-Stage Longitudinal Comparative Design Stage II evaluation conducted as a planned preliminary efficacy evaluation (psychometric evaluation of measures, short-term controlled outcome studies, etc.) of the Changing Lives Program (CLP), provided evidence for the reliability and validity of the qualitative…

  1. Multi-stage pulse tube cryocooler with acoustic impedance constructed to reduce transient cool down time and thermal loss

    NASA Technical Reports Server (NTRS)

    Gedeon, David R. (Inventor); Wilson, Kyle B. (Inventor)

    2008-01-01

    The cool down time for a multi-stage, pulse tube cryocooler is reduced by configuring at least a portion of the acoustic impedance of a selected stage, higher than the first stage, so that it surrounds the cold head of the selected stage. The surrounding acoustic impedance of the selected stage is mounted in thermally conductive connection to the warm region of the selected stage for cooling the acoustic impedance and is fabricated of a high thermal diffusivity, low thermal radiation emissivity material, preferably aluminum.

  2. Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency.

    PubMed

    Hanada, M; Kojima, A; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.

  3. CO OBSERVATIONS AND INVESTIGATION OF TRIGGERED STAR FORMATION TOWARD THE N10 INFRARED BUBBLE AND SURROUNDINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gama, D. R. G.; Lepine, J. R. D.; Mendoza, E.

    We studied the environment of the dust bubble N10 in molecular emission. Infrared bubbles, first detected by the GLIMPSE survey at 8.0 μ m, are ideal regions to investigate the effect of the expansion of the H ii region on its surroundings and the eventual triggering of star formation at its borders. In this work, we present a multi-wavelength study of N10. This bubble is especially interesting because infrared studies of the young stellar content suggest a scenario of ongoing star formation, possibly triggered on the edge of the H ii region. We carried out observations of {sup 12}CO(1-0) andmore » {sup 13}CO(1-0) emission at PMO 13.7 m toward N10. We also analyzed the IR and sub-millimeter emission on this region and compare those different tracers to obtain a detailed view of the interaction between the expanding H ii region and the molecular gas. We also estimated the parameters of the denser cold dust condensation and the ionized gas inside the shell. Bright CO emission was detected and two molecular clumps were identified from which we have derived physical parameters. We also estimate the parameters for the densest cold dust condensation and for the ionized gas inside the shell. The comparison between the dynamical age of this region and the fragmentation timescale favors the “Radiation-Driven Implosion” mechanism of star formation. N10 is a case of particular interest with gas structures in a narrow frontier between the H ii region and surrounding molecular material, and with a range of ages of YSOs situated in the region, indicating triggered star formation.« less

  4. Second stage of Saturn V being assembled with the first stage.

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The hydrogen-powered second stage is being lowered into place during the final phase of fabrication of the Saturn V moon rocket at North American's Seal Beach, California facility. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  5. A new system for assessment of growth using mandibular canine calcification stages and its correlation with modified MP3 stages

    PubMed Central

    Hegde, Gautham; Hegde, Nanditha; Kumar, Anil; Keshavaraj

    2014-01-01

    Objective: Orthodontic diagnosis and treatment planning for growing children must involve growth prediction, especially in the treatment of skeletal problems. Studies have shown that a strong association exists between skeletal maturity and dental calcification stages. The present study was therefore taken up to provide a simple and practical method for assessing skeletal maturity using a dental periapical film and standard dental X-ray machine, to compare the developmental stages of the mandibular canine with that of developmental stages of modified MP3 and to find out if any correlation exists, to determine if the developmental stages of the mandibular canine alone can be used as a reliable indicator for assessment of skeletal maturity. Materials and Methods: A total of 160 periapical radiographs, of the mandibular right canine and the MP3 region was taken and assessed according to the Dermirjian's stages of dental calcification and the modified MP3 stages. Results and Discussion: The correlation coefficient between MP3 stages and developmental stages of mandibular canine was found to be significant in both male and female groups. When the canine calcification stages were compared with the MP3 stages it was found that with the exception of the D stage of canine calcification the remaining stages showed a very high correlation with the modified MP3 stages. Conclusion: The correlation between the mandibular canine calcification stages, and the MP3 stages was found to be significant. The canine calcification could be used as a sole indicator for assessment of skeletal maturity. PMID:25210386

  6. A Program of Research on Microfabrication Techniques for VLSI Magnetic Devices.

    DTIC Science & Technology

    1981-10-01

    micrometer bubble diameter materials so that we can evaluate them as device materials. A detailed report on the LPE growth of garnet films at CMU is included...Figure 2: Growth Rate versus Growth Temperature Growth Rate The growth rate of the LPE film is determined by the concentration of garnet in the melt, the...selectively modifying, and characterizing single Lcrystal epitaxial garnet hnd amorphous magnetic thin films are being investi- *_ gated with the

  7. Localization of puroindoline-a and lipids in bread dough using confocal scanning laser microscopy.

    PubMed

    Dubreil, Laurence; Biswas, Samares C; Marion, Didier

    2002-10-09

    Puroindolines are lipid-binding proteins from wheat flour that play a significant role in bread crumb texture. The localization of wheat flour lipids and puroindoline-a (PIN-a) in bread dough was studied by confocal scanning laser microscopy (CSLM). Wheat lipids were located around gas cells (GC) and embedded within the protein-starch matrix (SPM) of the dough. PIN-a was mainly located in the matrix of dough, where it was associated with lipids. In contrast, in defatted dough, PIN-a was found around GC. Addition of puroindolines in bread dough induced a defatting of the gas bubble surface and a decrease of the lipid vesicles and/or droplet size embedded within the SPM. Therefore, puroindolines control the lipid partitioning within the different phases of dough, a phenomenon that should have important consequence on the gas bubble expansion and GC formation in the further stages (fermentation, baking) of the bread-making process.

  8. Richtmyer-Meshkov instability of a sinusoidal interface driven by a cylindrical shock

    NASA Astrophysics Data System (ADS)

    Liu, L.; Ding, J.; Zhai, Z.; Luo, X.

    2018-04-01

    Evolution of a single-mode interface triggered by a cylindrically converging shock in a V-shaped geometry is investigated numerically using an adaptive multi-phase solver. Several physical mechanisms, including the Bell-Plesset (BP) effect, the Rayleigh-Taylor (RT) effect, the nonlinearity, and the compressibility are found to be pronounced in the converging environment. Generally, the BP and nonlinear effects play an important role at early stages, while the RT effect and the compressibility dominate the late-stage evolution. Four sinusoidal interfaces with different initial amplitudes (a_0 ) and wavelengths (λ ) are found to evolve differently in the converging geometry. For the very small a_0 /λ interfaces, nonlinearity is negligible at the early stages and the sole presence of the BP effect results in an increasing growth rate, confining the linear growth of the instability to a relatively small amount of time. For the moderately small a_0 /λ cases, the BP and nonlinear effects, which, respectively, promote and inhibit the perturbation development, coexist in the early stage. The counterbalancing effects between them produce a very long period of growth that is linear in time, even to a moment when the amplitude over wavelength ratio approaches 0.6. The RT stabilization effect at late stages due to the interface deceleration significantly inhibits the perturbation growth, which can be reasonably predicted by a modified Bell model.

  9. Resistance of Metallic Screens in a Cryogenic Flow

    NASA Astrophysics Data System (ADS)

    Fischer, Alexander; Stief, Malte

    The propellant behaviour in cryogenic upper stages tanks imposes challenging requirements on the design, especially for future upper stages designed for multiple restarts and long ballistic flight phases. The main challenge is the supply of the propellants to the feed system prior to the engine reignition. During the entire mission the engine requires a gaseous and bubble free liquid supply of propellant at the required thermodynamic conditions. The current research focus is to prepare the initial steps for the maturation of the Propellant Management Device (PMD) technology for cryogenic tank systems. Main components of such a PMD are metallic screens. The metallic screens are used as barrier for any gas bubbles within the fluid stream approaching the space craft engines. The screen characteristics are of fundamental importance for the PMD and feed system design. The paper presents a summary on available experimental screen data with regard to the flow resistance and gives a comparison with theoretical and empirical predictions found in literature. The lack on comparable data with regard to space craft applications and the need on further research with cryogenic flows is demonstrated. The DLR Institute of Space Systems is preparing various cryogenic tests to collect the desired information about the flow properties of such metallic screens. The planned test setup and the foreseen experiments will be presented.

  10. Heterogeneously entrapped, vapor-rich melt inclusions record pre-eruptive magmatic volatile contents

    NASA Astrophysics Data System (ADS)

    Steele-MacInnis, Matthew; Esposito, Rosario; Moore, Lowell R.; Hartley, Margaret E.

    2017-04-01

    Silicate melt inclusions (MI) commonly provide the best record of pre-eruptive H2O and CO2 contents of subvolcanic melts, but the concentrations of CO2 and H2O in the melt (glass) phase within MI can be modified by partitioning into a vapor bubble after trapping. Melt inclusions may also enclose vapor bubbles together with the melt (i.e., heterogeneous entrapment), affecting the bulk volatile composition of the MI, and its post-entrapment evolution. In this study, we use numerical modeling to examine the systematics of post-entrapment volatile evolution within MI containing various proportions of trapped vapor from zero to 95 volume percent. Modeling indicates that inclusions that trap only a vapor-saturated melt exhibit significant decrease in CO2 and moderate increase in H2O concentrations in the melt upon nucleation and growth of a vapor bubble. In contrast, inclusions that trap melt plus vapor exhibit subdued CO2 depletion at equivalent conditions. In the extreme case of inclusions that trap mostly the vapor phase (i.e., CO2-H2O fluid inclusions containing trapped melt), degassing of CO2 from the melt is negligible. In the latter scenario, the large fraction of vapor enclosed in the MI during trapping essentially serves as a buffer, preventing post-entrapment modification of volatile concentrations in the melt. Hence, the glass phase within such heterogeneously entrapped, vapor-rich MI records the volatile concentrations of the melt at the time of trapping. These numerical modeling results suggest that heterogeneously entrapped MI containing large vapor bubbles represent amenable samples for constraining pre-eruptive volatile concentrations of subvolcanic melts.

  11. Statistical correlations and risk analyses techniques for a diving dual phase bubble model and data bank using massively parallel supercomputers.

    PubMed

    Wienke, B R; O'Leary, T R

    2008-05-01

    Linking model and data, we detail the LANL diving reduced gradient bubble model (RGBM), dynamical principles, and correlation with data in the LANL Data Bank. Table, profile, and meter risks are obtained from likelihood analysis and quoted for air, nitrox, helitrox no-decompression time limits, repetitive dive tables, and selected mixed gas and repetitive profiles. Application analyses include the EXPLORER decompression meter algorithm, NAUI tables, University of Wisconsin Seafood Diver tables, comparative NAUI, PADI, Oceanic NDLs and repetitive dives, comparative nitrogen and helium mixed gas risks, USS Perry deep rebreather (RB) exploration dive,world record open circuit (OC) dive, and Woodville Karst Plain Project (WKPP) extreme cave exploration profiles. The algorithm has seen extensive and utilitarian application in mixed gas diving, both in recreational and technical sectors, and forms the bases forreleased tables and decompression meters used by scientific, commercial, and research divers. The LANL Data Bank is described, and the methods used to deduce risk are detailed. Risk functions for dissolved gas and bubbles are summarized. Parameters that can be used to estimate profile risk are tallied. To fit data, a modified Levenberg-Marquardt routine is employed with L2 error norm. Appendices sketch the numerical methods, and list reports from field testing for (real) mixed gas diving. A Monte Carlo-like sampling scheme for fast numerical analysis of the data is also detailed, as a coupled variance reduction technique and additional check on the canonical approach to estimating diving risk. The method suggests alternatives to the canonical approach. This work represents a first time correlation effort linking a dynamical bubble model with deep stop data. Supercomputing resources are requisite to connect model and data in application.

  12. Third Stage (S-IVB) At KSC

    NASA Technical Reports Server (NTRS)

    1960-01-01

    A NASA technician is dwarfed by the gigantic Third Stage (S-IVB) as it rests on supports in a facility at KSC. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  13. Parameter Estimation of Computationally Expensive Watershed Models Through Efficient Multi-objective Optimization and Interactive Decision Analytics

    NASA Astrophysics Data System (ADS)

    Akhtar, Taimoor; Shoemaker, Christine

    2016-04-01

    Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual analytics framework for decision support in selection of one parameter combination from the alternatives identified in Stage 2. HAMS is applied for calibration of flow parameters of a SWAT model, (Soil and Water Assessment Tool) designed to simulate flow in the Cannonsville watershed in upstate New York. Results from the application of HAMS to Cannonsville indicate that efficient multi-objective optimization and interactive visual and metric based analytics can bridge the gap between the effective use of both automatic and manual strategies for parameter estimation of computationally expensive watershed models.

  14. Multi-color γ-rays from comb-like electron beams driven by incoherent stacks of laser pulses

    NASA Astrophysics Data System (ADS)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.

    2017-03-01

    Trains of fs-length, GeV-scale electron bunches with controlled energy spacing and a 5-D brightness up to 1017 A/m2 may be produced in a mm-scale uniform plasma. The main element of the scheme is an incoherent stack of 10-TW-scale laser pulses of different colors, with mismatched focal spots, with the highest-frequency pulse advanced in time. While driving an electron density bubble, this stack remains almost proof against nonlinear red-shift and self-compression. As a consequence, the unwanted continuous injection of background electrons is minimized. Weak focusing of the trailing (lower-frequency) component of the stack enforces expansions and contractions of the bubble, inducing controlled periodic injection. The resulting train of electron bunches maintains exceptional quality while being accelerated beyond the energy limits predicted by accepted scalings. Inverse Thomson scattering from this comb-like beam generates a sequence of quasi-monochromatic, fs-length γ-ray beams, an asset for nuclear forensics and pump-probe experiments in dense plasmas.

  15. Escape jumping by three age-classes of water striders from smooth, wavy and bubbling water surfaces.

    PubMed

    Ortega-Jimenez, Victor Manuel; von Rabenau, Lisa; Dudley, Robert

    2017-08-01

    Surface roughness is a ubiquitous phenomenon in both oceanic and terrestrial waters. For insects that live at the air-water interface, such as water striders, non-linear and multi-scale perturbations produce dynamic surface deformations which may impair locomotion. We studied escape jumps of adults, juveniles and first-instar larvae of the water strider Aquarius remigis on smooth, wave-dominated and bubble-dominated water surfaces. Effects of substrate on takeoff jumps were substantial, with significant reductions in takeoff angles, peak translational speeds, attained heights and power expenditure on more perturbed water surfaces. Age effects were similarly pronounced, with the first-instar larvae experiencing the greatest degradation in performance; age-by-treatment effects were also significant for many kinematic variables. Although commonplace in nature, perturbed water surfaces thus have significant and age-dependent effects on water strider locomotion, and on behavior more generally of surface-dwelling insects. © 2017. Published by The Company of Biologists Ltd.

  16. Near-atomic resolution visualization of human transcription promoter opening

    PubMed Central

    He, Yuan; Yan, Chunli; Fang, Jie; Inouye, Carla; Tjian, Robert; Ivanov, Ivaylo; Nogales, Eva

    2016-01-01

    In eukaryotic transcription initiation, a large multi-subunit pre-initiation complex (PIC) that assembles at the core promoter is required for the opening of the duplex DNA and identification of the start site for transcription by RNA polymerase II. Here we use cryo-electron microscropy (cryo-EM) to determine near-atomic resolution structures of the human PIC in a closed state (engaged with duplex DNA), an open state (engaged with a transcription bubble), and an initially transcribing complex (containing six base pairs of DNA–RNA hybrid). Our studies provide structures for previously uncharacterized components of the PIC, such as TFIIE and TFIIH, and segments of TFIIA, TFIIB and TFIIF. Comparison of the different structures reveals the sequential conformational changes that accompany the transition from each state to the next throughout the transcription initiation process. This analysis illustrates the key role of TFIIB in transcription bubble stabilization and provides strong structural support for a translocase activity of XPB. PMID:27193682

  17. Feasibility Study on a Segmented Ferrofluid Flow Linear Generator for Increasing the Time-Varying Magnetic Flux.

    PubMed

    Lee, Won-Ho; Lee, Se-Hee; Lee, Sangyoup; Lee, Jong-Chul

    2018-09-01

    Nanoparticles and nanofluids have been implemented in energy harvesting devices, and energy harvesting based on magnetic nanofluid flow was recently achieved by using a layer-built magnet and micro-bubble injection to induce a voltage on the order of 10-1 mV. However, this is not yet suitable for some commercial purpose. In order to further increase the amount of electric voltage and current from this energy harvesting the air bubbles must be segmented in the base fluid, and the magnetic flux of the segmented flow should be materially altered over time. The focus of this research is on the development of a segmented ferrofluid flow linear generator that would scavenge electrical power from waste heat. Experiments were conducted to obtain the induced voltage, which was generated by moving a ferrofluid-filled capsule inside a multi-turn coil. Computations were then performed to explain the fundamental physical basis of the motion of the segmented flow of the ferrofluids and the air-layers.

  18. A setup for combined multiphoton laser scanning microscopic and multi-electrode patch clamp experiments on brain slices

    NASA Astrophysics Data System (ADS)

    Helm, P. Johannes; Reppen, Trond; Heggelund, Paul

    2009-02-01

    Multi Photon Laser Scanning Microscopy (MPLSM) appears today as one of the most powerful experimental tools in cellular neurophysiology, notably in studies of the functional dynamics of signal processing in single neurons. Simultaneous recording of fluorescence signals at high spatial and temporal resolution and electric signals by means of multi electrode patch clamp techniques have provided new paths for the systematic investigation of neuronal mechanisms. In particular, this approach has opened for direct studies of dendritic signal processing in neurons. We report about a setup optimized for simultaneous electrophysiological multi electrode patch clamp and multi photon laser scanning fluorescence microscopic experiments on brain slices. The microscopic system is based on a modified commercially available confocal scanning laser microscope (CLSM). From a technical and operational point of view, two developments are important: Firstly, in order to reduce the workload for the experimentalist, who in general is forced to concentrate on controlling the electrophysiological parameters during the recordings, a system of shutters has been installed together with dedicated electronic modules protecting the photo detectors against destructive light levels caused by erroneous opening or closing of microscopic light paths by the experimentalist. Secondly, the standard detection unit has been improved by installing the photomultiplier tubes (PMT) in a Peltier cooled thermal box shielding the detector from both room temperature and distortions caused by external electromagnetic fields. The electrophysiological system is based on an industrial standard multi patch clamp unit ergonomically arranged around the microscope stage. The electrophysiological and scanning processes can be time coordinated by standard trigger electronics.

  19. THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN.

    PubMed

    Jiang, H; Liu, F; Meerschaert, M M; McGough, R J

    2013-01-01

    Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n ) ( n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko's Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi-term time-space fractional models including fractional Laplacian.

  20. Microscopic Characterization of Individual Submicron Bubbles during the Layer-by-Layer Deposition: Towards Creating Smart Agents

    NASA Astrophysics Data System (ADS)

    Kato, Riku; Frusawa, Hiroshi

    2015-07-01

    We investigated the individual properties of various polyion-coated bubbles with a mean diameter ranging from 300 to 500 nm. Dark field microscopy allows one to track the individual particles of the submicron bubbles (SBs) encapsulated by the layer-by-layer (LbL) deposition of cationic and anionic polyelectrolytes (PEs). Our focus is on the two-step charge reversals of PE-SB complexes: the first is a reversal from negatively charged bare SBs with no PEs added to positive SBs encapsulated by polycations (monolayer deposition), and the second is overcharging into negatively charged PE-SB complexes due to the subsequent addition of polyanions (double-layer deposition). The details of these phenomena have been clarified through the analysis of a number of trajectories of various PE-SB complexes that experience either Brownian motion or electrophoresis. The contrasted results obtained from the analysis were as follows: an amount in excess of the stoichiometric ratio of the cationic polymers was required for the first charge-reversal, whereas the stoichiometric addition of the polyanions lead to the electrical neutralization of the PE-SB complex particles. The recovery of the stoichiometry in the double-layer deposition paves the way for fabricating multi-layered SBs encapsulated solely with anionic and cationic PEs, which provides a simple protocol to create smart agents for either drug delivery or ultrasound contrast imaging.

  1. Microscopic Characterization of Individual Submicron Bubbles during the Layer-by-Layer Deposition: Towards Creating Smart Agents.

    PubMed

    Kato, Riku; Frusawa, Hiroshi

    2015-07-08

    We investigated the individual properties of various polyion-coated bubbles with a mean diameter ranging from 300 to 500 nm. Dark field microscopy allows one to track the individual particles of the submicron bubbles (SBs) encapsulated by the layer-by-layer (LbL) deposition of cationic and anionic polyelectrolytes (PEs). Our focus is on the two-step charge reversals of PE-SB complexes: the first is a reversal from negatively charged bare SBs with no PEs added to positive SBs encapsulated by polycations (monolayer deposition), and the second is overcharging into negatively charged PE-SB complexes due to the subsequent addition of polyanions (double-layer deposition). The details of these phenomena have been clarified through the analysis of a number of trajectories of various PE-SB complexes that experience either Brownian motion or electrophoresis. The contrasted results obtained from the analysis were as follows: an amount in excess of the stoichiometric ratio of the cationic polymers was required for the first charge-reversal, whereas the stoichiometric addition of the polyanions lead to the electrical neutralization of the PE-SB complex particles. The recovery of the stoichiometry in the double-layer deposition paves the way for fabricating multi-layered SBs encapsulated solely with anionic and cationic PEs, which provides a simple protocol to create smart agents for either drug delivery or ultrasound contrast imaging.

  2. A Mathematical Model for the Multiphase Transport and Reaction Kinetics in a Ladle with Bottom Powder Injection

    NASA Astrophysics Data System (ADS)

    Lou, Wentao; Zhu, Miaoyong

    2017-12-01

    A computation fluid dynamics-population balance model-simultaneous reaction model (CFD-PBM-SRM) coupled model has been proposed to study the multiphase flow behavior and refining reaction kinetics in a ladle with bottom powder injection, and some new and important phenomena and mechanisms are presented. For the multiphase flow behavior, the effects of bubbly plume flow, powder particle motion, particle-particle collision and growth, particle-bubble collision and adhesion, and powder particle removal into top slag are considered. For the reaction kinetics, the mechanisms of multicomponent simultaneous reactions, including Al, S, Si, Mn, Fe, and O, at the multi-interface, including top slag-liquid steel interface, air-liquid steel interface, powder droplet-liquid steel interface, and bubble-liquid steel interface, are presented, and the effect of sulfur solubility in the powder droplet on the desulfurization is also taken into account. Model validation is carried out using hot tests in a 2-t induction furnace with bottom powder injection. The result shows that the powder particles gradually disperse in the entire furnace; in the vicinity of the bottom slot plugs, the desulfurization product CaS is liquid phase, while in the upper region of the furnace, the desulfurization product CaS is solid phase. The predicted sulfur contents by the present model agree well with the measured data in the 2-t furnace with bottom powder injection.

  3. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2016-09-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale evaporation. A preliminary estimation of the bubble growth rates, measured by high speed videography, was undertaken and compared with classical bubble growth rate correlations. It was observed that the average bubble departure sizes on Sample B were larger as compared to plain wire, due to larger surface forces holding the bubble before departure. Bubble condensation in the thermal boundary layer was also captured.

  4. Second Stage (S-II) Plays Key Role in Apollo missions

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This photograph of the Saturn V Second Stage (S-II) clearly shows the cluster of five powerful J-2 engines needed to boost the Apollo spacecraft into earth orbit following first stage separation. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  5. Front-end circuit for position sensitive silicon and vacuum tube photomultipliers with gain control and depth of interaction measurement

    NASA Astrophysics Data System (ADS)

    Herrero, Vicente; Colom, Ricardo; Gadea, Rafael; Lerche, Christoph W.; Cerdá, Joaquín; Sebastiá, Ángel; Benlloch, José M.

    2007-06-01

    Silicon Photomultipliers, though still under development for mass production, may be an alternative to traditional Vacuum Photomultipliers Tubes (VPMT). As a consequence, electronic front-ends initially designed for VPMT will need to be modified. In this simulation, an improved architecture is presented which is able to obtain impact position and depth of interaction of a gamma ray within a continuous scintillation crystal, using either kind of PM. A current sensitive preamplifier stage with individual gain adjustment interfaces the multi-anode PM outputs with a current division resistor network. The preamplifier stage allows to improve front-end processing delay and temporal resolution behavior as well as to increase impact position calculation resolution. Depth of interaction (DOI) is calculated from the width of the scintillation light distribution, which is related to the sum of voltages in resistor network input nodes. This operation is done by means of a high-speed current mode scheme.

  6. In Vivo Imaging of Trypanosome-Brain Interactions and Development of a Rapid Screening Test for Drugs against CNS Stage Trypanosomiasis

    PubMed Central

    Myburgh, Elmarie; Coles, Jonathan A.; Ritchie, Ryan; Kennedy, Peter G. E.; McLatchie, Alex P.; Rodgers, Jean; Taylor, Martin C.; Barrett, Michael P.; Brewer, James M.; Mottram, Jeremy C.

    2013-01-01

    Human African trypanosomiasis (HAT) manifests in two stages of disease: firstly, haemolymphatic, and secondly, an encephalitic phase involving the central nervous system (CNS). New drugs to treat the second-stage disease are urgently needed, yet testing of novel drug candidates is a slow process because the established animal model relies on detecting parasitemia in the blood as late as 180 days after treatment. To expedite compound screening, we have modified the GVR35 strain of Trypanosoma brucei brucei to express luciferase, and have monitored parasite distribution in infected mice following treatment with trypanocidal compounds using serial, non-invasive, bioluminescence imaging. Parasites were detected in the brains of infected mice following treatment with diminazene, a drug which cures stage 1 but not stage 2 disease. Intravital multi-photon microscopy revealed that trypanosomes enter the brain meninges as early as day 5 post-infection but can be killed by diminazene, whereas those that cross the blood-brain barrier and enter the parenchyma by day 21 survived treatment and later caused bloodstream recrudescence. In contrast, all bioluminescent parasites were permanently eliminated by treatment with melarsoprol and DB829, compounds known to cure stage 2 disease. We show that this use of imaging reduces by two thirds the time taken to assess drug efficacy and provides a dual-modal imaging platform for monitoring trypanosome infection in different areas of the brain. PMID:23991236

  7. The effect of scandium addition on microstructure and mechanical properties of Al–Si–Mg alloy: A multi-refinement modifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Cong, E-mail: xucong55555@gmail.com; Xiao, Wenlong, E-mail: wlxiao@buaa.edu.cn; Hanada, Shuji

    2015-12-15

    Effect of scandium (Sc) additions on the microstructure, mechanical properties and fracture behavior of Al–Si–Mg casting alloy (F357) were systematically investigated. It was found that Sc addition caused a multi-refining efficiency on the microstructure of as-cast F357 alloy, including refinement of grains and secondary dendrite arm spacing (SDAS), modification of eutectic Si and harmless disposal of β-Al{sub 5}FeSi phase. Subsequent T6 heat treatment had further induced the complete spheroidization of eutectic Si and precipitation of fine secondary Al{sub 3}Sc dispersoids in the Sc modified alloys. Thus the mechanical properties, especially the ductility, were significantly enhanced by the addition of Scmore » combined with the heat treatment. The highest ultimate tensile strength, yield strength and elongation were achieved in 0.8 wt.% Sc modified F357 alloy combined with T6 heat treatment. Furthermore, fractographic examinations indicated that the ductile fracture mechanism served as a dominate role in the modified alloys due to the formation of fine, deep and uniformly distributed dimples. - Highlights: • Detailed characterization of the multi-refining microstructure of Sc modified F357 alloy was performed. • The multi-refinement was proposed to refine grain and SDAS, modify eutectic Si and β-phase. • Sc modifier combined with T6 treatment is effective in improving tensile properties. • Modification of eutectic Si in F357 alloy with Sc is consistent with the IIT mechanism.« less

  8. Chaotic bubbling and nonstagnant foams.

    PubMed

    Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard

    2007-06-01

    We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.

  9. Live Imaging and Heating of Confined RDX and HMX Crystals Until Reaction Using the Dual Windowed Test Vehicle

    NASA Astrophysics Data System (ADS)

    Stennett, Chris; Cook, Malcolm; Cheese, Philip; Wood, Andrew; White, Nathan; Reeves, Tom

    2017-06-01

    A high fidelity live camera feed recording RDX and HMX crystals, measuring 1 mm thick and 15 mm in diameter, decomposing while heavily confined and subjected to various heating rates until a reaction occurs has been analysed. Video records reveal unexpected behaviour in both RDX and HMX crystals prior to ignition. Three distinct stages can be observed: phase changes and melting; slow, flameless decomposition with production of gaseous intermediates; and finally burning with a luminous flame of the gaseous intermediates. Tests with pure RDX and HMX crystals reveal pockets of gaseous materials forming above the molten and bubbling nitramine, before a flame appears at one side then burns inwards in an apparent conductive manner at a few metres per second. This causes the remaining bubbling nitramine to be compressed. Violent reaction appears to occur via a bubble collapse mechanism. The violence of this event is dependent on the loss of confinement; if it fails in the first or second phase the reaction is less violent than if the third phase is reached. The third phase burning reaction has associated pressure waves, which is presumed oscillation of the flame front, leading to wave interactions, pressure spikes and ultimately a violent reaction.

  10. Intelligent Foreign Particle Inspection Machine for Injection Liquid Examination Based on Modified Pulse-Coupled Neural Networks

    PubMed Central

    Ge, Ji; Wang, YaoNan; Zhou, BoWen; Zhang, Hui

    2009-01-01

    A biologically inspired spiking neural network model, called pulse-coupled neural networks (PCNN), has been applied in an automatic inspection machine to detect visible foreign particles intermingled in glucose or sodium chloride injection liquids. Proper mechanisms and improved spin/stop techniques are proposed to avoid the appearance of air bubbles, which increases the algorithms' complexity. Modified PCNN is adopted to segment the difference images, judging the existence of foreign particles according to the continuity and smoothness properties of their moving traces. Preliminarily experimental results indicate that the inspection machine can detect the visible foreign particles effectively and the detection speed, accuracy and correct detection rate also satisfying the needs of medicine preparation. PMID:22412318

  11. Approaching behavior of a pair of spherical bubbles in quiescent liquids

    NASA Astrophysics Data System (ADS)

    Sanada, Toshiyuki; Kusuno, Hiroaki

    2015-11-01

    Some unique motions related bubble-bubble interaction, such as equilibrium distance, wake induced lift force, have been proposed by theoretical analysis or numerical simulations. These motions are different from the solid spheres like DKT model (Drafting, Kissing and Tumbling). However, there is a lack of the experimental verification. In this study, we experimentally investigated the motion of a pair of bubbles initially positioned in-line configuration in ultrapure water or an aqueous surfactant solution. The bubble motion were observed by two high speed video cameras. The bubbles Reynolds number was ranged from 50 to 300 and bubbles hold the spherical shape in this range. In ultrapure water, initially the trailing bubble deviated from the vertical line on the leading bubble owing to the wake of the leading bubble. And then, the slight difference of the bubble radius changed the relative motion. When the trailing bubble slightly larger than the leading bubble, the trailing bubble approached to the leading bubble due to it's buoyancy difference. The bubbles attracted and collided only when the bubbles rising approximately side by side configuration. In addition, we will also discuss the motion of bubbles rising in an aqueous surfactant solution.

  12. On the Formation of Meridional Overturning Circulation in the Pacific Ocean during the MIS31 Interglacial

    NASA Astrophysics Data System (ADS)

    Justino, F. J.; Lindemann, D.; Kucharski, F.

    2016-02-01

    Earth climate history has been punctuated by cold (glacial) and warm (inter-glacial) intervals associated with modification of the planetary orbit and subsequently changes in paleotopography.During the Pleistocene epoch, the time interval between 1.8 million and 11,700 before present, remarkable episodes of warmer climates such as the Marine IsotopeStage (MIS) 1, 5e, 11c, and 31 which occurred at 9, 127, 409, and 1080 ka, lead to changes in air temperature in the polar regions and substantial melting of polar glaciers. Based on first ever multi-millennium coupled climate simulations of the Marine Isotope Stage 31 (MIS31), long-term oceanic conditions characteristic of this interval have been analyzed. Modeling experiments forced by modified West Antarctic Ice Sheet (WAIS) topography and astronomical configuration, demonstrated that substantial increase in the thermohaline flow and its associated northward heat transport in both Atlantic and Pacific oceans are predicted to occur during the MIS31. In the Atlantic these changes are driven by enhanced oceanic heat loss and increased water density. In the Pacific, anomalous atmospheric circulation leads to an overall increase of the water mass transport in the subtropical gyre, and drastically modified subtropical cell.Additional aspects related to the formation of the Pacific ocean MOC will be presented. This study is sponsored by the Brazilian Antarctic Program Grant CNPq 407681/2013-2.

  13. Evolution of recombination rates in a multi-locus, haploid-selection, symmetric-viability model.

    PubMed

    Chasnov, J R; Ye, Felix Xiaofeng

    2013-02-01

    A fast algorithm for computing multi-locus recombination is extended to include a recombination-modifier locus. This algorithm and a linear stability analysis is used to investigate the evolution of recombination rates in a multi-locus, haploid-selection, symmetric-viability model for which stable equilibria have recently been determined. When the starting equilibrium is symmetric with two selected loci, we show analytically that modifier alleles that reduce recombination always invade. When the starting equilibrium is monomorphic, and there is a fixed nonzero recombination rate between the modifier locus and the selected loci, we determine analytical conditions for which a modifier allele can invade. In particular, we show that a gap exists between the recombination rates of modifiers that can invade and the recombination rate that specifies the lower stability boundary of the monomorphic equilibrium. A numerical investigation shows that a similar gap exists in a weakened form when the starting equilibrium is fully polymorphic but asymmetric. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Flotation of Magnetite Crystals upon Decompression - A Formation Model for Kiruna-type Iron Oxide-Apatite Deposits

    NASA Astrophysics Data System (ADS)

    Knipping, J. L.; Simon, A. C.; Fiege, A.; Webster, J. D.; Reich, M.; Barra, F.; Holtz, F.; Oeser-Rabe, M.

    2017-12-01

    Trace-element characteristics of magnetite from Kiruna-type iron oxide-apatite deposits indicate a magmatic origin. A possible scenario currently considered for the magmatic formation, apart from melt immiscibility, is related to degassing of volatile-rich magmas. Decompression, e.g., induced by magma ascent, results in volatile exsolution and the formation of a magmatic volatile phase. Volatile bubbles are expected to nucleate preferentially on the surface of oxides like magnetite which is due to a relatively low surface tension of oxide-bubble interfaces [1]. The "bulk" density of these magnetite-bubble pairs is typically lower than the surrounding magma and thus, they are expected to migrate upwards. Considering that magnetite is often the liquidus phase in fluid-saturated, oxidized andesitic arc magmas, this process may lead to the formation of a rising magnetite-bubble suspension [2]. To test this hypothesis, complementary geochemical analyses and high pressure experimental studies are in progress. The core to rim Fe isotopic signature of magnetite grains from the Los Colorados deposit in the Chilean Iron Belt was determined by Laser Ablation-MC-ICP-MS. The δ56Fe data reveal a systematic zonation from isotopically heavy Fe (δ56Fe: 0.25 ±0.07 ‰) in the core of magnetite grains to relatively light Fe (δ56Fe: 0.15 ±0.05 ‰) toward grain rims. This variation indicates crystallization of the magnetite cores at early magmatic stages from a silicate melt and subsequent growth of magnetite rims at late magmatic - hydrothermal stages from a free volatile phase. These signatures agree with the core to rim trace-element signatures of the same magnetite grains. The presence of Cl in the exsolved volatile phase and the formation of FeCl2 complexes is expected to enhance the transport of Fe in fluids and the formation of magmatic-hydrothermal magnetite [3]. First experiments (975 °C, 350 to 100 MPa, 0.025 MPa/s) show certain magnetite accumulation only 15 minutes after decompression in the upper part of the experimental products, indicating that magnetite flotation can be an efficient mechanism to separate and accumulate magnetite. [1] Hurwitz and Navon (1994) Earth Planet. Sci. Lett.122, 267-280 [2] Edmonds et al. (2014) Geol. Soc. London, Spec. Pub. 410. [3] Simon et al. (2004) Geochim. Cosmochim. Acta 68, 4905-4914.

  15. Generation of BBFs and DFs, Formation of Substorm Auroras and Triggers of Substorm Onset

    NASA Astrophysics Data System (ADS)

    Song, Y.; Lysak, R. L.

    2014-12-01

    Substorm onset is a dynamical response of the MI coupling system to external solar wind driving conditions and to internal dynamical processes. During the growth phase, the solar wind energy and momentum are transferred into the magnetosphere via MHD mesoscale Alfvenic interactions throughout the magnetopause current sheet. A decrease in momentum transfer from the solar wind into the magnetosphere starts a preconditioning stage, and produces a strong earthward body force acting on the whole magnetotail within a short time period. The strong earthward force will cause localized transients in the tail, such as multiple BBFs, DFs, plasma bubbles, and excited MHD waves. On auroral flux tubes, FACs carried by Alfven waves are generated by Alfvenic interactions between tail earthward flows associated with BBFs/DFs/Bubbles and the ionospheric drag. Nonlinear Alfvenic interaction between the incident and reflected Alfven wave packets in the auroral acceleration region can produce localized parallel electric fields and substorm auroral arcs. During the preconditioning stage prior to substorm onset, the generation of parallel electric fields and auroral arcs can redistribute perpendicular mechanical and magnetic stresses, "decoupling" the magnetosphere from the ionosphere drag. This will enhance the tail earthward flows and rapidly build up stronger parallel electric fields in the auroral acceleration region, leading to a sudden and violent tail energy release and substorm auroral poleward expansion. We suggest that in preconditioning stage, the decrease in the solar wind momentum transfer is a necessary condition of the substorm onset. Additionally, "decoupling" the magnetosphere from ionosphere drag can trigger substorm expansion onset.

  16. Velocity Profile measurements in two-phase flow using multi-wave sensors

    NASA Astrophysics Data System (ADS)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  17. Two technicians apply insulation to S-II second stage

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Two technicians apply insulation to the outer surface of the S-II second stage booster for the Saturn V moon rocket. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  18. The consequences of crystal relaxation on CO2 partitioning in plagioclase-hosted melt inclusions

    NASA Astrophysics Data System (ADS)

    Drignon, M. J.; Nielsen, R.; Moore, L.; Bodnar, R. J.; Tepley, F. J., III; Kotash, A.

    2017-12-01

    Melt inclusions (MI) are samples of magmas representing the early stages of the development of the system, both spatially and compositionally. However, little work has been done to test and understand whether MI in plagioclase faithfully sample and maintain a record of the magmatic history. Here, we examine the effects of post entrapment processes such as sidewall crystallization (PEC) and crystal relaxation that may occur during transport and eruption and, thus alter the composition of MI. To better understand the effects of PEC and crystal relaxation, time-series experiments were conducted on plagioclase-hosted MI from plagioclase ultraphyric basalts to evaluate the extent of crystal relaxation. Run times ranged from 30 min to 4 days. To evaluate the magnitude of the effect, we analyzed the CO2 content in the vapor bubbles using Raman spectroscopy. CO2 in the MI glass was determined by SIMS. The working assumption was that relaxation would lead to a pressure drop within the MI leading to an increase in CO2 in the vapor bubbles as CO2 moved from the melt to the bubble. In addition, a drop in pressure was expected to affect the major element composition of the MI. Our results demonstrated that Na2O, CaO and Al2O3 in the MI decreased, and SiO2 and MgO increased as a function of run time. However, the magnitude of the changes cannot be explained by plagioclase melting alone. In addition, our preliminary data show more CO2 in the vapor bubbles after the 4 day runs than after 30 min runs. Using our SIMS data, and applying the total CO2 reconstruction methodology described in Moore et al. (2015), we estimate that 61% of the total CO2 in the MI is contained within the vapor bubbles after the 4 day runs and 37 % of the CO2 is in the vapor bubbles after 30 min. We hypothesize that after 4 days the CO2 exsolved from the melt into the vapor bubble and is not re-dissolved into the melt due to crystal relaxation and the concomitant pressure decrease in the MI. This suggests that plagioclase-hosted MI hold their volatiles after long runs. The total CO2 reconstruction indicates that the MI were trapped between 3000 and 6000 bars which correspond to 9-18 km. These pressures represent the pressures of last equilibration and suggest that plagioclase megacrysts crystallized in the upper mantle, and are not related to processes within or above the magma lens.

  19. Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon

    USGS Publications Warehouse

    Klug, C.; Cashman, K.; Bacon, C.

    2002-01-01

    The vesicularity, permeability, and structure of pumice clasts provide insight into conditions of vesiculation and fragmentation during Plinian fall and pyroclastic flow-producing phases of the ???7,700 cal. year B.P. climactic eruption of Mount Mazama (Crater Lake), Oregon. We show that bulk properties (vesicularity and permeability) can be correlated with internal textures and that the clast structure can be related to inferred changes in eruption conditions. The vesicularity of all pumice clasts is 75-88%, with >90% interconnected pore volume. However, pumice clasts from the Plinian fall deposits exhibit a wider vesicularity range and higher volume percentage of interconnected vesicles than do clasts from pyroclastic-flow deposits. Pumice permeabilities also differ between the two clast types, with pumice from the fall deposit having higher minimum permeabilities (???5??10-13 m2) and a narrower permeability range (5-50??10-13 m2) than clasts from pyroclastic-flow deposits (0.2-330??10-13 m2). The observed permeability can be modeled to estimate average vesicle aperture radii of 1-5 ??m for the fall deposit clasts and 0.25-1 ??m for clasts from the pyroclastic flows. High vesicle number densities (???109 cm-3) in all clasts suggest that bubble nucleation occured rapidly and at high supersaturations. Post-nucleation modifications to bubble populations include both bubble growth and coalescence. A single stage of bubble nucleation and growth can account for 35-60% of the vesicle population in clasts from the fall deposits, and 65-80% in pumice from pyroclastic flows. Large vesicles form a separate population which defines a power law distribution with fractal dimension D=3.3 (range 3.0-3.5). The large D.value, coupled with textural evidence, suggests that the large vesicles formed primarily by coalescence. When viewed together, the bulk properties (vesicularity, permeability) and textural characteristics of all clasts indicate rapid bubble nucleation followed by bubble growth, coalescence and permeability development. This sequence of events is best explained by nucleation in response to a downward-propagating decompression wave, followed by rapid bubble growth and coalescence prior to magma disruption by fragmentation. The heterogeneity of vesicle sizes and shapes, and the absence of differential expansion across individual clasts, suggest that post-fragmentation expansion played a limited role in the development of pumice structure. The higher vesicle number densities and lower permeabilities of pyroclastic-flow clasts indicate limited coalescence and suggest that fragmentation occurred shortly after decompression. Either increased eruption velocities or increased depth of fragmentation accompanying caldera collapse could explain compression of the pre-fragmentation vesiculation interval.

  20. Applications of the Simple Multi-Fluid Model to Correlations of the Vapor-Liquid Equilibrium of Refrigerant Mixtures Containing Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Akasaka, Ryo

    This study presents a simple multi-fluid model for Helmholtz energy equations of state. The model contains only three parameters, whereas rigorous multi-fluid models developed for several industrially important mixtures usually have more than 10 parameters and coefficients. Therefore, the model can be applied to mixtures where experimental data is limited. Vapor-liquid equilibrium (VLE) of the following seven mixtures have been successfully correlated with the model: CO2 + difluoromethane (R-32), CO2 + trifluoromethane (R-23), CO2 + fluoromethane (R-41), CO2 + 1,1,1,2- tetrafluoroethane (R-134a), CO2 + pentafluoroethane (R-125), CO2 + 1,1-difluoroethane (R-152a), and CO2 + dimethyl ether (DME). The best currently available equations of state for the pure refrigerants were used for the correlations. For all mixtures, average deviations in calculated bubble-point pressures from experimental values are within 2%. The simple multi-fluid model will be helpful for design and simulations of heat pumps and refrigeration systems using the mixtures as working fluid.

  1. Hi-fidelity multi-scale local processing for visually optimized far-infrared Herschel images

    NASA Astrophysics Data System (ADS)

    Li Causi, G.; Schisano, E.; Liu, S. J.; Molinari, S.; Di Giorgio, A.

    2016-07-01

    In the context of the "Hi-Gal" multi-band full-plane mapping program for the Galactic Plane, as imaged by the Herschel far-infrared satellite, we have developed a semi-automatic tool which produces high definition, high quality color maps optimized for visual perception of extended features, like bubbles and filaments, against the high background variations. We project the map tiles of three selected bands onto a 3-channel panorama, which spans the central 130 degrees of galactic longitude times 2.8 degrees of galactic latitude, at the pixel scale of 3.2", in cartesian galactic coordinates. Then we process this image piecewise, applying a custom multi-scale local stretching algorithm, enforced by a local multi-scale color balance. Finally, we apply an edge-preserving contrast enhancement to perform an artifact-free details sharpening. Thanks to this tool, we have thus produced a stunning giga-pixel color image of the far-infrared Galactic Plane that we made publicly available with the recent release of the Hi-Gal mosaics and compact source catalog.

  2. pH-Triggered Echogenicity and Contents Release from Liposomes

    PubMed Central

    2015-01-01

    Liposomes are representative lipid nanoparticles widely used for delivering anticancer drugs, DNA fragments, or siRNA to cancer cells. Upon targeting, various internal and external triggers have been used to increase the rate for contents release from the liposomes. Among the internal triggers, decreased pH within the cellular lysosomes has been successfully used to enhance the rate for releasing contents. However, imparting pH sensitivity to liposomes requires the synthesis of specialized lipids with structures that are substantially modified at a reduced pH. Herein, we report an alternative strategy to render liposomes pH sensitive by encapsulating a precursor which generates gas bubbles in situ in response to acidic pH. The disturbance created by the escaping gas bubbles leads to the rapid release of the encapsulated contents from the liposomes. Atomic force microscopic studies indicate that the liposomal structure is destroyed at a reduced pH. The gas bubbles also render the liposomes echogenic, allowing ultrasound imaging. To demonstrate the applicability of this strategy, we have successfully targeted doxorubicin-encapsulated liposomes to the pancreatic ductal carcinoma cells that overexpress the folate receptor on the surface. In response to the decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. Contents released from these liposomes are further enhanced by the application of continuous wave ultrasound (1 MHz), resulting in substantially reduced viability for the pancreatic cancer cells (14%). PMID:25271780

  3. pH-triggered echogenicity and contents release from liposomes.

    PubMed

    Nahire, Rahul; Hossain, Rayat; Patel, Rupa; Paul, Shirshendu; Meghnani, Varsha; Ambre, Avinash H; Gange, Kara N; Katti, Kalpana S; Leclerc, Estelle; Srivastava, D K; Sarkar, Kausik; Mallik, Sanku

    2014-11-03

    Liposomes are representative lipid nanoparticles widely used for delivering anticancer drugs, DNA fragments, or siRNA to cancer cells. Upon targeting, various internal and external triggers have been used to increase the rate for contents release from the liposomes. Among the internal triggers, decreased pH within the cellular lysosomes has been successfully used to enhance the rate for releasing contents. However, imparting pH sensitivity to liposomes requires the synthesis of specialized lipids with structures that are substantially modified at a reduced pH. Herein, we report an alternative strategy to render liposomes pH sensitive by encapsulating a precursor which generates gas bubbles in situ in response to acidic pH. The disturbance created by the escaping gas bubbles leads to the rapid release of the encapsulated contents from the liposomes. Atomic force microscopic studies indicate that the liposomal structure is destroyed at a reduced pH. The gas bubbles also render the liposomes echogenic, allowing ultrasound imaging. To demonstrate the applicability of this strategy, we have successfully targeted doxorubicin-encapsulated liposomes to the pancreatic ductal carcinoma cells that overexpress the folate receptor on the surface. In response to the decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. Contents released from these liposomes are further enhanced by the application of continuous wave ultrasound (1 MHz), resulting in substantially reduced viability for the pancreatic cancer cells (14%).

  4. Nucleation and growth of sodium colloids in NaCl under irradiation: theory and experiment

    NASA Astrophysics Data System (ADS)

    Dubinko, V. I.; Turkin, A. A.; Abyzov, A. S.; Sugonyako, A. V.; Vainshtein, D. I.; den Hartog, H. W.

    2005-01-01

    A mechanism of radiation-induced emission of Schottky defects from extended defects proposed originally for metals has recently been applied to ionic crystals, where it is based on interactions of excitons with extended defects such as dislocations and colloids. Exciton trapping and decay at colloids may result in the emission of F centers and consequent shrinkage of the colloid. In the present paper, the radiation-induced emission of F centers is taken into account in the modeling of nucleation and growth of sodium colloids and chlorine bubbles in NaCl exposed to electron or gamma irradiation. The evolution of colloid and bubble number densities and volume fractions with increasing irradiation dose is modeled in the framework of a modified rate theory and compared with experimental data. Experimental values of the colloid volume fractions and number densities have been estimated on the basis of latent heat of melting of metallic Na obtained with combined differential scanning calorimetry experiments and atomic force microscopy investigations of metallic clusters.

  5. PMO Delivery System Using Bubble Liposomes and Ultrasound Exposure for Duchenne Muscular Dystrophy Treatment.

    PubMed

    Negishi, Yoichi; Ishii, Yuko; Nirasawa, Kei; Sasaki, Eri; Endo-Takahashi, Yoko; Suzuki, Ryo; Maruyama, Kazuo

    2018-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disorder characterized by progressive muscle degeneration, caused by nonsense or frameshift mutations in the dystrophin (DMD) gene. Antisense oligonucleotides can be used to induce specific exon skipping; recently, a phosphorodiamidate morpholino oligomer (PMO) has been approved for clinical use in DMD. However, an efficient PMO delivery strategy is required to improve the therapeutic efficacy in DMD patients. We previously developed polyethylene glycol (PEG)-modified liposomes containing ultrasound contrast gas, "Bubble liposomes" (BLs), and found that the combination of BLs with ultrasound exposure is a useful gene delivery tool. Here, we describe an efficient PMO delivery strategy using the combination of BLs and ultrasound exposure to treat muscles in a DMD mouse model (mdx). This ultrasound-mediated BL technique can increase the PMO-mediated exon-skipping efficiency, leading to significantly increased dystrophin expression. Thus, the combination of BLs and ultrasound exposure may be a feasible PMO delivery method to improve therapeutic efficacy and reduce the PMO dosage for DMD treatment.

  6. Cross section TEM characterization of high-energy-Xe-irradiated U-Mo

    DOE PAGES

    Ye, B.; Jamison, L.; Miao, Y.; ...

    2017-03-09

    U-Mo alloys irradiated with 84 MeV Xe ions to various doses were characterized with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques. The TEM thin foils were prepared perpendicular to the irradiated surface to allow a direct observation of the entire region modified by ions. Furthermore, depth-selective microstructural information was revealed. Varied irradiation-induced phenomena such as gas bubble formation, phase reversal, and recrystallization were observed at different ion penetration depths in U-Mo.

  7. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.

    PubMed

    Ma, Xu; Cheng, Yongmei; Hao, Shuai

    2016-12-10

    Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.

  8. Computer ranking of the sequence of appearance of 40 features of the brain and related structures in staged human embryos during the seventh week of development.

    PubMed

    O'Rahilly, R; Müller, F; Hutchins, G M; Moore, G W

    1988-08-01

    The sequence of events in the development of the brain in human embryos, already published for stages 8-17, is here continued for stages 18 and 19. With the aid of a computerized bubble-sort algorithm, 58 individual embryos were ranked in ascending order of the features present. The increasing structural complexity provided 40 new features in these two stages. The chief characteristics of stage 18 (approximately 44 postovulatory days) are rapidly growing basal nuclei; appearance of the extraventricular bulge of the cerebellum (flocculus), of the superior cerebellar peduncle, and of follicles in the epiphysis cerebri; and the presence of vomeronasal organ and ganglion, of the bucconasal membrane, and of isolated semicircular ducts. The main features of stage 19 (approximately 48 days) are the cochlear nuclei, the ganglion of the nervus terminalis, nuclei of the prosencephalic septum, the appearance of the subcommissural organ, the presence of villi in the choroid plexuses of the fourth and lateral ventricles, and the stria medullaris thalami.

  9. SU-E-T-480: Radiobiological Dose Comparison of Single Fraction SRS, Multi-Fraction SRT and Multi-Stage SRS of Large Target Volumes Using the Linear-Quadratic Formula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, C; Hrycushko, B; Jiang, S

    2014-06-01

    Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm{sup 3}) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan,more » the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment.« less

  10. Optimization Strategies for Single-Stage, Multi-Stage and Continuous ADRs

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.

    2014-01-01

    Adiabatic Demagnetization Refrigerators (ADR) have many advantages that are prompting a resurgence in their use in spaceflight and laboratory applications. They are solid-state coolers capable of very high efficiency and very wide operating range. However, their low energy storage density translates to larger mass for a given cooling capacity than is possible with other refrigeration techniques. The interplay between refrigerant mass and other parameters such as magnetic field and heat transfer points in multi-stage ADRs gives rise to a wide parameter space for optimization. This paper first presents optimization strategies for single ADR stages, focusing primarily on obtaining the largest cooling capacity per stage mass, then discusses the optimization of multi-stage and continuous ADRs in the context of the coordinated heat transfer that must occur between stages. The goal for the latter is usually to obtain the largest cooling power per mass or volume, but there can also be many secondary objectives, such as limiting instantaneous heat rejection rates and producing intermediate temperatures for cooling of other instrument components.

  11. A modified varying-stage adaptive phase II/III clinical trial design.

    PubMed

    Dong, Gaohong; Vandemeulebroecke, Marc

    2016-07-01

    Conventionally, adaptive phase II/III clinical trials are carried out with a strict two-stage design. Recently, a varying-stage adaptive phase II/III clinical trial design has been developed. In this design, following the first stage, an intermediate stage can be adaptively added to obtain more data, so that a more informative decision can be made. Therefore, the number of further investigational stages is determined based upon data accumulated to the interim analysis. This design considers two plausible study endpoints, with one of them initially designated as the primary endpoint. Based on interim results, another endpoint can be switched as the primary endpoint. However, in many therapeutic areas, the primary study endpoint is well established. Therefore, we modify this design to consider one study endpoint only so that it may be more readily applicable in real clinical trial designs. Our simulations show that, the same as the original design, this modified design controls the Type I error rate, and the design parameters such as the threshold probability for the two-stage setting and the alpha allocation ratio in the two-stage setting versus the three-stage setting have a great impact on the design characteristics. However, this modified design requires a larger sample size for the initial stage, and the probability of futility becomes much higher when the threshold probability for the two-stage setting gets smaller. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Visualization of airflow growing soap bubbles

    NASA Astrophysics Data System (ADS)

    Al Rahbi, Hamood; Bock, Matthew; Ryu, Sangjin

    2016-11-01

    Visualizing airflow inside growing soap bubbles can answer questions regarding the fluid dynamics of soap bubble blowing, which is a model system for flows with a gas-liquid-gas interface. Also, understanding the soap bubble blowing process is practical because it can contribute to controlling industrial processes similar to soap bubble blowing. In this study, we visualized airflow which grows soap bubbles using the smoke wire technique to understand how airflow blows soap bubbles. The soap bubble blower setup was built to mimic the human blowing process of soap bubbles, which consists of a blower, a nozzle and a bubble ring. The smoke wire was placed between the nozzle and the bubble ring, and smoke-visualized airflow was captured using a high speed camera. Our visualization shows how air jet flows into the growing soap bubble on the ring and how the airflow interacts with the soap film of growing bubble.

  13. Paradoxical Long-Timespan Opening of the Hole in Self-Supported Water Films of Nanometer Thickness.

    PubMed

    Barkay, Z; Bormashenko, E

    2017-05-16

    The opening of holes in self-supported thin (nanoscaled) water films has been investigated in situ with the environmental scanning electron microscope. The opening of a hole occurs within a two-stage process. In the first stage, the rim surrounding a hole is formed, resembling the process that is observed under the puncturing of soap bubbles. In the second stage, the exponential growth of the hole is observed, with a characteristic time of a dozen seconds. We explain the exponential kinetics of hole growth by the balance between inertia (gravity) and viscous dissipation. The kinetics of opening a microscaled hole is governed by the processes taking place in the nanothick bulk of the self-supported liquid film. Nanoparticles provide markers for the visualization of the processes occurring in self-supported thin nanoscale liquid films.

  14. Second Stage (S-II) Arrives at Marshall Space Flight Center For Testing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The business end of a Second Stage (S-II) slowly emerges from the shipping container as workers prepare to transport the Saturn V component to the testing facility at MSFC. The Second Stage (S-II) underwent vibration and engine firing tests. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  15. Saturn Apollo Program

    NASA Image and Video Library

    1965-04-26

    Two technicians watch carefully as cables prepare to lift a J-2 engine into a test stand. The J-2 powered the second stage and the third stage of the Saturn V moon rocket. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  16. Applications of the Magnetocaloric Effect in Single-Stage, Multi-Stage and Continuous Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.

    2014-01-01

    Adiabatic demagnetization refrigerators (ADR), based on the magnetocaloric effect, are solid-state coolers that were the first to achieve cooling well into the sub-kelvin regime. Although supplanted by more powerful dilution refrigerators in the 1960s, ADRs have experienced a revival due to the needs of the space community for cooling astronomical instruments and detectors to temperatures below 100 mK. The earliest of these were single-stage refrigerators using superfluid helium as a heat sink. Their modest cooling power (<1 µW at 60 mK[1]) was sufficient for the small (6x6) detector arrays[2], but recent advances in arraying and multiplexing technologies[3] are generating a need for higher cooling power (5-10 µW), and lower temperature (<30 mK). Single-stage ADRs have both practical and fundamental limits to their operating range, as mass grows very rapidly as the operating range is expanded. This has led to the development of new architectures that introduce multi-staging as a way to improve operating range, efficiency and cooling power. Multi-staging also enables ADRs to be configured for continuous operation, which greatly improves cooling power per unit mass. This paper reviews the current field of adiabatic demagnetization refrigeration, beginning with a description of the magnetocaloric effect and its application in single-stage systems, and then describing the challenges and capabilities of multi-stage and continuous ADRs.

  17. Double bubble with the big-bubble technique during deep anterior lamellar keratoplasty.

    PubMed

    Wise, Stephanie; Dubord, Paul; Yeung, Sonia N

    2017-04-28

    To report a case of intraoperative double bubble that formed during big-bubble DALK surgery in a patient with corneal scarring secondary to herpetic stromal keratitis. Case report. A 22 year old woman presented with a large corneal scar, likely secondary to previous herpetic stromal keratitis. She underwent big-bubble DALK surgery for visual rehabilitation. Intraoperatively, a mixed bubble with persistent type 2 bubble postoperatively was noted. The second bubble resorbed with clearance of the graft and good visual outcome after 6 weeks. This case report describes the unusual development of a mixed bubble during big-bubble DALK surgery. This graft cleared with resolution of the second bubble postoperatively without further surgical intervention.

  18. Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994

    NASA Technical Reports Server (NTRS)

    Bousman, William Scott

    1995-01-01

    Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a substrate film. Pressure drop was best fitted with the Lockhart- Martinelli model. Force balances suggest that droplet entrainment may be a large component of the total pressure drop.

  19. The influence of surface roughness on cloud cavitation flow around hydrofoils

    NASA Astrophysics Data System (ADS)

    Hao, Jiafeng; Zhang, Mindi; Huang, Xu

    2018-02-01

    The aim of this study is to investigate experimentally the effect of surface roughness on cloud cavitation around Clark-Y hydrofoils. High-speed video and particle image velocimetry (PIV) were used to obtain cavitation patterns images (Prog. Aerosp. Sci. 37: 551-581, 2001), as well as velocity and vorticity fields. Results are presented for cloud cavitating conditions around a Clark-Y hydrofoil fixed at angle of attack of α =8{°} for moderate Reynolds number of Re=5.6 × 105. The results show that roughness had a great influence on the pattern, velocity and vorticity distribution of cloud cavitation. For cavitating flow around a smooth hydrofoil (A) and a rough hydrofoil (B), cloud cavitation occurred in the form of finger-like cavities and attached subulate cavities, respectively. The period of cloud cavitation around hydrofoil A was shorter than for hydrofoil B. Surface roughness had a great influence on the process of cloud cavitation. The development of cloud cavitation around hydrofoil A consisted of two stages: (1) Attached cavities developed along the surface to the trailing edge; (2) A reentrant jet developed, resulting in shedding and collapse of cluster bubbles or vortex structure. Meanwhile, its development for hydrofoil B included three stages: (1) Attached cavities developed along the surface to the trailing edge, with accumulation and rotation of bubbles at the trailing edge of the hydrofoil affecting the flow field; (2) Development of a reentrant jet resulted in the first shedding of cavities. Interaction and movement of flows from the pressure side and suction side brought liquid water from the pressure side to the suction side of the hydrofoil, finally forming a reentrant jet. The jet kept moving along the surface to the leading edge of the hydrofoil, resulting in large-scale shedding of cloud bubbles. Several vortices appeared and dissipated during the process; (3) Cavities grew and shed again.

  20. Molecular gas in the H II-region complex RCW 166: Possible evidence for an early phase of cloud-cloud collision prior to the bubble formation

    NASA Astrophysics Data System (ADS)

    Ohama, Akio; Kohno, Mikito; Fujita, Shinji; Tsutsumi, Daichi; Hattori, Yusuke; Torii, Kazufumi; Nishimura, Atsushi; Sano, Hidetoshi; Yamamoto, Hiroaki; Tachihara, Kengo; Fukui, Yasuo

    2018-05-01

    Young H II regions are an important site for the study of O star formation based on distributions of ionized and molecular gas. We reveal that two molecular clouds at ˜48 km s-1 and ˜53 km s-1 are associated with the H II regions G018.149-00.283 in RCW 166 by using the JCMT CO High-Resolution Survey (COHRS) of the 12CO(J = 3-2) emission. G018.149-00.283 comprises a bright ring at 8 μm and an extended H II region inside the ring. The ˜48 km s-1 cloud delineates the ring, and the ˜53 km s-1 cloud is located within the ring, indicating a complementary distribution between the two molecular components. We propose a hypothesis that high-mass stars within G018.149-00.283 were formed by triggering during cloud-cloud collision at a projected velocity separation of ˜5 km s-1. We argue that G018.149-00.283 is in an early evolutionary stage, ˜0.1 Myr after the collision according to the scheme detailed by Habe and Ohta (1992, PASJ, 44, 203), which will be followed by a bubble formation stage like RCW 120. We also suggest that nearby H II regions N21 and N22 are candidates for bubbles possibly formed by cloud-cloud collision. Inoue and Fukui (2013, ApJ, 774, L31) showed that the interface gas becomes highly turbulent and realizes a high-mass accretion rate of 10-3-10-4 M⊙ yr-1 by magnetohydrodynamical numerical simulations, which offers an explanation of the O-star formation. The fairly high frequency of cloud-cloud collision in RCW 166 is probably due to the high cloud density in this part of the Scutum arm.

  1. Microfracture development and foam collapse during lava dome growth

    NASA Astrophysics Data System (ADS)

    Ashwell, P.; Kendrick, J. E.; Lavallee, Y.; kennedy, B.; Hess, K.; Cole, J. W.; Dingwell, D. B.

    2012-12-01

    The ability of a volcano to degas effectively is regulated by the collapse of the foam during lava dome growth. As a lava dome extrudes and cools, it will begin to collapse under its own weight, leading to the closure of bubbles and the eventual blockage of the permeable foam network. A reduction in the lavas permeability hinders gas movement and increases internal bubble pressure, which may eventually lead to failure of the bubble walls, and ultimately to explosive fragmentation of the dome. However, the behaviour of lava dome material under compression is poorly understood. Here we present the results of low-load, uniaxial, high temperature (850oC) compression experiments on glassy, rhyolitic dome material from Ngongotaha (~200ka, following collapse of Rotorua Caldera) and Tarawera (1314AD, from dome collapse generated block and ash flow) domes in New Zealand. The development of textures and microstructures was tracked using neutron computed tomography at incremental stages of strain. Porosity and permeability measurements, using pycnometry and gas permeability, before and after each experiment quantified the evolution of the permeable bubble network. Our results show that uniaxial compression of vesicular lava leads to a systematic reduction of porosity on a timescale comparable to volcanic eruptions (hours - days). The closure of bubbles naturally decreases permeability parallel and perpendicular to the applied load, and at high strains fractures begin to initiate in phenocrysts and propagate vertically into the glass. These microfractures result in localised increases in permeability. Crystallinity and initial vesicularity of each sample affects the rate of bubble collapse and the evolution of permeability. The most highly compressed samples (60%) show textures similar to samples collected from the centre of Tarawera Dome, thought to have suffered from collapse shortly after dome emplacement. However, structures and porosities in the deformed Ngongotaha samples differ from the natural collapsed dome material. The interior of Ngongotaha Dome shows complex deformed flow banding, indicating that shearing during emplacement was a major component during collapse of the permeable foam. Understanding the development of the porous permeable network during lava dome growth is key to predicting the behaviour of an erupting volcano, and the assessing the likelihood of pressure build-up leading to a catastrophic explosive eruption.

  2. Experimental study on bubble dynamics and wall heat transfer arising from a single nucleation site at subcooled flow boiling conditions – Part 2: Data analysis on sliding bubble characteristics and associated wall heat transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yooa, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.

    In this second of two companion papers presents an analysis of sliding bubble and wall heat transfer parameters measured during subcooled boiling in a square, vertical, upward flow channel. Bubbles were generated only from a single nucleation site for better observation of both the sliding bubbles’ characteristics and their impact on wall heat transfer through optical measurement techniques. Specific interests include: (i) bubbles departure and subsequent growth while sliding, (ii) bubbles release frequency, (iii) coalescence of sliding bubbles, (iv) sliding bubbles velocity, (v) bubbles size distribution and (vi) wall heat transfer influenced by sliding bubbles. Our results showed that slidingmore » bubbles involve two distinct growth behaviors: (i) at low mass fluxes, sliding bubbles grew fast near the nucleation site, subsequently shrank, and then grew again, (ii) as mass flux increased, however, sliding bubbles grew more steadily. The bubbles originating from the single nucleation site coalesced frequently while sliding, which showed close relation with bubbles release frequency. The sliding bubble velocity near the nucleation site consistently decreased by increasing mass flux, while the observation often became reversed as the bubbles slid downstream due to the effect of interfacial drag. The sliding bubbles moved faster than the local liquid (i.e., ur<0) at low mass flux conditions, but it became reversed as the mass flux increased. The size distribution of sliding bubbles followed Gaussian distribution well both near and far from the nucleation site. The standard deviation of bubble size varied insignificantly through sliding compared to the changes in mean bubble size. Lastly, the sliding bubbles enhanced the wall heat transfer and the effect became more noticeable as inlet subcooling/mass flux decreased or wall heat flux increased. Particularly, the sliding bubble characteristics such as bubble growth behavior observed near the nucleation site played a dominant role in determining the ultimate level of wall heat transfer enhancement within the test channel.« less

  3. Experimental study on bubble dynamics and wall heat transfer arising from a single nucleation site at subcooled flow boiling conditions – Part 2: Data analysis on sliding bubble characteristics and associated wall heat transfer

    DOE PAGES

    Yooa, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.

    2016-04-28

    In this second of two companion papers presents an analysis of sliding bubble and wall heat transfer parameters measured during subcooled boiling in a square, vertical, upward flow channel. Bubbles were generated only from a single nucleation site for better observation of both the sliding bubbles’ characteristics and their impact on wall heat transfer through optical measurement techniques. Specific interests include: (i) bubbles departure and subsequent growth while sliding, (ii) bubbles release frequency, (iii) coalescence of sliding bubbles, (iv) sliding bubbles velocity, (v) bubbles size distribution and (vi) wall heat transfer influenced by sliding bubbles. Our results showed that slidingmore » bubbles involve two distinct growth behaviors: (i) at low mass fluxes, sliding bubbles grew fast near the nucleation site, subsequently shrank, and then grew again, (ii) as mass flux increased, however, sliding bubbles grew more steadily. The bubbles originating from the single nucleation site coalesced frequently while sliding, which showed close relation with bubbles release frequency. The sliding bubble velocity near the nucleation site consistently decreased by increasing mass flux, while the observation often became reversed as the bubbles slid downstream due to the effect of interfacial drag. The sliding bubbles moved faster than the local liquid (i.e., ur<0) at low mass flux conditions, but it became reversed as the mass flux increased. The size distribution of sliding bubbles followed Gaussian distribution well both near and far from the nucleation site. The standard deviation of bubble size varied insignificantly through sliding compared to the changes in mean bubble size. Lastly, the sliding bubbles enhanced the wall heat transfer and the effect became more noticeable as inlet subcooling/mass flux decreased or wall heat flux increased. Particularly, the sliding bubble characteristics such as bubble growth behavior observed near the nucleation site played a dominant role in determining the ultimate level of wall heat transfer enhancement within the test channel.« less

  4. Paleoclimatic implications from fluid inclusion data in Messinian halite of Italian sites

    NASA Astrophysics Data System (ADS)

    Speranza, G.; Tecce, F.; Cosentino, D.; Faccenna, C.

    2012-12-01

    The Neogene sedimentary succession of the Mediterranean Basin includes a thick evaporitic succession (gypsum and halite) deposited during the Messinian Salinity Crisis (MSC), which occurred between 5.96 and 5,33 Ma. While several studies have been carried out to define the water budget of the MSC, the temperature of the Mediterranean water system is poorly constrained. The purpose of this work is to collect the first dataset of homogenization temperatures (Th) from primary fluid inclusions in Messinian halite from different Italian sites. Such data yield very useful information on water temperature at salt deposition time and thus on the climatic conditions in the peak desiccation stage of the Mediterranean sea. We focused our attention on three areas: the Volterra Basin (Tuscany), the Crotone Basin (Calabria) and the Caltanissetta Basin (Sicily). These basins are filled by Neogene sedimentary sequences, including Messinian gypsum deposits and halite. Halite samples were taken directly from salt diapirs outcrops (Crotone Basin), from borehole S1113 cores drilled by the Italian Solvay company (Volterra Basin) and inside salt mines of Petralia Sottana, Racalmuto and Realmonte (Caltanissetta Basin). Halite chips were manually prepared carefully avoiding water and controlling the temperature. Halite minerals contain abundant fluid inclusions. The majority of them are monophase liquid inclusions, showing a very regular cubic or rectangular shape. They occur along chevron and growth planes and thus were considered to have a primary origin. Some others contain solids and/or organic matter. During microthermometry, vapor bubbles nucleation has been produced directly into the stage chamber, slightly modifying the traditional "cooling" method; we could then nucleate the bubbles and at the same time constantly control the sample temperature, avoiding any sudden change that can lead to useless altered data. Microthermometric data were measured from 218 primary all liquid fluid inclusions. Th values range from 9,2 to 29°C. Considering each site individually, Volterra samples exhibit the higher temperature range, with an average of 24,4°C, followed by Racalmuto with 18,4°C, Crotone with 18,2°C, Petralia Sottana with 16,5°C and finally Realmonte with 15,9°C. The overall average Th is 18,6°C. Any relation between fluid inclusion dimension and cooling time on measured Th has been tested and excluded. From Th data we can assert that during the salt precipitation stage the water body temperature was at least around 18 - 20°C. Excluding any kind of thermal re-equilibration and considering that the pressure correction is negligible, we can suggest that during the salt deposition the Mediterranean area was under cold and arid climatic stage. Therefore from our study we can describe these deposits as "cold evaporites". We also suggest that the higher Th values of Volterra samples could derive from the high heat flow present in that area since at least early Messinian. We can conclude suggesting that in the Mediterranean sea during the MSC a phase of arid and cold climate conditions concurred to cause halite precipitation and maximum water level fall.

  5. Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra

    NASA Astrophysics Data System (ADS)

    López-Claros, M.; Dell'Aglio, M.; Gaudiuso, R.; Santagata, A.; De Giacomo, A.; Fortes, F. J.; Laserna, J. J.

    2017-07-01

    There is a growing interest in the development of sensors use in exploration of the deep ocean. Techniques for the chemical analysis of submerged solids are of special interest, as they show promise for subsea mining applications where a rapid sorting of materials found in the sea bottom would improve efficiency. Laser-Induced Breakdown Spectroscopy (LIBS) has demonstrated potential for this application thanks to its unique capability of providing the atomic composition of submerged solids. Here we present a study on the parameters that affect the spectral response of metallic targets in an oceanic pressure environment. Following laser excitation of the solid, the plasma persistence and the cavitation bubble size are considerably reduced as the hydrostatic pressure increases. These effects are of particular concern in dual pulse excitation as reported here, where a careful choice of the interpulse timing is required. Shadowgraphic images of the plasma demonstrate that cavitation bubbles are formed early after the plasma onset and that the effect of hydrostatic pressure is negligible during the early stage of plasma expansion. Contrarily to what is observed at atmospheric pressure, emission spectra observed at high pressures are characterized by self-absorbed atomic lines on continuum radiation resulting from strong radiative recombination in the electron-rich confined environment. This effect is much less evident with ionic lines due to the much higher energy of the levels involved and ionization energy of ions, as well as to the lower extent of absorption effects occurring in the inner part of the plasma, where ionized species are more abundant. As a result of the smaller shorter-lived cavitation bubble, the LIBS intensity enhancement resulting from dual pulse excitation is reduced when the applied pressure increases.

  6. Production of microbubbles from axisymmetric flow focusing in the jetting regime for moderate Reynolds numbers.

    PubMed

    Vega, E J; Acero, A J; Montanero, J M; Herrada, M A; Gañán-Calvo, A M

    2014-06-01

    We analyze both experimentally and numerically the formation of microbubbles in the jetting regime reached when a moderately viscous liquid stream focuses a gaseous meniscus inside a converging micronozzle. If the total (stagnation) pressure of the injected gas current is fixed upstream, then there are certain conditions on which a quasisteady gas meniscus forms. The meniscus tip is sharpened by the liquid stream down to the gas molecular scale. On the other side, monodisperse collections of microbubbles can be steadily produced in the jetting regime if the feeding capillary is appropriately located inside the nozzle. In this case, the microbubble size depends on the feeding capillary position. The numerical simulations for an imposed gas flow rate show that a recirculation cell appears in the gaseous meniscus for low enough values of that parameter. The experiments allow one to conclude that the bubble pinch-off comprises two phases: (i) a stretching motion of the precursor jet where the neck radius versus the time before the pinch essentially follows a potential law, and (ii) a final stage where a very thin and slender gaseous thread forms and eventually breaks apart into a number of micron-sized bubbles. Because of the difference between the free surface and core velocities, the gaseous jet breakage differs substantially from that of liquid capillary jets and gives rise to bubbles with diameters much larger than those expected from the Rayleigh-type capillary instability. The dependency of the bubble diameter upon the flow-rate ratio agrees with the scaling law derived by A. M. Gañán-Calvo [Phys. Rev. E 69, 027301 (2004)], although a slight influence of the Reynolds number can be observed in our experiments.

  7. A high-fidelity approach towards simulation of pool boiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios

    2016-01-15

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms atmore » early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces.« less

  8. Kinetics of the pyrolysis of arundo, sawdust, corn stover and switch grass biomass by thermogravimetric analysis using a multi-stage model.

    PubMed

    Biney, Paul O; Gyamerah, Michael; Shen, Jiacheng; Menezes, Bruna

    2015-03-01

    A new multi-stage kinetic model has been developed for TGA pyrolysis of arundo, corn stover, sawdust and switch grass that accounts for the initial biomass weight (W0). The biomass were decomposed in a nitrogen atmosphere from 23°C to 900°C in a TGA at a single 20°C/min ramp rate in contrast with the isoconversion technique. The decomposition was divided into multiple stages based on the absolute local minimum values of conversion derivative, (dx/dT), obtained from DTG curves. This resulted in three decomposition stages for arundo, corn stover and sawdust and four stages for switch grass. A linearized multi-stage model was applied to the TGA data for each stage to determine the pre-exponential factor, activation energy, and reaction order. The activation energies ranged from 54.7 to 60.9 kJ/mol, 62.9 to 108.7 kJ/mol, and 18.4 to 257.9 kJ/mol for the first, second and the third decomposition stages respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus.

    PubMed

    Skoglund, Nils; Grimm, Alejandro; Ohman, Marcus; Boström, Dan

    2014-02-20

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K 2 CO 3 ) and alkaline-earth metal (CaCO 3 ) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%-95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca 9 (K,Mg,Fe)(PO 4 ) 7 , for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO 2 ) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi 2 O 6 ) was formed. Most of the alkaline-earth metals calcium and magnesium were also found in the bed ash. Both the formation of aluminum-containing alkali silicates and inclusion of calcium and magnesium in bed ash could assist in preventing bed agglomeration during co-combustion of biosolids with other renewable fuels in a full-scale bubbling fluidized bed.

  10. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus

    PubMed Central

    2014-01-01

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K2CO3) and alkaline-earth metal (CaCO3) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%–95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca9(K,Mg,Fe)(PO4)7, for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO2) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi2O6) was formed. Most of the alkaline-earth metals calcium and magnesium were also found in the bed ash. Both the formation of aluminum-containing alkali silicates and inclusion of calcium and magnesium in bed ash could assist in preventing bed agglomeration during co-combustion of biosolids with other renewable fuels in a full-scale bubbling fluidized bed. PMID:24678140

  11. The Effectiveness of Modified Multi-Component Cognitive Strategy Instruction in Expository Text Comprehension of Students with Mild Intellectual Disabilities

    ERIC Educational Resources Information Center

    Bilgi, Arzu Doganay; Özmen, E. Rüya

    2018-01-01

    This study investigates the effectiveness of Modified Multi-Component Cognitive Strategy Instruction (MMCSI) on expository text comprehension skills of students with mild intellectual disability (ID). Three students participated from inclusion classes of three different secondary schools in Turkey. The study was conducted using a multiple probe…

  12. Allothermal steam gasification of biomass in cyclic multi-compartment bubbling fluidized-bed gasifier/combustor - new reactor concept.

    PubMed

    Iliuta, Ion; Leclerc, Arnaud; Larachi, Faïçal

    2010-05-01

    A new reactor concept of allothermal cyclic multi-compartment fluidized bed steam biomass gasification is proposed and analyzed numerically. The concept combines space and time delocalization to approach an ideal allothermal gasifier. Thermochemical conversion of biomass in periodic time and space sequences of steam biomass gasification and char/biomass combustion is simulated in which the exothermic combustion compartments provide heat into an array of interspersed endothermic steam gasification compartments. This should enhance unit heat integration and thermal efficiency and procure N(2)-free biosyngas with recourse neither to oxygen addition in steam gasification nor contact between flue and syngas. The dynamic, one-dimensional, multi-component, non-isothermal model developed for this concept accounts for detailed solid and gas flow dynamics whereupon gasification/combustion reaction kinetics, thermal effects and freeboard-zone reactions were tied. Simulations suggest that allothermal operation could be achieved with switch periods in the range of a minute supporting practical feasibility for portable small-scale gasification units. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Health condition identification of multi-stage planetary gearboxes using a mRVM-based method

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Liu, Zongyao; Wu, Xionghui; Li, Naipeng; Chen, Wu; Lin, Jing

    2015-08-01

    Multi-stage planetary gearboxes are widely applied in aerospace, automotive and heavy industries. Their key components, such as gears and bearings, can easily suffer from damage due to tough working environment. Health condition identification of planetary gearboxes aims to prevent accidents and save costs. This paper proposes a method based on multiclass relevance vector machine (mRVM) to identify health condition of multi-stage planetary gearboxes. In this method, a mRVM algorithm is adopted as a classifier, and two features, i.e. accumulative amplitudes of carrier orders (AACO) and energy ratio based on difference spectra (ERDS), are used as the input of the classifier to classify different health conditions of multi-stage planetary gearboxes. To test the proposed method, seven health conditions of a two-stage planetary gearbox are considered and vibration data is acquired from the planetary gearbox under different motor speeds and loading conditions. The results of three tests based on different data show that the proposed method obtains an improved identification performance and robustness compared with the existing method.

  14. The NGC 454 system: anatomy of a mixed ongoing merger

    NASA Astrophysics Data System (ADS)

    Plana, H.; Rampazzo, R.; Mazzei, P.; Marino, A.; Amram, Ph.; Ribeiro, A. L. B.

    2017-12-01

    This paper focuses on NGC 454, a nearby interacting pair of galaxies (AM 0112-554, RR23), composed of an early-type (NGC 454 E) and a star-forming late-type companion (NGC 454 W). We aim at characterizing this wet merger candidate via a multi-λ analysis, from near-UV (NUV) to optical using Swift UV/Optical Telescope (UVOT), and mapping the H α intensity (I) distribution, velocity (Vr) and velocity dispersion (σ) fields with SAM+Fabry-Perot@SOAR observations. Luminosity profiles suggest that NGC 454 E is an S0. Distortions in its outskirts caused by the ongoing interaction are visible in both optical and NUV frames. In NGC 454 W, the NUV-UVOT images and the H α show a set of star-forming complexes connected by a faint tail. H α emission is detected along the line connecting NGC 454 E to the NGC 454 main H II complex. We investigate the (I-σ), (I-Vr) and (Vr-σ) diagnostic diagrams of the H II complexes, most of which can be interpreted in a framework of expanding bubbles. In the main H II complex, enclosed in the UV brightest region, the gas velocity dispersion is highly supersonic reaching 60 km s-1. However, H α emission profiles are mostly asymmetric indicating the presence of multiple components with an irregular kinematics. Observations point towards an advanced stage of the encounter. Our smoothed particle hydrodynamic simulations with chemo-photometric implementation suggest that this mixed pair can be understood in terms of a 1:1 gas/halo encounter giving rise to a merger in about 0.2 Gyr from the present stage.

  15. Clinical staging and operative reporting for multi-institutional trials in head and neck squamous cell carcinoma.

    PubMed

    Weymuller, E A

    1997-12-01

    A Strategic Planning Conference (jointly supported by NCI and NIDCD) was convened to consider potential improvements in surgical patient data for multi-institutional trials. The thesis underlying this project is that inadequacies in staging, pretreatment patient stratification, and the details of surgical resection may have obscured the detection of treatment effect. The goals of this project were multiple: (1) to consider the utility of new clinical stratification variables, (2) to increase the precision of tumor staging, and (3) to improve operative reporting for multi-institutional trials in head and neck cancer. The conference attendees came to a number of important conclusions: (1) TNM status is inadequate for describing head and neck cancer in a multi-institutional trial setting. A detailed anatomic reporting scheme is proposed; (2) comorbidity measures should be included as patient descriptors, especially those that meet the criteria "definitely important and easy to obtain"; (3) surgical reporting in multi-institutional trials should use a format that is compatible with computer analysis and use the same items as the revised (anatomic) staging system; (4) the surgeon should be personally responsible for data coding and should interact directly with the pathologist in marking the surgical specimen; (5) pathologic reporting should use an anatomic template identical to the staging and operative reporting formats.

  16. Designing a multi-objective, multi-support accuracy assessment of the 2001 National Land Cover Data (NLCD 2001) of the conterminous United States

    USGS Publications Warehouse

    Stehman, S.V.; Wickham, J.D.; Wade, T.G.; Smith, J.H.

    2008-01-01

    The database design and diverse application of NLCD 2001 pose significant challenges for accuracy assessment because numerous objectives are of interest, including accuracy of land-cover, percent urban imperviousness, percent tree canopy, land-cover composition, and net change. A multi-support approach is needed because these objectives require spatial units of different sizes for reference data collection and analysis. Determining a sampling design that meets the full suite of desirable objectives for the NLCD 2001 accuracy assessment requires reconciling potentially conflicting design features that arise from targeting the different objectives. Multi-stage cluster sampling provides the general structure to achieve a multi-support assessment, and the flexibility to target different objectives at different stages of the design. We describe the implementation of two-stage cluster sampling for the initial phase of the NLCD 2001 assessment, and identify gaps in existing knowledge where research is needed to allow full implementation of a multi-objective, multi-support assessment. ?? 2008 American Society for Photogrammetry and Remote Sensing.

  17. Study of CFB Simulation Model with Coincidence at Multi-Working Condition

    NASA Astrophysics Data System (ADS)

    Wang, Z.; He, F.; Yang, Z. W.; Li, Z.; Ni, W. D.

    A circulating fluidized bed (CFB) two-stage simulation model was developed. To realize the model results coincident with the design value or real operation value at specified multi-working conditions and with capability of real-time calculation, only the main key processes were taken into account and the dominant factors were further abstracted out of these key processes. The simulation results showed a sound accordance at multi-working conditions, and confirmed the advantage of the two-stage model over the original single-stage simulation model. The combustion-support effect of secondary air was investigated using the two-stage model. This model provides a solid platform for investigating the pant-leg structured CFB furnace, which is now under design for a supercritical power plant.

  18. Bubble dynamics and bubble-induced turbulence of a single-bubble chain

    NASA Astrophysics Data System (ADS)

    Lee, Joohyoung; Park, Hyungmin

    2016-11-01

    In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.

  19. Nonspherical laser-induced cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Lim, Kang Yuan; Quinto-Su, Pedro A.; Klaseboer, Evert; Khoo, Boo Cheong; Venugopalan, Vasan; Ohl, Claus-Dieter

    2010-01-01

    The generation of arbitrarily shaped nonspherical laser-induced cavitation bubbles is demonstrated with a optical technique. The nonspherical bubbles are formed using laser intensity patterns shaped by a spatial light modulator using linear absorption inside a liquid gap with a thickness of 40μm . In particular we demonstrate the dynamics of elliptic, toroidal, square, and V-shaped bubbles. The bubble dynamics is recorded with a high-speed camera at framing rates of up to 300000 frames per second. The observed bubble evolution is compared to predictions from an axisymmetric boundary element simulation which provides good qualitative agreement. Interesting dynamic features that are observed in both the experiment and simulation include the inversion of the major and minor axis for elliptical bubbles, the rotation of the shape for square bubbles, and the formation of a unidirectional jet for V-shaped bubbles. Further we demonstrate that specific bubble shapes can either be formed directly through the intensity distribution of a single laser focus, or indirectly using secondary bubbles that either confine the central bubble or coalesce with the main bubble. The former approach provides the ability to generate in principle any complex bubble geometry.

  20. Aspherical bubble dynamics and oscillation times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godwin, R.P.; Chapyak, E.J.; Noack, J.

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightlymore » from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.« less

  1. Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline.

    PubMed

    Zhang, Jie; Li, Qingyang; Caselli, Richard J; Thompson, Paul M; Ye, Jieping; Wang, Yalin

    2017-06-01

    Alzheimer's Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms.

  2. Saturn V First Stage Leaves the Dynamic Test Stand

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This photo shows the Saturn V first stage being lowered to the ground following a successful test to determine the effects of continual vibrations simulating the effects of an actual launch. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  3. The dynamics of histotripsy bubbles

    NASA Astrophysics Data System (ADS)

    Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.

    2011-09-01

    Histotripsy describes treatments in which high-amplitude acoustic pulses are used to excite bubbles and erode tissue. Though tissue erosion can be directly attributed to bubble activity, the genesis and dynamics of bubbles remain unclear. Histotripsy lesions that show no signs of thermal coagulative damage have been generated with two different acoustic protocols: relatively long acoustic pulses that produce local boiling within milliseconds and relatively short pulses that are higher in amplitude but likely do not produce boiling. While these two approaches are often distinguished as `boiling' versus `cavitation', such labels can obscure similarities. In both cases, a bubble undergoes large changes in radius and vapor is transported into and out of the bubble as it oscillates. Moreover, observations from both approaches suggest that bubbles grow to a size at which they cease to collapse violently. In order to better understand the dynamics of histotripsy bubbles, a single-bubble model has been developed that couples acoustically excited bubble motions to the thermodynamic state of the surrounding liquid. Using this model for bubbles exposed to histotripsy sound fields, simulations suggest that two mechanisms can act separately or in concert to lead to the typically observed bubble growth. First, nonlinear acoustic propagation leads to the evolution of shocks and an asymmetry in the positive and negative pressures that drive bubble motion. This asymmetry can have a rectifying effect on bubble oscillations whereby the bubble grows on average during each acoustic cycle. Second, vapor transport to/from the bubble tends to produce larger bubbles, especially at elevated temperatures. Vapor transport by itself can lead to rectified bubble growth when the ambient temperature exceeds 100 °C (`boiling') or local heating in the vicinity of the bubble leads to a superheated boundary layer.

  4. High-speed and supersonic upward plasma drifts: multi-instrumental study

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Zakharenkova, I.; Hairston, M. R.; Huba, J.; Coley, W. R.

    2017-12-01

    Since the pioneering observations by Aggson et al. (1992, JGR, doi: 10.1002/92JA00644), there have been several reports of the occurrence of high-speed (Vz>800 m/s) and supersonic plasma flows in the post-sunset (e.g., Hysell et al., 1994, JGR, doi: 10.1029/94JA00476; Hanson et al., 1997, JGR, doi: 10.1029/96JA03376) and the pre-dawn sector (Astafyeva and Zakharenkova, 2015, GRL, doi:10.1002/2015GL066369). However, despite this observational evidence, these events remain rare and are not well understood. The main issue is to determine the background conditions leading to the occurrence of these high-speed plasma drifts. In this work, we perform a multi-instrumental study of high-speed and supersonic upward plasma drift events/structures. For this purpose, we analyze data from several ground-based and space-borne instruments, including data from the DMSP, Swarm and C/NOFS (IVM instrument) satellites. In addition to the space-borne instruments, we use data from ground-based GPS-receivers and ionosondes to further investigate the background ionosphere conditions, as well as the effects produced by the plasma bubbles and ionospheric irregularities. Besides the observations, we add the SAMI3/ESF modeling results on plasma bubble simulations and high-speed drifts inside plasma bubbles. TIE-GCM runs (from the CCMC, https://ccmc.gsfc.nasa.gov) are used to define the background atmospheric/ionospheric and electrodynamical conditions leading to the occurrence of the high-speed and supersonic plasma drift events. Our search of events with upward plasma drift exceeding 800 m/s in the data of DMSP for the years 2002-2016 shows that such high-speed events are extremely rare. During this period of time, only 6 events were found, two of them occurred during the recovery phase of a geomagnetic storm, while the other four were detected during geomagnetically quiet conditions. Concerning the generation of such events, our preliminary results show that enhanced electric fields are required and that horizontal thermospheric winds play an important role in the occurrence of high-speed plasma flows.

  5. Multi-stage separations based on dielectrophoresis

    DOEpatents

    Mariella, Jr., Raymond P.

    2004-07-13

    A system utilizing multi-stage traps based on dielectrophoresis. Traps with electrodes arranged transverse to the flow and traps with electrodes arranged parallel to the flow with combinations of direct current and alternating voltage are used to trap, concentrate, separate, and/or purify target particles.

  6. Cross-stage immunity for malaria vaccine development.

    PubMed

    Nahrendorf, Wiebke; Scholzen, Anja; Sauerwein, Robert W; Langhorne, Jean

    2015-12-22

    A vaccine against malaria is urgently needed for control and eventual eradication. Different approaches are pursued to induce either sterile immunity directed against pre-erythrocytic parasites or to mimic naturally acquired immunity by controlling blood-stage parasite densities and disease severity. Pre-erythrocytic and blood-stage malaria vaccines are often seen as opposing tactics, but it is likely that they have to be combined into a multi-stage malaria vaccine to be optimally safe and effective. Since many antigenic targets are shared between liver- and blood-stage parasites, malaria vaccines have the potential to elicit cross-stage protection with immune mechanisms against both stages complementing and enhancing each other. Here we discuss evidence from pre-erythrocytic and blood-stage subunit and whole parasite vaccination approaches that show that protection against malaria is not necessarily stage-specific. Parasites arresting at late liver-stages especially, can induce powerful blood-stage immunity, and similarly exposure to blood-stage parasites can afford pre-erythrocytic immunity. The incorporation of a blood-stage component into a multi-stage malaria vaccine would hence not only combat breakthrough infections in the blood should the pre-erythrocytic component fail to induce sterile protection, but would also actively enhance the pre-erythrocytic potency of this vaccine. We therefore advocate that future studies should concentrate on the identification of cross-stage protective malaria antigens, which can empower multi-stage malaria vaccine development. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Vapor Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  8. Two-stage repair for severe proximal hypospadias using oral mucosal grafts: combination of a modified Bracka method and a modified Byars flap method.

    PubMed

    Mitsukawa, Nobuyuki; Saiga, Atsuomi; Akita, Shinsuke; Kubota, Yoshitaka; Kuriyama, Motone; Satoh, Kaneshige

    2015-02-01

    One-stage repair is a conventional treatment of hypospadias. If hypospadias is severe as in the scrotal type and perineal type, penile curvature sometimes cannot be corrected by dorsal midline plication alone. In addition to resection of the urethral plate, ventral grafting becomes necessary for insufficient skin and subcutaneous tissue. In recent years, there has been renewed interest in 2-stage repair for such severe cases and salvage of failed cases with scarring. In the present study, novel 2-stage urethroplasty was performed in 6 cases to repair severe proximal hypospadias which required resection of the urethral plate. This novel method consisted of a combination of a modified Bracka method using oral mucosal grafts and a modified Byars flap of the dorsal foreskin. Good results were obtained using this novel method.

  9. Optimal modified tracking performance for MIMO networked control systems with communication constraints.

    PubMed

    Wu, Jie; Zhou, Zhu-Jun; Zhan, Xi-Sheng; Yan, Huai-Cheng; Ge, Ming-Feng

    2017-05-01

    This paper investigates the optimal modified tracking performance of multi-input multi-output (MIMO) networked control systems (NCSs) with packet dropouts and bandwidth constraints. Some explicit expressions are obtained by using co-prime factorization and the spectral decomposition technique. The obtained results show that the optimal modified tracking performance is related to the intrinsic properties of a given plant such as non-minimum phase (NMP) zeros, unstable poles, and their directions. Furthermore, the modified factor, packet dropouts probability and bandwidth also impact the optimal modified tracking performance of the NCSs. The optimal modified tracking performance with channel input power constraint is obtained by searching through all stabilizing two-parameter compensator. Finally, some typical examples are given to illustrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity".

    PubMed

    Ewer, Katie J; Sierra-Davidson, Kailan; Salman, Ahmed M; Illingworth, Joseph J; Draper, Simon J; Biswas, Sumi; Hill, Adrian V S

    2015-12-22

    Viral vectors used in heterologous prime-boost regimens are one of very few vaccination approaches that have yielded significant protection against controlled human malaria infections. Recently, protection induced by chimpanzee adenovirus priming and modified vaccinia Ankara boosting using the ME-TRAP insert has been correlated with the induction of potent CD8(+) T cell responses. This regimen has progressed to field studies where efficacy against infection has now been reported. The same vectors have been used pre-clinically to identify preferred protective antigens for use in vaccines against the pre-erythrocytic, blood-stage and mosquito stages of malaria and this work is reviewed here for the first time. Such antigen screening has led to the prioritization of the PfRH5 blood-stage antigen, which showed efficacy against heterologous strain challenge in non-human primates, and vectors encoding this antigen are in clinical trials. This, along with the high transmission-blocking activity of some sexual-stage antigens, illustrates well the capacity of such vectors to induce high titre protective antibodies in addition to potent T cell responses. All of the protective responses induced by these vectors exceed the levels of the same immune responses induced by natural exposure supporting the view that, for subunit vaccines to achieve even partial efficacy in humans, "unnatural immunity" comprising immune responses of very high magnitude will need to be induced. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. A two-stage path planning approach for multiple car-like robots based on PH curves and a modified harmony search algorithm

    NASA Astrophysics Data System (ADS)

    Zeng, Wenhui; Yi, Jin; Rao, Xiao; Zheng, Yun

    2017-11-01

    In this article, collision-avoidance path planning for multiple car-like robots with variable motion is formulated as a two-stage objective optimization problem minimizing both the total length of all paths and the task's completion time. Accordingly, a new approach based on Pythagorean Hodograph (PH) curves and Modified Harmony Search algorithm is proposed to solve the two-stage path-planning problem subject to kinematic constraints such as velocity, acceleration, and minimum turning radius. First, a method of path planning based on PH curves for a single robot is proposed. Second, a mathematical model of the two-stage path-planning problem for multiple car-like robots with variable motion subject to kinematic constraints is constructed that the first-stage minimizes the total length of all paths and the second-stage minimizes the task's completion time. Finally, a modified harmony search algorithm is applied to solve the two-stage optimization problem. A set of experiments demonstrate the effectiveness of the proposed approach.

  12. Anti-Bubbles

    NASA Astrophysics Data System (ADS)

    Tufaile, Alberto; Sartorelli, José Carlos

    2003-08-01

    An anti-bubble is a striking kind of bubble in liquid that seemingly does not comply the buoyancy, and after few minutes it disappears suddenly inside the liquid. Different from a simple air bubble that rises directly to the liquid surface, an anti-bubble wanders around in the fluid due to its slightly lesser density than the surrounding liquid. In spite of this odd behavior, an anti-bubble can be understood as the opposite of a conventional soap bubble in air, which is a shell of liquid surrounding air, and an anti-bubble is a shell of air surrounding a drop of the liquid inside the liquid. Two-phase flow has been a subject of interest due to its relevance to process equipment for contacting gases and liquids applied in industry. A chain of bubbles rising in a liquid formed from a nozzle is a two-phase flow, and there are certain conditions in which spherical air shells, called anti-bubbles, are produced. The purpose of this work is mainly to note the existence of anti-bubbling regime as a sequel of a bubbling system. We initially have presented the experimental apparatus. After this we have described the evolution of the bubbling regimes, and emulated the effect of bubbling coalescence with simple maps. Then is shown the inverted dripping as a consequence of the bubble coalescence, and finally the conditions for anti-bubble formation.

  13. An analytic-geometric model of the effect of spherically distributed injection errors for Galileo and Ulysses spacecraft - The multi-stage problem

    NASA Technical Reports Server (NTRS)

    Longuski, James M.; Mcronald, Angus D.

    1988-01-01

    In previous work the problem of injecting the Galileo and Ulysses spacecraft from low earth orbit into their respective interplanetary trajectories has been discussed for the single stage (Centaur) vehicle. The central issue, in the event of spherically distributed injection errors, is what happens to the vehicle? The difficulties addressed in this paper involve the multi-stage problem since both Galileo and Ulysses will be utilizing the two-stage IUS system. Ulysses will also include a third stage: the PAM-S. The solution is expressed in terms of probabilities for total percentage of escape, orbit decay and reentry trajectories. Analytic solutions are found for Hill's Equations of Relative Motion (more recently called Clohessy-Wiltshire Equations) for multi-stage injections. These solutions are interpreted geometrically on the injection sphere. The analytic-geometric models compare well with numerical solutions, provide insight into the behavior of trajectories mapped on the injection sphere and simplify the numerical two-dimensional search for trajectory families.

  14. End-pumped 300 W continuous-wave ytterbium-doped all-fiber laser with master oscillator multi-stage power amplifiers configuration.

    PubMed

    Yin, Shupeng; Yan, Ping; Gong, Mali

    2008-10-27

    An end-pumped ytterbium-doped all-fiber laser with 300 W output in continuous regime was reported, which was based on master oscillator multi-stage power amplifiers configuration. Monolithic fiber laser system consisted of an oscillator stage and two amplifier stages. Total optical-optical efficiency of monolithic fiber laser was approximately 65%, corresponding to 462 W of pump power coupled into laser system. We proposed a new method to connect power amplifier stage, which was crucial for the application of end-pumped combiner in high power MOPAs all-fiber laser.

  15. A Multi-Stage Wear Model for Grid-to-Rod Fretting of Nuclear Fuel Rods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, Peter Julian

    The wear of fuel rod cladding against the supporting structures in the cores of pressurized water nuclear reactors (PWRs) is an important and potentially costly tribological issue. Grid-to-rod fretting (GTRF), as it is known, involves not only time-varying contact conditions, but also elevated temperatures, flowing hot water, aqueous tribo-corrosion, and the embrittling effects of neutron fluences. The multi-stage, closed-form analytical model described in this paper relies on published out-of-reactor wear and corrosion data and a set of simplifying assumptions to portray the conversion of frictional work into wear depth. The cladding material of interest is a zirconium-based alloy called Zircaloy-4,more » and the grid support is made of a harder and more wear-resistant material. Focus is on the wear of the cladding. The model involves an incubation stage, a surface oxide wear stage, and a base alloy wear stage. The wear coefficient, which is a measure of the efficiency of conversion of frictional work into wear damage, can change to reflect the evolving metallurgical condition of the alloy. Wear coefficients for Zircaloy-4 and for a polyphase zirconia layer were back-calculated for a range of times required to wear to a critical depth. Inputs for the model, like the friction coefficient, are taken from the tribology literature in lieu of in-reactor tribological data. Concepts of classical fretting were used as a basis, but are modified to enable the model to accommodate the complexities of the PWR environment. Factors like grid spring relaxation, pre-oxidation of the cladding, multiple oxide phases, gap formation, impact, and hydrogen embrittlement are part of the problem definition but uncertainties in their relative roles limits the ability to validate the model. Sample calculations of wear depth versus time in the cladding illustrate how GTRF wear might occur in a discontinuous fashion during months-long reactor operating cycles. A means to account for grid/rod gaps and repetitive impact effects on GTRF wear is proposed« less

  16. Sensitivity of the Modified Children's Yale-Brown Obsessive Compulsive Scale to Detect Change: Results from Two Multi-Site Trials

    ERIC Educational Resources Information Center

    Scahill, Lawrence; Sukhodolsky, Denis G.; Anderberg, Emily; Dimitropoulos, Anastasia; Dziura, James; Aman, Michael G.; McCracken, James; Tierney, Elaine; Hallett, Victoria; Katz, Karol; Vitiello, Benedetto; McDougle, Christopher

    2016-01-01

    Repetitive behavior is a core feature of autism spectrum disorder. We used 8-week data from two federally funded, multi-site, randomized trials with risperidone conducted by the Research Units on Pediatric Psychopharmacology Autism Network to evaluate the sensitivity of the Children's Yale-Brown Obsessive Compulsive Scale modified for autism…

  17. Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound.

    PubMed

    Gateau, Jérôme; Aubry, Jean-François; Pernot, Mathieu; Fink, Mathias; Tanter, Mickaël

    2011-03-01

    The activation of natural gas nuclei to induce larger bubbles is possible using short ultrasonic excitations of high amplitude, and is required for ultrasound cavitation therapies. However, little is known about the distribution of nuclei in tissues. Therefore, the acoustic pressure level necessary to generate bubbles in a targeted zone and their exact location are currently difficult to predict. To monitor the initiation of cavitation activity, a novel all-ultrasound technique sensitive to single nucleation events is presented here. It is based on combined passive detection and ultrafast active imaging over a large volume using the same multi-element probe. Bubble nucleation was induced using a focused transducer (660 kHz, f-number = 1) driven by a high-power electric burst (up to 300 W) of one to two cycles. Detection was performed with a linear array (4 to 7 MHz) aligned with the single-element focal point. In vitro experiments in gelatin gel and muscular tissue are presented. The synchronized passive detection enabled radio-frequency data to be recorded, comprising high-frequency coherent wave fronts as signatures of the acoustic emissions linked to the activation of the nuclei. Active change detection images were obtained by subtracting echoes collected in the unnucleated medium. These indicated the appearance of stable cavitating regions. Because of the ultrafast frame rate, active detection occurred as quickly as 330 μs after the high-amplitude excitation and the dynamics of the induced regions were studied individually.

  18. Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound

    PubMed Central

    Gateau, Jérôme; Aubry, Jean-François; Pernot, Mathieu; Fink, Mathias; Tanter, Mickaël

    2011-01-01

    The activation of natural gas nuclei to induce larger bubbles is possible using short ultrasonic excitations of high amplitude, and is required for ultrasound cavitation therapies. However, little is known about the distribution of nuclei in tissues. Therefore, the acoustic pressure level necessary to generate bubbles in a targeted zone and their exact location are currently difficult to predict. In order to monitor the initiation of cavitation activity, a novel all-ultrasound technique sensitive to single nucleation events is presented here. It is based on combined passive detection and ultrafast active imaging over a large volume and with the same multi-element probe. Bubble nucleation was induced with a focused transducer (660kHz, f#=1) driven by a high power (up to 300 W) electric burst of one to two cycles. Detection was performed with a linear array (4–7MHz) aligned with the single-element focal point. In vitro experiments in gelatin gel and muscular tissue are presented. The synchronized passive detection enabled radio-frequency data to be recorded, comprising high-frequency coherent wave fronts as signatures of the acoustic emissions linked to the activation of the nuclei. Active change detection images were obtained by subtracting echoes collected in the unucleated medium. These indicated the appearance of stable cavitating regions. Thanks to the ultrafast frame rate, active detection occurred as soon as 330 μs after the high amplitude excitation and the dynamics of the induced regions were studied individually. PMID:21429844

  19. Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean.

    PubMed

    Ma, Lanxin; Wang, Fuqiang; Wang, Chengan; Wang, Chengchao; Tan, Jianyu

    2015-09-21

    The presence of bubbles can significantly change the radiative properties of seawater and these changes will affect remote sensing and underwater target detection. In this work, the spectral reflectance and bidirectional reflectance characteristics of the bubble layer in the upper ocean are investigated using the Monte Carlo method. The Hall-Novarini (HN) bubble population model, which considers the effect of wind speed and depth on the bubble size distribution, is used. The scattering coefficients and the scattering phase functions of bubbles in seawater are calculated using Mie theory, and the inherent optical properties of seawater for wavelengths between 300 nm and 800 nm are related to chlorophyll concentration (Chl). The effects of bubble coating, Chl, and bubble number density on the spectral reflectance of the bubble layer are studied. The bidirectional reflectance distribution function (BRDF) of the bubble layer for both normal and oblique incidence is also investigated. The results show that bubble populations in clear waters under high wind speed conditions significantly influence the reflection characteristics of the bubble layer. Furthermore, the contribution of bubble populations to the reflection characteristics is mainly due to the strong backscattering of bubbles that are coated with an organic film.

  20. A multi-threaded version of MCFM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John M.; Ellis, R. Keith; Giele, Walter T.

    We report on our findings modifying MCFM using OpenMP to implement multi-threading. By using OpenMP, the modified MCFM will execute on any processor, automatically adjusting to the number of available threads. We then modified the integration routine VEGAS to distribute the event evaluation over the threads, while combining all events at the end of every iteration to optimize the numerical integration. Furthermore, we took special care so that the results of the Monte Carlo integration were independent of the number of threads used, to facilitate the validation of the OpenMP version of MCFM.

Top