Nanophosphor composite scintillators comprising a polymer matrix
Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David
2010-11-16
An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.
Dirk, Shawn M.; Cicotte, Kirsten Nicole; Wheeler, David R.; Benko, David A.
2015-08-11
A method including reducing a particle size of lignin particles to an average particle size less than 40 nanometers; after reducing the particle size, combining the lignin particles with a polymeric material; and forming a structure of the combination. A method including exposing lignin to a diazonium precursor including a functional group; modifying the lignin by introducing the functional group to the lignin; and combining the modified lignin with a polymeric material to form a composite. An apparatus including a composite of a polymer and lignin wherein the lignin has an average particle size less than 100 micrometers.
Skotheim, Terje A.; Okamoto, Yoshiyuki; Lee, Hung S.
1989-01-01
The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10.sup.-4 to 10.sup.-7 S cm.sup.-1 at room temperature.
Skotheim, T.A.; Okamoto, Yoshiyuki; Lee, H.S.
1989-11-21
The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10[sup [minus]4] to 10[sup [minus]7] S cm[sup [minus]1] at room temperature.
A Novel Polymeric Organosilazane Precursor to Si3N4/SiC Ceramics.
1985-02-06
prepared by pyrolysis of the appropriately-shaped polymeric precursor. These polysilazanes also may prove to be useful as dispersants for SiC and Si3N4...I[AD-Ri58 748 A NOVEL POLYMERIC ORGANOSILAZANE PRECURSOR TO S13N4/ SIC i/I CERRMICS(U) MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF CHEMISTRY D...Security C ificatlion" 0322 A Novel Polymeric Organosilazane Precursor to Si3N/ SiC C_ramics._I 12. PERSONAL AUTHOR(S) Dietmar Seyferth and Gary H. Wiseman 13
NASA Astrophysics Data System (ADS)
Navaneetha Pandiyaraj, K.; Ram Kumar, M. C.; Arun Kumar, A.; Padmanabhan, P. V. A.; Deshmukh, R. R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A. S.
2016-05-01
Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as Osbnd Cdbnd O, Cdbnd O, Csbnd N and Ssbnd S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was found that the anti-thrombogenic properties of the PP films are effectively controlled by the CAPP grafting of AAc and PEG followed by immobilization of biomolecules of heparin, chitosan and insulin. The grafting and immobilization was confirmed by FTIR and XPS through the recognition of specific functional groups such as COOH, Csbnd O, Ssbnd S and Csbnd N. on the surface of PP film. Furthermore, the surface morphology and hydrophilic nature of the PP films also tailored significantly by the successful grafting and immobilization which is confirmed by AFM and CA analysis. Owing to the physico-chemical changes on the surface of PP films induced by CAPP assisted polymerization, the anti-thrombogenic properties of PP films were enhanced as confirmed by in vitro analysis.
Recent progress of atomic layer deposition on polymeric materials.
Guo, Hong Chen; Ye, Enyi; Li, Zibiao; Han, Ming-Yong; Loh, Xian Jun
2017-01-01
As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Sottos, Nancy R. (Inventor); Keller, Michael W. (Inventor); White, Scott R. (Inventor)
2009-01-01
A composite material includes an elastomer matrix, a set of first capsules containing a polymerizer, and a set of second capsules containing a corresponding activator for the polymerizer. The polymerizer may be a polymerizer for an elastomer. The composite material may be prepared by combining a first set of capsules containing a polymerizer, a second set of capsules containing a corresponding activator for the polymerizer, and a matrix precursor, and then solidifying the matrix precursor to form an elastomeric matrix.
Preparation of porous carbons from polymeric precursors modified with acrylated kraft lignin
NASA Astrophysics Data System (ADS)
Sobiesiak, M.
2016-04-01
The presented studies concern the preparation of porous carbons from a BPA.DA-St polymer containing acrylated kraft lignin as a monomer. The porous polymeric precursor in the form of microspheres was synthesized in suspension polymerization process. Next samples of the polymer were impregnated with acetic acid or aqueous solution of acetates (potassium or ammonia), dried and carbonised in nitrogen atmosphere at 450°C. After carbonization microspherical shape of the materials was remained, that is desired feature for potential application in chromatography or SPE technique. Chemical and textural properties of the porous carbon adsorbents were characterized using infrared spectroscopy (ATR-FTIR), thermogravimetry analyses with mass spectrometry of released gases (TG-MS) and nitrogen sorption experiments. The presented studies revealed the impregnation is useful method for development of porous structure of carbonaceous materials. The highest values of porous structure parameters were obtained when acetic acid and ammonium acetate were used as impregnating substances. On the surface of the materials oxygen functional groups are present that is important for specific interactions during sorption processes. The highest contents of functionalities were observed for carbon BPA.DA-St-LA-C-AcNH4.
Boday, Dylan J; Stover, Robert J; Muriithi, Beatrice; Keller, Michael W; Wertz, Jason T; Defriend Obrey, Kimberly A; Loy, Douglas A
2009-07-01
Strong polymer-silica aerogel composites were prepared by chemical vapor deposition of cyanoacrylate monomers onto amine-modified aerogels. Amine-modified silica aerogels were prepared by copolymerizing small amounts of (aminopropyl)triethoxysilane with tetraethoxysilane. After silation of the aminated gels with hexamethyldisilazane, they were dried as aerogels using supercritical carbon dioxide processing. The resulting aerogels had only the amine groups as initiators for the cyanoacrylate polymerizations, resulting in cyanoacrylate macromolecules that were higher in molecular weight than those observed with unmodified silica and that were covalently attached to the silica surface. Starting with aminated silica aerogels that were 0.075 g/cm(3) density, composite aerogels were made with densities up to 0.220 g/cm(3) and up to 31 times stronger (flexural strength) than the precursor aerogel and about 2.3 times stronger than an unmodified silica aerogel of the same density.
New polymeric precursors to SiNCB, BN, and La(3)Ni(2)B(2)N(3) materials
NASA Astrophysics Data System (ADS)
Wideman, Thomas W.
Boron-containing non-oxide ceramics demonstrate a number of important structural, electronic and physical properties. However, the lack of general synthetic routes to generate these materials with controlled composition, under moderate conditions, and in processed forms, has hampered both scientific studies and practical applications. The goal of the work described in this dissertation was to develop efficient new polymeric precursor routes to boron-containing materials including SiNCB ceramics composites, boron nitride fibers, and quaternary metal boro-nitride superconductors. Two types of polyborosilazane precursors to SiNCB ceramics were developed. Borazine-co-silazane copolymers were prepared through the thermal copolymerization of borazine with two silazanes, tris(trimethylsilylamino)silane, and 1,1,3,3,5,5 -hexamethylcyclotrisilazane. Polyborosilazanes with pendent boron-containing species were obtained by the modification of preformed hydridopolysilazane polymers with three monofunctional boranes: pinacolborane, 2,4-diethylborazine and 1,3-dimethyl-1,3-diaza-2-boracyclopentane. Pyrolyses of both types of polyborosilazanes produced SiNCB ceramics with controllable boron contents, enhanced thermal stabilities, and reduced crystallinity. Processible polymeric precursors to BN were also achieved by the chemical modification of polyborazylene, (Bsb3Nsb3Hsb{˜ 4}rbrack sb{x}, with diethylamine, dipentylamine, and hexamethyldisilazane. The modified polymers, unlike the parent polyborazylene, do not crosslink at low temperatures, and therefore proved to be ideal melt-spinnable precursors to BN ceramic fibers. A new polymeric precursor route to the recently discovered Lasb3Nisb2Bsb2Nsb3 superconductor (Tc = 12K) was developed by reacting lanthanum and nickel powders dispersed in the polyborazylene, to produce the intermetallic in excellent yields. The use of the polymer as a "reagent" provided a controllable, solid state source of nitrogen, and allows for the large scale syntheses of Lasb3Nisb2Bsb2Nsb3 and other quaternary metal boro-nitrides. Two new preparations of borazine, Bsb3Nsb3Hsb6, a key molecular unit in many of the polymers described above, have also been developed. Chemical investigations and practical applications of borazine-based preceramic polymers have been limited by the inefficient syntheses and high cost of borazine, which may now be prepared in 55-65% yields by the convenient, inexpensive the reaction of ammonium and borohydride salts, and the decomposition of ammonia borane, in high-boiling ether solutions.
Method for forming polymerized microfluidic devices
Sommer, Gregory J [Livermore, CA; Hatch, Anson V [Tracy, CA; Wang, Ying-Chih [Pleasanton, CA; Singh, Anup K [Danville, CA; Renzi, Ronald F [Tracy, CA; Claudnic, Mark R [Livermore, CA
2011-11-01
Methods for making a micofluidic device according to embodiments of the present invention include defining a cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.
Method for forming polymerized microfluidic devices
Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.
2013-03-12
Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.
Iodine versus Bromine Functionalization for Bottom-Up Graphene Nanoribbon Growth: Role of Diffusion
Bronner, Christopher; Marangoni, Tomas; Rizzo, Daniel J.; ...
2017-08-08
Deterministic bottom-up approaches for synthesizing atomically well-defined graphene nanoribbons (GNRs) largely rely on the surface-catalyzed activation of selected labile bonds in a molecular precursor followed by step-growth polymerization and cyclodehydrogenation. While the majority of successful GNR precursors rely on the homolytic cleavage of thermally labile C–Br bonds, the introduction of weaker C–I bonds provides access to monomers that can be polymerized at significantly lower temperatures, thus helping to increase the flexibility of the GNR synthesis process. Scanning tunneling microscopy imaging of molecular precursors, activated intermediates, and polymers resulting from stepwise thermal annealing of both Br and I substituted precursors formore » chevron GNRs reveals that the polymerization of both precursors proceeds at similar temperatures on Au(111). Finally, this surprising observation is consistent with diffusion-controlled polymerization of the surface-stabilized radical intermediates that emerge from homolytic cleavage of either the C–Br or the C–I bonds.« less
NASA Astrophysics Data System (ADS)
Hsiao, Chaio-Ru; Lin, Cheng-Wei; Chou, Chia-Man; Chung, Chi-Jen; He, Ju-Liang
2015-08-01
This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF4) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF4 (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF4 (fH) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiOx nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The sbnd CF functional group, sbnd CF2 bonding, and SiOx were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply that the pp-HC coating can potentially prevent the formation of thrombi and provide an alternative means of modifying the surfaces of blood-contacting biomaterials.
Processable high-carbon-yielding polymer for micro- and nanofabrication
NASA Astrophysics Data System (ADS)
Perpall, Mark W.; Zengin, Huseyin; Perera, K. Prasanna U.; Zhou, Wensheng; Shah, Hiren; Wu, Xinyu; Creager, Stephen E.; Smith, Dennis W., Jr.; Foulger, Stephen H.; Ballato, John M.
2003-01-01
Bis-ortho-Diynyl Arene (BODA) monomers polymerize to network polynapthalene by the thermally-driven Bergman cyclization and subsequent radical polymerization via oligomeric intermediates that can be melt or solution processed. Further heating of the network to 1000 °C affords a high-yield glassy carbon structure that retains the approximate size and dimensions of the polymer precursor. The higher carbon-yield for BODA networks (75- 80 % by mass) is significantly greater than that of traditional phenol-formaldehyde resins and other carbon precursor polymers leading to its greater dimensional stability. Phenyl terminated BODA derived polymers were fabricated using microprocessing such as the micromolding in capillaries (MIMIC) technique, direct microtransfer molding, and molding in quartz capillary tubes. Nano-scale fabrication using closed packed silica spheres as templates was demonstrated with an hydroxy-terminated monomer which exhibits greatly enhanced compatibility for silica surfaces. After pyrolysis to glassy carbon, the silica is chemically etched leaving an inverse carbon opal photonic crystal which is electrically conductive. The wavelength of light diffracted is a function of the average refractive index of the carbon/ filler composite, which can be modified for use as sensitive detector elements.
Metallocene Catalytic Insertion Polymerization of 1-Silene to Polycarbosilanes
NASA Astrophysics Data System (ADS)
Tian, Yuelong; Ge, Min; Zhang, Weigang; Lv, Xiaoxu; Yu, Shouquan
2015-11-01
Metallocene of zirconium were used as a catalyst for an insertion polymerization of 1-methylsilene directly into pre-ceramic precursor polyzirconocenecarbosilane (PZCS) during dechlorination of dichlorodimethylesilane by sodium, which exhibits high catalytic effectiveness with the maximum conversion ratio of polycarbosilane up to 91%. The average molecular weights of polymers synthesized are less than 1400, all with very narrow polymolecularities. The mechanism of catalytic polymerization was assumed to be similar to a coordination insertion polymerization of 1-olefins by metallocenes. The obtained PZCS show high ceramic yields with formation of composite ceramics of ZrC-SiC, which are novel polymeric precursors of ultra-high temperature ceramic (UHTC) fiber and composite.
Metallocene Catalytic Insertion Polymerization of 1-Silene to Polycarbosilanes.
Tian, Yuelong; Ge, Min; Zhang, Weigang; Lv, Xiaoxu; Yu, Shouquan
2015-11-06
Metallocene of zirconium were used as a catalyst for an insertion polymerization of 1-methylsilene directly into pre-ceramic precursor polyzirconocenecarbosilane (PZCS) during dechlorination of dichlorodimethylesilane by sodium, which exhibits high catalytic effectiveness with the maximum conversion ratio of polycarbosilane up to 91%. The average molecular weights of polymers synthesized are less than 1400, all with very narrow polymolecularities. The mechanism of catalytic polymerization was assumed to be similar to a coordination insertion polymerization of 1-olefins by metallocenes. The obtained PZCS show high ceramic yields with formation of composite ceramics of ZrC-SiC, which are novel polymeric precursors of ultra-high temperature ceramic (UHTC) fiber and composite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simoes, A.Z.; Riccardi, C.S.; Cavalcante, L.S.
The film thickness dependence on the ferroelectric properties of lanthanum modified bismuth titanate Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} was investigated. Films with thicknesses ranging from 230 to 404 nm were grown on platinum-coated silicon substrates by the polymeric precursor method. The internal strain is strongly influenced by the film thickness. The morphology of the film changes as the number of layers increases indicating a thickness dependent grain size. The leakage current, remanent polarization and drive voltage were also affected by the film thickness.
Moog, Kai E; Barz, Matthias; Bartneck, Matthias; Beceren-Braun, Figen; Mohr, Nicole; Wu, Zhuojun; Braun, Lydia; Dernedde, Jens; Liehn, Elisa A; Tacke, Frank; Lammers, Twan; Kunz, Horst; Zentel, Rudolf
2017-01-24
Novel polymeric cell adhesion inhibitors were developed in which the selectin tetrasaccharide sialyl-Lewis X (SLe X ) is multivalently presented on a biocompatible poly(2-hydroxypropyl)methacrylamide (PHPMA) backbone either alone (P1) or in combination with O-sulfated tyramine side chains (P2). For comparison, corresponding polymeric glycomimetics were prepared in which the crucial "single carbohydrate" substructures fucose, galactose, and sialic acid side chains were randomly linked to the PHPMA backbone (P3 or P4 (O-sulfated tyramine)). All polymers have an identical degree of polymerization, as they are derived from the same precursor polymer. Binding assays to selectins, to activated endothelial cells, and to macrophages show that polyHPMA with SLe X is an excellent binder to E-, L-, and P-selectins. However, mimetic P4 can also achieve close to comparable binding affinities in in vitro measurements and surprisingly, it also significantly inhibits the migration of macrophages; this provides new perspectives for the therapy of severe inflammatory diseases. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of Biocompatible Surfaces by Different Techniques
2002-04-01
production . In the other hand, polymers are widely used in bone/cartilage implants, both, as polymeric materials themselves and as a polymeric surface on a...focus on the production of HA scaffolds by a sol-gel method using different drying processes, and on the study of the plasma polymerization technique to...precursor at 3. SA-stoichiometric amount (to maintain Ca/P= 1,67) of the calcium precursor solution (3 M solution in anhidrous etanol ) was added dropwise
NASA Astrophysics Data System (ADS)
Cortez, E.; Remsen, E.; Chlanda, V.; Wideman, T.; Zank, G.; Carrol, P.; Sneddon, L.
1998-06-01
Boron Nitride, BN, and composite SiNCB ceramic fibers are important structural materials because of their excellent thermal and oxidative stabilities. Consequently, polymeric materials as precursors to ceramic composites are receiving increasing attention. Characterization of these materials requires the ability to evaluate simultaneous molecular weight and compositional heterogeneity within the polymer. Size exclusion chromatography equipped with viscometric and refractive index detection as well as coupled to a LC-transform device for infrared absorption analysis has been employed to examine these heterogeneities. Using these combined approaches, the solution properties and the relative amounts of individual functional groups distributed through the molecular weight distribution of SiNCB and BN polymeric precursors were characterized.
Stress-tuned conductor-polymer composite for use in sensors
Martin, James E; Read, Douglas H
2013-10-22
A method for making a composite polymeric material with electrical conductivity determined by stress-tuning of the conductor-polymer composite, and sensors made with the stress-tuned conductor-polymer composite made by this method. Stress tuning is achieved by mixing a miscible liquid into the polymer precursor solution or by absorbing into the precursor solution a soluble compound from vapor in contact with the polymer precursor solution. The conductor may or may not be ordered by application of a magnetic field. The composite is formed by polymerization with the stress-tuning agent in the polymer matrix. The stress-tuning agent is removed following polymerization to produce a conductor-polymer composite with a stress field that depends on the amount of stress-tuning agent employed.
Method of making controlled morphology metal-oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozcan, Soydan; Lu, Yuan
2016-05-17
A method of making metal oxides having a preselected morphology includes preparing a suspension that includes a solvent, polymeric nanostructures having multiplicities of hydroxyl surface groups and/or carboxyl surface groups, and a metal oxide precursor. The suspension has a preselected ratio of the polymeric nanostructures to the metal oxide precursor of at least 1:3, the preselected ratio corresponding to a preselected morphology. Subsequent steps include depositing the suspension onto a substrate, removing the solvent to form a film, removing the film from the substrate, and annealing the film to volatilize the polymeric nanostructures and convert the metal oxide precursor tomore » metal oxide nanoparticles having the preselected morphology or to a metal oxide nanosheet including conjoined nanoparticles having the preselected morphology.« less
Modulation of release kinetics by plasma polymerization of ampicillin-loaded β-TCP ceramics
NASA Astrophysics Data System (ADS)
Labay, C.; Buxadera-Palomero, J.; Avilés, M.; Canal, C.; Ginebra, M. P.
2016-08-01
Beta-tricalcium phosphate (β-TCP) bioceramics are employed in bone repair surgery. Their local implantation in bone defects puts them in the limelight as potential materials for local drug delivery. However, obtaining suitable release patterns fitting the required therapeutics is a challenge. Here, plasma polymerization of ampicillin-loaded β-TCP is studied for the design of a novel antibiotic delivery system. Polyethylene glycol-like (PEG-like) coating of β-TCP by low pressure plasma polymerization was performed using diglyme as precursor, and nanometric PEG-like layers were obtained by simple and double plasma polymerization processes. A significant increase in hydrophobicity, and the presence of plasma polymer was visible on the surface by SEM and quantified by XPS. As a main consequence of the plasma polymerisation, the release kinetics were successfully modified, avoiding burst release, and slowing down the initial rate of release leading to a 4.5 h delay in reaching the same antibiotic release percentage, whilst conservation of the activity of the antibiotic was simultaneously maintained. Thus, plasma polymerisation on the surface of bioceramics may be a good strategy to design controlled drug delivery matrices for local bone therapies.
NASA Astrophysics Data System (ADS)
Li, Penghui; Li, Limin; Wang, Wenhao; Jin, Weihong; Liu, Xiangmei; Yeung, Kelvin W. K.; Chu, Paul K.
2014-04-01
To improve the corrosion resistance and hemocompatibility of biomedical NiTi alloy, hydrophobic polymer coatings are deposited by plasma polymerization in the presence of a fluorine-containing precursor using an atmospheric-pressure plasma jet. This process takes place at a low temperature in air and can be used to deposit fluoropolymer films using organic compounds that cannot be achieved by conventional polymerization techniques. The composition and chemical states of the polymer coatings are characterized by fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coated and bare NiTi samples is assessed and compared by polarization tests and electrochemical impedance spectroscopy (EIS) in physiological solutions including simulated body fluids (SBF) and Dulbecco's Modified Eagle's medium (DMEM). The corrosion resistance of the coated NiTi alloy is evidently improved. Protein adsorption and platelet adhesion tests reveal that the adsorption ratio of albumin to fibrinogen is increased and the number of adherent platelets on the coating is greatly reduced. The plasma polymerized coating renders NiTi better in vitro hemocompatibility and is promising as a protective and hemocompatible coating on cardiovascular implants.
NASA Astrophysics Data System (ADS)
Roh, H. S.; Kang, Y. C.; Park, H. D.; Park, S. B.
Y2O3:Eu phosphor particles were prepared by large-scale spray pyrolysis. The morphological control of Y2O3:Eu particles in spray pyrolysis was attempted by adding polymeric precursors to the spray solution. The effect of composition and amount of polymeric precursors on the morphology, crystallinity and photoluminescence characteristics of Y2O3:Eu particles was investigated. Particles prepared from a solution containing polyethylene glycol (PEG) with an average molecular weight of 200 had a hollow structure, while those prepared from solutions containing adequate amounts of citric acid (CA) and PEG had a spherical shape, filled morphology and clean surfaces after post-treatment at high temperature. Y2O3:Eu particles prepared from an aqueous solution with no polymeric precursors had a hollow structure and rough surfaces after post-treatment. The phosphor particles prepared from solutions with inadequate amounts of CA and/or PEG also had hollow and/or fragmented structures. The particles prepared from the solution containing 0.3 M CA and 0.3 M PEG had the highest photoluminescence emission intensity, which was 56% higher than that of the particles prepared from aqueous solution without polymeric precursors.
Preparation of activated carbon monolith by application of phenolic resins as carbon precursors
NASA Astrophysics Data System (ADS)
Sajad, Mehran; Kazemzad, Mahmood; Hosseinnia, Azarmidokht
2014-04-01
In the current work, activated carbon monoliths have been prepared by application of different phenolic hydrocarbons namely catechol and resorcinol as carbon precursors. For synthesis of carbon monolith, the precursors have been mixed with Genapol PF-10 as template and then polymerized in the presence of lysine as catalyst. Then the polymerized monolith carbonized in inert atmosphere at 700°C and activated by water steam at 550°C. It was found that resorcinol polymerization is easier than catechol and occurred at 90°C while for polymerization of catechol elevated temperature of 120°C at hydrothermal condition is necessary. The prepared activated carbon samples have been characterized by various analysis methods including scanning electron microscopy (SEM), surface area measurement, and transmission electron microscopy (TEM). The adsorptions of three different aromatic hydrocarbons by the prepared activated carbon samples have also been investigated by high performance liquid chromatography (HPLC) and UV-Vis spectroscopy. It was found that carbon monolith prepared by catechol as carbon precursor has higher adsorpability and strength in comparison with the other sample. The higher performance of carbon monolith prepared by catechol can be associated with its higher active sites in comparison with resorcinol.
Cai, Yuanheng; Shanklin, John; Mohammad -Wadud Bhuiya; ...
2015-09-16
Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create anmore » enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. Lastly, the resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta.« less
Cai, Yuanheng; Bhuiya, Mohammad-Wadud; Shanklin, John; Liu, Chang-Jun
2015-01-01
Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create an enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. The resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta. PMID:26378240
Method of preparation of carbon materials for use as electrodes in rechargeable batteries
Doddapaneni, Narayan; Wang, James C. F.; Crocker, Robert W.; Ingersoll, David; Firsich, David W.
1999-01-01
A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.
NASA Astrophysics Data System (ADS)
Shen, Keke; Yu, Miao; Li, Qianqian; Sun, Wei; Zhang, Xiting; Quan, Miao; Liu, Zhengtang; Shi, Suqing; Gong, Yongkuan
2017-12-01
A non-fluorinated polymeric alkylsilane, poly(isobutyl methacrylate-co-3-methacryloxypropyltrimethoxysilane) (PIT), is designed and synthesized to replace the commercial long-chain perfluoroalkylsilane (FAS) water-repellent agent. The superhydrophobic polyester fabrics are prepared by anchoring sol-gel derived silica nanoparticles onto alkali-treated polyester fabric surfaces and subsequently hydrophobilizing with PIT, using FAS as control. The surface chemical composition, surface morphology, wetting behavior and durability of the modified polyester fabrics are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrophotometer (XPS) and video-based contact angle goniometer, respectively. The results show that a porous silica layer could be successfully fabricated onto the surface of polyester fabric through base-catalyzed sol-gel process with tetraethoxysilane (TEOS) as precursor, incorporating additional nanostructured roughness essential for superhydrophobicity. At the same time, such a silica primer layer could provide both secondary reactive moieties (-Si - OH) for the subsequent surface hydrophobization and acceptable adhesion at the silica-polyester fabric interface. When silica modified polyester fabric (SiO2@ fabric) is hydrophobized by PIT solution (10 mg/mL), excellent water-repellency could be obtained. The water contact angle is up to 154° and the sliding angle is about 5°. Compared with small molecule water-repellent agent FAS, PIT modified SiO2@ fabric exhibits greatly improved solvent resistance under ultra-sonication, abrasion and simulated laundering durability. The anti-stain property of PIT-modified SiO2@ fabric is also evaluated by using different aqueous colored solutions.
Boron/Carbon/Silicon/Nitrogen Ceramics And Precursors
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore; Hsu, Ming TA; Chen, Timothy S.
1996-01-01
Ceramics containing various amounts of boron, carbon, silicon, and nitrogen made from variety of polymeric precursors. Synthesized in high yield from readily available and relatively inexpensive starting materials. Stable at room temperature; when polymerized, converted to ceramics in high yield. Ceramics resist oxidation and other forms of degradation at high temperatures; used in bulk to form objects or to infiltrate other ceramics to obtain composites having greater resistance to oxidation and high temperatures.
Method of preparation of carbon materials for use as electrodes in rechargeable batteries
Doddapaneni, N.; Wang, J.C.F.; Crocker, R.W.; Ingersoll, D.; Firsich, D.W.
1999-03-16
A method is described for producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of {approx_equal} 80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere. 4 figs.
Cai, Yuanheng; Bhuiya, Mohammad-Wadud; Shanklin, John; Liu, Chang-Jun
2015-10-30
Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create an enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. The resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Wei, Dan; Chen, Lixin; Xu, Tingting; He, Weiqi; Wang, Yi
2016-06-21
A preceramic polymer of B,B',B''-(dimethyl)ethyl-acrylate-silyloxyethyl-borazine was synthesized by three steps from a molecular single-source precursor and characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectrometry. Six-member borazine rings and acrylate groups were effectively introduced into the preceramic polymer to activate UV photo-induced polymerization. Photo-Differential Scanning Calorimetry (Photo-DSC) and real-time FTIR techniques were adapted to investigate the photo-polymerization process. The results revealed that the borazine derivative exhibited dramatic activity by UV polymerization, the double-bond conversion of which reached a maximum in 40 s. Furthermore, the properties of the pyrogenetic products were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), which proved the ceramic annealed at 1100 °C retained the amorphous phase.
NASA Technical Reports Server (NTRS)
Morgan, Richard E. (Inventor); Meeks, Craig L. (Inventor)
2017-01-01
Insulation materials have a coating of a partially cured polymer on a plurality of fibers, and the plurality of coated fibers in a cross-linked polymeric matrix. Insulation may be formed by applying a preceramic polymer to a plurality of fibers, heating the preceramic polymer to form a partially cured polymer over at least portions of the plurality of fibers, disposing the plurality of fibers in a polymeric material, and curing the polymeric material. A rocket motor may be formed by disposing a plurality of coated fibers in an insulation precursor, curing the insulation precursor to form an insulation material without sintering the partially cured polymer, and providing an energetic material over the polymeric material. An article includes an insulation material over at least one surface.
Coordination Polymerization of Renewable 3-Methylenecyclopentene with Rare-Earth-Metal Precursors.
Liu, Bo; Li, Shihui; Wang, Meiyan; Cui, Dongmei
2017-04-10
Coordination polymerization of renewable 3-methylenecyclopentene has been investigated for the first time using rare-earth metal-based precursors bearing various bulky ligands. All the prepared complexes catalyze controllable polymerization of 3-methylenecyclopentene into high molecular weight polymers, of which the NPN- and NSN-tridentate non-Cp ligated lutetium-based catalytic systems exhibited extremely high activities up to 11 520 kg/(mol Lu ⋅h) in a dilute toluene solution (3.2 g/100 mL) at room temperature. The resultant polymers have pure 1,4-regioregularity (>99 %) and tailorable number average molecular weights (1-20×10 4 ) with narrow molecular weight distributions (polydispersity index (PDI)=1.45-1.79). DFT simulations were employed to study the polymerization mechanism and stereoregularity control. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Acrylic acid plasma polymerization for biomedical use
NASA Astrophysics Data System (ADS)
Bitar, Rim; Cools, Pieter; De Geyter, Nathalie; Morent, Rino
2018-08-01
Since a few decades, polymeric materials have played a central role in regenerative medicine and tissue engineering as artificial tissue replacements and organ transplantation devices. Chemical and topographical surface modifications of biomaterials are often required to achieve an overall better biocompatibility. Non-thermal plasma is a non-invasive, solvent-free alternative for modifying polymeric surface properties without affecting the bulk of the material. Plasma polymerization of organic compounds has proven to be an effective tool for thin film production with specific surface chemistries, useful for biomedical applications. These polymer layers have received a growing interest in tissue regeneration and biomolecules immobilization processes. Many different types of chemical functional groups can be introduced, but the focus of this review will be on carboxylic acid groups. Thin films consisting of carboxylic acid functional groups are considered attractive for biomedical applications since these are known for stimulating the adhesion and proliferation of fibroblasts and other kind of cells. Therefore, an overview on the use of acrylic acid (AAc) as a precursor or for the plasma-assisted deposition of carboxylic-group containing-films in bio-interface research activities, will be described in this review. The review will specifically focus on plasma polymerized acrylic acid (PPAA) coatings that are obtained using a variety of plasma deposition techniques. Moreover, the influence of plasma parameters on surface properties such as wettability, surface topography and chemical composition will be discussed in detail. The correlation between different parameters will be studied and a general recipe leading to the successful deposition of COOH-rich stable coatings will be extracted and linked to their ability to improve cell growth, proliferation and differentiation, all leading to the further progress in the biomedical field. A lot of publications claim to have developed suitable coatings for biomedical applications, but neglect the importance of coating stability. For those publications exhibiting sufficient coating stability, a lot of initial in vitro experiments were performed, but the number in-depth studies on the mechanisms behind the cell-material interactions is limited. Although AAc forms an excellent precursor for biomedical coatings, its potential still needs to be explored in more details.
NASA Astrophysics Data System (ADS)
Ramkumar, M. C.; Pandiyaraj, K. Navaneetha; Arun Kumar, A.; Padmanabhan, P. V. A.; Uday Kumar, S.; Gopinath, P.; Bendavid, A.; Cools, P.; De Geyter, N.; Morent, R.; Deshmukh, R. R.
2018-05-01
Owing to its exceptional physiochemical properties, low density poly ethylene (LDPE) has wide range of tissue engineering applications. Conversely, its inadequate surface properties make LDPE an ineffectual candidate for cell compatible applications. Consequently, plasma-assisted polymerization with a selected precursor is a good choice for enhancing its biocompatibility. The present investigation studies the efficiency of plasma polymerization of acrylic acid (AAC) on various gaseous plasma pretreated LDPE films by cold atmospheric pressure plasma, to enhance its cytocompatibility. The change in chemical composition and surface topography of various gaseous plasma pretreated and acrylic deposited LDPE films has been assessed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The changes in hydrophilic nature of surface modified LDPE films were studied by contact angle (CA) analysis. Cytocompatibility of the AAC/LDPE films was also studied in vitro, using RIN-5F cells. The results acquired by the XPS and AFM analysis clearly proved that cold atmospheric pressure (CAP) plasma assisted polymerization of AAC enhances various surface properties including carboxylic acid functional group density and increased surface roughness on various gaseous plasma treated AAC/LDPE film surfaces. Moreover, contact angle analysis clearly showed that the plasma polymerized samples were hydrophilic in nature. In vitro cytocompatibility analysis undoubtedly validates that the AAC polymerized various plasma pretreated LDPE films surfaces stimulate cell distribution and proliferation compared to pristine LDPE films. Similarly, cytotoxicity analysis indicates that the AAC deposited various gaseous plasma pretreated LDPE film can be considered as non-toxic as well as stimulating cell viability significantly. The cytocompatible properties of AAC polymerized Ar + O2 plasma pretreated LDPE films were found to be more pronounced compared to the other plasma pretreated AAC/LDPE films.
Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.
2016-04-19
Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.
Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.
2014-09-09
Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.
Lonsdale, H.K.; Wamser, C.C.
1990-04-17
The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.
Lonsdale, Harold K.; Wamser, Carl C.
1990-01-01
The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.
Lonsdale, Harold K.; Wamser, Carl C.
1988-01-01
The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membanes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanime derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.
Low temperature stabilization process for production of carbon fiber having structural order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; McGuire, Michael Alan; More, Karren Leslie
A method for producing a carbon fiber, the method comprising: (i) subjecting a continuous carbon fiber precursor having a polymeric matrix in which strength-enhancing particles are incorporated to a stabilization process during which the carbon fiber precursor is heated to within a temperature range ranging from the glass transition temperature to no less than 20.degree. C. below the glass transition temperature of the polymeric matrix, wherein the maximum temperature employed in the stabilization process is below 400.degree. C., for a processing time within said temperature range of at least 1 hour in the presence of oxygen and in the presencemore » of a magnetic field of at least 1 Tesla, while said carbon fiber precursor is held under an applied axial tension; and (ii) subjecting the stabilized carbon fiber precursor, following step (i), to a carbonization process. The stabilized carbon fiber precursor, resulting carbon fiber, and articles made thereof are also described.« less
Polymeric routes to silicon carbide and silicon oxycarbide CMC
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Heimann, Paul J.; Gyekenyesi, John Z.; Masnovi, John; Bu, Xin YA
1991-01-01
An overview of two approaches to the formation of ceramic composite matrices from polymeric precursors is presented. Copolymerization of alkyl- and alkenylsilanes (RSiH3) represents a new precursor system for the production of Beta-SiC on pyrolysis, with copolymer composition controlling polymer structure, char yield, and ceramic stoichiometry and morphology. Polysilsesquioxanes which are synthesized readily and can be handled in air serve as precursors to Si-C-O ceramics. Copolymers of phenyl and methyl silsesquioxanes display rheological properties favorable for composite fabrication; these can be tailored by control of pH, water/methoxy ratio and copolymer composition. Composites obtained from these utilize a carbon coated, eight harness satin weave Nicalon cloth reinforcement. The material exhibits nonlinear stress-strain behavior in tension.
Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme
NASA Technical Reports Server (NTRS)
Meador, Ann B.; Capadona, Lynn A.
2008-01-01
A document discusses a new, simplified method for cross-linking silica and other oxide aerogels, with a polymeric material to increase strength of such materials without adversely affecting porosity or low density. This innovation introduces the polymer precursor into the sol before gelation either as an agent, which co-reacts with the oxide gel, or as soluble polymer precursors, which do not interact with the oxide gel in any way. Subsequent exposure to heat, light, catalyst or other method of promoting polymerization causes cross-linking without any additional infiltration steps.
NASA Astrophysics Data System (ADS)
Khan, Tasneem M. A.; Khan, Asiya; Sarawade, Pradip B.
2018-05-01
We report a method to synthesize low-density transparent mesoporous silica aerogel beads by ambient pressure drying (APD). The beads were prepared by acid-base sol-gel polymerization of sodium silicate in via the ball dropping method (BDM). To minimize shrinkage during drying, wet silica beads were initially prepared; their surfaces were then modified using trimethylchlorosilane (TMCS) via simultaneous solvent exchange and surface modification. The specific surface area and cumulative pore volume of the silica aerogel beads increased with an increase in the %V of TMCS. Silica aerogel beads with low packing bed density, high surface area, and large cumulative pore volume was obtained when TMCS was used. Properties of the final product were examined by BET, and TG-DT analyses. The hydrophobic silica aerogel beads were thermally stable up to 350°C. We discuss our results and compare our findings for modified versus unmodified silica beads.
Pyrolytic carbon membranes containing silica: morphological approach on gas transport behavior
NASA Astrophysics Data System (ADS)
Park, Ho Bum; Lee, Sun Yong; Lee, Young Moo
2005-04-01
Pyrolytic carbon membrane containing silica (C-SiO 2) is a new-class material for gas separation, and in the present work we will deal with it in view of the morphological changes arising from the difference in the molecular structure of the polymeric precursors. The silica embedded carbon membranes were fabricated by a predetermined pyrolysis step using imide-siloxane copolymers (PISs) that was synthesized from benzophenone tetracarboxylic dianhydrides (BTDA), 4,4'-oxydianiline (ODA), and amine-terminated polydimethylsiloxane (PDMS). To induce different morphologies at the same chemical composition, the copolymers were prepared using one-step (preferentially a random segmented copolymer) sand two-step polymerization (a block segmented copolymer) methods. The polymeric precursors and their pyrolytic C-SiO 2 membranes were analyzed using thermal analysis, atomic force microscopy, and transmission electron microscopy, etc. It was found that the C-SiO 2 membrane derived from the random PIS copolymer showed a micro-structure containing small well-dispersed silica domains, whereas the C-SiO 2 membrane from the block PIS copolymer exhibited a micro-structure containing large silica domains in the continuous carbon matrix. Eventually, the gas transport through these C-SiO 2 membranes was significantly affected by the morphological changes of the polymeric precursors.
Fox, Robert V.; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin; Margulieux, Kelsey R.; Holland, Andrew W.
2012-12-04
Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula 1/2{L.sub.2N(.mu.-X).sub.2M'X.sub.2}.sub.2, and reacting MER with the intermediate products to form SSPs of the formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M' is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE.sup.1R.sup.1E.sup.1H and MER with one or more substances having the empirical formula L.sub.2N(.mu.-ER).sub.2M'(ER).sub.2 or L.sub.2N(.mu.-X).sub.2M'(X).sub.2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.
New Polymeric Precursors of Silicon Carbide
NASA Technical Reports Server (NTRS)
Litt, M.; Kumar, K.
1987-01-01
Silicon carbide made by pyrolizing polymers. Method conceived for preparation of poly(decamethylcyclohexasilanes) as precursors for preparation of silicon carbide at high yield. Technical potential of polysilanes as precursors of SiC ceramics being explored. Potential limited by intractability of some polysilanes; formation of small, cyclic polycarbosilane fragments during pyrolysis; and overall low char yield and large shrinkage in conversion to ceramics.
NASA Astrophysics Data System (ADS)
Hessien, M. M.; Mostafa, Nasser Y.; Abd-Elkader, Omar H.
2016-01-01
Citric, oxalic and tartaric acids were used for synthesis of NiFe2O4 using polymeric complex precursor route. The dry precursor gels were calcined at various temperatures (400-1100 °C) for 2 h. All carboxylic acids produce iron-deficient NiFe2O4 with considerable amount of α-Fe2O3 at 400 °C. Increase in the annealing temperature caused reaction of α-Fe2O3 with iron-deficient ferrite phase. The amount of initially formed α-Fe2O3 is directly correlated with stability constant and inversely correlated with the decomposition temperature of Fe(III) carboxylate precursors. In case of tartaric acid precursor, single phase of the ferrite was obtained at 450 °C. However, in case of oxalic acid and citric acid precursors, single phase ferrite was obtained at 550 °C and 700 °C, respectively. The lattice parameters were increased with increasing annealing temperature and with decreasing the amount of α-Fe2O3. Maximum saturation magnetization (55 emu/g) was achieved using tartaric acid precursor annealed at 1100 °C.
A Versatile Click-Compatible Monolignol Probe to Study Lignin Deposition in Plant Cell Walls
Pandey, Jyotsna L.; Wang, Bo; Diehl, Brett G.; Richard, Tom L.; Chen, Gong; Anderson, Charles T.
2015-01-01
Lignin plays important structural and functional roles in plants by forming a hydrophobic matrix in secondary cell walls that enhances mechanical strength and resists microbial decay. While the importance of the lignin matrix is well documented and the biosynthetic pathways for monolignols are known, the process by which lignin precursors or monolignols are transported and polymerized to form this matrix remains a subject of considerable debate. In this study, we have synthesized and tested an analog of coniferyl alcohol that has been modified to contain an ethynyl group at the C-3 position. This modification enables fluorescent tagging and imaging of this molecule after its incorporation into plant tissue by click chemistry-assisted covalent labeling with a fluorescent azide dye, and confers a distinct Raman signature that could be used for Raman imaging. We found that this monolignol analog is incorporated into in vitro-polymerized dehydrogenation polymer (DHP) lignin and into root epidermal cell walls of 4-day-old Arabidopsis seedlings. Incorporation of the analog in stem sections of 6-week-old Arabidopsis thaliana plants and labeling with an Alexa-594 azide dye revealed the precise locations of new lignin polymerization. Results from this study indicate that this molecule can provide high-resolution localization of lignification during plant cell wall maturation and lignin matrix assembly. PMID:25884205
Gelcasting polymeric precursors for producing net-shaped graphites
Klett, James W.; Janney, Mark A.
2002-01-01
The present invention discloses a method for molding complex and intricately shaped high density monolithic carbon, carbon-carbon, graphite, and thermoplastic composites using gelcasting technology. The method comprising a polymeric carbon precursor, a solvent, a dispersant, an anti-foaming agent, a monomer system, and an initiator system. The components are combined to form a suspension which is poured into a mold and heat-treated to form a thermoplastic part. The thermoplastic part can then be further densified and heat-treated to produce a high density carbon or graphite composite. The present invention also discloses the products derived from this method.
Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki
2016-12-21
Transparent TiO 2 /PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO 2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO 2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO 2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO 2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO 2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO 2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO 2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO 2 content and could be increased up to 1.566 for 6.3 vol % TiO 2 content (1.492 for pristine PMMA).
Solid state polymerization and crystallography of polyimide precursors. Ph.D. Thesis - Va. Univ.
NASA Technical Reports Server (NTRS)
Wakelyn, N. T.
1974-01-01
Although the production of crystallinity in a polymeric system has historically led to commerically useful properties, the polyimides, prized for their high temperature characteristics, as customarily synthesized by melt or solution casting, are amorphous. It is shown that polymide containing residual crystallinity can be synthesized by isothermal annealing of crystals of the salt of the diisopropyl ester of pyromellitic acid and phenylene diamine. The reaction is topochemical in that the geometry of the polymer product is dependent upon that of the crystalline precursor. Infrared spectroscopy reveals the presence of imide absorption in the polymer, while powder diffractometry suggests residual crystallinity. Single crystal X-ray analysis of the monomer yields a structure of chains of alternating acid and base suggesting that the monomer is amenable to polymerization with a minimum of geometrical disruption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Hongbo; Qiao, Zemin; Liu, Xiao
Highlights: • Sol–gel route is combined with polymerization without using modifier. • Supercritical drying control is the key to obtain super-hydrophobic surfaces. • The whole fabrication is technologically controllable and with low costs. • The production rate is higher than 90%. • The method provides a cost-effective way for industry applications. - Abstract: We successfully synthesized one type of cheap super-hydrophobic hybrid porous materials in a sol–gel process. In this route, hydrophilic polymers and TEOS-base sol are used as precursors, the ultraviolet ray-initiated polymerization and supercritical fluid drying techniques are combined together to fulfill this task. All fabricated samples exhibitmore » lotus-leaf-like surface structures with super-hydrophobicity. The underlying mechanisms are carefully investigated using a field-emission scanning electron microscopy (FESEM) and an X-ray photoelectron spectroscopy (XPS). We found that a well-controlled drying process is crucial to the formation of such super-hydrophobic surfaces. As high as 90% production rate is obtained in our route and thus, it might provide a cost-effective way to produce super-hydrophobic hybrid materials for industry applications.« less
Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach
Gin, D.L.; Fischer, W.M.; Gray, D.H.; Smith, R.C.
1998-12-15
A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material. 13 figs.
Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach
Gin, Douglas L.; Fischer, Walter M.; Gray, David H.; Smith, Ryan C.
1998-01-01
A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material.
Organometallic Precursor Routes to Si-C-Al-O-N Ceramics
1991-05-15
Pyrolysis Chemistry of Polymeric Precursors to SiC and Si3 N 4", Kluwer Academic Publishers, Dordrecht, NATO Workshop or Organometallic Polymers with Special...the polymer to a preceramic SiC . Thus the IR and H CRAMPS spectra confirm the decreasing concentration of hydrogen with increasing pyrolysis ...generality of this polymer pyrolysis route to nanocrystalline composites of refractory nitride and carbide ceramics. Investigation of AlN Precursors Our
Grafting strategy to develop single site titanium on an amorphous silica surface.
Capel-Sanchez, M C; Blanco-Brieva, G; Campos-Martin, J M; de Frutos, M P; Wen, W; Rodriguez, J A; Fierro, J L G
2009-06-16
Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO(2)-SiO(2) samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate. The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.
Grafting Strategy to Develop Single Site Titanium on an Amorphous Silica Surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capel-Sanchez, M.; Blanco-Brieva, G; Campos-Martin, J
2009-01-01
Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO2-SiO2 samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate.more » The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.« less
Oukacine, Farid; Bernard, Stephane; Bobe, Iulian; Cottet, Hervé
2014-12-28
(1,2-diamino-cyclohexane)Platinum(II) ((DACH)Pt) loaded polymeric micelles of poly(ethylene glycol-b-sodium glutamate) (PEG-b-PGlu) are currently studied as a potential candidate to replace oxaliplatin in the treatment of cancers with the aim to reduce side effects like cumulative peripheral distal neurotoxicity and acute dysesthesias. As for all synthetic polymeric drug delivery systems, the characterization of the (co)polymer precursors and of the final drug delivery system (polymeric micelles) is crucial to control the repeatability of the different batches and to get correlation between physico-chemical structure and biological activity. In this work, the use of capillary electrophoresis (CE) and related methods for the characterization of (DACH)Pt-loaded polymeric micelles and their precursor (PEG-b-PGlu copolymer) has been investigated in detail. The separation and quantification of residual PGlu homopolymer in the PEG-b-PGlu sample were performed by free solution capillary zone electrophoresis mode. This mode brought also information on the PEG-b-PGlu copolymer composition and polydispersity. It also permitted to monitor the decomposition of polymeric micelles in the presence of NaCl at room temperature. Interactions between PEG-b-PGlu unimers, on one hand, and polymeric micelles or surfactants, on the other hand, were studied by using the Micellar Electrokinetic Chromatography and Frontal Analysis Capillary Electrophoresis modes. Finally, weight-average hydrodynamic radii of the loaded polymeric micelles and of the PEG-b-PGlu unimers were determined by Taylor Dispersion Analysis (an absolute size determination method that can be easily implemented on CE apparatus). Copyright © 2014 Elsevier B.V. All rights reserved.
Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts
Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol
2003-04-08
A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, and SnR".sub.3 containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.
Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts
Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol
2003-12-30
A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C containing groups (R".dbd.C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.
1993-03-30
Massachusetts Institute of Technology, Cambridge, MA 02139I ABSTRACT polysilanes." Pyrolysis of these polymers usually The decomposition of polymeric SiC ...of soluble polymeric solids. Pyrolysis of these polymers in argon yielded The precursors were prepared by adding a TiC/A120 3 composite at 12501C...formation of soluble polymeric solids. Pyrolysis described an approach for synthesizing AI2O/ SiC of these polymers in argon yielded TiC/AI203
Synthesis of nanostructured materials in inverse miniemulsions and their applications.
Cao, Zhihai; Ziener, Ulrich
2013-11-07
Polymeric nanogels, inorganic nanoparticles, and organic-inorganic hybrid nanoparticles can be prepared via the inverse miniemulsion technique. Hydrophilic functional cargos, such as proteins, DNA, and macromolecular fluoresceins, may be conveniently encapsulated in these nanostructured materials. In this review, the progress of inverse miniemulsions since 2000 is summarized on the basis of the types of reactions carried out in inverse miniemulsions, including conventional free radical polymerization, controlled/living radical polymerization, polycondensation, polyaddition, anionic polymerization, catalytic oxidation reaction, sol-gel process, and precipitation reaction of inorganic precursors. In addition, the applications of the nanostructured materials synthesized in inverse miniemulsions are also reviewed.
Silicoaluminates as “Support Activator” Systems in Olefin Polymerization Processes
Tabernero, Vanessa; Camejo, Claudimar; Terreros, Pilar; Alba, María Dolores; Cuenca, Tomás
2010-01-01
In this work we report the polymerization behaviour of natural clays (montmorillonites, MMT) as activating supports. These materials have been modified by treatment with different aluminium compounds in order to obtain enriched aluminium clays and to modify the global Brönsted/Lewis acidity. As a consequence, the intrinsic structural properties of the starting materials have been changed. These changes were studied and these new materials used for ethylene polymerization using a zirconocene complex as catalyst. All the systems were shown to be active in ethylene polymerization. The catalyst activity and the dependence on acid strength and textural properties have been also studied. The behaviour of an artificial silica (SBA 15) modified with an aluminium compound to obtain a silicoaluminate has been studied, but no ethylene polymerization activity has been found yet.
2018-01-01
High molecular weight water-soluble polymers are widely used as flocculants or thickeners. However, synthesis of such polymers via solution polymerization invariably results in highly viscous fluids, which makes subsequent processing somewhat problematic. Alternatively, such polymers can be prepared as colloidal dispersions; in principle, this is advantageous because the particulate nature of the polymer chains ensures a much lower fluid viscosity. Herein we exemplify the latter approach by reporting the convenient one-pot synthesis of high molecular weight poly(glycerol monomethacrylate) (PGMA) via the reversible addition–fragmentation chain transfer (RAFT) aqueous emulsion polymerization of a water-immiscible protected monomer precursor, isopropylideneglycerol methacrylate (IPGMA) at 70 °C, using a water-soluble poly(glycerol monomethacrylate) (PGMA) chain transfer agent as a steric stabilizer. This formulation produces a low-viscosity aqueous dispersion of PGMA–PIPGMA diblock copolymer nanoparticles at 20% solids. Subsequent acid deprotection of the hydrophobic core-forming PIPGMA block leads to particle dissolution and affords a viscous aqueous solution comprising high molecular weight PGMA homopolymer chains with a relatively narrow molecular weight distribution. Moreover, it is shown that this latex precursor route offers an important advantage compared to the RAFT aqueous solution polymerization of glycerol monomethacrylate since it provides a significantly faster rate of polymerization (and hence higher monomer conversion) under comparable conditions. PMID:29805184
Reverse micelle synthesis of nanoscale metal containing catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darab, J.G.; Fulton, J.L.; Linehan, J.C.
1993-03-01
The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni{sub 3}Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less
Process development for waveguide chemical sensors with integrated polymeric sensitive layers
NASA Astrophysics Data System (ADS)
Amberkar, Raghu; Gao, Zhan; Park, Jongwon; Henthorn, David B.; Kim, Chang-Soo
2008-02-01
Due to the proper optical property and flexibility in the process development, an epoxy-based, high-aspect ratio photoresist SU-8 is now attracting attention in optical sensing applications. Manipulation of the surface properties of SU-8 waveguides is critical to attach functional films such as chemically-sensitive layers. We describe a new integration process to immobilize fluorescence molecules on SU-8 waveguide surface for application to intensity-based optical chemical sensors. We use two polymers for this application. Spin-on, hydrophobic, photopatternable silicone is a convenient material to contain fluorophore molecules and to pattern a photolithographically defined thin layer on the surface of SU-8. We use fumed silica powders as an additive to uniformly disperse the fluorophores in the silicone precursor. In general, additional processes are not critically required to promote the adhesion between the SU-8 and silicone. The other material is polyethylene glycol diacrylate (PEGDA). Recently we demonstrated a novel photografting method to modify the surface of SU-8 using a surface bound initiator to control its wettability. The activated surface is then coated with a monomer precursor solution. Polymerization follows when the sample is exposed to UV irradiation, resulting in a grafted PEGDA layer incorporating fluorophores within the hydrogel matrix. Since this method is based the UV-based photografting reaction, it is possible to grow off photolithographically defined hydrogel patterns on the waveguide structures. The resulting films will be viable integrated components in optical bioanalytical sensors. This is a promising technique for integrated chemical sensors both for planar type waveguide and vertical type waveguide chemical sensors.
Gandhiraman, R P; Gubala, V; Le, N C H; Nam, Le Cao Hoai; Volcke, C; Doyle, C; James, B; Daniels, S; Williams, D E
2010-08-01
The performances of new polymeric materials with excellent optical properties and good machinability have led the biomedical diagnostics industry to develop cheap disposable biosensor platforms appropriate for point of care applications. Zeonor, a type of cycloolefin polymer (COP), is one such polymer that presents an excellent platform for biosensor chips. These polymer substrates have to be modified to have suitable physico-chemical properties for immobilizing proteins. In this work, we have demonstrated the amine functionalization of COP substrates, by plasma enhanced chemical vapour deposition (PECVD), through codeposition of ethylene diamine and 3-aminopropyltriethoxysilane precursors, for building chemistries on the plastic chip. The elemental composition, adhesion, ageing and reactivity of the plasma polymerized film were examined. The Si-O functionality present in amino silane contributed for a good interfacial adhesion of the coating to COP substrates and also acted as a network building layer for plasma polymerization. Wet chemical modification was then carried out on the amine functionalized chips to create chemically reactive isothiocyanate sites and protein repellent fluorinated sites on the same chip. The density of the reactive and repellent sites was altered by choosing appropriate mixtures of homofunctional phenyldiisothiocyanate (PDITC), pentafluoroisothiocyanate (5FITC) and phenylisothiocyanate (PITC) compounds. By tailoring the density of reactive binding sites and protein repellent sites, the non-specific binding of ssDNA has been decreased to a significant extent. Copyright 2010 Elsevier B.V. All rights reserved.
Controllable synthesis of organic-inorganic hybrid MoOx/polyaniline nanowires and nanotubes.
Wang, Sinong; Gao, Qingsheng; Zhang, Yahong; Gao, Jing; Sun, Xuhui; Tang, Yi
2011-02-01
A novel chemical oxidative polymerization approach has been proposed for the controllable preparation of organic-inorganic hybrid MoO(x)/polyaniline (PANI) nanocomposites based on the nanowire precursor of Mo(3)O(10)(C(6)H(8)N)(2)·2H(2)O with sub-nanometer periodic structures. The nanotubes, nanowires, and rambutan-like nanoparticles of MoO(x)/PANI were successfully obtained through simply modulating the pH values to 2.5-3.5, ≈2.0 and ≈1.0, respectively. Through systematic physicochemical characterization, such as scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and so forth, the composition and structure of MoO(x)/PANI hybrid nanocomposites are well confirmed. It is found that the nanowire morphology of the precursor is the key to achieve the one-dimensional (1D) structures of final products. A new polymerization-dissolution mechanism is proposed to explain the formation of such products with different morphologies, in which the match between polymerization and dissolution processes of the precursor plays the important role. This approach will find a new way to controllably prepare various organic-inorganic hybrid 1D nanomaterials especially for polymer-hybrid nanostructures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Eun-Hee; Yoo, Jun-Sang; Kim, Bo-Hye
2014-02-15
Calcium zirconium aluminate (Ca{sub 7}ZrAl{sub 6}O{sub 18}) cements were prepared by solid state reaction and polymeric precursor methods, and their phase evolution, morphology, and hydration behavior were investigated. In polymeric precursor method, a nearly single phase Ca{sub 7}ZrAl{sub 6}O{sub 18} was obtained at relatively lower temperature (1200 °C) whereas in solid state reaction, a small amount of CaZrO{sub 3} coexisted with Ca{sub 7}ZrAl{sub 6}O{sub 18} even at higher temperature (1400 °C). Unexpectedly, Ca{sub 7}ZrAl{sub 6}O{sub 18} synthesized by polymeric precursor process was the large-sized and rough-shaped powder. The planetary ball milling was employed to control the particle size and shape.more » The hydration behavior of Ca{sub 7}ZrAl{sub 6}O{sub 18} was similar to that of Ca{sub 3}Al{sub 2}O{sub 6} (C3A), but the hydration products were Ca{sub 3}Al{sub 2}O{sub 6}·6H{sub 2}O (C3AH6) and several intermediate products. Thus, Zr (or ZrO{sub 2}) stabilized the intermediate hydration products of C3A.« less
Moraes, John; Ohno, Kohji; Maschmeyer, Thomas; Perrier, Sébastien
2013-10-14
Hybrid nanoparticles hold great promise for a range of applications such as drug-delivery vectors or colloidal crystal self-assemblies. The challenge of preparing highly monodisperse particles for these applications has recently been overcome by using living radical polymerization techniques. In particular, the use of reversible addition-fragmentation chain transfer (RAFT), initiated from silica surfaces, yields well-defined particles from a range of precursor monomers resulting in nanoparticles of tailored sizes that are accessible via the rational selection of polymerization conditions. Furthermore, using RAFT allows post-polymerization modification to afford multifunctional, monodisperse, nanostructures under mild and non-stringent reaction conditions.
A Reliable Homemade Electrode Based on Glassy Polymeric Carbon
ERIC Educational Resources Information Center
Santos, Andre L.; Takeuchi, Regina M.; Oliviero, Herilton P.; Rodriguez, Marcello G.; Zimmerman, Robert L.
2004-01-01
The production of a GPC-based material by submitting a cross-linked resin precursor to control thermal conditions is discussed. The precursor material is prepolymerized at 60-degree Celsius in a mold and is carbonized in inert atmosphere by slowly raising the temperature, the rise is performed to avoid change in the shape of the carbonization…
Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts
Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol
2006-10-10
A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.
Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts
Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol
2007-01-09
A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.
Cyclopentadienyl-Containing Low-Valent Early Transition Metal Olefin Polymerization Catalysts
Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol
2004-06-08
A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C-containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.
Syringyl Methacrylate, a Hardwood Lignin-Based Monomer for High-Tg Polymeric Materials.
Holmberg, Angela L; Reno, Kaleigh H; Nguyen, Ngoc A; Wool, Richard P; Epps, Thomas H
2016-05-17
As viable precursors to a diverse array of macromolecules, biomass-derived compounds must impart wide-ranging and precisely controllable properties to polymers. Herein, we report the synthesis and subsequent reversible addition-fragmentation chain-transfer polymerization of a new monomer, syringyl methacrylate (SM, 2,6-dimethoxyphenyl methacrylate), that can facilitate widespread property manipulations in macromolecules. Homopolymers and heteropolymers synthesized from SM and related monomers have broadly tunable and highly controllable glass transition temperatures ranging from 114 to 205 °C and zero-shear viscosities ranging from ∼0.2 kPa·s to ∼17,000 kPa·s at 220 °C, with consistent thermal stabilities. The tailorability of these properties is facilitated by the controlled polymerization kinetics of SM and the fact that one vs two o -methoxy groups negligibly affect monomer reactivity. Moreover, syringol, the precursor to SM, is an abundant component of depolymerized hardwood (e.g., oak) and graminaceous (e.g., switchgrass) lignins, making SM a potentially sustainable and low-cost candidate for tailoring macromolecular properties.
Approaches to polymer-derived CMC matrices
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
1992-01-01
The use of polymeric precursors to ceramics permits the fabrication of large, complex-shaped ceramic matrix composites (CMC's) at temperatures which do not degrade the fiber. Processing equipment and techniques readily available in the resin matrix composite industry can be adapted for CMC fabrication using this approach. Criteria which influence the choice of candidate precursor polymers, the use of fillers, and the role of fiber architecture and ply layup are discussed. Three polymer systems, polycarbosilanes, polysilazanes, and polysilsesquioxanes, are compared as candidate ceramic matrix precursors.
Homochiral polymerization-driven selective growth of graphene nanoribbons
NASA Astrophysics Data System (ADS)
Sakaguchi, Hiroshi; Song, Shaotang; Kojima, Takahiro; Nakae, Takahiro
2017-01-01
The surface-assisted bottom-up fabrication of graphene nanoribbons (GNRs), which consists of the radical polymerization of precursors followed by dehydrogenation, has attracted attention because of the method's ability to control the edges and widths of the resulting ribbon. Although these reactions on a metal surface are believed to be catalytic, the mechanism has remained unknown. Here, we demonstrate 'conformation-controlled surface catalysis': the two-zone chemical vapour deposition of a 'Z-bar-linkage' precursor, which represents two terphenyl units linked in a 'Z' shape, results in the efficient formation of acene-type GNRs with a width of 1.45 nm through optimized cascade reactions. These precursors exhibit flexibility that allows them to adopt chiral conformations with height asymmetry on a Au(111) surface, which enables the production of self-assembled homochiral polymers in a chain with a planar conformation, followed by dehydrogenation via a conformation-controlled mechanism. This is conceptually analogous to enzymatic catalysis and will be useful for the fabrication of new nanocarbon materials.
21 CFR 177.1635 - Poly(p-methylstyrene) and rubber-modified poly(p-methyl-styrene).
Code of Federal Regulations, 2011 CFR
2011-04-01
... polymerization of p-methylstyrene. (2) Rubber-modified poly(p-methylstyrene) (CAS Reg. No. 33520-88-6) polymer... during or after polymerization of the poly(p-methylstyrene), such that the finished polymers contain not...
Process for preparing polymer reinforced silica aerogels
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Capadona, Lynn A. (Inventor)
2011-01-01
Process for preparing polymer-reinforced silica aerogels which comprises a one-pot reaction of at least one alkoxy silane in the presence of effective amounts of a polymer precursor to obtain a silica reaction product, the reaction product is gelled and subsequently subjected to conditions that promotes polymerization of the precursor and then supercritically dried to obtain the polymer-reinforced monolithic silica aerogels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darab, J.G.; Fulton, J.L.; Linehan, J.C.
1993-03-01
The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni[sub 3]Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less
NASA Technical Reports Server (NTRS)
Stevenson, William A. (Inventor)
1989-01-01
A process for infrared spectroscopic monitoring of insitu compositional changes in a polymeric material comprises the steps of providing an elongated infrared radiation transmitting fiber that has a transmission portion and a sensor portion, embedding the sensor portion in the polymeric material to be monitored, subjecting the polymeric material to a processing sequence, applying a beam of infrared radiation to the fiber for transmission through the transmitting portion to the sensor portion for modification as a function of properties of the polymeric material, monitoring the modified infrared radiation spectra as the polymeric material is being subjected to the processing sequence to obtain kinetic data on changes in the polymeric material during the processing sequence, and adjusting the processing sequence as a function of the kinetic data provided by the modified infrared radiation spectra information.
NASA Technical Reports Server (NTRS)
Stevenson, William A. (Inventor)
1992-01-01
A process for infrared spectroscopic monitoring of insitu compositional changes in a polymeric material comprises the steps of providing an elongated infrared radiation transmitting fiber that has a transmission portion and a sensor portion, embedding the sensor portion in the polymeric material to be monitored, subjecting the polymeric material to a processing sequence, applying a beam of infrared radiation to the fiber for transmission through the transmitting portion to the sensor portion for modification as a function of properties of the polymeric material, monitoring the modified infrared radiation spectra as the polymeric material is being subjected to the processing sequence to obtain kinetic data on changes in the polymeric material during the processing sequence, and adjusting the processing sequence as a function of the kinetic data provided by the modified infrared radiation spectra information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lontio Fomekong, Roussin, E-mail: lonforou@yahoo.fr; Institut de la Matière Condensée et des Nanosciences, Université Catholique de Louvain, Croix du Sud 1, 1348 Louvain-La-Neuve; Ngolui Lambi, John
2016-09-15
Nickel oxide nanoparticles were synthesized via thermal decomposition of two precursors, the first, a simple nickel malonate and the second, a nickel malonate modified by oleylamine, a surfactant, both having been synthesized by precipitation. While FTIR, TGA and ToF-SIMS were used to characterize the two precursors and to show the presence of oleylamine in the modified precursor, XRD, SEM, TEM and BET were employed to investigate the structure, the morphology and the specific surface area of the decomposition products obtained after pyrolysis. The results showed that the modification of nickel malonate by oleylamine was effective. The XRD results, which showedmore » a cubic structure for the NiO obtained, suggest with SEM an important particle size reduction (at least 54%) when oleylamine was used to modify the nickel malonate precursor. The SEM images also showed a well-defined spherical nanoparticle morphology in both cases, not affected by the presence of oleylamine. The TEM also confirmed the reduction of particle size and their spherical nature but at the same time showed that, in the presence of oleylamine, there was no agglomeration resulting in a more uniform particle size distribution. The specific surface area of the NiO obtained by the oleylamine-modified precursor was 4.7 times larger than that obtained with the regular precursor. This again confirms the particle size reduction. - Highlights: • Nickel malonate precursor has been synthesized by precipitation method. • This precursor was successfully modified by a surfactant (oleylamine). • NiO was identified as the decomposition products of the previous precursors. • Oleylamine has provoked around 54% of particle size reduction of the NiO.« less
Jan, Yih-Dean; Lee, Bor-Shiunn; Lin, Chun-Pin; Tseng, Wan-Yu
2014-04-01
Polymerization shrinkage is one of the main causes of dental restoration failure. This study tried to conjugate two diisocyanate side chains to dimethacrylate resins in order to reduce polymerization shrinkage and increase the hardness of composite resins. Diisocyanate, 2-hydroxyethyl methacrylate, and bisphenol A dimethacrylate were reacted in different ratios to form urethane-modified new resin matrices, and then mixed with 50 wt.% silica fillers. The viscosities of matrices, polymerization shrinkage, surface hardness, and degrees of conversion of experimental composite resins were then evaluated and compared with a non-modified control group. The viscosities of resin matrices increased with increasing diisocyanate side chain density. Polymerization shrinkage and degree of conversion, however, decreased with increasing diisocyanate side chain density. The surface hardness of all diisocyanate-modified groups was equal to or significantly higher than that of the control group. Conjugation of diisocyanate side chains to dimethacrylate represents an effective means of reducing polymerization shrinkage and increasing the surface hardness of dental composite resins. Copyright © 2012. Published by Elsevier B.V.
Activated microporous materials through polymerization of microemulsion precursors
NASA Astrophysics Data System (ADS)
Venkatesan, Arunkumar
Microemulsions have been well studied for their unique characteristics. They are isotropic, thermodynamically stable and microstructured mixtures of oil and water stabilized by one or more surfactant species. They are formed spontaneously and are thermodynamically stable. Microemulsion precursors can be polymerized to make microporous solids with controlled pore structure and sizes. These polymeric solids have been studied extensively in the past. Although the fundamental properties of the microporous solids have been studied in depth, the development of specific applications that will utilize the unique properties of these solids has not been exhaustively researched. The current work establishes the feasibility of making activated microporous solids from microemulsion precursors, by the use of a ligand that chelates metals and also attaches itself to the polymer monolith. It also uses a novel 'in-situ' incorporation by combining the formulation and incorporation steps into one. The research objectives are, to formulate a microemulsion system that can yield useful microporous solids upon polymerization and activation, to characterize these solids using existing techniques available for analysis of similar microporous solids, to identify and understand the effect of the variables in the system and to study the influence of these variables on the performance characteristics of this material. Characterization techniques like Differential Scanning Calorimetry, Thermogravimetric Analysis and Scanning Electron Microscopy were used. A hydroxyethylmethylmethacrylate/methylmethacrylate/aqueous phase containing 10% SDS' system was chosen as the precursor microemulsion and the corresponding microporous solids were made. A metal chelating ligand, Congo Red, was incorporated onto the microporous polymer using NaOH as a binding agent. The ability of the resultant 'activated' microporous solid to remove metal ions from solution, was evaluated. The metal ion chosen was chromium and the influence of variables such as NaOH loading, Congo Red loading, Cross linker content etc. were studied. It was found that the microporous solids were effective in removing chromium from solution. They outperformed similar polymeric solids with ligands (reported in literature) in chromium removal. A removal of about 1500 micro moles of chromium ions per gram of dry polymer from a solution of 5 mMol/L initial concentration of chromium was observed. This is much more than the removal of 340 micro moles/gram of dry polymer reported in literature for comparable non-microporous systems.
Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area
NASA Astrophysics Data System (ADS)
Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho
2018-01-01
In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.
Lu, Caicai; Wang, Xiaojuan; Wu, Guolin; Wang, Jingjing; Wang, Yinong; Gao, Hui; Ma, Jianbiao
2014-03-01
An injectable hydrogel via hydrazone cross-linking was prepared under mild conditions without addition of cross-linker or catalyst. Hydrazine and aldehyde modified poly(aspartic acid)s were used as two gel precursors. Both of them are water-soluble and biodegradable polymers with a protein-like structure, and obtained by aminolysis reaction of polysuccinimide. The latter can be prepared by thermal polycondensation of aspartic acid. Hydrogels were prepared in PBS solution and characterized by different methods including gel content and swelling, Fourier transformed-infrared spectroscopy, and in vitro degradation experiment. A scanning electron microscope viewed the interior morphology of the obtained hydrogels, which showed porous three-dimensional structures. Different porous sizes were present, which could be well controlled by the degree of aldehyde substitution in precursor poly(aspartic acid) derivatives. The doxorubicin-loaded hydrogels were prepared and showed a pH-sensitive release profile. The release rate can be accelerated by decreasing the environmental pH from a physiological to a weak acidic condition. Moreover, the cell adhesion and growth behaviors on the hydrogel were studied and the polymeric hydrogel showed good biocompatibility. Copyright © 2013 Wiley Periodicals, Inc.
Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes
DOE Office of Scientific and Technical Information (OSTI.GOV)
RAHIMIAN,KAMYAR; LOY,DOUGLAS A.
2000-04-04
Disilaoxacyclopentanes have proven to be excellent precursors to sol-gel type materials. These materials have shown promise as precursors for encapsulation and microelectronics applications. The polymers are highly crosslinked and are structurally similar to traditional sol-gels, but unlike typical sol-gels they are prepared without the use of solvents and water, they have low VOC's and show little shrinkage during processing.
2012-04-01
Methanol Octane Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007, 318, 1618 Superamphiphobic...building block material for low surface energy materials • Applications – Mechanical robust superhydrophobic /oleophobic/omniphobic surfaces • Via...non-wetting polymeric surfaces 5 mm Methanol Octane Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007
Effect of pressure-assisted thermal annealing on the optical properties of ZnO thin films.
Berger, Danielle; Kubaski, Evaldo Toniolo; Sequinel, Thiago; da Silva, Renata Martins; Tebcherani, Sergio Mazurek; Varela, José Arana
2013-01-01
ZnO thin films were prepared by the polymeric precursor method. The films were deposited on silicon substrates using the spin-coating technique, and were annealed at 330 °C for 32 h under pressure-assisted thermal annealing and under ambient pressure. Their structural and optical properties were characterized, and the phases formed were identified by X-ray diffraction. No secondary phase was detected. The ZnO thin films were also characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet emission intensity measurements. The effect of pressure on these thin films modifies the active defects that cause the recombination of deep level states located inside the band gap that emit yellow-green (575 nm) and orange (645 nm) photoluminescence. Copyright © 2012 John Wiley & Sons, Ltd.
Crosslinked polymeric dielectric materials and electronic devices incorporating same
NASA Technical Reports Server (NTRS)
Facchetti, Antonio (Inventor); Suh, legal representative, Nae-Jeong (Inventor); Marks, Tobin J. (Inventor); Choi, Hyuk-Jin (Inventor); Wang, Zhiming (Inventor)
2012-01-01
Solution-processable dielectric materials are provided, along with precursor compositions and processes for preparing the same. Composites and electronic devices including the dielectric materials also are provided.
Solid polymeric electrolytes for lithium batteries
Angell, Charles A.; Xu, Wu; Sun, Xiaoguang
2006-03-14
Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoryan, Hasmik; Lockridge, Oksana
2009-10-15
Organophosphorus agents cause cognitive deficits and depression in some people. We hypothesize that the mechanism by which organophosphorus agents cause these disorders is by modification of proteins in the brain. One such protein could be tubulin. Tubulin polymerizes to make the microtubules that transport cell components to nerve axons. The goal of the present work was to measure the effect of the organophosphorus agent chlorpyrifos oxon on tubulin polymerization. An additional goal was to identify the amino acids covalently modified by chlorpyrifos oxon in microtubule polymers and to compare them to the amino acids modified in unpolymerized tubulin dimers. Purifiedmore » bovine tubulin (0.1 mM) was treated with 0.005-0.1 mM chlorpyrifos oxon for 30 min at room temperature and then polymerized by addition of 1 mM GTP to generate microtubules. Microtubules were visualized by atomic force microscopy. Chlorpyrifos oxon-modified residues were identified by tandem ion trap electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry of tryptic peptides. Nanoimaging showed that low concentrations (0.005 and 0.01 mM) of chlorpyrifos oxon yielded short, thin microtubules. A concentration of 0.025 mM stimulated polymerization, while high concentrations (0.05 and 0.1 mM) caused aggregation. Of the 17 tyrosines covalently modified by chlorpyrifos oxon in unpolymerized tubulin dimers, only 2 tyrosines were labeled in polymerized microtubules. The two labeled tyrosines in polymerized tubulin were Tyr 103 in EDAANNY*R of alpha tubulin, and Tyr 281 in GSQQY*R of beta tubulin. In conclusion, chlorpyrifos oxon binding to tubulin disrupts tubulin polymerization. These results may lead to an understanding of the neurotoxicity of organophosphorus agents.« less
Grigoryan, Hasmik; Lockridge, Oksana
2009-01-01
Organophosphorus agents cause cognitive deficits and depression in some people. We hypothesize that the mechanism by which organophosphorus agents cause these disorders is by modification of proteins in the brain. One such protein could be tubulin. Tubulin polymerizes to make the microtubules that transport cell components to nerve axons. The goal of the present work was to measure the effect of the organophosphorus agent chlorpyrifos oxon on tubulin polymerization. An additional goal was to identify the amino acids covalently modified by chlorpyrifos oxon in microtubule polymers and to compare them to the amino acids modified in unpolymerized tubulin dimers. Purified bovine tubulin (0.1 mM) was treated with 0.005-0.1 mM chlorpyrifos oxon for 30 min at room temperature and then polymerized by addition of 1 mM GTP to generate microtubules. Microtubules were visualized by atomic force microscopy. Chlorpyrifos oxon-modified residues were identified by tandem ion trap electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry of tryptic peptides. Nanoimaging showed that low concentrations (0.005 and 0.01 mM) of chlorpyrifos oxon yielded short, thin microtubules. A concentration of 0.025 mM stimulated polymerization, while high concentrations (0.05 and 0.1 mM) caused aggregation. Of the 17 tyrosines covalently modified by chlorpyrifos oxon in unpolymerized tubulin dimers, only 2 tyrosines were labeled in polymerized microtubules. The two labeled tyrosines in polymerized tubulin were Tyr 103 in EDAANNY*R of alpha tubulin, and Tyr 281 in GSQQY*R of beta tubulin. In conclusion, chlorpyrifos oxon binding to tubulin disrupts tubulin polymerization. These results may lead to an understanding of the neurotoxicity of organophosphorus agents. PMID:19631231
Zhao, Wei; Wang, Yang; Liu, Xinli; Chen, Xuesi; Cui, Dongmei
2012-10-01
A one-pot method for the preparation of a new family of PLA materials is reported that combines heterotactic (soft) and isotactic stereoblocks (hard). The ring-opening polymerization of rac-lactide with a salan-rare-earth-metal-alkyl complex in the presence of excess triethanolamine was performed in an immortal mode to give three-armed heterotactic poly(lactide) (soft) with excellent end-hydroxy fidelity. The in situ addition of a salen-aluminum-alkyl precursor to the above polymerization system under any monomer-conversion conditions activated the "dormant" hydroxy-ended PLA chains to propagate through the incorporation of the remaining rac-lactide monomer, but with isospecific selectivity (hard). The resultant PLA had a three-armed architecture with controlled molecular weight and extremely narrow molecular-weight distribution (PDI<1.08). More strikingly, each side-arm simultaneously possessed highly heterotactic (soft) and highly isotactic (hard) segments and the ratio of these two stereoregular sequences could be swiftly adjusted by tuning the addition time of the salen-aluminum-alkyl precursor to the polymerization system. Therefore, star-shaped hard-soft stereoblock poly(lactide)s with various P(m) values and crystallinity were achieved in a single reactor for the first time. This strategy should be applicable to the synthesis of a series of new types of stereoblock polyesters by using an immortal-polymerization process and a proper choice of specific, selective metal-based catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Star-shaped PHB-PLA block copolymers: immortal polymerization with dinuclear indium catalysts.
Yu, I; Ebrahimi, T; Hatzikiriakos, S G; Mehrkhodavandi, P
2015-08-28
The first example of a one-component precursor to star-shaped polyesters, and its utilization in the synthesis of previously unknown star-shaped poly(hydroxybutyrate)-poly(lactic acid) block copolymers, is reported. A series of such mono- and bis-benzyl alkoxy-bridged complexes were synthesized, fully characterized, and their solvent dependent solution structures and reactivity were examined. These complexes were highly active catalysts for the controlled polymerization of β-butyrolactone to form poly(hydroxybutyrate) at room temperature. Solution studies indicate that a mononuclear propagating species formed in THF and that the dimer-monomer equilibrium affects the rates of BBL polymerization. In the presence of linear and branched alcohols, these complexes catalyze well-controlled immortal polymerization and copolymerization of β-butyrolactone and lactide.
NASA Astrophysics Data System (ADS)
Ma, C.; Li, L.; Yang, Y. P.; Hao, W. W.; Zhang, Q.; Lv, J.
2018-01-01
A new type of polymeric rheology modifier was synthesized by suspension polymerization, and the effect of rheology modifier on the rheological properties of oil-based drilling fluids was investigated. The results indicated that the obtained polymer had good capacity of improvement of shearing force of oil-based drilling fluids under high temperature and high pressure conditions. Moreover, the obtained polymer can improve the stability of oil-based drilling fluids greatly. As a result, the obtained polymer is a good rheology modifier for oil-based drilling fluids, and it can optimize oil-based drilling fluid system with good rheological properties, good static suspension ability for cuttings and environmental protection function. It can play an essential role in safe drilling jobs and improvement of drilling efficiency.
Polymer-modified opal nanopores.
Schepelina, Olga; Zharov, Ilya
2006-12-05
The surface of nanopores in opal films, assembled from 205 nm silica spheres, was modified with poly(acrylamide) brushes using surface-initiated atom transfer radical polymerization. The colloidal crystal lattice remained unperturbed by the polymerization. The polymer brush thickness was controlled by polymerization time and was monitored by measuring the flux of redox species across the opal film using cyclic voltammetry. The nanopore size and polymer brush thickness were calculated on the basis of the limiting current change. Polymer brush thickness increased over the course of 26 h of polymerization in a logarithmic manner from 1.3 to 8.5 nm, leading to nanopores as small as 7.5 nm.
Shimizu, Wataru; Nakamura, Satoshi; Sato, Takaaki; Murakami, Yasushi
2012-08-21
Amorphous titanium dioxide (TiO(2)) thin films exhibiting high refractive indices (n ≈ 2.1) and high transparency were fabricated by spin-coating titanium oxide liquid precursors having a weakly branched polymeric structure. The precursor solution was prepared from titanium tetra-n-butoxide (TTBO) via the catalytic sol-gel process with hydrazine monohydrochloride used as a salt catalyst, which serves as a conjugate acid-base pair catalyst. Our unique catalytic sol-gel technique accelerated the overall polycondensation reaction of partially hydrolyzed alkoxides, which facilitated the formation of liner polymer-like titanium oxide aggregates having a low fractal dimension of ca. (5)/(3), known as a characteristic of the so-called "expanded polymer chain". Such linear polymeric features are essential to the production of highly dense amorphous TiO(2) thin films; mutual interpenetration of the linear polymeric aggregates avoided the creation of void space that is often generated by the densification of high-fractal-dimension (particle-like) aggregates produced in a conventional sol-gel process. The mesh size of the titanium oxide polymers can be tuned either by water concentration or the reaction time, and the smaller mesh size in the liquid precursor led to a higher n value of the solid thin film, thanks to its higher local electron density. The reaction that required no addition of organic ligand to stabilize titanium alkoxides was advantageous to overcoming issues from organic residues such as coloration. The dense amorphous film structure suppressed light scattering loss owing to its extremely smooth surface and the absence of inhomogeneous grains or particles. Furthermore, the fabrication can be accomplished at a low heating temperature of <80 °C. Indeed, we successfully obtained a transparent film with a high refractive index of n = 2.064 (at λ = 633 nm) on a low-heat-resistance plastic, poly(methyl methacrylate), at 60 °C. The result offers an efficient route to high-refractive-index amorphous TiO(2) films as well as base materials for a wider range of applications.
Slee, Joshua B.; Alferiev, Ivan S.; Levy, Robert J.; Stachelek, Stanley J.
2014-01-01
The foreign body reaction occurs when a synthetic surface is introduced to the body. It is characterized by adsorption of blood proteins and the subsequent attachment and activation of platelets, monocyte/macrophage adhesion, and inflammatory cell signaling events, leading to post-procedural complications. The Chandler Loop Apparatus is an experimental system that allows researchers to study the molecular and cellular interactions that occur when large volumes of blood are perfused over polymeric conduits. To that end, this apparatus has been used as an ex vivo model allowing the assessment of the anti-inflammatory properties of various polymer surface modifications. Our laboratory has shown that blood conduits, covalently modified via photoactivation chemistry with recombinant CD47, can confer biocompatibility to polymeric surfaces. Appending CD47 to polymeric surfaces could be an effective means to promote the efficacy of polymeric blood conduits. Herein is the methodology detailing the photoactivation chemistry used to append recombinant CD47 to clinically relevant polymeric blood conduits and the use of the Chandler Loop as an ex vivo experimental model to examine blood interactions with the CD47 modified and control conduits. PMID:25178087
Preparation of Sic/AIN Solid Solutions Using Organometallic Precursors
1989-02-15
pyrolysis of organoaluminum and organosilicon compounds was investigated as a potential source of SiC /AUI solid solutions. Using two different co... pyrolysis methods, homogeneous mixtures of organoaluminum amides and both a vinylic polysilane and a poly- carbosilane were convertec to a preceramic ...solid that transformed to crystalline SiC /AiN solid solutions at C. Moreover, the liquid, polymeric , form of these precursor mixtures provides a
NASA Astrophysics Data System (ADS)
Lim, Sung Nam; Song, Shin Ae; Jeong, Yong-Cheol; Kang, Hyun Woo; Park, Seung Bin; Kim, Ki Young
2017-10-01
Perovskite-type photocatalysts of CaCu x Ti1- x O3 (0 ≤ x ≤ 0.02) powder were prepared by spray pyrolysis of aqueous solution or aqueous solution with polymeric additive. The effects of the amount of copper ions doped in the photocatalyst and the precursor type on the photocatalytic activity under visible-light irradiation were investigated. The crystal structure, oxidation state, and light adsorption properties of the prepared photocatalysts were analyzed using x-ray diffraction, x-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy, respectively. The doping of copper ions in CaTiO3 allowed visible-light absorption owing to a narrowing of the band gap energy of the host material through the formation of a new donor level for copper ions. Among the doped samples prepared from the aqueous precursor, CaTiO3 doped with 1 mol.% copper ions had the highest hydrogen evolution rate (140.7 μmol g-1 h-1). Notably, the hydrogen evolution rate of the photocatalyst doped with 1 mol.% copper ions prepared from the aqueous precursor with polymeric additive (295.0 μmol g-1 h-1) was two times greater than that prepared from the aqueous precursor, due to the morphology effect.
Surface modified aerogel monoliths
NASA Technical Reports Server (NTRS)
Leventis, Nicholas (Inventor); Johnston, James C. (Inventor); Kuczmarski, Maria A. (Inventor); Meador, Mary Ann B. (Inventor)
2013-01-01
This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.
Ma, Hsiao-Yuan; Wang, Tzong-Liu; Chang, Pei-Yu; Yang, Chien-Hsin
2016-01-01
Organic-inorganic hybrid sols (Ti–O–Si precursor) were first synthesized by the sol-gel method at low addition of water, and were then employed to prepare a highly refractive hybrid optical film. This film was obtained by blending the Ti–O–Si precursor with 2-phenylphenoxyethyl acrylate (OPPEA) to perform photo-polymerization by ultraviolet (UV) irradiation. Results show that the film transparency of poly(Ti–O–Si precursor-co-OPPEA) film is higher than that of a pure poly(Ti–O–Si precursor) film, and that this poly(Ti–O–Si precursor-co-OPPEA) hybrid film exhibits a high transparency of ~93.7% coupled with a high refractive index (n) of 1.83 corresponding to a thickness of 2.59 μm. PMID:28344303
Low Temperature, Low Pressure Fabrication of Ultra High Temperature Ceramics (UHTCs)
2006-08-01
preceramic polymers that convert by pyrolysis to SiC , SiOC or C. Potential polymeric precursors to ZrB2 and ZrC were not selected, because they were not...limited extent, C/ SiC composite substrates using preceramic and precarbon polymers combined with inert fillers and/or reactive metals. The evolved... SiC is an obvious example for powder mixed with a preceramic polymer binder to achieve the desired low-temperature processing. The polymeric
Supercritical Fluid Infusion of Iron Additives in Polymeric Matrices
NASA Technical Reports Server (NTRS)
Nazem, Negin; Taylor, Larry T.
1999-01-01
The objective of this project was the experimentation to measure preparation of iron nanophases within polymeric matrices via supercritical fluid infusion of iron precursors followed by thermal reduction. Another objective was to determine if supercritical CO2 could infuse into the polymer. The experiment is described along with the materials, and the supercritical fluid infusion and cure procedures. X-ray photoelectron spectra and transmission electron micrographs were obtained. The results are summarized in charts, and tables.
Polymeric peptide pigments with sequence-encoded properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampel, Ayala; McPhee, Scott A.; Park, Hang-Ah
Melanins are a family of heterogeneous polymeric pigments that provide ultraviolet (UV) light protection, structural support, coloration, and free radical scavenging. Formed by oxidative oligomerization of catecholic small molecules, the physical properties of melanins are influenced by covalent and noncovalent disorder. We report the use of tyrosine-containing tripeptides as tunable precursors for polymeric pigments. In these structures, phenols are presented in a (supra-)molecular context dictated by the positions of the amino acids in the peptide sequence. Oxidative polymerization can be tuned in a sequence-dependent manner, resulting in peptide sequence–encoded properties such as UV absorbance, morphology, coloration, and electrochemical properties overmore » a considerable range. Short peptides have low barriers to application and can be easily scaled, suggesting near-term applications in cosmetics and biomedicine.« less
Synthesis and high temperature stability of amorphous Si(B)CN-MWCNT composite nanowires
NASA Astrophysics Data System (ADS)
Bhandavat, Romil; Singh, Gurpreet
2012-02-01
We demonstrate synthesis of a hybrid nanowire structure consisting of an amorphous polymer-derived silicon boron-carbonitride (Si-B-C-N) shell with a multiwalled carbon nanotube core. This was achieved through a novel process involving preparation of a boron-modified liquid polymeric precursor through a reaction of trimethyl borate and polyureasilazane under atmospheric conditions; followed by conversion of polymer to glass-ceramic on carbon nanotube surfaces through controlled heating. Chemical structure of the polymer was studied by liquid-NMR while evolution of various ceramic phases was studied by Raman spectroscopy, solid-NMR, Fourier transform infrared and X-ray photoelectron spectroscopy. Electron microscopy and X-ray diffraction confirms presence of amorphous Si(B)CN coating on individual nanotubes for all specimen processed below 1400 degree C. Thermogravimetric analysis, followed by TEM revealed high temperature stability of the carbon nanotube core in flowing air up to 1300 degree C.
Liu, Jianxi; Ma, Shuanhong; Wei, Qiangbing; Jia, Lei; Yu, Bo; Wang, Daoai; Zhou, Feng
2013-12-07
Smart systems on the nanometer scale for continuous flow-through reaction present fascinating advantages in heterogeneous catalysis, in which a parallel array of straight nanochannels offers a platform with high surface area for assembling and stabilizing metallic nanoparticles working as catalysts. Herein we demonstrate a method for finely modifying the nanoporous anodic aluminum oxide (AAO), and further integration of nanoreactors. By using atomic transfer radical polymerization (ATRP), polymer brushes were successfully grafted on the inner wall of the nanochannels of the AAO membrane, followed by exchanging counter ions with a precursor for nanoparticles (NPs), and used as the template for deposition of well-defined Au NPs. The membrane was used as a functional nanochannel for novel flow-through catalysis. High catalytic performance and instantaneous separation of products from the reaction system was achieved in reduction of 4-nitrophenol.
NASA Astrophysics Data System (ADS)
Liu, Jianxi; Ma, Shuanhong; Wei, Qiangbing; Jia, Lei; Yu, Bo; Wang, Daoai; Zhou, Feng
2013-11-01
Smart systems on the nanometer scale for continuous flow-through reaction present fascinating advantages in heterogeneous catalysis, in which a parallel array of straight nanochannels offers a platform with high surface area for assembling and stabilizing metallic nanoparticles working as catalysts. Herein we demonstrate a method for finely modifying the nanoporous anodic aluminum oxide (AAO), and further integration of nanoreactors. By using atomic transfer radical polymerization (ATRP), polymer brushes were successfully grafted on the inner wall of the nanochannels of the AAO membrane, followed by exchanging counter ions with a precursor for nanoparticles (NPs), and used as the template for deposition of well-defined Au NPs. The membrane was used as a functional nanochannel for novel flow-through catalysis. High catalytic performance and instantaneous separation of products from the reaction system was achieved in reduction of 4-nitrophenol.
AC and DC conductivity due to hopping mechanism in double ion doped ceramics
NASA Astrophysics Data System (ADS)
Rizwana, Mahboob, Syed; Sarah, P.
2018-04-01
Sr1-2xNaxNdxBi4Ti4O15 (x = 0.1, 0.2 and 0.4) system is prepared by sol gel method involving Pechini process of modified polymeric precursor method. Phase identification is done using X-ray diffraction. Conduction in prepared materials involves different mechanisms and is explained through detailed AC and DC conductivity studies. AC conductivity studies carried out on the samples at different frequencies and different temperatures gives more information about electrical transport. Exponents used in two term power relation helps us to understand the different hopping mechanism involved at low as well as high frequencies. Activation energies calculated from the Arrhenius plots are used to calculate activation energies at different temperatures and frequencies. Hopping frequency calculated from the measured data explains hopping of charge carriers at different temperatures. DC conductivity studies help us to know the role of oxygen vacancies in conduction.
ESEM analysis of polymeric film in EVA-modified cement paste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, D.A.; Monteiro, P.J.M.
2005-10-01
Portland cement pastes modified by 20% weight (polymer/cement ratio) of poly(ethylene-co-vinyl acetate) (EVA) were prepared, cured, and immersed in water for 11 days. The effects of water saturation and drying on the EVA polymeric film formed in cement pastes were observed using environmental scanning electron microscopy (ESEM). This technique allowed the imaging of the EVA film even in saturated samples. The decrease of the relative humidity inside the ESEM chamber did not cause any visual modification of the polymeric film during its drying.
Comparison of a polymeric pseudostationary phase in EKC with ODS stationary phase in RP-HPLC.
Ni, Xinjiong; Zhang, Min; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun
2018-01-01
Poly(stearyl methacrylate-co-methacrylic acid) (P(SMA-co-MAA)) was induced as pseudostationary phase (PSP) in electrokinetic chromatography (EKC). The n-octadecyl groups in SMA were the same as that in octadecylsilane (ODS) C18 column. Thus, the present work focused on the comparison of selectivity between polymeric PSP and ODS stationary phase (SP), and the effect of organic modifiers on the selectivity of polymeric PSP and ODS SP. 1-butanol could directly interacted with PSP as a Class I modifier, and improved both of the methylene selectivity and polar group selectivity. When the analysis times were similar, the polymeric PSP exhibited better methylene selectivity and polar group selectivity. Although the hydrophobic groups were similar, the substituted benzenes elution order was different between polymeric PSP and ODS SP. Linear solvation energy relationships (LSER) model analysis found that polymeric PSP and ODS SP exhibited two same key factors in selectivity: hydrophobic interaction and hydrogen bonding acidity. But polymeric PSP exhibited relatively strong n- and π-electrons interaction to the analytes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Organometallic Polymeric Conductors
NASA Technical Reports Server (NTRS)
1997-01-01
For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. The highest conductivities reported (approximately 4/Scm) were achieved with polythiophene in a polystyrene host polymer. The best films using a polyamide as base polymer were four orders of magnitude less conductive than the polystyrene films. The authors suggested that this was because polyimides were unable to swell sufficiently for infiltration of monomer as in the polystyrene. It was not clear, however, if the different conductivities obtained were merely the result of differing oxidation conditions. Oxidation time, temperature and oxidant concentration varied widely among the studies.
Lovino, Magalí; Cardinal, M Fernanda; Zubiri, Diana B V; Bernik, Delia L
2005-12-15
Porous silica matrices prepared by sol-gel process yield biocompatible materials adequate for encapsulation of biomolecules or drugs. The procedure is simple and fast, but when alkoxyde precursors like tetraethoxysilane (TEOS) are used the polymerisation reaction leads to the formation of alcohol as a by-product, which can produce undesirable effects on the activity of entrapped enzymes or modify a drug release kinetic. Therefore, it is critical to determine that no remnant ethanol is left prior using or storing the obtained biomaterial. In this regard, the technique used in the alcohol determination should be non-invasive and non-destructive to preserve the encapsulation device intact and ready to use. In this work we have successfully used a portable electronic nose (e-nose) for the screening of silica polymerisation process during theophylline encapsulation. TEOS reaction was "smelt" since precursor pre-hydrolysis until the end of ethanol release, sensed directly at the headspace of matrices slabs. Measurements showed that ethanol was negligible since 10th day in polymeric slabs of 10 mm width and 2 cm diameter. This first use of e-nose following a polymerisation reaction opens a wide number of putative applications in pharmaceutical and biochemical fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabalka, George W
The goal of this research was on the development of new, rapid, and efficient synthetic methods for incorporating short-lived radionuclides into agents of use in measuring dynamic processes. The initial project period (Year 1) was focused on the preparation of stable, solid state precursors that could be used to efficiently incorporate short-lived radioisotopes into small molecules of use in biological applications (environmental, plant, and animal). The investigation included development and evaluation of new methods for preparing carbon-carbon and carbon-halogen bonds for use in constructing the substrates to be radiolabeled. The second phase (Year 2) was focused on developing isotope incorporationmore » techniques using the stable, boronated polymeric precursors. The final phase (Year 3), was focused on the preparation of specific radiolabeled agents and evaluation of their biodistribution using micro-PET and micro-SPECT. In addition, we began the development of a new series of polymeric borane reagents based on polyethylene glycol backbones.« less
Li, Hongkun; Chi, Weiwen; Liu, Yajing; Yuan, Wei; Li, Yaowen; Li, Yongfang; Tang, Ben Zhong
2017-09-01
Ferrocene-based polymers have drawn much attention in the past decades due to their unique properties and promising applications. However, the synthesis of hyperbranched polymers is still a great challenge. Here, two ferrocene-based hyperbranched polytriazoles with high molecular weights are facilely prepared by the click polymerization reactions of ferrocene-containing diazides (1) and tris(4-ethynylphenyl)amine (2) using Cu(PPh 3 ) 3 Br as catalyst in dimethylformamide at 60 °C for 5 and 9 h in satisfactory yields of 54.0% and 52.3%. The resulting polytriazoles are soluble in common organic solvents and thermally stable, with 5% weight loss temperatures up to 307 °C. They can be used as precursors to produce nanostructured ceramics with good magnetizability by pyrolysis at elevated temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
System to continuously produce carbon fiber via microwave assisted plasma processing
White, Terry L [Knoxville, TN; Paulauskas, Felix L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN
2010-11-02
A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.
Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes
DOE Office of Scientific and Technical Information (OSTI.GOV)
RAHIMIAN,KAMYAR; LOY,DOUGLAS A.
2000-05-01
Ring-opening polymerization (ROP) of disilaoxacyclopentanes has proven to be an excellent approach to sol-gel type hybrid organic-inorganic materials. These materials have shown promise as precursors for encapsulation and microelectronics applications. The polymers are highly crosslinked and are structurally similar to traditional sol-gels, but unlike typical sol-gels they are prepared by an organic base or Bronsted acid (formic or triflic acid), without the use of solvents and water, they have low VOC's and show little shrinkage during processing.
Kerékgyártó, Márta; Járvás, Gábor; Novák, Levente; Guttman, András
2016-02-01
The activation energy related to the electromigration of oligosaccharides can be determined from their measured electrophoretic mobilities at different temperatures. The effects of a viscosity modifier (ethylene glycol) and a polymeric additive (linear polyacrylamide) on the electrophoretic mobility of linear sugar oligomers with α1-4 linked glucose units (maltooligosaccharides) were studied in CE using the activation energy concept. The electrophoretic separations of 8-aminopyrene-1,3,6-trisulfonate-labeled maltooligosaccharides were monitored by LIF detection in the temperature range of 20-50°C, using either 0-60% ethylene glycol (viscosity modifier) or 0-3% linear polyacrylamide (polymeric additive) containing BGEs. Activation energy curves were constructed based on the slopes of the Arrhenius plots. With the use of linear polyacrylamide additive, solute size-dependent activation energy variations were found for the maltooligosaccharides with polymerization degrees below and above maltoheptaose (DP 7), probably due to molecular conformation changes and possible matrix interaction effects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hevus, Ivan
Stimuli-responsive polymers adapt to environmental changes by adjusting their chain conformation in a fast and reversible way. Responsive polymeric materials have already found use in electronics, coatings industry, personal care, and bio-related areas. The current work aims at the development of novel responsive functional polymeric materials by manipulating environment-dependent self-assembly of a new class of responsive macromolecules strategically designed in this study,—amphiphilic invertible polymers (AIPs). Environment-dependent micellization and self-assembly of three different synthesized AIP types based on poly(ethylene glycol) as a hydrophilic fragment and varying hydrophobic constituents was demonstrated in polar and nonpolar solvents, as well as on the surfaces and interfaces. With increasing concentration, AIP micelles self-assemble into invertible micellar assemblies composed of hydrophilic and hydrophobic domains. Polarity-responsive properties of AIPs make invertible micellar assemblies functional in polar and nonpolar media including at interfaces. Thus, invertible micellar assemblies solubilize poorly soluble substances in their interior in polar and nonpolar solvents. In a polar aqueous medium, a novel stimuli-responsive mechanism of drug release based on response of AIP-based drug delivery system to polarity change upon contact with the target cell has been established using invertible micellar assemblies loaded with curcumin, a phytochemical drug. In a nonpolar medium, invertible micellar assemblies were applied simultaneously as nanoreactors and stabilizers for size-controlled synthesis of silver nanoparticles stable in both polar and nonpolar media. The developed amphiphilic nanosilver was subsequently used as seeds to promote anisotropic growth of CdSe semiconductor nanoparticles that have potential in different applications ranging from physics to medicine. Amphiphilic invertible polymers were shown to adsorb on the surface of silica nanoparticles strongly differing in polarity. AIP modified silica nanoparticles are able to adsolubilize molecules of poorly water-soluble 2-naphthol into the adsorbed polymer layer. The adsolubilization ability of adsorbed invertible macromolecules makes AIP-modified silica nanoparticles potentially useful in wastewater treatment or biomedical applications. Finally, the invertible micellar assemblies were used as functional additives to improve the appearance of electrospun silicon wires based on cyclohexasilane, a liquid silicon precursor. AIP-assisted fabrication of silicon wires from the liquid cyclohexasilane precursor has potential as a scalable method for developing electronic functional materials.
Porous polymers: enabling solutions for energy applications.
Thomas, Arne; Kuhn, Pierre; Weber, Jens; Titirici, Maria-Magdalena; Antonietti, Markus
2009-02-18
A new generation of porous polymers was made for various energy-related applications, e.g., as fuel cell membranes, as electrode materials for batteries, for gas storage, partly from renewable resources. This review intends to catch this emerging field by reporting on a variety of different approaches to make high performing polymers porous. This includes template techniques, polymers with inherent microporosity, polymer frameworks by ionothermal polymerization, and the polymerization of carbon from appropriate precursors and by hydrothermal polymerization. In this process, we try to not only identify the current status of the field, but also point to open question and tasks to identify the potentially relevant progress. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for reproducibly preparing a low-melting high-carbon yield precursor
Smith, Wesley E.; Napier, Jr., Bradley
1978-01-01
The present invention is directed to a method for preparing a reproducible synthetic carbon precursor by the autoclave polymerization of indene (C.sub.9 H.sub.8) at a temperature in the range of 470.degree.-485.degree. C, and at a pressure in the range of about 1000 to about 4300 psi. Volatiles in the resulting liquid indene polymer are removed by vacuum outgassing to form a solid carbon precursor characterized by having a relatively low melting temperature, high-carbon yield, and high reproducibility which provide for the fabrication of carbon and graphite composites having strict requirements for reproducible properties.
Adsorption of Wine Constituents on Functionalized Surfaces.
Mierczynska-Vasilev, Agnieszka; Smith, Paul A
2016-10-18
The adsorption of macromolecules on solid surfaces is of great importance in the field of nanotechnology, biomaterials, biotechnological, and food processes. In the field of oenology adsorption of wine macromolecules such as polyphenols, polysaccharides, and proteins is much less desirable on membrane materials because of fouling and reduced filtering performance. On the other hand, adsorption of these molecules on processing aids is very beneficial for achieving wine clarity and stability. In this article, the effect of surface chemical functionalities on the adsorption of white, rosé, and red wine constituents was evaluated. Allylamine, acrylic acid, and ethanol were selected as precursors for plasma polymerization in order to generate coatings rich in amine, carboxyl, and hydroxyl chemical groups, respectively. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS) and the ability of different surface chemical functionalities to adsorb wine constituents were characterized by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). The results demonstrated that the amine and carboxyl modified surfaces encourage adsorption of constituents from white wine. The hydroxyl modified surfaces have the ability to preferentially adsorb rosé wine constituents, whereas red wine adsorbed to the highest extent on acrylic acid surface.
Structural Modification of Sol-Gel Materials through Retro Diels-Alder Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
SHALTOUT,RAAFAT M.; LOY,DOUGLAS A.; MCCLAIN,MARK D.
1999-12-08
Hydrolysis and condensation of organically bridged bis-triethoxysilanes, (EtO){sub 3}Si-R-Si(OEt){sub 3}, results in the formation of three dimensional organic/inorganic hybrid networks (Equation 1). Properties of these materials, including porosity, are dependent on the nature of the bridging group, R. Flexible groups (akylene-spacers longer than five carbons in length) polymerize under acidic conditions to give non-porous materials. Rigid groups (such as arylene-, alkynylene-, or alkenylene) form non-porous, microporous, and macroporous gels. In many cases the pore size distributions are quite narrow. One of the motivations for preparing hybrid organic-inorganic materials is to extend the range of properties available with sol-gel systems bymore » incorporating organic groups into the inorganic network. For example, organically modified silica gels arc either prepared by co-polymerizing an organoalkoxysilane with a silica precursor or surface silylating the inorganic gel. This can serve to increase hydrophobicity or to introduce some reactive organic functionality. However, the type and orientation of these organic functionalities is difficult to control. Furthermore, many organoalkoxysilanes can act to inhibitor even prevent gelation, limiting the final density of organic functionalities. We have devised a new route for preparing highly functionalized pores in hybrid materials using bridging groups that are thermally converted into the desired functionalities after the gel has been obtained. In this paper, we present the preparation and characterization of bridged polysilsesquioxanes with Diels-Alder adducts as the bridging groups from the sol-gel polymerization of monomers 2 and 4. The bridging groups are constructed such that the retro Diela-Alder reaction releases the dienes and leaves the dienophiles as integral parts of the network polymers. In the rigid architecture of a xerogel, this loss of organic functionality should liberate sufficient space to modify the overall porosity. Furthermore, the new porosity will be functionalized with the dienophilic olefin bridging group. We also demonstrate that by changing the type of Diels-Alder adduct used as the bridging group, we can change the temperature at which the retro-Diels-Alder reaction will occur.« less
A chlorine precursor route (CPR) to poly(p-phenylene vinylene) light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heieh, B.R.; Antoniadis, H.; Bland, D.C.
1995-12-01
We use a chlorine precursor route (CPR) to fabricate PPV based electroluminescent (EL) devices. 1,4- Bis(chloromethyl)-2,3-diphenylbenzene was polymerized with one equivalent amount of potassium t-butoxide (t-BuOK) to give the corresponding chlorine precursor polymer with very high molecular weights. This polymer is soluble in common organic solvents and is highly stable in the solid state and in solution. Thin films of the precursor polymer were spin cast on indiumtin-oxide (ITO) coated glass substrates followed by thermal conversion at 300{degrees}C for 2 h to give DP-PPV thin films. We found that CPR is more convenient and reliable than sulfonium precursor route formore » the fabrication of PPV thin film EL devices. Efficient emission of green light (500 nm) was observed for Mg/DP-PPV/ITO and Al/DP-PPV/ITO single layer devices.« less
Synthesis of Dendronized Poly(l-Glutamate) via Azide-Alkyne Click Chemistry
Perdih, Peter; Kržan, Andrej; Žagar, Ema
2016-01-01
Poly(l-glutamate) (PGlu) was modified with a second-generation dendron to obtain the dendronized polyglutamate, P(Glu-D). Synthesized P(Glu-D) exhibited a degree of polymerization (DPn) of 46 and a 43% degree of dendronization. Perfect agreement was found between the P(Glu-D) expected structure and the results of nuclear magnetic resonance spectroscopy (NMR) and size-exclusion chromatography coupled to a multi-angle light-scattering detector (SEC-MALS) analysis. The PGlu precursor was modified by coupling with a bifunctional building block (N3-Pr-NH2) in the presence of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) coupling reagent. The second-generation polyamide dendron was prepared by a stepwise procedure involving the coupling of propargylamine to the l-lysine carboxyl group, followed by attaching the protected 2,2-bis(methylol)propionic acid (bis-MPA) building block to the l-lysine amino groups. The hydroxyl groups of the resulting second-generation dendron were quantitatively deprotected under mild acidic conditions. The deprotected dendron with an acetylene focal group was coupled to the pendant azide groups of the modified linear copolypeptide, P(Glu-N3), in a Cu(I) catalyzed azide-alkyne cycloaddition reaction to form a 1,4-disubstituted triazole. The dendronization reaction proceeded quantitatively in 48 hours in aqueous medium as confirmed by 1H NMR and Fourier transform infrared spectroscopy (FT-IR) spectroscopy. PMID:28773369
Polymerization method for formation of thermally exfoliated graphite oxide containing polymer
NASA Technical Reports Server (NTRS)
Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Adamson, Douglas (Inventor)
2010-01-01
A process for polymerization of at least one monomer including polymerizing the at least one monomer in the presence of a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(esp 2)/g to 2600 m(esp 2/g.
NASA Astrophysics Data System (ADS)
Pranger, Lawrence A.
This research explored the processing and properties of PNCs using a polyfurfural alcohol (PFA) matrix. The precursor for PFA, furfuryl alcohol (FA) is sourced from feedstocks rich in hemicellulose, such as corn cobs, oat hulls and wood. To exploit FA as a polymerizable solvent, cellulose whiskers (CW) and montmorillonite clay (MMT) were used as the nanoparticle phase. Results from PNC processing show that CW and MMT can be dispersed in the PFA matrix by means of insitu polymerization, without the use of surfactants or dilution in solvents. Both CW and MMT nanoparticles catalyze the polymerization of furfuryl alcohol (FA). Moreover, the insitu intercalative polymerization of FA in the interlayer galleries of MMT leads to the complete exfoliation of the MMT in the PFA matrix. CW and MMT both function as effective matrix modifiers, increasing the thermal stability of PFA nanocomposites compared to pure PFA polymer. The increased thermal stability is seen as significant increases in the onset of degradation and in residual weight at high temperature. This research also explored the surface functionalization of Cu, Ni and Pt substrates by self-assembly of a range of difunctional linker molecules. Characterization by XPS and PM-IRRAS indicate that diisocyanides and dicarboxylic acids both form chemically "sticky" surfaces after self-assembly on Cu and Ni. Sticky surfaces may provide a means of increasing nanoparticle dispersion in metal nanocluster filled PNCs, by increasing their interaction with the matrix polymer. Another potential application for sticky surfaces on Cu is in the ongoing miniaturization of circuit boards. The functionalization of Cu bond pad substrates with linker molecules may provide an alternate means of bonding components to their bond pads, with higher placement accuracy compared to solder bumps.
Highly water-absorbing silk yarn with interpenetrating network via in situ polymerization.
Lee, Ka I; Wang, Xiaowen; Guo, Xia; Yung, Ka-Fu; Fei, Bin
2017-02-01
Silk was modified via in situ polymerization of two monomers acrylamide and sodium acrylate by swelling in an effective LiBr dissolution system. Swelling of natural silks in LiBr solutions of low concentration was clearly observed under optical microscope, and their conformational changes were revealed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Dissolution tests and FTIR spectra of these modified silks suggested the presence of interpenetrating network of polyacrylamide and poly(sodium acrylate) in the silk yarns. These modified silks exhibited superior water absorption to that of raw silk and greatly improved mechanical properties in both dry and wet states. These novel modified silks also showed low cytotoxicity towards skin keratinocytes, having potential applications in biomedical textiles. This modification method by in situ polymerization after swelling in LiBr provides a new route to highly enhance the properties and performance of silk for various applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Pressure-induced polymerization of P(CN) 3
Gou, Huiyang; Yonke, Brendan L.; Epshteyn, Albert; ...
2015-05-21
Motivated to explore the formation of novel extended carbon-nitrogen solids via well-defined molecular precursor pathways, we studied the chemical reactivity of highly pure phosphorous tricyanide, P(CN) 3, under conditions of high pressure at room temperature. Raman and infrared (IR) spectroscopic measurements reveal a series of phase transformations below 10 GPa, and several low-frequency vibrational modes are reported for the first time. Synchrotron powder Xray diffraction (PXRD) measurements taken during compression show that molecular P(CN) 3 is highly compressible with a bulk modulus of 10.0±0.3 GPa and polymerizes into an amorphous solid above ~10.0 GPa. Raman and infrared (IR) spectra, togethermore » with first-principles molecular-dynamics simulations, show that the amorphization transition is associated with polymerization of the cyanide groups into CN bonds with predominantly sp 2 character, similar to known carbon nitrides, resulting in a novel PCN polymeric phase, which is recoverable to ambient pressure.« less
Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak
2014-03-07
TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.
Mechanically Strong Lightweight Materials for Aerospace Applications (x-aerogels)
NASA Technical Reports Server (NTRS)
Leventis, Nicholas
2005-01-01
The X-Aerogel is a new NASA-developed strong lightweight material made by reacting the mesoporous surfaces of 3-D networks of inorganic nanoparticles with polymeric crosslinkers. Since the relative amount of the crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by templated casting of polymeric precursors on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralightweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the thermal conductivity of styrofoam. XAerogels have been demonstrated with several polymers such as polyurethanes/polyureas, epoxies and polyolefins, while crosslinking of approximately 35 different oxide aerogels yields a wide variety of dimensionally stable, porous lightweight materials with interesting structural, magnetic and optical properties. X-Aerogels are evaluated for cryogenic rocket fuel storage tanks and for Advanced EVA suits, where they will play the dual role of the thermal insulator/structural material. Along the same lines, major impact is also expected by the use of X-Aerogels in structural components/thermal protection for small satellites, spacecrafts, planetary vehicles and habitats.
Cowieson, D; Piletska, E; Moczko, E; Piletsky, S
2013-08-01
An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.
Formation of conductive polymers using nitrosyl ion as an oxidizing agent
Choi, Kyoung-Shin; Jung, Yongju; Singh, Nikhilendra
2016-06-07
A method of forming a conductive polymer deposit on a substrate is disclosed. The method may include the steps of preparing a composition comprising monomers of the conductive polymer and a nitrosyl precursor, contacting the substrate with the composition so as to allow formation of nitrosyl ion on the exterior surface of the substrate, and allowing the monomer to polymerize into the conductive polymer, wherein the polymerization is initiated by the nitrosyl ion and the conductive polymer is deposited on the exterior surface of the substrate. The conductive polymer may be polypyrrole.
NASA Astrophysics Data System (ADS)
Ambati, Jyothirmai
This dissertation presents studies of the synthetic processes and applications of siloxane-based materials. Kinetic investigations of bridged organoalkoxysilanes that are precursors to organic-inorganic hybrid polysilsesquioxanes are a primary focus. Quick gelation despite extensive cyclization is found during the polymerization of bridged silane precursors except for silanes with certain short bridges. This work is an attempt to characterize and understand some of the distinct features of bridged silanes using experimental characterization, kinetic modeling and simulation. In addition to this, the dissertation shows how the properties of siloxane-materials can be engineered for drug delivery and adsorption. The phase behavior of polymerizing mixtures is first investigated to identify the solutions that favor kinetic characterization. Microphase separation is found to cause gradual loss of NMR signal for certain initial compositions. Distortionless Enhancement by Polarization Transfer 29Si NMR is employed to identify the products of polymerization of some short-bridged silanes under no signal loss conditions. This technique requires knowing indirect 29Si-1H scalar coupling constants which sometimes cannot be measured due to second-order effects. However, the B3LYP density functional method with 6-31G basis set is found to predict accurate 29Si- 1H coupling constants of organoalkoxysilanes and siloxanes. The scalar coupling constants thus estimated are employed to resolve non-trivial coupled NMR spectra and quantitative kinetic modeling is performed using the DEPT Si NMR transients. In order to investigate the role of the organic bridging group, the structural evolution of bridged and non-bridged silanes are compared using Monte Carlo simulations. Kinetic and simulation models suggest that cyclization plays a key role right from the onset of polymerization for bridged silanes even more than in non-bridged silanes. The simulations indicate that the carbosiloxane rings formed from short-bridged precursors slow down but do not prevent gelation. The tuning of siloxane-based materials for adsorption technologies are also discussed here. In the first example, antioxidant enzyme loading is investigated as a means to reduce oxidative stress generated by silica nanoparticle drug carriers. Materials are engineered for promising enzyme loading and protection from proteolysis. Second, the potential of copper sulfate impregnation to enhance adsorption of ammonia by silica is explored by molecular simulation. KEYWORDS: Sol-gel Polymerization, Kinetic Investigation, Si NMR, Bridged Silanes, DFT Calculations.
Temperature rise in ion-leachable cements during setting reaction.
Kanchanavasita, W; Pearson, G J; Anstice, H M
1995-11-01
Resin-modified ion-leachable cements have been developed for use as aesthetic restorative materials. Their apparent improved physical and handling properties can make them more attractive for use than conventional glass-ionomers. However, they contain monomers which are known to contract on polymerization and produce a polymerization exotherm. This study evaluated the temperature rise during setting and the rate of dimensional change of several ion-leachable materials. The resin-modified ion-leachable cements demonstrated greater temperature rises and higher rates of contraction than conventional materials. Generally, the behaviour of these resin-modified materials was similar to that of composite resins. However, some resin-modified cements produced a temperature rise of up to 20 degrees C during polymerization which was greater than that of the composite resin. This temperature rise must be taken into account when using the materials in direct contact with dentine in deep cavities without pulp protection. Longer irradiation time than the recommended 20 s did not significantly increase the maximum temperature rise but slightly extended the time before the temperature started to decline. The temperature of the environment had a significant effect on the rate of dimensional change in some materials. The rate of polymerization contraction of light-activated cements was directly related to the observed temperature rise.
Evaluation of modified asphalt using chlorinated and maleated waste polymers.
DOT National Transportation Integrated Search
2002-07-01
Asphalt modification using polymeric additives derived from solid wastes, i.e. polyolefins, is reported. Chlorination of polyethylene can be controlled to produce semicrystalline polymeric additives. Differential scanning calorimetry can be used to d...
Monolithic microfluidic concentrators and mixers
Frechet, Jean M.; Svec, Frantisek; Yu, Cong; Rohr, Thomas
2005-05-03
Microfluidic devices comprising porous monolithic polymer for concentration, extraction or mixing of fluids. A method for in situ preparation of monolithic polymers by in situ initiated polymerization of polymer precursors within microchannels of a microfluidic device and their use for solid phase extraction (SPE), preconcentration, concentration and mixing.
Bayram, Cem; Mizrak, Alpay Koray; Aktürk, Selçuk; Kurşaklioğlu, Hurkan; Iyisoy, Atila; Ifran, Ahmet; Denkbaş, Emir Baki
2010-10-01
316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p < 0.05) with respect to SS 316L and control groups in each test.
An alkaline bacterial laccase for polymerization of natural precursors for hair dye synthesis.
Kumar, Deepak; Kumar, Aditya; Sondhi, Sonica; Sharma, Prince; Gupta, Naveen
2018-03-01
In the present study, an extracellular alkali stable laccase (Lac DS) from Bacillus subtilis DS which has pH optima at 8.5 using p -phenylenediamine (PPD) as substrate has been reported. Lac DS retained 70% activity for 4 h at pH 8.5 and 90% activity for 24 h at 55 °C. The enzyme yield was enhanced by optimization of fermentation conditions. A 746-fold increase in yield was observed under optimized conditions using 150 µM MgSO 4 , 1.2% yeast extract, 0.35% tryptone, and 150 µM vanillic acid. Lac DS was used to polymerize natural dye precursor catechol, pyrogallol, syringaldehyde, syringic acid, ferulic acid and gallic acid to develop a range of natural hair colors such as black, golden yellow, and reddish brown. The results indicate that alkaline Lac DS is a suitable candidate to develop a user-friendly and commercially applicable hair dyeing process in the area of cosmetic industry.
Polysaccharide-Modified Synthetic Polymeric Biomaterials
Baldwin, Aaron D.; Kiick, Kristi L.
2010-01-01
This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. PMID:20091875
Zeigler, J.M.
1985-07-30
Polymerization of acetylenic monomers is achieved by using a catalyst which is the reaction product of a tungsten compound and a reducing agent effective to reduce W(VI) to W(III and/or IV), e.g., WCl/sub 6/ x (organo-Li, organo-Mg or polysilanes). The resultant silylated polymers are of heretofore unachievable, high molecular weight and can be used as precursors to a wide variety of new acetylenic polymers by application of substitution reactions. They can be used as electrodes in batteries.
NASA Astrophysics Data System (ADS)
Guimarães, Vinicius F.; Salaün, Mathieu; Burner, Pauline; Maia, Lauro J. Q.; Ferrier, Alban; Viana, Bruno; Gautier-Luneau, Isabelle; Ibanez, Alain
2017-03-01
The optimization of the elaboration conditions of a new family of highly emissive white phosphors based on glassy yttrium aluminum borates (g-YAB) compositions is presented. Their preparation from solutions is based on the polymeric precursor method (modified Pechini process), involving non-toxic and low cost precursors. The resulting resins were first dried at moderate temperatures followed by two-step annealing treatments of the obtain powders under controlled atmospheres: a first pyrolysis under nitrogen followed by a calcination under oxygen. This favored the gradual oxidation of organic moieties coming from starting materials, avoiding uncontrolled self-combustion reactions, which generate localized hot spots. This prevented phase segregations and the formation of pyrolytic carbon or carbonates, which are strongly detrimental to the luminescence properties. Thus, coupled chemical analyses and luminescence characterizations showed the high chemical homogeneity of the resulting powders and their intense emissions in the whole visible range. These emissions can be tuned from blue to warm white by adjusting the calcination temperature that is an important advantage for the development of LED devices. We showed that impurities of monovalent and divalent cations act as quenching emission centers for these phosphors. Therefore, by increasing the purity grade, we significantly enhanced the PL emissions leading to high internal quantum yields (80-90%). Finally, cathodoluminescence emissions showed the homogeneous dispersion of emitting centers in the g-YAB matrix.
New inorganic/organic copolymers (ORMOCER{reg_sign}s) for dental applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolter, H.; Storch, W.; Ott, H.
1994-12-31
Urethane and thioether (meth)acrylate alkoxysilanes have been used, as sol-gel precursors, for the preparation of a special family of inorganic/organic copolymers (ORMOCER{reg_sign}s). The basic silane type offers the following structural and synthetic possibilities for modifying the properties of the resulting copolymers: variation of the number of alkoxy groups, combination with other, different, sol-gel precursors, variation of the number of attached (meth)acrylate groups (1--5), and variation within the molecular segment (kind, structure and length) connecting the inorganic with the organic polymer structure. To achieve the additional organic polymer structure in the cured copolymer the use of different radically induced polymerization approachesmore » (UV-, visible light-, thermal- and redox induced) is possible. Taking the incorporation of fillers into account, the Young`s modulus of these copolymers is adjustable in a range of 1--17,000 MPa, and the thermal expansion coefficient in a range of 17--250{center_dot}10{sup {minus}6}{center_dot}K{sup {minus}1} (5--50 C). Other advantages are the low shrinkage (1--2,8 vol.-%), the high flexural strength (up to 160 MPa), and the high abrasion resistance. This new copolymer type seems to have significant potential for medical applications, especially as dental filling material to replace the currently used controversial amalgam fillings.« less
Huang, Yuhong; Wei, Oiang; Chu, Chung-tse; Zheng, Haixing
2001-01-01
Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.
Synthesis and characterization of novel polyacid-stabilized latexes.
Yang, Pengcheng; Armes, S P
2012-09-18
A series of novel polyacid macromonomers based on 2-hydroxypropyl methacrylate (HPMA) were prepared by atom transfer radical polymerization (ATRP) via a two-step route. First, a range of well-defined PHPMA homopolymer precursors were synthesized by ATRP using a tertiary amine-functionalized initiator, 2-(dimethylamino)ethyl-2-bromoisobutyrylamide, and a CuCl/2, 2'-bipyridine (bpy) catalyst in alcoholic media at 50 °C. ATRP polymerizations were relatively slow and poorly controlled in pure isopropanol (IPA), especially when targeting higher degrees of polymerization (DP > 30). Improved control was achieved by addition of water: low polydispersity (M(w)/M(n) < 1.25) PHPMA homopolymers of DP = 30, 40, 50, 60, or 70 were successfully prepared using a 9:1 w/w % IPA/water mixture at 50 °C. These PHPMA homopolymer precursors were then derivatized to produce the corresponding poly(2-(succinyloxy)propyl methacrylate) (PSPMA) macromonomers by quaternizing the tertiary amine end-group with excess 4-vinylbenzyl chloride, followed by esterification of the pendent hydroxyl groups using excess succinic anhydride at 20 °C. These polyacid macromonomers were evaluated as reactive steric stabilizers for polystyrene latex synthesis under either aqueous emulsion polymerization or alcoholic dispersion polymerization conditions. Near-monodisperse polystyrene latexes were obtained via aqueous emulsion polymerization using 10 wt % PSPMA macromonomer (with respect to styrene monomer) with various initiators as evidenced by scanning electron microscopy, disk centrifuge photosedimentometry and light scattering studies. PSPMA macromomer concentrations as low as 1.0 wt % also produced near-monodisperse latexes, suggesting that these PSPMA macromonomers are highly effective stabilizers. Alcoholic dispersion polymerization of styrene conducted in various ethanol/water mixtures with 10 wt % PSPMA(50) macromonomer produced relatively large near-monodisperse latexes. Increasing the water content in such formulations led to smaller latexes, as expected. Control experiments conducted with 10 wt % PSPMA(50) homopolymer produced relatively large polydisperse latexes via emulsion polymerization and only macroscopic precipitates via alcoholic dispersion polymerization. Thus the terminal styrene group on the macromonomer chains is essential for the formation of well-defined latexes. FT-IR spectroscopy indicated that these latexes contained PSPMA macromonomer, whereas (1)H NMR spectroscopy studies of dissolved latexes allowed stabilizer contents to be determined. Aqueous electrophoresis and X-ray photoelectron spectroscopy studies confirmed that the PSPMA macromonomer chains were located at the latex surface, as expected. Finally, these polyacid-stabilized polystyrene latexes exhibited excellent freeze-thaw stability and remained colloidally stable in the presence of electrolyte.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Mingyi; Xu, Xiaoyang, E-mail: xiaoyangxu2012@163.com; Wu, Tao
Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-raymore » photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide.« less
NASA Astrophysics Data System (ADS)
Guron, Marta
There is a need for new synthetic routes to high boron content materials for applications as polymeric precursors to ceramics, as well as in neutron shielding and potential medical applications. To this end, new ruthenium-catalyzed olefin metathesis routes have been devised to form new complex polyboranes and polymeric species. Metathesis of di-alkenyl substituted o-carboranes allowed the synthesis of ring-closed products fused to the carborane cage, many of which are new compounds and one that offers a superior synthetic method to one previously published. Acyclic diene metathesis of di-alkenyl substituted m-carboranes resulted in the formation of new main-chain carborane-containing polymers of modest molecular weights. Due to their extremely low char yields, and in order to explore other metathesis routes, ring opening metathesis polymerization (ROMP) was used to generate the first examples of poly(norbornenyl- o-carboranes). Monomer synthesis was achieved via a two-step process, incorporating Ti-catalyzed hydroboration to make 6-(5-norbornenyl)-decaborane, followed by alkyne insertion in ionic liquid media to achieve 1,2-R2 -3-norbornenyl o-carborane species. The monomers were then polymerized using ROMP to afford several examples of poly(norbornenyl- o-carboranes) with relatively high molecular weights. One such polymer, [1-Ph, 3-(=CH2-C5H7-CH2=)-1,2-C 2B10H10]n, had a char yield very close to the theoretical char yield of 44%. Upon random copolymerization with poly(6-(5-norbornenyl) decaborane), char yields significantly increased to 80%, but this number was well above the theoretical value implicating the formation of a boron-carbide/carbon ceramic. Finally, applications of polyboranes were explored via polymer blends toward the synthesis of ceramic composites and the use of polymer precursors as reagents for potential ultra high temperature ceramic applications. Upon pyrolysis, polymer blends of poly(6-(5-norbornenyl)-decaborane) and poly(methylcarbosilane) converted into boron-carbide/silicon-carbide ceramics with high char yields. These polymer blends were also shown to be useful as reagents for synthesis of hafnium-boride/hafnium-carbide/silicon carbide and zirconium-boride/zirconium-carbide/silicon carbide composites.
Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries.
David, Lamuel; Bhandavat, Romil; Barrera, Uriel; Singh, Gurpreet
2016-03-30
Silicon and graphene are promising anode materials for lithium-ion batteries because of their high theoretical capacity; however, low volumetric energy density, poor efficiency and instability in high loading electrodes limit their practical application. Here we report a large area (approximately 15 cm × 2.5 cm) self-standing anode material consisting of molecular precursor-derived silicon oxycarbide glass particles embedded in a chemically-modified reduced graphene oxide matrix. The porous reduced graphene oxide matrix serves as an effective electron conductor and current collector with a stable mechanical structure, and the amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency. The paper electrode (mass loading of 2 mg cm(-2)) delivers a charge capacity of ∼588 mAh g(-1)electrode (∼393 mAh cm(-3)electrode) at 1,020th cycle and shows no evidence of mechanical failure. Elimination of inactive ingredients such as metal current collector and polymeric binder reduces the total electrode weight and may provide the means to produce efficient lightweight batteries.
Shi, Xiu-Juan; Chen, Gao-Jian; Wang, Yan-Wei; Yuan, Lin; Zhang, Qiang; Haddleton, David M; Chen, Hong
2013-11-19
Surface-initiated SET-LRP was used to synthesize polymer brush containing N-isopropylacrylamide and adamantyl acrylate using Cu(I)Cl/Me6-TREN as precursor catalyst and isopropanol/H2O as solvent. Different reaction conditions were explored to investigate the influence of different parameters (reaction time, catalyst concentration, monomer concentration) on the polymerization. Copolymers with variable 1-adamantan-1-ylmethyl acrylate (Ada) content and comparable thickness were synthesized onto silicon surfaces. Furthermore, the hydrophilic and bioactive molecule β-cyclodextrin-(mannose)7 (CDm) was synthesized and complexed with adamantane via host-guest interaction. The effect of adamantane alone and the effect of CDm together with adamantane on the wettability and thermoresponsive property of surface were investigated in detail. Experimental and molecular structure analysis showed that Ada at certain content together with CDm has the greatest impact on surface wettability. When Ada content was high (20%), copolymer-CDm surfaces showed almost no CDm complexed with Ada as the result of steric hindrance.
NASA Astrophysics Data System (ADS)
Tian, Lin; Xian, Xiaozhai; Cui, Xingkai; Tang, Hua; Yang, Xiaofei
2018-02-01
Semiconductor-based photocatalysis has been considered as one of the most effective techniques to achieve the conversion of clean and sustainable sunlight to solar fuel, in which the construction of novel solar-driven photocatalytic systems is the key point. Here, we report initially the synthesis of modified graphitic carbon nitride (g-C3N4) nanorods via the calcination of intermediates obtained from the co-polymerization of precursors, and the in-situ hybridization of Ag3PO4 with as-prepared modified g-C3N4 to produce g-C3N4 nanorod/Ag3PO4 composite materials. The diameter of modified rod-like g-C3N4 materials is determined to be around 1 μm. Subsequently the morphological features, crystal and chemical structures of the assembled g-C3N4 nanorod/Ag3PO4 composites were systematically investigated by SEM, XRD, XPS, UV-vis diffuse reflectance spectra (DRS). Furthermore, the use of as-prepared composite materials as the catalyst for photocatalytic oxygen evolution from water splitting was studied. The oxygen-generating results showed that the composite photocatalyst modified with 600 mg rod-like g-C3N4 demonstrates 2.5 times higher efficiency than that of bulk Ag3PO4. The mechanism behind the enhancement in the oxygen-evolving activity is proposed on the basis of in-situ electron spin resonance (ESR) measurement as well as theoretical analysis. The study provides new insights into the design and development of new photocatalytic composite materials for energy and environmental applications.
A Study of Shrinkage Stress Reduction and Mechanical Properties of Nanogel-Modified Resin Systems
Liu, JianCheng; Howard, Gregory D.; Lewis, Steven H.; Barros, Matthew D.; Stansbury, Jeffrey W.
2012-01-01
A series of nanogel compositions were prepared from urethane dimethacrylate (UDMA) and isobornyl methacrylate (IBMA) in the presence of a thiol chain transfer agent. The linear oligomer of IBMA was synthesized by a similar solution polymerization technique. The nanogels were prepared with different crosslinker concentrations to achieve varied branching densities and molecular weights. The prepolymers were dispersed in triethylene glycol dimethacrylate at loading levels ranging from 10 wt% to 50 wt%. Photopolymerization reaction kinetics of all prepolymer modified systems were enhanced relative to the nanogel-free control during early stage polymerization while limiting conversion was similar for most samples. Volumetric polymerization shrinkage was reduced proportionally with the prepolymer content while the corresponding decrease in polymerization stress was potentially greater than an additive linear behavior. Flexural strength for inert linear polymer-modified systems decreased significantly with the increase in the prepolymer content; however, with an increase in the crosslinker concentration within the nanogel additives, and an increase in the concentration of residual pendant reactive sites, flexural strength was maintained or improved regardless of the nanogel loading level. This demonstrates that covalent attachment rather than just physical entanglement with the polymer matrix is important for effective polymer mechanical reinforcement by nanogel additives. Reactive nanogel additives can be considered as a practical, generic means to achieve substantial reductions in polymerization shrinkage and shrinkage stress in common polymers. PMID:23109731
NASA Astrophysics Data System (ADS)
Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu
2015-04-01
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01439e
High volume method of making low-cost, lightweight solar materials
Blue, Craig A.; Clemens, Art; Duty, Chad E.; Harper, David C.; Ott, Ronald D.; Rivard, John D.; Murray, Christopher S.; Murray, Susan L.; Klein, Andre R.
2014-07-15
A thin film solar cell and a method fabricating thin film solar cells on flexible substrates. The method includes including providing a flexible polymeric substrate, depositing a photovoltaic precursor on a surface of the substrate, such as CdTe, ZrTe, CdZnTe, CdSe or Cu(In,Ga)Se.sub.2, and exposing the photovoltaic precursor to at least one 0.5 microsecond to 10 second pulse of predominately infrared light emitted from a light source having a power output of about 20,000 W/cm.sup.2 or less to thermally convert the precursor into a crystalline photovoltaic material having a photovoltaic efficiency of greater than one percent, the conversion being carried out without substantial damage to the substrate.
Monomer and metallopolymer compounds of Tb(III) as precursors for OLEDs
NASA Astrophysics Data System (ADS)
Irina, Savchenko; Oleksandra, Berezhnytska; Olena, Trunova; Yaroslav, Fedorov; Sergiy, Smola; Nataliya, Rusakova
2018-03-01
The Terbium (III) complexes [Tb(III)-water, mixed-ligand complex Tb(III)-phenanthroline] with 2-methyl-5-phenyl-1-pentene-3,5-dione were synthesized. The polycomplex was obtained by free-radical polymerization. The results of above studies have shown that the configuration of the chelate unit is unchanged during the polymerization. As a result, the type of coordination was determined and the structure of coordination polyhedra was assumed. The luminescence spectra of obtained metallocomplexes and polymer were investigated and analyzed. The solubilization of terbium complex with phenanthroline, was shown to change luminescence intensity in this complex.
Microgel Modified UV-Cured Methacrylic-Silica Hybrid: Synthesis and Characterization
Corcione, Carola Esposito; Striani, Raffaella; Frigione, Mariaenrica
2013-01-01
An innovative photopolymerizable microgel modified UV-cured acrylic-silica hybrid formulation was developed and characterized for possible use as protective coating for different substrates. A deep investigation, aiming at providing a strong scientific basis for the production of organic-inorganic (O-I) hybrids exhibiting phase co-continuity, was firstly carried out. The O-I hybrid first proposed in this study was obtained from organic precursors with a high siloxane content, which are mixed with tetraethoxysilane (TEOS) in such a way to produce co-continuous silica nanodomains dispersed within the crosslinked organic phase, as a result of the sol-gel process. The first part of the research deals with the selection and optimization of suitable systems through appropriate chemical modifications, in order to ensure that curing reactions can be carried out at room temperature and in the presence of UV radiation. Firstly, the silica domains are formed, followed by crosslinking reactions of the acrylic groups in the oligomer via a free radical polymerization. The crosslinking reaction was controlled with the use of a suitable photoinitiator. Most of the experimental work was devoted to understanding the morphology of the hybrid system, both in uncured and cured states, and to assess its final thermal and optical properties, using different experiential techniques. PMID:28788307
NASA Astrophysics Data System (ADS)
Xiaowei, Cheng; Sheng, Huang; Xiaoyang, Guo; Wenhui, Duan
2017-07-01
Crumb waste tire rubber (WTR) was pretreated by oxygen low temperature plasma (LTP) and modified by LTP polymerization process of ethanol monomer to improve the adhesion property with oil-well cement matrix and the mechanical properties of cement. The surface properties of modified crumb WTR and the mechanical properties and structures of modified oil-well cement were investigated by means of contact angle measurement, dispersion test, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), mechanics performance tests, permeability test and scanning electron microscopy (SEM). It was demonstrated that LTP treatment changed both the surface composition and roughness. The contact angle of pretreated crumb WTR dramatically fell from 122° to 34°, and sample with ethanol LPT polymer film decreased even further to 11°. The ATR-FTIR and XPS analysis results demonstrated that hydrophilic groups, such as -COOH, C-OH, and -CHO, were introduced on the WTR surface. The oxygen atomic percent increased from 8.11% to 14.50% and 24.83%. The mechanical properties, porosity and permeability of raw cement were compared to samples modified by untreated crumb WTR, pretreated crumb WTR and ethanol LTP polymerization treated crumb WTR. It was found that after 28 days, the compressive strength of the samples with the untreated crumb WTR decreased to 80% with respect to raw cement. The tensile strength and flexural strength also had a slight reduction compared with the raw cement. On the contrary, after 28 days, the tensile strength of cement modified by LTP polymerization treated WTR increased 11.03% and 13.36%, and the flexural strength increased 9.65% and 7.31%, respectively. A decrease in the compressive strength also occurred but was inconspicuous. A tight interface bonding for ethanol LTP polymerization treated WTR with cement matrix was observed via an SEM image.
Zucca, A; Brizzi, S; Riccioni, R; Azzarà, A; Ghimenti, M; Carulli, G
2006-01-01
Several neutrophil functions can be modified by rhG-CSF administration. Neutrophil morphology changes in the course of treatment with Filgrastim (nonglycosylated rhG-CSF), along with impairment of chemotaxis. Both morphology and chemotaxis are not affected by treatment with Lenograstim (glycosylated rhG-CSF). Thus, we evaluated actin polymerization in neutrophils induced by treatment with the two forms of rhG-CSF. In fact, actin polymerization is crucial for neutrophil motility. We evaluated twelve healthy subjects undergoing peripheral blood stem cells (PBSC) mobilization for allogeneic transplantation to HLA-identical siblings. Neutrophils were isolated by peripheral venous blood before and after administration of either Filgrastim (six PBSC donors) or Lenograstim (six PBSC donors). Actin polymerization was investigated by a flow cytometric assay, using FITC-phalloidin as a specific probe for F-actin, and two parameters were measured: spontaneous actin polymerization in resting neutrophils; fMLP-stimulated actin polymerization. Results were expressed as relative F-actin content. Fifteen blood donors were studied as a control group. Filgrastim administration induced an increased relative F-actin content in resting neutrophils; however, no further actin polymerization was observed after fMLP stimulation. Neutrophils from subjects treated with Lenograstim showed a normal behaviour in terms of both spontaneous and stimulated actin polymerization. Glycosylated and nonglycosylated rhG-CSF differently affect actin polymerization in newly generated neutrophils. Such effects may explain some previous findings concerning both morphology and chemotactic properties and may be due to different effects of the two forms of rhG-CSF on proteins involved in neutrophil motility regulation.
Aerogel and xerogel composites for use as carbon anodes
Cooper, John F [Oakland, CA; Tillotson, Thomas M [Tracy, CA; Hrubesh, Lawrence W [Pleasanton, CA
2008-08-12
Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.
2012-10-01
Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007, 318, 1618 Superamphiphobic electrospun surfaces...door for use a building block material for low surface energy materials • Applications – Mechanical robust superhydrophobic /oleophobic/omniphobic
Process for removing polymer-forming impurities from naphtha fraction
Kowalczyk, D.C.; Bricklemyer, B.A.; Svoboda, J.J.
1983-12-27
Polymer precursor materials are vaporized without polymerization or are removed from a raw naphtha fraction by passing the raw naphtha to a vaporization zone and vaporizing the naphtha in the presence of a wash oil while stripping with hot hydrogen to prevent polymer deposits in the equipment. 2 figs.
Process for removing polymer-forming impurities from naphtha fraction
Kowalczyk, Dennis C.; Bricklemyer, Bruce A.; Svoboda, Joseph J.
1983-01-01
Polymer precursor materials are vaporized without polymerization or are removed from a raw naphtha fraction by passing the raw naphtha to a vaporization zone (24) and vaporizing the naphtha in the presence of a wash oil while stripping with hot hydrogen to prevent polymer deposits in the equipment.
Zurková, E; Drobník, J; Kálal, J; Svec, F; Tyrácková, V; Vojtísek, V; Zeman, R
1983-09-01
Whole cells of Escherichia coli containing the enzyme penicillinamidohydrolase EC 3.5.1.11 were immobilized on the surface of modified macroporous copolymers of glycidylmethacrylate with ethylenedimethacrylate and of copolymers of methacrylaldehyde (MA) with divinylbenzene (DVB) by means of glutaraldehyde. These polymeric carriers were modified before cell binding by using ammonia or polyamines, especially ethylenediamine and hexamethylenediamine (HMDA). The highest specific activity and the largest yield in cell immobilization were achieved with the macroporous copolymer of MA and DVB modified with HMDA. The material thus obtained was used in repeated conversions of benzylpenicillin to 6-aminopenicillanic acid in a stirred batch reactor.
Li, Yongmei; Liu, Yan; Zhang, Zutai; Zhuge, Ruishen; Ding, Ning; Tian, Yueming
2018-01-26
Ca-P spots modified zirconia by liquid precursor infiltration and the cell responses were investigated. Pre-sintered zirconia specimens were immersed in Ca-P precursor solution. After dense sintering, scanning electron microscopy showed Ca-P spots were formed on the zirconia and anchored with zirconia substrates. The distribution density was increased with the extension of immersion time. Energy dispersive spectrometer confirmed the stoichiometric Ca/P ratio was about 1.67. After hydrothermal treatment, Ca-P spots turned into rod crystals where diffraction peaks of tricalcium phosphate and hydroxyapatite were detected by X-ray diffraction, and Ca 2+ and PO 4 3- release decreased slightly (p>0.05). There was no significant decrease on three-point bending strength (p>0.05). Osteoblast-like MC3T3-E1 cells attached and spread well and showed higher proliferation on Ca-P spots modified zirconia (p<0.05), though its initial alkaline phosphatase activity was not significant high (p>0.05). In conclusion, Ca-P liquid precursor infiltration is a potential method to modify the zirconia ceramics for improving bioactivity.
Xu, Zhi-Kang; Dai, Qing-Wen; Wu, Jian; Huang, Xiao-Jun; Yang, Qian
2004-02-17
A novel method for the surface modification of a microporous polypropylene membrane by tethering phospholipid analogous polymers (PAPs) is given, which includes the photoinduced graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) and the ring-opening reaction of grafted poly-(DMAEMA) with 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes. Five 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes, containing octyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy, and octadecyloxy groups in the molecular structure, were used to fabricate the PAP-modified polypropylene membranes. The attenuated total reflectance FT-IR spectra of the original, poly(DMAEMA)-grafted, and PAP-modified membranes confirmed the chemical changes on the membrane surface. Scanning electron microscope pictures showed that, compared with the original membrane, the surface porosities ofpoly(DMAEMA)-grafted and PAP-modified membranes were somewhat reduced. Water contact angles measured by the sessile drop method on PAP-modified membranes were slightly lower than that on the original polypropylene membrane, but higher than those on poly(DMAEMA)-grafted membranes with the exception of octyloxy-containing PAP-modified membranes. However, BSA adsorption experiments indicated that the five PAP-modified membranes had a much better protein-resistant property than the original polypropylene membrane and the poly(DMAEMA)-grafted membranes. For hexadecyloxy- and octadecyloxy-containing PAP-modified membranes, almost no protein adsorption was observed when the grafting degree was above 6 wt %. It was also found that the platelet adhesion was remarkably suppressed on the PAP-modified membranes. All these results demonstrate that the described approach is an effective way to improve the surface biocompatibility for polymeric membranes.
Supported organometallic catalysts for hydrogenation and Olefin Polymerization
Marks, Tobin J.; Ahn, Hongsang
2001-01-01
Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.
Bhakta, Himanshu Kumar; Park, Chan Hum; Yokozawa, Takako; Tanaka, Takashi; Jung, Hyun Ah; Choi, Jae Sue
2017-07-01
Cholinesterase (ChE) and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors are promising agents for the treatment of Alzheimer's disease (AD). In the present study, we examined the inhibitory activity of seven compounds isolated from the fruits of Cornus officinalis, cornuside, polymeric proanthocyanidins, 1,2,3-tri-O-galloyl-β-D-glucose, 1,2,3,6-tetra-O-galloyl-β-D-glucose, tellimagrandin I, tellimagrandin II, and isoterchebin, against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE1. All of the compounds displayed concentration-dependent in vitro inhibitory activity toward the ChEs and BACE1. Among them, tellimagrandin II exhibited the best inhibitory activity toward ChEs, whereas the best BACE1 inhibitor was 1,2,3,6-tetra-O-galloyl-β-D-glucose. Isoterchebin and polymeric proanthocyanidins were also significant ChE inhibitors. The kinetic and docking studies demonstrated that all compounds interacted with both the catalytic active sites and the peripheral anionic sites of the ChEs and BACE1. Tellimagrandin II, isoterchebin, and the polymeric proanthocyanidins exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. In conclusion, we identified significant ChE and BACE1 inhibitors from Corni Fructus that could have value as new multi-targeted compounds for anti-AD agents.
Seraji, Mohamad Mehdi; Sameri, Ghasem; Davarpanah, Jamal; Bahramian, Ahmad Reza
2017-05-01
Phenol-formaldehyde/silica hybrid aerogels with different degree of hydrophobicity were successfully synthesized via high temperature sol-gel polymerization. Tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) were used as precursor and co-precursor of the hydrophobic silica-based phase, respectively. The hydrolysis step of silica based sols were conducted by acid catalyzed reactions and HCl was used as hydrolysis catalyst. The chemical structure of prepared hybrid aerogels was characterized by Fourier Transform Infrared spectroscopy (FT-IR). The effect of MTES/TEOS proportion and catalyst content on the morphology and microstructure of samples were investigated by FE-SEM and C, Si mapping analysis. The acid catalyzed hydrolysis of TEOS and MTES sols leads to formation of a sol with primarily silica particles in the organic-inorganic hybrid sol and varying colloid growth mechanisms were occurred with change in MTES and HCl molar ratio. With the increasing of MTES content, the microstructure of samples changed from uniform colloidal network, core-shell structure to polymeric structure with a huge phase separation. The increasing of HCl mole fraction leads to smaller particle size. Moreover, the shrinkage of samples was decreased and water contact angles of the resulted aerogels were increased from 40 to 156.8° with the increases of MTES content. Copyright © 2017 Elsevier Inc. All rights reserved.
Ionene modified small polymeric beads
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor)
1977-01-01
Linear ionene polyquaternary cationic polymeric segments are bonded by means of the Menshutkin reaction (quaternization) to biocompatible, extremely small, porous particles containing halide or tertiary amine sites which are centers for attachment of the segments. The modified beads in the form of emulsions or suspensions offer a large, positively-charged surface area capable of irreversibly binding polyanions such as heparin, DNA, RNA or bile acids to remove them from solution or of reversibly binding monoanions such as penicillin, pesticides, sex attractants and the like for slow release from the suspension.
Development of highly porous crystalline titania photocatalysts
NASA Astrophysics Data System (ADS)
Marszewski, Michal
The objectives of this dissertation are the design, synthesis, and characterization of titania materials with surface area, porosity, crystallinity and doping tailored toward photocatalytic applications. Ultimately, the research should result in a strategy allowing the synthesis of titania with all these important features. The synthetic methods investigated in this research will include: i) soft-templating, ii) hard-templating, and iii) modified precursor strategy. Soft-templating strategy uses organic templates--either block copolymers or surfactants--that under specific conditions assemble into micelles, and later, these micelles are used to template the desired material around them. The resulting organic-inorganic composite is then calcined in air to remove the organic template and recover the final material with high surface area and large pore volume. This work explores 1) synthesis of titania materials in the presence of polymer templates, and the effects of different synthetic conditions on the structure of the resulting materials. Hard-templating, in contrast to soft-templating, uses inorganic templates. The hard template is introduced during the synthesis to cast its shape onto the fabricated material and removed afterwards, when the material has formed. The final material is an inverse replica of the hard template used, typically with a well-developed mesostructure. This work explores 1) hard templating synthesis of titania materials using silica and alumina, and 2) the effects of the template amount and type. The modified precursor strategy is a novel synthetic method, developed in this research, and designed specifically to achieve titania material with high surface area, large pore volume, high crystallinity, and possibly doping. The modified precursors are prepared by reacting generic titania precursors, such as titanium isopropoxide (TIPO), with organic acids, which results in substitution of some or all alkoxide groups in TIPO structure. The goal is to introduce new, easily carbonizable groups in TIPO structure so that the modified precursor can serve as titania and carbon precursor simultaneously. Subsequently, during carbonization in inert atmosphere, a carbon framework is formed that works as a scaffold, protecting titania during its crystallization. Afterwards, the carbon scaffold is removed by calcination in air. This work explores the modified precursor strategy by 1) preparing titania materials from TIPO modified with different carboxylic acids and 2) investigating the effect of the modifying acid on the properties of the carbon-titania composites and the final titania materials.
Functional Analysis of the Cytoskeleton Protein MreB from Chlamydophila pneumoniae
Gaballah, Ahmed; Kloeckner, Anna; Otten, Christian; Sahl, Hans-Georg; Henrichfreise, Beate
2011-01-01
In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae. PMID:22022378
Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae.
Gaballah, Ahmed; Kloeckner, Anna; Otten, Christian; Sahl, Hans-Georg; Henrichfreise, Beate
2011-01-01
In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, T.M.; Carpenter, J.P.; Dorhout, P.K.
1999-01-04
Intramolecular cyclizations during acid-catalyzed, sol-gel polymerizations of ct,co- bis(tietioxysilyl)aWmes substintidly lengtien gelties formonomers witietiylene- (l), propylene- (2), and butylene-(3)-bridging groups. These cyclizations reactions were found, using mass spectrometry and %i NMR spectroscopy, to lead preferentially to monomeric and dimeric products based on six and seven membered disilsesquioxane rings. 1,2- Bis(triethoxysilyl)ethane (1) reacts under acidic conditions to give a bicyclic drier (5) that is composed of two annelated seven membered rings. Under the same conditions, 1,3- bis(triethoxysilyl)propane (2), 1,4-bis(triethoxysilyl)butane (3), and z-1,4- bis(triethoxysilyl)but-2-ene (10) undergo an intramolecular condensation reaction to give the six membemd and seven membered cyclic disilsesquioxanes 6, 7,more » and 11. Subsequently, these cyclic monomers slowly react to form the tricyclic dirners 8,9 and 12. With NaOH as polymerization catalyst these cyclic silsesquioxanes readily ~aeted to afford gels that were shown by CP MAS z%i NMR and infr=d spectroscopes to retain some cyclic structures. Comparison of the porosity and microstructwe of xerogels prepared from the cyclic monomers 6 and 7 with gels prepared directly from their acyclic precursors 2 and 3, indicate that the final pore structure of the xerogels is markedly dependent on the nature of the precursor. In addition, despite the fact that the monomeric cyclic disilsesquioxane species can not be isolated from 1-3 under basic conditions due to their rapid rate of gelation, spectroscopic techniques also detected the presence of the cyclic structures in the resulting polymeric gels.« less
NASA Astrophysics Data System (ADS)
Buruga, Kezia; Kalathi, Jagannathan T.
2018-04-01
Halloysite nanotubes (HNTs) were modified with γ-methacryloxypropyltrimethoxysilane (γ-MPS) to improve their interaction with the polymer, and the modified HNTs (MHNTs) were subsequently used for the synthesis of MHNT-polymethylmethacrylate (PMMA) nanocomposites by miniemulsion polymerization assisted by ultrasound. Reduced agglomeration of HNTs due to modification with γ-MPS was evident from scanning electron microscopy analysis. Modification of HNTs and exfoliation of MHNTs in the polymer nanocomposite were confirmed by the presence of their respective characteristic peaks in Fourier-transform infrared spectra and x-ray diffraction patterns. Transmission electron microscopic analysis showed that the surface of the MHNTs differed significantly from that of unmodified HNTs. MHNT-PMMA nanocomposite exhibited significantly higher glass-transition temperature (T g) compared with neat PMMA or unmodified HNT-PMMA nanocomposite. Hence, such modification of HNTs along with miniemulsion polymerization assisted by ultrasound is a promising approach to achieve better dispersion of HNTs in the polymer and to obtain nanocomposites with enhanced properties.
Ma, Jiajun; Lv, Ling; Zou, Gang; Zhang, Qijin
2015-01-14
In this paper, we report a facile strategy to fabricate fluorescent porous thin film on the surface of U-bent poly(methyl methacrylate) optical fiber (U-bent POF) in situ via "click" polymerization for vapor phase sensing of explosives. Upon irradiation of evanescent UV light transmitting within the fiber under ambient condition, a porous film (POSS-thiol cross-linking film, PTCF) is synthesized on the side surface of the fiber by a thiol-ene "click" reaction of vinyl-functionalized polyhedral oligomeric silsesquioxanes (POSS-V8) and alkane dithiols. When vinyl-functionalized porphyrin, containing four allyl substituents at the periphery, is added into precursors for the polymerization, fluorescence porphyrin can be covalently bonded into the cross-linked network of PTCF. This "fastened" way reduces the aggregation-induced fluorescence self-quenching of porphyrin and enhances the physicochemical stability of the porous film on the surface of U-bent POF. Fluorescent signals of the PTCF/U-bent POF probe made by this method exhibit high fluorescence quenching toward trace TNT and DNT vapor and the highest fluorescence quenching efficiency is observed for 1, 6-hexanedimercaptan-based film. In addition, because of the presence of POSS-V8 with multi cross-linkable groups, PTCF exhibits well-organized pore network and stable dye dispersion, which not only causes fast and sensitive fluorescence quenching against vapors of nitroaromatic compounds, but also provides a repeatability of the probing performance.
Surface-functionalized mesoporous carbon materials
Dai, Sheng; Gorka, Joanna; Mayes, Richard T.
2016-02-02
A functionalized mesoporous carbon composition comprising a mesoporous carbon scaffold having mesopores in which polyvinyl polymer grafts are covalently attached, wherein said mesopores have a size of at least 2 nm and up to 50 nm. Also described is a method for producing the functionalized mesoporous composition, wherein a reaction medium comprising a precursor mesoporous carbon, vinyl monomer, initiator, and solvent is subjected to sonication of sufficient power to result in grafting and polymerization of the vinyl monomer into mesopores of the precursor mesoporous carbon. Also described are methods for using the functionalized mesoporous carbon, particularly in extracting metal ions from metal-containing solutions.
Barnacle cement: a polymerization model based on evolutionary concepts
Dickinson, Gary H.; Vega, Irving E.; Wahl, Kathryn J.; Orihuela, Beatriz; Beyley, Veronica; Rodriguez, Eva N.; Everett, Richard K.; Bonaventura, Joseph; Rittschof, Daniel
2009-01-01
Summary Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues. PMID:19837892
Natural and synthetic polymers in fabric and home care applications
NASA Astrophysics Data System (ADS)
Paderes, Monissa; Ahirwal, Deepak; Fernández Prieto, Susana
2017-07-01
Polymers can be tailored to provide different benefits in Fabric & Home Care formulations depending on the monomers and modifications used, such as avoiding dye transfer inhibition in the wash, modifying the surface of tiles or increasing the viscosity and providing suspension properties to consumer products. Specifically, the rheology modification properties of synthetic and natural polymers are discussed in this chapter. The choice of a polymeric rheology modifier will depend on the formulation ingredients (charges, functional groups), the type and the amount of surfactants, the pH and the desired rheology modification. Natural polymeric rheology modifiers have been traditionally used in the food industry, being xanthan gum one of the most well-known ones. On the contrary, synthetic rheology modifiers are preferably used in paints & coats, textile printing and cleaning products.
Long-term MBR performance of polymeric membrane modified with Bismuth-BAL chelate (BisBAL).
Turken, Turker; Kose-Mutlu, Borte; Okatan, Selin; Durmaz, Gamze; Guclu, Mehmet C; Guclu, Serkan; Ovez, Suleyman; Koyuncu, Ismail
2018-02-15
An ultrafiltration membrane prepared by polyethersulfone (PES) was modified with Bismuth-BAL chelate (BisBAL) and was used in submerged membrane bioreactor system. Moreover, a control membrane reactor was also tasked to evaluate the effect of BisBAL on the membrane performance. The flux profile, transmembrane pressure, the effect of chemical treatment, cake layer formation, anti-fouling properties against extracellular polymeric substances (EPS) and soluble microbial products (SMP) were studied. The UF modified membrane demonstrated a sustained permeability, low cleaning frequency, and longer filtration time. In terms of anti-EPS and SMP accumulation, the modified membrane showed a lower membrane resistance. It can be illustrated from scanning electron microscopy and confocal laser scanning microscope images that the modified membrane had presented better properties than bare PES membrane, as it was looser and thinner. Thus, the UF membrane proved to be more efficient in terms of permeability and lifetime.
Synthesis of 3'-, or 5'-, or internal methacrylamido-modified oligonucleotides
Golova, Julia B.; Chernov, Boris K.
2010-04-27
New modifiers were synthesized for incorporation of a methacrylic function in 3'-, 5'- and internal positions of oligonucleotides during solid phase synthesis. A modifier was used for synthesis of 5'-methacrylated oligonucleotides for preparation of microarrays by a co-polymerization method.
Solution Synthesis of Atomically Precise Graphene Nanoribbons
NASA Astrophysics Data System (ADS)
Shekhirev, Mikhail; Sinitskii, Alexander
2017-05-01
Bottom-up fabrication of narrow strips of graphene, also known as graphene nanoribbons or GNRs, is an attractive way to open a bandgap in semimetallic graphene. In this chapter, we review recent progress in solution-based synthesis of GNRs with atomically precise structures. We discuss a variety of atomically precise GNRs and highlight theoretical and practical aspects of their structural design and solution synthesis. These GNRs are typically synthesized through a polymerization of rationally designed molecular precursors followed by a planarization through a cyclodehydrogenation reaction. We discuss various synthetic techniques for polymerization and planarization steps, possible approaches for chemical modification of GNRs, and compare the properties of GNRs that could be achieved by different synthetic methods. We also discuss the importance of the rational design of molecular precursors to avoid isomerization during the synthesis and achieve GNRs that have only one possible structure. Significant attention in this chapter is paid to the methods of material characterization of solution-synthesized GNRs. The chapter is concluded with the discussion of the most significant challenges in the field and the future outlook.
Influence of Cu-doping on the structural and optical properties of CaTiO{sub 3} powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, L.H.; Moura, A.P. de; La Porta, F.A., E-mail: felipe_laporta@yahoo.com.br
2016-09-15
Highlights: • Ca{sub 1−x}Cu{sub x}TiO{sub 3} powders were successfully synthesized via a polymeric precursor method. • Effects of Cu incorporated on the Ca-site into the CaTiO{sub 3} lattice as host matrix has been investigated. • The optical behavior reveals that the Ca{sub 1−x}Cu{sub x}TiO{sub 3} powders have potential applications in emerging technologies. - Abstract: Here, we report on the effect of chemical substitution on the structural and optical properties of Cu-doped CaTiO{sub 3} (CTO) polycrystalline powders synthesized by the polymeric precursor method. Our findings are discussed based on the structural order-disorder effects originating from the modification of the Ca{sub 1−x}Cu{submore » x}TiO{sub 3} microcrystal matrix. These results may elucidate the compositional modulation and methods of controlling the structural design, as well as reveal the changes in the optical behavior of this system at an atomic level.« less
Sasidharan, Manickam; Nakashima, Kenichi
2014-01-21
Hollow, inorganic nanoscale capsules have many applications, from the delivery of encapsulated products for cosmetic and medicinal purposes to use as lightweight composite materials. Early methods for producing inorganic hollow nanospheres using hard templates suffered from low product yield and shell weakness upon template removal. In the past decade, researchers have turned to amphiphilic copolymers to synthesize hollow nanostructures and ordered mesoporous materials. Amphiphilic molecules self-assemble into well-defined nanostructures including spherical micelles. Micelles formed from simple, two-component AB diblock and ABA triblock copolymers, however, have been difficult to work with to construct inorganic hollow nanoparticles, because the corona of the micelle, which serves as the template for the shell, becomes unstable as it absorbs inorganic shell precursors, causing aggregates to form. Newly developed, three-component ABC triblock copolymers may solve this problem. They provide nanoassemblies with more diverse morphological and functional features than AB diblock and ABA triblock copolymers. Micelles formed from ABC triblock copolymers in selective solvents that dissolve only one or two of the blocks provide templates for these improved nanoassemblies. By manipulating individual polymer blocks, one can "encode" additional features at the molecular level. For instance, modifying the functional groups or substitution patterns of the blocks allows better morphological and size control. Insights into polymer self-assembly gained over years of work in our group have set the stage to systematically engineer inorganic spherical hollow nanoparticles using ABC triblock copolymers. In this Account, we report our recent progress in producing diverse, inorganic hollow spherical nanospheres from asymmetric triblock copolymeric micelles with core-shell-corona architecture as templates. We discuss three classes of polymeric micelles-with neutral, cationic, and anionic shell structures-that allow fabrication of a variety of hollow nanoparticles. Importantly, we synthesized all of these particles in water, avoiding use of hazardous organic solvents. We have designed the precursor of the inorganic material to be selectively sorbed into the shell domain, leaving the corona free from the inorganic precursors that would destabilize the micelle. The core, meanwhile, is the template for the formation of the hollow void. By rationally tailoring experimental parameters, we readily and selectively obtained a variety of hollow nanoparticles including silica, hybrid silicas, metal-oxides, metal-carbonates, metal-sulfates, metal-borates, and metal-phosphates. Finally, we highlight the state-of-the-art techniques we used to characterize these nanoparticles, and describe experiments that demonstrate the potential of these hollow particles in drug delivery, and as anode and cathode materials for lithium-ion batteries.
Copper modified carbon molecular sieves for selective oxygen removal
NASA Technical Reports Server (NTRS)
Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)
1992-01-01
Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfunctional alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.
Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review.
Xinming, Li; Yingde, Cui; Lloyd, Andrew W; Mikhalovsky, Sergey V; Sandeman, Susan R; Howel, Carol A; Liewen, Liao
2008-04-01
Only about 5% of drugs administrated by eye drops are bioavailable, and currently eye drops account for more than 90% of all ophthalmic formulations. The bioavailability of ophthalmic drugs can be improved by a soft contact lens-based ophthalmic drug delivery system. Several polymeric hydrogels have been investigated for soft contact lens-based ophthalmic drug delivery systems: (i) polymeric hydrogels for conventional contact lens to absorb and release ophthalmic drugs; (ii) polymeric hydrogels for piggyback contact lens combining with a drug plate or drug solution; (iii) surface-modified polymeric hydrogels to immobilize drugs on the surface of contact lenses; (iv) polymeric hydrogels for inclusion of drugs in a colloidal structure dispersed in the lens; (v) ion ligand-containing polymeric hydrogels; (vi) molecularly imprinted polymeric hydrogels which provide the contact lens with a high affinity and selectivity for a given drug. Polymeric hydrogels for these contact lens-based ophthalmic drug delivery systems, their advantages and drawbacks are critically analyzed in this review.
Monolignol 4-O-methyltransferases and uses thereof
Liu, Chang-Jun; Bhuiya, Mohammad-Wadud; Zhang, Kewei
2014-11-18
Modified (iso)eugenol 4-O-methyltransferase enzymes having novel capacity for methylation of monolignols and reduction of lignin polymerization in plant cell wall are disclosed. Sequences encoding the modified enzymes are disclosed.
NASA Astrophysics Data System (ADS)
Niemiec, Wiktor; Szczygieł, Przemysław; Jeleń, Piotr; Handke, Mirosław
2018-07-01
Silicon oxycarbide is a material with a number of advantageous properties that strongly depend on its structure. The most common approach to its tailoring is based on varying the silicon to carbon atoms ratio in the preceramic polymeric precursor. This work is the first comparison of the materials obtained from precursors with the same Si to C atoms ratio, but with various distribution of these atoms in the preceramic polymer. In addition to standard mixtures of monomers containing single silicon atom, a number of monomers with high molar masses and well defined structure was used. The IR was used to investigate the structure of the precursors and materials obtained after their annealing in 800 °C. The results show, that not only the distribution of carbon containing groups among the monomers is important, but also the (in)ability of these groups to end up in each other vicinity in the precursor as well as the degree of condensation of each structural unit.
Precursor effect on the property and catalytic behavior of Fe-TS-1 in butadiene epoxidation
NASA Astrophysics Data System (ADS)
Wu, Mei; Zhao, Huahua; Yang, Jian; Zhao, Jun; Song, Huanling; Chou, Lingjun
2017-11-01
The effect of iron precursor on the property and catalytic behavior of iron modified titanium silicalite molecular sieve (Fe-TS-1) catalysts in butadiene selective epoxidation has been studied. Three Fe-TS-1 catalysts were prepared, using iron nitrate, iron chloride and iron sulfate as precursors, which played an important role in adjusting the textural properties and chemical states of TS-1. Of the prepared Fe-TS-1 catalysts, those modified by iron nitrate (FN-TS-1) exhibited a significant enhanced performance in butadiene selective epoxidation compared to those derived from iron sulfate (FS-TS-1) or iron chloride (FC-TS-1) precursors. To obtain a deep understanding of their structure-performance relationship, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Temperature programmed desorption of NH3 (NH3-TPD), Diffuse reflectance UV-Vis spectra (DR UV-Vis), Fourier transformed infrared spectra (FT-IR) and thermal gravimetric analysis (TGA) were conducted to characterize Fe-TS-1 catalysts. Experimental results indicated that textural structures and acid sites of modified catalysts as well as the type of Fe species influenced by the precursors were all responsible for the activity and product distribution.
Fraczek-Szczypta, A; Rabiej, S; Szparaga, G; Pabjanczyk-Wlazlo, E; Krol, P; Brzezinska, M; Blazewicz, S; Bogun, M
2015-06-01
The paper presents the results of the manufacture of carbon fibers (CF) from polyacrylonitrile fiber precursor containing bioactive ceramic nanoparticles. In order to modify the precursor fibers two types of bio-glasses and wollastonite in the form of nanoparticles were used. The processing variables of the thermal conversion of polyacrylonitrile (PAN) precursor fibers into carbon fibers were determined using the FTIR method. The carbonization process of oxidized PAN fibers was carried out up to 1000°C. The carbon fibers were characterized by a low ordered crystalline structure. The bioactivity tests of carbon fibers modified with a ceramic nanocomponent carried out in the artificial serum (SBF) revealed the apatite precipitation on the fibers' surfaces. Copyright © 2015 Elsevier B.V. All rights reserved.
Ion beam promoted lithium absorption in glassy polymeric carbon
NASA Astrophysics Data System (ADS)
Zimmerman, R. L.; Ila, D.; Jenkins, G. M.; Maleki, H.; Poker, D. B.
1995-12-01
Glassy Polymeric Carbon (GPC) samples prepared from a precursor possess accessible pore volume that depends on the heat treatment temperature [G.M. Jenkins and K. Kawamura, Polymeric Carbons - Carbon Fiber, Glass and Char (Cambridge University Press, Cambridge, 1976) p. 140]. We have shown that lithium percolates without diffusion into the accessible pores of GPC samples immersed in a molten lithium salt bath at 700°C [D. Ila, G.M. Jenkins, L.R. Holland, A.L. Evelyn and H. Jena, Vacuum 45 (1994) 451]. Ion bombardment with 10 MeV Au atoms increases the total pore volume available for lithium occupation even for samples normally impermeable to lithium. The lithium concentration depth profile is measured using Li 7(p,2α) nuclear reaction analysis. We will report on lithium percolation into GPC prepared at temperatures between 500°C and 1000°C and activated by a 10 MeV gold ion bombardment.
Polymer Nanocomposites—A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers
Bhattacharya, Mrinal
2016-01-01
Nanofilled polymeric matrices have demonstrated remarkable mechanical, electrical, and thermal properties. In this article we review the processing of carbon nanotube, graphene, and clay montmorillonite platelet as potential nanofillers to form nanocomposites. The various functionalization techniques of modifying the nanofillers to enable interaction with polymers are summarized. The importance of filler dispersion in the polymeric matrix is highlighted. Finally, the challenges and future outlook for nanofilled polymeric composites are presented. PMID:28773388
Construction of monomer-free, highly crosslinked, water-compatible polymers.
Dailing, E A; Lewis, S H; Barros, M D; Stansbury, J W
2014-12-01
Polymeric dental adhesives require the formation of densely crosslinked network structures to best ensure mechanical strength and durability in clinical service. Monomeric precursors to these materials typically consist of mixtures of hydrophilic and hydrophobic components that potentially undergo phase separation in the presence of low concentrations of water, which is detrimental to material performance and has motivated significant investigation into formulations that reduce this effect. We have investigated an approach to network formation based on nanogels that are dispersed in inert solvent and directly polymerized into crosslinked polymers. Monomers of various hydrophilic or hydrophobic characteristics were copolymerized into particulate nanogels bearing internal and external polymerizable functionality. Nanogel dispersions were stable at high concentrations in acetone or, with some exceptions, in water and produced networks with a wide range of mechanical properties. Networks formed rapidly upon light activation and reached high conversion with extremely low volumetric shrinkage. Prepolymerizing monomers into reactive nanostructures significantly changes how hydrophobic materials respond to water compared with networks obtained from polymerizations involving free monomer. The modulus of fully hydrated networks formed solely from nanogels was shown to equal or exceed the modulus in the dry state for networks based on nanogels containing a hydrophobic dimethacrylate and hydrophilic monomethacrylate, a result that was not observed in a hydroxyethyl methacrylate (HEMA) homopolymer or in networks formed from nanogels copolymerized with HEMA. These results highlight the unique approach to network development from nanoscale precursors and properties that have direct implications in functional dental materials. © International & American Associations for Dental Research.
Composite materials with improved phyllosilicate dispersion
Chaiko, David J.
2004-09-14
The present invention provides phyllosilicates edge modified with anionic surfactants, composite materials made from the edge modified phyllosilicates, and methods for making the same. In various embodiments the phyllosilicates are also surface-modified with hydrophilic lipophilic balance (HLB) modifying agents, polymeric hydrotropes, and antioxidants. The invention also provides blends of edge modified phyllosilicates and semicrystalline waxes. The composite materials are made by dispersing the edge modified phyllosilicates with polymers, particularly polyolefins and elastomers.
RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development
Martin-Vilchez, Samuel; Whitmore, Leanna; Asmussen, Hannelore; Zareno, Jessica; Horwitz, Rick; Newell-Litwa, Karen
2017-01-01
Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later maturation. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine precursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synapses. Our observations demonstrate that specific combinations of RhoGTPase regulatory proteins temporally balance RhoGTPase activity during post-synaptic spine development. PMID:28114311
Akhmetshina, Alsu A; Davletbaeva, Ilsiya M; Grebenschikova, Ekaterina S; Sazanova, Tatyana S; Petukhov, Anton N; Atlaskin, Artem A; Razov, Evgeny N; Zaripov, Ilnaz I; Martins, Carla F; Neves, Luísa A; Vorotyntsev, Ilya V
2015-12-30
Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF₆]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf₂N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested for He, N₂, NH₃, H₂S, and CO₂ gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF₆] and [emim][Tf₂N]. The modification of SILMs by nanosize silica particles leads to an increase of NH₃ separation relatively to CO₂ or H₂S.
Core/shell silicon/polyaniline particles via in-flight plasma-induced polymerization
NASA Astrophysics Data System (ADS)
Yasar-Inceoglu, Ozgul; Zhong, Lanlan; Mangolini, Lorenzo
2015-08-01
Although silicon nanoparticles have potential applications in many relevant fields, there is often the need for post-processing steps to tune the property of the nanomaterial and to optimize it for targeted applications. In particular surface modification is generally necessary to both tune dispersibility of the particles in desired solvents to achieve optimal coating conditions, and to interface the particles with other materials to realize functional heterostructures. In this contribution we discuss the realization of core/shell silicon/polymer nanoparticles realized using a plasma-initiated in-flight polymerization process. Silicon particles are produced in a non-thermal plasma reactor using silane as a precursor. After synthesis they are aerodynamically injected into a second plasma reactor into which aniline vapor is introduced. The second plasma initiates the polymerization reactor leading to the formation of a 3-4 nm thick polymer shell surrounding the silicon core. The role of processing conditions on the properties of the polymeric shell is discussed. Preliminary results on the testing of this material as an anode for lithium ion batteries are presented.
Synthesis and Characterization of a Poly(ethylene glycol)-Poly(simvastatin) Diblock Copolymer
Asafo-Adjei, Theodora A.; Dziubla, Thomas D.; Puleo, David A.
2014-01-01
Biodegradable polyesters are commonly used as drug delivery vehicles, but their role is typically passive, and encapsulation approaches have limited drug payload. An alternative drug delivery method is to polymerize the active agent or its precursor into a degradable polymer. The prodrug simvastatin contains a lactone ring that lends itself to ring-opening polymerization (ROP). Consequently, simvastatin polymerization was initiated with 5 kDa monomethyl ether poly(ethylene glycol) (mPEG) and catalyzed via stannous octoate. Melt condensation reactions produced a 9.5 kDa copolymer with a polydispersity index of 1.1 at 150 °C up to a 75 kDa copolymer with an index of 6.9 at 250 °C. Kinetic analysis revealed first-order propagation rates. Infrared spectroscopy of the copolymer showed carboxylic and methyl ether stretches unique to simvastatin and mPEG, respectively. Slow degradation was demonstrated in neutral and alkaline conditions. Lastly, simvastatin, simvastatin-incorporated molecules, and mPEG were identified as the degradation products released. The present results show the potential of using ROP to polymerize lactone-containing drugs such as simvastatin. PMID:25431653
Thickett, Stuart C; Abdelrahman, Ahmed I; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A
2010-01-01
We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 10(7) lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection.
Thickett, Stuart C.; Abdelrahman, Ahmed I.; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A.
2010-01-01
We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 107 lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection. PMID:20396648
Prebiotic chemistry and nucleic acid replication
NASA Technical Reports Server (NTRS)
Orgel, L. E.; Lohrmann, R.
1974-01-01
Recent work is reviewed on some reactions that could have occurred on the primitive earth and that could have played a part in the evolution of a self-replicating system. The transition from the primitive atmosphere to the simplest replicating molecules is considered in four stages: (1) the formation of a 'prebiotic soup' of organic precursors, including the purine and pyrimidine bases and the pentose sugars; (2) the condensation of these precursors and inorganic phosphate to form monomeric nucleotides and activated nucleotide derivatives; (3) the polymerization of nucleotide derivatives to oligonucleotides; and (4) the complementary replication of oligonucleotides in a template-directed process that depends on Watson-Crick base pairing.
Barzan, Caterina; Groppo, Elena; Quadrelli, Elsje Alessandra; Monteil, Vincent; Bordiga, Silvia
2012-02-21
Ethylene polymerization on a model Cr(II)/SiO(2) Phillips catalyst modified with gas phase SiH(4) leads to a waxy product containing a bimodal MW distribution of α-olefins (M(w) < 3000 g mol(-1)) and a highly branched polyethylene, LLDPE (M(w) ≈ 10(5) g mol(-1), T(m) = 123 °C), contrary to the unmodified catalyst which gives a linear and more dense PE, HDPE (M(w) = 86,000 g mol(-1) (PDI = 7), T(m) = 134 °C). Pressure and temperature resolved FT-IR spectroscopy under operando conditions (T = 130-230 K) allows us to detect α-olefins, and in particular 1-hexene and 1-butene (characteristic IR absorption bands at 3581-3574, 1638 and 1598 cm(-1)) as intermediate species before their incorporation in the polymer chains. The polymerization rate is estimated, using time resolved FT-IR spectroscopy, to be 7 times higher on the SiH(4)-modified Phillips catalyst with respect to the unmodified one.
Synthesis of polymeric fluorinated sol-gel precursor for fabrication of superhydrophobic coating
NASA Astrophysics Data System (ADS)
Li, Qianqian; Yan, Yuheng; Yu, Miao; Song, Botao; Shi, Suqing; Gong, Yongkuan
2016-03-01
A fluorinated polymeric sol-gel precursor (PFT) is synthesized by copolymerization of 2,3,4,5,5,5-hexafluoro-2,4-bis(trifluorinated methyl)pentyl methacrylate (FMA) and 3-methacryloxypropyltrimethoxysilane (TSMA) to replace the expensive long chain fluorinated alkylsilanes. The fluorinated silica sol is prepared by introducing PFT as co-precursor of tetraethyl orthosilicate (TEOS) in the sol-gel process with ammonium hydroxide as catalyst, which is then used to fabricate superhydrophobic coating on glass substrate through a simple dip-coating method. The effects of PFT concentrations on the chemical structure of the formed fluorinated silica, the surface chemical composition, surface morphology, wetting and self-cleaning properties of the resultant fluorinated silica coatings were studied by using X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrophotometer (XPS), scanning electron microscopy (SEM) and water contact angle measurements (WCA). The results show that the fluorinated silica sols are successfully obtained. The size and size distribution of the fluorinated silica particles are found greatly dependent on the concentration of PFT, which play a crucial role in the surface morphology of the corresponding fluorinated silica coatings. The suitable PFT concentration added in the sol-gel stage, i.e. for F-sol-1 and F-sol-2, is helpful to achieve both the low surface energy and multi-scaled microstructures, leading to the formation of the superhydrophobic coatings with bio-mimicking self-cleaning property similar to lotus leaves.
Dellacasa, Elena; Zhao, Li; Yang, Gesheng; Pastorino, Laura; Sukhorukov, Gleb B
2016-01-01
The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA) n stereocomplex and the cores with and without the polymeric (PSS/PAH) n /PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release.
Yang, Gesheng; Pastorino, Laura
2016-01-01
Summary The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release. PMID:26925356
Tsuyama, Taku; Kawai, Ryo; Shitan, Nobukazu; Matoh, Toru; Sugiyama, Junji; Yoshinaga, Arata; Takabe, Keiji; Fujita, Minoru; Yazaki, Kazufumi
2013-01-01
Lignin biosynthesis is an essential physiological activity of vascular plants if they are to survive under various environmental stresses on land. The biosynthesis of lignin proceeds in the cell wall by polymerization of precursors; the initial step of lignin polymerization is the transportation of lignin monomers from the cytosol to the cell wall, which is critical for lignin formation. There has been much debate on the transported form of the lignin precursor, either as free monolignols or their glucosides. In this study, we performed biochemical analyses to characterize the membrane transport mechanism of lignin precursors using angiosperms, hybrid poplar (Populus sieboldii × Populus grandidentata) and poplar (Populus sieboldii), as well gymnosperms, Japanese cypress (Chamaecyparis obtusa) and pine (Pinus densiflora). Membrane vesicles prepared from differentiating xylem tissues showed clear ATP-dependent transport activity of coniferin, whereas less than 4% of the coniferin transport activity was seen for coniferyl alcohol. Bafilomycin A1 and proton gradient erasers markedly inhibited coniferin transport in hybrid poplar membrane vesicles; in contrast, vanadate had no effect. Cis-inhibition experiments suggested that this transport activity was specific for coniferin. Membrane fractionation of hybrid poplar microsomes demonstrated that transport activity was localized to the tonoplast- and endomembrane-rich fraction. Differentiating xylem of Japanese cypress exhibited almost identical transport properties, suggesting the involvement of a common endomembrane-associated proton/coniferin antiport mechanism in the lignifying tissues of woody plants, both angiosperms and gymnosperms. PMID:23585651
Xu, Qingjun; Wang, Guixiang; Zhang, Mingming; Xu, Guiyun; Lin, Jiehua; Luo, Xiliang
2018-04-13
The authors describe an electrochemical aptasensor for thrombin that is based on the use of a glassy carbon electrode (GCE) modified with polydopamine that is loaded with silver nanoparticles (PDA/AgNPs). The use of AgNPs improves the conductivity of the film and increases the surface area of the GCE. PDA was deposited on the GCE via self-polymerization, and the thrombin binding aptamer was grafted onto the PDA-modified GCE by a single step reaction. Residual electrode surface was blocked with 6-mercapto-1-hexanol. On exposure to thrombin, the electrochemical impedance of the modified electrode increases gradually. Response is linear in the 0.1 pM to 5.0 nM thrombin concentration range, and the limit of detection is as low as 36 fM. The method is selective and capable of detecting thrombin in diluted human serum. In our perception, such a GCE modified with AgNP in a PDA matrix may be applied to many other analytes for which appropriate aptamers are available. Graphical abstract Schematic of an electrochemical aptasensor for sensitive and selective thrombin detection based on the use of a self-polymerized polydopamine film loaded with silver nanoparticles.
Carulli, Giovanni; Mattii, Letizia; Azzarà, Antonio; Brizzi, Stefania; Galimberti, Sara; Zucca, Alessandra; Benedetti, Edoardo; Petrini, Mario
2006-05-01
Neutrophil functions can be modified by Recombinant human G-CSF (rhG-CSF) treatment, with divergent effects on phagocytosis, motility, bactericidal activity, and surface molecule expression. Neutrophil morphology is modified by treatment with filgrastim (the nonglycosylated form of rhG-CSF), while it is not affected by lenograstim (the glycosylated type of rhG-CSF). Little information is available about actin polymerization in neutrophils from subjects treated with the two types of rhG-CSF. In the current paper we evaluated two groups of donors of peripheral blood stem cells (PBSC) for allogeneic transplantation. Ten subjects were treated with filgrastim and 10 with lenograstim to mobilize PBSC; 15 blood donors were evaluated as a control group. Actin polymerization (both spontaneous and fMLP-stimulated) was studied by a flow cytometric assay. A microscopic fluorescent assay was also carried out to evaluate F-actin distribution in neutrophils. We found that filgrastim induced an increased F-actin content in resting neutrophils, along with morphologic evidence for increased actin polymerization distributed principally at the cell membrane and frequently polarized in focal areas; in addition, fMLP was not able to induce further actin polymerization. On the contrary, treatment with lenograstim was associated with F-actin content, distribution, and polymerization kinetics indistinguishable from those displayed by control neutrophils. Such experimental results show that filgrastim and lenograstim display divergent effects also on neutrophil actin polymerization and provide further explanation for previous experimental findings. 2006 Wiley-Liss, Inc.
Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries
David, Lamuel; Bhandavat, Romil; Barrera, Uriel; Singh, Gurpreet
2016-01-01
Silicon and graphene are promising anode materials for lithium-ion batteries because of their high theoretical capacity; however, low volumetric energy density, poor efficiency and instability in high loading electrodes limit their practical application. Here we report a large area (approximately 15 cm × 2.5 cm) self-standing anode material consisting of molecular precursor-derived silicon oxycarbide glass particles embedded in a chemically-modified reduced graphene oxide matrix. The porous reduced graphene oxide matrix serves as an effective electron conductor and current collector with a stable mechanical structure, and the amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency. The paper electrode (mass loading of 2 mg cm−2) delivers a charge capacity of ∼588 mAh g−1electrode (∼393 mAh cm−3electrode) at 1,020th cycle and shows no evidence of mechanical failure. Elimination of inactive ingredients such as metal current collector and polymeric binder reduces the total electrode weight and may provide the means to produce efficient lightweight batteries. PMID:27025781
NASA Astrophysics Data System (ADS)
Lan, Yan; You, Qingliang; Cheng, Cheng; Zhang, Suzhen; Ni, Guohua; Nagatsu, M.; Meng, Yuedong
2011-02-01
Surface modification on a polytetrafluoroethylene (PTFE) panel was performed with sequential nitrogen plasma treatments and surface-initiated polymerization. By introducing COO- groups to the surface of the PTFE panel through grafting polymerization of acrylic acid (AA), a transparent poly (acrylic acid) (PAA) membrane was achieved from acrylic acid solution. Grafting polymerization initiating from the active groups was achieved on the PTFE panel surface after the nitrogen plasma treatment. Utilizing the acrylic acid as monomers, with COO- groups as cross link sites to form reticulation structure, a transparent poly (acrylic acid) membrane with arborescent macromolecular structure was formed on the PTFE panel surface. Analysis methods, such as fourier transform infrared spectroscopy (FTIR), microscopy and X-ray photoelectron spectroscopy (XPS), were utilized to characterize the structures of the macromolecule membrane on the PTFE panel surface. A contact angle measurement was performed to characterize the modified PTFE panels. The surface hydrophilicities of modified PTFE panels were significantly enhanced after the plasma treatment. It was shown that the grafting rate is related to the treating time and the power of plasma.
Monodispersed molecularly imprinted polymer for creatinine by modified precipitation polymerization.
Haginaka, Jun; Miura, Chitose; Funaya, Noriko; Matsunaga, Hisami
2012-01-01
A monodispersed molecularly imprinted polymer (MIP) for creatinine was prepared by modified precipitation polymerization. The retention and molecular-recognition properties of the prepared MIP were evaluated by the hydrophilic interaction chromatography mode using a mixture of ammonium acetate buffer and acetonitrile as a mobile phase in liquid chromatography. The MIP had a specific recognition ability for creatinine, while other structurally related compounds, such as hydantoin, 1-methylhydantoin, 2-pyrrolidone, N-hydroxysuccinimide and creatine, could not be recognized on the MIP. In addition to shape recognition, hydrophilic interactions could work for the recognition of creatinine on the MIP.
Purification of boron nitride nanotubes via polymer wrapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jin-Hyuk; Kim, Jaewoo; WCI Quantum Beam based Radiation Research Center, Korea Atomic Energy Research Institute, 1045 Daedukdaero, Daejeon 305-353
2013-03-15
Highlights: ► Surface modification of boron nitride nanotubes using polymeric materials. ► Surface-modified BNNT was purified with a simple dilution-centrifugation step. ► Surface-modified BNNT can be directly used for polymer composite fabrication ► Degree of purification was analyzed by Raman spectroscopy. - Abstract: Boron nitride nanotubes (BNNT) synthesized by a ball milling-annealing were surface-modified using three different types of polymeric materials. Those materials were chosen depending on future applications especially in polymer nanocomposite fabrications. We found that the surface-modified BNNT can be purified with a simple dilution-centrifugation step, which would be suitable for large-scale purification. Degree of purification was monitoredmore » by means of the center peak position and FWHM of E{sub 2g} mode of BNNT in Raman spectra. As the purification of BNNT develops, the peak position was up-shifted while FWHM of the peak was narrowed.« less
A multifunctional polymeric nanofilm with robust chemical performances for special wettability.
Wang, Yabin; Lin, Feng; Dong, Yaping; Liu, Zhong; Li, Wu; Huang, Yudong
2016-03-07
A multifunctional polymeric nanofilm of a triazinedithiolsilane compound, which can protect metallic substrates and activate the corresponding surface simultaneously, is introduced onto a copper mesh surface via facile solution-immersion approaches. The resultant interface exhibits hydrophilic features due to the existence of silanol groups (SiOH) outward and has the potential to act as a superhydrophilic and underwater superoleophobic material. As the polymeric nanofilm atop the copper mesh is modified with long-chain octadecyltrichlorosilane (OTS), the functionalized surface becomes superhydrophobic and superoleophilic. The OTS-modified polymeric nanofilm shows outstanding chemical durability and stability that are seldom concurrently satisfied for a material with special wettability, owing to its inherent architecture. These textures generate high separation efficiency, durable separation capability and excellent thermal stability. The protective ability, originating from the textures of the underlying cross-linked disulfide units (-SS-) and siloxane networks (SiOSi) on the top of the nanofilm, prolongs the chemical durability. The activating capability stemming from the residual SiOH groups improves the chemical stability as a result of the chemical bonds developed by these sites. The significant point of this investigation lies in enlightening us on the fabrication of multifunctional polymeric nanofilms on different metal surfaces using various triazinedithiolsilane compounds, and on the construction of interfaces with controllable wettable performances in demanding research or industrial applications.
A new polyester based on allyl α-hydroxy glutarate as shell for magnetite nanoparticles
NASA Astrophysics Data System (ADS)
Nan, Alexandrina; Feher, Ioana Coralia
2017-12-01
Allyl side-chain-functionalized lactide was synthesized from commercially available glutamic acid and polymerized by ring opening polymerization using 4-dimethylaminopyridine as an organocatalyst in the presence of magnetic nanoparticles. The resulting magnetic nanostructures coated with the allyl-containing polyester were then functionalized with cysteine by thiol-ene click reaction leading to highly functionalized magnetic nano-platforms of practical interest. The polyester precursors were characterized by nuclear magnetic resonance and mass spectrometry. The morphology of magnetic nanostructures based on the functionalized polyester was determined by transmission electron microscopy TEM, while the chemical structure was investigated by FT-IR. TGA investigations and the magnetic properties of the magnetic nanostructures are also described.
Ion beam promoted lithium absorption in glassy polymeric carbon
NASA Astrophysics Data System (ADS)
Ila, D.; Zimmerman, R. L.; Jenkins, G. M.; Maleki, H.; Poker, D. B.
1995-12-01
Glassy Polymeric Carbon (GPC) samples prepared from a precursor possess accessible pore volume that depends on the heat treatment temperature. We have shown that lithium percolates without diffusion into the accessible pores of GPC samples immersed in a molten lithium salt bath at 700°C. Ion bombardment with 10 MeV Au atoms increases the total pore volume available for lithium occupation even for samples normally impermeable to lithium. The lithium concentration depth profile is measured using Li7(p,2α) nuclear reaction analysis. We will report on lithium percolation into GPC prepared at temperatures between 500°C and 1000°C and activated by a 10 MeV gold ion bombardment.
Composite catalysts supported on modified carbon substrates and methods of making the same
Popov, Branko N [Columbia, SC; Subramanian, Nalini [Kennesaw, GA; Colon-Mercado, Hector R [Columbia, SC
2009-11-17
A method of producing a composite carbon catalyst is generally disclosed. The method includes oxidizing a carbon precursor (e.g., carbon black). Optionally, nitrogen functional groups can be added to the oxidized carbon precursor. Then, the oxidized carbon precursor is refluxed with a non-platinum transitional metal precursor in a solution. Finally, the solution is pyrolyzed at a temperature of at least about 500.degree. C.
NASA Astrophysics Data System (ADS)
Timm, Thomas; Lenz, Christof; Merkel, Dietrich; Sadiffo, Christian; Grabitzki, Julia; Klein, Jochen; Lochnit, Guenter
2015-03-01
Phosphorylcholine (PC)-modified biomolecules like lipopolysaccharides, glycosphingolipids, and (glyco)proteins are widespread, highly relevant antigens of parasites, since this small hapten shows potent immunomodulatory capacity, which allows the establishment of long-lasting infections of the host. Especially for PC-modified proteins, structural data is rare because of the zwitterionic nature of the PC substituent, resulting in low sensitivities and unusual but characteristic fragmentation patterns. We have developed a targeted mass spectrometric approach using hybrid triple quadrupole/linear ion trap (QTRAP) mass spectrometry coupled to nanoflow chromatography for the sensitive detection of PC-modified peptides from complex proteolytic digests, and the localization of the PC-modification within the peptide backbone. In a first step, proteolytic digests are screened using precursor ion scanning for the marker ions of choline ( m/z 104.1) and phosphorylcholine ( m/z 184.1) to establish the presence of PC-modified peptides. Potential PC-modified precursors are then subjected to a second analysis using multiple reaction monitoring (MRM)-triggered product ion spectra for the identification and site localization of the modified peptides. The approach was first established using synthetic PC-modified synthetic peptides and PC-modified model digests. Following the optimization of key parameters, we then successfully applied the method to the detection of PC-peptides in the background of a proteolytic digest of a whole proteome. This methodological invention will greatly facilitate the detection of PC-substituted biomolecules and their structural analysis.
Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates.
Okada, Masahiro; Furukawa, Keiko; Serizawa, Takeshi; Yanagisawa, Yoshihiko; Tanaka, Hidekazu; Kawai, Tomoji; Furuzono, Tsutomu
2009-06-02
Interfacial interactions between calcined hydroxyapatite (HAp) nanocrystals and surface-modified substrates were investigated by measuring adsorption behavior and adhesion strength with a quartz crystal microbalance (QCM) and a contact-mode atomic force microscope (AFM), respectively. The goal was to develop better control of HAp-nanocrystal coatings on biomedical materials. HAp nanocrystals with rodlike or spherical morphology were prepared by a wet chemical process followed by calcination at 800 degrees C with an antisintering agent to prevent the formation of sintered polycrystals. The substrate surface was modified by chemical reaction with a low-molecular-weight compound, or graft polymerization with a functional monomer. QCM measurement showed that the rodlike HAp nanocrystals adsorbed preferentially onto anionic COOH-modified substrates compared to cationic NH2- or hydrophobic CH3-modified substrates. On the other hand, the spherical nanocrystals adsorbed onto NH2- and COOH-modified substrates, which indicates that the surface properties of the HAp nanocrystals determined their adsorption behavior. The adhesion strength, which was estimated from the force required to move the nanocrystal in contact-mode AFM, on a COOH-grafted substrate prepared by graft polymerization was almost 9 times larger than that on a COOH-modified substrate prepared by chemical reaction with a low-molecular-weight compound, indicating that the long-chain polymer grafted on the substrate mitigated the surface roughness mismatch between the nanocrystal and the substrate. The adhesion strength of the nanocrystal bonded covalently by the coupling reaction to a Si(OCH3)-grafted substrate prepared by graft polymerization was approximately 1.5 times larger than that when adsorbed on the COOH-grafted substrate.
Chen, Xingyu; Yang, Ming; Liu, Botao; Li, Zhiqiang; Tan, Hong; Li, Jianshu
2017-08-22
Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP-PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (dimethylamino)ethyl methacrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering.
Akhmetshina, Alsu A.; Davletbaeva, Ilsiya M.; Grebenschikova, Ekaterina S.; Sazanova, Tatyana S.; Petukhov, Anton N.; Atlaskin, Artem A.; Razov, Evgeny N.; Zaripov, Ilnaz I.; Martins, Carla F.; Neves, Luísa A.; Vorotyntsev, Ilya V.
2015-01-01
Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested for He, N2, NH3, H2S, and CO2 gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF6] and [emim][Tf2N]. The modification of SILMs by nanosize silica particles leads to an increase of NH3 separation relatively to CO2 or H2S. PMID:26729177
NASA Astrophysics Data System (ADS)
Yang, Dongjie; Huang, Wenjing; Qiu, Xueqing; Lou, Hongming; Qian, Yong
2017-12-01
Pine and wheat straw alkali lignin (PAL and WAL) were sulfomethylated to improve water solubility, polymerized with horseradish peroxidase (HRP) to improve the molecular weight (Mw) and applied to dope and disperse polyaniline (PANI). The structural effect of lignin from different origins on the reactivities of sulfomethylation and HRP polymerization was investigated. The results show that WAL with less methoxyl groups and lower Mw have higher reactivity in sulfomethylation (SWAL). More phenolic hydroxyl groups and lower Mw benefit the HRP polymerization of sulfomethylated PAL (SPAL). Due to the natural three-dimensional aromatic structure and introduced sulfonic groups, SPAL and SWAL could effectively dope and disperse PANI in water by π-π stacking and electrostatic interaction. HRP modified SPAL (HRP-SPAL) with much higher sulfonation degree and larger Mw significantly increased the conductivity and dispersibility of lignin/PANI composites.
Szczepanski, Caroline R.; Stansbury, Jeffrey W.
2015-01-01
Polymerization-induced phase separation (PIPS) was studied in ambient photopolymerizations of triethylene glycol dimethacrylate (TEGDMA) modified by poly(methyl methacrylate) (PMMA). The molecular weight of PMMA and the rate of network formation (through incident UV-irradiation) were varied to influence both the promotion of phase separation through increases in overall free energy, as well as the extent to which phase development occurs during polymerization through diffusion prior to network gelation. The overall free energy of the polymerizing system increases with PMMA molecular weight, such that PIPS is promoted thermodynamically at low loading levels (5 wt%) of a higher molecular weight PMMA (120 kDa), while a higher loading level (20 wt%) is needed to induce PIPS with lower PMMA molecular weight (11 kDa), and phase separation was not promoted at any loading level tested of the lowest molecular weight PMMA (1 kDa). Due to these differences in overall free energy, systems modified by PMMA (11 kDa) underwent phase separation via Nucleation and Growth, and systems modified by PMMA (120 kDa), followed the Spinodal Decomposition mechanism. Despite differences in phase structure, all materials form a continuous phase rich in TEGDMA homopolymer. At high irradiation intensity (Io=20mW/cm2), the rate of network formation prohibited significant phase separation, even when thermodynamically preferred. A staged curing approach, which utilizes low intensity irradiation (Io=300µW/cm2) for the first ~50% of reaction to allow phase separation via diffusion, followed by a high intensity flood-cure to achieve a high degree of conversion, was employed to form phase-separated networks with reduced polymerization stress yet equivalent final conversion and modulus. PMID:26190865
Size and Morphology Controlled Synthesis of Boehmite Nanoplates and Crystal Growth Mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xin; Cui, Wenwen; Page, Katharine L.
The aluminum oxyhydroxide boehmite is an important crystalline phase in nature and industry. We report development of a flexible additive-free hydrothermal synthesis method to prepare high quality boehmite nanoplates with sizes ranging from under 20 nm to 5 um via using hydrated alumina gels and amorphous powders as precursors. The size and morphology of the boehmite nanoplates was systematically varied between hexagonal and rhombic by adjusting precursor concentrations, pH, and the synthesis temperature, due to face-specific effects. The transformation mechanism is consistent with dissolution and reprecipitation, and involves transitory initial appearance of metastable gibbsite that is later consumed upon nucleationmore » of boehmite. Detailed X-ray pair distribution characterization of the solids over time showed similarities in short-range order that suggest linkages in local chemistry and bonding topology between the precursors and product boehmite, yet also that precursor-specific differences in long-range order appear to manifest subtle changes in resulting boehmite characteristics, suggesting that the rate and extent of water release or differences in the resulting solubilized aluminate speciation leads to slightly different polymerization and condensation pathways. The findings suggest that during dissolution of the precursor that precursor-specific dehydration or solution speciation could be important aspects of the transformation impacting the molecular level details of boehmite nucleation and growth.« less
Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C
2015-07-15
Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.
Koubi, Stephen; Raskin, Anne; Bukiet, Frédéric; Pignoly, Christian; Toca, Edwige; Tassery, Hervé
2006-11-01
The aim of this study was to examine clinically relevant data on four restorative procedures for non-carious cervical lesions using United States Public Health Service (USPHS)-compatible clinical and photographic criteria and to compare different methods of analyzing clinical data. Fourteen patients with at least one or two pairs of non-carious lesions under occlusion and a mean age of 50 were enrolled in this study. A total of 56 restorations (14 with each material) were placed by three experienced, calibrated dental practitioners. Two other experienced and calibrated practitioners, under single-blind conditions, followed up on all restorations for a period of one year. Three materials were randomly placed: a micro-hybrid composite with two polymerization methods (G1 and G2), a flowable micro-hydrid composite (G3), and a resin-modified glass ionomer (G4). Statistical analysis was performed using the Kruskall-Wallis test (p<0.05) and a Mann-Whitney U modified test with a corrected significance level. At the one year evaluation time, there were no restorations with secondary caries and the retention rates in G1 (IntenS with a hard polymerization), G2 (IntenS with a soft polymerization), G3 (Filtek flow), and G4 (Fuji II LC) were 85.7% (two losses), 92.8% (one loss), 100%, and 100%, respectively. The total visual comparison of the results at baseline (15 days later) showed significant differences only with the clinical acceptance criterion: G1 was different from G2, with a soft polymerization device (p<0.05). In terms of surface quality at one year, G1, G2, and G3 exhibited a statistically significant difference from G4, p<0.05. The digital analysis at baseline showed significant differences only with the clinical acceptance criterion: G1=G2 was different from G3=G4, p<0.05. At one year, only the microporosity criterion showed any statistical differences: G1=G2=G3 was different from G4, p<0.05. The resin-modified glass ionomer was easier to use and had a high retention rate, but it failed in terms of surface quality (visual mode) and porosity (digital mode) criteria compared to the others groups. Overall results showed no difference between groups G1 (hard-polymerized) and G2 (soft-polymerized), and only G1 was affected by the marginal edge (p<0.03) and integrity criteria (p<0.02) at one year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Sungin; Kim, Jun-Rae; Kim, Seongkyung
2016-01-15
It has not been an easy task to deposit SiN at low temperature by conventional plasma-enhanced atomic layer deposition (PE-ALD) since Si organic precursors generally have high activation energy for adsorption of the Si atoms on the Si-N networks. In this work, in order to achieve successful deposition of SiN film at low temperature, the plasma processing steps in the PE-ALD have been modified for easier activation of Si precursors. In this modification, the efficiency of chemisorption of Si precursor has been improved by additional plasma steps after purging of the Si precursor. As the result, the SiN films preparedmore » by the modified PE-ALD processes demonstrated higher purity of Si and N atoms with unwanted impurities such as C and O having below 10 at. % and Si-rich films could be formed consequently. Also, a very high step coverage ratio of 97% was obtained. Furthermore, the process-optimized SiN film showed a permissible charge-trapping capability with a wide memory window of 3.1 V when a capacitor structure was fabricated and measured with an insertion of the SiN film as the charge-trap layer. The modified PE-ALD process using the activated Si precursor would be one of the most practical and promising solutions for SiN deposition with lower thermal budget and higher cost-effectiveness.« less
The influence of precursor addition order on the porosity of sol-gel bioactive glasses.
Fernando, Delihta; Colon, Pierre; Cresswell, Mark; Journet, Catherine; Pradelle-Plasse, Nelly; Jackson, Phil; Grosgogeat, Brigitte; Attik, Nina
2018-06-16
The superior textural properties of sol-gel derived bioactive glasses compared to conventional melt quench glasses accounts for their accelerated bioactivity in vitro. Several studies have explored ways to improve the surface properties of sol-gel glasses in order to maximise their efficiency for bone and tooth regeneration. In this study, we investigated the effect of order of network modifying precursor addition on the textural properties of sol-gel derived bioactive glasses. The effect of precursor addition order on the glass characteristics was assessed by switching the order of network modifying precursor (calcium acetate monohydrate and sodium acetate anhydrous) addition for a fixed composition of bioactive glass (75SiO 2 :5CaO:10Na 2 O:10P 2 O 5 ). The results of this study showed that the order of precursor addition does influence the porosity of these glasses. For the glasses of a fixed composition and preparation conditions we achieved a doubling of surface area, a 1.5 times increase in pore volume and a 1.2 times decrease in pore size just by the mixing the network modifying precursors and adding them together in the sol-gel preparation. This simple and straightforward route adaptation to the preparation of bioactive glasses would allow us to enhance the textural properties of existing and novel composition of bioactive glasses and thus accelerate their bioactivity. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Method to create gradient index in a polymer
Dirk, Shawn M; Johnson, Ross Stefan; Boye, Robert; Descour, Michael R; Sweatt, William C; Wheeler, David R; Kaehr, Bryan James
2014-10-14
Novel photo-writable and thermally switchable polymeric materials exhibit a refractive index change of .DELTA.n.gtoreq.1.0 when exposed to UV light or heat. For example, lithography can be used to convert a non-conjugated precursor polymer to a conjugated polymer having a higher index-of-refraction. Further, two-photon lithography can be used to pattern high-spatial frequency structures.
Preparation and magnetic properties of the Sr-hexaferrite with foam structure
NASA Astrophysics Data System (ADS)
Guerrero, A. L.; Espericueta, D. L.; Palomares-Sánchez, S. A.; Elizalde-Galindo, J. T.; Watts, B. E.; Mirabal-García, M.
2016-12-01
This work reports an optimal way to fabricate strontium hexaferrite with porous-reticulated structure using a variation of the replication technique and taking two different precursors, one obtained from the coprecipitation and the other from the ceramic method. Changes made to the original replication technique include the addition of Arabic gum as binder, and the addition of ethylene glycol to form the ceramic sludge. In addition, some parameters such as the relation between solid material and liquid phase, the quantity of binder and the heat treatment were varied to obtain high quality magnetic foams. Two polymeric sponges were used as patterns, one with average pore size of 300 μm diameter and the other with 1100 μm. The characterization of the samples included the analysis of the structure and phase purity, the magnetic properties, the remanence properties, magnetic interactions and the microstructural characteristics. Results indicate that both, the powder precursors and the polymeric pattern play an important role in the configuration of the foam structure and this configuration has an important influence on the dipolar interactions which tend to demagnetize the samples. In addition, it was analyzed the behavior between the minimum value of the δM curves and the hysteresis properties.
Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases.
Lin, Chi-Ying; Lin, Shih-Jie; Yang, Yi-Chen; Wang, Der-Yuan; Cheng, Hwei-Fang; Yeh, Ming-Kung
2015-01-01
Vaccination, which provides effective, safe infectious disease protection, is among the most important recent public health and immunological achievements. However, infectious disease remains the leading cause of death in developing countries because several vaccines require repeated administrations and children are often incompletely immunized. Microsphere-based systems, providing controlled release delivery, can obviate the need for repeat immunizations. Here, we review the function of sustained and pulsatile release of biodegradable polymeric microspheres in parenteral and mucosal single-dose vaccine administration. We also review the active-targeting function of polymeric particles. With their shield and co-delivery functions, polymeric particles are applied to develop single-dose and mucosally administered vaccines as well as to improve subunit vaccines. Because polymeric particles are easily surface-modified, they have been recently used in vaccine development for cancers and many infectious diseases without effective vaccines (e.g., human immunodeficiency virus infection). These polymeric particle functions yield important vaccine carriers and multiple benefits.
An improved soft-chemistry approach to the preparation of spinel powders
NASA Astrophysics Data System (ADS)
Cook, Ronald
2007-04-01
Spinel powders for the production of transparent polycrystalline ceramic windows have been produced using a number of traditional ceramic and sol-gel methods. We have demonstrated that magnesium aluminate spinel powders produced from the reaction of organo-magnesium compounds with surface modified boehmite precursors can be used to produce high quality transparent spinel parts. In previous work, the spinel powders were prepared by the reaction of surface-modified boehmite nanoparticles with magnesium acetylacetonate. While the magnesium acetylacetonate can produce small quantities of high quality spinel powders, it use for large scale production of spinel powders is problematic. Through a thermodynamic analysis we have identified a new high-purity, low-cost, low-toxicity organomagnesium compound that reacts the with surface modified boehmite nanoparticles to produce a spinel precursor. The magnesium doped precursor readily transforms into pure phase spinel at temperature between 900°C and 1200°C.
Facile Synthesis of Highly Aligned Multiwalled Carbon Nanotubes from Polymer Precursors
Han, Catherine Y.; Xiao, Zhi-Li; Wang, H. Hau; ...
2009-01-01
We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbonmore » nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.« less
One-step synthesis of titania nanoparticles from PS-P4VP diblock copolymer solution
NASA Astrophysics Data System (ADS)
Song, Lixin; Lam, Yeng Ming; Boothroyd, Chris; Teo, Puat Wen
2007-04-01
Polymeric films containing titania nanoparticles have potential as dielectric films for flexible electronic applications. For this purpose, the nanoparticles must be homogeneously distributed. Self-assembly is emerging as a neat, elegant method for fabricating such nanostructured hybrid materials with well-distributed nanoparticles. In this work, we report a micellar solution approach for the assembly of copolymer-titanium precursor nanostructures in which titania nanoparticles were synthesized. The ratio of the amount of titanium precursor, titanium isopropoxide, to the blocks forming the micellar core, poly(4-vinylpyridine), was found to play a key role in controlling film morphology. A sphere-to-ribbon transition was observed when the amount of titanium isopropoxide was increased. The thin film morphology can be tuned using the precursor-copolymer interaction rather than just the polymer-polymer interaction or the polymer-solution interaction. This method provides yet another way to control the morphology of nanostructures.
Poly(cyclohexylethylene)- block-poly(ethylene oxide) block polymers for metal oxide templating
Schulze, Morgan W.; Sinturel, Christophe; Hillmyer, Marc A.
2015-09-01
A series of poly(cyclohexylethylene)- block-poly(ethylene oxide) (CEO) diblock copolymers were synthesized through tandem anionic polymerizations and heterogeneous catalytic hydrogenation. Solvent-annealed CEO diblock films were used to template dense arrays of inorganic oxide nanodots via simple spin coating of an inorganic precursor solution atop the ordered film. The substantial chemical dissimilarity of the two blocks enables (i) selective inclusion of the inorganic precursor within the PEO domain and (ii) the formation of exceptionally small feature sizes due to a relatively large interaction parameter estimated from mean-field analysis of the order–disorder transition temperatures of compositionally symmetric samples. UV/ozone treatment following incorporation producesmore » an ordered arrangement of oxide nanodots and simultaneously removes the block polymer template. However, we report the smallest particles (6 ± 1 nm) templated from a selective precursor insertion method to date using a block polymer scaffold.« less
NASA Technical Reports Server (NTRS)
Desai, Tapan G.; Lawson, John W.; Keblinski, Pawel
2010-01-01
Reactive molecular dynamics simulations are used to study initial stage of pyrolysis of ablation materials and their composites with carbon nanotubes and carbon fibers. The products formed during pyrolysis are characterized and water is found as the primary product in all cases. The water formation mechanisms are analyzed and the value of the activation energy for water formation is estimated. A detailed study on graphitic precursor formation reveals the presence of two temperature zones. In the lower temperature zone (less than 2000 K) polymerization occurs resulting in formation of large, stable graphitic precursors, and in the high temperature zone (greater than 2000 K) polymer scission results in formation of short polymer chains/molecules. Simulations performed in the high temperature zone on the phenolic resin composites (with carbon nanotubes and carbon fibers) shows that the presence of interfaces had no substantial effect on the chain scission rate or the activation energy value for water formation.
Super p53 for Treatment of Ovarian Cancer
2016-07-01
WSLP ( polymer ) has been successfully synthesized, and a subset of adenoviral constructs have been cloned (p53, p53-CC, EGFP control). Major results...therapy, carboplatin, paclitaxel, polymeric drug delivery, polymer -adenovirus hybrid 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...modified p53, tumor suppressor, high grade serous carcinoma, combination therapy, carboplatin, paclitaxel, polymeric drug delivery, polymer
Surface engineering: molecularly imprinted affinity membranes by photograft polymerization
NASA Astrophysics Data System (ADS)
Matuschewski, Heike; Sergeyeva, Tatiana A.; Bendig, Juergen; Piletsky, Sergey A.; Ulbricht, Matthies; Schedler, Uwe
2001-02-01
Commercial polymer microfiltration membranes were surface-modified with a graft copolymer of a functional monomer and a crosslinker in the presence of a template (triazine-herbicide). As result, membranes covered with a thin layer of imprinted polymer (MIP) selective to the template were obtained. The influence of the polymerization conditions on membrane recognition properties was studied by membranes
Process parameters in the manufacture of ceramic ZnO nanofibers made by electrospinning
NASA Astrophysics Data System (ADS)
Nonato, Renato C.; Morales, Ana R.; Rocha, Mateus C.; Nista, Silvia V. G.; Mei, Lucia H. I.; Bonse, Baltus C.
2017-01-01
Zinc oxide (ZnO) nanofibers were prepared by electrospinning under different conditions using a solution of poly(vinyl alcohol) and zinc acetate as precursor. A 23 factorial design was made to study the influence of the process parameters in the electrospinning (collector distance, flow rate and voltage), and a 22 factorial design was made to study the influence of the calcination process (time and temperature). SEM images were made to analyze the fiber morphology before and after calcination process, and the images were made to measure the nanofiber diameter. X-ray diffraction was made to analyze the total precursor conversion to ZnO and the elimination of the polymeric carrier.
NASA Astrophysics Data System (ADS)
Matei, A.; Schou, J.; Canulescu, S.; Zamfirescu, M.; Albu, C.; Mitu, B.; Buruiana, E. C.; Buruiana, T.; Mustaciosu, C.; Petcu, I.; Dinescu, M.
2013-08-01
Synthesized N,N'-(methacryloyloxyethyl triehtoxy silyl propyl carbamoyl-oxyhexyl)-urea hybrid methacrylate was polymerized by direct laser polymerization using femtosecond laser pulses with the aim of using it for subsequent applications in tissue engineering. The as-obtained scaffolds were modified either by low pressure argon plasma treatment or by covering the structures with two different proteins (lysozyme, fibrinogen). For improved adhesion, the proteins were deposited by matrix assisted pulsed laser evaporation technique. The functionalized structures were tested in mouse fibroblasts culture and the cells morphology, proliferation, and attachment were analyzed.
Limpoco, F Ted; Bailey, Ryan C
2011-09-28
We directly monitor in parallel and in real time the temporal profiles of polymer brushes simultaneously grown via multiple ATRP reaction conditions on a single substrate using arrays of silicon photonic microring resonators. In addition to probing relative polymerization rates, we show the ability to evaluate the dynamic properties of the in situ grown polymers. This presents a powerful new platform for studying modified interfaces that may allow for the combinatorial optimization of surface-initiated polymerization conditions.
NASA Astrophysics Data System (ADS)
Huo, Pengwei; Yan, Yongsheng; Li, Songtian; Li, Huaming; Huang, Weihong
2010-03-01
A series of poly-o-phenylenediamine/TiO 2/fly-ash cenospheres(POPD/TiO 2/fly-ash cenospheres) composites have been prepared from o-phenylenediamine and TiO 2/fly-ash cenospheres under various polymerization conditions. The properties of the samples were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), specific surface area (BET), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance spectrum (UV-vis DRS). Photocatalytic activity was studied by degradation of antibiotics waste water under visible light. The results indicate that the photo-induced method is viable for preparing modified photocatalysts, and the modified photocatalysts have good absorption in visible light range. The photocatalysts of POPD/TiO 2/fly-ash cenospheres which have good performance are prepared at pH 3 and 4, and the polymerized time around 40 min. When the photocatalysts are prepared under the conditions of pH 3 and polymerized time 40 min, the degradation rate of roxithromycin waste water could reach near 60%, and it indicates that the way of POPD modified TiO 2/fly-ash cenospheres to degrade the antibiotics waste water is viable.
Copper crystallite in carbon molecular sieves for selective oxygen removal
NASA Technical Reports Server (NTRS)
Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)
1993-01-01
Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfurfuryl alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.
Supramolecular intermediates in the synthesis of polymeric carbon nitride from melamine cyanurate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dante, Roberto C., E-mail: rcdante@yahoo.com; Sánchez-Arévalo, Francisco M.; Chamorro-Posada, Pedro
The adduct of melamine and cyanuric acid (MCA) was used in past research to produce polymeric carbon nitride and precursors. The reaction yield was considerably incremented by the addition of sulfuric acid. The polymeric carbon nitride formation occurs around 450 °C at temperatures above the sublimation of the adduct components, which occurs around 400 °C. In this report the effect of sulfuric acid on MCA was investigated. It was found that the MCA rosette supramolecular channel structures behave as a solid solvent able to host small molecules, such as sulfuric acid, inside these channels and interact with them. Therefore, themore » sulfuric acid effect was found to be close to that of a solute that causes a temperature increment of the “solvent sublimation” enough to allowing the formation of polymeric carbon nitride to occur. Sulfate ions are presumably hosted in the rosette channels of MCA as shown by simulations. - Graphical abstract: The blend of melamine cyanurate and sulfuric acid behaves like a solution so that melamine cyanurate decomposition is shifted to temperatures high enough to react and form polymeric carbon nitride. - Highlights: • The adduct of melamine and cyanuric acid behaves as a solid solvent. • The blend of sulfuric acid and melamine cyanurate behaves like a solution. • Melamine cyanurate decomposition is shifted to higher temperatures by sulfuric acid. • The formation of polymeric carbon nitride occurs for these higher temperatures.« less
Mesoporous metal oxides and processes for preparation thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suib, Steven L.; Poyraz, Altug Suleyman
A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier,more » a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.« less
NASA Astrophysics Data System (ADS)
Thévenot, F.; Doche, C.; Mongeot, H.; Guilhon, F.; Miele, P.; Cornu, D.; Bonnetot, B.
1997-10-01
Aminoboranes, pure or partially converted into aminoborazines using thermal or aminolysis polymerization, have been used as boron nitride precursors. An amorphous BN preceramic is obtained when pyrolysed up to 1000°C that can be stabilized using further annealing up to 1400°C or crystallized into h-BN above 1700°C. These molecular precursors have been used to prepare carbon fiber/BN matrix microcomposites to get an efficient BN coating on graphite and as a BN source in Si3N4/BN composite ceramic. The properties of these new types of samples have been compared with those obtained by classical processes. The boron nitride obtained from these precursors is a good sintering agent during the hot-pressing of the samples. However, the crystallinity of BN, even sintered up to 1800°C, remains poor. In fact, most of the mechanical properties of the composite ceramic (density, porosity, hardness) are clearly improved and the aminoboranes can be considered as convenient boron nitride sources and helpful sintering agents in hot-pressing technology.
Young, Lydia M.; Tu, Ling-Hsien; Raleigh, Daniel P.; Ashcroft, Alison E.
2017-01-01
Although amyloid assembly in vitro is commonly investigated using single protein sequences, fibril formation in vivo can be more heterogeneous, involving co-assembly of proteins of different length, sequence and/or post-translational modifications. Emerging evidence suggests that co-polymerization can alter the rate and/or mechanism of aggregation and can contribute to pathogenicity. Electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is uniquely suited to the study of these heterogeneous ensembles. Here, ESI-IMS-MS combined with analysis of fibrillation rates using thioflavin T (ThT) fluorescence, is used to track the course of aggregation of variants of islet-amyloid polypeptide (IAPP) in isolation and in pairwise mixtures. We identify a sub-population of extended monomers as the key precursors of amyloid assembly, and reveal that the fastest aggregating sequence in peptide mixtures determines the lag time of fibrillation, despite being unable to cross-seed polymerization. The results demonstrate that co-polymerization of IAPP sequences radically alters the rate of amyloid assembly by altering the conformational properties of the mixed oligomers that form. PMID:28970890
NASA Astrophysics Data System (ADS)
Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.
In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.
Liu, Wei; Ulaganathan, Mani; Abdelwahab, Ibrahim; Luo, Xin; Chen, Zhongxin; Rong Tan, Sherman Jun; Wang, Xiaowei; Liu, Yanpeng; Geng, Dechao; Bao, Yang; Chen, Jianyi; Loh, Kian Ping
2018-01-23
Two-dimensional (2-D) polymer has properties that are attractive for energy storage applications because of its combination of heteroatoms, porosities and layered structure, which provides redox chemistry and ion diffusion routes through the 2-D planes and 1-D channels. Here, conjugated aromatic polymers (CAPs) were synthesized in quantitative yield via solid-state polymerization of phenazine-based precursor crystals. By choosing flat molecules (2-TBTBP and 3-TBQP) with different positions of bromine substituents on a phenazine-derived scaffold, C-C cross coupling was induced following thermal debromination. CAP-2 is polymerized from monomers that have been prepacked into layered structure (3-TBQP). It can be mechanically exfoliated into micrometer-sized ultrathin sheets that show sharp Raman peaks which reflect conformational ordering. CAP-2 has a dominant pore size of ∼0.8 nm; when applied as an asymmetric supercapacitor, it delivers a specific capacitance of 233 F g -1 at a current density of 1.0 A g -1 , and shows outstanding cycle performance.
NASA Technical Reports Server (NTRS)
Hergenrother, P. M.
1989-01-01
Polyimides belong to a class of polymers known as polyheterocyclics. Unlike most other high temperature polymers, polyimides can be prepared from a variety of inexpensive monomers by several synthetic routes. The glass transition and crystalline melt temperature, thermooxidative stability, toughness, dielectric constant, coefficient of thermal expansion, chemical stability, mechanical performance, etc. of polyimides can be controlled within certain boundaries. This versatility has permitted the development of various forms of polyimides. These include adhesives, composite matrices, coatings, films, moldings, fibers, foams and membranes. Polyimides are synthesized through both condensation (step-polymerization) and addition (chain growth polymerization) routes. The precursor materials used in addition polyimides or imide oligomers are prepared by condensation method. High molecular weight polyimide made via polycondensation or step-growth polymerization is studied. The various synthetic routes to condensation polyimides, structure/property relationships of condensation polyimides and composite properties of condensation polyimides are all studied. The focus is on the synthesis and chemical structure/property relationships of polyimides with particular emphasis on materials for composite application.
NASA Astrophysics Data System (ADS)
Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing
2008-10-01
We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.
NASA Astrophysics Data System (ADS)
Mahale, Rajashree Y.; Dharmapurikar, Satej S.; Chini, Mrinmoy Kumar
2018-03-01
Solution processability of the precursor molecules is a major issue owing to their limited solubility for the synthesis of conjugated polymers. Therefore, we favour the solvent free solid state chemical oxidative polymerization route for the synthesis of diketopyrrolopyrrole (DPP) based donor-acceptor (D-A) type conjugated polymers. D-A type polymer Poly(S-OD-EDOT) which contains DPP coupled with EDOT donor units is synthesized via solid state polymerization method. The polymer is employed as an active layer for organic field-effect transistors to measure charge transport properties. The Polymer shows good hole mobility 3.1 × 10-2 cm2 V-1 s-1, with a on/off ratio of 1.1 × 103.
Polythioether Particles Armored with Modifiable Graphene Oxide Nanosheets.
Rodier, Bradley J; Mosher, Eric P; Burton, Spencer T; Matthews, Rachael; Pentzer, Emily
2016-06-01
Facile and scalable fabrication methods are attractive to prepare materials for diverse applications. Herein, a method is presented to prepare cross-linked polymeric nanoparticles with graphene oxide (GO) nanosheets covalently attached to the surface. Alkene-modified GO serves as a surfactant in a miniemulsion polymerization, and the alkene functionalities of GO exposed to the oil-phase are incorporated into the polymer particle through thiol-ene reactions, leaving the unreacted alkene functional groups of the other face of GO available for further functionalization. The surface of GO-armored polymer particles is then modified with a small molecule fluorophore or carboxylic acid functional groups that bind to Fe2 O3 and TiO2 nanoparticles. This methodology provides a facile route to preparing complex hybrid composite materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu
2015-05-07
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.
Novel Precursor Approached for CMC Derived by Polymer Pyrolysis
1994-02-15
to remove signals from probe polymer materials. C. Pyrolysis Methods The conversion of polymeric PMVS to SiC -containing ceramic was studied by... Composite Fabrication Methods Ceramic matrix composites with different matrix compositions were fabricated using the Polymer Impregnation- Pyrolysis (PIP...Pyrolyzed composites were re- infiltrated with the appropriate polymer matrix source under vacuum, and cured in an autoclave under 100 psi overpressure of N2
Wan, Xuejuan; Liu, Tao; Liu, Shiyong
2011-04-11
We report on the facile synthesis of well-defined amphiphilic and thermoresponsive tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization (ROP) directly initiating from cyclic precursors, their self-assembling behavior in aqueous solution, and the application of micellar assemblies as controlled release drug nanocarriers. Starting from a trifunctional core molecule containing alkynyl, hydroxyl, and bromine moieties, alkynyl-(OH)-Br, macrocyclic poly(N-isopropylacrylamide) (c-PNIPAM) bearing a single hydroxyl functionality was prepared by atom transfer radical polymerization (ATRP), the subsequent end group transformation into azide functionality, and finally the intramacromolecular ring closure reaction via click chemistry. The target amphiphilic tadpole-shaped linear-cyclic diblock copolymer, (c-PNIPAM)-b-PCL, was then synthesized via the ROP of ε-caprolactone (CL) by directly initiating from the cyclic precursor. In aqueous solution at 20 °C, (c-PNIPAM)-b-PCL self-assembles into spherical micelles consisting of hydrophobic PCL cores and well-solvated coronas of cyclic PNIPAM segments. For comparison, linear diblock copolymer with comparable molecular weight and composition, (l-PNIPAM)-b-PCL, was also synthesized. It was found that the thermoresponsive coronas of micelles self-assembled from (c-PNIPAM)-b-PCL exhibit thermoinduced collapse and aggregation at a lower critical thermal phase transition temperature (T(c)) compared with those of (l-PNIPAM)-b-PCL. Temperature-dependent drug release profiles from the two types of micelles of (c-PNIPAM)-b-PCL and (l-PNIPAM)-b-PCL loaded with doxorubicin (Dox) were measured, and the underlying mechanism for the observed difference in releasing properties was proposed. Moreover, MTT assays revealed that micelles of (c-PNIPAM)-b-PCL are almost noncytotoxic up to a concentration of 1.0 g/L, whereas at the same polymer concentration, micelles loaded with Dox lead to ∼60% cell death. Overall, chain topologies of thermoresponsive block copolymers, that is, (c-PNIPAM)-b-PCL versus (l-PNIPAM)-b-PCL, play considerable effects on the self-assembling and thermal phase transition properties and their functions as controlled release drug nanocarriers.
Buruiana, Tinca; Nechifor, Marioara; Melinte, Violeta; Podasca, Viorica; Buruiana, Emil C
2014-01-01
To develop resin-modified glass ionomer materials, we synthesized methacrylate-functionalized acrylic copolymer (PAlk-LeuM) derived from acrylic acid, itaconic acid and N-acryloyl-L-leucine using (N-methacryloyloxyethylcarbamoyl-N'-4-hydroxybutyl) urea as the modifying agent. The spectroscopic (proton/carbon nuclear magnetic resonance, Fourier transform infrared spectroscopy) characteristics, and the gel permeation chromatography/Brookfield viscosity measurements were analysed and compared with those of the non-modified copolymer (PAlk-Leu). The photocurable copolymer (PAlk-LeuM, ~14 mol% methacrylate groups) and its precursor (PAlk-Leu) were incorporated in dental ionomer compositions besides diglycidyl methacrylate of bisphenol A (Bis-GMA) or an analogue of Bis-GMA (Bis-GMA-1), triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The kinetic data obtained by photo-differential scanning calorimetry showed that both the degree of conversion (60.50-75.62%) and the polymerization rate (0.07-0.14 s(-1)) depend mainly on the amount of copolymer (40-50 wt.%), and conversions over 70% were attained in the formulations with 40 wt.% PAlk-LeuM. To formulate light-curable cements, each organic composition was mixed with filler (90 wt.% fluoroaluminosilicate/10 wt.% hydroxyapatite) into a 2.7:1 ratio (powder/liquid ratio). The light-cured specimens exhibited flexural strength (FS), compressive strength (CS) and diametral tensile strength (DTS) varying between 28.08 and 64.79 MPa (FS), 103.68-147.13 MPa (CS) and 16.89-31.87 MPa (DTS). The best values for FS, CS and DTS were found for the materials with the lowest amount of PAlk-LeuM. Other properties such as the surface hardness, water sorption/water solubility, surface morphology and fluorescence caused by adding the fluorescein monomer were also evaluated.
NASA Astrophysics Data System (ADS)
Flores, Joel Diez
2011-12-01
The need to tailor polymeric architectures with specific physico-chemical properties via the simplest, cleanest, and most efficient synthetic route possible has become the ultimate goal in polymer synthesis. Recent progress in macromolecular science, such as the discoveries of controlled/"living" free radical polymerization (CRP) methods, has brought about synthetic capabilities to prepare (co)polymers with advanced topologies, predetermined molecular weights, narrow molecular weight distributions, and precisely located functional groups. In addition, the establishment of click chemistry has redefined the selected few highly efficient chemical reactions that become highly useful in post-polymerization modification strategies. Hence, the ability to make well-defined topologies afforded by controlled polymerization techniques and the facile incorporation of functionalities along the chain via click-type reactions have yielded complex architectures, allowing the investigation of physical phenomena which otherwise could not be studied with systems prepared via conventional methods. The overarching theme of the research work described in this dissertation is the fusion of the excellent attributes of reversible addition-fragmentation chain transfer (RAFT) polymerization method, which is one of the CRP techniques, and click-type chemical reactions in the precision of synthesis of advanced functional materials. Chapter IV is divided into three sections. In Section I, the direct RAFT homopolymerization of 2-(acryloyloxy)ethyl isocyanate (AOI) and subsequent post-polymerization modifications are described. The polymerization conditions were optimized in terms of the choice of RAFT chain transfer agent (CTA), polymerization temperature and the reaction medium. Direct RAFT polymerization of AOI requires a neutral CTA, and relatively low reaction temperature to yield AOI homopolymers with low polydispersities. Efficient side-chain functionalization of PAOI homopolymers was achieved via reaction with model amine, thiol and alcohol compounds yielding urea, thiourethane and urethane derivatives, respectively. Reactions with amines and thiols (in the presence of base) were rapid, quantitative and efficient. However, the reaction with alcohols catalyzed by dibutyltin dilaurate (DBTDL) was relatively slow but proceeded to completion. Selective reaction pathways for the addition of difunctional ethanolamine and mercaptoethanol were also investigated. A related strategy is described in Section II wherein a hydroxyl-containing diblock copolymer precursor was transformed into a library of functional copolymers via two sequential post-polymerization modification reactions. A diblock copolymer scaffold, poly[(N,N-dimethylacrylamide)-b-( N-(2-hydroxyethyl)acrylamide] (PDMA-b-PHEA) was first prepared. The hydroxyl groups of the HEA block were then reacted with 2-(acryloyloxy)ethylisocyanate (AOI) and allylisocyanate (AI) resulting in acrylate- and allyl-functionalized copolymer precursors, respectively. The efficiencies of Michael-type and free radical thiol addition reactions were investigated using selected thiols having alkyl, aryl, hydroxyl, carboxylic acid, amine and amino acid functionalities. The steps of RAFT polymerization, isocyanate-hydroxyl coupling and thiol-ene addition are accomplished under mild conditions, thus offering facile and modular routes to synthesize functional copolymers. The synthesis and solution studies of pH- and salt-responsive triblock copolymer are described in Section III. This system is capable of forming self-locked micellar structures which may be controlled by changing solution pH as well as ionic strength. A triblock copolymer containing a permanently hydrophilic poly(N,N-dimethylacrylamide) (PDMA) outer block, a salt-sensitive zwitterionic poly(3[2-(N-methylacrylamido)ethyl dimethylammonio]propanesulfonate) (PMAEDAPS) middle block and a pH-responsive 3-acrylamido-3-methylbutanoic acid (PAMBA) core block was synthesized using aqueous RAFT polymerization. A facile formation of "self-locking" shell cross-linked micelles is achieved by changing solution pH and salt concentration. The reversible "self-locking" is attained from the interactions of zwitterionic groups in the middle block that constitutes the shell of the micelles. The structure slowly dissociates into unimers in 2-3 days at pH above the pKa of the PAMBA block.
Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases
Lin, Chi-Ying; Lin, Shih-Jie; Yang, Yi-Chen; Wang, Der-Yuan; Cheng, Hwei-Fang; Yeh, Ming-Kung
2015-01-01
Vaccination, which provides effective, safe infectious disease protection, is among the most important recent public health and immunological achievements. However, infectious disease remains the leading cause of death in developing countries because several vaccines require repeated administrations and children are often incompletely immunized. Microsphere-based systems, providing controlled release delivery, can obviate the need for repeat immunizations. Here, we review the function of sustained and pulsatile release of biodegradable polymeric microspheres in parenteral and mucosal single-dose vaccine administration. We also review the active-targeting function of polymeric particles. With their shield and co-delivery functions, polymeric particles are applied to develop single-dose and mucosally administered vaccines as well as to improve subunit vaccines. Because polymeric particles are easily surface-modified, they have been recently used in vaccine development for cancers and many infectious diseases without effective vaccines (e.g., human immunodeficiency virus infection). These polymeric particle functions yield important vaccine carriers and multiple benefits. PMID:25839217
Jlassi, Khouloud; Chandran, Sarath; Poothanari, Mohammed A; Benna-Zayani, Mémia; Thomas, Sabu; Chehimi, Mohamed M
2016-04-12
The concept of conductive network structure in thermoset matrix without sacrificing the inherent mechanical properties of thermoset polymer (e.g., epoxy) is investigated here using "hairy" bentonite fillers. The latter were prepared through the in situ polymerization of aniline in the presence of 4-diphenylamine diazonium (DPA)-modified bentonite (B-DPA) resulting in a highly exfoliated bentonite-DPA/polyaniline (B-DPA/PANI). The nanocomposite filler was mixed with diglycidyl ether of bisphenol A (DGEBA), and the curing agent (4,4'-diaminodiphenylsulfone) (DDS) at high temperature in order to obtain nanocomposites through the conventional melt mixing technique. The role of B-DPA in the modification of the interface between epoxy and B-DPA/polyaniline (B-DPA/PANI) is investigated and compared with the filler B/PANI prepared without any diazonium modification of the bentonite. Synergistic improvement in dielectric properties and mechanical properties points to the fact that the DPA aryl groups from the diazonium precursor significantly modify the interface by acting as an efficient stress transfer medium. In DPA-containing nanocomposites, unique fibril formation was observed on the fracture surface. Moreover, dramatic improvement (210-220%) in fracture toughness of epoxy composite was obtained with B-DPA/PANI filler as compared to the weak improvement of 20-30% noted in the case of the B/PANI filler. This work shows that the DPA diazonium salt has an important effect on the improvement of the interfacial properties and adhesion of DGEBA and clay/PANI nanofillers.
[Specific immunotherapy with depigmented allergoids].
Klimek, L; Thorn, C; Pfaar, O
2010-01-01
Specific immunotherapy is the only available causative treatment for IgE-mediated allergic conditions. The state of the art is treatment via the subcutaneous route with crude extracts in a water solution, with physically linked (semidepot) extracts or chemically modified semidepot extracts (allergoids). A relatively new purification method combines depigmentation followed by polymerization with glutaraldehyde. This modification results in increased tolerance with a reduction in both local and systemic adverse effects. As controlled clinical trials have shown, the effectiveness is comparable to that of specific immunotherapy with crude allergen extracts. Recent data suggest that the modified polymerized allergoids allow a safe rush titration in a few days or even in 1 day (ultra-rush titration).
Del Frari, D; Bour, J; Bardon, J; Buchheit, O; Arnoult, C; Ruch, D
2010-04-01
Finding alternative treatments to reproduce anticorrosion properties of chromated coatings is challenging since both physical barrier and self-healing effects are needed. Siloxane based treatments are known to be a promising way to achieve physical barrier coatings, mainly plasma polymerized hexamethyldisiloxane (ppHMDSO). In addition, it is known that cerium-based coatings can also provide corrosion protection of metals by means of self-healing effect. In this frame, innovative nanoAlCeO3/ppHMDSO layers have thus been deposited and studied. These combinations allow to afford a good physical barrier effect and active properties. Liquid siloxane and cerium-based particles mixture is atomized and introduced as precursors into a carrier gas. Gas mixture is then injected into an atmospheric pressure dielectric barrier discharge (DBD) where plasma polymerization of the siloxane precursor occurs. The influence of cerium concentration on the coating properties is investigated: coating structure and topography have been studied by scanning electron microscopy (SEM) and interferometry, and corrosion resistance of these different coatings is compared by electrochemistry techniques: polarization curves and electrochemical impedance spectroscopy (EIS). Potential self-healing property afforded by cerium in the layer was studied by associating EIS measurements and nanoscratch controlled damaging. Among the different combinations investigated, mixing of plasma polymerized HMDSO and AICeO3 nanoparticles seems to give promising results with a good physical barrier and interesting electroactive properties. Indeed, corrosion currents measured on such coatings are almost as low as those measured with the chromated film. Combination of nanoscratch damaging of layers with EIS experiments to investigate self-healing also allow to measure the active protection property of such layers.
NASA Astrophysics Data System (ADS)
Jiao, Huanfeng; Zhao, Xiaoliang; Lv, Chunxiao; Wang, Yijun; Yang, Dongjiang; Li, Zhenhuan; Yao, Xiangdong
2016-09-01
One-dimensional γ-Al2O3 nanofibers were modified with Nb2O5 to be used as an efficient heterogeneous catalyst to catalyze biomass into 5-hydroxymethylfurfural (5-HMF). At low Nb2O5 loading, the niobia species were well dispersed on γ-Al2O3 nanofiber through Nb-O-Al bridge bonds. The interaction between Nb2O5 precursor and γ-Al2O3 nanofiber results in the niobia species with strong Lewis acid sites and intensive Brønsted acid sites, which made 5-HMF yield from glucose to reach the maximum 55.9~59.0% over Nb2O5-γ-Al2O3 nanofiber with a loading of 0.5~1 wt% Nb2O5 at 150 °C for 4 h in dimethyl sulfoxide. However, increasing Nb2O5 loading could lead to the formation of two-dimensional polymerized niobia species, three-dimensional polymerized niobia species and crystallization, which significantly influenced the distribution and quantity of the Lewis acid sites and Brönst acid sites over Nb2O5-γ-Al2O3 nanofiber. Lewis acid site Nbδ+ played a key role on the isomerization of glucose to fructose, while Brønsted acid sites are more active for the dehydration of generated fructose to 5-HMF. In addition, the heterogeneous Nb2O5-γ-Al2O3 nanofiber catalyst with suitable ratio of Lewis acid to Brönsted sites should display an more excellent catalytic performance in the conversion of glucose to 5-HMF.
Self-organization of porphyrin units induced by magnetic field during sol-gel polymerization.
Lerouge, Frédéric; Cerveau, Geneviève; Corriu, Robert J P; Stern, Christine; Guilard, Roger
2007-04-21
The use of a magnetic field as a controlling factor during the hydrolysis-polycondensation of porphyrin precursors substituted by Si(OR)(3) groups, induces a self-organization of porphyrin moieties due to the stacking of these units in the hybrid material and this study also confirms the effect of the magnetic field in the nano- and micrometric organization during the kinetically controlled polycondensation process.
Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers
Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Daniel J. Yelle; Gisela Buschle-Diller
2011-01-01
Nanoreinforced hydrogels with a unique network structure were prepared from wood cellulose whiskers coated with chemically modified wood hemicelluloses. The hemicelluloses were modified with 2-hydroxyethylmethacrylate prior to adsorption onto the cellulose whiskers in aqueous medium. Synthesis of the hydrogels was accomplished by in situ radical polymerization of the...
Screening of anionic-modified polymers in terms of stability, disintegration, and swelling behavior.
Laffleur, Flavia; Ijaz, Muhammad; Menzel, Claudia
2017-11-01
This study aimed to screen the stability, disintegration, and swelling behavior of chemically modified anionic polymers. Investigated polymers were well-known and widely used staples of the pharmaceutical and medical field, namely, alginate (AL), carboxymethyl cellulose (CMC), polycarbophil (PC), and hyaluronic acid (HA). On the basis of amide bond formation between the carboxylic acid moieties of anionic polymers and the primary amino group of the modification ligand cysteine (CYS), the modified polymers were obtained. Unmodified polymers served as controls throughout all studies. With the Ellman's assay, modification degrees were determined of synthesized polymeric excipients. Stability assay in terms of erosion study at physiological conditions were performed. Moreover, water uptake of compressed polymeric discs were evaluated and further disintegration studies according to the USP were carried out to define the potential ranking. Results ranking figured out PCCYS > CMCCYS > HACYS > ALCYS in terms of water uptake capacity compared to respective controls. Cell viability assays on Caco-2 cell line as well as on RPMI 2650 (ATTC CCL30) proved modification not being harmful to those. Due to the results of this study, an intense screening of prominent anionic polymer derivate was performed in order to help the pharmaceutical research for the best choice of polymeric excipients for developments of controlled drug release systems.
Li, Huan; Yan, Kai; Shang, Yalei; Shrestha, Lochan; Liao, Rufang; Liu, Fang; Li, Penghui; Xu, Haibo; Xu, Zushun; Chu, Paul K
2015-03-01
Polymeric micelles functionalized with folate conjugated bovine serum albumin (FA-BSA) and loaded with superparamagnetic iron oxide nanoparticles (SPIONs) are investigated as a specific contrast agent for tumor targeting and magnetic resonance imaging (MRI) in vitro and in vivo. The SPIONs-loaded polymeric micelles are produced by self-assembly of amphiphilic poly(HFMA-co-MOTAC)-g-PEGMA copolymers and oleic acid modified Fe3O4 nanoparticles and functionalized with FA-BSA by electrostatic interaction. The FA-BSA modified magnetic micelles have a hydrodynamic diameter of 196.1 nm, saturation magnetization of 5.5 emu/g, and transverse relaxivity of 167.0 mM(-1) S(-1). In vitro MR imaging, Prussian blue staining, and intracellular iron determination studies demonstrate that the folate-functionalized magnetic micelles have larger cellular uptake against the folate-receptor positive hepatoma cells Bel-7402 than the unmodified magnetic micelles. In vivo MR imaging conducted on nude mice bearing the Bel-7402 xenografts after bolus intravenous administration reveals excellent tumor targeting and MR imaging capabilities, especially at 24h post-injection. These findings suggest the potential of FA-BSA modified magnetic micelles as targeting MRI probe in tumor detection. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Effects of Monomer Structure on Their Organization and Polymerization in a Smectic Liquid Crystal
Guymon; Hoggan; Clark; Rieker; Walba; Bowman
1997-01-03
Photopolymerizable diacrylate monomers dissolved in fluid-layer smectic A and smectic C liquid crystal (LC) hosts exhibited significant spatial segregation and orientation that depend strongly on monomer structure. Small, flexible monomers such as 1,6-hexanediol diacrylate (HDDA) oriented parallel to the smectic layers and intercalated, whereas rod-shaped mesogen-like monomers such as 1,4-di-(4-(6-acryloyloxyhexyloxy)benzoyloxy)-2-methylbenzene (C6M) oriented normal to the smectic layers and collected within them. Such spatial segregation caused by the smectic layering dramatically enhanced photopolymerization rates; for HDDA, termination rates were reduced, whereas for C6M, both the termination and propagation rates were increased. These polymerization precursor structures suggest novel materials-design paradigms for gel LCs and nanophase-separated polymer systems.
Li, Xiaobo; Sergeyev, Ivan V; Aussenac, Fabien; Masters, Anthony F; Maschmeyer, Thomas; Hook, James M
2018-06-04
Metal-free polymeric carbon nitrides (PCNs) are promising photocatalysts for solar hydrogen production, but their structure-photoactivity relationship remains elusive. Two PCNs were characterized by dynamic-nuclear-polarization-enhanced solid-state NMR spectroscopy, which circumvented the need for specific labeling with either 13 C- or 15 N-enriched precursors. Rapid 1D and 2D data acquisition was possible, providing insights into the structural contrasts between the PCNs. Compared to PCN_B with lower performance, PCN_P is a more porous and more active photocatalyst that is richer in terminal N-H bonds not associated with interpolymer chains. It is proposed that terminal N-H groups act as efficient carrier traps and reaction sites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tian, Yongshang; Gong, Yansheng; Meng, Dawei; Li, Yuanjian; Kuang, Boya
2015-08-01
Lead-free ceramics 0.50Ba0.9Ca0.1TiO3-0.50BaTi1- x Zr x O3 (BCT-BZT) were prepared via sintering BCT and BZT nanoparticles, which were synthesized using a modified Pechini polymeric precursor method, at a low temperature of 1260°C. The relative densities of the ceramics prepared with different zirconium contents ( x) were all above 95.3%, reaching a maximum of 97% when x = 0.08. X-ray diffraction results confirmed the onset of phase transformation from orthorhombic to rhombohedral symmetry with increasing zirconium contents, and the polymorphic phase transition was observed at x = 0.10. The dielectric dispersion, diffuse phase transition (DPT), and relaxor-like ferroelectric characteristics as a function of zirconium content were thoroughly studied. Optimum physical properties, remnant polarization ( P r) = 16.4 μC/cm2, piezoelectric constant ( d 33) = ~240 pC/N, and electromechanical coupling factor ( k p) = 0.22, were obtained at x = 0.10. The findings of the current DPT behavior study of BCT-BZT ceramics are believed to be insightful to the development of ferroelectric materials.
Ionic Liquids and Poly(ionic liquid)s for Morphosynthesis of Inorganic Materials.
Gao, Min-Rui; Yuan, Jiayin; Antonietti, Markus
2017-04-24
Ionic liquids (ILs) are new, innovative ionic solvents with rich physicochemical properties and intriguing pre-organized solvent structures; these materials offer great potential to impact across versatile areas of scientific research, for example, synthetic inorganic chemistry. Recent use of ILs as precursors, templates, and solvents has led to inorganic materials with tailored sizes, dimensionalities, morphologies, and functionalities that are difficult to obtain, or even not accessible, by using conventional solvents. Poly(ionic liquid)s (PILs) polymerized from IL monomers also raise the prospect of modifying nucleation, growth, and crystallization of inorganic objects, shedding light on the synthesis of a wide range of new materials. Here we survey recent key progress in using ILs and PILs in the field of synthetic inorganic chemistry. As well as highlighting the unique features of ILs and PILs that enable advanced synthesis, the effects of adding other solvents to the final products, along with the emerging applications of the created inorganic materials will be discussed. We finally provide an outlook on several development opportunities that could lead to new advancements of this exciting research field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plasma processes in the preparation of lithium-ion battery electrodes and separators
NASA Astrophysics Data System (ADS)
Nava-Avendaño, J.; Veilleux, J.
2017-04-01
Lithium-ion batteries (LIBs) are the energy storage devices that dominate the portable electronic market. They are now also considered and used for electric vehicles and are foreseen to enable the smart grid. Preparing batteries with high energy and power densities, elevated cycleability and improved safety could be achieved by controlling the microstructure of the electrode materials and the interaction they have with the electrolyte over the working potential window. Selecting appropriate precursors, reducing the preparation steps and selecting more efficient synthesis methods could also significantly reduce the costs of LIB components. Implementing plasma technologies can represent a high capital investment, but the versatility of the technologies allows the preparation of powdered nanoparticles with different morphologies, as well as with carbon and metal oxide coatings. Plasma technologies can also enable the preparation of binder-free thin films and coatings for LIB electrodes, and the treatment of polymeric membranes to be used as separators. This review paper aims at highlighting the different thermal and non-thermal plasma technologies recently used to synthesize coated and non-coated active materials for LIB cathodes and anodes, and to modify the surface of separators.
Annealing of aromatic polyimide precursors
NASA Technical Reports Server (NTRS)
Wakelyn, N. T.
1975-01-01
A study has been made of the thermal behavior of polyimide precursors: an isomeric pair of crystals of the complex formed by p-phenylenediamine with the separated isomers of the di-isopropyl ester of pyromellitic acid. Specimens of this material were isothermally annealed in the temperature range 120 C to 170 C for periods of time up to 1 week. Although this temperature range is well below that customarily used for imidizations, the working hypothesis was that it would be more likely that a polymer embodying at least part of the precursor structure could be formed if the molecular motion was minimized to that actually required for the formation of the imide linkage. The progress of the annealing was followed by: infrared spectroscopy, differential thermal analysis, powder X-ray diffraction, and thermal gravimetric analysis. Single crystal X-ray analysis of the meta monomer yields a structure of chains of alternating acid and base and suggests that this monomer is amenable to polymerization with a minimum of geometrical disruption.
Thermal selectivity of intermolecular versus intramolecular reactions on surfaces
Cirera, Borja; Giménez-Agulló, Nelson; Björk, Jonas; Martínez-Peña, Francisco; Martin-Jimenez, Alberto; Rodriguez-Fernandez, Jonathan; Pizarro, Ana M.; Otero, Roberto; Gallego, José M.; Ballester, Pablo; Galan-Mascaros, José R.; Ecija, David
2016-01-01
On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure. PMID:26964764
Enzyme structures of the bacterial peptidoglycan and wall teichoic acid biogenesis pathways.
Caveney, Nathanael A; Li, Franco Kk; Strynadka, Natalie Cj
2018-06-06
The bacterial cell wall is a complex polymeric structure with essential roles in defence, survival and pathogenesis. Common to both Gram-positive and Gram-negative bacteria is the mesh-like peptidoglycan sacculus that surrounds the outer leaflet of the cytoplasmic membrane. Recent crystallographic studies of enzymes that comprise the peptidoglycan biosynthetic pathway have led to significant new understanding of all stages. These include initial multi-step cytosolic formation of sugar-pentapeptide precursors, transfer of the precursors to activated polyprenyl lipids at the membrane inner leaflet and flippase mediated relocalization of the resulting lipid II precursors to the outer leaflet where glycopolymerization and subsequent peptide crosslinking are finalized. Additional, species-specific enzymes allow customized peptidoglycan modifications and biosynthetic regulation that are important to bacterial virulence and survival. These studies have reinforced the unique and specific catalytic mechanisms at play in cell wall biogenesis and expanded the atomic foundation to develop novel, structure guided, antibacterial agents. Copyright © 2018 Elsevier Ltd. All rights reserved.
Preparation of "Cauliflower-Like" ZnO Micron-Sized Particles.
Gordon, Tamar; Grinblat, Judith; Margel, Shlomo
2013-11-14
Porous polydivinyl benzene (PDVB) microspheres of narrow size distribution were formed by a single-step swelling process of template uniform polystyrene microspheres with divinyl benzene (DVB), followed by polymerization of the DVB within the swollen template microspheres. The PDVB porous particles were then formed by dissolution of the template polystyrene polymer. Unique "cauliflower-like" ZnO microparticles were prepared by the entrapping of the ZnO precursor ZnCl₂ in the PDVB porous microspheres under vacuum, followed by calcination of the obtained ZnCl₂-PDVB microspheres in an air atmosphere. The morphology, crystallinity and fluorescence properties of those ZnO microparticles were characterized. This "cauliflower-like" shape ZnO particles is in contrast to a previous study demonstrated the preparation of spherical shaped porous ZnO and C-ZnO microparticles by a similar method, using zinc acetate (ZnAc) as a precursor. Two diverted synthesis mechanisms for those two different ZnO microparticles structures are proposed, based on studies of the distribution of each of the ZnO precursors within the PDVB microspheres.
Synthesis and Study of Gel Calcined Cd-Sn Oxide Nanocomposites
NASA Astrophysics Data System (ADS)
De, Arijit; Kundu, Susmita
2016-07-01
Cd-Sn oxide nanocomposites were synthesized by sol-gel method from precursor sol containing Cd:Sn = 2:1 and 1:1 mol ratio. Instead of coprecipitation, a simple novel gel calcination route was followed. Cd (NO3)2. 4H2O and SnCl4. 5H2O were used as starting materials. Gel was calcined at 1050 °C for 2 h to obtain nanocomposites. XRD analysis reveals the presence of orthorhombic, cubic Cd2SnO4 along with orthorhombic, hexagonal CdSnO3 phases in both the composites. SEM and TEM studies indicate the development of nanocomposites of different shapes suggesting different degrees of polymerization in precursor sol of different composition. UV-Vis absorption spectra show a blue shift for both the composites compared to bulk values. Decrease of polarization with frequency, dipole contribution to the polarization, and more sensitivity to ethanol vapor were observed for the nanocomposite derived from precursor sol containing Cd:Sn = 2:1 mol ratio.
Robinson, B F; Mervis, C B
1998-03-01
The early lexical and grammatical development of 1 male child is examined with growth curves and dynamic-systems modeling procedures. Lexical-development described a pattern of logistic growth (R2 = .98). Lexical and plural development shared the following characteristics: Plural growth began only after a threshold was reached in vocabulary size; lexical growth slowed as plural growth increased. As plural use reached full mastery, lexical growth began again to increase. It was hypothesized that a precursor model (P. van Geert, 1991) would fit these data. Subsequent testing indicated that the precursor model, modified to incorporate brief yet intensive plural growth, provided a suitable fit. The value of the modified precursor model for the explication of processes implicated in language development is discussed.
Demont-Caulet, Nathalie; Lapierre, Catherine; Jouanin, Lise; Baumberger, Stéphanie; Méchin, Valérie
2010-10-01
In order to determine the mechanism of the earlier copolymerization steps of two main lignin precursors, sinapyl (S) alcohol and coniferyl (G) alcohol, microscale in vitro oxidations were carried out with a PRX34 Arabidopsis thaliana peroxidase in the presence of H(2)O(2). This plant peroxidase was found to have an in vitro polymerization activity similar to the commonly used horseradish peroxidase. The selected polymerization conditions lead to a bulk polymerization mechanism when G alcohol was the only phenolic substrate available. In the same conditions, the presence of S alcohol at a 50/50 S/G molar ratio turned this bulk mechanism into an endwise one. A kinetics monitoring (size-exclusion chromatography and liquid chromatography-mass spectrometry) of the different species formed during the first 24h oxidation of the S/G mixture allowed sequencing the bondings responsible for oligomerization. Whereas G homodimers and GS heterodimers exhibit low reactivity, the SS pinoresinol structure act as a nucleating site of the polymerization through an endwise process. This study is particularly relevant to understand the impact of S units on lignin structure in plants and to identify the key step at which this structure is programmed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Peptide nucleic acids rather than RNA may have been the first genetic molecule
NASA Technical Reports Server (NTRS)
Nelson, K. E.; Levy, M.; Miller, S. L.
2000-01-01
Numerous problems exist with the current thinking of RNA as the first genetic material. No plausible prebiotic processes have yet been demonstrated to produce the nucleosides or nucleotides or for efficient two-way nonenzymatic replication. Peptide nucleic acid (PNA) is a promising precursor to RNA, consisting of N-(2-aminoethyl)glycine (AEG) and the adenine, uracil, guanine, and cytosine-N-acetic acids. However, PNA has not yet been demonstrated to be prebiotic. We show here that AEG is produced directly in electric discharge reactions from CH(4), N(2), NH(3), and H(2)O. Electric discharges also produce ethylenediamine, as do NH(4)CN polymerizations. AEG is produced from the robust Strecker synthesis with ethylenediamine. The NH(4)CN polymerization in the presence of glycine leads to the adenine and guanine-N(9)-acetic acids, and the cytosine and uracil-N(1)-acetic acids are produced in high yield from the reaction of cyanoacetaldehyde with hydantoic acid, rather than urea. Preliminary experiments suggest that AEG may polymerize rapidly at 100 degrees C to give the polypeptide backbone of PNA. The ease of synthesis of the components of PNA and possibility of polymerization of AEG reinforce the possibility that PNA may have been the first genetic material.
Bui, Minh-Phuong N; Seo, Seong S
2014-01-01
We have developed an optical chemical sensor for the detection of organophosphate (OP) compounds using a polymerized crystalline colloidal array (PCCA) thin film composed of a close-packed colloidal array of polystyrene particles. The PCCA thin film was modified with β-cyclodextrin (β-CD) polymer as a capping cavity for the selective detection of paraoxon-ethyl and parathion-ethyl chemical agents. The fabrication of the modified PCCA thin film was optimized and the structure was characterized using scanning electron microscopy (SEM). The arrangement of polystyrene particles in the PCCA follows a pattern of the fcc (111) planes with strong diffraction peak in the visible spectral region and pH dependence. The diffraction peak of the β-CD modified PCCA thin film showed a red shift according to the change of paraoxon-ethyl and parathion-ethyl concentrations at a fast response time (10 s) and high sensitivity with detection limits of 2.0 and 3.4 ppb, respectively. Furthermore, the proposed interaction mechanism of β-CD with paraoxon-ethyl and parathion-ethyl in the β-CD modified PCCA thin film were discussed.
NASA Astrophysics Data System (ADS)
Wu, Yuanpeng; Guo, Meiling; Liu, Guanfei; Xue, Shishan; Xia, Yuanmeng; Liu, Dan; Lei, Weiwei
2018-04-01
In this study, the surface modification of boron nitride nanosheets (BNNSs) with poly 2-acrylamido-2-methyl- propanesulfonate (PAMPS) brushes is achieved through electron transfer atom transfer radical polymerization (ARGET ATRP). BNNSs surface was first modified with α-bromoisobutyryl bromide (BIBB) via hydroxyl groups, then PAMPS brushes were grown on the surface through ARGET ATRP. Polyelectrolyte brushes modified BNNSs were further characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses (TGA), x-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The concentraction of water-dispersion of BNNSs have been enhanced significantly by PAMPS and the high water-dispersible functional BNNSs/PAMPS composites are expected to have potential applications in biomedical and thermal management in electronics.
Liqing Wei; Shupin Luo; Armando G. McDonald; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark
2017-01-01
Cellulose nanocrystals (CNCs) are renewable and sustainable filler for polymeric nanocomposites. However, their high hydrophilicity limits their use with hydrophobic polymer for composite materials. In this study, freeze-dried CNCs were modified by transesterification with canola oil fatty acid methyl ester to reduce the hydrophilicity. The transesterified CNCs (CNCFE...
Nanoscale molecularly imprinted polymers and method thereof
Hart, Bradley R [Brentwood, CA; Talley, Chad E [Brentwood, CA
2008-06-10
Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Wenyang; Wang, Zhao; Malonzo, Camille D.
The process of nanocasting in metal-organic frameworks (MOFs) is a versatile approach to modify these porous materials by introducing supporting scaffolds. The nanocast scaffolds can stabilize metal-oxo clusters in MOFs at high temperatures and modulate their chemical environments. Here we demonstrate a range of nanocasting approaches in the MOF NU-1000, which contains hexanuclear oxozirconium clusters (denoted as Zr6 clusters) that are suitable for modification with other metals. We developed methods for introducing SiO2, TiO2, polymeric, and carbon scaffolds into the NU-1000 structure. The responses of NU-1000 towards different scaffold precursors were studied, including the effects on morphology, precursor distribution, andmore » porosity after nanocasting. Upon removal of organic linkers in the MOF by calcination/pyrolysis at 500 °C or above, the Zr6 clusters remained accessible and maintained their Lewis acidity in SiO2 nanocast samples, whereas additional treatment was necessary for Zr6 clusters to become accessible in carbon nanocast samples. Aggregation of Zr6 clusters was largely prevented with SiO2 or carbon scaffolds even after thermal treatment at 500 °C or above. In the case of titania nanocasting, NU- 1000 crystals underwent a pseudomorphic transformation, in which Zr6 clusters reacted with titania to form small oxaggregates of a Zr/Ti mixed oxide with a local structure resembling that of ZrTi2O6. The ability to maintain high densities of discrete Lewis acidic Zr6 clusters on SiO2 or carbon supports at high temperatures provides a starting point for designing new thermally stable catalysts.« less
Engineered polymeric nanoparticles for soil remediation.
Tungittiplakorn, Warapong; Lion, Leonard W; Cohen, Claude; Kim, Ju-Young
2004-03-01
Hydrophobic organic groundwater contaminants, such as polynuclear aromatic hydrocarbons (PAHs), sorb strongly to soils and are difficult to remove. We report here on the synthesis of amphiphilic polyurethane (APU) nanoparticles for use in remediation of soil contaminated with PAHs. The particles are made of polyurethane acrylate anionomer (UAA) or poly(ethylene glycol)-modified urethane acrylate (PMUA) precursor chains that can be emulsified and cross-linked in water. The resulting particles are of colloidal size (17-97 nm as measured by dynamic light scattering). APU particles have the ability to enhance PAH desorption and transport in a manner comparable to that of surfactant micelles, but unlike the surface-active components of micelles, the individual cross-linked precursor chains in APU particles are not free to sorb to the soil surface. Thus, the APU particles are stable independent of their concentration in the aqueous phase. In this paper we show that APU particles can be engineered to achieve desired properties. Our experimental results show that the APU particles can be designed to have hydrophobic interior regions that confer a high affinity for phenanthrene (PHEN) and hydrophilic surfaces that promote particle mobility in soil. The affinity of APU particles for contaminants such as PHEN can be controlled by changing the size of the hydrophobic segment used in the chain synthesis. The mobility of colloidal APU suspensions in soil is controlled by the charge density or the size of the pendent water-soluble chains that reside on the particle surface. Exemplary results are provided illustrating the influence of alternative APU particle formulations with respect to their efficacy for contaminant removal. The ability to control particle properties offers the potential to produce different nanoparticles optimized for varying contaminant types and soil conditions.
NASA Astrophysics Data System (ADS)
Qian, Yong; Lan, Yanfei; Xu, Jianping; Ye, Fucheng; Dai, Shizhen
2014-09-01
In this study, a facile and effective strategy is proposed to fabricate polyimide (PI)-based nanocomposites containing functionalized graphene oxide (FGO) nanosheets by in-situ polymerization and thermal imidization. Highly dispersed CIGO which was firstly obtained by graphene oxide (GO) functionalized with cyclohexyl isocyanate (CI) exhibited excellent dispersibility and compatibility in polyamic acid (PAA, precursor of PI) matrix via in-situ polymerization. Then the CIGO sheets were partially thermally reduced efficiently to FGO during the thermal imidization process of PAA. The incorporation of FGO sheets significantly affected the macroscopic properties of the PI-based composites. A 56.5% increase in the tensile strength and a 43.8% improvement in the Young's modulus were achieved for 2.0 wt% FGO loading. Furthermore, the thermal stability and glass transition temperature (Tg) were improved by adding FGO. In addition, the hydrophobic behavior of the PI-FGO composite clearly improved because of the excellent hydrophobic properties of FGO. The success of this approach provides a good rational for developing high-performance polymer-based composite materials.
Role of filament annealing in the kinetics and thermodynamics of nucleated polymerization.
Michaels, Thomas C T; Knowles, Tuomas P J
2014-06-07
The formation of nanoscale protein filaments from soluble precursor molecules through nucleated polymerization is a common form of supra-molecular assembly phenomenon. This process underlies the generation of a range of both functional and pathological structures in nature. Filament breakage has emerged as a key process controlling the kinetics of the growth reaction since it increases the number of filament ends in the system that can act as growth sites. In order to ensure microscopic reversibility, however, the inverse process of fragmentation, end-to-end annealing of filaments, is a necessary component of a consistent description of such systems. Here, we combine Smoluchowski kinetics with nucleated polymerization models to generate a master equation description of protein fibrillization, where filamentous structures can undergo end-to-end association, in addition to elongation, fragmentation, and nucleation processes. We obtain self-consistent closed-form expressions for the growth kinetics and discuss the key physics that emerges from considering filament fusion relative to current fragmentation only models. Furthermore, we study the key time scales that describe relaxation to equilibrium.
Stress wave propagation and mitigation in two polymeric foams
NASA Astrophysics Data System (ADS)
Pradel, Pierre; Malaise, Frederic; Cadilhon, Baptiste; Quessada, Jean-Hugues; de Resseguier, Thibaut; Delhomme, Catherine; Le Blanc, Gael
2017-06-01
Polymeric foams are widely used in industry for thermal insulation or shock mitigation. This paper investigates the ability of a syntactic epoxy foam and an expanded polyurethane foam to mitigate intense (several GPa) and short duration (<10-6 s) stress pulses. Plate impact and electron beam irradiation experiments have been conducted to study the dynamic mechanical responses of both foams. Interferometer Doppler Laser method is used to record the target rear surface velocity. A two-wave structure associated with the propagation of an elastic precursor followed by the compaction of the pores has been observed. The compaction stress level deduced from the velocity measurement is a good indicator of mitigation capability of the foams. Quasi-static tests and dynamic soft recovery experiments have also been performed to determine the compaction mechanisms. In the polyurethane foam, the pores are closed by elastic buckling of the matrix and damage of the structure. In the epoxy foam, the compaction is due to the crushing of glass microspheres. Two porous material models successfully represent the macroscopic response of these polymeric foams.
Development of processing diagrams for polymeric die attach adhesives
NASA Astrophysics Data System (ADS)
Hsiung, Jen-Chou
With a processing diagram, one can reduce the effort required to customize curing process conditions for polymeric die attach adhesives. Polymeric die attach adhesives are often cured per the manufacturer's recommendations during initial screening evaluations. In most cases, the recommended cure schedules have to be modified so as to fit differences in process equipment. Unfortunately, the modified cure schedule is usually determined by a trial-and-error method. An aim of our experiments is to understand the curing process of a wide range of polymeric die attach adhesives (conventional, fast, and snap cure adhesives) and to construct a processing diagram, i.e., "Bondability Diagram", so as to define the processing window. Such diagrams should be helpful in determining both the time and cure temperature required to produce high quality bonds. The bondability diagram can be constructed based on fundamental understandings of the phenomena involved in the curing process using a wide variety of tools. Differential Scanning Calorimetry (DSC) is utilized to study the cure kinetics and the extent of reaction. Dynamic Mechanical Analysis (DMA) is used to determine gelation times and melt viscosity under a shear mode. A modified Rheovibron is employed to perform cure characterizations under a tensile mode so that cure stresses could be determined. Thermogravimetric Analysis (TGA) is used to evaluate the outgassing phenomena. Optical Microscopy (OM) is used to detect voids. Results indicate that the cure behaviors of conventional, fast, and snap cure adhesives are different in several respects. The combination of DSC, DMA, TGA, OM, and lap shear test leads to a frame work of developing the bondability diagram concept. The bondability diagram concept provides a foundation for an understanding of the recommended cure schedule and allows one to design their own cure schedule.
Biologically produced acid precipitable polymeric lignin
Crawford, Don L.; Pometto, III, Anthony L.
1984-01-01
A water soluble, acid precipitable polymeric degraded lignin (APPL), having a molecular weight of at least 12,000 daltons, and comprising, by percentage of total weight, at least three times the number of phenolic hydroxyl groups and carboxylic acid groups present in native lignin. The APPL may be modified by chemical oxidation and reduction to increase its phenolic hydroxyl content and reduce the number of its antioxidant inhibitory side chains, thereby improving antioxidant properties.
Park, Hyeon; Kang, Eun-Hye; Müller, Laura; Choi, Tae-Lim
2016-02-24
Tandem ring-opening/ring-closing metathesis (RO/RCM) results in extremely fast living polymerization; however, according to previous reports, only monomers containing certain combinations of cycloalkenes, terminal alkynes, and nitrogen linkers successfully underwent tandem polymerization. After examining the polymerization pathways, we proposed that the relatively slow intramolecular cyclization might lead to competing side reactions such as intermolecular cross metathesis reactions to form inactive propagating species. Thus, we developed two strategies to enhance tandem polymerization efficiency. First, we modified monomer structures to accelerate tandem RO/RCM cyclization by enhancing the Thorpe-Ingold effect. This strategy increased the polymerization rate and suppressed the chain transfer reaction to achieve controlled polymerization, even for challenging syntheses of dendronized polymers. Alternatively, reducing the reaction concentration facilitated tandem polymerization, suggesting that the slow tandem RO/RCM cyclization step was the main reason for the previous failure. To broaden the monomer scope, we used monomers containing internal alkynes and observed that two different polymer units with different ring sizes were produced as a result of nonselective α-addition and β-addition on the internal alkynes. Thorough experiments with various monomers with internal alkynes suggested that steric and electronic effects of the alkyne substituents influenced alkyne addition selectivity and the polymerization reactivity. Further polymerization kinetics studies revealed that the rate-determining step of monomers containing certain internal alkynes was the six-membered cyclization step via β-addition, whereas that for other monomers was the conventional intermolecular propagation step, as observed in other chain-growth polymerizations. This conclusion agrees well with all those polymerization results and thus validates our strategies.
NASA Astrophysics Data System (ADS)
Ai, Lunhong; Jiang, Jing
CoLaxFe2-xO4 (x = 0.00, 0.05 and 0.1) nanoparticles were prepared simply by a modified citrate precursor route. Effects of La-substituting level on the their magnetic properties were investigated on the basis of the structural analysis. The thermal evolution of the precursor, as well as the microstructure of as-prepared products were studied by means of a thermogravimetric analyzer (TGA), X-ray diffractometer (XRD) and Fourier transform infrared (FTIR) spectrometer. The magnetic properties of the as-prepared samples were measured using a vibrating sample magnetometer (VSM). It was found that the magnetic properties were dependent on many factors such as La-substituting level, particle size and microstructure. The observed saturation magnetization decreased with increasing La content, whereas coercivity exhibited reverse behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, Vijay Kumar; Department of Chemical Technology, North Maharashtra University Jalgaon-425001; Division of Polymer Science and Engineering, National Chemical Laboratory, Pune-411 008
To achieve a high level of heavy metal adsorption, 1,1 Prime ,1 Double-Prime -(1,3,5-triazine-2,4,6-triyl)tris(3-(3-(triethoxysilyl)propyl)urea) (TTPU) was synthesized as a novel melamine precursor and incorporated on the silica surface of periodic mesoporous organosilica (PMO). The melamine modified PMOs (MPMOs) were synthesized under acidic conditions using TTPU, tetraethylorthosilicate (TEOS) and Pluronic P123 as a template and the modified PMOs were characterized using the relevant instrumental techniques. The characteristic materials were used as adsorbents for the adsorption of Fe(III) ions. Fe(III) adsorption studies revealed MPMO-7.5 to be a good absorbent with higher adsorption efficiency than other MPMOs. - Graphical Abstract: A new organosilicamore » precursor, TTPU, has been successfully synthesized and characterized to incorporate on the silica surface of periodic mesoporous organosilica (PMO). The melamine modified PMOs (MPMOs), in particular, the MPMO-7.5 was found to exhibit good adsorption efficiency for Fe(III). Highlights: Black-Right-Pointing-Pointer Synthesis of new melamine modified periodic mesoporous organosilicas (MPMOs). Black-Right-Pointing-Pointer A new organosilica precursor, TTPU, has been successfully synthesized for the MPMOs. Black-Right-Pointing-Pointer The MPMOs were characterized by the relevant instrumental techniques. Black-Right-Pointing-Pointer MPMO-7.5 exhibits higher adsorption efficiency for Fe(III) ions than other MPMOs.« less
Tóth, Ildikó Y; Szekeres, Márta; Turcu, Rodica; Sáringer, Szilárd; Illés, Erzsébet; Nesztor, Dániel; Tombácz, Etelka
2014-12-30
Magnetite nanoparticles (MNPs) with biocompatible coatings are good candidates for MRI (magnetic resonance imaging) contrasting, magnetic hyperthermia treatments, and drug delivery systems. The spontaneous surface induced polymerization of dissolved organic matter on environmental mineral particles inspired us to prepare carboxylated core-shell MNPs by using a ubiquitous polyphenolic precursor. Through the adsorption and in situ surface polymerization of gallic acid (GA), a polygallate (PGA) coating is formed on the nanoparticles (PGA@MNP) with possible antioxidant capacity. The present work explores the mechanism of polymerization with the help of potentiometric acid-base titration, dynamic light scattering (for particle size and zeta potential determination), UV-vis (UV-visible light spectroscopy), FTIR-ATR (Fourier-transformed infrared spectroscopy by attenuated total reflection), and XPS (X-ray photoelectron spectroscopy) techniques. We observed the formation of ester and ether linkages between gallate monomers both in solution and in the adsorbed state. Higher polymers were formed in the course of several weeks both on the surface of nanoparticles and in the dispersion medium. The ratio of the absorbances of PGA supernatants at 400 and 600 nm (i.e., the E4/E6 ratio commonly used to characterize the degree of polymerization of humic materials) was determined to be 4.3, similar to that of humic acids. Combined XPS, dynamic light scattering, and FTIR-ATR results revealed that, prior to polymerization, the GA monomers became oxidized to poly(carboxylic acid)s due to ring opening while Fe(3+) ions reduced to Fe(2+). Our published results on the colloidal and chemical stability of PGA@MNPs are referenced thoroughly in the present work. Detailed studies on biocompatibility, antioxidant property, and biomedical applicability of the particles will be published.
Glucose-sensitive QCM-sensors via direct surface RAFT polymerization.
Sugnaux, Caroline; Klok, H-A
2014-08-01
Thin, phenylboronic acid-containing polymer coatings are potentially attractive sensory layers for a range of glucose monitoring systems. This contribution presents the synthesis and properties of glucose-sensitive polymer brushes obtained via surface RAFT polymerization of 3-methacrylamido phenylboronic acid (MAPBA). This synthetic strategy is attractive since it allows the controlled growth of PMAPBA brushes with film thicknesses of up to 20 nm via direct polymerization of MAPBA without the need for additional post-polymerization modification or deprotection steps. QCM-D sensor chips modified with a PMAPBA layer respond with a linear change in the shift of the fundamental resonance frequency over a range of physiologically relevant glucose concentrations and are insensitive toward the presence of fructose, thus validating the potential of these polymer brush films as glucose sensory thin coatings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of metal nanoparticle and patterning in polymeric films induced by electron beam
NASA Astrophysics Data System (ADS)
Yamamoto, Hiroki; Kozawa, Takahiro; Tagawa, Seiichi; Marignier, Jean-Louis; Mostafavi, Mehran; Belloni, Jacqueline
2018-03-01
Using an electron beam, thin polymeric films loaded with metal nanoparticles of silver were prepared by a one-step irradiation-induced reduction of the metal ions embedded in the polymer. The metal nanoparticles were observed by either optical absorption or microscopy. The mechanism of the reduction of metal ions and of the polymer crosslinking were deduced from the average absorbance measurements. In view of realizing specific patterns of high resolution using the electron beam, electron beam produces 200 nm wide lines that can be separated by unexposed spaces of adjustable width, where precursors were dissolved. The resolution of the electron beam has been exploited to demonstrate the achievement of nanopatterning on polymer films using a direct-writing process. This method supplies interesting applications such as masks, replicas, or imprint molds of improved density and contrast.
NASA Technical Reports Server (NTRS)
Mikroyannidis, John A. (Inventor); Kourtides, Demetrius A. (Inventor)
1987-01-01
A class of fire and heat resistant bisimide resins prepared by thermal polymerization of maleimido or citraconimido substituted 1-((dialkoxyphosphonyl) methyl)-2-4 and -2,6-diaminobenzenes are described. The polymer precursors are prepared by reacting 1-((diorganooxyphosphonyl) methyl)-2-4 and -2,6-diaminobenzenes with maleic anhydride or citraconic anhydride in a mole ratio 1:2. Chain extension of the monomers is achieved by reacting the mono-N-maleimido derivatives of 1-((diorganooxyphosphonyl) methyl)-2,4 and -2,6-diaminobenzenes with aryl tetracarboxylic dianhydrides, such as benzophenone tetracarbocylic dianhydride, or aryl diisocyanates, such as methylenebis (4-phenylisocyanate), in a mole ratio 2:1. The polymerization of the monomers is studied by differential scanning calorimetry (DSC) and the thermal stability of the polymers is ascertained by thermogravimetric analysis (TGA).
Design and synthesis of inorganic/organic hybrid electrochemical materials
NASA Astrophysics Data System (ADS)
Harreld, John H.
An ambient pressure method for drying sol-gel materials is developed to synthesize high porosity (80--90%), high surface area vanadium oxide and silica aerogel materials (150--300 and 1000 m2/g for vanadium pentoxide and silica, respectively). The synthesis approach uses liquid exchange to replace the pore fluid with a low surface tension, nonpolar solvent which reduces the capillary pressures developed during drying. The Good-Girifalco interaction parameter is used to calculate pore stresses resulting from drying silica gels from various liquids. Vanadium oxide/polypyrrole hybrid aerogels are prepared using three strategies. These approaches focus on either sequential or consecutive polymerization of the inorganic and organic networks. Microcomposite aerogels are synthesized by encapsulating a dispersion of preformed polypyrrole in a vanadium pentoxide gel. In the second approach, pyrrole is polymerized and doped within the pore volume of preformed vanadium pentoxide gel. When the inorganic and organic precursors are polymerized simultaneously, the resulting gels exhibited a nanometer scaled microstructure with homogeneous distributions of either phases. Through this route, a suitable microstructure and composition for a lithium secondary battery cathode is obtained. Lithiated aerogels of hydrated nickel, cobalt, and mixed nickel-cobalt oxides are synthesized from lithium hydroxide and transition metal acetate precursors. The XRD analyses indicate that the nickel containing gels exhibit a lithium deficiency (less than 1 Li/transition metal. By increasing the concentration of the lithium precursor the lithium content in nickel oxides is increased, and additional base solution is no longer required to catalyze gelation. A non-hydrolytic sol-gel approach is utilized to create tin oxide and tin-aluminum binary oxide aerogels with high porosity (90%) and high surface area (300 m2/g). XRD data from single phase tin oxide aerogel indicates the growth of SnO2 crystallites between 150--400°C in air, accompanied by a reduction in surface area (30 m2/g). Heated tin oxide aerogel exhibits comparable reversible specific capacity (390 mAh/g) as that of commercial SnO2 (420 mAh/g). Amorphous tin oxide aerogel is stabilized to higher temperatures when aluminum oxide is incorporated into the structure. The tin oxide phase remains electrochemically active towards lithium insertion and exhibits excellent reversibility during cycling.
USDA-ARS?s Scientific Manuscript database
Porcine reproductive and respiratory syndrome (PRRS) is a devastating disease caused by the PRRS virus. The MontanideTM class of flexible polymeric adjuvants has recently been shown to enhance protective immunity against PRRSV infection in piglets when used in combination with PRRS modified live vac...
Electron-beam-induced post-grafting polymerization of acrylic acid onto the surface of Kevlar fibers
NASA Astrophysics Data System (ADS)
Xu, Lu; Hu, Jiangtao; Ma, Hongjuan; Wu, Guozhong
2018-04-01
The surface of Kevlar fibers was successfully modified by electron beam (EB)-induced post-grafting of acrylic acid (AA). The generation of radicals in the fibers was confirmed by electron spin resonance (ESR) measurements, and the concentration of radicals was shown to increase as the absorbed dose increased, but decrease with increasing temperature. The influence of the synthesis conditions on the degree of grafting was also investigated. The surface microstructure and chemical composition of the modified Kevlar fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed that the surface of the grafted fibers was rougher than those of the pristine and irradiated fibers. XPS analysis confirmed an increase in C(O)OH groups on the surface of the Kevlar fibers, suggesting successful grafting of AA. These results indicate that EB-induced post-grafting polymerization is effective for modifying the surface properties of Kevlar fibers.
The Synthesis of Carborane-Oxetane Monomers and their Polymerization
1988-07-11
polyether glycol was liter demonstrated.’ During this time, " modified cationic polymerization technique was developef’, which allowed the synthesis of...Migration of these chemicals in the propellant grain is a continuous and serious problem. We proposed that a urethane curable polyether glycol with a...Br CH3 g 3 Cl CH3 This scheme has the advantage that the leaving group is not on the oxetane. Oxetane is a neopentyl type system which is typically
Boraschi-Diaz, Iris; Komarova, Svetlana V
2016-01-01
Osteoclasts are responsible for physiological bone remodeling as well as pathological bone destruction in osteoporosis, periodontitis and rheumatoid arthritis, and thus represent a pharmacological target for drug development. We aimed to characterize and compare the cytokine-induced osteoclastogenesis of bone marrow and spleen precursors. Established protocols used to generate osteoclasts from bone marrow were modified to examine osteoclastogenesis of the spleen cells of healthy mice. Osteoclast formation was successfully induced from spleen precursors using receptor activator of nuclear factor κB ligand (50 ng/ml) and macrophage colony stimulating factor (50 ng/ml). Compared to bone marrow cultures, differentiation from spleen required a longer cultivation time (9 days for spleen, as compared to 5 days for marrow cultures) and a higher plating density of non-adherent cells (75,000/cm(2) for spleen, as compared to 50,000/cm(2) for bone marrow). Osteoclasts generated from spleen precursors expressed osteoclast marker genes calcitonin receptor, cathepsin K and matrix metalloproteinase 9 and were capable of resorbing hydroxyapatite. The differentiation capacity of spleen and bone marrow precursors was comparable for BALB/c, C57BL/6 and FVB mice. We also developed and tested a cryopreservation protocol for the osteoclast precursors. While 70-80 % of cells were lost during the first week of freezing, during the subsequent 5 weeks the losses were within 2-5 % per week. Osteoclastogenesis from the recovered bone marrow precursors was successful up to 5 weeks after freezing. Spleen precursors retained their osteoclastogenic capacity for 1 week after freezing, but not thereafter. The described protocol is useful for the studies of genetically modified animals as well as for screening new osteoclast-targeting therapeutics.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... precursors. They also establish nitrogen oxides (NO X ) and sulfur dioxide (SO 2 ) as precursors to PM 2.5... recordkeeping requirements, Sulfur oxides, Volatile organic compounds. Dated: June 26, 2012. W.C. Early, Acting..., modified document begins]. definitions of ``regulated NSR pollutant'' and ``significant,'' and removed...
Ultrafast Digital Printing toward 4D Shape Changing Materials.
Huang, Limei; Jiang, Ruiqi; Wu, Jingjun; Song, Jizhou; Bai, Hao; Li, Bogeng; Zhao, Qian; Xie, Tao
2017-02-01
Ultrafast 4D printing (<30 s) of responsive polymers is reported. Visible-light-triggered polymerization of commercial monomers defines digitally stress distribution in a 2D polymer film. Releasing the stress after the printing converts the structure into 3D. An additional dimension can be incorporated by choosing the printing precursors. The process overcomes the speed limiting steps of typical 3D (4D) printing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microfluidic systems with embedded materials and structures and method thereof
Morse, Jeffrey D [Martinez, CA; Rose, Klint A [Boston, MA; Maghribi, Mariam [Livermore, CA; Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Hamilton, Julie [Tracy, CA; Graff, Robert T [Modesto, CA; Jankowski, Alan [Livermore, CA
2007-03-06
Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.
Atomic Layer Deposition of L-Alanine Polypeptide
Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; ...
2014-10-30
L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.
Synthesis and Useful Reactions of Organosilicon Polymeric Precursors for Ceramics
1992-04-05
composites are hot pressing, chemical vapor infiltration , reaction bonding and polymer infiltration / pyrolysis . Thus the inorganic or organometallic...to prepare preceramic polymers whose D; pyrolysis gives -99% SiC , -99.5% Si 3 N4 , or any mixture of the two by appropriate manipulation of the...the standard furnace pyrolysis of the polymer gave a ceramic of composition 96.6% SiC , 1.7% ZrC and 1.7% Si in 71% yield. Finally, (71-C
Method for the preparation of novel polyacetylene-type polymers
Zeigler, John M.
1989-01-01
Polymerization of acetylenic monomers is achieved by using a catalyst which is the reaction product of a tungsten compound and a reducing agent effective to reduce W(VI) to W(III) and/or IV), e.g., WCl.sub.6.(organo-Li, organo-Mg or polysilane). The resultant silylated polymers are of heretofore unachievable high molecular weight and can be used as precursors to a wide variety of new acetylenic polymers by application of substitution reactions.
Non-strinking siloxane polymers
Loy, Douglas A.; Rahimian, Kamyar
2001-01-01
Cross-linked polymers formed by ring-opening polymerization of a precursor monomer of the general formula R[CH.sub.2 CH(Si(CH.sub.3).sub.2).sub.2 O].sub.2, where R is a phenyl group or an alkyl group having at least two carbon atoms. A cross-linked polymer is synthesized by mixing the monomer with a co-monomer of the general formula CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O in the presence of an anionic base to form a cross-linked polymer of recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2 [CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O].sub.n, where R.sup.2 is hydrogen, phenyl, ethyl, propyl or butyl. If the precursor monomer is a liquid, the polymer can be directly synthesized in the presence of an anionic base to a cross-linked polymer containing recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2. The polymers have approximately less than 1% porosity and are thermally stable at temperatures up to approximately 500.degree. C. The conversion to the cross-linked polymer occurs by ring opening polymerization and results in shrinkage of less than approximately 5% by volume.
NASA Astrophysics Data System (ADS)
Almeida, T. S.; Palma, L. M.; Leonello, P. H.; Morais, C.; Kokoh, K. B.; De Andrade, A. R.
2012-10-01
The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved.
NASA Astrophysics Data System (ADS)
Tu, Hengyong; Liu, Xin; Yu, Qingchun
2011-03-01
Scandia ceria stabilized zirconia (10Sc1CeSZ) powders are synthesized by polymeric precursor method for use as the electrolyte of anode-supported solid oxide fuel cell (SOFC). The synthesized powders are characterized in terms of crystalline structure, particle shape and size distribution by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). 10Sc1CeSZ electrolyte films are deposited on green anode substrate by screen-printing method. Effects of 10Sc1CeSZ powder characteristics on sintered films are investigated regarding the integration process for application as the electrolytes in anode-supported SOFCs. It is found that the 10Sc1CeSZ films made from nano-sized powders with average size of 655 nm are very porous with many open pores. In comparison, the 10Sc1CeSZ films made from micron-sized powders with average size of 2.5 μm, which are obtained by calcination of nano-sized powders at higher temperatures, are much denser with a few closed pinholes. The cell performances are 911 mW cm-2 at the current density of 1.25 A cm-2 and 800 °C by application of Ce0.8Gd0.2O2 (CGO) barrier layer and La0.6Sr0.4CoO3 (LSC) cathode.
Xu, Jun; Guo, Baohua; Zhang, Zengmin; Wu, Qiong; Zhou, Quan; Chen, Jinchun; Chen, Guoqiang; Li, Guodong
2005-06-30
A mathematical model is proposed for predicting the copolymer composition of the microbially synthesized polyhydroxyalkanoate (PHA) copolymers. Based on the biochemical reactions involved in the precursor formation and polymerization pathways, the model correlates the copolymer composition with the cultivation conditions, the enzyme levels and selectivity, and the metabolic pathways. It suggests the following points: (1) in the case of a sole carbon source, the copolymer composition depends mainly on the topology of the metabolic pathways and the selectivity of both the enzymes involved in the precursor formation and the polymerization route; (2) the copolymer composition can be varied in a wide range via alteration of the flux ratio of different types of monomers channeled from two or more independent and simultaneous pathways; (3) the enzymes which should be over-expressed or inhibited to obtain the desired copolymer composition can be predicted. For example, inhibition of the beta-oxidation pathway will increase the content of the monomer units with longer chain length. To test the model, various experiments were envisaged by varying cultivation time, concentration and chain length of the sole carbon source, and molar ratio of the cosubstrates. The predictions from the model agree well with the experimental results. Therefore, the proposed model will be useful in predicting the PHA copolymer composition under different biochemical reaction conditions. In other words, it can provide a guide for the synthesis of desired PHA copolymers.
NASA Astrophysics Data System (ADS)
Tripathi, Nagesh Kumar; Sathe, Manisha
2017-12-01
Large scale production of activated carbon is need of ongoing research due to its excellent adsorption capacity for removal of heavy metals from contaminated solutions. In the present study, polymeric precursor polystyrene beads [Brunauer Emmett Teller (BET) surface area, 46 m2/g; carbon content, 40.64%; crushing strength, 0.32 kg/sphere] were used to produce a new variant of activated carbon, Activated Carbon Spheres (ACS) in a pilot scale fluidized bed reactor. ACS were prepared by carbonization of polymeric precursor at 850 °C followed by activation of resultant material with steam. Prepared ACS were characterized using scanning electron microscope, CHNS analyzer, thermogravimetric analyzer, surface area analyzer and crushing strength tester. The produced ACS have 1009 m2/g BET surface area, 0.89 cm3/g total pore volume, 92.32% carbon content and 1.1 kg/sphere crushing strength with less than 1% of moisture and ash content. The ACS were also evaluated for its potential to remove hexavalent chromium [Cr(VI)] from contaminated solutions. The chromium removal is observed to be 99.1% at initial concentration 50 mg/l, pH 2, ACS dose 1 g/l, contact time 2 h, agitation 120 rpm and temperature 30 °C. Thus ACS can be used as an adsorbent material for the removal of Cr(VI) from contaminated solutions.
Silica nanoparticles carrying boron-containing polymer brushes
NASA Astrophysics Data System (ADS)
Brozek, Eric M.; Mollard, Alexis H.; Zharov, Ilya
2014-05-01
A new class of surface-modified silica nanoparticles has been developed for potential applications in boron neutron capture therapy. Sub-50 nm silica particles were synthesized using a modified Stöber method and used in surface-initiated atom transfer radical polymerization of two biocompatible polymers, poly(2-(hydroxyethyl)methacrylate) and poly(2-(methacryloyloxy)ethyl succinate). The carboxylic acid and hydroxyl functionalities of the polymeric side chains were functionalized with carboranyl clusters in high yields. The resulting particles were characterized using DLS, TEM, solution 1H NMR, solid state 11B NMR and thermogravimetric analysis. The particles contain between 13 and 18 % of boron atoms by weight, which would provide a high amount of 10B nuclides for BNCT, while the polymer chains are suitable for further modification with cell targeting ligands.
NASA Astrophysics Data System (ADS)
McLeod, David Charles
Macromolecules that contain electrophilic moieties, such as benzyl halides, activated esters, and epoxides, will readily undergo efficient nucleophilic substitution reactions with a wide variety of compounds under mild conditions, and are therefore ideally suited to act as "universal" precursors to functional materials. Epoxide-containing polymers derived from the radical polymerization of commercially-available glycidyl methacrylate are often employed in this role; however, methacrylic polymers suffer from certain limitations as a result of the incorporated ester groups, which are not stabile in the presence of strong nucleophiles, acids, bases, or esterase enzymes. Styrenic polymers that do not contain labile carbonyl moieties are usually the precursors of choice when high chemical stability is desired in the end product, but the production of functional materials from epoxide-containing styrenic polymers is relatively unexplored. In this dissertation, improved methods were developed for synthesizing 4-vinylphenyloxirane (4VPO) and 4-vinylphenyl glycidyl ether (4VPGE), two of the better-known epoxide-containing styrenic monomers, in high-yield and purity. Well-defined, epoxide-containing styrenic polymers with targeted molecular weights, narrow molecular weight distributions, and controlled architectures (specifically, linear and star-shaped homopolymers, as well as linear block copolymers with styrene) were produced from 4VPO and 4VPGE for the first time using reversible-deactivation radical polymerization techniques, such as low-catalyst-concentration atom transfer radical polymerization (LCC ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization. The robust nature and utility of poly4VPO and poly4VPGE were then demonstrated by the efficient, ring-opening modification of the pendant epoxide groups with a structurally- and functionally-diverse array of alcohols under acidic conditions at ambient temperature. The macromolecular compositions, architectures, and thermal stabilities of the resulting ?-hydroxy ether-functionalized homopolymers were evaluated using NMR and FTIR spectroscopy, size exclusion chromatography, and thermal gravimetric analysis. Aziridines and thiiranes (saturated, three-membered heterocycles containing either a single nitrogen or sulfur atom, respectively) are also susceptible to nucleophilic ring-opening reactions, and functional materials derived from aziridine- or thiirane-containing polymers could potentially have many interesting properties as a result of their high amine or thiol content, such as the ability to form pH- or redox-responsive structures. The synthesis of polymers containing aziridines that are activated towards nucleophilic ring-opening by C-aryl and/or N-sulfonyl substituents is unprecedented in the literature. Efficient methods for synthesizing styrenic monomers that contain these highly-reactive functionalities, namely 2-(4-vinylphenyl)aziridine (VPA) and its sulfonyl-activated derivative, N-mesyl-2-(4-vinylphenyl)aziridine (NMVPA), were developed utilizing 4VPO as a starting material. VPA was polymerized under LCC ATRP and RAFT conditions, but these methods were ineffective at producing well-defined polymers due to side reactions between the aziridine groups and the polymerization mediating compounds. Nitroxide-mediated radical polymerization (NMRP) produced well-defined polyVPA at low to moderate conversions of monomer, but cross-linking side reactions were evident at higher monomer conversions. Nearly all undesirable side reactions were prevented by attaching a mesyl group to the aziridine nitrogen atom, and well-defined polyNMVPA was realized under RAFT and NMRP conditions. Under ATRP conditions, reactions between the aziridine groups and catalyst still occurred, so the polymerization of NMVPA was not controlled using this technique. The synthesis of thiirane-containing styrenic polymers from either 2-(4-vinylphenyl)thiirane (VPT) or 2-((4-vinylphenoxy)methyl)thiirane (VPOMT), which were produced in a facile manner from 4VPO or 4VPGE, respectively, was attempted under conventional radical polymerization and RAFT polymerization conditions. Rapid desulfurization or ring-opening polymerization of VPT occurred when elevated temperatures or UV radiation was applied to reactions containing this monomer. The more-stable VPOMT monomer was successfully polymerized at elevated temperatures using thermally-labile azo-type initiators, and, under RAFT conditions, polymers of VPOMT increased in molecular weight as higher conversions of monomer were reached; however, the polymers produced under RAFT conditions were ill-defined and eventually underwent macrogelation, due to cross-linking side reactions of the thiirane moieties.
NASA Astrophysics Data System (ADS)
Wu, Li-guang; Yang, Cai-hong; Wang, Ting; Zhang, Xue-yang
2018-05-01
Polyethylene glycol (PEG) with different molecular weights was first used to modify graphene oxide (GO) samples. Subsequently, polyimide (PI) hybrid membranes containing modified-GO were fabricated via in situ polymerization. The separation performance of these hybrid membranes was evaluated using permeation experiments for CO2 and N2 gases. The morphology characterization showed that PEG with suitable molecular weight could be successfully grafted on the GO surface. PEG modification altered the surface properties of GO and introduced defective structures onto GO surface. This caused strong surface polarity and high free volume of membranes containing PEG-modified GO, thereby improving the separation performance of membranes. The addition of PEG-GO with low molecular weight effectively increased gas diffusion through hybrid membranes. The hybrid membranes containing PEG-GO with large molecular weight had high solubility performance for CO2 gas due to the introduction of numerous polar groups into polymeric membranes. With the loading content of modified GO, the CO2 gas permeability of hybrid membranes initially increased but eventually decreased. The optimal content of modified GO in membranes reached 3.0 wt%. When too much PEG added (exceeding 30 g), some impurities formed on GO surface and some aggregates appeared in the resulting hybrid membrane, which depressed the membrane performance.
Chemical Preparation Laboratory for IND Candidate Compounds
1990-08-10
Confirmation by 500 MHz Spectroscopy of an Analogue of the Amaryllidaceae Alkaloids, Narciclasine and Pancratistatin." Bjarne Gabrielsen, Department...subdivided into modified nucleosides, alkaloids with synthetically modified precursors and analogues , and miscellaneous heterocycles that possess...or antitumor compounds were modified synthet 4cally to possibly yield novel analogues that possess enhanced activities or show a specific mode of
Gad, Mohammed M; Fouda, Shaimaa M; ArRejaie, Aws S; Al-Thobity, Ahmad M
2017-05-22
Polymerization techniques have been modified to improve physical and mechanical properties of polymethylmethacrylate (PMMA) denture base, as have the laboratory procedures that facilitate denture construction techniques. The purpose of the present study was to investigate the effect of autoclave polymerization on flexural strength, elastic modulus, surface roughness, and the hardness of PMMA denture base resins. Major Base and Vertex Implacryl heat-polymerized acrylic resins were used to fabricate 180 specimens. According to the polymerization technique, tested groups were divided into: group I (water-bath polymerization), group II (short autoclave polymerization cycle, 60°C for 30 minutes, then 130°C for 10 minutes), and group III (long autoclave polymerization cycle, 60°C for 30 minutes, then 130°C for 20 minutes). Each group was divided into two subgroups based on the materials used. Flexural strength and elastic modulus were determined by a three-point bending test. Surface roughness and hardness were evaluated with a profilometer and Vickers hardness (VH) test, respectively. One-way ANOVA and the Tukey-Kramer multiple-comparison test were used for results analysis, which were statistically significant at p ≤ 0.05. Autoclave polymerization showed a significant increase in flexural strength and hardness of the two resins (p < 0.05). The elastic modulus showed a significant increase in the major base resin, while a significant decrease was seen for Vertex Implacryl in all groups (p < 0.05); however, there was no significant difference in surface roughness between autoclave polymerization and water-bath polymerization (p > 0.05). Autoclave polymerization significantly increased the flexural properties and hardness of PMMA denture bases, while the surface roughness was within acceptable clinical limits. For a long autoclave polymerization cycle, it could be used as an alternative to water-bath polymerization. © 2017 by the American College of Prosthodontists.
Surface functionalization of polyamide fiber via dopamine polymerization
NASA Astrophysics Data System (ADS)
Kuang, Xiao-Hui; Guan, Jin-Ping; Tang, Ren-Cheng; Chen, Guo-Qiang
2017-09-01
The oxidative polymerization of dopamine for the functional surface modification of textile fibers has drawn great attention. In this work, the functionalization of polyamide fiber via dopamine polymerization was studied with the aim of the fabrication of hydrophilic and antistatic surface. The conditions of dopamine application were first discussed in the absence of specific oxidants in terms of the apparent color depth of polyamide fiber. Dopamine concentration, pH and time were found to exert great impact on color depth. The highest color depth was achieved at pH 8.5. In the process of modification, polydopamine was deposited onto the surface of polyamide fiber. The modified polyamide fiber displayed a yellowish brown color with excellent wash and light color fastness, and exhibited good hydrophilic, UV protection and antistatic effects. A disadvantage of the present approach was the slow rate of dopamine polymerization and functionalization.
Yonamine, Yusuke; Cervantes-Salguero, Keitel; Minami, Kosuke; Kawamata, Ibuki; Nakanishi, Waka; Hill, Jonathan P; Murata, Satoshi; Ariga, Katsuhiko
2016-05-14
In this study, a Langmuir-Blodgett (LB) system has been utilized for the regulation of polymerization of a DNA origami structure at the air-water interface as a two-dimensionally confined medium, which enables dynamic condensation of DNA origami units through variation of the film area at the macroscopic level (ca. 10-100 cm(2)). DNA origami sheets were conjugated with a cationic lipid (dioctadecyldimethylammonium bromide, 2C18N(+)) by electrostatic interaction and the corresponding LB-film was prepared. By applying dynamic pressure variation through compression-expansion processes, the lipid-modified DNA origami sheets underwent anisotropic polymerization forming a one-dimensionally assembled belt-shaped structure of a high aspect ratio although the thickness of the polymerized DNA origami was maintained at the unimolecular level. This approach opens up a new field of mechanical induction of the self-assembly of DNA origami structures.
NASA Astrophysics Data System (ADS)
Jia; Wang; Tian; Li; Xu; Jiao; Cao; Wu
2016-10-01
SiO2-based microcapsules containing hydrophobic molecules exhibited potential applications such as extrinsic self-healing, drug delivery, due to outstanding thermal and chemical stability of SiO2. However, to construct SiO2-based microcapsules with both high encapsulation loading and long-term structural stability is still a troublesome issue, limiting their further utilization. We herein design a single-batch route, a combined interfacial and in-situ polymerization strategy, to fabricate epoxy-containing SiO2-based microcapsules with both high encapsulation loading and long-term structural stability. The final SiO2-based microcapsules preserve high encapsulation loading of 85.7 wt% by controlling exclusively hydrolysis and condensed polymerization at oil/water interface in the initial interfacial polymerization step. In the subsequent in-situ polymerization step, the initial SiO2-based microcapsules as seeds could efficiently harvest SiO2 precursors and primary SiO2 particles to finely tune the SiO2 wall thickness, thereby enhancing long-term structural stability of the final SiO2-based microcapsules including high thermal stability with almost no any weight loss until 250°C, and strong tolerance against nonpolar solvents such as CCl4 with almost unchanged core-shell structure and unchanged core weight after immersing into strong solvents for up to 5 days. These SiO2-based microcapsules are extremely suited for processing them into anticorrosive coating in the presence of nonpolar solvents for self-healing application.
Recent progress on understanding the mechanisms of amyloid nucleation.
Chatani, Eri; Yamamoto, Naoki
2018-04-01
Amyloid fibrils are supramolecular protein assemblies with a fibrous morphology and cross-β structure. The formation of amyloid fibrils typically follows a nucleation-dependent polymerization mechanism, in which a one-step nucleation scheme has widely been accepted. However, a variety of oligomers have been identified in early stages of fibrillation, and a nucleated conformational conversion (NCC) mechanism, in which oligomers serve as a precursor of amyloid nucleation and convert to amyloid nuclei, has been proposed. This development has raised the need to consider more complicated multi-step nucleation processes in addition to the simplest one-step process, and evidence for the direct involvement of oligomers as nucleation precursors has been obtained both experimentally and theoretically. Interestingly, the NCC mechanism has some analogy with the two-step nucleation mechanism proposed for inorganic and organic crystals and protein crystals, although a more dramatic conformational conversion of proteins should be considered in amyloid nucleation. Clarifying the properties of the nucleation precursors of amyloid fibrils in detail, in comparison with those of crystals, will allow a better understanding of the nucleation of amyloid fibrils and pave the way to develop techniques to regulate it.
Wang, Hongwei; Ou, Junjie; Lin, Hui; Liu, Zhongshan; Huang, Guang; Dong, Jing; Zou, Hanfa
2014-11-07
Two kinds of hybrid monolithic columns were prepared by using methacrylate epoxy cyclosiloxane (epoxy-MA) as functional monomer, containing three epoxy moieties and one methacrylate group. One column was in situ fabricated by ring-opening polymerization of epoxy-MA and 1,10-diaminodecane (DAD) using a porogenic system consisting of isopropanol (IPA), H2O and ethanol at 65°C for 12h. The other was prepared by free radical polymerization of epoxy-MA and ethylene dimethacrylate (EDMA) using 1-propanol and 1,4-butanediol as the porogenic solvents at 60°C for 12h. Two hybrid monoliths were investigated on the morphology and chromatographic assessment. Although two kinds of monolithic columns were prepared with epoxy-MA, their morphologies looked rather different. It could be found that the epoxy-MA-DAD monolith possessed higher column efficiencies (25,000-34,000plates/m) for the separation of alkylbenzenes than the epoxy-MA-EDMA monolith (12,000-13,000plates/m) in reversed-phase nano-liquid chromatography (nano-LC). Depending on the remaining epoxy or methacrylate groups on the surface of two pristine monoliths, the epoxy-MA-EDMA monolith could be easily modified with 1-octadecylamine (ODA) via ring-opening reaction, while the epoxy-MA-DAD monolith could be modified with stearyl methacrylate (SMA) via free radical reaction. The chromatographic performance for the separation of alkylbenzenes on SMA-modified epoxy-MA-DAD monolith was remarkably improved (42,000-54,000 plates/m) when compared with that on pristine epoxy-MA-DAD monolith, while it was not obviously enhanced on ODA-modified epoxy-MA-EDMA monolith when compared with that on pristine epoxy-MA-EDMA monolith. The enhancement of the column efficiency of epoxy-MA-DAD monolith after modification might be ascribed to the decreased mass-transfer resistence. The two kinds of hybrid monoliths were also applied for separations of six phenols and seven basic compounds in nano-LC. Copyright © 2014 Elsevier B.V. All rights reserved.
Ceramic impregnated superabrasives
Radtke, Robert P.; Sherman, Andrew
2009-02-10
A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.
Fundamental investigation of ultraviolet radiation effects in polymeric film-forming materials
NASA Technical Reports Server (NTRS)
Giori, C.; Yamauchi, T.; Llewellen, P.; Gilligan, J.
1974-01-01
A literature search from 1958 to present was conducted on the effect of ultraviolet radiation on polymeric materials, with particular emphasis on vacuum photolysis, mechanisms of degradation, and energy transfer phenomena. The literature from 1958 to 1968 was searched manually, while the literature from 1968 to present was searched by using a computerized keyword system. The primary objective was to provide the necessary background information for the design of new or modified materials with improved stability to the vacuum-radiation environment of space.
Arita, Toshihiko
2010-10-01
Commercially available unmodified ceramic nanoparticles (NPs) in dry powder state were surface-modified and dispersed in almost single-crystal size. The surface-initiated living radical polymerization after just UV-ozone soft etching enables one to graft polymers onto the surface of ceramic NPs and disperse them in solvents. Furthermore, a number of NPs were dispersed with single-crystal sizes. The technique developed here could be applied to almost all ceramic NPs including metal nitrides.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
... prevention of significant deterioration (PSD) measures required in the SIP of any other state, with regard to... modify the PSD SIP to include nitrogen oxides (NO X ) as an ozone precursor. EPA is approving revisions to the Albuquerque/Bernalillo County PSD SIP that identify the PM 2.5 precursors and establish...
The Effect of Different Coupling Agents on Nano-ZnO Materials Obtained via the Sol-Gel Process.
Purcar, Violeta; Şomoghi, Raluca; Niţu, Sabina Georgiana; Nicolae, Cristian-Andi; Alexandrescu, Elvira; Gîfu, Ioana Cătălina; Gabor, Augusta Raluca; Stroescu, Hermine; Ianchiş, Raluca; Căprărescu, Simona; Cinteză, Ludmila Otilia
2017-12-12
Hybrid nanomaterials based on zinc oxide were synthesized via the sol-gel method, using different silane coupling agents: (3-glycidyloxypropyl)trimethoxysilane (GPTMS), phenyltriethoxysilane (PhTES), octyltriethoxysilane (OTES), and octadecyltriethoxysilane (ODTES). Morphological properties and the silane precursor type effect on the particle size were investigated using dynamic light scattering (DLS), environmental scanning electron microscopy (ESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The bonding characteristics of modified ZnO materials were investigated using Fourier transform infrared spectroscopy (FTIR). The final solutions were deposited on metallic substrate (aluminum) in order to realize coatings with various wettability and roughness. The morphological studies, obtained by ESEM and TEM analysis, showed that the sizes of the ZnO nanoparticles are changed as function of silane precursor used in synthesis. The thermal stability of modified ZnO materials showed that the degradation of the alkyl groups takes place in the 300-500 °C range. Water wettability study revealed a contact angle of 142 ± 5° for the surface covered with ZnO material modified with ODTES and showed that the water contact angle increases as the alkyl chain from the silica precursor increases. These modified ZnO materials, therefore, can be easily incorporated in coatings for various applications such as anti-corrosion and anti-icing.
Combinatorial Characterization of TiO2 Chemical Vapor Deposition Utilizing Titanium Isopropoxide.
Reinke, Michael; Ponomarev, Evgeniy; Kuzminykh, Yury; Hoffmann, Patrik
2015-07-13
The combinatorial characterization of the growth kinetics in chemical vapor deposition processes is challenging because precise information about the local precursor flow is usually difficult to access. In consequence, combinatorial chemical vapor deposition techniques are utilized more to study functional properties of thin films as a function of chemical composition, growth rate or crystallinity than to study the growth process itself. We present an experimental procedure which allows the combinatorial study of precursor surface kinetics during the film growth using high vacuum chemical vapor deposition. As consequence of the high vacuum environment, the precursor transport takes place in the molecular flow regime, which allows predicting and modifying precursor impinging rates on the substrate with comparatively little experimental effort. In this contribution, we study the surface kinetics of titanium dioxide formation using titanium tetraisopropoxide as precursor molecule over a large parameter range. We discuss precursor flux and temperature dependent morphology, crystallinity, growth rates, and precursor deposition efficiency. We conclude that the surface reaction of the adsorbed precursor molecules comprises a higher order reaction component with respect to precursor surface coverage.
Process for preparing silicon carbide foam
Whinnery, LeRoy Louis; Nichols, Monte Carl; Wheeler, David Roger; Loy, Douglas Anson
1997-01-01
A method of preparing near net shape, monolithic, porous SiC foams is disclosed. Organosilicon precursors are used to produce polymeric gels by thermally induced phase separation, wherein, a sufficiently concentrated solution of an organosilicon polymer is cooled below its solidification temperature to form a gel. Following solvent removal from the gel, the polymer foam is pretreated in an oxygen plasma in order to raise its glass transition temperature. The pretreated foam is then pyrolized in an inert atmosphere to form a SiC foam.
Process for preparing silicon carbide foam
Whinnery, L.L.; Nichols, M.C.; Wheeler, D.R.; Loy, D.A.
1997-09-16
A method of preparing near net shape, monolithic, porous SiC foams is disclosed. Organosilicon precursors are used to produce polymeric gels by thermally induced phase separation, wherein, a sufficiently concentrated solution of an organosilicon polymer is cooled below its solidification temperature to form a gel. Following solvent removal from the gel, the polymer foam is pretreated in an oxygen plasma in order to raise its glass transition temperature. The pretreated foam is then pyrolyzed in an inert atmosphere to form a SiC foam. 9 figs.
Microfluidic fuel cell systems with embedded materials and structures and method thereof
Morse, Jeffrey D.; Rose, Klint A; Maghribi, Mariam; Benett, William; Krulevitch, Peter; Hamilton, Julie; Graff, Robert T.; Jankowski, Alan
2005-07-26
Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.
Zeigler, John M.
1989-01-01
Polymerization of acetylenic monomers is achieved by using a catalyst which is the reaction product of a tungsten compound and a reducing agent effective to reduce W(VI) to W(III and/or IV), e.g., WCl.sub.6.(organo-Li, organo-Mg or polysilane). The resultant silylated polymers are of heretofore unachievable high molecular weight and can be used as precursors to a wide variety of new acetylenic polymers by application of substitution reactions.
Method for the preparation of novel polyacetylene-type polymers
Zeigler, J.M.
1987-11-09
Polymerization of acetylenic monomers is achieved by using a catalyst which is the reaction product of a tungsten compound and a reducing agent effective to reduce W(VI) to W(III and/or IV), e.g., WCl/sub 6//center dot/(organo-Li, organo-Mg or polysilane). The resultant silylated polymers are of heretofore unachievable high molecular weight and can be used as precursors to a wide variety of new acetylenic polymers by application of substitution reactions. 1 tab.
Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad
2016-03-01
A green synthesis process was developed for production of the Pd/TiO2 nanoparticles (NPs) without using toxic, hazardous and dangerous materials. Myrtus communis L. leaf extract serves as a mild, renewable and non-toxic reducing agent. The advantages of this biosynthesis method include use of cheap, clean, nontoxic and environmentally benign precursors and simple procedures without time-consuming polymerization and problems with treatment of a highly viscous polymeric resin. More importantly, the synthesized Pd/TiO2 NPs presented excellent catalytic activity for ligand-free Suzuki-Miyaura coupling which could be easily separated from the reaction mixture and reused many times with no loss of activity. Therefore, these properties indicate demonstrative benefits of the catalyst. The Pd/TiO2 NPs was characterized by FESEM, TEM, FT-IR, UV-vis spectroscopy and EDS. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Mikroyannidis, John A.; Kourtides, Demetrius A. (Inventor)
1987-01-01
A novel class of fire and heat resistant bisimide resins prepared by thermal polymerization of maleimido or citraconimido substituted 1-(dialkox phosphonyl) methyl-2-4 and -2,6-diamino benzenes was presented. The polymer precursors are prepared by reacting 1-(diorgano oxyphosphonyl) methyl-2-4- and -2,6-diamino benzenes with maliec anhydride or citraconic anhydride in a mole ratio 1:2. Chain extension of the monomers is achieved by reacting the mono-N-maleimido derivaties of 1 (diorgano oxyphosphonyl) methyl -2,4- and -2,6-diamino benzenes with aryl tetracarboxylic dianhydrides, such as benzophenone tetracarboxylic dianhydride, or aryl diisocyanates, such as methylene bis(4-phenyl isocyanate), in a mole ratio 2:1. The polymerization of the monomers is studied by diferential scanning calorimetry and the thermal stability of the polymers is ascertained by thermogravimetric analysis.
Gainaru, Catalin P.; Technische Univ. Dortmund, Dortmund; Stacy, Eric W.; ...
2016-09-28
Combining broadband impedance spectroscopy, differential scanning calorimetry, and nuclear magnetic resonance we analyzed charge and mass transport in two polymerized ionic liquids and one of their monomeric precursors. In order to establish a general procedure for extracting single-particle diffusivity from their conductivity spectra, we critically assessed several approaches previously employed to describe the onset of diffusive charge dynamics and of the electrode polarization in ion conducting materials. Based on the analysis of the permittivity spectra, we demonstrate that the conductivity relaxation process provides information on ion diffusion and the magnitude of cross-correlation effects between ionic motions. A new approach ismore » introduced which is able to estimate ionic diffusivities from the characteristic times of conductivity relaxation and ion concentration without any adjustable parameters. Furthermore, this opens the venue for a deeper understanding of charge transport in concentrated and diluted electrolyte solutions.« less
A facile molten-salt route to graphene synthesis.
Liu, Xiaofeng; Giordano, Cristina; Antonietti, Markus
2014-01-15
Efficient synthetic routes are continuously pursued for graphene in order to implement its applications in different areas. However, direct conversion of simple monomers to graphene through polymerization in a scalable manner remains a major challenge for chemists. Herein, a molten-salt (MS) route for the synthesis of carbon nanostructures and graphene by controlled carbonization of glucose in molten metal chloride is reported. In this process, carbohydrate undergoes polymerization in the presence of strongly interacting ionic species, which leads to nanoporous carbon with amorphous nature and adjustable pore size. At a low precursor concentration, the process converts the sugar molecules (glucose) to rather pure few-layer graphenes. The MS-derived graphenes are strongly hydrophobic and exhibit remarkable selectivity and capacity for absorption of organics. The methodology described may open up a new avenue towards the synthesis and manipulation of carbon materials in liquid media. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preparation of hydrophobic organic aeorgels
Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.
2007-11-06
Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.
Preparation of hydrophobic organic aeorgels
Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.
2004-10-19
Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.
Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E
2015-12-01
The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p < 0.05) lower than at the interface of the RBA-RCS. Secondly, at 300 seconds and 6 hours the interface contraction stress magnitude of the RMGIBA-RCS was significantly (p < 0.05) lower than the stress of all assessed RBA-RCS. Thirdly, from 300 seconds to 6 hours both the magnitude and rate of interface stress of the RMGIBA-RCS continued to decline over the 6 hours from the 300 seconds peak. The use of resin modified glass-ionomer based adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.
Improved Structural Design and CO 2 Capture of Porous Hydroxy-Rich Polymeric Organic Frameworks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidder, Michelle K.; Earl, Lyndsey D.; de Almeida, Valmor F.
2016-04-16
Polymeric organic frameworks (POFs) are tunable and robust porous materials with potential applications for gas capture, catalysis, and separations technologies. A series of new porous POFs have been synthesized from the reaction of phloroglucinol or resorcinol derivatives with aryl aldehyde precursors. The monomers have various molecular shapes including linear, bent, trigonal, and tetrahedral geometries. Depending on the size and geometric matching of the monomers, the polymers are dominantly microporous with some mesoporous character or they are non-porous. In addition to standard spectroscopic and surface characterization, the materials were screened as adsorbents for carbon dioxide capture at low pressure (0-1 bar).more » The best performing material (POF 1D) has a CO 2 capture capacity of 9.0 wt. % (2.04 mmol g -1) at 298 K and 1 bar which is comparable to other polymeric organic frameworks. Isosteric heats of adsorption for POF 1A, POF 2A, and POF 2B were found to be dependent on the weight percent of CO 2 adsorbed: this suggests there are both chemisorptive and physisorptive components of CO 2 capture by the POFs.« less
Zhu, Changlai; Huang, Jing; Xue, Chengbin; Wang, Yaxian; Wang, Shengran; Bao, Shuangxi; Chen, Ruyue; Li, Yuan; Gu, Yun
2017-12-27
Extracellular/acellular matrix has been attracted much research interests for its unique biological characteristics, and ACM modified neural scaffolds shows the remarkable role of promoting peripheral nerve regeneration. In this study, skin-derived precursors pre-differentiated into Schwann cells (SKP-SCs) were used as parent cells to generate acellular(ACM) for constructing a ACM-modified neural scaffold. SKP-SCs were co-cultured with chitosan nerve guidance conduits (NGC) and silk fibroin filamentous fillers, followed by decellularization to stimulate ACM deposition. This NGC-based, SKP-SC-derived ACM-modified neural scaffold was used for bridging a 10 mm long rat sciatic nerve gap. Histological and functional evaluation after grafting demonstrated that regenerative outcomes achieved by this engineered neural scaffold were better than those achieved by a plain chitosan-silk fibroin scaffold, and suggested the benefits of SKP-SC-derived ACM for peripheral nerve repair. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Yildirim, Turgay; Matthäus, Christian; Press, Adrian T; Schubert, Stephanie; Bauer, Michael; Popp, Jürgen; Schubert, Ulrich S
2017-10-01
A primary amino-functionalized methyl methacrylate-based statistical copolymer is covalently coupled with retinoic acid (RA) and a fluorescent dye (DY590) in order to investigate the feasibility of the RA containing polymeric nanoparticles for Raman imaging studies and to study the possible selectivity of RA for hepatic stellate cells via intravital microscopy. Cationic nanoparticles are prepared by utilizing the nanoprecipitation method using modified polymers. Raman studies show that RA functional nanoparticles can be detectable in all tested cells without any need of additional label. Moreover, intravital microscopy indicates that DY590 is eliminated through the hepatobiliary route but not if used as covalently attached tracing molecule for nanoparticles. However, it is a suitable probe for sensitive detection of polymeric nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhao, Yuancong; Tu, Qiufen; Wang, Jin; Huang, Qiongjian; Huang, Nan
2010-12-01
Crystalline TiO 2 films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO 2 films by self-assembling, and the HUPA on TiO 2 films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO 2 films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.
Brown, Ashley C.; Barker, Thomas H.
2013-01-01
Fibrinogen is one of the primary components of the coagulation cascade and rapidly forms an insoluble matrix following tissue injury. In addition to its important role in hemostasis, fibrin acts as a scaffold for tissue repair and provides important cues for directing cell phenotype following injury. Because of these properties and the ease of polymerization of the material, fibrin has been widely utilized as a biomaterial for over a century. Modifying the macroscopic properties of fibrin, such as elasticity and porosity, has been somewhat elusive until recently, yet with a molecular-level rational design approach can now be somewhat easily modified through alterations of molecular interactions key to the protein’s polymerization process. This review outlines the biochemistry of fibrin and discusses methods for modification of molecular interactions and their application to fibrin based biomaterials. PMID:24056097
NASA Astrophysics Data System (ADS)
Fernando, J. G.; Vequizo, R. M.; Odarve, M. K. G.; Sambo, B. R. B.; Alguno, A. C.; Malaluan, R. M.; Candidato, R. T., Jr.; Gambe, J. E.; Jabian, M.; Paylaga, G. J.; Bagsican, F. R. G.; Miyata, H.
2015-06-01
Polyanilinefilms doped with varying HClconcentrations (0.2 M, 0.6 M and 1.0 M) were synthesized on glass substrates via oxidative polymerization of aniline. The films were treated with supercritical carbon dioxide (SC-CO2) at 30 MPa and 40°C for 30 minutes. Their structural, optical and morphological properties were studied and compared to conventionally prepared polyanilinefilms using FTIR analysis, UVVisspectroscopy and scanning electron microscopy. It was observed that supercritical carbon dioxide (SC-CO2) could interact with PANI films that consequently altered the bandgapsand changed the film thickness. SC-CO2 treatment also increased the oxidation level of polyanilinefilms and modified the morphology of polyanilinefilm doped with 1M HCl.
Sengur-Tasdemir, Reyhan; Mokkapati, Venkata R S S; Koseoglu-Imer, Derya Y; Koyuncu, Ismail
2018-05-01
Multi-walled carbon nanotubes (MWCNTs) can be used for the fabrication of mixed matrix polymeric membranes that can enhance filtration perfomances of the membranes by modifying membrane surface properties. In this study, detailed characterization and filtration performances of MWCNTs functionalized with COOH group, blended into polymeric flat-sheet membranes were investigated using different polymer types. Morphological characterization was carried out using atomic force microscopy, scanning electron microscopy and contact angle measurements. For filtration performance tests, protein, dextran, E. coli suspension, Xanthan Gum and real activated sludge solutions were used. Experimental data and analyses revealed that Polyethersulfone (PES) + MWCNT-COOH mixed matrix membranes have superior performance abilities compared to other tested membranes.
Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase.
Yang, Dongjie; Wu, Xiaolei; Qiu, Xueqing; Chang, Yaqi; Lou, Hongming
2014-03-01
Alkali lignin (AL) was employed as raw materials in the present study. Sulfomethylation was conducted to improve the solubility of AL, while sulfomethylated alkali lignin (SAL) was further polymerized by horseradish peroxidase (HRP). HRP modification caused a significant increase in molecular weight of SAL which was over 20 times. It was also found to increase the amount of sulfonic and carboxyl groups while decrease the amount of phenolic and methoxyl groups in SAL. The adsorption quantity of self-assembled SAL film was improved after HRP modification. Sulfonation and HRP modification were mutually promoted. The polymerization reactivity of SAL in HRP modification was increased with its sulfonation degree. Meanwhile, HRP modification facilitated SAL's radical-sulfonation reaction. Copyright © 2014. Published by Elsevier Ltd.
Efthimiadou, E K; Tziveleka, L-A; Bilalis, P; Kordas, G
2012-05-30
In the current study, poly lactic acid (PLA) modified hollow crosslinked poly(hydroxyethyl methacrylate) (PHEMA) microspheres have been prepared, in order to obtain a stimulus-responsive, biocompatible carrier with sustained drug release properties. The synthetical process consisted of the preparation of poly(methacrylic acid)@poly(hydroxyethyl methacrylate-co-N,N'-methylene bis(acrylamide)) microspheres by a two stage distillation-precipitation polymerization technique using 2,2'-azobisisobutyronitrile as initiator. Following core removal, a PLA coating of the microspheres was formed, after ring opening polymerization of DL-lactide, attributing the initiator's role to the active hydroxyl groups of PHEMA. The anticancer drug daunorubicin (DNR) was selected for the study of loading and release behavior of the coated microspheres. The loading capacity of the PLA modified microspheres was found to be four times higher than that of the parent ones (16% compared to 4%). This coated microspherical carrier exhibited a moderate pH responsive drug release behavior due to the pH dependent water uptake of PHEMA, and PLA hydrolysis. The in vitro cytotoxicity of both the parent and the DNR-loaded or empty modified hollow microspheres has been also examined on MCF-7 breast cancer cells. The results showed that although the empty microspheres were moderately cytotoxic, the DNR-loaded microspheres had more potent anti-tumor effect than the free drug. Therefore, the prepared coated microspheres are interesting drug delivery systems. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Y.C.; Liu, C.
2010-12-28
Lignin is a complex biopolymer derived primarily from the condensation of three monomeric precursors, the monolignols. The synthesis of monolignols occurs in the cytoplasm. To reach the cell wall where they are oxidized and polymerized, they must be transported across the cell membrane. However, the molecular mechanisms underlying the transport process are unclear. There are conflicting views about whether the transport of these precursors occurs by passive diffusion or is an energized active process; further, we know little about what chemical forms are required. Using isolated plasma and vacuolar membrane vesicles prepared from Arabidopsis, together with applying different transporter inhibitorsmore » in the assays, we examined the uptake of monolignols and their derivatives by these native membrane vesicles. We demonstrate that the transport of lignin precursors across plasmalemma and their sequestration into vacuoles are ATP-dependent primary-transport processes, involving ATP-binding cassette-like transporters. Moreover, we show that both plasma and vacuolar membrane vesicles selectively transport different forms of lignin precursors. In the presence of ATP, the inverted plasma membrane vesicles preferentially take up monolignol aglycones, whereas the vacuolar vesicles are more specific for glucoconjugates, suggesting that the different ATP-binding cassette-like transporters recognize different chemical forms in conveying them to distinct sites, and that glucosylation of monolignols is necessary for their vacuolar storage but not required for direct transport into the cell wall in Arabidopsis.« less
NASA Astrophysics Data System (ADS)
Shaw-Stewart, J. R. H.; Mattle, T.; Lippert, T. K.; Nagel, M.; Nüesch, F. A.; Wokaun, A.
2013-01-01
Laser-induced forward transfer (LIFT) is a versatile organic light-emitting diode (OLED) pixel deposition process, but has hitherto been applied exclusively to polymeric materials. Here, a modified LIFT process has been used to fabricate small molecule Alq3 organic light-emitting diodes (SMOLEDs). Small molecule thin films are considerably more mechanically brittle than polymeric thin films, which posed significant challenges for LIFT of these materials. The LIFT process presented here uses a polymeric dynamic release layer, a reduced environmental pressure, and a well-defined receiver-donor gap. The Alq3 pixels demonstrate good morphology and functionality, even when compared to conventionally fabricated OLEDs. The Alq3 SMOLED pixel performances show a significant amount of fluence dependence, not observed with polymerical OLED pixels made in previous studies. A layer of tetrabutyl ammonium hydroxide has been deposited on top of the aluminium cathode, as part of the donor substrate, to improve electron injection to the Alq3, by over 600%. These results demonstrate that this variant of LIFT is applicable for the deposition of functional small molecule OLEDs as well as polymeric OLEDs.
High-energy radiation and polymers: A review of commercial processes and emerging applications
NASA Astrophysics Data System (ADS)
Clough, R. L.
2001-12-01
Ionizing radiation has been found to be widely applicable in modifying the structure and properties of polymers, and can be used to tailor the performance of either bulk materials or surfaces. Fifty years of research in polymer radiation chemistry has led to numerous applications of commercial and economic importance, and work remains active in the application of radiation to practical uses involving polymeric materials. This paper provides a survey of radiation-processing methods of industrial interest, ranging from technologies already commercially well established, through innovations in the active R&D stage which show exceptional promise for future commercial use. Radiation-processing technologies are discussed under the following categories: cross-linking of plastics and rubbers, curing of coatings and inks, heat-shrink products, fiber-matrix composites, chain-scission for processing control, surface modification, grafting, hydrogels, sterilization, natural product enhancement, plastics recycling, ceramic precursors, electronic property materials, ion-track membranes and lithography for microdevice production. In addition to new technological innovations utilizing conventional gamma and e-beam sources, a number of promising new applications make use of novel radiation types which include ion beams (heavy ions, light ions, highly focused microscopic beams and high-intensity pulses), soft X-rays which are focused, coherent X-rays (from a synchrotron) and e-beams which undergo scattering to generate patterns.
Yu, Hui; Guo, Xiaojuan; Qi, Xueliang; Liu, Peifeng; Shen, Xinyuan; Duan, Yourong
2008-03-01
A biodegradable Copolymer of poly(lactic acid-co-lysine)(PLA-PLL) was synthesized by a modified method and novel Arginine-Glycine-Aspartic (RGD) peptides were chemical conjugated to the primary epsilon-amine groups of lysine components in four steps: I to prepare the monomer of 3-(Nepsilon-benzoxycarbonyl-L-lysine)-6-L-methyl-2,5-morpholinedione; II to prepare diblock copolymer poly(lactic acid-co-(Z)-L-lysine) (PLA-PLL(Z)) by ring-opening polymerization of monomer and L,L-lactide with stannous octoate as initiator; III to prepare diblock copolymer PLA-PLL by deprotected the copolymer PLA-PLL(Z) in HBr/HoAc solution; IV the reaction between RGD and the primary epsilon-amine groups of the PLA-PLL. The structure of PLA-PLL-RGD and its precursors were conformed by FTIR-Raman and 1H NMR. Low weight average molecular weight (9,200 g/mol) of the PLA-PLL was obtained and its PDI is 1.33 determined by GPC. The PLA-PLL contained 2.1 mol% lysine groups as determined by 1H NMR using the lysine protecting group's phenyl protons. Therefore, the novel RGD-grafted diblock copolymer is expected to find application in drug carriers for tumor therapy or non-viral DNA carriers for gene therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagrimini, L.M.
Tobacco (Nicotiana tabacum) plants transformed with a chimeric tobacco anionic peroxidase gene have previously been shown to synthesize high levels of peroxidase in all tissues throughout the plant. One of several distinguishable phenotypes of transformed plants is the rapid browning of pith tissue upon wounding. Pith tissue from plants expressing high levels of peroxidase browned within 24 hours of wounding, while tissue from control plants did not brown as late as 7 days after wounding. A correlation between peroxidase activity and wound-induced browning was observed, whereas no relationship between polyphenol oxidase activity and browning was found. The purified tobacco anionicmore » peroxidase was subjected to kinetic analysis with substrates which resemble the precursors of lignin or polyphenolic acid. The purified enzyme was found to readily polymerize phenolic acids in the presence of H{sub 2}O{sub 2} via a modified ping-pong mechanism. The percentage of lignin and lignin-related polymers in cell walls was nearly twofold greater in pith tissue isolated from peroxidase-overproducer plants compared to control plants. Lignin deposition in wounded pith tissue from control plants closely followed the induction of peroxidase activity. However, wound-induced lignification occurred 24 to 48 hours sooner in plants overexpressing the anionic peroxidase. This suggests that the availability of peroxidase rather than substrate may delay polyphenol deposition in wounded tissue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chen; Gupta, Rahul; Pallem, Venkateswara
The authors report a systematic study aimed at evaluating the impact of molecular structure parameters of hydrofluorocarbon (HFC) precursors on plasma deposition of fluorocarbon (FC) films and etching performance of a representative ultra-low-k material, along with amorphous carbon. The precursor gases studied included fluorocarbon and hydrofluorocarbon gases whose molecular weights and chemical structures were systematically varied. Gases with three different degrees of unsaturation (DU) were examined. Trifluoromethane (CHF{sub 3}) is the only fully saturated gas that was tested. The gases with a DU value of one are 3,3,3-trifluoropropene (C{sub 3}H{sub 3}F{sub 3}), hexafluoropropene (C{sub 3}F{sub 6}), 1,1,3,3,3-pentafluoro-1-propene (C{sub 3}HF{sub 5}),more » (E)-1,2,3,3,3-pentafluoropropene (C{sub 3}HF{sub 5} isomer), heptafluoropropyl trifluorovinyl ether (C{sub 5}F{sub 10}O), octafluorocyclobutane (C{sub 4}F{sub 8}), and octafluoro-2-butene (C{sub 4}F{sub 8} isomer). The gases with a DU value of two includes hexafluoro-1,3-butadiene (C{sub 4}F{sub 6}), hexafluoro-2-butyne (C{sub 4}F{sub 6} isomer), octafluorocyclopentene (C{sub 5}F{sub 8}), and decafluorocyclohexene (C{sub 6}F{sub 10}). The work was performed in a dual frequency capacitively coupled plasma reactor. Real-time characterization of deposition and etching was performed using in situ ellipsometry, and optical emission spectroscopy was used for characterization of CF{sub 2} radicals in the gas phase. The chemical composition of the deposited FC films was examined by x-ray photoelectron spectroscopy. The authors found that the CF{sub 2} fraction, defined as the number of CF{sub 2} groups in a precursor molecule divided by the total number of carbon atoms in the molecule, determines the CF{sub 2} optical emission intensity of the plasma. CF{sub 2} optical emission, however, is not the dominant factor that determines HFC film deposition rates. Rather, HFC film deposition rates are determined by the number of weak bonds in the precursor molecule, which include a ring structure, C=C, C≡C, and C–H bonds. These bonds are broken preferentially in the plasma, and/or at the surface and fragments arriving at the substrate surface presumably provide dangling bonds that efficiently bond to the substrate or other fragments. Upon application of a radio-frequency bias to the substrate, substrate etching is induced. Highly polymerizing gases show decreased substrate etching rates as compared to HFC gases characterized by a lower HFC film deposition rate. This can be explained by a competition between deposition and etching reactions, and an increased energy and etchant dissipation in relatively thicker steady state FC films that form on the substrate surface. Deposited HFC films exhibit typically a high CF{sub 2} density at the film surface, which correlates with both the CF{sub 2} fractions in the precursor molecular structure and the deposition rate. The FC films deposited using hydrogen-containing precursors show higher degrees of crosslinking and lower F/C ratios than precursors without hydrogen, and exhibit a lower etch rate of substrate material. A small gap structure that blocks direct ion bombardment was used to simulate the sidewall plasma environment of a feature and was employed for in situ ellipsometry measurements. It is shown that highly polymerizing precursors with a DU of two enable protection of low-k sidewalls during plasma exposure from oxygen-related damage by protective film deposition. Dielectric film modifications are seen for precursors with a lower DU.« less
2016-05-26
AFRL-RX-WP-JA-2017-0137 IMPACT OF REDUCED GRAPHENE OXIDE ON MOS2 GROWN BY SULFURIZATION OF SPUTTERED MOO3 AND MO PRECURSOR FILMS...OXIDE ON MOS2 GROWN BY SULFURIZATION OF SPUTTERED MOO3 AND Mo PRECURSOR FILMS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-11-D-5401-0008 5b. GRANT...2016. © 2016 American Vacuum Society. The U.S. Government is joint author of the work and has the right to use, modify , reproduce, release, perform
Moyo, Mambo; Okonkwo, Jonathan O.; Agyei, Nana M.
2012-01-01
Different classes of polymeric materials such as nanomaterials, sol-gel materials, conducting polymers, functional polymers and biomaterials have been used in the design of sensors and biosensors. Various methods have been used, for example from direct adsorption, covalent bonding, crossing-linking with glutaraldehyde on composites to mixing the enzymes or use of functionalized beads for the design of sensors and biosensors using these polymeric materials in recent years. It is widely acknowledged that analytical sensing at electrodes modified with polymeric materials results in low detection limits, high sensitivities, lower applied potential, good stability, efficient electron transfer and easier immobilization of enzymes on electrodes such that sensing and biosensing of environmental pollutants is made easier. However, there are a number of challenges to be addressed in order to fulfill the applications of polymeric based polymers such as cost and shortening the long laboratory synthetic pathways involved in sensor preparation. Furthermore, the toxicological effects on flora and fauna of some of these polymeric materials have not been well studied. Given these disadvantages, efforts are now geared towards introducing low cost biomaterials that can serve as alternatives for the development of novel electrochemical sensors and biosensors. This review highlights recent contributions in the development of the electrochemical sensors and biosensors based on different polymeric material. The synergistic action of some of these polymeric materials and nanocomposites imposed when combined on electrode during sensing is discussed. PMID:22368503
Morigaki, Kenichi; Mizutani, Kazuyuki; Saito, Makoto; Okazaki, Takashi; Nakajima, Yoshihiro; Tatsu, Yoshiro; Imaishi, Hiromasa
2013-02-26
We describe a stable and functional model biological membrane based on a polymerized lipid bilayer with a chemically modified surface. A polymerized lipid bilayer was formed from a mixture of two diacetylene-containing phospholipids, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (DiynePE). DiynePC formed a stable bilayer structure, whereas the ethanolamine headgroup of DiynePE enabled functional molecules to be grafted onto the membrane surface. Copolymerization of DiynePC and DiynePE resulted in a robust bilayer. Functionalization of the polymeric bilayer provided a route to a robust and biomimetic surface that can be linked with biomolecules, cells, and three-dimensional (3D) microstructures. Biotin and peptides were grafted onto the polymeric bilayer for attaching streptavidin and cultured mammalian cells by molecular recognition, respectively. Nonspecific adsorption of proteins and cells on polymeric bilayers was minimum. DiynePE was also used to attach a microstructure made of an elastomer (polydimethylsiloxan: PDMS) onto the membrane, forming a confined aqueous solution between the two surfaces. The microcompartment enabled us to assay the activity of a membrane-bound enzyme (cyochrome P450). Natural (fluid) lipid bilayers were incorporated together with membrane-bound proteins by lithographically polymerizing DiynePC/DiynePE bilayers. The hybrid membrane of functionalized polymeric bilayers and fluid bilayers offers a novel platform for a wide range of biomedical applications including biosensor, bioassay, cell culture, and cell-based assay.
NASA Astrophysics Data System (ADS)
Cheng, Xu
2001-07-01
Me3Si substituents adjacent to Cp2MCl2 (M = Ti, Zr, Hf) are converted to BrMe2Si groups using BBr 3. The high reactivity of the Si-Br bonds toward nucleophiles such as water suggested that these substituents could react with hydroxylated silica surfaces, immobilizing the metallocenes. This dissertation concerns the syntheses of electrophile-functionalized zirconocene dihalide complexes and their use as precursors to silica-supported metallocene olefin polymerization catalysts. First we extended the metallocene "functionalization" chemistry to obtain substituents bearing more than one electrophilic bond. (Me3Sn) 2C5H4 combined with CpZrCl3 in toluene to afford (eta5-Me3Sn-C5H4)CpZrCl 2 (A). Reactions of A with electrophiles (E-X = Cl2B-Cl, I-Cl, and I-I) afforded (eta5-XMe 2Sn-C5H4)CpZrCl2 (and E-Me) cleanly. The reaction of A with BBr3 afforded either (eta5-BrMe2Sn-C5H4)CpZrBr2 (25 °C, 10 min) or (eta5-Br2MeSn-C5H 4)CpZrBr2 (25 °C, 15 h). Ph2MeSi-C5H 4Li combined with ZrCl4•2THF to afford (eta 5-Ph2MeSi-C5H4)2ZrCl 2 (B). The reaction of B with BCl3 led to incomplete cleavage of the Ph-Si bonds, however treatment of B with BBr3 afforded (eta5-Br2MeSi-C 5H4)2ZrBr2 (C) efficiently. X-ray crystal structures of (eta5-ClMe2Sn-C 5H4)CpZrCl2•1/2toluene, (eta 5-Br2MeSn-C5H4)CpZrBr2•THF, B, and C were obtained. Metallocene C reacts with water to afford an oligosiloxane-supported zirconocene dibromide. Spectroscopic characterization suggested a stereoregular structure in which the metallocene units have meso symmetry. The oligomeric substance showed high activity for homogeneous ethylene polymerization. Supported metallocene olefin polymerization catalysts were prepared by combining a functionalized metallocene precursor (Cp2ZrBr 2 bearing either BrMe2Si or Br2MeSi groups) and partially dehydroxylated silica. The activities of the immobilized zirconocene catalysts decreased and the stabilities increased with increasing number of tethers. The immobilized catalyst prepared from (eta5-Br 2MeSi-C5H4)2ZrBr2, which is assumed to form two "double-tethers" to silica, was significantly more active than the catalyst prepared from [eta5-1,3-(BrMe 2Si)2C5H3]2ZrBr2, which is assumed to form four "single-tethers" to silica. Catalyst leaching was observed in all the immobilized zirconocene catalysts. Finally we report model studies on the stability of the Si-O-Si bonds toward methylaluminoxane (MAO). The reaction of (eta5-BrMe 2Si-C5H4)CpZrBr2 with tBuMe 2SiOH results in the formation of Si-O-Si bonds; addition of NEt 3 results in further reaction to afford Si-O-Zr bonds. The reaction of Me3Si-O-SiMe3 with MAO showed that Si-O-Si bonds can be cleaved under the conditions of our polymerization reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, C.; Hester, R.
The purpose of this study is to extend the concept of micellar polymerization to more complex systems, and to explore the responsive nature of hydrophobically modified polyelectrolytes by tailoring the microstructure. The synthesis of hydrophobically modified acrylamide/acrylic acid copolymer is described. These types of polymers are of interest as thickening agents utilized in enhanced oil recovery.
Marine Exposure of Preservative-Treated Small Wood Panels.
1984-10-01
oxide (table 5) are unattacked after 5-1/2 years. Impregnation with tributyltin ( TBT ) oxide (table 6-1), TBT -modified methacrylate polymers (table 6...1), or TBT - modified monomers (with subsequent polymerization) (tables 6-2, 6-3) has prevented borer damage for 6 to 6-112 years. Methacrylates...copper zinc 5 arsenate 3-10 Polymers Prepolymerized tributyltin Dual treatments methacrylate and Chromated copper methyl methacrylate arsenate (B
HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth.
Naksuriya, Ornchuma; Shi, Yang; van Nostrum, Cornelus F; Anuchapreeda, Songyot; Hennink, Wim E; Okonogi, Siriporn
2015-08-01
Curcumin (CM) has been reported as a potential anticancer agent. However, its pharmaceutical applications as therapeutic agent are hampered because of its poor aqueous solubility. The present study explores the advantages of polymeric micelles composed of block copolymers of methoxypoly(ethylene glycol) (mPEG) and N-(2-hydroxypropyl) methacrylamide (HPMA) modified with monolactate, dilactate and benzoyl side groups to enhance CM solubility and inhibitory activity against cancer cells. Amphiphilic block copolymers, ω-methoxypoly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (PEG-HPMA-Bz) were synthesized and characterized by (1)H NMR and GPC. One polymer with a molecular weight of 28,000Da was used to formulate CM and compared with other aromatic substituted polymers. CM was loaded by a fast heating method (PEG-HPMA-DL and PEG-HPMA-Bz-L) and a nanoprecipitation method (PEG-HPMA-Bz). Physicochemical characteristics and cytotoxicity/cytocompatibility of the CM loaded polymeric micelles were evaluated. It was found that HPMA-based polymeric micelles significantly enhanced the solubility of CM. The PEG-HPMA-Bz micelles showed the best solubilization properties. CM loaded polymeric micelles showed sustained release of the loading CM for more than 20days. All of CM loaded polymeric micelles formulations showed a significantly potent cytotoxic effect against three cancer cell lines. HPMA-based polymeric micelles are therefore promising nanodelivery systems of CM for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Guang-Yu; Ma, Fang; Wang, Hu-Hu; Xu, Xing-Lian; Zhou, Guang-Hong
2017-09-01
Extracellular polymeric substances (EPS) play an important role in bacterial biochemical properties. The characteristics of EPS from 2 strains of Pseudomonas fragi cultured in meat aerobically (control) and in modified atmosphere packaging (MAP) were studied. The amount and components of EPS, the surface properties, and the effect on biofilm formation of several spoilage organisms were evaluated. The results showed that MAP inhibited the growth of the P. fragi strains. Compared with the control, more loose and less bound EPS (containing protein and carbohydrate) were produced by P. fragi in MAP samples. MAP also caused increased cell autoaggregation and surface hydrophobicity. After the removal of the EPS, the surface property changes were strain-dependent, suggesting that membrane compositions were also changed. In addition, the EPS displayed significant antibiofilm activity on Pseudomonas fluorescens and Serratia liquefaciens. In conclusion, P. fragi strains not only modified the amount, components, and surface properties of EPS but also changed the cell membrane compositions to adapt to MAP stress. Moreover, EPS may play an important role in microbial community competitions. © 2017 Institute of Food Technologists®.
Preparation and encapsulation of white/yellow dual colored suspensions for electrophoretic displays
NASA Astrophysics Data System (ADS)
Han, Jingjing; Li, Xiaoxu; Feng, Yaqing; Zhang, Bao
2014-11-01
C.I. Pigment Yellow 181 (PY181) composite particles encapsulated by polyethylene (PE) were prepared by dispersion polymerization method, and C.I. Pigment Yellow 110 (PY110) composite particles encapsulated by polystyrene (PS) with mini-emulsion polymerization method were achieved, respectively. The modified pigments were characterized by fourier transform infrared spectroscopy, scanning electron microscope and transmission electron microscope. Compared with the PE-coated PY 181 pigments, the PS-coated PY-110 particles had a narrow particle size distribution, regular spherical and average particle size of 450 nm. Suspension 1 and suspension 3 were prepared by the two composite particles dispersed in isopar M. A chromatic electrophoretic display cell consisting of yellow particles was successfully fabricated using dispersions of yellow ink particles in a mixed dielectric solvent with white particles as contrast. The response behavior and the contrast ratio to the electric voltage were also examined. The contrast ratio of pigments modified by polystyrene was 1.48, as well as the response time was 2 s, which were better than those of pigments modified by polyethylene.
Wang, Hongwei; Yao, Yating; Li, Ya; Ma, Shujuan; Peng, Xiaojun; Ou, Junjie; Ye, Mingliang
2017-08-01
An open tubular (OT) column (25 μm i.d.) was prepared by in situ ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxanes (POSS-epoxy) with 4-aminophenyl disulfide (APDS) in a binary porogenic system of ethanol/H 2 O. It was found that porogenic composition played an important role in the formation of OT stationary phases. The ratio of ethanol/H 2 O at 6/1 (v/v) would lead to the fabrication of hybrid monoliths, while the ratio of ethanol/H 2 O at 13/1 (v/v) would result in the synthesis of OT phases. In addition, the effects of precursor content and reaction duration on the thickness of OT stationary phases were investigated. Either lower precursor content or shorter reaction duration would produce thinner layer of OT column. The repeatability of OT columns was evaluated through relative standard deviation (RSD%) with benzene as the analyte. The run-to-run, column-to-column and batch-to-batch repeatabilities were 1.7%, 4.8% and 5.6%, respectively, exhibiting satisfactory repeatability of the OT column. Then tryptic digest of mouse liver proteins was used to evaluate the performance of the resulting OT columns (25 μm i.d. × 2.5 m in length) by cLC-MS/MS analysis, demonstrating their potential in proteome analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Lieberman, Craig M; Navulla, Anantharamulu; Zhang, Haitao; Filatov, Alexander S; Dikarev, Evgeny V
2014-05-05
Heterometallic single-source precursors for the Pb/Fe = 1:1 oxide materials, PbFe(β-dik)4 (β-dik = hexafluoroacetylacetonate (hfac, 1), acetylacetonate (acac, 2), and trifluoroacetylacetonate (tfac, 4)), have been isolated by three different solid-state synthetic methods. The crystal structures of heterometallic diketonates 1, 2, and 4 were found to contain polymeric chains built on alternating [Fe(β-dik)2] and [Pb(β-dik)2] units that are held together by bridging M-O interactions. Heterometallic precursors are highly volatile, but soluble only in coordinating solvents, in which they dissociate into solvated homometallic fragments. In order to design the heterometallic precursor with a proper metal/metal ratio and with a discrete molecular structure, we used a combination of two different diketonate ligands. Heteroleptic complex Pb2Fe2(hfac)6(acac)2 (5) has been obtained by optimized stoichiometric reaction of an addition of homo-Fe(acac)2 to heterometallic Pb2Fe(hfac)6 (3) diketonate that can be run in solution on a high scale. The combination of two ligands with electron-withdrawing and electron-donating groups allows changing the connectivity pattern within the heterometallic assembly and yields the precursor with a discrete tetranuclear structure. In accord with its molecular structure, heteroleptic complex 5 is soluble even in noncoordinating solvents and was found to retain its heterometallic structure in solution. Thermal decomposition of heterometallic precursors in air at 750 °C resulted in the target Pb2Fe2O5 oxide, a prospective multiferroic material. Prolonging the annealing time or increasing the decomposition temperature leads to another phase-pure lead-iron oxide PbFe12O19 that is a representative of the important family of magnetic hexaferrites.
Bauermeister, Anja; Mahnert, Alexander; Auerbach, Anna; Böker, Alexander; Flier, Niwin; Weber, Christina; Probst, Alexander J; Moissl-Eichinger, Christine; Haberer, Klaus
2014-01-01
Bioburden encapsulated in spacecraft polymers (such as adhesives and coatings) poses a potential risk to jeopardize scientific exploration of other celestial bodies. This is particularly critical for spacecraft components intended for hard landing. So far, it remained unclear if polymers are indeed a source of microbial contamination. In addition, data with respect to survival of microbes during the embedding/polymerization process are sparse. In this study we developed testing strategies to quantitatively examine encapsulated bioburden in five different polymers used frequently and in large quantities on spaceflight hardware. As quantitative extraction of the bioburden from polymerized (solid) materials did not prove feasible, contaminants were extracted from uncured precursors. Cultivation-based analyses revealed <0.1-2.5 colony forming units (cfu) per cm3 polymer, whereas quantitative PCR-based detection of contaminants indicated considerably higher values, despite low DNA extraction efficiency. Results obtained from this approach reflect the most conservative proxy for encapsulated bioburden, as they give the maximum bioburden of the polymers irrespective of any additional physical and chemical stress occurring during polymerization. To address the latter issue, we deployed an embedding model to elucidate and monitor the physiological status of embedded Bacillus safensis spores in a cured polymer. Staining approaches using AlexaFluor succinimidyl ester 488 (AF488), propidium monoazide (PMA), CTC (5-cyano-2,3-diotolyl tetrazolium chloride) demonstrated that embedded spores retained integrity, germination and cultivation ability even after polymerization of the adhesive Scotch-Weld 2216 B/A. Using the methods presented here, we were able to estimate the worst case contribution of encapsulated bioburden in different polymers to the bioburden of spacecraft. We demonstrated that spores were not affected by polymerization processes. Besides Planetary Protection considerations, our results could prove useful for the manufacturing of food packaging, pharmacy industry and implant technology.
Filler/ Polycarbosilane Systems as CMC Matrix Precursors
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
1998-01-01
Pyrolytic conversion of polymeric precursors to ceramics is accompanied by loss of volatiles and large volume changes. Infiltration of a low viscosity polymer into a fiber preform will fill small spaces within fiber tows by capillary forces, but create large matrix cracks within large, intertow areas. One approach to minimizing shrinkage and reducing the number of required infiltration cycles is to use particulate fillers. In this study, Starfire allylhydridopolycarbosilane (AHPCS) was blended with a silicon carbide powder, with and without dispersant, using shear mixing. The polymer and polymer/particle interactions were characterized using nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis and rheometry. Polymer/particulate slurries and suspensions were used to infiltrate a figidized preform of an eight ply five harness satin CG Nicalon fiber having a dual layer BN/SiC interface coating, and the resulting composites characterized by optical and scanning electron microscopy.
Synthesis of silver nanoparticles in melts of amphiphilic polyesters
NASA Astrophysics Data System (ADS)
Vasylyev, S.; Damm, C.; Segets, D.; Hanisch, M.; Taccardi, N.; Wasserscheid, P.; Peukert, W.
2013-03-01
The current work presents a one-step procedure for the synthesis of amphiphilic silver nanoparticles suitable for production of silver-filled polymeric materials. This solvent free synthesis via reduction of Tollens’ reagent as silver precursor in melts of amphiphilic polyesters consisting of hydrophilic poly(ethylene glycol) blocks and hydrophobic alkyl chains allows the production of silver nanoparticles without any by-product formation. This makes them especially interesting for the production of medical devices with antimicrobial properties. In this article the influences of the chain length of the hydrophobic block in the amphiphilic polyesters and the process temperature on the particle size distribution (PSD) and the stability of the particles against agglomeration are discussed. According to the results of spectroscopic and viscosimetric investigations the silver precursor is reduced to elemental silver nanoparticles by a single electron transfer process from the poly(ethylene glycol) chain to the silver ion.
Synthesis and functional survey of new Tacrine analogs modified with nitroxides or their precursors
Kálai, Tamás; Altman, Robin; Maezawa, Izumi; Balog, Mária; Morisseau, Christophe; Petrlova, Jitka; Hammock, Bruce D.; Jin, Lee-Way; Trudell, James; Voss, John C.; Hideg, Kálmán
2014-01-01
A series of new Tacrine analogs modified with nitroxides or pre-nitroxides on 9-amino group via methylene or piperazine spacers were synthesized; the nitroxide or its precursors were incorporated into the Tacrine scaffold. The new compounds were tested for their hydroxyl radical and peroxyl radical scavenging ability, acetyl cholinesterase inhibitor activity and protection against Aβ-induced cytotoxicity. Based on these assays, we conclude that Tacrine analogs connected to five and six-membered nitroxides via piperazine spacers (9b, 9b/HCl and 12) exhibited the best activity, providing direction for further development of additional candidates with dual functionality (anti Alzheimer’s and antioxidant). PMID:24657571
Bourgeat-Lami, Elodie; Insulaire, Mickaelle; Reculusa, Stéphane; Perro, Adeline; Ravaine, Serge; Duguet, Etienne
2006-02-01
Silica/polystyrene nanocomposite particles with different morphologies were synthesized through emulsion polymerization of styrene in the presence of silica particles previously modified by gamma-methacryloxypropyltrimethoxysilane (MPS). Grafting of the silane molecule was performed by direct addition of MPS to the aqueous silica suspension in the presence of an anionic surfactant under basic conditions. The MPS grafting density on the silica surface was determined using the depletion method and plotted against the initial MPS concentration. The influence of the MPS grafting density, the silica particles size and concentration and the nature of the surfactant on the polymerization kinetics and the particles morphology was investigated. When the polymerization was performed in the presence of an anionic surfactant, transmission electron microscopy images showed the formation of polymer spheres around silica for MPS grafting densities lower than typically 1 micromole x m(-2) while the conversion versus time curves indicated a strong acceleration effect under such conditions. In contrast, polymerizations performed in the presence of a larger amount of MPS moieties or in the presence of a non ionic emulsifier resulted in the formation of "excentered" core-shell morphologies and lower polymerization rates. The paper identifies the parameters that allow to control particles morphology and polymerization kinetics and describes the mechanism of formation of the nanocomposite colloids.
NASA Astrophysics Data System (ADS)
Chen, Junyu; Liu, Meiying; Huang, Qiang; Jiang, Ruming; Huang, Hongye; Deng, Fengjie; Wen, Yuanqing; Tian, Jianwen; Zhang, Xiaoyong; Wei, Yen
2018-05-01
(Zn/Al) layered double hydroxide (LDH) based fluorescence probes have been facilely fabricated via photo-induced surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, which demonstrated green fluorescence, good biocompatibility and excellent dispersion performance in aqueous solution. The as prepared (Zn/Al)LDH polymeric composites were modified with 2-methacryloyloxyethyl phosphorylcholine (MPC), acrylic acid (AA) and diacroloyl-fluorescein (Ac-Fl). Among them, the comonomers MPC and AA were used to endow their water dispersibility, biocompatibility and potential drug carriers, while the Ac-Fl was served both as the fluorescence signal and photocatalyst for RAFT polymerization. A series of characterization methods, including 1H nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, transmission electronic microscopy, thermogravimetric analyses, X-ray photoelectron spectroscopy were employed to conform the successful of surface modification of LDH through photo-induced surface-initiated RAFT polymerization. Besides, UV-vis absorption spectra and fluorescence spectra were adopted to evaluate the optical characteristics of as prepared (Zn/Al)LDH-co-Poly(MPC-AA-Fl) composites, which exhibited high intense green fluorescence. Furthermore, the endocytosis behavior indicates that (Zn/Al)LDH-co-Poly(MPC-AA-Fl) composites could be potentially used in cell imaging and even drug delivery application for their excellent biocompatibility and all advantages described above.
Daigle, Maxime; Cantin, Katy
2014-01-01
Summary The synthesis and self-assembly of two new phenylacetylene macrocycle (PAM) organogelators were performed. Polar 2-hydroxyethoxy side chains were incorporated in the inner part of the macrocycles to modify the assembly mode in the gel state. With this modification, it was possible to increase the reactivity of the macrocycles in the xerogel state to form polydiacetylenes (PDAs), leading to a significant enhancement of the polymerization yields. The organogels and the PDAs were characterized using Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). PMID:25161718
Physics and applications of electrochromic devices
NASA Astrophysics Data System (ADS)
Pawlicka, Agnieszka; Avellaneda, Cesar O.
2003-07-01
Solid state electrochromic devices (ECD) are of considerable technological and commercial interest because of their controllable transmission, absorption and/or reflectance. For instance, a major application of these devices is in smart windows that can regulate the solar gains of buildings and also in glare attenuation in automobile rear view mirrors. Other applications include solar cells, small and large area flat panel displays, satellite temperature control, food monitoring, and document authentication. A typical electrochromic device has a five-layer structure: GS/TC/EC/IC/IS/TC/GS, where GS is a glass substrate, TC is a transparent conductor, generally ITO (indium tin oxide) or FTO (fluorine tin oxide), EC is an electrochromic coating, IC is an ion conductor (solid or liquid electrolyte) and IS is an ion storage coating. Generally, the EC and IS layers are deposited separately on the TC coatings and then jointed with the IC and sealed. The EC and IS are thin films that can be deposited by sputtering, CVD, sol-gel precursors, etc. There are different kinds of organic, inorganic and organic-inorganic films that can be used to make electrochromic devices. Thin electrochromic films can be: WO3, Nb2O5, Nb2O5:Li+ or Nb2O5-TiO2 coatings, ions storage films: CeO2-TiO2, CeO2-ZrO2 or CeO2-TiO2-ZrO2 and electrolytes like Organically Modified Electrolytes (Ormolytes) or polymeric films also based on natural polymers like starch or cellulose. These last are very interesting due to their high ionic conductivity, high transparency and good mechanical properties. This paper describes construction and properties of different thin oxide and polymeric films and also shows the optical response of an all sol-gel electrochromic device with WO3/Ormolyte/CeO2-TiO2 configuration.
Son, JoonGon; Kim, GeunHyung
2009-01-01
Various mechanical techniques have been used to fabricate biomedical scaffolds, including rapid prototyping (RP) devices that operate from CAD files of the target feature information. The three-dimensional (3-D) bio-plotter is one RP system that can produce design-based scaffolds with good mechanical properties for mimicking cartilage and bones. However, the scaffolds fabricated by RP have very smooth surfaces, which tend to discourage initial cell attachment. Initial cell attachment, migration, differentiation and proliferation are strongly dependent on the chemical and physical characteristics of the scaffold surface. In this study, we propose a new 3-D plotting method supplemented with a piezoelectric system for fabricating surface-modified scaffolds. The effects of the physically-modified surface on the mechanical and hydrophilic properties were investigated, and the results of cell culturing of chondrocytes indicate that this technique is a feasible new method for fabricating high-quality 3-D polymeric scaffolds.
Real-time monitoring of rolling-circle amplification using a modified molecular beacon design
Nilsson, Mats; Gullberg, Mats; Dahl, Fredrik; Szuhai, Karoly; Raap, Anton K.
2002-01-01
We describe a method to monitor rolling-circle replication of circular oligonucleotides in dual-color and in real-time using molecular beacons. The method can be used to study the kinetics of the polymerization reaction and to amplify and quantify circularized oligonucleotide probes in a rolling-circle amplification (RCA) reaction. Modified molecular beacons were made of 2′-O-Me-RNA to prevent 3′ exonucleolytic degradation by the polymerase used. Moreover, the complement of one of the stem sequences of the molecular beacon was included in the RCA products to avoid fluorescence quenching due to inter-molecular hybridization of neighboring molecular beacons hybridizing to the concatemeric polymerization product. The method allows highly accurate quantification of circularized DNA over a broad concentration range by relating the signal from the test DNA circle to an internal reference DNA circle reporting in a distinct fluorescence color. PMID:12136114
NASA Technical Reports Server (NTRS)
Lieberman, S. L.
1974-01-01
Based upon extensive contacts with vendors, a broad array of non-flammable polymeric specie, and additives generally noted to have flame retarding properties, were considered. The following polymeric matrices were examined: modified silicone and fluorosilicone RTV's polyesters, epoxies, urethanes, and epoxy-urethanes. Optimization of formulations to obtain a suitable balance between the various properties and flammability resistance led to the final selection of a silicone RTV/additive-loaded compound which meets almost all program requirements. The very low valued properties found are within a realistic level of design toleration. Complete formulation, processing, and test data is provided for this compound, EPOCAST 87517-A/B, and the other formulations prepared by the project. Details of those test methods are presented along with procedures utilized in the program. In addition, a description of the special flammability facility previously designed and then modified for this program is also presented.
NASA Astrophysics Data System (ADS)
Ayat, Moulkheir; Belbachir, Mohamed; Rahmouni, Abdelkader
2017-07-01
The aim of this study was to develop the efficient and versatile method for the synthesis of block copolymers consists by cationic polymerization vinylidene chloride (VDC) and alpha-methylstyrene (alpha-MS) in the presence of a natural Algerian montmorillonite clay modified by 0.05-0.35 M H2SO4 (Algerian MMT-H+). It was found that H2SO4 concentration allows controlling the chemical composition, the porous structure of the acid-activated clays and their catalytic performance. The maximal yield of polymer is observed in the presence of Algerian MMT modified by 0.25 M H2SO4. Effects of VDC/MS molar ration, catalyst concentration, reaction time, reaction temperature and polarity medium on yield and molecular weight of polymer were revealed in the presence of the most active sample.
Davis, Katherine M; Schramma, Kelsey R; Hansen, William A; Bacik, John P; Khare, Sagar D; Seyedsayamdost, Mohammad R; Ando, Nozomi
2017-09-26
Posttranslational modification of ribosomally synthesized peptides provides an elegant means for the production of biologically active molecules known as RiPPs (ribosomally synthesized and posttranslationally modified peptides). Although the leader sequence of the precursor peptide is often required for turnover, the exact mode of recognition by the modifying enzymes remains unclear for many members of this class of natural products. Here, we have used X-ray crystallography and computational modeling to examine the role of the leader peptide in the biosynthesis of a homolog of streptide, a recently identified peptide natural product with an intramolecular lysine-tryptophan cross-link, which is installed by the radical S -adenosylmethionine (SAM) enzyme, StrB. We present crystal structures of SuiB, a close ortholog of StrB, in various forms, including apo SuiB, SAM-bound SuiB, and a complex of SuiB with SAM and its peptide substrate, SuiA. Although the N-terminal domain of SuiB adopts a typical RRE (RiPP recognition element) motif, which has been implicated in precursor peptide recognition, we observe binding of the leader peptide in the catalytic barrel rather than the N-terminal domain. Computational simulations support a mechanism in which the leader peptide guides posttranslational modification by positioning the cross-linking residues of the precursor peptide within the active site. Together the results shed light onto binding of the precursor peptide and the associated conformational changes needed for the formation of the unique carbon-carbon cross-link in the streptide family of natural products.
Effect of Molecular Weight on the Ion Transport Mechanism in Polymerized Ionic Liquids
Fan, Fei; Wang, Weiyu; Holt, Adam P.; ...
2016-06-07
The unique properties of ionic liquids (ILs) have made them promising candidates for electrochemical applications. Polymerization of the corresponding ILs results in a new class of materials called polymerized ionic liquids (PolyILs). Though PolyILs offer the possibility to combine the high conductivity of ILs and the high mechanical strength of polymers, their conductivities are typically much lower than that of the corresponding small molecule ILs. In this study, seven PolyILs were synthesized having degrees of polymerization ranging from 1 to 333, corresponding to molecular weights (MW) from 482 to 160 400 g/mol. Depolarized dynamic light scattering, broadband dielectric spectroscopy, rheology,more » and differential scanning calorimetry were employed to systematically study the influence of MW on the mechanism of ionic transport and segmental dynamics in these materials. Finally, the modified Walden plot analysis reveals that the ion conductivity transforms from being closely coupled with structural relaxation to being strongly decoupled from it as MW increases.« less
Effect of Molecular Weight on the Ion Transport Mechanism in Polymerized Ionic Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Fei; Wang, Weiyu; Holt, Adam P.
The unique properties of ionic liquids (ILs) have made them promising candidates for electrochemical applications. Polymerization of the corresponding ILs results in a new class of materials called polymerized ionic liquids (PolyILs). Though PolyILs offer the possibility to combine the high conductivity of ILs and the high mechanical strength of polymers, their conductivities are typically much lower than that of the corresponding small molecule ILs. In this study, seven PolyILs were synthesized having degrees of polymerization ranging from 1 to 333, corresponding to molecular weights (MW) from 482 to 160 400 g/mol. Depolarized dynamic light scattering, broadband dielectric spectroscopy, rheology,more » and differential scanning calorimetry were employed to systematically study the influence of MW on the mechanism of ionic transport and segmental dynamics in these materials. Finally, the modified Walden plot analysis reveals that the ion conductivity transforms from being closely coupled with structural relaxation to being strongly decoupled from it as MW increases.« less
NASA Astrophysics Data System (ADS)
Oluz, Zehra; Nayab, Sana; Kursun, Talya Tugana; Caykara, Tuncer; Yameen, Basit; Duran, Hatice
Azo initiator modified surface of silica nanoparticles were coated via reversible addition-fragmentation polymerization (RAFT) of methacrylic acid and ethylene glycol dimethacrylate using 2-phenylprop 2-yl dithobenzoate as chain transfer agent. Using L-phenylalanine anilide as template during polymerization led molecularly imprinted nanoparticles. RAFT polymerization offers an efficient control of grafting process, while molecularly imprinted polymers shows enhanced capacity as sensor. L-phenylalanine anilide imprinted silica particles were characterized by X-Ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM). Performances of the particles were followed by surface plasmon resonance spectroscopy (SPR) after coating the final product on gold deposited glass substrate against four different analogous of analyte molecules: D-henylalanine anilide, L-tyrosine, L-tryptophan and L-phenylalanine. Characterizations indicated that silica particles coated with polymer layer do contain binding sites for L-phenylalanine anilide, and are highly selective for the molecule of interest. This project was supported by TUBITAK (Project No:112M804).
NASA Astrophysics Data System (ADS)
Yoshida, Wayne Hiroshi
Nanostructural engineering of inorganic substrates by free radical graft polymerization was studied with the goal of developing new membrane materials for pervaporation. Graft polymerization consisted of modification of surface hydroxyls with vinyl trimethoxysilane, followed by solution graft polymerization reaction using either vinyl acetate (VAc) or vinyl pyrrolidone (VP). The topology of the modified surfaces was studied by atomic force microscopy (AFM) on both atomically smooth silicon wafer substrates and microporous inorganic membrane supports in order to deduce the effects of modification on the nanostructural properties of the membrane. While unmodified wafers showed a root-mean-square (RMS) surface roughness of 0.21 +/- 0.03 nm, roughness increased to 3.15 +/- 0.23 nm upon silylation. Under poor solvent conditions (i.e., air), surfaces modified with higher poly(vinyl acetate) (PVAc) or poly(vinyl pyrrolidone) (PVP) polymer graft yields displayed lateral inhomogeneities in the polymer layer. Although RMS surface roughness was nearly identical (0.81--0.85 nm) for PVAc-modified surfaces grafted at different monomer concentrations, the skewness of the height distribution decreased from 2.22 to 0.78 as polymer graft yield increased from 0.8 to 3.5 mg/m2. The polymer-modified surfaces were used to create inorganic pervaporation membranes consisting of a single macromolecular separation layer formed by graft polymerization. PVAc grafted silica membranes (500A native pore size) were found selective for MTBE in the separation of 0.1--1% (v/v) MTBE from water, achieving MTBE enrichment factors as high as 371 at a permeate flux of 0.38 l/m2 hr and a Reynolds number of 6390; however, these membranes could not separate anhydrous organic mixtures. Pervaporative separation of methanol/MTBE mixtures was possible with PVAc and PVP-modified alumina supports of 50A native pore size, where the separation layer consisted of grafted polymer chains with estimated radius of gyration 4.5--6.8 times larger than the membrane pore radius. Methanol separation factors for the PVP and PVAc-grafted alumina pervaporation membranes reached values of 26 and 100 (respectively) at total permeate fluxes of 0.055--1.26 kg/m 2 hr and 0.55--6.19 kg/m2 hr. The present study demonstrated that selective pervaporation membranes for separation of both organic/organic and organic/aqueous mixtures can be effectively designed by careful selection of the surface-grafted polymer chain density and the ratio of the polymer chain size to the native support pore size.
NASA Astrophysics Data System (ADS)
Farsiani, Yasaman; Baade, Jacquelyne; Elbing, Brian
2016-11-01
Recent numerical and experimental data have shown that the classical view of how drag-reducing polymer solutions modify the mean turbulent velocity profile is incorrect. The classical view is that the log-region is unmodified from the traditional law-of-the-wall for Newtonian fluids, though shifted outward. Thus the current study reexamines the modified velocity distribution and its dependence on flow and polymer properties. Based on previous work it is expected that the behavior will depend on the Reynolds number, Weissenberg number, ratio of solvent viscosity to the zero-shear viscosity, and the ratio between the coiled and fully extended polymer chain lengths. The long-term objective for this study includes a parametric study to assess the velocity profile sensitivity to each of these parameters. This study will be performed using a custom design water tunnel, which has a test section that is 1 m long with a 15.2 cm square cross section and a nominal speed range of 1 to 10 m/s. The current presentation focuses on baseline (non-polymeric) measurements of the velocity distribution using PIV, which will be used for comparison of the polymer modified results. Preliminary polymeric results will also be presented. This work was supported by NSF Grant 1604978.
Self-assembly of proglycinin and hybrid proglycinin synthesized in vitro from cDNA
Dickinson, Craig D.; Floener, Liliane A.; Lilley, Glenn G.; Nielsen, Niels C.
1987-01-01
An in vitro system was developed that results in the self-assembly of subunit precursors into complexes that resemble those found naturally in the endoplasmic reticulum. Subunits of glycinin, the predominant seed protein of soybeans, were synthesized from modified cDNAs using a combination of the SP6 transcription and the rabbit reticulocyte translation systems. Subunits produced from plasmid constructions that encoded either Gy4 or Gy5 gene products, but modified such that their signal sequences were absent, self-assembled into trimers equivalent in size to those precursors found in the endoplasmic reticulum. In contrast, proteins synthesized in vitro from Gy4 constructs failed to self-assemble when the signal sequence was left intact (e.g., preproglycinin) or when the coding sequence was modified to remove 27 amino acids from an internal hydrophobic region, which is highly conserved among the glycinin subunits. Various hybrid subunits were also produced by trading portions of Gy4 and Gy5 cDNAs and all self-assembled in our system. The in vitro assembly system provides an opportunity to study the self-assembly of precursors and to probe for regions important for assembly. It will also be helpful in attempts to engineer beneficial nutritional changes into this important food protein. Images PMID:16593868
Multifunctional structural energy storage composite supercapacitors.
Shirshova, Natasha; Qian, Hui; Houllé, Matthieu; Steinke, Joachim H G; Kucernak, Anthony R J; Fontana, Quentin P V; Greenhalgh, Emile S; Bismarck, Alexander; Shaffer, Milo S P
2014-01-01
This paper addresses the challenge of producing multifunctional composites that can simultaneously carry mechanical loads whilst storing (and delivering) electrical energy. The embodiment is a structural supercapacitor built around laminated structural carbon fibre (CF) fabrics. Each cell consists of two modified structural CF fabric electrodes, separated by a structural glass fibre fabric or polymer membrane, infused with a multifunctional polymeric electrolyte. Rather than using conventional activated carbon fibres, structural carbon fibres were treated to produce a mechanically robust, high surface area material, using a variety of methods, including direct etching, carbon nanotube sizing, and carbon nanotube in situ growth. One of the most promising approaches is to integrate a porous bicontinuous monolithic carbon aerogel (CAG) throughout the matrix. This nanostructured matrix both provides a dramatic increase in active surface area of the electrodes, and has the potential to address mechanical issues associated with matrix-dominated failures. The effect of the initial reaction mixture composition is assessed for both the CAG modified carbon fibre electrodes and resulting devices. A low temperature CAG modification of carbon fibres was evaluated using poly(3,4-ethylenedioxythiophene) (PEDOT) to enhance the electrochemical performance. For the multifunctional structural electrolyte, simple crosslinked gels have been replaced with bicontinuous structural epoxy-ionic liquid hybrids that offer a much better balance between the conflicting demands of rigidity and molecular motion. The formation of both aerogel precursors and the multifunctional electrolyte are described, including the influence of key components, and the defining characteristics of the products. Working structural supercapacitor composite prototypes have been produced and characterised electrochemically. The effect of introducing the necessary multifunctional resin on the mechanical properties has also been assessed. Larger scale demonstrators have been produced including a full size car boot/trunk lid.
NASA Astrophysics Data System (ADS)
Araújo, Maria; Van Tittelboom, Kim; Dubruel, Peter; Van Vlierberghe, Sandra; De Belie, Nele
2017-05-01
The repair of cracks in concrete is an unavoidable practice since these cracks endanger the durability of the structure. Inspired by nature, the self-healing concept has been widely investigated in concrete as a promising solution to solve the limitations of manual repair. This self-healing functionality may be realized by the incorporation of encapsulated healing agents in concrete. Depending on the nature of the cracks, different healing agents can be used. For structures subjected to repeated loads, elastic materials should be considered to cope with the crack opening and closing movement. In this study, various acrylate-endcapped polymer precursors were investigated for their suitability to heal active cracks. The strain capacity of the polymers was assessed by means of visual observation together with water flow tests after widening of the healed cracks in a stepwise manner. A strain of at least 50% could be sustained by epoxy- and siloxane-based healing agents. For polyester- and urethane/poly(propylene glycol)-based precursors, failure occurred at 50% elongation due to detachment of the polymer from the crack walls. However, for urethane/poly(propylene glycol)-based healing agent, debonding was limited to some local spots. The resistance of the polymerized healing agents against degradation in the strong alkaline environment characteristic for concrete has also been evaluated, with the urethane/poly(propylene glycol)-based precursor showing the best performance to withstand degradation.
NASA Astrophysics Data System (ADS)
Maaß, Friedrich; Utecht, Manuel; Stremlau, Stephan; Gille, Marie; Schwarz, Jutta; Hecht, Stefan; Klamroth, Tillmann; Tegeder, Petra
2017-07-01
Utilizing suitable precursor molecules, a thermally activated and surface-assisted synthesis results in the formation of defect-free graphene nanoribbons (GNRs), which exhibit electronic properties that are not present in extended graphene. Most importantly, they have a band gap in the order of a few electron volts, depending on the nanoribbon width. In this study, we investigate the electronic structure changes during the formation of GNRs, nitrogen-doped (singly and doubly N-doped) as well as non-N-doped chevron-shaped CGNRs on Au(111). Thus we determine the optical gaps of the precursor molecules, the intermediate nonaromatic polymers, and finally the aromatic GNRs, using high-resolution electron energy loss spectroscopy and density functional theory calculations. As expected, we find no influence of N-doping on the size of the optical gaps. The gap of the precursor molecules is around 4.5 eV. Polymerization leads to a reduction of the gap to a value of 3.2 eV due to elongation and thus enhanced delocalization. The CGNRs exhibit a band gap of 2.8 eV, thus the gap is further reduced in the nanoribbons, since they exhibit an extended delocalized π -electron system.
Liu, Tao; Jia, Tingting; Yuan, Xia; Liu, Cheng; Sun, Jian; Ni, Zhenhua; Xu, Jian; Wang, Xuhui; Yuan, Yi
2016-01-01
Background Development of polymeric prodrugs of small molecular anticancer drugs has become one of the most promising strategies to overcome the intrinsic shortcomings of small molecular anticancer drugs and improve their anticancer performance. Materials and methods In the current work, we fabricated a novel octreotide (Oct)-modified esterase-sensitive tumor-targeting polymeric prodrug of bufalin (BUF) and explored its anticancer performance against somatostatin receptor 2 overexpressing breast cancer. Results The obtained tumor-targeting polymeric prodrug of BUF, P(oligo[ethylene glycol] monomethyl ether methacrylate [OEGMA]-co-BUF-co-Oct), showed a nanosize dimension and controlled drug release features in the presence of esterase. It was demonstrated by in vitro experiment that P(OEGMA-co-BUF-co-Oct) showed enhanced cytotoxicity, cellular uptake, and apoptosis in comparison with those of free BUF. In vivo experiment further revealed the improved accumulation of drugs in tumor tissues and enhanced anticancer performance of P(OEGMA-co-BUF-co-Oct). Conclusion Taken together, this study indicated that polymeric prodrug of BUF holds promising potential toward the treatment of somatostatin receptor 2 overexpressing breast cancer. PMID:27284243
Moshaverinia, Alireza; Roohpour, Nima; Darr, Jawwad A; Rehman, Ihtesham U
2009-06-01
Supercritical (sc-) fluids (such as sc-CO(2)) represent interesting media for the synthesis of polymers in dental and biomedical applications. Sc-CO(2) has several advantages for polymerization reactions in comparison to conventional organic solvents. It has several advantages in comparison to conventional polymerization solvents, such as enhanced kinetics, being less harmful to the environment and simplified solvent removal process. In our previous work, we synthesized poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone) (PAA-IA-NVP) terpolymers in a supercritical CO(2)/methanol mixture for applications in glass-ionomer dental cements. In this study, proline-containing acrylic acid copolymers were synthesized, in a supercritical CO(2) mixture or in water. Subsequently, the synthesized polymers were used in commercially available glass-ionomer cement formulations (Fuji IX commercial GIC). Mechanical strength (compressive strength (CS), diametral tensile strength (DTS) and biaxial flexural strength (BFS)) and handling properties (working and setting time) of the resulting modified cements were evaluated. It was found that the polymerization reaction in an sc-CO(2)/methanol mixture was significantly faster than the corresponding polymerization reaction in water and the purification procedures were simpler for the former. Furthermore, glass-ionomer cement samples made from the terpolymer prepared in sc-CO(2)/methanol exhibited higher CS and DTS and comparable BFS compared to the same polymer synthesized in water. The working properties of glass-ionomer formulations made in sc-CO(2)/methanol were comparable and better than the values of those for polymers synthesized in water.
Castañeda-Espinosa, Juan Carlos; Pereira, Rosana Aparecida; Cavalcanti, Ana Paula; Mondelli, Rafael Francisco Lia
2007-01-01
The purpose of this study was to evaluate the individual contraction force during polymerization of a composite resin (Z-250), a flowable composite (Filtek Flow, FF) and a resin-modified glass ionomer cement (Vitrebond, VB), and the transmission of Z-250 composite resin polymerization contraction force through different thicknesses of FF and VB. The experiment setup consisted of two identical parallel steel plates connected to a universal testing machine. One was fixed to a transversal base and the other to the equipment's cross head. The evaluated materials were inserted into a 1-mm space between the steel plates or between the inferior steel plate and a previously polymerized layer of an intermediate material (either FF or VB) adhered to the upper steel plate. The composite resin was light-cured with a halogen lamp with light intensity of 500 mW/cm2 for 60 s. A force/time graph was obtained for each sample for up to 120 s. Seven groups of 10 specimens each were evaluated: G1: Z-250; G2: FF; G3: VB; G4: Z-250 through a 0.5-mm layer of FF; G5: Z-250 through a 1-mm layer of FF; G6: Z-250 through a 0.5-mm of VB; G7: Z-250 through a 1-mm layer of VB. They were averaged and compared using one-way ANOVA and Tukey test at a = 0.05. The obtained contraction forces were: G1: 6.3N ± 0.2N; G2: 9.8 ± 0.2N; G3: 1.8 ± 0.2N; G4: 6.8N ± 0.2N; G5: 6.9N ± 0.3N; G6: 4.0N ± 0.4N and G7: 2.8N ± 0.4N. The use of VB as an intermediate layer promoted a significant decrease in polymerization contraction force values of the restorative system, regardless of material thickness. The use of FF as an intermediate layer promoted an increase in polymerization contraction force values with both material thicknesses. PMID:19089187
NASA Astrophysics Data System (ADS)
Lupinetti, Anthony J.; Fife, Julie; Garcia, Eduardo; Abney, Kent D.
2000-07-01
Information gaps exist in the knowledge base needed for choosing among the alternate processes to be used in the safe conversion of fissile materials to optimal forms for safe interim storage, long-term storage, and ultimate disposition. The current baseline storage technology for various wastes uses borosilicate glasses.1 The focus of this paper is the synthesis of actinide-containing ceramic materials at low and moderate temperatures (200 °C-1000 °C) using molecular and polymeric actinide borane and carborane complexes.
Tunable, flexible antireflection layer of ZnO nanowires embedded in PDMS.
Kim, Min Kyu; Yi, Dong Kee; Paik, Ungyu
2010-05-18
In this article, we report the fabrication of ordered hybrid structures composed of ZnO nanowires and a polymeric matrix with a polymer precursor infiltrating the nanowire arrays. The antireflective properties of the resulting ZnO nanowire-embedded polydimethylsiloxane composite (ZPC) were investigated at various ZnO nanowire lengths and ZPC bending angles. Interestingly, we found that whereas the antireflective properties showed a strong dependence on the length of the embedded ZnO nanowires in PDMS, the bending of ZPC has little effect on the antireflective properties.
NASA Astrophysics Data System (ADS)
Mei, Hua; D'Andrea, Dan; Nguyen, Tuyet-Trinh; Nworie, Chima
2014-02-01
One diazonium (perfluoroalkyl) benzenesulfonimide monomer, perfluoro-3, 6-dioxa-4-methyl-7-octene benzenesulfonyl imide, has been synthesized from Nafion monomer for the first time. With trifluorovinyl ether and diazonium precursors, the partially-fluorinated diazonium PFSI monomer can be polymerized and will provide chemically bonding with carbon electrode in proton exchange membrane fuel cells. A systematic study of the synthesis and characterization of this diazonium PFSI monomer has been conducted by varying reaction conditions. The optimized synthesis method has been established in the lab.
Lee, Jangwook; Jeong, Eun Ju; Lee, Yeon Kyung; Kim, Kwangmeyung; Kwon, Ick Chan; Lee, Kuen Yong
2016-03-02
Recently, targeted delivery systems based on functionalized polymeric nanoparticles have attracted a great deal of attention in cancer diagnosis and therapy. Specifically, as neuroblastoma occurs in infancy and childhood, targeted delivery may be critical to reduce the side effects that can occur with conventional approaches, as well as to achieve precise diagnosis and efficient therapy. Thus, biocompatible poly(d,l-lactide-co-glycolide) (PLG) nanoparticles containing an imaging probe and therapeutic gene are prepared, followed by modification with rabies virus glycoprotein (RVG) peptide for neuroblastoma-targeting delivery. RVG peptide is a well-known neuronal targeting ligand and is chemically conjugated to PLG nanoparticles without changing their size or shape. RVG-modified nanoparticles are effective in specifically targeting neuroblastoma both in vitro and in vivo. RVG-modified nanoparticles loaded with a fluorescent probe are useful to detect the tumor site in a neuroblastoma-bearing mouse model, and those encapsulating a therapeutic gene cocktail (siMyc, siBcl-2, and siVEGF) significantly suppressed tumor growth in the mouse model. This approach to designing and tailoring of polymeric nanoparticles for targeted delivery may be useful in the development of multimodality systems for theranostic approaches. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of CuO and ZnO addition on the multicomponent phosphate glasses: Spectroscopic studies
NASA Astrophysics Data System (ADS)
Szumera, Magdalena; Wacławska, Irena; Sułowska, Justyna
2016-06-01
The spectra of phosphate-silicate glasses from the P2O5-SiO2-K2O-MgO-CaO system modified with the addition of CuO or ZnO have been studied by means of FTIR, Raman and 31P MAS NMR spectroscopy. All glasses were synthesized by the conventional melt-quenching technique and their homogeneous chemical composition was controlled and confirmed. By using the aforementioned research techniques, the presence of structural units with various degrees of polymerization was shown in the structure of analyzed phosphate-silicate glasses: Q3, Q2, Q1 and Q0. It was found that an increase in the content of CuO or ZnO in the composition of analyzed glasses, which are introduced at the expense of decreasing amounts of CaO and MgO, has a different influence on the phospho-oxygen network. It was shown that copper ions cause its gradual polymerization, while zinc ions cause its depolymerization. At the same time, polymerization of the silico-oxygen subnetwork was found. Additionally, in the case of glasses containing increasing amounts of ZnO, a change of the role of zinc ions in the vitreous matrix was confirmed (from the modifier to a structure-forming component).
Zhu, Lijing; Song, Haiming; Zhang, Dawei; Wang, Gang; Zeng, Zhixiang; Xue, Qunji
2017-07-15
Polysulfone (PSf) membrane has been widely used in water separation and purification, although, membrane fouling is still a serious problem limiting its potential. We aim to improve the antifouling of PSf membranes via a very simple and efficient method. In this work, antifouling PSf membranes were fabricated via in situ cross-linked polymerization coupled with non-solvent induced phase separation. In brief, acrylic acid (AA) and vinyltriethoxysilane (VTEOS) were copolymerized in PSf solution, then directly casted into membranes without purification. With the increase of monomers concentration, the morphology of the as-cast membranes changed from a finger-like morphology to a fully sponge-like structure due to the increased viscosity and decreased precipitation rate of the polymer solutions. Meanwhile, the hydrophilicity and electronegativity of modified membranes were highly improved leading to inhibited protein adsorption and improved antifouling property. Furthermore, in order to further find out the different roles player by AA and VTESO, the modified membrane without VTEOS was prepared and characterized. The results indicated that AA is more effective in the membrane hydrophilicity improvement, VTEOS is more crucial to improve membrane stability. This work provides valuable guidance for fabricating PSf membranes with hydrophilicity and antifouling property via in situ cross-linked polymerization. Copyright © 2017 Elsevier Inc. All rights reserved.
Spijksma, Gerald I.; Blank, Dave H. A.; Bouwmeester, Henny J. M.; Kessler, Vadim G.
2009-01-01
Modification of different zirconium propoxide precursors with H2dea was investigated by characterization of the isolated modified species. Upon modification of zirconium n-propoxide and [Zr(OnPr)(OiPr)3(iPrOH)]2 with ½ a mol equivalent of H2dea the complexes [Zr2(OnPr)6(OCH2CH2)2NH]2 (1) and [Zr2(OnPr)2(OiPr)4(OCH2CH2)2NH]2 (2) were obtained. However, 1H-NMR studies of these tetranuclear compounds showed that these are not time-stable either in solution or solid form. The effect of this time instability on material properties is demonstrated by light scattering and TEM experiments. Modification of zirconium isopropoxide with either ½ or 1 equivalent mol of H2dea results in formation of the trinuclear complex, Zr{η3μ2-NH(C2H4O)2}3[Zr(OiPr)3]2(iPrOH)2 (3) countering a unique nona-coordinated central zirconium atom. This complex 3 is one of the first modified zirconium propoxide precursors shown to be stable in solution for long periods of time. The particle size and morphology of the products of sol-gel synthesis are strongly dependent on the time factor and eventual heat treatment of the precursor solution. Reproducible sol-gel synthesis requires the use of solution stable precursors. PMID:20087472
Obaid, M; Mohamed, Hend Omar; Yasin, Ahmed S; Yassin, Mohamed A; Fadali, Olfat A; Kim, HakYong; Barakat, Nasser A M
2017-10-15
Water in the world is becoming an increasingly scarce commodity and the membrane technology is a most effective strategy to address this issue. However, the fouling and low flux of the polymeric membrane remains the big challenges. Novel modified Polyvinylidene fluoride (PVDF) membrane was introduced, in this work, using a novel treatment technique for an electrospun polymeric PVDF membrane to be used in oil/water separation systems. The Characterizations of the modified and pristine membranes showed distinct changes in the phase and crystal structure of the membrane material as well as the wettability. The modification process altered the surface morphology and structure of the membrane by forming hydrophilic microspheres on the membrane surface. Therefore, the proposed treatment converts the membrane from highly hydrophobic to be a superhydrophilic under-oil when wetted with water. Accordingly, in the separation of oil/water mixtures, the modified membrane can achieve an outstanding flux of 20664 L/m 2 . hr under gravity, which is higher than the pristine membrane by infinite times. Moreover, in the separation of the emulsion, a high flux of 2727 L/m 2 . h was achieved. The results exhibited that the modified membrane can treat a huge amount of oily water with a minimal energy consumption. The corresponding separation efficiencies of both of oil/water mixtures and emulsion are more than 99%. The achieved characteristics for the modified and pristine membranes could be exploited to design a novel continuous system for oil/water separation with an excellent efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cueny, Eric S; Johnson, Heather C; Anding, Bernie J; Landis, Clark R
2017-08-30
Chromophore quench-labeling applied to 1-octene polymerization as catalyzed by hafnium-pyridyl amido precursors enables quantification of the amount of active catalyst and observation of the molecular weight distribution (MWD) of Hf-bound polymers via UV-GPC analysis. Comparison of the UV-detected MWD with the MWD of the "bulk" (all polymers, from RI-GPC analysis) provides important mechanistic information. The time evolution of the dual-detection GPC data, concentration of active catalyst, and monomer consumption suggests optimal activation conditions for the Hf pre-catalyst in the presence of the activator [Ph 3 C][B(C 6 F 5 ) 4 ]. The chromophore quench-labeling agents do not react with the chain-transfer agent ZnEt 2 under the reaction conditions. Thus, Hf-bound polymeryls are selectively labeled in the presence of zinc-polymeryls. Quench-labeling studies in the presence of ZnEt 2 reveal that ZnEt 2 does not influence the rate of propagation at the Hf center, and chain transfer of Hf-bound polymers to ZnEt 2 is fast and quasi-irreversible. The quench-label techniques represent a means to study commercial polymerization catalysts that operate with high efficiency at low catalyst concentrations without the need for specialized equipment.
Li, Xin; Niu, Xiangheng; Zhang, Wenchi; He, Yanfang; Pan, Jianming; Yan, Yongsheng; Qiu, Fengxian
2017-03-09
Exploration of advanced electrocatalysts to promote the sluggish methanol oxidation reaction (MOR) is of vital importance for developing high efficiency and low-cost direct methanol fuel cells. Highly dispersed palladium nanoparticles (Pd NPs) anchored on a nitrogen-doped carbon support were fabricated using a facile one-pot dopamine self-polymerization mediated redox strategy, in which dopamine not only acted as a moderate reductant to induce the formation of Pd NPs during self-polymerization but was also the precursor of the nitrogen-doped carbon support for Pd. The synthesized hybrid features the following characteristics: 1) High dispersity of Pd NPs, which exposed a high abundance of active surfaces and sites for heterogeneous electrocatalysis; 2) metal-support interactions, which may affect the surface chemistry and electron distribution of active Pd NPs; 3) the Pd NPs were partially imbedded or encapsulated into the support, thus reducing the possible agglomeration of Pd NPs during cyclic measurements. The electrocatalyst with such favorable features provided higher mass activity (2.2 times that of commercial Pd/C) and better durability (reduced loss of activity during simulated frequent startup-shutdown operations) for the MOR in alkaline media. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Qing; Yu, Xue; Xu, Xuhui
2013-06-15
The reduction of Eu{sup 3+} to Eu{sup 2+} is realized efficiently in Eu{sub 2}O{sub 3}-doped borate glasses prepared under air condition by melting-quenching method. Luminescent spectra show an increasing tendency of Eu{sup 2+} emission with increasing Al{sub 2}O{sub 3} concentration in B{sub 2}O{sub 3}–Na{sub 2}O glasses. It is interesting that significant enhancement appeared of Eu{sup 2+} luminescence in the Al{sub 2}O{sub 3}-rich sample comparing to the samples of Al{sub 2}O{sub 3} less than 6 mol%. FTIR and Raman scattering measurements indicated that some new vibration modes assigned to the low-polymerized structure groups decomposed from the slight Al{sub 2}O{sub 3} dopantmore » samples. These results demonstrated that the polymerization of the glass structure decreased with increasing incorporation of Al{sub 2}O{sub 3} into the borate glasses, linking to the efficiency of Eu{sup 3+} self-reduction in air at high temperature. - graphical abstract: A novel europium valence reduction phenomenon occurred in Al{sub 2}O{sub 3} modified borate glasses, FTIR and Raman measurements revealed that high polymeric groups were destroyed to low polymery structures with Al{sub 2}O{sub 3} addition. - Highlights: • The efficient reduction of Eu{sup 3+} to Eu{sup 2+} is observed in the B{sub 2}O{sub 3}–Na{sub 2}O glasses. • Eu{sup 2+} luminescence is significant enhanced in the Al{sub 2}O{sub 3}-rich glasses. • The introduction of Al{sub 2}O{sub 3} changed the network structure of the borate glasses. • High polymeric borate groups in the glass matrix may be destroyed to the lower ones.« less
Deng, Jie; Liu, Xinyue; Zhang, Shuqing; Cheng, Chong; Nie, Chuanxiong; Zhao, Changsheng
2015-09-08
Surface modification has long been of great interest to impart desired functionalities to the bioimplants. However, due to the limitations of recent technologies in surface modification, it is highly desirable to explore novel protocols, which can advantageously and efficiently endow the inert material surfaces with versatile biofunctionalities. Herein, to achieve versatile and rapid postfunctionalization of polymeric membrane, we demonstrate a new strategy for the fabrication of β-cyclodextrin (β-CD) modified host membrane substrate that can recognize a series of well-designed guest macromolecules. The surface assembly procedure was driven by the host-guest interaction between adamantane (Ad) and β-CD. β-CD immobilized host membrane was fabricated via two steps: (1) epoxy groups enriched poly(ether sulfone) (PES) membrane was first prepared via in situ cross-linking polymerization and subsequently phase separation; (2) mono-6-deoxy-6-ethylenediamine-β-CD (EDA-β-CD) was then anchored onto the surface of the epoxy functionalized PES membrane to obtain PES-CD. Subsequently, three types of Ad-terminated polymers, including Ad-poly(styrenesulfonate-co-sodium acrylate) (Ad-PSA), Ad-methoxypoly(ethylene glycol) (Ad-PEG), and Ad-poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate (Ad-PMT), were separately assembled onto the β-CD immobilized surfaces to endow the membranes with anticoagulant, antifouling, and antibacterial capability, respectively. Activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) measurements were carried out to explore the anticoagulant activity. The antifouling capability was evaluated via protein adsorption and platelet adhesion measurements. Moreover, Staphyllococcous aureus (S. aureus) was selected as model bacteria to evaluate the antibacterial ability of the functionalized membranes. The results indicated that well-regulated blood compatibility, antifouling capability, and bactericidal activity could be achieved by the proposed rapid postfunctionalization on polymeric membranes. This approach of versatile and rapid postfunctionalization is promising for the preparation of multifunctional polymeric membrane materials to meet with various demands for the further applications.
Design and Synthesis of Self-Assembled Polymeric Nanoparticles for Cancer Drug Delivery
NASA Astrophysics Data System (ADS)
Logie, Jennifer
Current chemotherapeutics are plagued by poor solubility and selectivity, requiring toxic excipients in formulations and causing a number of dose limiting side effects. Nanoparticle delivery has emerged as a strategy to more effectively deliver chemotherapeutics to the tumour site. Specifically, polymeric micelles enable the solubilization of hydrophobic small molecule drugs within the core and mitigate the necessity of excipients. Notwithstanding the significant progress made in polymeric micelle delivery, translation is limited by poor stability and low drug loading. In this work, a rational design approach is used to chemically modify poly(D,L-lactide-co-2-methyl-2-carboxytrimethylene carbonate)-graft-poly(ethylene glycol) (P(LA-co-TMCC)-g-PEG) in order to overcome these limitations and effectively deliver drug to tumours. The PEG density of the polymer system was optimized to enhance the stability of our polymeric micelles. Higher PEG densities permitted the lyophilization of micelles and enhanced the serum stability of the system. To increase the drug loading of our system, we facilitated specific intermolecular interactions within the micelle core. For drugs that form colloidal aggregates, such as pentyl-PABC doxazolidine, polymers were used to stabilize the colloidal core against aggregation and protein adsorption. For more challenging molecules, where self-assembly cannot be controlled, such as docetaxel, we modified the polymeric backbone with a peptide from the binding site of the drug to achieve loadings five times higher than those achieved in conventional micelle systems. This novel docetaxel nanoparticle was assessed in vivo in an orthotopic mouse model of breast cancer, where it showed a wider therapeutic index than the conventional ethanolic polysorbate 80 formulation. The improved tolerability of this formulation enabled higher dosing regimens and led to heightened efficacy and survival in this mouse model. Combined, these studies validated P(LA-co-TMCC)-g-PEG nanoparticles as an effective delivery vehicle for two chemotherapeutics, and presents approaches amenable to the delivery of many other clinically relevant hydrophobic drugs or drug combinations.
Effects of detergents on ribosomal precursor subunits of Bacillus megaterium.
Body, A; Brownstein, B H
1978-01-01
Cell extracts prepared by osmotic lysis of protoplasts were analyzed by sucrose gradient sedimentation. In the absence of detergents, ribosomal precursor particles were found in a gradient fraction which sedimented faster than mature 50S subunits and in two other fractions coincident with mature 50S and 30S ribosomal subunits. Phospholipid, an indicator of membrane, was shown to be associated with only the fastest-sedimenting ribosomal precursor particle fraction. After the extracts were treated with detergents, all phospholipid was found at the top of the gradients. Brij 58, Triton X-100, and Nonidet P-40 did not cause a change in the sedimentation values of precursors; however, the detergents deoxycholate or LOC (Amway Corp.) disrupted the fastest-sedimenting precursor and converted the ribosomal precursor subunits which sedimented at the 50S and 30S positions to five different classes of more slowly sedimenting particles. Earlier reports on the in vivo assembly of ribosomal subunits have shown that several stages of ribosomal precursor subunits exist, and, in the presence of the detergents deoxycholate and LOC, which had been used to prepare cell extracts, the precursors sedimented more slowly. Our data are consistent with the hypothesis that those detergents selectively modify the structure of ribosomal precursors and lend further support to the hypothesis that the in vivo ribosomal precursor subunits have 50S and 30S sedimentation values. In addition, these data support the idea that the ribosomal precursor particles found in the fast-sedimenting fraction may constitute a unique precursor fraction.
Effects of Detergents on Ribosomal Precursor Subunits of Bacillus megaterium
Body, Barbara A.; Brownstein, Bernard H.
1978-01-01
Cell extracts prepared by osmotic lysis of protoplasts were analyzed by sucrose gradient sedimentation. In the absence of detergents, ribosomal precursor particles were found in a gradient fraction which sedimented faster than mature 50S subunits and in two other fractions coincident with mature 50S and 30S ribosomal subunits. Phospholipid, an indicator of membrane, was shown to be associated with only the fastest-sedimenting ribosomal precursor particle fraction. After the extracts were treated with detergents, all phospholipid was found at the top of the gradients. Brij 58, Triton X-100, and Nonidet P-40 did not cause a change in the sedimentation values of precursors; however, the detergents deoxycholate or LOC (Amway Corp.) disrupted the fastest-sedimenting precursor and converted the ribosomal precursor subunits which sedimented at the 50S and 30S positions to five different classes of more slowly sedimenting particles. Earlier reports on the in vivo assembly of ribosomal subunits have shown that several stages of ribosomal precursor subunits exist, and, in the presence of the detergents deoxycholate and LOC, which had been used to prepare cell extracts, the precursors sedimented more slowly. Our data are consistent with the hypothesis that those detergents selectively modify the structure of ribosomal precursors and lend further support to the hypothesis that the in vivo ribosomal precursor subunits have 50S and 30S sedimentation values. In addition, these data support the idea that the ribosomal precursor particles found in the fast-sedimenting fraction may constitute a unique precursor fraction. PMID:412833
A review of processable high temperature resistant addition-type laminating resins
NASA Technical Reports Server (NTRS)
Serafini, T. T.; Delvigs, P.
1973-01-01
An important finding that resulted from research that was conducted to develop improved ablative resins was the discovery of a novel approach to synthesize processable high temperature resistant polymers. Low molecular weight polyimide prepolymers end-capped with norbornene groups were polymerized into thermo-oxidatively stable modified polyimides without the evolution of void producing volatile materials. This paper reviews basic studies that were performed using model compounds to elucidate the polymerization mechanism of the so-called addition-type polyimides. The fabrication and properties of polyimide/graphite fiber composites using A-type polyimide prepolymer as the matrix are described. An alternate method for preparing processable A-type polyimides by means of in situ polymerization of monomeric reactants on the fiber reinforcement is also described. Polyimide/graphite fiber composite performance at elevated temperatures is presented for A-type polyimides.
Tang, Heqing; Li, Jing; Bie, Yeqiang; Zhu, Lihua; Zou, Jing
2010-03-15
Organic pollutants may be treated by either a degradation process or a recovery process in the view point of sustainable chemistry. Photocatalytic removal of aniline was investigated in aqueous solutions. It was found that the photocatalytic oxidation of aniline resulted in its degradation or polymerization, depending on its concentration. Hence a new treatment strategy was proposed in combination of photocatalytic degradation and polymerization, where the polymerization was in fact a recovery process. When aniline concentration was as low as 0.1 mmol L(-1), it was possible to photocatalytically degrade aniline, which could be further enhanced by increasing solution pH, modifying TiO(2) surface with the addition of anions, or coupling with the photoreduction of added oxidants. When aniline concentration was increased to about 1 mmol L(-1), the photocatalytic oxidation was observed to yield the polymerization of aniline, leading to nanocomposites of polyaniline (PAN) and TiO(2). Alternatively, the photo-enhanced chemical polymerization of aniline at higher concentrations (>or=50 mmol L(-1)) in the presence of chemical oxidants produced PAN nanostructures. The conversion of pollutant aniline to valuable PAN nanostructures or nano-PAN/TiO(2) composites is suggestive for possible applications in the treatment of aniline wastewaters as a sustainable environmental protection measure. (c) 2009 Elsevier B.V. All rights reserved.
Fang, Yang-Yang; Gong, Wei-Jie; Shang, Xiu-Juan; Li, Hong-Xi; Gao, Jun; Lang, Jian-Ping
2014-06-14
The reaction of FeCl3 with a pincer ligand, 2,6-di(1H-pyrazol-3-yl)pyridine (bppyH2), produced a mononuclear Fe(III) complex [Fe(bppyH2)Cl3] (1), which could be reduced to the corresponding Fe(II) dichloride complex [Fe(bppyH2)Cl2] (2) by suitable reducing agents such as Cp2Co or Fe powder. 1 and 2 exhibited a reversible transformation from each other with appropriate redox reagents. 1 could be utilized as a pre-catalyst to initiate the ring-opening polymerization of ε-caprolactone in the presence of alcohol but did not work. The 1/alcohol system displayed characteristics of a well-controlled polymerization with the resulting poly(ε-caprolactone) having low molecular weight distributions, a linear tendency of molecular weight evolution with conversion, and polymer growth observed for the sequential additions of ε-caprolactone monomer to the polymerization reaction. The polymerization was completely turned off by the in situ reduction of the catalytic Fe center via Cp2Co and then turned back upon the addition of [Cp2Fe]PF6. The rate of polymerization was modified by switching in situ between the Fe(III) and Fe(II) species.
Deng, Zixin; Zhao, Changming; Yu, Yi
2014-01-01
In biosynthesis of natural products, potential intermediates or analogs of a particular compound in the crude extracts are commonly overlooked in routine assays due to their low concentration, limited structural information, or because of their insignificant bio-activities. This may lead into an incomplete and even an incorrect biosynthetic pathway for the target molecule. Here we applied multiple compound mining approaches, including genome scanning and precursor ion scan-directed mass spectrometry, to identify potential pyrrolamide compounds in the fermentation culture of Streptomyces netropsis. Several novel congocidine and distamycin analogs were thus detected and characterized. A more reasonable route for the biosynthesis of pyrrolamides was proposed based on the structures of these newly discovered compounds, as well as the functional characterization of several key biosynthetic genes of pyrrolamides. Collectively, our results implied an unusual “iterative strategy” underlying the pyrrole polymerization in the biosynthesis of pyrrolamide antibiotics. PMID:24901640
Hauf, Katharina; Riazi, Kamran; Willenbacher, Norbert; Koos, Erin
2017-10-01
We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown.
Xie, Nan-Hong; Yan, Xiang-Hui; Xu, Bo-Qing
2016-09-08
Iron and nitrogen co-doped carbon (Fe-N-C) materials are among the most active non-precious metal catalysts that could replace Pt-based electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries. The synthesis of the Fe-N-C catalysts often involves the use of aniline as the precursor for both N and C and ammonium peroxydisulfate (APS) as an indispensable oxidative initiator for aniline polymerization. Herein, a detailed structure and catalytic ORR performance comparison of aniline-derived Fe-N-C catalysts synthesized with and without the use of APS is reported. The APS-free preparation, which uses Fe(III) ions as the Fe source as well as the aniline polymerization initiator, results in a simple Fe-N-C catalyst with a high activity for the ORR. We show that APS is not necessary for the preparation and even detrimental to the performance of the catalyst. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sequence Effects in Conjugated Donor-Acceptor Trimers and Polymers.
Zhang, Shaopeng; Hutchison, Geoffrey R; Meyer, Tara Y
2016-06-01
To investigate the sequence effect on donor-acceptor conjugated oligomers and polymers, the trimeric isomers PBP and BPP, comprising dialkoxy phenylene vinylene (P), benzothiadiazole vinylene (B), and alkyl endgroups with terminal olefins, are synthesized. Sequence effects are evident in the optical/electrochemical properties and thermal properties. Absorption maxima for PBP and BPP differ by 41 nm and the electrochemical band gaps by 0.1 V. The molar emission intensity is five times greater in PBP than BPP. Both trimers are crystalline and the melting points differ by 17 °C. The PBP and BPP trimers are used as macromonomers in an acyclic diene metathesis polymerization to give PolyPBP and PolyBPP. The optical and electrochemical properties are similar to those of their trimer precursors-sequence effects are still evident. These results suggest that sequence is a tunable variable for electronic materials and that the polymerization of oligomeric sequences is a useful approach to introducing sequence into polymers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Properties of Cadmium-(bis)dodecylthiolate and Polymeric Composites Based on It
Agareva, Nadezhda; Smirnov, Anton A.; Afanasiev, Andrey; Sologubov, Semen; Markin, Alexey; Salomatina, Evgenia; Smirnova, Larisa; Bityurin, Nikita
2015-01-01
We study the thermo-physical and photoluminescence (PL) properties of cadmium-(bis)dodecylthiolate (Cd(C12H25S)2). Significant attention is drawn to characterization of Cd(C12H25S)2 by different methods. The laser-induced PLs of Cd(C12H25S)2 and Cd(C12H25S)2/(polymethyl methacrylate) (PMMA) composites are studied. Samples of Cd(C12H25S)2/PMMA are synthesized by the polymerization method. Ultraviolet (UV)-pulsed laser irradiation of the samples under relatively small fluences leads to the formation of induced PL with the maximum near the wavelength of 600 nm. This process can be attributed to the transformation of Cd(C12H25S)2 within the precursor grains. Another PL peak at 450–500 nm, which appears under the higher fluences, relies on the formation of CdS complexes with a significant impact of the polymer matrix. PMID:28793738
Hauf, Katharina; Riazi, Kamran; Willenbacher, Norbert; Koos, Erin
2018-01-01
We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown. PMID:29503494
Qu, Lin; Sun, Peng; Wu, Ying; Zhang, Ke; Liu, Zhengping
2017-08-01
An efficient metal-free homodifunctional bimolecular ring-closure method is developed for the formation of cyclic polymers by combining reversible addition-fragmentation chain transfer (RAFT) polymerization and self-accelerating click reaction. In this approach, α,ω-homodifunctional linear polymers with azide terminals are prepared by RAFT polymerization and postmodification of polymer chain end groups. By virtue of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DBA) as small linkers, well-defined cyclic polymers are then prepared using the self-accelerating double strain-promoted azide-alkyne click (DSPAAC) reaction to ring-close the azide end-functionalized homodifunctional linear polymer precursors. Due to the self-accelerating property of DSPAAC ring-closing reaction, this novel method eliminates the requirement of equimolar amounts of telechelic polymers and small linkers in traditional bimolecular ring-closure methods. It facilitates this method to efficiently and conveniently produce varied pure cyclic polymers by employing an excess molar amount of DBA small linkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optofluidic fabrication for 3D-shaped particles
NASA Astrophysics Data System (ADS)
Paulsen, Kevin S.; di Carlo, Dino; Chung, Aram J.
2015-04-01
Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated.
Adams, Christopher F; Rai, Ahmad; Sneddon, Gregor; Yiu, Humphrey H P; Polyak, Boris; Chari, Divya M
2015-01-01
Safe and efficient delivery of therapeutic cells to sites of injury/disease in the central nervous system is a key goal for the translation of clinical cell transplantation therapies. Recently, 'magnetic cell localization strategies' have emerged as a promising and safe approach for targeted delivery of magnetic particle (MP) labeled stem cells to pathology sites. For neuroregenerative applications, this approach is limited by the lack of available neurocompatible MPs, and low cell labeling achieved in neural stem/precursor populations. We demonstrate that high magnetite content, self-sedimenting polymeric MPs [unfunctionalized poly(lactic acid) coated, without a transfecting component] achieve efficient labeling (≥90%) of primary neural stem cells (NSCs)-a 'hard-to-label' transplant population of major clinical relevance. Our protocols showed high safety with respect to key stem cell regenerative parameters. Critically, labeled cells were effectively localized in an in vitro flow system by magnetic force highlighting the translational potential of the methods used. Copyright © 2015 Elsevier Inc. All rights reserved.
Amrutkar, P P; Chaudhari, P D; Patil, S B
2012-01-01
Zolpidem tartarate is a non-benzodiazepine, sedative-hypnotic, which finds its major use in various types of insomnia. The present work relates to development of multiparticulate floating drug delivery system based on gas generation technique to prolong the gastric residence time and to increase the overall bioavailability. Modified release dosage form of zolpidem tartarate adapted to release over a predetermined time period, according to biphasic profile of dissolution, where the first phase is immediate release phase for inducing the sleep and the second phase is modified release phase for maintaining the sleep up to 10 h. The system consists of zolpidem tartarate layered pellets coated with effervescent layer and polymeric membrane. The floating ability and in vitro drug release of the system were dependent on amount of the effervescent agent (sodium bicarbonate) layered onto the drug layered pellets, and coating level of the polymeric membrane (Eudragit(®) NE 30D). The system could float completely within 5 min and maintain the floating over a period of 10 h. The multiparticulate floating delivery system of zolpidem tartarate with rapid floating and modified drug release was obtained. Copyright © 2011 Elsevier B.V. All rights reserved.
Liu, Caihong; Lee, Jongho; Ma, Jun; Elimelech, Menachem
2017-02-21
In this study, we demonstrate a highly antifouling thin-film composite (TFC) membrane by grafting a zwitterionic polymer brush via atom-transfer radical-polymerization (ATRP), a controlled, environmentally benign chemical process. Initiator molecules for polymerization were immobilized on the membrane surface by bioinspired catechol chemistry, leading to the grafting of a dense zwitterionic polymer brush layer. Surface characterization revealed that the modified membrane exhibits reduced surface roughness, enhanced hydrophilicity, and lower surface charge. Chemical force microscopy demonstrated that the modified membrane displayed foulant-membrane interaction forces that were 1 order of magnitude smaller than those of the pristine TFC membrane. The excellent fouling resistance imparted by the zwitterionic brush layer was further demonstrated by significantly reduced adsorption of proteins and bacteria. In addition, forward osmosis fouling experiments with a feed solution containing a mixture of organic foulants (bovine-serum albumin, alginate, and natural organic matter) indicated that the modified membrane exhibited significantly lower water flux decline compared to the pristine TFC membrane. The controlled architecture of the zwitterionic polymer brush via ATRP has the potential for a facile antifouling modification of a wide range of water treatment membranes without compromising intrinsic transport properties.
Roverud, Elin; Strickland, Elizabeth A
2014-03-01
The mechanisms of forward masking are not clearly understood. The temporal window model (TWM) proposes that masking occurs via a neural mechanism that integrates within a temporal window. The medial olivocochlear reflex (MOCR), a sound-evoked reflex that reduces cochlear amplifier gain, may also contribute to forward masking if the preceding sound reduces gain for the signal. Psychophysical evidence of gain reduction can be observed using a growth of masking (GOM) paradigm with an off-frequency forward masker and a precursor. The basilar membrane input/output (I/O) function is estimated from the GOM function, and the I/O function gain is reduced by the precursor. In this study, the effect of precursor duration on this gain reduction effect was examined for on- and off-frequency precursors. With on-frequency precursors, thresholds increased with increasing precursor duration, then decreased (rolled over) for longer durations. Thresholds with off-frequency precursors continued to increase with increasing precursor duration. These results are not consistent with solely neural masking, but may reflect gain reduction that selectively affects on-frequency stimuli. The TWM was modified to include history-dependent gain reduction to simulate the MOCR, called the temporal window model-gain reduction (TWM-GR). The TWM-GR predicted rollover and the differences with on- and off-frequency precursors whereas the TWM did not.
How actin binds and assembles onto plasma membranes from Dictyostelium discoideum
1988-01-01
We have shown previously (Schwartz, M. A., and E. J. Luna. 1986. J. Cell Biol. 102: 2067-2075) that actin binds with positive cooperativity to plasma membranes from Dictyostelium discoideum. Actin is polymerized at the membrane surface even at concentrations well below the critical concentration for polymerization in solution. Low salt buffer that blocks actin polymerization in solution also prevents actin binding to membranes. To further explore the relationship between actin polymerization and binding to membranes, we prepared four chemically modified actins that appear to be incapable of polymerizing in solution. Three of these derivatives also lost their ability to bind to membranes. The fourth derivative (EF actin), in which histidine-40 is labeled with ethoxyformic anhydride, binds to membranes with reduced affinity. Binding curves exhibit positive cooperativity, and cross- linking experiments show that membrane-bound actin is multimeric. Thus, binding and polymerization are tightly coupled, and the ability of these membranes to polymerize actin is dramatically demonstrated. EF actin coassembles weakly with untreated actin in solution, but coassembles well on membranes. Binding by untreated actin and EF actin are mutually competitive, indicating that they bind to the same membrane sites. Hill plots indicate that an actin trimer is the minimum assembly state required for tight binding to membranes. The best explanation for our data is a model in which actin oligomers assemble by binding to clustered membrane sites with successive monomers on one side of the actin filament bound to the membrane. Individual binding affinities are expected to be low, but the overall actin-membrane avidity is high, due to multivalency. Our results imply that extracellular factors that cluster membrane proteins may create sites for the formation of actin nuclei and thus trigger actin polymerization in the cell. PMID:3392099
Tran, Ashley; Williams, Geoffrey; Younus, Shagufta; Ali, Nujhat N; Blair, Sandra L; Nizkorodov, Sergey A; Al-Abadleh, Hind A
2017-09-05
The role of transition metals in the formation and aging of secondary organic aerosol (SOA) from aliphatic and aromatic precursors in heterogeneous/multiphase reactions is not well understood. The reactivity of soluble Fe(III) toward known benzene photooxidation products that include fumaric (trans-butenedioic) and muconic (trans,trans-2,4-hexadienedioic) acids was investigated. Efficient formation of brightly colored nanoparticles was observed that are mostly rod- or irregular-shaped depending on the structure of the organic precursor. The particles were characterized for their optical properties, growth rate, elemental composition, iron content, and oxidation state. Results indicate that these particles have mass absorption coefficients on the same order as black carbon and larger than that of biomass burning aerosols. The particles are also amorphous in nature and consist of polymeric chains of Fe centers complexed to carboxylate groups. The oxidation state of Fe was found to be in between Fe(III) and Fe(II) in standard compounds. The organic reactant to iron molar ratio and pH were found to affect the particle growth rate. Control experiments using maleic acid (cis-butenedioic acid) and succinic acid (butanedioic acid) produced no particles. The formation of particles reported herein could account for new pathways that lead to SOA and brown carbon formation mediated by transition metals. In addition, the multiple chemically active components in these particles (iron, organics, and acidic groups) may have an effect on their chemical reactivity (enhanced uptake of trace gases, catalysis, and production of reactive oxygen species) and their likely poor cloud/ice nucleation properties.
WATER-BORNE OIL-MODIFIED POLYURETHANE COATINGS VIA HYBRID MINIEMULSION POLYMERIZATION. (R825326)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Urban, Johannes H; Moosmeier, Markus A; Aumüller, Tobias; Thein, Marcus; Bosma, Tjibbe; Rink, Rick; Groth, Katharina; Zulley, Moritz; Siegers, Katja; Tissot, Kathrin; Moll, Gert N; Prassler, Josef
2017-11-15
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an emerging class of natural products with drug-like properties. To fully exploit the potential of RiPPs as peptide drug candidates, tools for their systematic engineering are required. Here we report the engineering of lanthipeptides, a subclass of RiPPs characterized by multiple thioether cycles that are enzymatically introduced in a regio- and stereospecific manner, by phage display. This was achieved by heterologous co-expression of linear lanthipeptide precursors fused to the widely neglected C-terminus of the bacteriophage M13 minor coat protein pIII, rather than the conventionally used N-terminus, along with the modifying enzymes from distantly related bacteria. We observe that C-terminal precursor peptide fusions to pIII are enzymatically modified in the cytoplasm of the producing cell and subsequently displayed as mature cyclic peptides on the phage surface. Biopanning of large C-terminal display libraries readily identifies artificial lanthipeptide ligands specific to urokinase plasminogen activator (uPA) and streptavidin.
NASA Astrophysics Data System (ADS)
Miruszewski, T.; Gdaniec, P.; Karczewski, J.; Bochentyn, B.; Szaniawska, K.; Kupracz, P.; Prześniak-Welenc, M.; Kusz, B.
2016-09-01
The yttrium, iron and niobium doped-SrTiO3 powders have been successfully fabricated by a modified low-temperature synthesis method from a polymer complex. The usage of strontium hydroxide precursor instead of conventional strontium nitrate or strontium carbonate provides to the possibility of significant decrease of annealing temperature. It allows to prepare a material with sphere-shape grains of nanometric size (15-70 nm). The results of thermal analysis indicate that the crystallization of precursor takes place at different stages. The product after heat treatment at 600 °C for 3 h in air was also characterized by X-Ray diffraction method (XRD) and Fourier transform - infrared spectroscopy (FT-IR). After the crystallization and the impurity removal process, a single-phase material was obtained in case of all analyzed samples. The morphology of obtained nano-powders was also studied by a scanning electron microscopy (SEM). It can be concluded, that this method allows obtaining a perovskite phase of a metal doped SrTiO3 with nanometric particles.
Determination of local order in the amorphous precursor to Ba-hexaferrite thin-film recording media
NASA Astrophysics Data System (ADS)
Snyder, J. E.; Harris, V. G.; Das, B. N.; Koon, N. C.; Sui, X.; Kryder, M. H.
1996-04-01
Ba-hexaferrite thin films for recording media applications are often fabricated by a two-step process: sputter deposition of an amorphous precursor, followed by annealing to crystallize the BaFe12O19 phase. The magnetic anisotropy of the crystalline films can be either in-plane or perpendicular, depending on the sputtering process used in the first step. However, conventional structural characterization techniques have not been able to distinguish between different as-sputtered films. Using polarization-dependent extended x-ray absorption fine structure (PD-EXAFS), we have observed anisotropic local structure around both Ba and Fe atoms in the amorphous precursor films. Comparison of the results suggests that the amorphous films consist of networks of Fe atoms surrounded by their O nearest neighbors, with Ba atoms fitting into in-between spaces as network modifiers (there might also be some minor Fe network modifying contribution). The local structural anisotropy of the amorphous films appears to determine the orientation of the fast-growing basal plane directions during annealing, and thus the directions of the c axes and the magnetic anisotropy.
Li, Yongjing; Wan, Jiaxun; Zhang, Zihao; Guo, Jia; Wang, Changchun
2017-10-18
The development of multifunctional ultrasound contrast agents has inspired considerable interest in the application of biomedical imaging and anticancer therapeutics. However, combining multiple components that can preferentially accumulate in tumors in a nanometer scale poses one of the major challenges in targeting drug delivery for theranostic application. Herein, reflux-precipitation polymerization, and N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide-meditated amidation reaction were introduced to effectively generate a new type of soft glycine/poly(ethylene glycol) (PEG)/RGD-modified poly(methacrylic acid) nanobubbles with a uniform morphology and desired particle size (less than 100 nm). Because of the enhanced biocompatibility resulting from the glycine modification, over 80% of the cells survived, even though the dosage of glycine-modified polymeric nanobubbles was up to 5 mg/mL. By loading doxorubicin as an anticancer drug and perfluorohexane as an ultrasound probe, the resulting glycine/PEG/RGD-modified nanobubbles showed remarkable cancer therapeutic efficacy and a high quality of ultrasonic imaging; thus, the ultrasonic signal exhibited a 1.47-fold enhancement at the tumor site after intravenous injection. By integrating diagnostic and therapeutic functions into a single nanobubble, the new type of theranostic nanobubbles offers a promising strategy to monitor the therapeutic effects, giving important insights into the ultrasound-traced and enhanced targeting drug delivery in biomedical applications.
Intrapulpal Thermal Changes during Setting Reaction of Glass Carbomer® Using Thermocure Lamp.
Kahvecioglu, Firdevs; Tosun, Gül; Ülker, Hayriye Esra
2016-01-01
Objectives . To measure the temperature increase induced during thermocure lamp setting reaction of glass carbomer and to compare it with those induced by visible light curing of a resin-modified glass ionomer and a polyacid-modified composite resin in primary and permanent teeth. Materials and Methods . Nonretentive class I cavities were prepared in extracted primary and permanent molars. Glass carbomer (GC) was placed in the cavity and set at 60°C for 60 sn using a special thermocure lamp. Resin-modified glass ionomer (RMGIC) and polyacid-modified composite resin (PMCR) were placed in the cavities and polymerized with an LED curing unit. Temperature increases during setting reactions were measured with a J-type thermocouple wire connected to a data logger. Data were examined using two-way analysis of variance and Tukey's honestly significant difference tests. Results . The use of GC resulted in temperature changes of 5.17 ± 0.92°C and 5.32 ± 0.90°C in primary and permanent teeth, respectively ( p > 0.05). Temperature increases were greatest in the GC group, differing significantly from those in the PMCR group ( p < 0.05). Conclusion . Temperature increases during polymerization and setting reactions of the materials were below the critical value in all groups. No difference was observed between primary and permanent teeth, regardless of the material used.
Abd El-Aziz, A M; El Backly, Rania M; Taha, Nahla A; El-Maghraby, Azza; Kandil, Sherif H
2017-07-01
Critical size bone defects are orthopedic defects that will not heal without intervention or that will not completely heal over the natural life time of the animal. Although bone generally has the ability to regenerate completely however, critical defects require some sort of scaffold to do so. In the current study we proposed a method to obtain a carbon nanofibrous/Hydroxyapatite (HA) bioactive scaffold. The carbon nanofibrous (CNF) nonwoven fabrics were obtained by the use of the electrospinning process of the polymeric solution of poly acrylonitrile "PAN" and subsequent stabilization and carbonization processes. The CNFs sheets were functionalized by both hydroxyapatite (HA) and bovine serum albumin (BSA). The HA was added to the electrospun solution, but in case of (BSA), it was adsorbed after the carbonization process. The changes in the properties taking place in the precursor sheets were investigated using the characterization methods (SEM, FT-IR, TGA and EDX). The prepared materials were tested for biocompatibility via subcutaneous implantation in New Zealand white rabbits. We successfully prepared biocompatible functionalized sheets, which have been modified with HA or HA and BSA. The sheets that were functionalized by both HA and BSA are more biocompatible with fewer inflammatory cells of (neutrophils and lymphocytes) than ones with only HA over the period of 3weeks. Copyright © 2017 Elsevier B.V. All rights reserved.
Wound-Induced Deposition of Polyphenols in Transgenic Plants Overexpressing Peroxidase 1
Lagrimini, L. Mark
1991-01-01
Tobacco (Nicotiana tabacum) plants transformed with a chimeric tobacco anionic peroxidase gene have previously been shown to synthesize high levels of peroxidase in all tissues throughout the plant. One of several distinguishable phenotypes of transformed plants is the rapid browning of pith tissue upon wounding. Pith tissue from plants expressing high levels of peroxidase browned within 24 hours of wounding, while tissue from control plants did not brown as late as 7 days after wounding. A correlation between peroxidase activity and wound-induced browning was observed, whereas no relationship between polyphenol oxidase activity and browning was found. The purified tobacco anionic peroxidase was subjected to kinetic analysis with substrates which resemble the precursors of lignin or polyphenolic acid. The purified enzyme was found to readily polymerize phenolic acids in the presence of H2O2 via a modified ping-pong mechanism. The percentage of lignin and lignin-related polymers in cell walls was nearly twofold greater in pith tissue isolated from peroxidase-overproducer plants compared to control plants. Lignin deposition in wounded pith tissue from control plants closely followed the induction of peroxidase activity. However, wound-induced lignification occurred 24 to 48 hours sooner in plants overexpressing the anionic peroxidase. This suggests that the availability of peroxidase rather than substrate may delay polyphenol deposition in wounded tissue. ImagesFigure 1Figure 2Figure 3 PMID:16668224
David, Lamuel; Asok, Deepu; Singh, Gurpreet
2014-09-24
Silicon-based precursor derived glass-ceramics or PDCs have proven to be an attractive alternative anode material for Li ion batteries. Main challenges associated with PDC anodes are their low electrical conductivity, first cycle loss, and meager C-rate performance. Here, we show that thermal conversion of single source aluminum-modified polysilazane on the surfaces of carbon nanotubes (CNTs) results in a robust Si-Al-C-N/CNT shell/core composite that offers extreme C-rate capability as battery electrode. Addition of Al to the molecular network of Si-C-N improved electrical conductivity of Si-C-N by 4 orders of magnitude, while interfacing with CNTs showed 7-fold enhancement. Further, we present a convenient spray-coating technique for PDC composite electrode preparation that eliminates polymeric binder and conductive agent there-by reducing processing steps and eradicating foreign material in the electrode. The Si-Al-C-N/CNT electrode showed stable charge capacity of 577 mAh g(-1) at 100 mA g(-1) and a remarkable 400 mAh g(-1) at 10,000 mA g(-1), which is the highest reported value for a silazane derived glass-ceramic or nanocomposite electrode. Under symmetric cycling conditions, a high charge capacity of ∼350 mA g(-1) at 1600 mA g(-1) was continuously observed for over 1000 cycles.
NASA Astrophysics Data System (ADS)
Unsal, E.; Drum, J.; Yucel, O.; Nugay, I. I.; Yalcin, B.; Cakmak, M.
2012-02-01
This paper describes the design and performance of a new instrument to track temporal changes in physical parameters during the drying behavior of solutions, as well as curing of monomers. This real-time instrument follows in-plane and out-of-plane birefringence, weight, thickness, and surface temperature during the course of solidification of coatings and films through solvent evaporation and thermal or photocuring in a controlled atmosphere. It is specifically designed to simulate behavior of polymer solutions inside an industrial size, continuous roll-to-roll solution casting line and other coating operations where resins are subjected to ultraviolet (UV) curing from monomer precursors. Controlled processing parameters include air speed, temperature, initial cast thickness, and solute concentration, while measured parameters are thickness, weight, film temperature, in-plane and out-of-plane birefringence. In this paper, we illustrate the utility of this instrument with solution cast and dried poly (amide-imide)/DMAc (Dimethylacetamide) solution, water based black paint, and organo-modified clay/NMP (N-Methylpyrrolidone) solution. In addition, the physical changes that take place during UV photo polymerization of a monomer are tracked. This instrument is designed to be generic and it can be used for tracking any drying/swelling/solidification systems including paper, foodstuffs such as; grains, milk as well as pharmaceutical thin paste and slurries.
Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles
NASA Astrophysics Data System (ADS)
Dian, Linghui; Yu, Enjiang; Chen, Xiaona; Wen, Xinguo; Zhang, Zhengzan; Qin, Lingzhen; Wang, Qingqing; Li, Ge; Wu, Chuanbin
2014-12-01
To improve its poor aqueous solubility and stability, the potential chemotherapeutic drug quercetin was encapsulated in soluplus polymeric micelles by a modified film dispersion method. With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water. X-ray diffraction (XRD) patterns illustrated that quercetin was in amorphous or molecular form within PMs. Fourier transform infrared spectroscopy (FTIR) indicated that quercetin formed intermolecular hydrogen bonding with carriers. An in vitro dialysis test showed the Qu-PMs possessed significant sustained-release property, and the formulation was stable for at least 6 months under accelerated conditions. The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin. Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.
Szczepanski, Caroline R.; Stansbury, Jeffrey W.
2014-01-01
A mechanism for polymerization shrinkage and stress reduction was developed for heterogeneous networks formed via ambient, photo-initiated polymerization-induced phase separation (PIPS). The material system used consists of a bulk homopolymer matrix of triethylene glycol dimethacrylate (TEGDMA) modified with one of three non-reactive, linear prepolymers (poly-methyl, ethyl and butyl methacrylate). At higher prepolymer loading levels (10–20 wt%) an enhanced reduction in both shrinkage and polymerization stress is observed. The onset of gelation in these materials is delayed to a higher degree of methacrylate conversion (~15–25%), providing more time for phase structure evolution by thermodynamically driven monomer diffusion between immiscible phases prior to network macro-gelation. The resulting phase structure was probed by introducing a fluorescently tagged prepolymer into the matrix. The phase structure evolves from a dispersion of prepolymer at low loading levels to a fully co-continuous heterogeneous network at higher loadings. The bulk modulus in phase separated networks is equivalent or greater than that of poly(TEGDMA), despite a reduced polymerization rate and cross-link density in the prepolymer-rich domains. PMID:25418999
NASA Astrophysics Data System (ADS)
Zhang, Yuewei; Liu, Jinghai; Wu, Guan; Chen, Wei
2012-08-01
Energy captured directly from sunlight provides an attractive approach towards fulfilling the need for green energy resources on the terawatt scale with minimal environmental impact. Collecting and storing solar energy into fuel through photocatalyzed water splitting to generate hydrogen in a cost-effective way is desirable. To achieve this goal, low cost and environmentally benign urea was used to synthesize the metal-free photocatalyst graphitic carbon nitride (g-C3N4). A porous structure is achieved via one-step polymerization of the single precursor. The porous structure with increased BET surface area and pore volume shows a much higher hydrogen production rate under simulated sunlight irradiation than thiourea-derived and dicyanamide-derived g-C3N4. The presence of an oxygen atom is presumed to play a key role in adjusting the textural properties. Further improvement of the photocatalytic function can be expected with after-treatment due to its rich chemistry in functionalization.Energy captured directly from sunlight provides an attractive approach towards fulfilling the need for green energy resources on the terawatt scale with minimal environmental impact. Collecting and storing solar energy into fuel through photocatalyzed water splitting to generate hydrogen in a cost-effective way is desirable. To achieve this goal, low cost and environmentally benign urea was used to synthesize the metal-free photocatalyst graphitic carbon nitride (g-C3N4). A porous structure is achieved via one-step polymerization of the single precursor. The porous structure with increased BET surface area and pore volume shows a much higher hydrogen production rate under simulated sunlight irradiation than thiourea-derived and dicyanamide-derived g-C3N4. The presence of an oxygen atom is presumed to play a key role in adjusting the textural properties. Further improvement of the photocatalytic function can be expected with after-treatment due to its rich chemistry in functionalization. Electronic supplementary information (ESI) available: Methods for preparing and characterizing UCN, TCN and DCN samples. Methods for examining the photocatalytic hydrogen production. FTIR, XPS, and digital photos of three products are shown in Fig. S1-6. See DOI: 10.1039/c2nr30948c
Direct nanoimprint lithography of Al2O3 using a chelated monomer-based precursor
NASA Astrophysics Data System (ADS)
Ganesan, Ramakrishnan; Safari Dinachali, Saman; Lim, Su Hui; Saifullah, M. S. M.; Tit Chong, Wee; Lim, Andrew H. H.; Jie Yong, Jin; San Thian, Eng; He, Chaobin; Low, Hong Yee
2012-08-01
Nanostructuring of Al2O3 is predominantly achieved by the anodization of aluminum film and is limited to obtaining porous anodized aluminum oxide (AAO). One of the main restrictions in developing approaches for direct fabrication of various types of Al2O3 patterns, such as lines, pillars, holes, etc, is the lack of a processable aluminum-containing resist. In this paper, we demonstrate a stable precursor prepared by reacting aluminum tri-sec-butoxide with 2-(methacryloyloxy)ethyl acetoacetate, a chelating monomer, which can be used for large area direct nanoimprint lithography of Al2O3. Chelation in the precursor makes it stable against hydrolysis whilst the presence of a reactive methacrylate group renders it polymerizable. The precursor was mixed with a cross-linker and their in situ thermal free-radical co-polymerization during nanoimprinting rigidly shaped the patterns, trapped the metal atoms, reduced the surface energy and strengthened the structures, thereby giving a ˜100% yield after demolding. The imprinted structures were heat-treated, leading to the loss of organics and their subsequent shrinkage. Amorphous Al2O3 patterns with line-widths as small as 17 nm were obtained. Our process utilizes the advantages of sol-gel and methacrylate routes for imprinting and at the same time alleviates the disadvantages associated with both these methods. With these benefits, the chelating monomer route may be the harbinger of the universal scheme for direct nanoimprinting of metal oxides.
Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites
Lin, Jiang-Jen; Chan, Ying-Nan; Lan, Yi-Fen
2010-01-01
Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene)-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH) with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction) as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropylene)amine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT) clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness) in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE), enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.
Kinetic analysis on precursors for iturin A production from Bacillus amyloliquefaciens BPD1.
Wu, Jiun-Yan; Liao, Jen-Hung; Shieh, Chwen-Jen; Hsieh, Feng-Chia; Liu, Yung-Chuan
2018-06-12
In this study, the precursor effect for iturin A production was quantitatively analyzed. A strain identified as Bacillus amyloliquefaciens BPD1 (Ba-BPD1) was selected due to its ability to produce iturin A. The enhancement of iturin A production in a submerged culture was tested using various additives, including palmitic acid, oils, and complex amino acids. Among these, complex amino acids triggered the highest yield at 559 mg/L. The respective amino acids that contribute to the structure of iturin A were used as precursors. In fact, it was found that the addition of l-proline, l-glutamine, l-asparagine and l-serine could improve iturin A yield in the defined medium. However, during the kinetic analysis, all the amino acids exhibited a lower saturation level than l-serine, which exhibited a high saturation level at 1.2% resulting in an iturin A yield of 914 mg/L. In contrast, a negative effect was observed following the addition of l-tyrosine. To analyze the kinetic behavior of l-serine, three kinetic models were adopted: the kinetic order equation, the Langmuir kinetic equation, and a modified logistic equation. The regression results showed that the modified logistic model was the best fit for the kinetic behavior of l-serine as the major precursor, which could be further referred to the biosynthesis pathway of iturin A. Among the proposed processes for iturin A production, this study achieved the highest iturin A levels as a result of the addition of precursors. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
A new powder production route for transparent spinel windows: powder synthesis and window properties
NASA Astrophysics Data System (ADS)
Cook, Ronald; Kochis, Michael; Reimanis, Ivar; Kleebe, Hans-Joachim
2005-05-01
Spinel powders for the production of transparent polycrystalline ceramic windows have been produced using a number of traditional ceramic and sol-gel methods. We have demonstrated that magnesium aluminate spinel powders produced from the reaction of organo-magnesium compounds with surface modified boehmite precursors can be used to produce high quality transparent spinel parts. The new powder production method allows fine control over the starting particle size, size distribution, purity and stoichiometry. The new process involves formation of a boehmite sol-gel from the hydrolysis of aluminum alkoxides followed by surface modification of the boehmite nanoparticles using carboxylic acids. The resulting surface modified boehmite nanoparticles can then be metal exchanged at room temperature with magnesium acetylacetonate to make a precursor powder that is readily transformed into pure phase spinel.
Sun, Yongjun; Zhu, Chengyu; Sun, Wenquan; Xu, Yanhua; Xiao, Xuefeng; Zheng, Huaili; Wu, Huifang; Liu, Cuiyun
2017-05-15
In this work, a highly efficient and environmentally friendly chitosan-based graft flocculant, namely, acrylamide- and dimethyl diallyl ammonium chloride-grafted chitosan [CS-g-P(AM-DMDAAC)], was prepared successfully through plasma initiation. FTIR results confirmed the successful polymerization of CS-g-P(AM-DMDAAC) and P(AM-DMDAAC). P(AM-DMDAAC) was the copolymer of acrylamide- and dimethyl diallyl ammonium chloride. SEM results revealed that a densely cross-linked network structure formed on the surface. XRD results verified that the ordered crystal structure of chitosan in CS-g-P(AM-DMDAAC) was changed into an amorphous structure after plasma-induced polymerization. The flocculation results of low-algal-turbidity water further showed the optimal flocculation efficiency of turbidity removal rate, COD removal rate, and Chl-a removal rate were 99.02%, 96.11%, and 92.20%, respectively. The flocculation efficiency of CS-g-P(AM-DMDAAC) were significantly higher than those obtained by cationic polyacrylamide (CPAM) and Polymeric aluminum and iron (PAFC). This work provided a valuable basis for the design of eco-friendly naturally modified polymeric flocculants to enhance the flocculation of low-algal-turbidity water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ni, Xinjiong; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun
2014-11-28
A novel polymeric micelle, formed by random copolymer poly (stearyl methacrylate-co-methacrylic acid) (P(SMA-co-MAA)) has been used as pseudostationary phase (PSP) in electrokinetic chromatography (EKC) for simultaneous and rapid determination of 11 kinds of water- and fat-soluble vitamins in this work. The running buffer consisting of 1% (w/v) P(SMA-co-MAA), 10% (v/v) 1-butanol, 20% (v/v) acetonitrile, and 30 mM Palitzsch buffer solution (pH 9.2) was applied to improve the selectivity and efficiency, as well as to shorten analysis time. 1-Butanol and acetonitrile as the organic solvent modifiers played the most important roles for rapid separation of these vitamins. The effects of organic solvents on microstructure of the polymeric micelle were investigated. The organic solvents swell the polymeric micelle by three folds, lower down the surface charge density and enhance the microenviromental polarity of the polymeric micelle. The 11 kinds of water- and fat-soluble vitamins could be baseline separated within 13 min. The method was applied to determine water- and fat-soluble vitamins in commercial vitamin sample; the recoveries were between 93% and 111% with the relative standard derivations (RSDs) less than 5%. The determination results matched the label claim. Copyright © 2014 Elsevier B.V. All rights reserved.
Kinetic and Surface Study of Single-Walled Aluminosilicate Nanotubes and Their Precursors
Arancibia-Miranda, Nicolás; Escudey, Mauricio; Molina, Mauricio; García-González, María Teresa
2013-01-01
The structural and surface changes undergone by the different precursors that are produced during the synthesis of imogolite are reported. The surface changes that occur during the synthesis of imogolite were determined by electrophoretic migration (EM) measurements, which enabled the identification of the time at which the critical precursor of the nanoparticles was generated. A critical parameter for understanding the evolution of these precursors is the isoelectric point (IEP), of which variation revealed that the precursors modify the number of active ≡Al-OH and ≡Si-OH sites during the formation of imogolite. We also found that the IEP is displaced to a higher pH level as a consequence of the surface differentiation that occurs during the synthesis. At the same time, we established that the pH of the reaction (pHrx) decreases with the evolution and condensation of the precursors during aging. Integration of all of the obtained results related to the structural and surface properties allows an overall understanding of the different processes that occur and the products that are formed during the synthesis of imogolite. PMID:28348326
Kinetic and Surface Study of Single-Walled Aluminosilicate Nanotubes and Their Precursors.
Arancibia-Miranda, Nicolás; Escudey, Mauricio; Molina, Mauricio; García-González, María Teresa
2013-03-01
The structural and surface changes undergone by the different precursors that are produced during the synthesis of imogolite are reported. The surface changes that occur during the synthesis of imogolite were determined by electrophoretic migration (EM) measurements, which enabled the identification of the time at which the critical precursor of the nanoparticles was generated. A critical parameter for understanding the evolution of these precursors is the isoelectric point (IEP), of which variation revealed that the precursors modify the number of active ≡Al-OH and ≡Si-OH sites during the formation of imogolite. We also found that the IEP is displaced to a higher pH level as a consequence of the surface differentiation that occurs during the synthesis. At the same time, we established that the pH of the reaction (pH rx ) decreases with the evolution and condensation of the precursors during aging. Integration of all of the obtained results related to the structural and surface properties allows an overall understanding of the different processes that occur and the products that are formed during the synthesis of imogolite.
Nanocomposites of natural rubber and polyaniline-modified cellulose nanofibrils
USDA-ARS?s Scientific Manuscript database
Cellulose nanofibrils (CNF) were isolated from cotton microfibrils (CM) by acid hydrolysis and coated with polyaniline (PANI) by in situ polymerization of aniline onto CNF in the presence of hydrochloride acid and ammonium peroxydisulfate to produce CNF/PANI. Nanocomposites of natural rubber (NR) re...
He, Lei; Li, Zhiyang; Fu, Jing; Deng, Yan; He, Nongyue; Wang, Zhifei; Wang, Hua; Shi, Zhiyang; Wang, Zunliang
2009-10-01
SiO2/(PMMA/Fe3O4) composite particles were prepared from linolenic acid (LA) instead of oleic acid (OA) modified Fe3O4 nanoparticles by miniemulsion polymerization. LA has three unsaturated double bonds with which it can polymerizate more easily than OA. And coating Fe3O4 with polymethyl methacrylate (PMMA) polymer beforehand can prevent magnetic nanoparticles from the aggregation that usually comes from the increasing of ionic strength during the hydrolyzation of tetraethoxysilane (TEOS) by the steric hindrance. Finally, the resulting PMMA/Fe3O4 nanoparticles were coated with silica, forming SiO2/(PMMA/Fe3O4) core-shell structure particles. The sizes of nanoparticles with core-shell structure were in the range from 300 to 600 nm. The nanoparticles were spherical particles and had consistent size. The result of magnetic measurement showed that the composite particles had superparamagnetic property.
Plasma-induced polymerization for enhancing paper hydrophobicity.
Song, Zhaoping; Tang, Jiebin; Li, Junrong; Xiao, Huining
2013-01-30
Hydrophobic modification of cellulose fibers was conducted via plasma-induced polymerization in an attempt to graft the hydrophobic polymer chains on paper surface, this increasing the hydrophobicity of paper. Two hydrophobic monomers, butyl acrylate (BA) and 2-ethylhexyl acrylate (2-EHA), were grafted on cellulose fibers, induced by atmospheric cold plasma. Various influencing factors associated with the plasma-induced grafting were investigated. Contact-angle measurement, Fourier Transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to ascertain the occurrence of the grafting and characterized the changes of the cellulose fiber after modification. The results showed that the hydrophobicity of the modified paper sheet was improved significantly after the plasma-induced grafting. The water contact angle on the paper surface reached up to 130°. The morphological differences between modified and unmodified samples were also revealed by SEM observation. The resulting paper is promising as a green-based packaging material. Copyright © 2012 Elsevier Ltd. All rights reserved.
Process for making polymers comprising derivatized carbon nanotubes and compositions thereof
NASA Technical Reports Server (NTRS)
Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)
2007-01-01
The present invention incorporates new processes for blending derivatized carbon nanotubes into polymer matrices to create new polymer/composite materials. When modified with suitable chemical groups using diazonium chemistry, the nanotubes can be made chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as mechanical strength) to the properties of the composite material as a whole. To achieve this, the derivatized (modified) carbon nanotubes are physically blended with the polymeric material, and/or, if desired, allowed to react at ambient or elevated temperature. These methods can be utilized to append functionalities to the nanotubes that will further covalently bond to the host polymer matrix, or directly between two tubes themselves. Furthermore, the nanotubes can be used as a generator of polymer growth, wherein the nanotubes are derivatized with a functional group that is an active part of a polymerization process, which would also result in a composite material in which the carbon nanotubes are chemically involved.
Correia, Alexandra; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Almeida, Sérgio; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A
2015-10-21
Over the past decade, the potential of polymeric structures has been investigated to overcome many limitations related to nanosized drug carriers by modulating their toxicity, cellular interactions, stability, and drug-release kinetics. In this study, we have developed a successful nanocomposite consisting of undecylenic acid modified thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) loaded with an anticancer drug, sorafenib, and surface-conjugated with heptakis(6-amino-6-deoxy)-β-cyclodextrin (HABCD) to show the impact of the surface polymeric functionalization on the physical and biological properties of the drug-loaded nanoparticles. Cytocompatibility studies showed that the UnTHCPSi-HABCD NPs were not toxic to breast cancer cells. HABCD also enhanced the suspensibility and both the colloidal and plasma stabilities of the UnTHCPSi NPs. UnTHCPSi-HABCD NPs showed a significantly increased interaction with breast cancer cells compared to bare NPs and also sustained the drug release. Furthermore, the sorafenib-loaded UnTHCPSi-HABCD NPs efficiently inhibited cell proliferation of the breast cancer cells.
Modifying Surface Fluctuations of Polymer Melt Films with Substrate Modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yang; He, Qiming; Zhang, Fan
Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin, melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4R g thick melt films of 131 kg/mol linear PS on silicon and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity. However, when the film thickness is reduced to ~3R g, confinement effects are evident. The surfacemore » fluctuations are slower than predicted using the HCT, and the confinement effect for the PS on silicon is larger than that for the PS on the plasma polymerized film. This deviation is thus due to a difference in the thicknesses of the strongly adsorbed layers at the substrate which are impacted by the substrate surface energy.« less
A sol-powder coating technique for fabrication of yttria stabilised zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wattanasiriwech, Darunee; Wattanasiriwech, Suthee; Stevens, Ron
Yttria stabilised zirconia has been prepared using a simple sol-powder coating technique. The polymeric yttria sol, which was prepared using 1,3 propanediol as a network modifier, was homogeneously mixed with nanocrystalline zirconia powder and it showed a dual function: as a binder which promoted densification and a phase modifier which stabilised zirconia in the tetragonal and cubic phases. Thermal analysis and X-ray diffraction revealed that the polymeric yttria sol which decomposed at low temperature into yttrium oxide could change the m {sup {yields}} t phase transformation behaviour of the zirconia, possibly due to the small particle size and very highmore » surface area of both yttria and zirconia particles allowing rapid alloying. The sintered samples exhibited three crystalline phases: monoclinic, tetragonal and cubic, in which cubic and tetragonal are the major phases. The weight fractions of the individual phases present in the selected specimens were determined using quantitative Rietveld analysis.« less
Zhao, Xiaobin; Courtney, James M
2009-07-01
In this article, a novel approach for the surface modification of polymeric biomaterials by the utilization of supramolecules was studied. The supramolecules selected were cyclodextrin inclusion complexes (CICs). The biomaterial selected for surface modification was plasticized poly (vinyl chloride) (PVC-P). Results indicate that when the CICs were blended into PVC-P, they tend to migrate and "anchor" on the surface to achieve a remarkable protein-resistant surface, with improved blood compatibility. In comparison with a physical mixture of cyclodextrins and a "guest" molecule, such as poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO and PPO-PEO-PPO for PVC-P modification, CICs modified PVC-P are more consistent in processing and achieve reproducible surface characteristics. Based on this study, a novel "anchor modification" was proposed regarding CICs modified surface. This "anchor modification" is likely to reduce plasticizer extraction from PVC-P and also can be utilized for the modification of polymers other than PVC-P.
Modifying Surface Fluctuations of Polymer Melt Films with Substrate Modification
Zhou, Yang; He, Qiming; Zhang, Fan; ...
2017-08-14
Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin, melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4R g thick melt films of 131 kg/mol linear PS on silicon and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity. However, when the film thickness is reduced to ~3R g, confinement effects are evident. The surfacemore » fluctuations are slower than predicted using the HCT, and the confinement effect for the PS on silicon is larger than that for the PS on the plasma polymerized film. This deviation is thus due to a difference in the thicknesses of the strongly adsorbed layers at the substrate which are impacted by the substrate surface energy.« less
Malik, Ashraf; Parveen, Shadma; Ahamad, Tansir; Alshehri, Saad M.; Singh, Prabal Kumar; Nishat, Nahid
2010-01-01
A starch-urea-based biodegradable coordination polymer modified by transition metal Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) was prepared by polycondensation of starch and urea. All the synthesized polymeric compounds were characterized by Fourier transform-infrared spectroscopy (FT-IR), 1H-NMR spectroscopy, 13C-NMR spectroscopy, UV-visible spectra, magnetic moment measurements, differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). The results of electronic spectra and magnetic moment measurements indicate that Mn(II), Co(II), and Ni(II) complexes show octahedral geometry, while Cu(II) and Zn(II) complexes show square planar and tetrahedral geometry, respectively. The thermogravimetric analysis revealed that all the polymeric metal complexes are more thermally stable than the parental ligand. In addition, biodegradable studies of all the polymeric compounds were also carried out through ASTM standards of biodegradable polymers by CO2 evolution method. PMID:20414461
Yano, Kazuyoshi; Iwasaki, Akira
2016-01-01
A functional modification of the surface of a 96-well microplate coupled with a thin layer deposition technique is demonstrated for enhanced fluorescence-based sandwich immunoassays. The plasma polymerization technique enabling the deposition of organic thin films was employed for the modification of the well surface of a microplate. A silver layer and a plasma-polymerized film were consecutively deposited on the microplate as a metal mirror and the optical interference layer, respectively. When Cy3-labeled antibody was applied to the wells of the resulting multilayered microplate without any immobilization step, greatly enhanced fluorescence was observed compared with that obtained with the unmodified one. The same effect could be also exhibited for an immunoassay targeting antigen directly adsorbed on the multilayered microplate. Furthermore, a sandwich immunoassay for the detection of interleukin 2 (IL-2) was performed with the multilayered microplates, resulting in specific and 88-fold–enhanced fluorescence detection. PMID:28029144
NASA Astrophysics Data System (ADS)
Zhou, Haiou; Shi, Tiejun; Zhou, Xun
2013-02-01
In this paper, polystyrene (PS)/SiO2 microspheres were successfully prepared via Pickering emulsion polymerization stabilized solely by ethacryloxypropyltrimethoxysilane (MPTMS) modified SiO2 nanoparticles. The formation mechanisms of PS/SiO2 microspheres with different morphology were investigated under various Pickering emulsion polymerization conditions. The results showed that SiO2 concentrations and initiator sorts would synergistically impact on the morphology of products corresponding to distinct formation mechanisms. When SiO2 concentrations was low and water-solute initiator potassium persulfate (KPS) was used, aqueous nucleation was dominant, which was deduced to the formation of dispersive microspheres sparsely anchored by SiO2 particles. When SiO2 concentrations was increased and oil-solute initiator azobisisobutyronitrile (AIBN) was applied, nucleation in oil phase prevailed which lead to the formation of microspheres densely packed by SiO2 particles.
Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)
NASA Astrophysics Data System (ADS)
Wu, Tao; Efimenko, Kirill; Genzer, Jan
2001-03-01
We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.
The characterization of high-density polyethylene/organoclay nanocomposites
NASA Astrophysics Data System (ADS)
Rodrigues, Tathiane Cordeiro; Tavares, Maria Inês Bruno; Soares, Igor Lopes; Moreira, Ana M.
2009-01-01
Polymeric nanocomposites, which are hybrids of polymers and modified inorganic clay with organic surfactants, are extremely attractive in both science and industry. These materials present improvements in such polymer properties as modulus, heat capacity, thermal stability, flame resistance, and so on. Research has been conducted in recent decades to obtain high-quality materials that can be used in applications like food packing, car components, and combustible cells. Polymeric nanocomposites present many advantages in relation to composites due to the quantity of filler added to the polymer and also to the improved properties. In a composite, the quantity of filler must be as high as possible (i.e., over 30%). In the polymeric nanocomposite the quantity of filler varies from 1% to 5% because of the nanosize of the particles. These nanoparticles often have a large surface area that results in improved polymer-matrix properties.
NASA Astrophysics Data System (ADS)
Ko, Yeong-Mu; Lee, Kang; Kim, Byung-Hoon
2013-01-01
Magnesium (Mg) is light, has biocompatibility, and has mechanical properties close to those of natural bone. However, pure Mg severely corrodes in a physiological environment, which may result in fracture prior to substantial tissue healing. In this study, the Mg surface was modified by depositing a thin polymeric film containing COOH, NH2, and OH groups through plasma polymerization of acrylic acid, allyl amine, and allyl alcohol in order to improve its anticorrosion and bioactive properties. The -COOH group had a significant effect on bonelike apatite formation compared with -NH2 and -OH. It was also concluded that a bonelike-apatite formed COOH/Mg surface was more effective for reducing biodegradation rate than the other surfaces. The results of in vitro cell test revealed significantly enhanced cell proliferation and differentiation on the COOH/Mg and NH2/Mg surfaces compared with other surfaces.
Lin, Yi-Li; Tsai, Chia-Cheng; Zheng, Nai-Yun
2018-09-01
In this study, an insitu radical graft polarization technique using monomers of 3-sulfopropyl methacrylate potassium salt (SPM) and 2-hydroxyethyl methacrylate (HEMA) was applied to a commercial nanofiltration membrane (NF90) to improve its removal of six commonly detected pharmaceutical and personal care products (PPCPs) and mitigate organic and biological fouling by humic acid (HA) and sodium alginate (SA). Compared with the virgin membrane, the modified NF90 membrane exhibited considerably improved fouling resistance and an increased reversible fouling percentage, especially for SA+HA composite fouling Moreover, the PPCP removal of the modified NF90 membrane was higher than that of the virgin membrane after SA and SA+HA fouling, respectively. Triclosan and carbamazepine, which are poorly rejected, could be effectively removed by modified membrane after SA or SA+HA fouling. Both monomers modified the membrane surface by increasing the hydrophilicity and decreasing the contact angle. The degree of grafting was quantified using attenuated total reflection Fourier-transform infrared spectroscopy. The mitigation in the fouling was evident from the low quantity of deposit formed on the modified membrane, as observed using scanning electron microscopy. A considerable amount of highly hydrophobic triclosan was adsorbed on the SA-fouled virgin membrane and penetrated through it. By contrast, the adsorption of triclosan was substantially lower in the SPM-modified membrane. After membrane modification, the fouling mechanism changed from solely intermediate blocking to both intermediate blocking and complete blocking after membrane modification. Thus, the in situ radical graft polymerization method effectively reduces organic and biological fouling and provides high PPCP removal, which is beneficial for fouling control and produces permeate of satisfactory quality for application in the field of membrane technology. Copyright © 2018 Elsevier B.V. All rights reserved.
Processing of catalysts by atomic layer epitaxy: modification of supports
NASA Astrophysics Data System (ADS)
Lindblad, Marina; Haukka, Suvi; Kytökivi, Arla; Lakomaa, Eeva-Liisa; Rautiainen, Aimo; Suntola, Tuomo
1997-11-01
Different supports were modified with titania, zirconia and chromia by the atomic layer epitaxy technique (ALE). In ALE, a metal precursor is bound to the support in saturating gas-solid reactions. Surface oxides are grown by alternating reactions of the metal precursor and an oxidizing agent. Growth mechanisms differ depending on the precursor-support pair and the processing conditions. In this work, the influences of the support, precursor and reaction temperature were investigated by comparing the growth of titania from Ti(OCH(CH 3) 2) 4 on silica and alumina, titania from TiCl 4 and Ti(OCH(CH 3) 2) 4 on silica, and zirconia from ZrCl 4 on silica and alumina. The modification of porous oxides supported on metal substrates (monoliths) was demonstrated for the growth of chromia from Cr(acac) 3.
NASA Astrophysics Data System (ADS)
Engholm, M.; Norin, L.; Edvardsson, S.; Lashgari, K.; Westin, G.
2006-12-01
A structural investigation of a synthesized precursor in a silica glass matrix is performed. Silica soot samples are doped with the heterobimetallic precursor ErNb 2(OPr i) 13 by using a conventional solution doping technique and heat treatments to different temperatures. The precursor has also been introduced into a silica fiber preform by using the modified chemical vapor deposition technique. Analyses are made by using ultraviolet-visible-near infrared absorption spectroscopy, scanning electron microscopy, energy dispersive spectroscopy and powder X-ray diffraction. It is concluded that an immiscible system of ErNbO 4 crystallites and Nb 2O 5 is formed in the silica soot samples at high temperatures. Colloidal particles of ErNbO 4 are also formed in the silica glass fiber preform showing interesting features.
McInnis, Jennifer P; Delferro, Massimiliano; Marks, Tobin J
2014-08-19
Polyolefins are produced today catalytically on a vast scale, and the manufactured polymers find use in everything from artificial limbs and food/medical packaging to automotive and electrical components and lubricants. Although polyolefin monomers are typically cheap (e.g., ethylene, propylene, α-olefins), the resulting polymer properties can be dramatically tuned by the particular polymerization catalyst employed, and reflect a rich interplay of macromolecular chemistry, materials science, and physics. For example, linear low-density polyethylene (LLDPE), produced by copolymerization of ethylene with linear α-olefin comonomers such as 1-butene, 1-hexene, or 1-octene, has small but significant levels of short alkyl branches (C2, C4, C6) along the polyethylene backbone, and is an important technology material due to outstanding rheological and mechanical properties. In 2013, the total world polyolefin production was approximately 211 million metric tons, of which about 11% was LLDPE. Historically, polyolefins were produced using ill-defined but highly active heterogeneous catalysts composed of supported groups 4 or 6 species (usually halides) activated by aluminum alkyls. In 1963, Karl Ziegler and Giulio Natta received the Nobel Prize for these discoveries. Beginning in the late 1980s, a new generation of group 4 molecule-based homogeneous olefin polymerization catalysts emerged from discoveries by Walter Kaminsky, a team led by James Stevens at The Dow Chemical Company, this Laboratory at Northwestern University, and a host of talented groups in Germany, Italy, Japan, the United Kingdom, and the United States. These new "single-site" catalysts and their activating cocatalysts were far better defined and more rationally tunable in terms of structure, mechanism, thermodynamics, and catalyst activity and selectivity than ever before possible. An explosion of research advances led to new catalysts, cocatalysts, deeper mechanistic understanding of both the homogeneous and heterogeneous systems, macromolecules with dramatically altered properties, and large-scale industrial processes. It is noteworthy that many metalloenzymes employ multiple active centers operating in close synergistic proximity to achieve high activity and selectivity. Such enzymes were the inspiration for the research discussed in this Account, focused on the properties of multimetallic olefin polymerization catalysts. Here we discuss how modifications in organic ligand architecture, metal···metal proximity, and cocatalyst can dramatically modify polyolefin molecular weight, branch structure, and selectively for olefinic comonomer enchainment. We first discuss bimetallic catalysts with identical group 4 metal centers and then heterobimetallic systems with either group 4 or groups 4 + 6 catalytic centers. We compare and contrast the polymerization properties of the bimetallic catalysts with their monometallic analogues, highlighting marked cooperative enchainment effects and unusual polymeric products possible via the proximate catalytic centers. Such multinuclear olefin polymerization catalysts exhibit the following distinctive features: (1) unprecedented levels of polyolefin branching; (2) enhanced enchainment selectivity for linear and encumbered α-olefin comonomers; (3) enhanced polyolefin tacticity and molecular weight; (4) unusual 1,2-insertion regiochemistry for styrenic monomers; (5) modified chain transfer kinetics, such as M-polymer β-hydride transfer to the metal or incoming monomer; (6) LLDPE synthesis with a single binuclear catalyst and ethylene.
NASA Astrophysics Data System (ADS)
Padervand, Mohsen; Karanji, Ahmad Kiani; Elahifard, Mohammad Reza
2017-05-01
Fe3O4 magnetic nanoparticles (MNPs) were prepared by co-precipitation method. The nanoparticles were silica coated using TEOS, and then modified by the polymeric layers of polypropylene glycol (PPG) and polyethylene glycol (PEG). Finally, the core-shell samples were decorated with Ag, Au, and Cu nanoparticles. The products were characterized by vibrating sample magnetometry (VSM), TGA, SEM, XRD, and FTIR methods. The antibacterial activity of the prepared samples was evaluated in inactivation of E. coli and S. aureus microorganisms, representing the Gram-negative and Gram-positive species, respectively. The effect of solid dosage, bacteria concentration and type of polymeric modifier on the antibacterial activity was investigated. TEM images of the bacteria were recorded after the treatment time and according to the observed changes in the cell wall, the mechanism of antibacterial action was discussed. The prepared nanostructures showed high antibacterial activity against both Gram-negative and Gram-positive bacteria. This was due to the leaching of metal ions which subsequently led to the lysis of bacteria. A theoretical investigation was also done by studying the interaction of loaded metals with the nucleotide components of the microorganism DNA, and the obtained results were used to explain the experimental data. Finally, based on the observed inactivation curves, we explain the antibacterial behavior of the prepared nanostructures mathematically.
Poly(sophorolipid) structural variation: effects on biomaterial physical and biological properties.
Peng, Yifeng; Munoz-Pinto, Dany J; Chen, Mingtao; Decatur, John; Hahn, Mariah; Gross, Richard A
2014-11-10
Diacetylated lactonic sophorolipids (polyLSL[6'Ac,6″Ac]), a biosurfactant, can be efficiently polymerized by ring-opening metathesis polymerization (ROMP). In this paper, enzyme-mediated chemical transformations are developed to regioselectively modify LSL[6'Ac,6″Ac] at sophorose primary hydroxyl positions (6' and 6″). The resulting modified LSLs were polymerized to expand polyLSL structural diversity, that is, polyLSL[6'OH,6″Ac], polyLSL[6'OH,6″OH], polyLSL[6'Bu,6″Ac], polyLSL[6'N3,6″Ac], and polyLSL[6'MA,6″Ac]. Controlled placement of azide and methacrylate at sophorolipid moieties enables the use of "click" reactions to introduce bioactive groups. Thermal analyses of polyLSLs showed that the acylation pattern at sugar moieties has a remarkable effect on chain stiffness and crystallinity. Films of polyLSL[6'Ac,6″Ac], polyLSL[6'OH,6″Ac], and polyLSL[6'Bu,6″Ac] exhibited nonbrittle behaviors with compressive elastic moduli ranging from ∼1.5 to ∼4.9 MPa. PolyLSLs were cytocompatible with human mesenchymal stem cells (h-MSCs), and examination of material-induced osteogenic cell lineage progression uncovered a dependence on polyLSL substitution at sophorose 6'-sites. This research reveals opportunities to regulate polyLSL physical properties and cell response behaviors by variation in substituents at polyLSL sophorolipid moieties.
Zhang, Wei; Yang, Zhe; Kaufman, Yair; Bernstein, Roy
2018-05-01
Zwitterion polymers have anti-fouling properties; therefore, grafting new zwitterions to surfaces, particularly as hydrogels, is one of the leading research directions for preventing fouling. Specifically, polyampholytes, polymers of random mixed charged subunits with a net-electric charge, offer a synthetically easy alternative for studying new zwitterions with a broad spectrum of charged moieties. Here, a novel polyampholyte hydrogel was grafted onto the surface of polyethersulfone membrane by copolymerizing a mixture of vinylsulfonic acid (VSA) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METMAC) as the negatively and positively charged monomers, respectively, using various monomer ratios in the polymerization solution, and with N,N'-methylenebisacrylamide as the crosslinker. The physicochemical, morphological and anti-fouling properties of the modified membranes were systematically investigated. Hydrophilic hydrogels were successfully grafted using monomers at different molar ratios. A thin-film zwitterion hydrogel (∼90 nm) was achieved at a 3:1 [VSA:METMAC] molar ratio in the polymerization solution. Among all examined membranes, the zwitterion polyampholyte-modified membrane demonstrated the lowest adsorption of proteins, humic acid, and sodium alginate. It also had low fouling and high flux recovery following filtration with a protein or with an extracellular polymeric substance solution. These findings suggest that this polyampholyte hydrogel is applicable as a low fouling surface coating. Copyright © 2018 Elsevier Inc. All rights reserved.
Lv, Yongqin; Hughes, Timothy C; Hao, Xiaojuan; Mei, Danping; Tan, Tianwei
2011-08-01
Monomeric and epichlorohydrin polymerized β-CD functionalized monoliths were prepared for the rapid isolation and purification of the isoflavonoid puerarin, a well-known traditional Chinese drug, from a crude extract of Radix puerariae (root of the plant Pueraria lobata). Two copolymers poly(isocyanatoethyl methacrylate-co-methyl methacrylate-co-ethylene dimethacrylate) (poly(IEM-co-MMA-co-EDMA)) and poly(glycidyl methacrylate-co-EDMA) (poly(GMA-co-EDMA)) were developed as facile, highly reactive and versatile monolithic matrix. SEM characterization demonstrated that the modified monoliths had homogenous porous structure and morphology. The success of the chemical modification of the monolithic matrix was confirmed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), solid-state (13) C NMR and elemental analysis. It was demonstrated that polymeric β-CD modified monoliths had better separation and selectivity for puerarin, recovering puerarin with a purity of 96% (m%) and a yield of 93% (m%). Compared with poly(glycidyl methacrylate-co-EDMA), poly(isocyanatoethyl methacrylate-co-methyl methacrylate-co-EDMA) monolithic matrix had higher reactivity, which significantly improved the β-CD ligand density and thus the selectivity of the monoliths. Puerarin with a purity of 96% (m%) and with a yield of 89% (m%) was recovered on the monolith. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electroactive Polymer Nanoparticles Exhibiting Photothermal Properties
Cantu, Travis; Rodier, Bradley; Iszard, Zachary; Kilian, Alissa; Pattani, Varun; Walsh, Kyle; Weber, Katharina; Tunnell, James; Betancourt, Tania; Irvin, Jennifer
2016-01-01
A method for the synthesis of electroactive polymers is demonstrated, starting with the synthesis of extended conjugation monomers using a three-step process that finishes with Negishi coupling. Negishi coupling is a cross-coupling process in which a chemical precursor is first lithiated, followed by transmetallation with ZnCl2. The resultant organozinc compound can be coupled to a dibrominated aromatic precursor to give the conjugated monomer. Polymer films can be prepared via electropolymerization of the monomer and characterized using cyclic voltammetry and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. Nanoparticles (NPs) are prepared via emulsion polymerization of the monomer using a two-surfactant system to yield an aqueous dispersion of the polymer NPs. The NPs are characterized using dynamic light scattering, electron microscopy, and UV-Vis-NIR-spectroscopy. Cytocompatibility of NPs is investigated using the cell viability assay. Finally, the NP suspensions are irradiated with a NIR laser to determine their effectiveness as potential materials for photothermal therapy (PTT). PMID:26780244
Manufacture of poly(methyl methacrylate) microspheres using membrane emulsification
Bux, Jaiyana; Manga, Mohamed S.; Hunter, Timothy N.
2016-01-01
Accurate control of particle size at relatively narrow polydispersity remains a key challenge in the production of synthetic polymer particles at scale. A cross-flow membrane emulsification (XME) technique was used here in the preparation of poly(methyl methacrylate) microspheres at a 1–10 l h−1 scale, to demonstrate its application for such a manufacturing challenge. XME technology has previously been shown to provide good control over emulsion droplet sizes with careful choice of the operating conditions. We demonstrate here that, for an appropriate formulation, equivalent control can be gained for a precursor emulsion in a batch suspension polymerization process. We report here the influence of key parameters on the emulsification process; we also demonstrate the close correlation in size between the precursor emulsion and the final polymer particles. Two types of polymer particle were produced in this work: a solid microsphere and an oil-filled matrix microcapsule. This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’. PMID:27298430
NASA Astrophysics Data System (ADS)
Janković, Bojan; Marinović-Cincović, Milena; Dramićanin, Miroslav
2015-10-01
Crystallization process of Gd2Ti2O7 precursor's powder prepared by Pechini-type polymerized complex route has been studied under isothermal experimental conditions in an air atmosphere. It was found that the crystallization proceeds through two-parameter Šesták-Berggren (SB) autocatalytic model, in the operating temperature range of 550 °C≤T≤750 °C. Based on the behavior of SB parameters (M, N), it was found that in the lower operating temperature range, the crystallites with relatively low compactness exist, which probably disclosed low dimensionality of crystal growth from numerous nucleation sites, where the amorphous solid is produced. In the higher operating temperature region (above 750 °C), it was established that a morphological well-defined and high-dimensional particles of the formed pyrochlore phase can be expected. It was found that at T=850 °C, there is a change in the rate-determining reaction step, from autocatalytic into the contracting volume mechanism.
NASA Astrophysics Data System (ADS)
Kondratenko, Mikhail S.; Karpushkin, Evgeny A.; Gvozdik, Nataliya A.; Gallyamov, Marat O.; Stevenson, Keith J.; Sergeyev, Vladimir G.
2017-02-01
A series of composite proton-exchange membranes have been prepared via sol-gel modification of commercial Nafion membranes with [N-(2-aminoethyl)-3-aminopropyl]trimethoxysilane. The structure and physico-chemical properties (water uptake, ion-exchange capacity, vanadyl ion permeability, and proton conductivity) of the prepared composite membranes have been studied as a function of the precursor loading (degree of the membrane modification). If the amount of the precursor is below 0.4/1 M ratio of the amino groups of the precursor to the sulfonic groups of Nafion, the composite membranes exhibit decreased vanadium ion permeability while having relatively high proton conductivity. With respect to the use of a non-modified Nafion membrane, the performance of the composite membrane with an optimum precursor loading in a single-cell vanadium redox flow battery demonstrates enhanced energy efficiency in 20-80 mA cm-2 current density range. The maximum efficiency increase of 8% is observed at low current densities.
Sredzińska, K; Gajko, A; Gałasiński, W; Gindzieński, A
1999-01-01
Various species of Taxus contain taxanes that promote polymerization and stabilization of microtubules. They have been reported as antineoplastic compounds with highly effective chemiotherapeutic application. A decrease in incorporation of the radiolabelled precursors into DNA, RNA and proteins in vivo has been reported too. The preliminary results have shown that also the other compounds present in the aqueous extract from Taxus baccata needles, participate in the inhibition of the protein biosynthesis. The binding site of eEF-2 on the ribosome seems to be the target of this inhibition process.
Doping of carbon foams for use in energy storage devices
Mayer, Steven T.; Pekala, Richard W.; Morrison, Robert L.; Kaschmitter, James L.
1994-01-01
A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.
Nechaeva, O V; Tikhomirova, E I; Zayarsky, D A; Bespalova, N V; Glinskaya, E V; Shurshalova, N F; Al Bayati, B M; Babailova, A I
2017-04-01
The dynamics of microbial biofilm formation by standard strain and by clinical strains of uropathogenic coliform bacteria was investigated in vitro and the effect of sublethal concentrations of the polymer compound polyazolidinammonium modified with iodine hydrate ions on the initial stages of biofilm formation was assessed. Treatment of immunological plate wells with the polymeric compound prevented film formation, especially in case of clinical E. coli strain carrying FimH virulence gene.
Application of stored waveform ion modulation 2D-FTICR MS/MS to the analysis of complex mixtures.
Ross, Charles W; Simonsick, William J; Aaserud, David J
2002-09-15
Component identification of complex mixtures, whether they are from polymeric formulations or combinatorial synthesis, by conventional MS/MS techniques generally requires component separation by chromatography or mass spectrometry. An automated means of acquiring simultaneous MS/MS data from a complex mixture without prior separation is obtained from stored waveform ion modulation (SWIM) two-dimensional FTICR MS/MS. The technique applies a series of SWIFT excitation waveforms whose frequency domain magnitude spectrum is a sinusoid increasing in frequency from one waveform to the next. The controlled dissociation of the precursor ions produces an associated modulation of the product ion abundances. Fourier transformation of these abundances reveals the encoded modulation frequency from which connectivities of precursor and product ions are observed. The final result is total assignment of product ions for each precursor ion in a mixture from one automated experiment. We demonstrated the applicability of SWIM 2D-FTICR MS/MS to two diverse samples of industrial importance. We characterized structured polyester oligomers and products derived from combinatorial synthesis. Fragmentation pathways identified in standard serial ion isolation MS/MS experiments were observed for trimethylolpropane/methyl hexahydrophthalic anhydride. A 20-component sample derived from combinatorial synthesis was fragmented, and the template ion along with another key fragment ion was identified for each of the 20 components.
NASA Astrophysics Data System (ADS)
Cho, Heesook; Choi, Sinho; Kim, Jin Young; Park, Soojin
2011-12-01
We demonstrate a simple method for tuning the morphologies of as-spun micellar thin films by modifying the surface energy of silicon substrates. When a polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymer dissolved in o-xylene was spin-coated onto a PS-modified surface, a dimple-type structure consisting of a thick PS shell and P2VP core was obtained. Subsequently, when the films were immersed in metal precursor solutions at certain periods of time and followed by plasma treatment, metal individual dots in a ring-shaped structure, metal nanoring, and metal corpuscle arrays were fabricated, depending on the loading amount of metal precursors. In contrast, when PS-b-P2VP films cast onto silicon substrates with a native oxide were used as templates, only metal dotted arrays were obtained. The combination of micellar thin film and surface energy modification offers an effective way to fabricate various nanostructured metal or metal oxide films.We demonstrate a simple method for tuning the morphologies of as-spun micellar thin films by modifying the surface energy of silicon substrates. When a polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymer dissolved in o-xylene was spin-coated onto a PS-modified surface, a dimple-type structure consisting of a thick PS shell and P2VP core was obtained. Subsequently, when the films were immersed in metal precursor solutions at certain periods of time and followed by plasma treatment, metal individual dots in a ring-shaped structure, metal nanoring, and metal corpuscle arrays were fabricated, depending on the loading amount of metal precursors. In contrast, when PS-b-P2VP films cast onto silicon substrates with a native oxide were used as templates, only metal dotted arrays were obtained. The combination of micellar thin film and surface energy modification offers an effective way to fabricate various nanostructured metal or metal oxide films. Electronic supplementary information (ESI) available: AFM images of Au nanorings prepared from a mixed solvent and characterization of PS-b-P2VP micellar films. See DOI: 10.1039/c1nr11075f
Guo, Wanchun; Jia, Yin; Tian, Kesong; Xu, Zhaopeng; Jiao, Jiao; Li, Ruifei; Wu, Yuehao; Cao, Ling; Wang, Haiyan
2016-08-17
UV-triggered self-healing of single microcapsules has been a good candidate to enhance the life of polymer-based aerospace coatings because of its rapid healing process and healing chemistry based on an accurate stoichiometric ratio. However, free radical photoinitiators used in single microcapsules commonly suffer from possible deactivation due to the presence of oxygen in the space environment. Moreover, entrapment of polymeric microcapsules into coatings often involves elevated temperature or a strong solvent, probably leading to swelling or degradation of polymer shell, and ultimately the loss of active healing species into the host matrix. We herein describe the first single robust SiO2 microcapsule self-healing system based on UV-triggered cationic polymerization for potential application in aerospace coatings. On the basis of the similarity of solubility parameters of the active healing species and the SiO2 precursor, the epoxy resin and cationic photoinitiator are successfully encapsulated into a single SiO2 microcapsule via a combined interfacial/in situ polymerization. The single SiO2 microcapsule shows solvent resistance and thermal stability, especially a strong resistance for thermal cycling in a simulated space environment. In addition, the up to 89% curing efficiency of the epoxy resin in 30 min, and the obvious filling of scratches in the epoxy matrix demonstrate the excellent UV-induced healing performance of SiO2 microcapsules, attributed to a high load of healing species within the capsule (up to 87 wt %) and healing chemistry based on an accurate stoichiometric ratio of the photoinitiator and epoxy resin at 9/100. More importantly, healing chemistry based on a UV-triggered cationic polymerization mechanism is not sensitive to oxygen, extremely facilitating future embedment of this single SiO2 microcapsule in spacecraft coatings to achieve self-healing in a space environment with abundant UV radiation and oxygen.
NASA Astrophysics Data System (ADS)
Costela, A.; García-Moreno, I.; Mallavia, Ricardo; Amat-Guerri, F.; Barroso, J.; Sastre, R.
1998-06-01
We report on the lasing action of two newly synthesized 2-(2'-hydroxyphenyl) benzimidazole derivatives copolymerized with methyl methacrylate. The laser samples were transversely pumped with a N 2 laser at 337 nm. The influence on the proton-transfer laser performance of the distance between the chromophore group and the polymeric main chain and of the rigidity of the polymeric host matrix, were studied. Significant increases in lasing efficiency and photostability are demonstrated for some of the new materials, as compared to those previously obtained with related proton-transfer dyes also covalently bound to methacrylic monomers.
Nanostructure and Dynamics of Ionic and Non-Ionic PEO-Containing Polyureas
NASA Astrophysics Data System (ADS)
Chuayprakong, Sunanta; Runt, James
2013-03-01
A series of polyethylene oxide (PEO) - based diamines with molecular weights ranging from 250 - 6000 g/mol were polymerized in solution with 4,4'-methylene diphenyl diisocyanate (MDI). In addition, PEO soft segment diamines where modified to incorporate ionomeric species and also polymerized with MDI. The role of PEO soft segment molecular weight and the presence of ionic species on nanoscale segregation and cation conductivity were explored. The former was investigated using small-angle X-ray scattering and atomic force microscopy. Dielectric relaxation spectroscopy was used to investigate polymer and ion dynamics. Local environment and hydrogen bonding were identified by using FTIR spectroscopy.
Supramolecular Inclusion in Cyclodextrins: A Pictorial Spectroscopic Demonstration
ERIC Educational Resources Information Center
Haldar, Basudeb; Mallick, Arabinda; Chattopadhyay, Nitin
2008-01-01
A spectroscopic experiment is presented that reveals that the hydrophobically end-modified water-soluble polymeric fluorophore, pyrene end-capped poly(ethylene oxide) (PYPY), interacts differently with [alpha], [beta], and [gamma]-cyclodextrins (CD) to form supramolecular inclusion complexes. The emission spectrum of PYPY in aqueous solution shows…
THE ELECTROCHEMISTRY OF ANTIBODY-MODIFIED CONDUCTING POLYMER ELECTRODES. (R825323)
The modification of conducting polymer electrodes with antibodies (i.e. proteins) by means of electrochemical polymerization is a simple step that can be used to develop an immunological sensor. However, the electrochemical processes involved leading to the ge...
Wei, Kun; Li, Lei; Zheng, Sixun; Wang, Ge; Liang, Qi
2014-01-14
In this contribution, we report the synthesis of organic-inorganic random polymers from methacrylate-terminated poly(ethylene oxide) (MAPEO) (Mn = 950) and 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane (MAPOSS) macromers via reversible addition-fragmentation chain transfer (RAFT) polymerization with 4-cyano-4-(thiobenzoylthio) valeric acid (CTBTVA) as the chain transfer agent. The organic-inorganic random copolymers were characterized by means of (1)H NMR spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The results of GPC indicate that the polymerizations were carried out in a controlled fashion. Transmission electron microscopy (TEM) showed that the organic-inorganic random copolymers in bulk were microphase-separated and the POSS microdomains were formed via POSS-POSS interactions. In aqueous solutions the organic-inorganic random copolymers were capable of self-assembling into spherical nanoobjects as evidenced by transmission electron microscopy (TEM) and dynamic laser scattering (DLS). The self-assembly behavior of the organic-inorganic random copolymers was also found to occur in the mixtures with the precursors of epoxy. The nanostructures were further fixed via subsequent curing reaction and thus the organic-inorganic nanocomposites were obtained. The formation of nanophases in epoxy thermosets was confirmed by transmission electron microscopy (TEM) and dynamic mechanical thermal analysis (DMTA). The organic-inorganic nanocomposites displayed the enhanced surface hydrophobicity as evidenced by surface contact angle measurements.
Uyar, Zafer; Degirmenci, Mustafa; Genli, Nasrettin; Yilmaz, Ayse
2017-01-01
Abstract A new well-defined bisbenzoin group end-functionalized poly(ε-caprolactone) macrophotoinitiator (PCL-(PI)2) was synthesized by combination of ring opening polymerization (ROP) and click chemistry. The ROP of ε-CL monomer in bulk at 110 °C, by means of a hydroxyl functional initiator namely, 3-cyclohexene-1-methanol in conjunction with stannous-2-ethylhexanoate, (Sn(Oct)2), yielded a well-defined PCL with a cyclohexene end-chain group (PCL-CH). The bromination and subsequent azidation of the cyclohexene end-chain group gave bisazido functionalized poly(ε-caprolactone) (PCL-(N3)2). Separately, an acetylene functionalized benzoin photoinitiator (PI-alkyne) was synthesized by using benzoin and propargyl bromide. Then the click reaction between PCL-(N3)2 and PI-alkyne was performed by Cu(I) catalysis. The spectroscopic studies revealed that poly(ε-caprolactone) with bisbenzoin photoactive functional group at the chain end (PCL-(PI)2) with controlled chain length and low-polydispersity was obtained. This PCL-(PI)2 macrophotoinitiator was used as a precursor in photoinduced free radical promoted cationic polymerization to synthesize an AB2-type miktoarm star copolymer consisting of poly(ε-caprolactone) (PCL, as A block) and poly(cyclohexene oxide) (PCHO, as B block), namely PCL(PCHO)2. PMID:29491778
McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.
2006-11-21
A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.
McCormick, III, Charles L.; Lowe, Andrew B [Hattiesburg, MS; Sumerlin, Brent S [Pittsburgh, PA
2011-12-27
A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.
Zhu, Lijing; Song, Haiming; Wang, Jiarong; Xue, Lixin
2017-05-01
Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility. Copyright © 2017 Elsevier B.V. All rights reserved.
Discovery of a widely distributed toxin biosynthetic gene cluster
Lee, Shaun W.; Mitchell, Douglas A.; Markley, Andrew L.; Hensler, Mary E.; Gonzalez, David; Wohlrab, Aaron; Dorrestein, Pieter C.; Nizet, Victor; Dixon, Jack E.
2008-01-01
Bacteriocins represent a large family of ribosomally produced peptide antibiotics. Here we describe the discovery of a widely conserved biosynthetic gene cluster for the synthesis of thiazole and oxazole heterocycles on ribosomally produced peptides. These clusters encode a toxin precursor and all necessary proteins for toxin maturation and export. Using the toxin precursor peptide and heterocycle-forming synthetase proteins from the human pathogen Streptococcus pyogenes, we demonstrate the in vitro reconstitution of streptolysin S activity. We provide evidence that the synthetase enzymes, as predicted from our bioinformatics analysis, introduce heterocycles onto precursor peptides, thereby providing molecular insight into the chemical structure of streptolysin S. Furthermore, our studies reveal that the synthetase exhibits relaxed substrate specificity and modifies toxin precursors from both related and distant species. Given our findings, it is likely that the discovery of similar peptidic toxins will rapidly expand to existing and emerging genomes. PMID:18375757
ERIC Educational Resources Information Center
Miller, Norman E.; And Others
1984-01-01
Suggests polymer topics for study in inorganic chemistry courses. Commercial materials (including list of inorganic compounds utilized in polymer industry), anchored metal catalysis, polymers modified or formed by coordination, polysiloxanes, phosphazene or phosphonitrilic halide polymers, and hetergeneous polymerization catalysts are considered.…
21 CFR 175.300 - Resinous and polymeric coatings.
Code of Federal Regulations, 2013 CFR
2013-04-01
... paragraph (b)(3)(i) of this section to form esters with: Butylene glycol. Ethylene glycol. Pentaerythritol...) Natural fossil resins, as the basic resin: Copal. Damar. Elemi. Gilsonite. Glycerol ester of damar, copal... section) modified by reaction with: Maleic anhydride. o-, m-, and p-substituted phenol-form-alde-hydes...
21 CFR 175.300 - Resinous and polymeric coatings.
Code of Federal Regulations, 2012 CFR
2012-04-01
... paragraph (b)(3)(i) of this section to form esters with: Butylene glycol. Ethylene glycol. Pentaerythritol...) Natural fossil resins, as the basic resin: Copal. Damar. Elemi. Gilsonite. Glycerol ester of damar, copal... section) modified by reaction with: Maleic anhydride. o-, m-, and p-substituted phenol-form-alde-hydes...
21 CFR 175.300 - Resinous and polymeric coatings.
Code of Federal Regulations, 2011 CFR
2011-04-01
... paragraph (b)(3)(i) of this section to form esters with: Butylene glycol. Ethylene glycol. Pentaerythritol...) Natural fossil resins, as the basic resin: Copal. Damar. Elemi. Gilsonite. Glycerol ester of damar, copal... section) modified by reaction with: Maleic anhydride. o-, m-, and p-substituted phenol-form-alde-hydes...
21 CFR 175.300 - Resinous and polymeric coatings.
Code of Federal Regulations, 2010 CFR
2010-04-01
... paragraph (b)(3)(i) of this section to form esters with: Butylene glycol. Ethylene glycol. Pentaerythritol...) Natural fossil resins, as the basic resin: Copal. Damar. Elemi. Gilsonite. Glycerol ester of damar, copal... section) modified by reaction with: Maleic anhydride. o-, m-, and p-substituted phenol-form-alde-hydes...
USDA-ARS?s Scientific Manuscript database
Gelatin films prepared with or without transglutaminase (TGase) and dried at 15, 25 and 35 °C were analyzed for polymeric network structure, chemical composition and physical properties. Differences in protein network structure were observed by optical microscopy analysis in freeze-dried film-formin...