Lim, Jun-Wei; Seng, Chye-Eng; Lim, Poh-Eng; Ng, Si-Ling; Sujari, Amat-Ngilmi Ahmad
2011-11-01
The performance of moving bed sequencing batch reactors (MBSBRs) added with 8 % (v/v) of polyurethane (PU) foam cubes as carrier media in nitrogen removal was investigated in treating low COD/N wastewater. The results indicate that MBSBR with 8-mL cubes achieved the highest total nitrogen (TN) removal efficiency of 37% during the aeration period, followed by 31%, 24% and 19 % for MBSBRs with 27-, 64- and 125-mL cubes, respectively. The increased TN removal in MBSBRs was mainly due to simultaneous nitrification and denitrification (SND) process which was verified by batch studies. The relatively lower TN removal in MBSBR with larger PU foam cubes was attributed to the observation that larger PU foam cubes were not fully attached by biomass. Higher concentrations of 8-mL PU foam cubes in batch reactors yielded higher TN removal. Copyright © 2011 Elsevier Ltd. All rights reserved.
Enhanced biofiltration using cell attachment promotors.
Goncalves, Juan J; Govind, Rakesh
2009-02-15
H2S polluted airstreams were treated in two biotrickling filter columns packed with polyurethane (PU) foam cubes, one with cubes coated with a solution of 25 mg/L of polyethyleneimine (PEI, coated reactor) and the other containing just plain PU cubes (uncoated reactor) at empty bed residence times (EBRT) ranging from 6 to 60 s. and inlet H2S concentrations ranging from 30 to 235 ppm, (overall loads of up to 44 gH2S/m3bed/h), with overall removal efficiencies (RE) in the range of 90-100% over 125 days. The acclimatization characteristics of the coated reactor outperformed those of the uncoated one, and both the observed elimination capacity (EC) of 77 gH2S/m3bed/h and retention of volatile solids (VS) of 42 mgVS/cube were maxima in the coated reactor. Insights into the controlling removal mechanisms were also provided by means of dimensionless analysis of the experimental data. Denaturing gradient gel electrophoresis (DGGE) showed that the dominant surviving species in both units belonged to the genus Acidithiobacillus.
He, Yin; Li, Wei; Yang, Guilin; Liu, Hao; Lu, Junyu; Zheng, Tongtong; Li, Xiaojiu
2017-01-01
A wearable, low-cost, highly repeatable piezoresistive sensor was fabricated by the synthesis of modified-graphite and polyurethane (PU) composites and polydimethylsiloxane (PDMS). Graphite sheets functionalized by using a silane coupling agent (KH550) were distributed in PU/N,N-dimethylformamide (DMF) solution, which were then molded to modified-graphite/PU (MG/PU) composite films. Experimental results show that with increasing modified-graphite content, the tensile strength of the MG/PU films first increased and then decreased, and the elongation at break of the composite films showed a decreasing trend. The electrical conductivity of the composite films can be influenced by filler modification and concentration, and the percolation threshold of MG/PU was 28.03 wt %. Under liner uniaxial compression, the 30 wt % MG/PU composite films exhibited 0.274 kPa−1 piezoresistive sensitivity within the range of low pressure, and possessed better stability and hysteresis. The flexible MG/PU composite piezoresistive sensors have great potential for body motion, wearable devices for human healthcare, and garment pressure testing. PMID:28773047
Gnanasundaram, Saraswathy; Ranganathan, Mohan; Das, Bhabendra Nath; Mandal, Asit Baran
2013-02-01
Foot odor and foot infection are major problems of athletes and persons with hyperhidrosis. Many shoes especially sports shoes have removable cushion insoles/foot beds for foot comfort. Polyurethane (PU) foam and elastomer have been used as cushion insole in shoes. In the present work, new insole materials based on porous viscoelastic PU sheets having hydrophilic property and antimicrobial drug coating to control foot infection and odor were developed. Bacteria and fungus that are causing infection and bad odor of the foot of athletes were isolated by microbial cell culturing of foot sweat. The surface of porous viscoelastic PU sheets was modified using hydrophilic polymers and coated with antimicrobial agent, silver sulfadiazine (SS). The surface modified PU sheets were characterized using ATR-FTIR, TGA, DSC, SEM, contact angle measurement and water absorption study. Results had shown that modified PU sheets have hydrophilicity greater than that of original PU sheet. FTIR spectra and SEM pictures confirmed modification of PU surface with hydrophilic polymers and coating with SS. Minimum inhibitory concentration studies indicated that SS has activity on all isolated bacteria of athletic foot sweat. The maximum inhibition was found for Pseudomonas (20mm) followed by Micrococci (17 mm), Diphtheroids (16 mm) and Staphylococci (12 mm). During perspiration of foot the hydrophilic polymers on PU surface will swell and release SS. Future work will confirm the application of these materials as inserts in athletic shoes. Copyright © 2012 Elsevier B.V. All rights reserved.
2012-03-28
Scintillation 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Comberiate, Joseph M. 5e. TASK NUMBER 5f. WORK...bubble climatology. A tomographic reconstruction technique was modified and applied to SSUSI data to reconstruct three-dimensional cubes of ionospheric... modified and applied to SSUSI data to reconstruct three-dimensional cubes of ionospheric electron density. These data cubes allowed for 3-D imaging of
In vivo modulation of foreign body response on polyurethane by surface entrapment technique.
Khandwekar, Anand P; Patil, Deepak P; Hardikar, Anand A; Shouche, Yogesh S; Doble, Mukesh
2010-11-01
Implanted polymeric materials, such as medical devices, provoke the body to initiate an inflammatory reaction, known as the foreign body response (FBR), which causes several complications. In this study, polyurethane (Tecoflex®, PU) surface modified with the nonionic surfactant Tween80® (PU/T80) and the cell adhesive PLL-RGD peptide (PU/PLL-RGD) by a previously described entrapment technique were implanted in the peritoneal cavity of Wistar rats for 30 days. Implants were retrieved and examined for tissue reactivity and cellular adherence by various microscopic and analytical techniques. Surface-induced inflammatory response was assessed by real-time PCR based quantification of proinflammatory cytokine transcripts, namely, TNF-α and IL-1β, normalized to housekeeping gene GAPDH. Cellular adherence and their distribution profile were assessed by microscopic examination of H&E stained implant sections. It was observed that PU/PLL-RGD followed by the bare PU surface exhibited severe inflammatory and fibrotic response with an average mean thickness of 19 and 12 μm, respectively, in 30 days. In contrast, PU/T80 surface showed only a cellular monolayer of 2-3 μm in thickness, with a mild inflammatory response and no fibrotic encapsulation. The PU/PLL-RGD peptide-modified substrate promoted an enhanced rate of macrophage cell fusion to form foreign body giant cell (FBGCs), whereas FBGCs were rarely observed on Tween80®-modified substrate. The expression levels of proinflammatory cytokines (TNF-α and IL-1β) were upregulated on PU/PLL-RGD surface followed by bare PU, whereas the cytokine expressions were significantly suppressed on PU/T80 surface. Thus, our study highlights modulation of foreign body response on polyurethane surfaces through surface entrapment technique in the form of differential responses observed on PLL-RGD and Tween80® modified surfaces with the former effective in triggering tissue cell adhesion thereby fibrous encapsulation, while the later being mostly resistant to this phenomenon.
He, Yin; Ming, Yue; Li, Wei; Li, Yafang; Wu, Maoqi; Song, Jinzhong; Li, Xiaojiu; Liu, Hao
2018-01-01
A facile method for preparing an easy processing, repeatable and flexible pressure sensor was presented via the synthesis of modified multi-walled carbon nanotubes (m-MWNTs) and polyurethane (PU) films. The surface modification of multi-walled carbon nanotubes (MWNTs) simultaneously used a silane coupling agent (KH550) and sodium dodecyl benzene sulfonate (SDBS) to improve the dispersibility and compatibility of the MWNTs in a polymer matrix. The electrical property and piezoresistive behavior of the m-MWNT/PU composites were compared with raw multi-walled carbon nanotube (raw MWNT)/PU composites. Under linear uniaxial pressure, the m-MWNT/PU composite exhibited 4.282%kPa−1 sensitivity within the pressure of 1 kPa. The nonlinear error, hysteresis error and repeatability error of the piezoresistivity of m-MWNT/PU decreased 9%, 16.72% and 54.95% relative to raw MWNT/PU respectively. Therefore, the piezoresistive response of m-MWNT/PU had better stability than that of raw MWNT/PU composites. The m-MWNT/PU sensors could be utilized in wearable devices for body movement detection, monitoring of respiration and pressure detection in garments. PMID:29701643
He, Yin; Ming, Yue; Li, Wei; Li, Yafang; Wu, Maoqi; Song, Jinzhong; Li, Xiaojiu; Liu, Hao
2018-04-26
A facile method for preparing an easy processing, repeatable and flexible pressure sensor was presented via the synthesis of modified multi-walled carbon nanotubes (m-MWNTs) and polyurethane (PU) films. The surface modification of multi-walled carbon nanotubes (MWNTs) simultaneously used a silane coupling agent (KH550) and sodium dodecyl benzene sulfonate (SDBS) to improve the dispersibility and compatibility of the MWNTs in a polymer matrix. The electrical property and piezoresistive behavior of the m-MWNT/PU composites were compared with raw multi-walled carbon nanotube (raw MWNT)/PU composites. Under linear uniaxial pressure, the m-MWNT/PU composite exhibited 4.282%kPa −1 sensitivity within the pressure of 1 kPa. The nonlinear error, hysteresis error and repeatability error of the piezoresistivity of m-MWNT/PU decreased 9%, 16.72% and 54.95% relative to raw MWNT/PU respectively. Therefore, the piezoresistive response of m-MWNT/PU had better stability than that of raw MWNT/PU composites. The m-MWNT/PU sensors could be utilized in wearable devices for body movement detection, monitoring of respiration and pressure detection in garments.
Monjes, J.A.
1985-09-12
This invention retortreflects and focuses a beam of light. The invention comprises a modified corner cube reflector wherein one reflective surface is planar, a second reflective surface is spherical, and the third reflective surface may be planar or convex cylindrical.
Rigid palm oil-based polyurethane foam reinforced with diamine-modified montmorillonite nanoclay
NASA Astrophysics Data System (ADS)
Haziq Dzulkifli, Mohd; Yazid Yahya, Mohd; Majid, Rohah A.
2017-05-01
This paper presents work on organically-modified montmorillonite (MMT) nanoclay embedded in rigid palm oil-based polyurethane (PU) foam. MMT was modified with organic surfactant diamino propane (DAP). PU foam was fabricated in closed mold, and the amount of DAP-MMT was varied in each foam formulation. The obtained foam was tested for its microstructure and morphology. Appearance of peaks from infra-red spectra corresponding to N-H, C=O, and C-N confirms the formation of PU networks. Scanning electron microscopy (SEM) revealed fine, closed-cellular structure at low clay loading; increasing DAP-MMT content induced larger cell sizes with blowholes. X-ray diffraction (XRD) indicates fully-exfoliated clays at 1 wt. % and partial-exfoliation at 3 wt. % clay loading, suggesting clumping of clays as DAP-MMT content increased.
Application of a canine 238Pu dosimetry model to human bioassay data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickman, Jr., A. W.
1991-08-01
Associated with the use of 2 238Pu in thermoelectric power sources for space probes and power supplies for cardiac devices is the potential for human exposure to 238Pu, primarily by inhalation. In the event of human internal exposure, a means is needed for assessing the level of intake and calculating radiation doses. Several bioassay/dosimetry models have been developed for 239Pu. However, results from studies with laboratory animals have indicated that the biokinetics, and therefore the descriptive models, of 238Pu are significantly different from those for 239Pu. A canine model accounting for these differences has been applied in this work tomore » urinary excretion data from seven humans occupationally exposed to low levels of an insoluble 238Pu compound. The modified model provides a good description of the urinary excretion kinetics observed in the exposed humans. The modified model was also used to provide estimates of the initial intakes of 238Pu for the seven individuals; these estimates ranged from 4.5 nCi (170 Bq) to 87 nCi (3200 Bq). Autopsy data on the amount and distribution of 238Pu retained in the organs may be used in the future to validate or refute both these estimates and the assumptions used to formulate the human model. Modification of the human model to simulate an injection exposure to 239Pu gave patterns of retention in the organs and urinary excretion comparable to those seen previously in humans; further modification of the model using fecal data (unavailable for the subjects of this study) is indicated.« less
Gutiérrez-Acosta, O B; Arriaga, S; Escobar-Barrios, V A; Casas-Flores, S; Almendarez-Camarillo, A
2012-01-30
The performance of perlite and two innovative carriers that consist of polyurethane (PU) chemically modified with starch; and polypropylene reinforced with agave fibers was evaluated in the biofiltration of a mixture of VOCs composed of hexane, toluene and methyl-ethyl-ketone. At a total organic loading rate of 145 gCm(-3)h(-1) the elimination capacities (ECs) obtained were 145, 24 and 96 gCm(-3)h(-1) for the biofilters packed with the PU, the reinforced polypropylene, and perlite, respectively. Specific maximum biodegradation rates of the mixture, in the biofilters, were 416 mgCg(protein)(-1) h(-1) for the PU and 63 mgCg(protein)(-1) h(-1) for perlite, which confirms the highest performance of the PU-composite. 18S rDNA analysis from the PU-biofilter revealed the presence of Fusarium solani in its sexual and asexual states, respectively. The modified PU carrier significantly reduced the start-up period of the biofilter and enhanced the EC of the VOCs. Thus, this study gives new alternatives in the field of packing materials synthesis, promoting the addition of easily biodegradable sources to enhance the performance of biofilters. Copyright © 2011 Elsevier B.V. All rights reserved.
Endothelialization of polyurethanes: Surface silanization and immobilization of REDV peptide.
Butruk-Raszeja, Beata A; Dresler, Magdalena S; Kuźmińska, Aleksandra; Ciach, Tomasz
2016-08-01
The paper presents method for chemical immobilization of arginine-glutamic acid-aspartic acid-valine (REDV) peptide on polyurethane surface. The peptide has been covalently bonded using silanes as a spacer molecules. The aim of this work was to investigate the proposed modification process and assess its biological effectiveness, especially in contact with blood and endothelial cells. Physicochemical properties were examined in terms of wettability, atomic composition and density of introduced functional groups and peptide molecules. Experiments with blood showed that material coating reduced number of surface-adhered platelets and fibrinogen molecules. In contrast to polyurethane (PU), there were no blood components deposited on REDV-modified materials (PU-REDV); fibrinogen adsorption on PU-REDV surface has been strongly reduced compared to PU. Analysis of cell adhesion after 1, 2, 3, 4, and 5 days of culture showed a significant increase of the cell-coated area on PU-REDV compared to PU. However, an intense cell growth appeared also on the control surface modified without the addition of REDV. Thus, the positive effect of REDV peptide on the adhesion of HUVEC could not be unequivocally confirmed. Copyright © 2016 Elsevier B.V. All rights reserved.
Soy-based UV resistant polyurethane pultruded composites.
DOT National Transportation Integrated Search
2012-02-01
Aliphatic polyurethane (PU) nanocomposites were synthesized using organically modified nanoclays. X-Ray diffraction results : confirmed good exfoliation of nanoclay particles in the PU resin system. With the addition of just 1% of nanoclay in the bas...
Millable polyurethane/organoclay nanocomposites: preparation, characterization, and properties.
Siliani, M; López-Manchado, M A; Valentín, J L; Arroyo, M; Marcos, A; Khayet, M; Villaluenga, J P G
2007-02-01
Novel millable polyurethane (PU)/organoclay nanocomposites have been successfully prepared by conventional transformation techniques. One natural (C6A) and two organically modified (C15A and C30B) montmorillonites have been used as clays for preparing PU nanocomposites. The optimum dispersion of nanofiller at a nanometer scale in PU matrix was confirmed by X-ray diffraction patterns and transmission electron microscopy. A substantial improvement of the PU properties by addition of only a small amount of organoclay was observed. It is worthy to note that the organoclays show a different interfacial interaction with the PU matrix, which was reflected in different macroscopic properties. Thus, C30B organoclay seems to react with PU chains to form covalent bonds, while C15A only interacts physically with PU chains. Mechanical and barrier properties are analyzed.
Lamsal, Nirmal; Angel, S Michael
2017-06-01
In earlier works, we demonstrated a high-resolution spatial heterodyne Raman spectrometer (SHRS) for deep-ultraviolet (UV) Raman measurements, and showed its ability to measure UV light-sensitive compounds using a large laser spot size. We recently modified the SHRS by replacing the cube beam splitter (BS) with a custom plate beam splitter with higher light transmission, an optimized reflectance/transmission ratio, higher surface flatness, and better refractive index homogeneity than the cube beam splitter. Ultraviolet Raman measurements were performed using a SHRS modified to use the plate beam splitter and a matching compensator plate and compared to the previously described cube beam splitter setup. Raman spectra obtained using the modified SHRS exhibit much higher signals and signal-to-noise (S/N) ratio and show fewer spectral artifacts. In this paper, we discuss the plate beam splitter SHRS design features, the advantages over previous designs, and discuss some general SHRS issues such as spectral bandwidth, S/N ratio characteristics, and optical efficiency.
Nacheva, P Mijaylova; Moeller Chávez, G; Bustos, C; Garzón Zúñiga, M A; Hornelas Orozco, Y
2008-01-01
The performance of aerobic submerged packed bed reactors was studied for the treatment of domestic wastewater using different kinds of packing materials with high specific areas (760-1,200 m(2)/m(3)). The tested materials were ceramic spheres, crushed tezontle, grains of high density polyethylene (HDPE), of low density polyethylene (LDPE) and of polypropylene (PP), cubes of polyurethane (PU) and polyethylene tape (SESSIL). The bioreactors were operated in continuous regime, applying organic loads in the range of 0.8-6.0 g COD.m(-2).d(-1). The obtained specific COD removal rates were very similar in all the reactors when they were operated at organic loads up to 2.0 g COD.m(-2).d(-1), after which differences in effectiveness appeared and the best results were determined in the reactors with SESSIL, LDPE and PU. Very low TSS, O&G and turbidity were obtained in all the effluents. The NH(3)-N and TN removals were dependent on the dissolved oxygen (DO) concentration and the removals at DO of 5 mg/l were 84-99% and 61-74% respectively. The best removals were determined in the reactors with PU, SESSIL and LDPE. The reactor with tezontle had also a good performance when operated with loads up to 1.0 g TN.m(-2).d(-1). The best phosphate removals (38-49%) were obtained in the reactors with PU, tezontle, ceramic sheres and SESSIL. (c) IWA Publishing 2008.
Chu, Zhiwei; Fan, Zhuxin; Zhang, Xiang; Tan, Xiaofeng; Li, Dongxu; Chen, Guohua; Zhao, Qinghua
2018-05-15
An aggregation-caused quenching (ACQ)-active polymer (PF), an aggregation-induced emission (AIE)-active polymer (PFTPE) and an aggregation-enhanced emission (AEE)-active polymer (PTTPE) were synthesized by tetraphenylethane (TPE), fluorene and thiophene moieties. Polyurethane (PU) foams modified by PF, PFTPE and PTTPE, namely PU-PF, PU-PFTPE and PU-PTTPE, using ultrasonication-assisted method have been prepared. A comparative study of PU-PF, PU-PFTPE and PU-PTTPE for detection explosives had been performed, and significant fluorescence quenching was observed with the introduction of PA solutions. The as-prepared PU-PF, PU-PFTPE and PU-PTTPE sensors exhibited a superior sensitivity for PA solutions with different concentrations. Remarkably, PU-PF gave a quenching efficiency of 96.2%, higher than 93.5% for PU-PFTPE and 86.7% for PU-PTTPE at a PA concentration of 180 µg·mL -1 in methanol, which was attributed to the effective energy transfer from the fluorophore (PF) to the nitro explosive (PA). This suggested that some ACQ polymers, applied to detect explosives, could afford better performances than AIE or AEE polymers through modification of structures and selection of adequate carriers. At the same time, these chemical sensors can be recycled many times.
Chu, Zhiwei; Fan, Zhuxin; Zhang, Xiang; Tan, Xiaofeng; Chen, Guohua; Zhao, Qinghua
2018-01-01
An aggregation-caused quenching (ACQ)-active polymer (PF), an aggregation-induced emission (AIE)-active polymer (PFTPE) and an aggregation-enhanced emission (AEE)-active polymer (PTTPE) were synthesized by tetraphenylethane (TPE), fluorene and thiophene moieties. Polyurethane (PU) foams modified by PF, PFTPE and PTTPE, namely PU-PF, PU-PFTPE and PU-PTTPE, using ultrasonication-assisted method have been prepared. A comparative study of PU-PF, PU-PFTPE and PU-PTTPE for detection explosives had been performed, and significant fluorescence quenching was observed with the introduction of PA solutions. The as-prepared PU-PF, PU-PFTPE and PU-PTTPE sensors exhibited a superior sensitivity for PA solutions with different concentrations. Remarkably, PU-PF gave a quenching efficiency of 96.2%, higher than 93.5% for PU-PFTPE and 86.7% for PU-PTTPE at a PA concentration of 180 µg·mL−1 in methanol, which was attributed to the effective energy transfer from the fluorophore (PF) to the nitro explosive (PA). This suggested that some ACQ polymers, applied to detect explosives, could afford better performances than AIE or AEE polymers through modification of structures and selection of adequate carriers. At the same time, these chemical sensors can be recycled many times. PMID:29762497
BurstCube: A CubeSat for Gravitational Wave Counterparts
NASA Astrophysics Data System (ADS)
Perkins, Jeremy S.; Racusin, Judith; Briggs, Michael; de Nolfo, Georgia; Caputo, Regina; Krizmanic, John; McEnery, Julie E.; Shawhan, Peter; Morris, David; Connaughton, Valerie; Kocevski, Dan; Wilson-Hodge, Colleen A.; Hui, Michelle; Mitchell, Lee; McBreen, Sheila
2018-01-01
We present BurstCube, a novel CubeSat that will detect and localize Gamma-ray Bursts (GRBs). BurstCube is a selected mission that will detect long GRBs, attributed to the collapse of massive stars, short GRBs (sGRBs), resulting from binary neutron star mergers, as well as other gamma-ray transients in the energy range 10-1000 keV. sGRBs are of particular interest because they are predicted to be the counterparts of gravitational wave (GW) sources soon to be detectable by LIGO/Virgo. BurstCube contains 4 CsI scintillators coupled with arrays of compact low-power Silicon photomultipliers (SiPMs) on a 6U Dellingr bus, a flagship modular platform that is easily modifiable for a variety of 6U CubeSat architectures. BurstCube will complement existing facilities such as Swift and Fermi in the short term, and provide a means for GRB detection, localization, and characterization in the interim time before the next generation future gamma-ray mission flies, as well as space-qualify SiPMs and test technologies for future use on larger gamma-ray missions. The ultimate configuration of BurstCube is to have a set of ~10 BurstCubes to provide all-sky coverage to GRBs for substantially lower cost than a full-scale mission.
Hybridization-mediated anisotropic coupling in plutonium compounds
NASA Astrophysics Data System (ADS)
Banerjea, Amitava; Cooper, Bernard R.; Thayamballi, Pradeep
1984-09-01
The magnetic behavior of a class of cerium and light actinide compounds containing moderately delocalized f electrons has been explained on the basis of an anisotropic two-ion interaction that arises from the hybridization of band electrons and the f electrons. This theory, first developed by Siemann and Cooper for cerium compounds using the treatment of Coqblin and Schrieffer for the hybridization, was later generalized by Thayamballi and Cooper to fn systems in the L-S and j-j coupling limits. We here extend the theory to the case of intermediate intraionic coupling and further include the possibility of long-period antiferromagnetic structures. In particular, we have considered the Pu3+(f5) ion in PuSb. The theory reproduces the experimentally observed magnetic behavior of PuSb quite closely, predicting a phase transition from a low-temperature ferromagnetic phase to a long-period antiferromagnetic phase at about 75 K, for a fitting to a Néel temperature of 85 K, with ordered moments close to the experimental values. However, while the modulation in the long-period antiferromagnetic phase has been experimentally observed to be longitudinal, the theory predicts a transverse modulation with moments aligned along the cube edge. We also present the T=0 magnetic excitation spectrum in the ferromagnetic phase calculated on the basis of this theory using the random-phase approximation.
NASA Technical Reports Server (NTRS)
Kuan, Gary M.; Dekens, Frank G.
2006-01-01
The Space Interferometry Mission (SIM) is a microarcsecond interferometric space telescope that requires picometer level precision measurements of its truss and interferometer baselines. Single-gauge metrology errors due to non-ideal physical characteristics of corner cubes reduce the angular measurement capability of the science instrument. Specifically, the non-common vertex error (NCVE) of a shared vertex, double corner cube introduces micrometer level single-gauge errors in addition to errors due to dihedral angles and reflection phase shifts. A modified SIM Kite Testbed containing an articulating double corner cube is modeled and the results are compared to the experimental testbed data. The results confirm modeling capability and viability of calibration techniques.
Fluidics cube for biosensor miniaturization
NASA Technical Reports Server (NTRS)
Dodson, J. M.; Feldstein, M. J.; Leatzow, D. M.; Flack, L. K.; Golden, J. P.; Ligler, F. S.
2001-01-01
To create a small, portable, fully automated biosensor, a compact means of fluid handling is required. We designed, manufactured, and tested a "fluidics cube" for such a purpose. This cube, made of thermoplastic, contains reservoirs and channels for liquid samples and reagents and operates without the use of any internal valves or meters; it is a passive fluid circuit that relies on pressure relief vents to control fluid movement. We demonstrate the ability of pressure relief vents to control fluid movement and show how to simply manufacture or modify the cube. Combined with the planar array biosensor developed at the Naval Research Laboratory, it brings us one step closer to realizing our goal of a handheld biosensor capable of analyzing multiple samples for multiple analytes.
Improved electrospinning processing of PU/PEDOT:PSS for electronic textile applications
NASA Astrophysics Data System (ADS)
Evke, Erin; Clippinger, Aaron; Spackman, Clayson; Samuel, Johnson; Ozisik, Rahmi
Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate), PEDOT:PSS, is an electrically conductive polymer used in electronic textile (e-textile) applications, such as eletrochromic textiles, strain sensors, and resistive heaters. In the current study, PEDOT:PSS is blended with varying concentrations of polyurethane (PU) to investigate the flexibility of PU/PEDOT:PSS fibers that are produced via a modified electrospinning process where the jet is collected close to the tip of the needle, thereby, enabling the collection of straight fibers by a rotating spool. The electrical conductivity and mechanical properties of PU/PEDOT:PSS fibers are characterized to understand the effect of PU concentration and the processing parameters. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.
Gelatin-Modified Polyurethanes for Soft Tissue Scaffold
Kucińska-Lipka, Justyna; Janik, Helena
2013-01-01
Recently, in the field of biomaterials for soft tissue scaffolds, the interest of their modification with natural polymersis growing. Synthetic polymers are often tough, and many of them do not possess fine biocompatibility. On the other hand, natural polymers are biocompatible but weak when used alone. The combination of natural and synthetic polymers gives the suitable properties for tissue engineering requirements. In our study, we modified gelatin synthetic polyurethanes prepared from polyester poly(ethylene-butylene adipate) (PEBA), aliphatic 1,6-hexamethylene diisocyanate (HDI), and two different chain extenders 1,4-butanediol (BDO) or 1-ethoxy-2-(2-hydroxyethoxy)ethanol (EHEE). From a chemical point of view, we replaced expensive components for building PU, such as 2,6-diisocyanato methyl caproate (LDI) and 1,4-diisocyanatobutane (BDI), with cost-effective HDI. The gelatin was added in situ (in the first step of synthesis) to polyurethane to increase biocompatibility and biodegradability of the obtained material. It appeared that the obtained gelatin-modified PU foams, in which chain extender was BDO, had enhanced interactions with media and their hydrolytic degradation profile was also improved for tissue engineering application. Furthermore, the gelatin introduction had positive impact on gelatin-modified PU foams by increasing their hemocompatibility. PMID:24363617
Zhang, Shugang; Yang, Yuechao; Gao, Bin; Wan, Yongshan; Li, Yuncong C; Zhao, Chenhao
2016-07-20
A novel polymer-coated nitrogen (N) fertilizer was developed using bio-based polyurethane (PU) derived from liquefied locust sawdust as the coating material. The bio-based PU was successfully coated on the surface of the urea fertilizer prills to form polymer-coated urea (PCU) fertilizer for controlled N release. Epoxy resin (EP) was also used to further modify the bio-based PU to synthesize the interpenetrating network (IPN), enhancing the slow-release properties of the PCU. The N release characteristics of the EP-modified PCU (EMPCU) in water were determine at 25 °C and compared to that of PCU and EP-coated urea (ECU). The results showed that the EP modification reduced the N release rate and increased the longevity of the fertilizer coated with bio-based PU. A corn growth study was conducted to further evaluate the filed application of the EMPCU. In comparison to commercial PCU and conventional urea fertilizer, EMPCU was more effective and increased the yield and total dry matter accumulation of the corn. Findings from this work indicated that bio-based PU derived from sawdust can be used as coating materials for PCU, particularly after EP modification. The resulting EMPCU was more environmentally friendly and cost-effective than conventional urea fertilizers coated by EP.
PeV IceCube signals and Dark Matter relic abundance in modified cosmologies
NASA Astrophysics Data System (ADS)
Lambiase, G.; Mohanty, S.; Stabile, An.
2018-04-01
The discovery by the IceCube experiment of a high-energy astrophysical neutrino flux with energies of the order of PeV, has opened new scenarios in astroparticles physics. A possibility to explain this phenomenon is to consider the minimal models of Dark Matter (DM) decay, the 4-dimensional operator ˜ y_{α χ }\\overline{{L_{L_{α }}}} H χ , which is also able to generate the correct abundance of DM in the Universe. Assuming that the cosmological background evolves according to the standard cosmological model, it follows that the rate of DM decay Γ _χ ˜ |y_{α χ }|^2 needed to get the correct DM relic abundance (Γ _χ ˜ 10^{-58}) differs by many orders of magnitude with respect that one needed to explain the IceCube data (Γ _χ ˜ 10^{-25}), making the four-dimensional operator unsuitable. In this paper we show that assuming that the early Universe evolution is governed by a modified cosmology, the discrepancy between the two the DM decay rates can be reconciled, and both the IceCube neutrino rate and relic density can be explained in a minimal model.
Zhang, Xuetao; Huang, Jie; Yigit-Elliott, Serap; Rosenholtz, Ruth
2015-03-16
Observers can quickly search among shaded cubes for one lit from a unique direction. However, replace the cubes with similar 2-D patterns that do not appear to have a 3-D shape, and search difficulty increases. These results have challenged models of visual search and attention. We demonstrate that cube search displays differ from those with "equivalent" 2-D search items in terms of the informativeness of fairly low-level image statistics. This informativeness predicts peripheral discriminability of target-present from target-absent patches, which in turn predicts visual search performance, across a wide range of conditions. Comparing model performance on a number of classic search tasks, cube search does not appear unexpectedly easy. Easy cube search, per se, does not provide evidence for preattentive computation of 3-D scene properties. However, search asymmetries derived from rotating and/or flipping the cube search displays cannot be explained by the information in our current set of image statistics. This may merely suggest a need to modify the model's set of 2-D image statistics. Alternatively, it may be difficult cube search that provides evidence for preattentive computation of 3-D scene properties. By attributing 2-D luminance variations to a shaded 3-D shape, 3-D scene understanding may slow search for 2-D features of the target. © 2015 ARVO.
Zhang, Xuetao; Huang, Jie; Yigit-Elliott, Serap; Rosenholtz, Ruth
2015-01-01
Observers can quickly search among shaded cubes for one lit from a unique direction. However, replace the cubes with similar 2-D patterns that do not appear to have a 3-D shape, and search difficulty increases. These results have challenged models of visual search and attention. We demonstrate that cube search displays differ from those with “equivalent” 2-D search items in terms of the informativeness of fairly low-level image statistics. This informativeness predicts peripheral discriminability of target-present from target-absent patches, which in turn predicts visual search performance, across a wide range of conditions. Comparing model performance on a number of classic search tasks, cube search does not appear unexpectedly easy. Easy cube search, per se, does not provide evidence for preattentive computation of 3-D scene properties. However, search asymmetries derived from rotating and/or flipping the cube search displays cannot be explained by the information in our current set of image statistics. This may merely suggest a need to modify the model's set of 2-D image statistics. Alternatively, it may be difficult cube search that provides evidence for preattentive computation of 3-D scene properties. By attributing 2-D luminance variations to a shaded 3-D shape, 3-D scene understanding may slow search for 2-D features of the target. PMID:25780063
Wen, Wei; Ma, Li-Mei; He, Wei; Tang, Xiao-Wei; Zhang, Yin; Wang, Xiang; Liu, Li; Fan, Zhi-Ning
2016-02-01
One of the major limitations of biliary stents is the stent occlusion, which is closely related to the over-growth of bacteria. This study aimed to evaluate the feasibility of a novel silver-nanoparticle-coated polyurethane (Ag/PU) stent in bacterial cholangitis model in swine. Ag/PU was designed by coating silver nanoparticles on polyurethane (PU) stent. Twenty-four healthy pigs with bacterial cholangitis using Ag/PU and PU stents were randomly divided into an Ag/PU stent group (n=12) and a PU stent group (n=12), respectively. The stents were inserted by standard endoscopic retrograde cholangiopancreatography. Laboratory assay was performed for white blood cell (WBC) count, alanine aminotransferase (ALT), interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) at baseline time, 8 hours, 1, 2, 3, and 7 days after stent placements. The segment of bile duct containing the stent was examined histologically ex vivo. Implanted biliary stents were examined by a scan electron microscope. The amount of silver release was also measured in vitro. The number of inflammatory cells and level of ALT, IL-1beta and TNF-alpha were significantly lower in the Ag/PU stent group than in the PU stent group. Hyperplasia of the mucosa was more severe in the PU stent group than in the Ag/PU stent group. In contrast to the biofilm of bacteria on the PU stent, fewer bacteria adhered to the Ag/PU stent. PU biliary stents modified with silver nanoparticles are able to alleviate the inflammation of pigs with bacterial cholangitis. Silver-nanoparticle-coated stents are resistant to bacterial adhesion.
Stachelek, Stanley J; Alferiev, Ivan; Ueda, Masako; Eckels, Edward C.; Gleason, Kevin T.; Levy, Robert J
2010-01-01
Oxidative degradation of the polyurethane elastomeric (PU) components greatly reduces the efficacy of PU containing cardiovascular devices. Covalently appending the phenol-based antioxidant, 4-substituted 2,6-di-tert-butylphenol (DBP), to PU hard segments effectively reduced oxidative degradation of the PU in vivo and in vitro in prior studies by our group. In these experiments we analyze the contribution of the tethering molecule to the antioxidant capabilities of the DBP modified PU. Bromoalkylation chemistry was used to link DBP to the hard segment of the polyether polyurethane, Tecothane, via our original linker (PU-DBP), or variants containing side chains with 1 (PU-C-DBP) or 3 (PU-3C-DBP) carbons. Two additional DBP variants were fabricated in which the DBP group was appended to the alkyl chain via an oxygen atom (PU-O-DBP) or an amide linkage in the middle of the tether (PU-NHCO-DBP). All DBP variant films and unmodified control films were subject to oxidative degradation via 15 day immersion in a solution of 20% H2O2 + 0.1 M CoCl2. At the end of the oxidation protocol films were analyzed for the presence of oxidation related endpoints via scanning electron microscopy, contact angle measurements and Fourier transformation infrared spectroscopy (FTIR). All DBP containing variants resisted oxidation damage significantly better than the unmodified control PU. SEM analysis of oxidized PU-C-DBP and PU-O-DBP showed evidence of surface cracking consistent with oxidative degradation of the PU surfaces. Similarly there was a trend in increased ether cross-linking, a marker for oxidative degradation, in PU-C-DBP and PU-NHCO-DBP films. Consistent with these FTIR results, both PU-C-DBP and PU-NHCO-DBP had significant reductions in measured surface hydrophobicity as a result of oxidation. These data show for the first time that the choice of linker molecule significantly affects the efficiency of the linked phenolic antioxidant. PMID:20306526
Search for nonstandard neutrino interactions with IceCube DeepCore
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kirby, C.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration
2018-04-01
As atmospheric neutrinos propagate through the Earth, vacuumlike oscillations are modified by Standard Model neutral- and charged-current interactions with electrons. Theories beyond the Standard Model introduce heavy, TeV-scale bosons that can produce nonstandard neutrino interactions. These additional interactions may modify the Standard Model matter effect producing a measurable deviation from the prediction for atmospheric neutrino oscillations. The result described in this paper constrains nonstandard interaction parameters, building upon a previous analysis of atmospheric muon-neutrino disappearance with three years of IceCube DeepCore data. The best fit for the muon to tau flavor changing term is ɛμ τ=-0.0005 , with a 90% C.L. allowed range of -0.0067 <ɛμ τ<0.0081 . This result is more restrictive than recent limits from other experiments for ɛμ τ. Furthermore, our result is complementary to a recent constraint on ɛμ τ using another publicly available IceCube high-energy event selection. Together, they constitute the world's best limits on nonstandard interactions in the μ -τ sector.
NASA Astrophysics Data System (ADS)
Yuan, Huihui; Qian, Bin; Chen, Huaying; Lan, Minbo
2017-12-01
The encrustation and induced infection severely impact on the therapeutic effectiveness and service life of urinary stents due to the fast formation of conditioning film on urinary stents after implantation. The composition and properties of conditioning film have great influence on antifouling properties of stent materials. In our previous work, we modified polyurethane films by chondroitin sulfate (PU-CS) with different CS grafting densities to verify its anti-fouling properties. To obtain the in-depth understanding of encrustation on urinary stents, we investigated the impact of the composition and properties of conditioning film on the following inorganic salt deposition and bacteria adhesion in urine. The results showed that quantity of proteins and polysaccharides in conditioning films, and the roughness, water contact angle and zeta potential of PU-CSs covered with corresponding conditioning film decreased with the increase of CS grafting density on PU films.PU-CS(3) with highest CS grafting density (3.70 g/cm2) had the highest bacteria inhibition rate and least inorganic salt deposition among the PU-CSs in artificial urine. Moreover, inorganic salts depositing on the PU-CS(3) were less and smaller than those on other films. Bacteria were not detectable until day 21 in real urine. Meanwhile, the pH value was elevated. The results suggested that the component of conditioning films was more important than other surface properties such as hydrophilicity, zeta potential and roughness for inorganic salt deposition and bacteria adhesion. Moreover, the anti-encrustation properties of the surface was promoted by proteins and inhibited by polysaccharides.
Preliminary Analysis: Am-241 RHU/TEG Electric Power Source for Nanosatellites
NASA Technical Reports Server (NTRS)
Robertson, Glen A.; Young, David; Cunningham, Karen; Kim, Tony; Ambrosi, Richard M.; Williams, Hugo R.
2014-01-01
The Februay 2013 Space Works Commercial report indicates a strong increase in nano/microsatellite (1-50 kg) launch demand globally in future years. Nanosatellites (NanoSats) are small spacecraft in the 1-10 kg range, which present a simple, low-cost option for developing quickly-deployable satellites. CubeSats, a special category of NanoSats, are even being considered for interplanetary missions. However, the small dimensions of CubeSats and the limited mass of the NanoSat class in general place limits of capability on their electrical power systems (especially where typical power sources such as solar panels are considered) and stored energy reserves; restricting the power budget and overall functionality. For example, leveraging NanoSat clusters for computationally intensive problems that are solved collectively becomes more challenging with power related restrictions on communication and data-processing. Further, interplanetary missions that would take NanoSats far from the sun, make the use of solar panels less effective as a power source as their required area would become quite large. To overcome these limitations, americium 241 (Am-241) has been suggested as a low power source option. The Idaho National Laboratory, Center for Space Nuclear Research reports that: ? (Production) requires small quantities of isotope - 62.5 g of Pu-238; 250 g Am- 241 (for 5 We); Am-241 is available at around 1 kg/yr commercially; Am-241 produces 59 kev gammas which are stopped readily by tungsten so the radiation field is very low. Whereby, an Am-241 source could be placed in among the instruments and the waste heat used to heat the platform; and ? amounts of isotope are so low that launch approval may be easier, especially with tungsten encapsulation. As further reported, Am-241 has a half-life that is approximately five times greater than that of Pu- 238 and it has been determined that the neutron yield of a 241-AmO(sub 2) source is approximately an order of magnitude lower than that of a 238-PuO(sub 2) source of equal mass and degree of (sup 16)O enrichment. Also it has been demonstrated that shielded heat sources fuelled by oxygen-enriched 238-PuO(sub 2) have masses that are up to 10 times greater than those fuelled by oxygenenriched 241-AmO(sub 2) with equivalent thermal power outputs and neutron dose rates at 1 m radii. For these reasons, Am-241 is well suited to missions that demand long duration electrical power output, such as deep spaceflight missions and similar missions that use radiation-hard electronics and instrumentation that are less susceptible to neutron radiation damage.
Effective preparation of magnetic superhydrophobic Fe3O4/PU sponge for oil-water separation
NASA Astrophysics Data System (ADS)
Li, Zeng-Tian; Lin, Bo; Jiang, Li-Wang; Lin, En-Chao; Chen, Jian; Zhang, Shi-Jie; Tang, Yi-Wen; He, Fu-An; Li, De-Hao
2018-01-01
Fe3O4 nanoparticles were modified by tetraethoxysilane and different amounts of trimethoxy (1H,1H,2H,2H-heptadecafluorodecyl) silane in sequence to obtain the magnetic nanoparticles with low surface energy, which could be used to construct the superhydrophobic surfaces for PU sponge, cotton fabric, and filter paper by a simple drop-coating method. Particularly, all the resultant Fe3O4/PU sponges containing different fluoroalkylsilane-modified Fe3O4 nanoparticles possessed both high water repellency with contact angle in the range of 150.2-154.7° and good oil affinity, which could not only effectively remove oil from water followed by convenient magnetic recovery but also easily realize the oil-water separation as a filter only driven by gravity. The Fe3O4/PU sponges showed high absorption capability of peanut oil, pump oil, and silicone oil with the maximum absorptive capacities of 40.3, 39.3, and 46.3 g/g, respectively. Such novel sponges might be a potential candidate for oil-water separation as well as oil absorption and transportation accompanied by the advantages of simple process, remote control by magnetic field, and low energy consumption.
NASA Astrophysics Data System (ADS)
He, Xianyun; Wang, Yingjun; Wu, Gang
2012-10-01
In this paper, a two-step method was used to synthesize a biodegradable polyurethane (PU) composed of L-lysine ethyl ester diisocyanate (LDI), poly(ɛ-caprolactone) diols (PCL-diol) and 1,4:3,6-dianhydro-D-sorbitol (isosorbide). Amino groups were introduced onto the surface of the PU membrane by an amination reacting with 1,3-propanediamine to produce polycationic substratum. And then, type I collagen (Col) and chondroitin sulfate (CS) were deposited alternately on the polycationic substratum through layer-by-layer (LBL) assembly technology. The FTIR and 1H NMR results showed that the polyurethane was successfully synthesized. Rhodamine B isothiocyanate (RBITC) fluorescence spectrum indicated that amino groups were successfully introduced onto the PU surface. The results of quartz-crystal microbalance (QCM) and RBITC-Col fluorescence spectroscopy monitoring the LBL assemble process presented that the Col/CS deposited alternately on the PU surface. X-ray photoelectron spectroscopy (XPS) results displayed that the CS deposited on the PU surface as well. The surface of the assembled PU became even smoother observed from the surface morphology by atomic force microscopy (AFM) imaging. The hydrophilicity of the PU membrane was greatly enhanced though the modification of LBL assembly. The PU modified with the adsorption of Col/CS may be a potential application for cartilage tissue engineering due to its created mimicking chondrogenic environment.
NASA Astrophysics Data System (ADS)
Youn, J.; Kim, T.
2016-06-01
Visualization of disaster dispersion prediction enables decision makers and civilian to prepare disaster and to reduce the damage by showing the realistic simulation results. With advances of GIS technology and the theory of volcanic disaster prediction algorithm, the predicted disaster dispersions are displayed in spatial information. However, most of volcanic ash dispersion predictions are displayed in 2D. 2D visualization has a limitation to understand the realistic dispersion prediction since its height could be presented only by colour. Especially for volcanic ash, 3D visualization of dispersion prediction is essential since it could bring out big aircraft accident. In this paper, we deals with 3D visualization techniques of volcanic ash dispersion prediction with spatial information open platform in Korea. First, time-series volcanic ash 3D position and concentrations are calculated with WRF (Weather Research and Forecasting) model and Modified Fall3D algorithm. For 3D visualization, we propose three techniques; those are 'Cube in the air', 'Cube in the cube', and 'Semi-transparent plane in the air' methods. In the 'Cube in the Air', which locates the semitransparent cubes having different color depends on its particle concentration. Big cube is not realistic when it is zoomed. Therefore, cube is divided into small cube with Octree algorithm. That is 'Cube in the Cube' algorithm. For more realistic visualization, we apply 'Semi-transparent Volcanic Ash Plane' which shows the ash as fog. The results are displayed in the 'V-world' which is a spatial information open platform implemented by Korean government. Proposed techniques were adopted in Volcanic Disaster Response System implemented by Korean Ministry of Public Safety and Security.
A Simplified Model of Choice Behavior under Uncertainty
Lin, Ching-Hung; Lin, Yu-Kai; Song, Tzu-Jiun; Huang, Jong-Tsun; Chiu, Yao-Chu
2016-01-01
The Iowa Gambling Task (IGT) has been standardized as a clinical assessment tool (Bechara, 2007). Nonetheless, numerous research groups have attempted to modify IGT models to optimize parameters for predicting the choice behavior of normal controls and patients. A decade ago, most researchers considered the expected utility (EU) model (Busemeyer and Stout, 2002) to be the optimal model for predicting choice behavior under uncertainty. However, in recent years, studies have demonstrated that models with the prospect utility (PU) function are more effective than the EU models in the IGT (Ahn et al., 2008). Nevertheless, after some preliminary tests based on our behavioral dataset and modeling, it was determined that the Ahn et al. (2008) PU model is not optimal due to some incompatible results. This study aims to modify the Ahn et al. (2008) PU model to a simplified model and used the IGT performance of 145 subjects as the benchmark data for comparison. In our simplified PU model, the best goodness-of-fit was found mostly as the value of α approached zero. More specifically, we retested the key parameters α, λ, and A in the PU model. Notably, the influence of the parameters α, λ, and A has a hierarchical power structure in terms of manipulating the goodness-of-fit in the PU model. Additionally, we found that the parameters λ and A may be ineffective when the parameter α is close to zero in the PU model. The present simplified model demonstrated that decision makers mostly adopted the strategy of gain-stay loss-shift rather than foreseeing the long-term outcome. However, there are other behavioral variables that are not well revealed under these dynamic-uncertainty situations. Therefore, the optimal behavioral models may not have been found yet. In short, the best model for predicting choice behavior under dynamic-uncertainty situations should be further evaluated. PMID:27582715
Supercritical fluid extraction and separation of uranium from other actinides.
Quach, Donna L; Mincher, Bruce J; Wai, Chien M
2014-06-15
The feasibility of separating U from nitric acid solutions of mixed actinides using tri-n-butylphosphate (TBP)-modified supercritical fluid carbon dioxide (sc-CO2) was investigated. The actinides U, Np, Pu, and Am were extracted into sc-CO2 modified with TBP from a range of nitric acid concentrations, in the absence of, or in the presence of, a number of traditional reducing and/or complexing agents to demonstrate the separation of these metals from U under sc-CO2 conditions. The separation of U from Pu using sc-CO2 was successful at nitric acid concentrations of less than 3M in the presence of acetohydroxamic acid (AHA) or oxalic acid (OA) to mitigate Pu extraction, and the separation of U from Np was successful at nitric acid concentrations of less than 1M in the presence of AHA, OA, or sodium nitrite to mitigate Np extraction. Americium was not well extracted under any condition studied. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Xinya; Wang, Huijun; Wang, Haijun; Zhuo, Ying; Yuan, Ruo; Chai, Yaqin
2016-04-01
Herein, a self-enhanced N-(aminobutyl)-N-(ethylisoluminol) (ABEI) derivative-based electrochemiluminescence (ECL) immunosensor was constructed for the determination of laminin (LN) using PdIr cubes as a mimic peroxidase for signal amplification. Initially, PdIr cubes with efficient peroxidase mimicking properties, large specific surface areas, and good stability and uniformity were synthesized. Then, l-cysteine (l-Cys) and ABEI were immobilized on the PdIr cubes to form the self-enhanced ECL nanocomplex (PdIr-l-Cys-ABEI). In this nanocomplex, PdIr cubes, whose catalytic constant is higher than that of horseradish peroxidase (HRP), could effectively catalyze H2O2 decomposition and thus enhance the ECL intensity of ABEI. Moreover, PdIr cubes can be easily modified with functional groups, which make them adaptable to desired supported platforms. On the other hand, l-Cys as a coreactant of ABEI could effectively enhance the luminous efficiency due to the intramolecular ECL reaction which could reduce the energy loss between l-Cys and ABEI by giving a shorter electron transfer distance. The developed strategy combined an ABEI derivative as a self-enhanced ECL luminophore and PdIr cubes as a mimic peroxidase, resulting in a significantly enhanced ECL signal output. Also, the strategy showed high sensitivity and selectivity for LN, which suggested that our new approach could be potentially applied in monitoring different proteins.
Thermal and mechanical properties of reduced graphene oxide/polyurethane nanocomposite.
Pokharel, Pashupati; Lee, Dai Soo
2014-08-01
Reduced graphene oxide (RGO) based polyurethane (PU) nanocomposites have been successfully prepared without using solvent by in-situ polymerization. RGO was derived from microwave (MW) irradiation of graphite oxide (GO) powder prepared by a modified Hummer's method. A minimum amount of poly(tetramethylene glycol) (PTMEG) was added during the dispersion of RGO in a solvent to stabilize the graphene sheets and to prevent RGO from the restacking after the removal of the solvent. After the reaction of RGO with 4,4'-diphenylmethane diisocyanate (MDI), we obtained the concentrate of RGO in MDI with a minimum amount of PTMEG. Our method facilitated the fine dispersion of RGO in PU elastomers and improved the interfacial strength between RGO and PU. With the incorporation of 2.0 wt% of RGO, the tensile strength and Young's modulus of the PU nanocomposites increased by 30% and 50%, respectively without sacrificing the elongation at break. It was found that the crystalline portion of hard segments of the PU was lowered by the RGO in the nanocomposites.
NASA Technical Reports Server (NTRS)
Pei, Jing; Murchison, Luke; BenShabat, Adam; Stewart, Victor; Rosenthal, James; Follman, Jacob; Branchy, Mark; Sellers, Drew; Elandt, Ryan; Elliott, Sawyer;
2017-01-01
Small spacecraft autonomous rendezvous and docking is an essential technology for future space structure assembly missions. A novel magnetic capture and latching mechanism is analyzed that allows for docking of two CubeSats without precise sensors and actuators. The proposed magnetic docking hardware not only provides the means to latch the CubeSats but it also significantly increases the likelihood of successful docking in the presence of relative attitude and position errors. The simplicity of the design allows it to be implemented on many CubeSat rendezvous missions. A CubeSat 3-DOF ground demonstration effort is on-going at NASA Langley Research Center that enables hardware-in-the loop testing of the autonomous approach and docking of a follower CubeSat to an identical leader CubeSat. The test setup consists of a 3 meter by 4 meter granite table and two nearly frictionless air bearing systems that support the two CubeSats. Four cold-gas on-off thrusters are used to translate the follower towards the leader, while a single reaction wheel is used to control the attitude of each CubeSat. An innovative modified pseudo inverse control allocation scheme was developed to address interactions between control effectors. The docking procedure requires relatively high actuator precision, a novel minimal impulse bit mitigation algorithm was developed to minimize the undesirable deadzone effects of the thrusters. Simulation of the ground demonstration shows that the Guidance, Navigation, and Control system along with the docking subsystem leads to successful docking under 3-sigma dispersions for all key system parameters. Extensive simulation and ground testing will provide sufficient confidence that the proposed docking mechanism along with the choosen suite of sensors and actuators will perform successful docking in the space environment.
Constrained Bayesian Active Learning of Interference Channels in Cognitive Radio Networks
NASA Astrophysics Data System (ADS)
Tsakmalis, Anestis; Chatzinotas, Symeon; Ottersten, Bjorn
2018-02-01
In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an underlay cognitive scenario with a designed PU protection specification. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback indicates whether the probing-induced interference is harmful or not and can be used to learn the PU interference constraint. The cognitive part of this sequential probing process is the selection of the power levels of the Secondary Users (SUs) which aims to learn the PU interference constraint with a minimum number of probing attempts while setting a limit on the number of harmful probing-induced interference events or equivalently of NACK packet observations over a time window. This constrained design problem is studied within the Active Learning (AL) framework and an optimal solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP). The performance of this solution is also demonstrated through numerical simulations and compared with modified versions of AL techniques we developed in earlier work.
Yu, Kui; Zhu, Tonghe; Wu, Yu; Zhou, Xiangxiang; Yang, Xingxing; Wang, Juan; Fang, Jun; El-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei
2017-03-01
A dual drug-loaded system is a promising alternative for the sustained drug release system and skin tissue engineering. In this study, a natural sodium montmorillonite (Na-MMT) modified by cetyl trimethyl ammonium bromide (CTAB) was prepared as a carrier to load a model drug - amoxicillin (AMX), the modified organic montmorillonite (CTAB-OMMT) loaded with AMX was marked as AMX@CTAB-OMMT and was subsequently incorporated into poly(ester-urethane) urea (PEUU) and gelatin hybrid nanofibers via electrospinning, resulting in a new drug-loaded nanofibrous scaffold (AMX@CTAB-OMMT-PU75). The scanning electron microscopy (SEM) result showed that the fiber morphology did not change after the embedding of AMX@CTAB-OMMT. Meanwhile, there was a significant increase of mechanical properties for PEUU/Gelatin hybrid nanofibers (PU75) after the incorporation of AMX@CTAB-OMMT and CTAB-OMMT. Importantly, AMX@CTAB-OMMT-PU75 nanofibers showed a kind of sustained drug release property which could be justified reasonably for the controlled release of AMX depending on the various application. The sustained release property could be identified roughly by the result of antibacterial test. The anaphylactic reaction test proved that there was no any anaphylactic reaction or inflammation on the back of rat for AMX@CTAB-OMMT-PU75 nanofibers. Consequently, the prepared drug-loaded AMX@CTAB-OMMT-PU75 nanofibrous scaffold is a promising candidate for application in the skin tissue engineering field and controlled drug release system. Copyright © 2016 Elsevier B.V. All rights reserved.
Highly alloyed Ni-W substrates for low AC loss applications
NASA Astrophysics Data System (ADS)
Gaitzsch, Uwe; Hänisch, Jens; Hühne, Ruben; Rodig, Christian; Freudenberger, Jens; Holzapfel, Bernhard; Schultz, Ludwig
2013-08-01
Cube texture formation has been studied in Ni-W alloys with a W content of 9 at.% and above. These alloys show a low magnetization at 77 K and below, and are therefore excellent candidates for use as substrates of coated conductors in AC applications. The application of a modified deformation and annealing sequence leads to a highly textured surface of Ni9W and Ni9.5W tapes with cube texture fractions above 96%. YBCO (YBa2Cu3O7-δ) layers obtained on these substrates using a standard buffer architecture showed a critical current density exceeding 1.5 MA cm-2 at 77 K, similar to those for films on commercial Ni5W tapes. In contrast, only a weak cube texture was achieved in Ni10W tapes. The rolling texture of this alloy showed a significantly increased Goss component, which could not be reduced by applying intermediate annealing treatments. The influence of this texture on the cube texture formation will be discussed in detail.
Experimental and Numerical Study for Flow across a Cube at various Reynolds numbers
NASA Astrophysics Data System (ADS)
Khan, Majid Hassan; Agrawal, Amit; Sharma, Atul
2017-11-01
Cube is an archetypal three dimensional bluff body and flow around a rigidly suspended cube is one of the least studied. The present work explains the flow behaviour in the wake of a cube. Lattice Boltzmann Method (LBM) simulations are used for Re = 84 to 780 and Particle Image Velocimetry (PIV) measurements are reported for Re = 550 to 55000. Mean and rms velocities at different axial locations are examined. Double peaks for rms velocity profiles at different axial locations in the wake is observed. Recirculation length increases at lower Re and then decreases at higher Re with a critical Re between 500 and 1000. An inverse relationship is found for the coefficient of drag and recirculation length in the steady range. Wake behaviour becomes non-dependent after Re = 1620. Using the nature of recirculation bubbles in the near wake, four flow regimes are established utilizing the LBM results and the categorization extends to the information at higher Re obtained using PIV. Drag coefficients are obtained using modified wake survey method and compared with established correlations for a cube and a sphere. Numerical results explain the relationship between side-forces at lower Re.
Preparation and antifouling property of polyurethane film modified by chondroitin sulfate
NASA Astrophysics Data System (ADS)
Yuan, Huihui; Xue, Jing; Qian, Bin; Chen, Huaying; Zhu, Yonggang; Lan, Minbo
2017-02-01
An antifouling polyurethane film modified by chondroitin sulfate (PU-CS) was prepared by chemical grafting with N-Boc-1,3-propanediamine as a spacer. The different mass fraction of N-Boc-1,3-propanediamine was investigated to obtain PU-CS films with different CS grafting density. The surface properties of PU-CS films were comprehensively characterized. Proteins adsorption and glycosaminoglycans adhesion on films were evaluated. Moreover, inorganic salt deposition on film with highest CS grafting density (3.70 μg/cm2) was briefly investigated. The results showed that the increase of CS grafting density improved not only the hydrophilicity but the antifouling performance of films. The best antifouling film reduced the adsorption of fibrinogen (BFG), human serum albumin (HSA) and lysozyme (LYS) by 81.4%, 95.0% and 76.5%, respectively, and the adhesion of chondroitin (CS), heparin (HP) and hyaluronic acid (HA) by 70.6%, 87.4% and 81.3%, respectively. In addition, the co-adsorption of proteins and glycosaminoglycans reduced up to 86.9% and 75.5%, respectively. Changes in inorganic salt deposition after co-adsorption of proteins and glycosaminoglycans on PU-CS(3) suggested that the proteins promoted the inorganic salt deposition, while glycosaminoglycans inhibited the crystal growth. The negatively charged polysaccharides might promote the generation of smaller crystals which could be conducive to provide theoretical and practical guide to develop novel urinary stents with significant anti-encrustation properties.
NASA Technical Reports Server (NTRS)
Bobeck, Gene E.; Miner, R. V.
1988-01-01
Compression yielding tests were performed at 760 C on crystals of the Ni base superalloys Rene 150 and a modified MAR-M247, both having two different Co concentrations. For both alloy bases, increasing Co concentration was shown to decrease the critical resolved shear stress for octahedral slip, but to have little effect on that for cube slip. The results suggest that decreasing complex stacking fault energy in the gamma-prime with increasing Co could account for the observed effects.
Fabrication of high exposure nuclear fuel pellets
Frederickson, James R.
1987-01-01
A method is disclosed for making a fuel pellet for a nuclear reactor. A mixture is prepared of PuO.sub.2 and UO.sub.2 powders, where the mixture contains at least about 30% PuO.sub.2, and where at least about 12% of the Pu is the Pu.sup.240 isotope. To this mixture is added about 0.3 to about 5% of a binder having a melting point of at least about 250.degree. F. The mixture is pressed to form a slug and the slug is granulated. Up to about 4.7% of a lubricant having a melting point of at least about 330.degree. F. is added to the granulated slug. Both the binder and the lubricant are selected from a group consisting of polyvinyl carboxylate, polyvinyl alcohol, naturally occurring high molecular weight cellulosic polymers, chemically modified high molecular weight cellulosic polymers, and mixtures thereof. The mixture is pressed to form a pellet and the pellet is sintered.
Liu, Yutong; Ma, Yifan; Zhang, Jing; Xie, Qing; Wang, Zi; Yu, Shuang; Yuan, Yuan; Liu, Changsheng
2017-09-13
The β-TCP scaffold has been widely used as a bone graft substitute, but the traditional PMMA molding method-induced undesirable mechanical strength and poor interconnectivity still have not been addressed until now. In this study, a MBG-based PU foam templating method was developed to fabricate β-TCP scaffolds with desirable microtopography. The MBG gel, as both binder and modifier, prepared by a modified sol-gel method with controlled viscosity is incorporated with β-TCP powder and thereafter is impregnated into PU foam. The resultant hybrid scaffolds exhibited interconnected macropores (200-500 μm) and distinctive micropores (0.2-1.5 μm), especially for the TCP/25MBG (with 25 wt % content MBG). As expected, the compression strength of β-TCP/MBG composite scaffolds was enhanced with increasing MBG content, and TCP/50MBG (with 50 wt % content MBG) exhibited almost 100-fold enhancement compared to the pure β-TCP. Intriguingly, the cell affinity and osteogenic capacity of rBMSCs were also dramatically improved the best on TCP/25MBG. Further investigation found that the subtle, grainy-like microtopography, not the chemical composition, of the TCP/25MBG favored the adsorption of Fn and expression of integrin α5β1 and further facilitated FA formation and the expression of p-FAK, following activation of the MAPK/ERK signaling pathway and ultimately upregulated expression of osteogenic genes. Further in vivo experiments confirmed the promoted osteogenesis of TCP/25MBG in vivo. The results suggest that such a novel MBG-based PU foam templating method offers new guidance to construct hierarchically porous scaffolds, and the prepared MBG-modified β-TCP scaffold will have great potential for future use in bone tissue regeneration.
[Correlation between body mass index and development of pressure ulcers in intensive care medicine].
Catalá Espinosa, A I; Hidalgo Encinas, Y; Cherednichenko, T; Flores Lucas, I; González Tamayo, R; García-Martínez, M Á; Herrero-Gutiérrez, E
2014-01-01
This study aims to evaluate the association between body mass index (BMI), incidence and severity of pressure ulcers (PU) in patients admitted to the Intensive Care Unit (ICU), and describe the differential prognosis of patients with PU and factors that modify it. Case-control study with observation period of 15 months. We collected baseline variables, prognostic scales, therapies and clinical outcome. Univariate analysis was performed for each outcome variable between cases and controls using the appropriate hypothesis test depending on the nature of the variables. ROC curve for BMI and PU. Logistic regression with PU as dependent variable and the covariates that reached p<0.05 in the bivariate analysis. Correlation using Pearson or Spearman was made between BMI, albumin, days to diagnosis of UPP, immobilization, and PU degree. Significance level at p <0.05. 77 patients developed PU and 231 controls were chosen. The cases had higher APACHE II (p=0.043) and SAPS 3 (p=0.023), length of stay in ICU and mechanical ventilation (p<0.001). BMI≥40 was associated with UPP (p=0.024 OR=3.23 CI95% 1.17-8.93). There was a significant association between PU degree, length of stay and MV (p<0,001), but not with immobilization, dynamic support surface and death rate. Multivariate analysis found association between PU, length of MV (p=0.013, OR 1.08, CI95% 1.01-1.16) and kidney replacement therapy (p=0.013, OR 3.55 CI95% 1.31-9.64), with BMI≥40 as a confounding factor. Length of mechanical ventilation and renal replacement therapy are risk factors for pressure ulcer development, and BMI≥40 acts as a confounding factor. PU development and its maximum degree are not associated with a worse prognosis. Copyright © 2013 Elsevier España, S.L.U. y SEEIUC. All rights reserved.
Galactosylated electrospun membranes for hepatocyte sandwich culture.
Chien, Hsiu-Wen; Lai, Juin-Yih; Tsai, Wei-Bor
2014-04-01
In this work, we developed a galactocylated electrospun polyurethane membrane for sandwich culture of hepatocyte sandwich culture. The electrospun fibrous membranes were bio-functionalized with galactose molecules by a UV-crosslinked layer-by-layer polyelectrolyte multilayer deposition technique. The galactosylated electrospun membranes were employed as a top support membrane for the sandwich culture of HepG2/C3A cells on a collagen substrate. Our results demonstrate that HepG2/C3A cells covered by the galactosylated PU membranes form multi-cellular aggregates and lead to improved albumin secretion ability compared to the control membranes (unmodified PU or poly(ethylene imine)-modified PU). Our study reveals the potential of galactosylated electrospun membranes in the application of liver tissue engineering and the regeneration of liver-tissue substitutes. Copyright © 2014 Elsevier B.V. All rights reserved.
Dremov, V. V.; Sapozhnikov, F. A.; Ionov, G. V.; ...
2013-05-14
We present classical molecular dynamics (MD) with Modified Embedded Atom Model (MEAM) simulations to investigate the role of primary radiation defects and radiogenic helium as factors affecting the phase stability of PuGa alloys in cooling–heating cycles at ambient pressure. The models of PuGa alloys equilibrated at ambient conditions were subjected to cooling–heating cycles in which they were initially cooled down to 100 K and then heated up to 500 K at ambient pressure. The rate of temperature change in the cycles was 10 K/ns. The simulations showed that the initial FCC phase of PuGa alloys undergo polymorphous transition in coolingmore » to a lower symmetry α'-phase. All the alloys undergo direct and reverse polymorphous transitions in the cooling–heating cycles. The alloys containing vacancies shift in both transitions to lower temperatures relative to the defect-free alloys. The radiogenic helium has much less effect on the phase stability compared to that of primary radiation defects (in spite of the fact that helium concentration is twice of that for the primary radiation defects). Lastly, this computational result agrees with experimental data on unconventional stabilization mechanism of PuGa alloys.« less
Ruiz, Amaliris; Rathnam, Kashmila R.; Masters, Kristyn S.
2014-01-01
The high failure rate of small diameter vascular grafts continues to drive the development of new materials and modification strategies that address this clinical problem, with biomolecule incorporation typically achieved via surface-based modification of various biomaterials. In this work, we examined whether the method of biomolecule incorporation (i.e., bulk vs. surface modification) into a polyurethane (PU) polymer impacted biomaterial performance in the context of vascular applications. Specifically, hyaluronic acid (HA) was incorporated into a poly(ether urethane) via bulk copolymerization or covalent surface tethering, and the resulting PU-HA materials characterized with respect to both physical and biological properties. Modification of PU with HA by either surface or bulk methods yielded materials that, when tested under static conditions, possessed no significant differences in their ability to resist protein adsorption, platelet adhesion, and bacterial adhesion, while supporting endothelial cell culture. However, only bulk-modified PU-HA materials were able to fully retain these characteristics following material exposure to flow, demonstrating a superior ability to retain the incorporated HA and minimize enzymatic degradation, protein adsorption, platelet adhesion, and bacterial adhesion. Thus, despite bulk methods rarely being implemented in the context of biomolecule attachment, these results demonstrate improved performance of PU-HA upon bulk, rather than surface, incorporation of HA. Although explored only in the context of PU-HA, the findings revealed by these experiments have broader implications for the design and evaluation of vascular graft modification strategies. PMID:24276670
Pardue, R.M.; Williams, R.R.
1980-09-12
A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.
Pardue, Robert M.; Williams, Richard R.
1982-01-01
A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarter-wave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.
Xu, Deqiu; Su, Yuling; Zhao, Lili; Meng, Fancui; Liu, Chang; Guan, Yayuan; Zhang, Jiya; Luo, Jianbin
2017-02-01
Inspired by mussel-adhesion phenomena in nature, a simple, mild surface modification process was elaborated to endow the polyurethane (PU) substrate with antibacterial/antifouling properties. In the present study, polydopamine was coated directly onto polyurethane surfaces. AgNO 3 was then added and absorbed onto the surface by the active catechol and amine groups of the polydopamine coating. Meanwhile, the adsorbed Ag + ions were reduced in situ into metallic silver nanoparticles by the "bridge" of the polydopamine coating which yielded a coating with good antimicrobial properties. Finally, 1H, 1H, 2H, 2H-perfluorodecanethiol (CF 3 (CF 2 ) 7 CH 2 CH 2 SH, F-SH) was attached on the PDA coating via the Michael addition reaction. The hydrophobic F-SH layer above the antibacterial layer yielded a surface with excellent antifouling properties. Preliminary antibacterial assays indicate that the coated surfaces show enhanced antibacterial activity against Escherichia coli (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacteria). Platelet adhesion was significantly reduced for the F-SH-coated PU film. These results suggest that the modified PU could be used as an antibacterial material for future biomedical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 531-538, 2017. © 2016 Wiley Periodicals, Inc.
The efficacy of denaturing actinide elements as a means of decreasing materials attractiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hase, K.R.; Bathke, C.G.; Ebbinghaus, B.B.
2013-07-01
This study considers the concept of denaturing as applied to the actinide elements present in spent fuel as a means to reduce materials attractiveness. Highly attractive materials generally have low values of bare critical mass, heat content, and dose. To denature an attractive element, its spent-fuel isotopic composition (isotopic vector) is intentionally modified by introducing sufficient quantities of a significantly less attractive isotope to dilute the concentration of a highly attractive isotope so that the overall attractiveness of the element is reduced. The authors used FOM (Figure of Merit) formula as the material attractiveness metric for their parametric determination ofmore » the attractiveness of the Pu and U. Materials attractiveness needs to be considered in three distinct phases in the process to construct a nuclear explosive device (NED): the acquisition phase, processing phase, and utilization phase. The results show that denaturing uranium with {sup 238}U is actually an effective means of reducing the attractiveness. For uranium with a large minority of {sup 235}U, a mixture of 80% {sup 238}U to 20% {sup 235}U is required to reduce the attractiveness to low. For uranium with a large concentration of {sup 233}U, a mixture of 88% {sup 238}U to 12% {sup 233}U is required to reduce the attractiveness to low. The results also show that denaturing plutonium with {sup 238}Pu is less effective than denaturing uranium with {sup 238}U. Using {sup 238}Pu as the denaturing agent would require 80% or more by mass in order to reduce the attractiveness to low. No amount of {sup 240}Pu is enough to reduce the plutonium attractiveness below medium. The combination of {sup 238}Pu and {sup 240}Pu would require approximately 70% {sup 238}Pu and 25% {sup 240}Pu by mass to reduce the plutonium attractiveness to low.« less
NASA Astrophysics Data System (ADS)
Ivan, L.; De Sterck, H.; Susanto, A.; Groth, C. P. T.
2015-02-01
A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubed-sphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, which are handled with high-order accuracy using trilinear geometry representations in the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur at the boundaries and corners of the six sectors of the cubed-sphere grid where the grid topology is unstructured, and these difficulties are handled naturally with high-order accuracy by the multidimensional least-squares based 3D CENO reconstruction with overdetermined stencils. A rotation-based mechanism is introduced to automatically select appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are available and the grid topology changes, requiring stencils to be modified. Combining these building blocks results in a finite-volume discretization for conservation laws on 3D cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While solution-adaptivity is natural in the multi-block setting of our code, high-order accurate adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO scheme is an accurate and robust solution method for hyperbolic conservation laws on general hexahedral grids that is attractive because it is inherently multidimensional by employing a K-exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-central stencil configurations that characterizes traditional ENO schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary and time-dependent Euler and magnetohydrodynamic flows on cubed-sphere grids, and robustness against spurious oscillations at 3D shocks. Performance tests illustrate efficiency gains that can be potentially achieved using fourth-order schemes as compared to second-order methods for the same error level. Applications on extended cubed-sphere grids incorporating a seventh root block that discretizes the interior of the inner sphere demonstrate the versatility of the spatial discretization method.
E-st@r-I experience: Valuable knowledge for improving the e-st@r-II design
NASA Astrophysics Data System (ADS)
Corpino, S.; Obiols-Rabasa, G.; Mozzillo, R.; Nichele, F.
2016-04-01
Many universities all over the world have now established hands-on education programs based on CubeSats. These small and cheap platforms are becoming more and more attractive also for other-than-educational missions, such as technology demonstration, science applications, and Earth observation. This new paradigm requires the development of adequate technology to increase CubeSat performance and mission reliability, because educationally-driven missions have often failed. In 2013 the ESA Education Office launched the Fly Your Satellite! Programme which aims at increasing CubeSat mission reliability through several actions: to improve design implementation, to define best practices for conducting the verification process, and to make the CubeSat community aware of the importance of verification. Within this framework, the CubeSat team at Politecnico di Torino developed the e-st@r-II CubeSat as follow-on of the e-st@r-I satellite, launched in 2012 on the VEGA Maiden Flight. E-st@r-I and e-st@r-II are both 1U satellites with educational and technology demonstration objectives: to give hands-on experience to university students and to test an active attitude determination and control system based on inertial and magnetic measurements with magnetic actuation. This paper describes the know-how gained thanks to the e-st@r-I mission, and how this heritage has been translated into the improvement of the new CubeSat in several areas and lifecycle phases. The CubeSat design has been reviewed to reduce the complexity of the assembly procedure and to deal with possible failures of the on-board computer, for example re-coding the software in the communications subsystem. New procedures have been designed and assessed for the verification campaign accordingly to ECSS rules and with the support of ESA specialists. Different operative modes have been implemented to handle some anomalies observed during the operations of the first satellite. A new version of the on-board software is one of the main modifications. In particular, the activation sequence of the satellite has been modified to have a stepwise switch-on of the satellite. In conclusion, the e-st@r-I experience has provided valuable lessons during its development, verification and on-orbit operations. This know-how has become crucial for the development of the e-st@r-II CubeSat as illustrated in this article.
Developing a physiologically based approach for modeling plutonium decorporation therapy with DTPA.
Kastl, Manuel; Giussani, Augusto; Blanchardon, Eric; Breustedt, Bastian; Fritsch, Paul; Hoeschen, Christoph; Lopez, Maria Antonia
2014-11-01
To develop a physiologically based compartmental approach for modeling plutonium decorporation therapy with the chelating agent Diethylenetriaminepentaacetic acid (Ca-DTPA/Zn-DTPA). Model calculations were performed using the software package SAAM II (©The Epsilon Group, Charlottesville, Virginia, USA). The Luciani/Polig compartmental model with age-dependent description of the bone recycling processes was used for the biokinetics of plutonium. The Luciani/Polig model was slightly modified in order to account for the speciation of plutonium in blood and for the different affinities for DTPA of the present chemical species. The introduction of two separate blood compartments, describing low-molecular-weight complexes of plutonium (Pu-LW) and transferrin-bound plutonium (Pu-Tf), respectively, and one additional compartment describing plutonium in the interstitial fluids was performed successfully. The next step of the work is the modeling of the chelation process, coupling the physiologically modified structure with the biokinetic model for DTPA. RESULTS of animal studies performed under controlled conditions will enable to better understand the principles of the involved mechanisms.
NASA Astrophysics Data System (ADS)
Suwardi; Setiawan, J.; Susilo, J.
2017-01-01
The first short fuel pin containing natural UO2 pellet in Zry4 cladding has been prepared and planned to be tested in power ramp irradiation. An irradiation test should be designed to allow an experiment can be performed safely and giving maximum results of many performance aspects of design and manufacturing. Performance analysis to the fuel specimen shows that the specimen is not match to be used for power ramp testing. Enlargement by 0.20 mm of pellet diameter has been proposed. The present work is evaluation of modified design for important aspect of isotopic Pu distribution during irradiation test, because generated Pu isotopes in natural UO2 fuel, contribute more power relative to the contribution by enriched UO2 fuel. The axial profile of neutrons flux have been chosen from both experimental measurement and model calculation. The parameters of ramp power has been obtained from statistical experiment data. A simplified and typical base-load commercial PHWR profile of LHR history has been chosen, to determine the minimum irradiation time before ramp test can be performed. The data design and Mat pro XI materials properties models have been chosen. The axial profile of neutrons flux has been accommodated by 5 slices of discrete pin. The Pu distribution of slice-4 with highest power rate has been chosen to be evaluated. The radial discretion of pellet and cladding and numerical parameter have been used the default best practice of TU. The results shows that Pu 239 increased rapidly. The maximum burn up of slice 4 at upper the median slice, it reached nearly 90% of maximum value at about 6000 h with peak of 0.8%a Pu/HM at 22000 h, which is higher than initial U 235. Each 240, 241 and 240 Pu grows slower and ends up to 0.4, 0.2 and 0.18 % respectively. This results can be used for verification of other aspect of fuel behavior in the modeling results and also can be used as guide and comparison to the future post irradiation examination for Pu isotopes distribution.
SpaceCube 2.0: An Advanced Hybrid Onboard Data Processor
NASA Technical Reports Server (NTRS)
Lin, Michael; Flatley, Thomas; Godfrey, John; Geist, Alessandro; Espinosa, Daniel; Petrick, David
2011-01-01
The SpaceCube 2.0 is a compact, high performance, low-power onboard processing system that takes advantage of cutting-edge hybrid (CPU/FPGA/DSP) processing elements. The SpaceCube 2.0 design concept includes two commercial Virtex-5 field-programmable gate array (FPGA) parts protected by gradiation hardened by software" technology, and possesses exceptional size, weight, and power characteristics [5x5x7 in., 3.5 lb (approximately equal to 12.7 x 12.7 x 17.8 cm, 1.6 kg) 5-25 W, depending on the application fs required clock rate]. The two Virtex-5 FPGA parts are implemented in a unique back-toback configuration to maximize data transfer and computing performance. Draft computing power specifications for the SpaceCube 2.0 unit include four PowerPC 440s (1100 DMIPS each), 500+ DSP48Es (2x580 GMACS), 100+ LVDS high-speed serial I/Os (1.25 Gbps each), and 2x190 GFLOPS single-precision (65 GFLOPS double-precision) floating point performance. The SpaceCube 2.0 includes PROM memory for CPU boot, health and safety, and basic command and telemetry functionality; RAM memory for program execution; and FLASH/EEPROM memory to store algorithms and application code for the CPU, FPGA, and DSP processing elements. Program execution can be reconfigured in real time and algorithms can be updated, modified, and/or replaced at any point during the mission. Gigabit Ethernet, Spacewire, SATA and highspeed LVDS serial/parallel I/O channels are available for instrument/sensor data ingest, and mission-unique instrument interfaces can be accommodated using a compact PCI (cPCI) expansion card interface. The SpaceCube 2.0 can be utilized in NASA Earth Science, Helio/Astrophysics and Exploration missions, and Department of Defense satellites for onboard data processing. It can also be used in commercial communication and mapping satellites.
Gul, Asiye; Andsoy, Isil Isik; Ozkaya, Birgul; Zeydan, Ayten
2017-06-01
Nurses' knowledge of pressure ulcer (PU) prevention and management is an important first step in the provision of optimal care. To evaluate PU prevention/risk, staging, and wound description knowledge, a descriptive, cross-sectional survey was conducted among nurses working in an acute care Turkish hospital. The survey instrument was a modified and translated version of the Pieper Pressure Ulcer Knowledge Test (PUKT), and its validity and reliability were established. Nurses completed a Personal Characteristics Form, including sociodemographic information and exposure to educational presentations and information about and experience with PUs, followed by the 49-item modified PUKT which includes 33 prevention/risk items, 9 staging items, and 7 wound description items. All items are true/false questions with an I don't know option (scoring: minimum 0, maximum 49). Correct answers received 1 point and incorrect/unknown answers received 0 points. The paper-pencil questionnaires were distributed by 2 researchers to all nurses in the participating hospital and completed by those willing to be included. Responses were analyzed using descriptive statistics. Pearson's correlation test was used to examine the relationship between quantitative variables, and mean scores were compared using the Mann-Whitney U and Kruskal-Wallis tests. Among the 308 participating nurses (mean age 29.5 ± 8.1 [range 19-56] years) most were women (257, 83.4%) with 7.3 ± 7.8 (range 1-36) years of experience. The mean knowledge score for the entire sample was 29.7 ± 6.7 (range 8-42). The overall percentage of correct answers was 60.6% to 61.8% for PU prevention/risk assessment, 60% for wound description, and 56.6% for PU staging. Knowledge scores were significantly (P <.05) higher for participants who attended at least 1 lecture/conference/course on PUs in the last year, read articles/books about PUs, cared for patients with PUs, or believed their patients were at risk for PU development. Most participants (180, 58.4%) scored 60% or more correct; 8 (2.6%) correctly answered 80% or more of the items. The lowest number of correct answers was for the item, "Bunny boots and gel pads relieve pressure on the heels" (22, 7.1%). The results of this study suggest education and experience caring for patients who are at risk for or have a PU affect nurses' knowledge. This study, and additional research examining nurse knowledge, will help the development of much-needed education programs.
ERIC Educational Resources Information Center
Pitta-Pantazi, Demetra; Christou, Constantinos
2010-01-01
This paper investigates the relations of students' spatial and object visualisation with their analytic, creative and practical abilities in three-dimensional geometry. Fifty-three 11-year-olds were tested using a Greek modified version of the Object-Spatial Imagery Questionnaire (OSIQ) (Blajenkova, Kozhevnikov, & Motes, 2006) and two…
NASA Technical Reports Server (NTRS)
Liou, K. N.; Cai, Q.; Pollack, J. B.; Cuzzi, J. N.
1983-01-01
In this paper, the geometric ray tracing theory for the scattering of light by hexagonal cylinders to cubes and parallelepipeds has been modified. Effects of the real and imaginary parts of the refractive index and aspect ratio of the particle on the scattering phase function and the degree of linear polarization are investigated. Causes of the physical features in the scattering polarization patterns are identified in terms of the scattering contribution due to geometric reflections and refractions. The single-scattering phase function and polarization data presented in this paper should be of some use for the interpretation of observed scattering and polarization data from planetary atmospheres and for the physical understanding of the transfer of radiation in an atmosphere containing nonspherical particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metcalfe, Brian; Donald, Ian W.; Scheele, Randall D.
2003-12-01
Attention has recently been given to the immobilization of special categories of radioactive wastes, some of which contain high concentrations of actinide chlorides. Although vitrification in phosphate glass has been proposed, this was rejected because of the high losses of chloride. On the basis of non-radioactive and, more recently, radioactive studies, we have shown that calcium phosphate is an effective host for immobilizing the chloride constituents [1]. In this instance, the chlorine is retained as chloride, rather than evolved as a chlorine-bearing gas. The immobilized product is in the form of a free-flowing, non-hygroscopic powder, in which the chlorides aremore » chemically combined within the mineral phases chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Data from studies on non-radioactive simulated waste consisting of a mixture of CaCl2 and SmCl3, and radioactive simulated waste composed of CaCl2 with PuCl3 or PuCl3 and AmCl3, are presented and compared. The XRD data confirm the presence of chlorapatite and spodiosite in the non-radioactive and radioactive materials. The durability of all specimens was measured with a modified MCC-1 test. Releases of Cl after 28 days were 1.6 x 10-3 g m-2 for the non-radioactive specimens and 7 x 10-3 g m-2 for the Pu-bearing specimens. Releases of Ca after 28 days were 0.3 x 10-3 and 2.0 x 10-3 g m-2 for the non-radioactive composition and the Pu composition, respectively, whilst release of Pu from the radioactive specimens was lower for the mixed Pu/Am specimen at 1.2 x 10-5g m-2. The release of Am from the mixed Pu/Am composition was exceptionally low at 2.4 x 10-7 g m-2. Overall, the release rate data suggest that the ceramics dissolve congruently, followed by precipitation of Sm, Pu and Am as less soluble phases, possibly oxides or phosphates. The differences in behaviour noted between non-radioactive and radioactive specimens are interpreted in terms of the crystal chemistry of the individual systems.« less
NASA Astrophysics Data System (ADS)
Jiang, Jingxian; Fu, Yuchen; Zhang, Qinghua; Zhan, Xiaoli; Chen, Fengqiu
2017-08-01
The traditional nonfouling materials are powerless against bacterial cells attachment, while the hydrophobic bactericidal surfaces always suffer from nonspecific protein adsorption and dead bacterial cells accumulation. Here, amphiphilic polyurethane (PU) networks modified with poly(dimethylsiloxane) (PDMS) and cationic carboxybetaine diol through simple crosslinking reaction were developed, which had an antibacterial efficiency of 97.7%. Thereafter, the hydrolysis of carboxybetaine ester into zwitterionic groups brought about anti-adhesive properties against bacteria and proteins. The surface chemical composition and wettability performance of the PU network surfaces were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The surface distribution of PDMS and zwitterionic segments produced an obvious amphiphilic heterogeneous surface, which was demonstrated by atomic force microscopy (AFM). Enzyme-linked immunosorbent assays (ELISA) were used to test the nonspecific protein adsorption behaviors. With the advantages of the transition from excellent bactericidal performance to anti-adhesion and the combination of fouling resistance and fouling release property, the designed PDMS-based amphiphilic PU network shows great application potential in biomedical devices and marine facilities.
NASA Astrophysics Data System (ADS)
Gu, Jiatai; Gu, Haihong; Cao, Jin; Chen, Shaojie; Li, Ni; Xiong, Jie
2018-05-01
In this work, novel nanofibrous membranes with waterproof and breathable (W&B) performance were successfully fabricated by the combination of electrospinning and surface modification technology. This fibrous membranes consisted of polyurethane (PU), NaCl, and fluoroalkylsilane (FAS). Firstly, The fibrous construction and porous structure of fibrous membranes were regulated by tuning the NaCl concentrations in PU solutions. Then, the obtained PU/NaCl fibrous membranes were further modified with fluoroalkylsilane (FAS) to improve hydrophobic property. The synergistic effect of porous structure and hydrophobicity on waterproof and breathable performance was investigated. Furthermore, the mechanical property of fibrous membranes was deeply analysed on the basis of macromolecule orientation and adhesive structure. Benefiting from the optimized porous structure and hydrophobic modification, the resultant fibrous membranes exhibited excellent waterproof (hydrostatic pressure of 1261 Mbar), breathable (water vapor transmission (WVT) rate of 9.06 kg m-2 d-1 and air permeability of 4.8 mm s-1) performance, as well as high tensile strength (breakage stress of 10.4 MPa), suggesting a promising candidate for various applications, especially in protective clothing.
A bone-resorption surface-targeting nanoparticle to deliver anti-miR214 for osteoporosis therapy
Zhang, Shufan; Liu, Jiafan; Sun, Yao; Wang, Xiaogang
2017-01-01
With increasing fracture risks due to fragility, osteoporosis is a global health problem threatening postmenopausal women. In these patients, osteoclasts play leading roles in bone loss and fracture. How to inhibit osteoclast activity is the key issue for osteoporosis treatment. In recent years, miRNA-based gene therapy through gene regulation has been considered a potential therapeutic method. However, in light of the side effects, the use of therapeutic miRNAs in osteoporosis treatment is still limited by the lack of tissue/cell-specific delivery systems. Here, we developed polyurethane (PU) nanomicelles modified by the acidic peptide Asp8. Our data showed that without overt toxicity or eliciting an immune response, this delivery system encapsulated and selectively deliver miRNAs to OSCAR+ osteoclasts at bone-resorption surface in vivo. With the Asp8-PU delivery system, anti-miR214 was delivered to osteoclasts, and bone microarchitecture and bone mass were improved in ovariectomized osteoporosis mice. Therefore, Asp8-PU could be a useful bone-resorption surface-targeting delivery system for treatment of osteoclast-induced bone diseases and aging-related osteoporosis. PMID:29075114
SU-F-T-274: Modified Dose Calibration Methods for IMRT QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, W; Westlund, S
2016-06-15
Purpose: To investigate IMRT QA uncertainties caused by dose calibration and modify widely used dose calibration procedures to improve IMRT QA accuracy and passing rate. Methods: IMRT QA dose measurement is calibrated using a calibration factor (CF) that is the ratio between measured value and expected value corresponding to the reference fields delivered on a phantom. Two IMRT QA phantoms were used for this study: a 30×30×30 cm3 solid water cube phantom (Cube), and the PTW Octavius phantom. CF was obtained by delivering 100 MUs to the phantoms with different reference fields ranging from 3×3 cm2 to 20×20 cm{sup 2}.more » For Cube, CFs were obtained using the following beam arrangements: 2-AP Field - chamber at dmax, 2-AP Field - chamber at isocenter, 4-beam box - chamber at isocenter, and 8 equally spaced fields and chamber at isocenter. The same plans were delivered on Octavius and CFs were derived for the dose at the isocenter using the above beam arrangements. The Octavius plans were evaluated with PTW-VeriSoft (Gamma criteria of 3%/3mm). Results: Four head and neck IMRT plans were included in this study. For point dose measurement with Cube, the CFs with 4-Field gave the best agreement between measurement and calculation within 4% for large field plans. All the measurement results agreed within 2% for a small field plan. Compared with calibration field sizes, 5×5 to 15×15 were more accurate than other field sizes. For Octavius, 4-Field calibration increased passing rate by up to 10% compared to AP calibration. Passing rate also increased by up to 4% with the increase of field size from 3×3 to 20×20. Conclusion: IMRT QA results are correlated with calibration methods used. The dose calibration using 4-beam box with field sizes from 5×5 to 20×20 can improve IMRT QA accuracy and passing rate.« less
Minimizing Glovebox Glove Breaches, Part III: Deriving Service Lifetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, M.E.; Wilson, K.V.; Maestas, M.M.
At the Los Alamos Plutonium Facility, various isotopes of plutonium along with other actinides are handled in a glove box environment. Weapons-grade plutonium consists mainly in Pu-239. Pu-238 is another isotope used for heat sources. The Pu-238 is more aggressive regarding gloves due to its higher alpha-emitting characteristic ({approx}300 times more active than Pu-239), which modifies the change-out intervals for gloves. Optimization of the change-out intervals for gloves is fundamental since Nuclear Materials Technology (NMT) Division generates approximately 4 m{sup 3}/yr of TRU waste from the disposal of glovebox gloves. To reduce the number of glovebox glove failures, the NMTmore » Division pro-actively investigates processes and procedures that minimize glove failures. Aging studies have been conducted that correlate changes in mechanical (physical) properties with degradation chemistry. This present work derives glovebox glove change intervals based on mechanical data of thermally aged Hypalon{sup R}, and Butasol{sup R} glove samples. Information from this study represent an important baseline in gauging the acceptable standards for polymeric gloves used in a laboratory glovebox environment and will be used later to account for possible presence of dose-rate or synergistic effects in 'combined-environment'. In addition, excursions of contaminants into the operator's breathing zone and excess exposure to the radiological sources associated with unplanned breaches in the glovebox are reduced. (authors)« less
Atomistic simulations of dislocation dynamics in δ-Pu-Ga alloys
NASA Astrophysics Data System (ADS)
Karavaev, A. V.; Dremov, V. V.; Ionov, G. V.
2017-12-01
Molecular dynamics with the modified embedded atom model (MEAM) for interatomic interaction is applied to direct simulations of dislocation dynamics in fcc δ-phase Pu-Ga alloys. First, parameters of the MEAM potential are fitted to accurately reproduce experimental phonon dispersion curves and phonon density of states at ambient conditions. Then the stress-velocity dependence for edge dislocations as well as Pierls stress are obtained in direct MD modeling of dislocation motion using the shear stress relaxation technique. The simulations are performed for different gallium concentrations and the dependence of static yield stress on Ga concentration derived demonstrates good agreement with experimental data. Finally, the influence of radiation defects (primary radiation defects, nano-pores, and radiogenic helium bubbles) on dislocation dynamics is investigated. It is demonstrated that uniformly distributed vacancies and nano-pores have little effect on dislocation dynamics in comparison with that of helium bubbles. The results of the MD simulations evidence that the accumulation of the radiogenic helium in the form of nanometer-sized bubbles is the main factor affecting strength properties during long-term storage. The calculated dependence of static yield stress on helium bubbles concentration for fcc Pu 1 wt .% Ga is in good agreement with that obtained in experiments on accelerated aging. The developed technique of static yield stress evaluation is applicable to δ-phase Pu-Ga alloys with arbitrary Ga concentrations.
Tran, Viet-Ha Thi; Lee, Byeong-Kyu
2017-12-13
We report a novel superhydrophobic material based on commercially available polyurethane (PU) sponge with high porosity, low density and good elasticity. The fabrication of a superhydrophobic sponge capable of efficiently separating oil from water was achieved by imitating or mimicking nature's designs. The original PU sponge was coated with zinc oxide (ZnO), stearic acid (SA) and iron oxide particles (Fe 3 O 4 ) via a facile and environmentally friendly method. After each treatment, the properties of the modified sponge were characterized, and the changes in wettability were examined. Water contact angle (WCA) measurements confirmed the excellent superhydrophobicity of the material withhigh static WCA of 161° andlow dynamic WCA (sliding WCA of 7° and shedding WCA of 8°). The fabricated sponge showed high efficiency in separation (over 99%) of different oils from water. Additionally, the fabricated PU@ZnO@Fe 3 O 4 @SA sponge could be magnetically guided to quickly absorb oil floating on the water surface. Moreover, the fabricated sponge showed excellent stability and reusability in terms of superhydrophobicity and oil absorption capacity. The durable, magnetic and superhydrophobic properties of the fabricated sponge render it applicable to the cleanup of marine oil spills and other oil-water separation issues, with eco-friendly recovery of the oil by simple squeezing process.
Yeh, Hui-Jung; Shih, Tung-Sheng; Tsai, Perng-Jy; Chang, Ho-Yuan
2002-03-01
To determine nationwide 2,4- and 2,6-toluene diisocyanates (TDI) concentrations among polyurethane (PU) resin, PU foam, and other TDI-related industries in Taiwan. The ratios of 2,4-/2,6-TDI and the noncarcinogenic risk among these three industries were also investigated. Personal and fixed-area monitoring of TDI concentrations as well as questionnaires were performed for 26 factories in Taiwan. The modified OHSA 42 method was applied in sampling and analysis. Noncarcinogenic hazard index was estimated for these three industries based on the average concentration measurements. Significant differences of TDI concentrations were found among the three industry categories. For personal monitoring, PU foam was found to have the highest TDI levels [18.6 (+/-33.6) and 22.1 (+/-42.3) ppb for 2,4- and 2,6-TDI], Others average [8.3 (+/-18.9) and 10.2 (+/-17.2) ppb], and PU resin lowest [2.0 (+/-3.5) and 0.7 (+/-1.2) ppb]. The estimated average hazard indices were found to be 310-3310. A substantial percentage of airborne TDI concentrations among in Taiwan industries exceeded current TDI occupational exposure limit, and significant difference of TDI levels were found among the three industry categories. The control remedy for the tasks of charging and foaming should be enforced with the highest priority. A separate 2,6-TDI exposure standard is warranted.
Shape Effect of Magnetic Nanoparticles on Hyperthermia Applications
NASA Astrophysics Data System (ADS)
Mohapatra, Jeotikanta; Zeng, F.; Elkins, K.; Poudyal, N.; Gandha, K.; Liu, J. Ping
Magnetic Fe3O4 nanoparticles (NPs) are extensively studied for their applications in advanced technologies. Incorporation of different transition metal ions and control of their sizes from nanometre to submicron scale are the keys for the magnetic property manipulation. We have investigated an alternative approach to optimize the magnetic properties by tailoring the shape of the NPs based on the observation that anisotropy of the NPs plays a crucial role in defining the magnetic characteristics. To synthesize monodisperse Fe3O4 NPs we have modified the conventional thermal decomposition to a `solvent-less' synthesis approach where long chain amine/acid acts as reducing and surface functionalizing agent. Various shapes like spheres, rods, octahedrons and cubes are obtained through simple alteration in reaction conditions. Octahedral and cube shaped Fe3O4 NPs exhibit bulk magnetization (92 emu/g) value due to the reduced surface spin disorder. These anisotropic NPs serve better in hyperthermia applications compared to the conventional spherical NPs. The cube and octahedron NPs show significantly higher SAR value, making them a potential candidate for hyperthermia treatment. This work has been supported by the U.S. DoD/ARO under Grant W911NF-11-0507.
Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki
2017-04-01
Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as 238 U with 238 Pu and 241 Am with 241 Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of 238 Pu/ 239 Pu, 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, 238 Pu/ 239 Pu isotope ratios were able to be calculated by using both the 238 Pu/( 239 Pu+ 240 Pu) activity ratios that had been measured through alpha spectrometry and the 240 Pu/ 239 Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including 238 Pu/ 239 Pu, in individual U-Pu mixed oxide particles. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egli, Martin; Pallan, Pradeep S.; Allerson, Charles R.
The synthesis, biophysical, structural, and biological properties of both isomers of 3'-fluoro hexitol nucleic acid (FHNA and Ara-FHNA) modified oligonucleotides are reported. Synthesis of the FHNA and Ara-FHNA thymine phosphoramidites was efficiently accomplished starting from known sugar precursors. Optimal RNA affinities were observed with a 3'-fluorine atom and nucleobase in a trans-diaxial orientation. The Ara-FHNA analog with an equatorial fluorine was found to be destabilizing. However, the magnitude of destabilization was sequence-dependent. Thus, the loss of stability is sharply reduced when Ara-FHNA residues were inserted at pyrimidine-purine (Py-Pu) steps compared to placement within a stretch of pyrimidines (Py-Py). Crystal structuresmore » of A-type DNA duplexes modified with either monomer provide a rationalization for the opposing stability effects and point to a steric origin of the destabilization caused by the Ara-FHNA analog. The sequence dependent effect can be explained by the formation of an internucleotide C-F {hor_ellipsis} H-C pseudo hydrogen bond between F3' of Ara-FHNA and C8-H of the nucleobase from the 3'-adjacent adenosine that is absent at Py-Py steps. In animal experiments, FHNA-modified antisense oligonucleotides formulated in saline showed a potent downregulation of gene expression in liver tissue without producing hepatotoxicity. Our data establish FHNA as a useful modification for antisense therapeutics and also confirm the stabilizing influence of F(Py) {hor_ellipsis} H-C(Pu) pseudo hydrogen bonds in nucleic acid structures.« less
Fan, Dawei; Bao, Chunzhu; Khan, Malik Saddam; Wang, Chuanlei; Zhang, Yong; Liu, Qinze; Zhang, Xian; Wei, Qin
2018-05-30
A novel label-free photoelectrochemical (PEC) sensor based on graphene quantum dots doped with nitrogen and sulfur (N,S-GQDs) and CdS co-sensitized hierarchical Zn 2 SnO 4 cube was fabricated to detect cardiac troponin I (cTnI). The unique hierarchical Zn 2 SnO 4 cube was synthesized successfully by the solvothermal method, which has a large specific surface to load functional materials. N,S-GQDs nanoparticles were assembled to the surface of cubic Zn 2 SnO 4 coated ITO electrode, which efficiently accelerated the electronic transition and improved photo-to-current conversion efficiency. Then, CdS nanoparticles further were modified by in-situ growth method to form Zn 2 SnO 4 /N,S-GQDs/CdS composite with prominent photocurrent, which was 30 times that of the Zn 2 SnO 4 cube alone. In this work, the specific immune recognition between cTnI antigens and cTnI antibodies (anti-cTnI) reduced the intensity of the photoelectric signal. And the intensity decreased linearly with the logarithm of cTnI concentration range from 0.001 ng/mL to 50 ng/mL with a detection limit of 0.3 pg/mL. With high sensitivity, excellent selectivity, good stability and reproducibility, the fabricated PEC sensor showed promising applications in the sensor, clinical diagnosis of myocardial infarction and PEC analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Equivalence Reliability among the FITNESSGRAM[R] Upper-Body Tests of Muscular Strength and Endurance
ERIC Educational Resources Information Center
Sherman, Todd; Barfield, J. P.
2006-01-01
This study was designed to investigate the equivalence reliability between the suggested FITNESSGRAM[R] muscular strength and endurance test, the 90[degrees] push-up (PSU), and alternate FITNESSGRAM[R] tests of upper-body strength and endurance (i.e., modified pull-up [MPU], flexed-arm hang [FAH], and pull-up [PU]). Children (N = 383) in Grades 3…
Astrophysical neutrinos flavored with beyond the Standard Model physics
NASA Astrophysics Data System (ADS)
Rasmussen, Rasmus W.; Lechner, Lukas; Ackermann, Markus; Kowalski, Marek; Winter, Walter
2017-10-01
We systematically study the allowed parameter space for the flavor composition of astrophysical neutrinos measured at Earth, including beyond the Standard Model theories at production, during propagation, and at detection. One motivation is to illustrate the discrimination power of the next-generation neutrino telescopes such as IceCube-Gen2. We identify several examples that lead to potential deviations from the standard neutrino mixing expectation such as significant sterile neutrino production at the source, effective operators modifying the neutrino propagation at high energies, dark matter interactions in neutrino propagation, or nonstandard interactions in Earth matter. IceCube-Gen2 can exclude about 90% of the allowed parameter space in these cases, and hence will allow us to efficiently test and discriminate between models. More detailed information can be obtained from additional observables such as the energy dependence of the effect, fraction of electron antineutrinos at the Glashow resonance, or number of tau neutrino events.
VizieR Online Data Catalog: HI data cubes of 4 edge-on spiral galaxies (Allaert+, 2015)
NASA Astrophysics Data System (ADS)
Allaert, F.; Gentile, G.; Baes, M.; de Geyter, G.; Hughes, T. M.; Lewis, F.; Bianchi, S.; de Looze, I.; Fritz, J.; Holwerda, B. W.; Verstappen, J.; Viaene, S.
2015-09-01
The reduced and Cleaned HI data cubes of the HEROES galaxies NGC 973, UGC 4277, NGC 5529 and NGC 5907 are presented as FITS files. The equatorial coordinates and the beam FWHM, velocity resolution and rms noise of the data cubes are given in a separate table. NGC 973 and UGC 4277 were observed by the authors with the GMRT. The total time on source was 5.7 and 6.2 hours, respectively. For NGC 5529, the data were obtained by Kregel et al. (2004MNRAS.352..768K) using the Maxi-Short configuration of the WSRT, with a total time on source of 11.9 hours. Finally, NGC 5907 was observed by Shang et al. (1998ApJ...504L..23S) with the VLA in Modified C configuration. The total time on source was 4.7 hours. The raw interferometric data can be obtained from the online data archives of the telescopes in question. For IC 2531 and NGC 4217, the reduced data were made available to us by S. Peters (Peters et al., 2013arXiv1303.2463P) and M. Verheijen (Verheijen & Sancisi, 2001A&A...370..765V), respectively. We refer the user to the original papers for further questions or requests about the data. (2 data files).
Comparative uptake of plutonium from soils by Brassica juncea and Helianthus annuus.
Lee, J H; Hossner, L R; Attrep, M; Kung, K S
2002-01-01
Plutonium uptake by Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) from soils with varying chemical composition and contaminated with Pu complexes (Pu-nitrate [239Pu(NO3)4], Pu-citrate [239Pu(C6H5O7)], and Pu-diethylenetriaminepentaacetic acid (Pu-DTPA [239Pu-C14H23O10N3]) was investigated. Sequential extraction of soils incubated with applied Pu was used to determine the distribution of Pu in the various soil fractions. The initial Pu activity levels in soils were 44.40-231.25 Bq g(-1) as Pu-nitrate Pu-citrate, or Pu-DTPA. A difference in Pu uptake between treatments of Pu-nitrate and Pu-citrate without chelating agent was observed only with Indian mustard in acidic Crowley soil. The uptake of Pu by plants was increased with increasing DTPA rates, however, the Pu concentration of plants was not proportionally increased with increasing application rate of Pu to soil. Plutonium uptake from Pu-DTPA was significantly higher from the acid Crowley soil than from the calcareous Weswood soil. The uptake of Pu from the soils was higher in Indian mustard than in sunflower. Sequential extraction of Pu showed that the ion-exchangeable Pu fraction in soils was dramatically increased with DTPA treatment and decreased with time of incubation. Extractability of Pu in all fractions was not different when Pu-nitrate and Pu-citrate were applied to the same soil. More Pu was associated with the residual Pu fraction without DTPA application. Consistent trends with time of incubation for other fractions were not apparent. The ion-exchangeable fraction, assumed as plant-available Pu, was significantly higher in acid soil compared with calcareous soil with or without DTPA treatment. When the calcareous soil was treated with DTPA, the ion-exchangeable Pu was comparatively less influenced. This fraction in the soil was more affected with time of incubation. The lowest extractable Pu was from a pH 6.55 Crockett soil that contained the highest clay compared to the other two soils. Extractable soil Pu was largely affected by soil pH and the amounts of clay, salt, metal oxide, and carbonate.
Propulsion Trade Studies for Spacecraft Swarm Mission Design
NASA Technical Reports Server (NTRS)
Dono, Andres; Plice, Laura; Mueting, Joel; Conn, Tracie; Ho, Michael
2018-01-01
Spacecraft swarms constitute a challenge from an orbital mechanics standpoint. Traditional mission design involves the application of methodical processes where predefined maneuvers for an individual spacecraft are planned in advance. This approach does not scale to spacecraft swarms consisting of many satellites orbiting in close proximity; non-deterministic maneuvers cannot be preplanned due to the large number of units and the uncertainties associated with their differential deployment and orbital motion. For autonomous small sat swarms in LEO, we investigate two approaches for controlling the relative motion of a swarm. The first method involves modified miniature phasing maneuvers, where maneuvers are prescribed that cancel the differential delta V of each CubeSat's deployment vector. The second method relies on artificial potential functions (APFs) to contain the spacecraft within a volumetric boundary and avoid collisions. Performance results and required delta V budgets are summarized, indicating that each method has advantages and drawbacks for particular applications. The mini phasing maneuvers are more predictable and sustainable. The APF approach provides a more responsive and distributed performance, but at considerable propellant cost. After considering current state of the art CubeSat propulsion systems, we conclude that the first approach is feasible, but the modified APF method of requires too much control authority to be enabled by current propulsion systems.
What's the Cube Quest Challenge?
NASA Technical Reports Server (NTRS)
Cockrell, Jim
2016-01-01
Cube Quest Challenge, sponsored by Space Technology Mission Directorates Centennial Challenges program, is NASAs first in-space prize competition. Cube Quest is open to any U.S.-based, non-government CubeSat developer. Entrants will compete for one of three available 6U CubeSat dispenser slots on the EM-1 mission the first un-crewed lunar flyby of the Orion spacecraft launched by the Space Launch System in early 2018. The Cube Quest Challenge will award up to $5M in prizes. The advanced CubeSat technologies demonstrated by Cube Quest winners will enable NASA, universities, and industry to more quickly and affordably accomplish science and exploration objectives. This paper describes the teams, their novel CubeSat designs, and the emerging technologies for CubeSat operations in deep space environment.
SU-E-T-455: Characterization of 3D Printed Materials for Proton Beam Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, W; Siderits, R; McKenna, M
2014-06-01
Purpose: The widespread availability of low cost 3D printing technologies provides an alternative fabrication method for customized proton range modifying accessories such as compensators and boluses. However the material properties of the printed object are dependent on the printing technology used. In order to facilitate the application of 3D printing in proton therapy, this study investigated the stopping power of several printed materials using both proton pencil beam measurements and Monte Carlo simulations. Methods: Five 3–4 cm cubes fabricated using three 3D printing technologies (selective laser sintering, fused-deposition modeling and stereolithography) from five printers were investigated. The cubes were scannedmore » on a CT scanner and the depth dose curves for a mono-energetic pencil beam passing through the material were measured using a large parallel plate ion chamber in a water tank. Each cube was measured from two directions (perpendicular and parallel to printing plane) to evaluate the effects of the anisotropic material layout. The results were compared with GEANT4 Monte Carlo simulation using the manufacturer specified material density and chemical composition data. Results: Compared with water, the differences from the range pull back by the printed blocks varied and corresponded well with the material CT Hounsfield unit. The measurement results were in agreement with Monte Carlo simulation. However, depending on the technology, inhomogeneity existed in the printed cubes evidenced from CT images. The effect of such inhomogeneity on the proton beam is to be investigated. Conclusion: Printed blocks by three different 3D printing technologies were characterized for proton beam with measurements and Monte Carlo simulation. The effects of the printing technologies in proton range and stopping power were studied. The derived results can be applied when specific devices are used in proton radiotherapy.« less
Hain, Karin; Faestermann, Thomas; Fimiani, Leticia; Golser, Robin; Gómez-Guzmán, José Manuel; Korschinek, Gunther; Kortmann, Florian; Lierse von Gostomski, Christoph; Ludwig, Peter; Steier, Peter; Tazoe, Hirofumi; Yamada, Masatoshi
2017-02-21
The concentration of plutonium (Pu) and the isotopic ratios of 240 Pu to 239 Pu and 241 Pu to 239 Pu were determined by accelerator mass spectrometry (AMS) in Pacific Ocean water samples (20 L each) collected in late 2012. The isotopic Pu ratios are important indicators of different contamination sources and were used to identify a possible release of Pu into the ocean by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. In particular, 241 Pu is a well-suited indicator for a recent entry of Pu because 241 Pu from fallout of nuclear weapon testings has already significantly decayed. A total of 10 ocean water samples were prepared at the Radiochemie München of the TUM and analyzed at the Vienna Environmental Research Laboratory (VERA). Several samples showed a slightly elevated 240 Pu/ 239 Pu ratio of up to 0.22 ± 0.02 compared to global fallout ( 240 Pu/ 239 Pu = 0.180 ± 0.007), whereas all measured 241 Pu-to- 239 Pu ratios were consistent with nuclear weapon fallout ( 241 Pu/ 239 Pu < 2.4 × 10 -3 ), which means that no impact from the Fukushima accident was detected. From the average 241 Pu-to- 239 Pu ratio of 8 -2 +3 ×10 -4 at a sampling station located at a distance of 39.6 km to FDNPP, the 1-σ upper limit for the FDNPP contribution to the 239 Pu inventory in the water column was estimated to be 0.2%. Pu, with the signature of weapon-grade Pu was found in a single sample collected around 770 km off the west coast of the United States.
Photogrammetry Tool for Forensic Analysis
NASA Technical Reports Server (NTRS)
Lane, John
2012-01-01
A system allows crime scene and accident scene investigators the ability to acquire visual scene data using cameras for processing at a later time. This system uses a COTS digital camera, a photogrammetry calibration cube, and 3D photogrammetry processing software. In a previous instrument developed by NASA, the laser scaling device made use of parallel laser beams to provide a photogrammetry solution in 2D. This device and associated software work well under certain conditions. In order to make use of a full 3D photogrammetry system, a different approach was needed. When using multiple cubes, whose locations relative to each other are unknown, a procedure that would merge the data from each cube would be as follows: 1. One marks a reference point on cube 1, then marks points on cube 2 as unknowns. This locates cube 2 in cube 1 s coordinate system. 2. One marks reference points on cube 2, then marks points on cube 1 as unknowns. This locates cube 1 in cube 2 s coordinate system. 3. This procedure is continued for all combinations of cubes. 4. The coordinate of all of the found coordinate systems is then merged into a single global coordinate system. In order to achieve maximum accuracy, measurements are done in one of two ways, depending on scale: when measuring the size of objects, the coordinate system corresponding to the nearest cube is used, or when measuring the location of objects relative to a global coordinate system, a merged coordinate system is used. Presently, traffic accident analysis is time-consuming and not very accurate. Using cubes with differential GPS would give absolute positions of cubes in the accident area, so that individual cubes would provide local photogrammetry calibration to objects near a cube.
Sources and transport of anthropogenic radionuclides in the Ob River system, Siberia
NASA Astrophysics Data System (ADS)
Cochran, J. Kirk; Moran, S. Bradley; Fisher, Nicholas S.; Beasley, Thomas M.; Kelley, James M.
2000-06-01
The potential sources of anthropogenic radionuclides to the Ob River system of western Siberia include global stratospheric fallout, tropospheric fallout from atomic weapons tests and releases from production and reprocessing facilities. Samples of water, suspended and bottom sediments collected in 1994 and 1995 have been used to characterize the sources and transport of 137Cs, Pu isotopes, 237Np and 129I through the system. For the radionuclides that associate with particles, isotope ratios provide clues to their sources, providing any geochemical fractionation can be taken into account. Activity ratios of 239,240Pu/ 137Cs in suspended sediments are lower than the global fallout ratio in the Irtysh River before its confluence with the Ob, comparable to fallout in the central reach of the Ob, and greater than the fallout values in the lower Ob and in the Taz River. This pattern mirrors the downriver decrease in dissolved organic carbon (DOC) concentrations. Laboratory adsorption experiments with Ob River sediment and water show that Kd values for Am (and presumably other actinides) are depressed by two orders of magnitude in the presence of Ob DOC concentrations, relative to values measured in DOC-free Ob water. Iodine and cesium Kd values show little or no (less than a factor of 2) dependence on DOC. Mixing plots using plutonium isotope ratios (atom ratios) show that Pu in suspended sediments of the Ob is a mixture of stratospheric global fallout at northern latitudes, tropospheric fallout from the former Soviet Union test site at Semipalatinsk and reprocessing of spent fuel at Tomsk-7. Plutonium from Semipalatinsk is evident in the Irtysh River above its confluence with the Tobal. Suspended sediment samples taken in the Ob above its confluence with the Irtysh indicate the presence of Pu derived from the Tomsk-7 reprocessing facilities. A mixing plot constructed using 237Np/ 239Pu vs. 240Pu/ 239Pu shows similar mixtures of stratospheric and tropospheric fallout, with the likely addition of inputs from reprocessing facilities and reactor operations. As with Pu/Cs ratios, Np/Pu ratios could be modified by differential geochemical behaviors of Np and Pu. Dissolved 129I only weakly interacts with particles in the Ob; size-fractionated sampling shows that the colloidal 129I fraction (defined as 1 kDa-0.2 μm) contains generally <5% relative to that passing a 0.2 μm filter. Iodine-129 concentrations decrease from 8.3×10 9 to 0.65×10 9 atoms l -1 through the Ob system toward the Kara Sea, with highest values in the Tobal River and lowest in the Taz River. The likely source of the elevated 129I in the Tobal is release from the production-reprocessing facilities at Mayak, and decreases downriver are predominantly due to dilution as the various tributaries with low 129I join the system. Fluxes of 129I to the lower Ob at Salekhard are <1% of the releases of this radionuclide from the nuclear fuel reprocessing facilities at Sellafield, UK and La Hague, France.
Tapia, Milagritos D; Sow, Samba O; Lyke, Kirsten E; Haidara, Fadima Cheick; Diallo, Fatoumata; Doumbia, Moussa; Traore, Awa; Coulibaly, Flanon; Kodio, Mamoudou; Onwuchekwa, Uma; Sztein, Marcelo B; Wahid, Rezwanul; Campbell, James D; Kieny, Marie-Paule; Moorthy, Vasee; Imoukhuede, Egeruan B; Rampling, Tommy; Roman, Francois; De Ryck, Iris; Bellamy, Abbie R; Dally, Len; Mbaya, Olivier Tshiani; Ploquin, Aurélie; Zhou, Yan; Stanley, Daphne A; Bailer, Robert; Koup, Richard A; Roederer, Mario; Ledgerwood, Julie; Hill, Adrian V S; Ballou, W Ripley; Sullivan, Nancy; Graham, Barney; Levine, Myron M
2016-01-01
The 2014 west African Zaire Ebola virus epidemic prompted worldwide partners to accelerate clinical development of replication-defective chimpanzee adenovirus 3 vector vaccine expressing Zaire Ebola virus glycoprotein (ChAd3-EBO-Z). We aimed to investigate the safety, tolerability, and immunogenicity of ChAd3-EBO-Z in Malian and US adults, and assess the effect of boosting of Malians with modified vaccinia Ankara expressing Zaire Ebola virus glycoprotein and other filovirus antigens (MVA-BN-Filo). In the phase 1, single-blind, randomised trial of ChAd3-EBO-Z in the USA, we recruited adults aged 18-65 years from the University of Maryland medical community and the Baltimore community. In the phase 1b, open-label and double-blind, dose-escalation trial of ChAd3-EBO-Z in Mali, we recruited adults 18-50 years of age from six hospitals and health centres in Bamako (Mali), some of whom were also eligible for a nested, randomised, double-blind, placebo-controlled trial of MVA-BN-Filo. For randomised segments of the Malian trial and for the US trial, we randomly allocated participants (1:1; block size of six [Malian] or four [US]; ARB produced computer-generated randomisation lists; clinical staff did randomisation) to different single doses of intramuscular immunisation with ChAd3-EBO-Z: Malians received 1 × 10(10) viral particle units (pu), 2·5 × 10(10) pu, 5 × 10(10) pu, or 1 × 10(11) pu; US participants received 1 × 10(10) pu or 1 × 10(11) pu. We randomly allocated Malians in the nested trial (1:1) to receive a single dose of 2 × 10(8) plaque-forming units of MVA-BN-Filo or saline placebo. In the double-blind segments of the Malian trial, investigators, clinical staff, participants, and immunology laboratory staff were masked, but the study pharmacist (MK), vaccine administrator, and study statistician (ARB) were unmasked. In the US trial, investigators were not masked, but participants were. Analyses were per protocol. The primary outcome was safety, measured with occurrence of adverse events for 7 days after vaccination. Both trials are registered with ClinicalTrials.gov, numbers NCT02231866 (US) and NCT02267109 (Malian). Between Oct 8, 2014, and Feb 16, 2015, we randomly allocated 91 participants in Mali (ten [11%] to 1 × 10(10) pu, 35 [38%] to 2·5 × 10(10) pu, 35 [38%] to 5 × 10(10) pu, and 11 [12%] to 1 × 10(11) pu) and 20 in the USA (ten [50%] to 1 × 10(10) pu and ten [50%] to 1 × 10(11) pu), and boosted 52 Malians with MVA-BN-Filo (27 [52%]) or saline (25 [48%]). We identified no safety concerns with either vaccine: seven (8%) of 91 participants in Mali (five [5%] received 5 × 10(10) and two [2%] received 1 × 10(11) pu) and four (20%) of 20 in the USA (all received 1 × 10(11) pu) given ChAd3-EBO-Z had fever lasting for less than 24 h, and 15 (56%) of 27 Malians boosted with MVA-BN-Filo had injection-site pain or tenderness. 1 × 10(11) pu single-dose ChAd3-EBO-Z could suffice for phase 3 efficacy trials of ring-vaccination containment needing short-term, high-level protection to interrupt transmission. MVA-BN-Filo boosting, although a complex regimen, could confer long-lived protection if needed (eg, for health-care workers). Wellcome Trust, Medical Research Council UK, Department for International Development UK, National Cancer Institute, Frederick National Laboratory for Cancer Research, Federal Funds from National Institute of Allergy and Infectious Diseases. Copyright © 2016 Tapia et al. Open Access article distributed under the terms of CC BY. Published by Elsevier Ltd.. All rights reserved.
Insights into the sonochemical synthesis and properties of salt-free intrinsic plutonium colloids
NASA Astrophysics Data System (ADS)
Dalodière, Elodie; Virot, Matthieu; Morosini, Vincent; Chave, Tony; Dumas, Thomas; Hennig, Christoph; Wiss, Thierry; Dieste Blanco, Oliver; Shuh, David K.; Tyliszcak, Tolek; Venault, Laurent; Moisy, Philippe; Nikitenko, Sergey I.
2017-03-01
Fundamental knowledge on intrinsic plutonium colloids is important for the prediction of plutonium behaviour in the geosphere and in engineered systems. The first synthetic route to obtain salt-free intrinsic plutonium colloids by ultrasonic treatment of PuO2 suspensions in pure water is reported. Kinetics showed that both chemical and mechanical effects of ultrasound contribute to the mechanism of Pu colloid formation. In the first stage, fragmentation of initial PuO2 particles provides larger surface contact between cavitation bubbles and solids. Furthermore, hydrogen formed during sonochemical water splitting enables reduction of Pu(IV) to more soluble Pu(III), which then re-oxidizes yielding Pu(IV) colloid. A comparative study of nanostructured PuO2 and Pu colloids produced by sonochemical and hydrolytic methods, has been conducted using HRTEM, Pu LIII-edge XAS, and O K-edge NEXAFS/STXM. Characterization of Pu colloids revealed a correlation between the number of Pu-O and Pu-Pu contacts and the atomic surface-to-volume ratio of the PuO2 nanoparticles. NEXAFS indicated that oxygen state in hydrolytic Pu colloid is influenced by hydrolysed Pu(IV) species to a greater extent than in sonochemical PuO2 nanoparticles. In general, hydrolytic and sonochemical Pu colloids can be described as core-shell nanoparticles composed of quasi-stoichiometric PuO2 cores and hydrolyzed Pu(IV) moieties at the surface shell.
Insights into the sonochemical synthesis and properties of salt-free intrinsic plutonium colloids
Dalodière, Elodie; Virot, Matthieu; Morosini, Vincent; Chave, Tony; Dumas, Thomas; Hennig, Christoph; Wiss, Thierry; Dieste Blanco, Oliver; Shuh, David K.; Tyliszcak, Tolek; Venault, Laurent; Moisy, Philippe; Nikitenko, Sergey I.
2017-01-01
Fundamental knowledge on intrinsic plutonium colloids is important for the prediction of plutonium behaviour in the geosphere and in engineered systems. The first synthetic route to obtain salt-free intrinsic plutonium colloids by ultrasonic treatment of PuO2 suspensions in pure water is reported. Kinetics showed that both chemical and mechanical effects of ultrasound contribute to the mechanism of Pu colloid formation. In the first stage, fragmentation of initial PuO2 particles provides larger surface contact between cavitation bubbles and solids. Furthermore, hydrogen formed during sonochemical water splitting enables reduction of Pu(IV) to more soluble Pu(III), which then re-oxidizes yielding Pu(IV) colloid. A comparative study of nanostructured PuO2 and Pu colloids produced by sonochemical and hydrolytic methods, has been conducted using HRTEM, Pu LIII-edge XAS, and O K-edge NEXAFS/STXM. Characterization of Pu colloids revealed a correlation between the number of Pu-O and Pu-Pu contacts and the atomic surface-to-volume ratio of the PuO2 nanoparticles. NEXAFS indicated that oxygen state in hydrolytic Pu colloid is influenced by hydrolysed Pu(IV) species to a greater extent than in sonochemical PuO2 nanoparticles. In general, hydrolytic and sonochemical Pu colloids can be described as core-shell nanoparticles composed of quasi-stoichiometric PuO2 cores and hydrolyzed Pu(IV) moieties at the surface shell. PMID:28256635
Insights into the sonochemical synthesis and properties of salt-free intrinsic plutonium colloids
Dalodière, Elodie; Virot, Matthieu; Morosini, Vincent; ...
2017-03-03
Fundamental knowledge on intrinsic plutonium colloids is important for the prediction of plutonium behaviour in the geosphere and in engineered systems. The first synthetic route to obtain salt-free intrinsic plutonium colloids by ultrasonic treatment of PuO 2 suspensions in pure water is reported. Kinetics showed that both chemical and mechanical effects of ultrasound contribute to the mechanism of Pu colloid formation. In the first stage, fragmentation of initial PuO 2 particles provides larger surface contact between cavitation bubbles and solids. Furthermore, hydrogen formed during sonochemical water splitting enables reduction of Pu(IV) to more soluble Pu(III), which then re-oxidizes yielding Pu(IV)more » colloid. A comparative study of nanostructured PuO 2 and Pu colloids produced by sonochemical and hydrolytic methods, has been conducted using HRTEM, Pu LIII-edge XAS, and O K-edge NEXAFS/STXM. Characterization of Pu colloids revealed a correlation between the number of Pu-O and Pu-Pu contacts and the atomic surface-to-volume ratio of the PuO 2 nanoparticles. NEXAFS indicated that oxygen state in hydrolytic Pu colloid is influenced by hydrolysed Pu(IV) species to a greater extent than in sonochemical PuO 2 nanoparticles. In general, hydrolytic and sonochemical Pu colloids can be described as core-shell nanoparticles composed of quasi-stoichiometric PuO 2 cores and hydrolyzed Pu(IV) moieties at the surface shell.« less
Zhao, Pihong; Begg, James D.; Zavarin, Mavrik; ...
2016-06-06
Here, Pu(IV) and Pu(V) sorption to goethite was investigated over a concentration range of 10 –15–10 –5 M at pH 8. Experiments with initial Pu concentrations of 10 –15 – 10 –8 M produced linear Pu sorption isotherms, demonstrating that Pu sorption to goethite is not concentration-dependent across this concentration range. Equivalent Pu(IV) and Pu(V) sorption Kd values obtained at 1 and 2-week sampling time points indicated that Pu(V) is rapidly reduced to Pu(IV) on the goethite surface. Further, it suggested that Pu surface redox transformations are sufficiently rapid to achieve an equilibrium state within 1 week, regardless of themore » initial Pu oxidation state. At initial concentrations >10 –8 M, both Pu oxidation states exhibited deviations from linear sorption behavior and less Pu was adsorbed than at lower concentrations. NanoSIMS and HRTEM analysis of samples with initial Pu concentrations of 10 –8 – 10 –6 M indicated that Pu surface and/or bulk precipitation was likely responsible for this deviation. In 10 –6 M Pu(IV) and Pu(V) samples, HRTEM analysis showed the formation of a body centered cubic (bcc) Pu 4O 7 structure on the goethite surface, confirming that reduction of Pu(V) had occurred on the mineral surface and that epitaxial distortion previously observed for Pu(IV) sorption occurs with Pu(V) as well.« less
Resolving global versus local/regional Pu sources in the environment using sector ICP-MS
Ketterer, M.E.; Hafer, K.M.; Link, C.L.; Kolwaite, D.; Wilson, Jim; Mietelski, J.W.
2004-01-01
Sector inductively coupled plasma mass spectrometry is a versatile method for the determination of plutonium activities and isotopic compositions in samples containing this element at fallout levels. Typical detection limits for 239+240Pu are 0.1, 0.02 and 0.002 Bq kg -1Pu for samples sizes of 0.5 g, 3 g, and 50 g of soil, respectively. The application of sector ICP-MS-based Pu determinations is demonstrated in studies in sediment chronology, soil Pu inventory and depth distribution, and the provenance of global fallout versus local or regional Pu sources. A sediment core collected from Sloans Lake (Denver, Colorado, USA) exhibits very similar 137Cs and 239+240Pu activity profiles; 240Pu/239Pu atom ratios indicate possible small influences from the Nevada Test Site and/or the Rocky Flats Environmental Technology Site. An undisturbed soil profile from Lockett Meadow (Flagstaff, Arizona, USA) exhibits an exponential decrease in 239+240Pu activity versus depth; 240Pu/239Pu in the top 3 cm is slightly lower than the global fallout range of 0.180 ?? 0.014 due to possible regional influence of Nevada Test Site fallout. The 239??240Pu inventory at Lockett Meadow is 56 ?? 4 Bq m-2, consistent with Northern Hemisphere mid-latitude fallout. Archived NdF3 sources, prepared from Polish soils, demonstrate that substantial 239+240Pu from the 1986 Chernobyl disaster has been deposited in north eastern regions of Poland; compared to global fallout, Chernobyl Pu exhibits higher abundances of 240Pu and 241Pu. The ratios 240Pu/239pu and 241Pu/239Pu co-vary and range from 0.186-0.348 and 0.0029-0.0412, respectively, in forest soils (241Pu/239Pu = 0.2407??[240Pu/239Pu] - 0.0413; r2 = 0.9924). ?? The Royal Society of Chemistry 2004.
NASA Technical Reports Server (NTRS)
Wong, Yen F.; Kegege, Obadiah; Schaire, Scott H.; Bussey, George; Altunc, Serhat; Zhang, Yuwen; Patel Chitra
2016-01-01
National Aeronautics and Space Administration (NASA) CubeSat missions are expected to grow rapidly in the next decade. Higher data rate CubeSats are transitioning away from Amateur Radio bands to higher frequency bands. A high-level communication architecture for future space-to-ground CubeSat communication was proposed within NASA Goddard Space Flight Center. This architecture addresses CubeSat direct-to-ground communication, CubeSat to Tracking Data Relay Satellite System (TDRSS) communication, CubeSat constellation with Mothership direct-to-ground communication, and CubeSat Constellation with Mothership communication through K-Band Single Access (KSA). A study has been performed to explore this communication architecture, through simulations, analyses, and identifying technologies, to develop the optimum communication concepts for CubeSat communications. This paper presents details of the simulation and analysis that include CubeSat swarm, daughter ship/mother ship constellation, Near Earth Network (NEN) S and X-band direct to ground link, TDRSS Multiple Access (MA) array vs Single Access mode, notional transceiver/antenna configurations, ground asset configurations and Code Division Multiple Access (CDMA) signal trades for daughter ship/mother ship CubeSat constellation inter-satellite cross link. Results of space science X-band 10 MHz maximum achievable data rate study are summarized. CubeSat NEN Ka-Band end-to-end communication analysis is provided. Current CubeSat communication technologies capabilities are presented. Compatibility test of the CubeSat transceiver through NEN and SN is discussed. Based on the analyses, signal trade studies and technology assessments, the desired CubeSat transceiver features and operation concepts for future CubeSat end-to-end communications are derived.
Uptake and translocation of plutonium in two plant species using hydroponics.
Lee, J H; Hossner, L R; Attrep, M; Kung, K S
2002-01-01
This study presents determinations of the uptake and translocation of Pu in Indian mustard (Brassica juncea) and sunflower (Helianthus annuus) from Pu contaminated solution media. The initial activity levels of Pu were 18.50 and 37.00 Bq ml(-1), for Pu-nitrate [239Pu(NO3)4] and for Pu-citrate [239Pu(C6H5O7)+] in nutrient solution. Plutonium-diethylenetriaminepentaacetic acid (DTPA: [239Pu-C14H23O10N3] solution was prepared by adding 0, 5, 10, and 50 microg of DTPA ml(-1) with 239Pu(NO3)4 in nutrient solution. Concentration ratios (CR, Pu concentration in dry plant material/Pu concentration in nutrient solution) and transport indices (Tl, Pu content in the shoot/Pu content in the whole plant) were calculated to evaluate Pu uptake and translocation. All experiments were conducted in hydroponic solution in an environmental growth chamber. Plutonium concentration in the plant tissue was increased with increased Pu contamination. Plant tissue Pu concentration for Pu-nitrate and Pu-citrate application was not correlated and may be dependent on plant species. For plants receiving Pu-DTPA, the Pu concentration was increased in the shoots but decreased in the roots resulting in a negative correlation between the Pu concentrations in the plant shoots and roots. The Pu concentration in shoots of Indian mustard was increased for application rates up to 10 microg DTPA ml(-1) and up to 5 microg DTPA ml(-1) for sunflower. Similar trends were observed for the CR of plants compared to the Pu concentration in the shoots and roots, whereas the Tl was increased with increasing DTPA concentration. Plutonium in shoots of Indian mustard was up to 10 times higher than that in shoots of sunflower. The Pu concentration in the apparent free space (AFS) of plant root tissue of sunflower was more affected by concentration of DTPA than that of Indian mustard.
[Modified polyurethane foam as a local hemostatic agent after dental extractions].
Selten, M H A; Broekema, F I; Zuidema, J; van Oeveren, W; Bos, R R M
2013-01-01
In this split mouth experiment, the feasibility ofpolyurethane foam as a local hemostatic agent after dental extractions was studied. Ten healthy patients underwent 2 extractions ofa dental element in 1 treatment session. The 10 patients were subsequently randomly divided in a gelatin group and a collagen group. In the gelatin group, a polyurethane foam (PU) was applied in 1 extraction socket, while in the other socket a commercially available gelatin foam was applied. In the collagen group, a PU was applied in 1 socket, and a collagen wadding in the other. All hemostats were removed after 2 minutes, after which the degree of coagulation was measured using a thrombin/antithrombin test and a fibrinogen test. This study suggests that polyurethane foam has hemostatic capacity. Large scale clinical research is needed to confirm this finding, and should indicate whether this hemostatic capacity is clinically relevant.
2018-05-17
The RainCube 6U CubeSat with fully-deployed antenna. RainCube, CubeRRT and TEMPEST-D are currently integrated aboard Orbital ATKs Cygnus spacecraft and are awaiting launch on an Antares rocket. After the CubeSats have arrived at the station, they will be deployed into low-Earth orbit and will begin their missions to test these new technologies useful for predicting weather, ensuring data quality, and helping researchers better understand storms. https://photojournal.jpl.nasa.gov/catalog/PIA22457
CubeSat Artist Rendering and NASA M-Cubed/COVE
2012-02-14
The image on the left is an artist rendering of Montana State University Explorer 1 CubeSat; at right is a CubeSat created by the University of Michigan designated the Michigan Mulitpurpose Mini-satellite, or M-Cubed.
Effect of contact angle on the orientation, stability, and assembly of dense floating cubes.
Daniello, Robert; Khan, Kashan; Donnell, Michael; Rothstein, Jonathan P
2014-02-01
In this paper, the effect of contact angle, density, and size on the orientation, stability, and assembly of floating cubes was investigated. All the cubes tested were more dense than water. Floatation occurred as a result of capillary stresses induced by deformation of the air-water interface. The advancing contact angle of the bare acrylic cubes was measured to be 85°. The contact angle of the cubes was increased by painting the cubes with a commercially available superhydrophobic paint to reach an advancing contact angle of 150°. Depending on their size, density, and contact angle, the cubes were observed to float in one of three primary orientations: edge up, vertex up, and face up. An experimental apparatus was built such that the sum of the gravitational force, buoyancy force, and capillary forces could be measured using a force transducer as a function of cube position as it was lowered through the air-water interface. Measurements showed that the maximum capillary forces were always experienced for the face up orientation. However, when floatation was possible in the vertex up orientation, it was found to be the most stable cube orientation because it had the lowest center of gravity. A series of theoretical predictions were performed for the cubes floating in each of the three primary orientations to calculate the net force on the cube. The theoretical predictions were found to match the experimental measurements well. A cube stability diagram of cube orientation as a function of cube contact angle and size was prepared from the predictions of theory and found to match the experimental observations quite well. The assembly of cubes floating face up and vertex up were also studied for assemblies of two, three, and many cubes. Cubes floating face up were found to assemble face-to-face and form regular square lattice patterns with no free interface between cubes. Cubes floating vertex up were found to assemble in a variety of different arrangements including edge-to-edge, vertex-to-vertex, face-to-face, and vertex-to-face with the most probably assembly being edge-to-edge. Large numbers of vertex up cubes were found to pack with a distribution of orientations and alignments.
U, Pu, and Am nuclear signatures of the Thule hydrogen bomb debris.
Eriksson, Mats; Lindahl, Patric; Roos, Per; Dahlgaard, Henning; Holm, Elis
2008-07-01
This study concerns an arctic marine environment that was contaminated by actinide elements after a nuclear accident in 1968, the so-called Thule accident In this study we have analyzed five isolated hot particles as well as sediment samples containing particles from the weapon material for the determination of the nuclear fingerprint of the accident. We report that the fissile material in the hydrogen weapons involved in the Thule accident was a mixture of highly enriched uranium and weapon-grade plutonium and that the main fissile material was 235U (about 4 times more than the mass of 239Pu). In the five hot particles examined, the measured uranium atomic ratio was 235U/238U = 1.02 +/- 0.16 and the Pu-isotopic ratios were as follows: 24Pu/239Pu = 0.0551 +/- 0.0008 (atom ratio), 238Pu/239+240Pu = 0.0161 +/- 0.0005 (activity ratio), 241Pu/239+240Pu = 0.87 +/- 0.12 (activity ratio), and 241Am/ 239+240Pu = 0.169 +/- 0.005 (activity ratio) (reference date 2001-10-01). From the activity ratios of 241Pu/241Am, we estimated the time of production of this weapon material to be from the late 1950s to the early 1960s. The results from reanalyzed bulk sediment samples showed the presence of more than one Pu source involved in the accident, confirming earlier studies. The 238Pu/239+240PU activity ratio and the 240Pu/ 239Pu atomic ratio were divided into at least two Pu-isotopic ratio groups. For both Pu-isotopic ratios, one ratio group had identical ratios as the five hot particles described above and for the other groups the Pu isotopic ratios were lower (238Pu/ 239+240PU activity ratio approximately 0.01 and the 240Pu/P239Pu atomic ratio 0.03). On the studied particles we observed that the U/Pu ratio decreased as a function of the time these particles were present in the sediment. We hypothesis that the decrease in the ratio is due to a preferential leaching of U relative to Pu from the particle matrix.
Ketterer, Michael E; Watson, Bridgette R; Matisoff, Gerald; Wilsont, Christopher G
2002-03-15
Quadrupole inductively coupled plasma mass spectrometry has been used to rapidly establish the chronology of recent aquatic sediments via measurements of the activities of 239Pu, 240Pu, and the atom ratio 240Pu/239Pu. Following addition of 0.007 Bq of a 242Pu spike isotope, Pu is leached from 3-20 g aliquots of dry-ashed sediments with HNO3. A selective anion exchanger is used to preconcentrate Pu into approximately 2 mL aliquots, which are directly analyzed using a pneumatic nebulizer and double-pass spraychamber operating at 60 microL/min solution uptake rate. The ICPMS data collection is performed for 10 min per sample. The U concentrations were 0.01-0.05 microg/L in the analyzed solutions, and the interference of 238U1H+ upon 239Pu+ was negligible. The method has been applied to determining Pu activities, inventory, and 240Pu/239Pu in a complete sediment core from Old Woman Creek (Huron, OH). The Pu activity profiles, obtained in approximately 6 h of instrumental measurement time, are in agreement with a y spectrometric 137Cs profile. Peak 239+240Pu and 137Cs activities in the core were 1.60 +/- 0.02 and 47.8 +/- 0.8 Bq/kg, respectively; inventories were 108 +/- 2 Bq/m2 239+240Pu and 2710 +/- 40 Bq/m2 137Cs. Detection limits, based upon the analysis of 20 g samples, were 0.004 Bq/kg 239Pu, 0.012 Bq/kg 240Pu, and 0.012 Bq/kg 239+240Pu. 240Pu/239Pu atom ratios of 0.16-0.19 were obtained for all core intervals containing detectable Pu, which indicates that global fallout is the source of these radionuclides.
Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations
NASA Technical Reports Server (NTRS)
Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George D.; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mike; Perrotto, Trish;
2017-01-01
CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for Lunar and L1L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the MoreheadGSFC Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, JPL, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASAs Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1L2 orbits. Potential CubeSat radio and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. There are currently modifications in process for the Morehead ground station. Further enhancement of the Morehead ground station and the NASA Near Earth Network (NEN) are being examined. This paper describes how the NEN may support Lunar and L1L2 CubeSats without any enhancements and potential expansion of NEN to better support such missions in the future. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band Uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. The paper also discusses other initiatives that the NEN is studying to better support the CubeSat community, including streamlining the compatibility test, planning and scheduling associated with CubeSat missions.
NASA Astrophysics Data System (ADS)
Thuburn, J.; Cotter, C. J.; Dubos, T.
2013-12-01
A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank-Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV). The algorithm is implemented and tested on two families of grids: hexagonal-icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing ∇ × ∇, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly.
NASA Astrophysics Data System (ADS)
Thuburn, J.; Cotter, C. J.; Dubos, T.
2014-05-01
A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank-Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV). The algorithm is implemented and tested on two families of grids: hexagonal-icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing ∇ × ∇, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed-sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Wei; Helbert, Anne-Laure, E-mail: anne-laure.helbert@u-psud.fr; Baudin, Thierry
In high purity Aluminum, very strong {l_brace}100{r_brace}<001> recrystallization texture is developed after 98% cold rolling and annealing at 500 Degree-Sign C. On the contrary, in Aluminum alloys of commercial purity, the Cube component hardly exceeds 30% after complete recrystallization. Parameters controlling Cube orientation development are mainly the solute dragging due to impurities in solid solution and the stored deformation energy. In the present study, besides the 85% cold rolling, two extra annealings and a slight cold rolling are introduced in the processing route to increase the Cube volume fraction. The Cube development was analyzed by X-ray diffraction and Electron BackScatteredmore » Diffraction (EBSD). The nucleation and growth mechanisms responsible for the large Cube growth were investigated using FEG/EBSD in-situ heating experiments. Continuous recrystallization was observed in Cube oriented grains and competed with SIBM (Strain Induced Boundary Migration) mechanism. This latter was favored by the stored energy gap introduced during the additional cold-rolling between the Cube grains and their neighbors. Finally, a Cube volume fraction of 65% was reached after final recrystallization. - Highlights: Black-Right-Pointing-Pointer EBSD in-situ heating experiments of aluminum alloy of commercial purity. Black-Right-Pointing-Pointer A 10% cold-rolling after a partial recrystallization improved Cube nucleation and growth. Black-Right-Pointing-Pointer Annealing before cold-rolling limited the solute drag effect and permitted a large Cube growth. Black-Right-Pointing-Pointer Cube development is enhanced by continuous recrystallization of Cube sub-grains. Black-Right-Pointing-Pointer The preferential Cube growth occurs by SIBM of small Cube grains.« less
Łokas, E; Anczkiewicz, R; Kierepko, R; Mietelski, J W
2017-07-01
Although the polar regions have not been industrialised, numerous contaminants originating from human activity are detectable in the Arctic environment. This study reports evidence of 240 Pu/ 239 Pu atomic ratios in the tundra and initial soils from different parts of west and central Spitsbergen and recognizes possible environmental inputs of non-global fallout Pu. The average atomic ratio of 240 Pu/ 239 Pu equal to 0.179 (ranging between 0.129 and 0.201) in tundra soils are comparable to the characteristic ratio for global fallout (0.180). However, the 240 Pu/ 239 Pu atomic ratios in the initial soils from proglacial zone of glaciers change within wide range between 0.1281 and 0.234 with the mean value of 0.169. By combining alpha and mass spectrometry, the three-sources model was used to identify the Pu sources in initial soils. Our study indicated that the main source of Pu is nuclear tests and that a second source with lower Pu ratio may come from weapons grade Pu (unexploded weapons grade Pu ie. material from bomb which didn't undergo nuclear explosions for example for security tests). Additionally, we found samples with high 238 Pu/ 239+240 Pu activity ratios and with typical global fallout 240 Pu/ 239 Pu atomic ratios, which are associated with separate sources of pure 238 Pu from the SNAP-9A satellite burn up in the atmosphere. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lindahl, Patric; Asami, Ryuji; Iryu, Yasufumi; Worsfold, Paul; Keith-Roach, Miranda; Choi, Min-Seok
2011-03-01
The Pu isotopes, 239Pu and 240Pu, were determined in annually-banded skeletons of an accurately dated (1943-1999) modern coral ( Porites lobata) from Guam Island to identify historical Pu sources to the tropical Northwest Pacific Ocean. Activity concentrations of 239+240Pu and 240Pu/ 239Pu atom ratios were determined in the dated coral bands using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Close-in fallout from the former US Pacific Proving Grounds (PPG) in the Marshall Islands and global fallout were identified as the two main sources. The Guam site was dominated by PPG close-in fallout in the 1950s, with an average 240Pu/ 239Pu atom ratio of 0.315 ± 0.005. In addition, a higher 240Pu/ 239Pu atom ratio (0.456 ± 0.020) was observed that could be attributed to fallout from the "Ivy Mike" thermonuclear detonation in 1952. The atom ratio decreased in the 1960s and 1970s due to increase in the global fallout with a low 240Pu/ 239Pu atom ratio (˜0.18). Recent coral bands (1981-1999) are dominated by the transport of remobilised Pu, with high 240Pu/ 239Pu atom ratios, from the Marshall Islands to Guam Island along the North Equatorial Current (NEC). This remobilised Pu was estimated to comprise 69% of the total Pu in the recent coral bands, although its contribution was variable over time.
Evaluation of phases in Pu-C-O and (U, Pu)-C-O systems by X-ray diffractometry and chemical analysis
NASA Astrophysics Data System (ADS)
Jain, G. C.; Ganguly, C.
1993-12-01
Preparation and characterisation of the carbides of uranium, plutonium and mixed uranium and plutonium form a part of advanced fuel development programs for fast breeder reactors. In the present study, the compositions of the phases of Pu-C-O and (U.Pu)-C-O systems have been determined by chemical analysis and lattice parameter measurement. The carbide samples have been prepared by vacuum carbothermic synthesis of tabletted oxide-graphite powder mixture. Dependence of stoichiometry of Pu 2C 3 phase on the oxygen content of Pu(C,O) phase in Pu(C,O) + Pu 2C 3 phase mixture has been evaluated. Stoichiometry and oxygen solubility of (U 0.3Pu 0.7)(C,O) phase in multiple phase mixture have been determined. Segregation of plutonium in (U,Pu) 2C 3 phase of (U,Pu)(C,O) + (U,Pu) 2C 3 phase mixture and its dependence on the oxygen content of (U,Pu)(C,O) phase have also been determined from the measurement of the lattice parameter of (U,Pu) 2C 3 phase.
Boggs, Mark A.; Jiao, Yongqin; Dai, Zurong; ...
2016-09-30
Safe and effective nuclear waste disposal, as well as accidental radionuclide releases, necessitates our understanding of the fate of radionuclides in the environment, including their interaction with microorganisms. We examined the sorption of Pu(IV) and Pu(V) toPseudomonassp. strain EPS-1W, an aerobic bacterium isolated from plutonium (Pu) contaminated groundwater collected in the United States at the Nevada National Security Site (NNSS), Nevada. We compared Pu sorption to cells with and without bound extracellular polymeric substances (EPS). Wild type cells with intact EPS sorbed Pu(V) more effectively than cells with EPS removed. In contrast, cells with and without EPS showed the samemore » sorption affinity for Pu(IV).In vitroexperiments with extracted EPS revealed rapid reduction of Pu(V) to Pu(IV). Transmission Electron Microscopy indicated that 2-3 nm nanocrystalline Pu(IV)O 2formed on cells equilibrated with high concentrations of Pu(IV) but not Pu(V). Thus, EPS, while facilitating Pu(V) reduction, inhibit the formation of nanocrystalline Pu(IV) precipitates. ImportanceOur results indicate that EPS are an effective reductant for Pu(V) and sorbent for Pu(IV), and may impact Pu redox cycling and mobility in the environment. Additionally, the resulting Pu morphology associated with EPS will depend on the concentration and initial Pu oxidation state. While our results are not directly applicable to the Pu transport situation at the NNSS, the results suggest that, in general, stationary microorganisms and biofilms will tend to limit the migration of Pu and provide an important Pu retardation mechanism in the environment. In a broader sense, our results along with a growing body of literature highlight the important role of microorganisms as producers of redox-active organic ligands and therefore as modulators of radionuclide redox transformations and complexation in the subsurface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boggs, Mark A.; Jiao, Yongqin; Dai, Zurong
Safe and effective nuclear waste disposal, as well as accidental radionuclide releases, necessitates our understanding of the fate of radionuclides in the environment, including their interaction with microorganisms. We examined the sorption of Pu(IV) and Pu(V) toPseudomonassp. strain EPS-1W, an aerobic bacterium isolated from plutonium (Pu) contaminated groundwater collected in the United States at the Nevada National Security Site (NNSS), Nevada. We compared Pu sorption to cells with and without bound extracellular polymeric substances (EPS). Wild type cells with intact EPS sorbed Pu(V) more effectively than cells with EPS removed. In contrast, cells with and without EPS showed the samemore » sorption affinity for Pu(IV).In vitroexperiments with extracted EPS revealed rapid reduction of Pu(V) to Pu(IV). Transmission Electron Microscopy indicated that 2-3 nm nanocrystalline Pu(IV)O 2formed on cells equilibrated with high concentrations of Pu(IV) but not Pu(V). Thus, EPS, while facilitating Pu(V) reduction, inhibit the formation of nanocrystalline Pu(IV) precipitates. ImportanceOur results indicate that EPS are an effective reductant for Pu(V) and sorbent for Pu(IV), and may impact Pu redox cycling and mobility in the environment. Additionally, the resulting Pu morphology associated with EPS will depend on the concentration and initial Pu oxidation state. While our results are not directly applicable to the Pu transport situation at the NNSS, the results suggest that, in general, stationary microorganisms and biofilms will tend to limit the migration of Pu and provide an important Pu retardation mechanism in the environment. In a broader sense, our results along with a growing body of literature highlight the important role of microorganisms as producers of redox-active organic ligands and therefore as modulators of radionuclide redox transformations and complexation in the subsurface.« less
Pu-239 and Pu-240 inventories and Pu-240/ Pu-239 atom ratios in the water column off Sanriku, Japan.
NASA Astrophysics Data System (ADS)
Yamada, Masatoshi; Zheng, Jian; Aono, Tatsuo
2013-04-01
A magnitude 9.0 earthquake and subsequent tsunami occurred in the Pacific Ocean off northern Honshu, Japan, on 11 March 2011 which caused severe damage to the Fukushima Dai-ichi Nuclear Power Plant. This accident has resulted in a substantial release of radioactive materials to the atmosphere and ocean, and has caused extensive contamination of the environment. However, no information is available on the amounts of radionuclides such as Pu isotopes released into the ocean at this time. Investigating the background baseline concentration and atom ratio of Pu isotopes in seawater is important for assessment of the possible contamination in the marine environment. Pu-239 (half-life: 24,100 years), Pu-240 (half-life: 6,560 years) and Pu-241 (half-life: 14.325 years) mainly have been released into the environment as the result of atmospheric nuclear weapons testing. The atom ratio of Pu-240/Pu-239 is a powerful fingerprint to identify the sources of Pu in the ocean. The Pu-239 and Pu-240 inventories and Pu-240/Pu-239 atom ratios in seawater samples collected in the western North Pacific off Sanriku before the accident at Fukushima Dai-ichi Nuclear Power Plant will provide useful background baseline data for understanding the process controlling Pu transport and for distinguishing additional Pu sources. Seawater samples were collected with acoustically triggered quadruple PVC sampling bottles during the KH-98-3 cruise of the R/V Hakuho-Maru. The Pu-240/Pu-239 atom ratios were measured with a double-focusing SF-ICP-MS, which was equipped with a guard electrode to eliminate secondary discharge in the plasma and to enhance overall sensitivity. The Pu-239 and Pu-240 concentrations were 2.07 and 1.67 mBq/m3 in the surface water, respectively, and increased with depth; a subsurface maximum was identified at 750 m depth, and the concentrations decreased with depth, then increased at the bottom layer. The total Pu-239+240 inventory in the entire water column (depth interval 0-bottom) was 69.8 Bq/m2. This was significantly higher than the expected cumulative deposition density of atmospheric global fallout. The Pu-240/Pu-239 atom ratios were 0.22 in the surface water and increased gradually with depth reaching 0.26 at the 5000 m depth. The obtained Pu-240/Pu-239 atom ratios were higher than the mean global fallout ratio of 0.18. These high atom ratios proved the existence of close-in tropospheric fallout Pu from the Pacific Proving Grounds in the Marshall Islands.
NASA Astrophysics Data System (ADS)
Morita, Shogo; Ito, Shusei; Yamamoto, Hirotsugu
2017-02-01
Aerial display can form transparent floating screen in the mid-air and expected to provide aerial floating signage. We have proposed aerial imaging by retro-reflection (AIRR) to form a large aerial LED screen. However, luminance of aerial image is not sufficiently high so as to be used for signage under broad daylight. The purpose of this paper is to propose a novel aerial display scheme that features hybrid display of two different types of images. Under daylight, signs made of cubes are visible. At night, or under dark lighting situation, aerial LED signs become visible. Our proposed hybrid display is composed of an LED sign, a beam splitter, retro-reflectors, and transparent acrylic cubes. Aerial LED sign is formed with AIRR. Furthermore, we place transparent acrylic cubes on the beam splitter. Light from the LED sign enters transparent acrylic cubes, reflects twice in the transparent acrylic cubes, exit and converge to planesymmetrical position with light source regarding the cube array. Thus, transparent acrylic cubes also form the real image of the source LED sign. Now, we form a sign with the transparent acrylic cubes so that this cube-based sign is apparent under daylight. We have developed a proto-type display by use of 1-cm transparent cubes and retro-reflective sheeting and successfully confirmed aerial image forming with AIRR and transparent cubes as well as cube-based sign under daylight.
NASA Astrophysics Data System (ADS)
Schillebeeckx, P.; Wagemans, C.; Deruytter, A. J.; Barthélémy, R.
1992-08-01
The energy and mass distribution and their correlations have been studied for the spontaneous fission of 238, 240, 242Pu and for the thermal-neutron-induced fission of 239Pu. A comparison of 240Pu(s.f.) and 239Pu(nth,f) shows that the increase in excitation energy mainly results in an increase of the intrinsic excitation energy. A comparison of the results for 238Pu, 240Pu and 242Pu(s.f.) demonstrates the occurence of different fission modes with varying relative probability. These results are discussed in terms of the scission point model as well as in terms of the fission channel model with random neck-rupture.
Humic acids facilitated microbial reduction of polymeric Pu(IV) under anaerobic conditions.
Xie, Jinchuan; Liang, Wei; Lin, Jianfeng; Zhou, Xiaohua; Li, Mei
2018-01-01
Flavins and humic substances have been extensively studied with emphasis on their ability to transfer extracellular electrons to insoluble metal oxides. Nevertheless, whether the low-solubility Pu(IV) polymers are microbially reduced to aqueous Pu(III) remains uncertain. Experiments were conducted under anaerobic and slightly alkaline conditions to study the difference between humic acids and flavins to transport extracellular electrons to Pu(IV) polymers. Our study demonstrates that Shewanella putrefaciens was unable to directly reduce polymeric Pu(IV) with a notably low reduction rate (3.4×10 -12 mol/L Pu(III) aq within 144h). The relatively high redox potential of flavins reveals the thermodynamically unfavorable reduction: E h (PuO 2 (am)/Pu 3+ )
Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming; Roos, Per
2014-02-01
This paper reports an analytical method for the determination of plutonium isotopes ((238)Pu, (239)Pu, (240)Pu, (241)Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5 × 10(5) for 20 g soil compared to the level reported in the literature, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference values, revealing that the developed method for plutonium determination in environmental samples is reliable. The measurement results of (239+240)Pu by alpha spectrometry agreed very well with the sum of (239)Pu and (240)Pu measured by ICP-MS. ICP-MS can not only measure (239)Pu and (240)Pu separately but also (241)Pu. However, it is impossible to measure (238)Pu using ICP-MS in environmental samples even a decontamination factor as high as 10(6) for uranium was obtained by chemical separation. © 2013 Elsevier B.V. All rights reserved.
Spatial and temporal distribution of Pu in the Northwest Pacific Ocean using modern coral archives.
Lindahl, Patric; Andersen, Morten B; Keith-Roach, Miranda; Worsfold, Paul; Hyeong, Kiseong; Choi, Min-Seok; Lee, Sang-Hoon
2012-04-01
Historical (239)Pu activity concentrations and (240)Pu/(239)Pu atom ratios were determined in skeletons of dated modern corals collected from three locations (Chuuk Lagoon, Ishigaki Island and Iki Island) to identify spatial and temporal variations in Pu inputs to the Northwest Pacific Ocean. The main Pu source in the Northwest Pacific is fallout from atmospheric nuclear weapons testing which consists of global fallout and close-in fallout from the former US Pacific Proving Grounds (PPG) in the Marshall Islands. PPG close-in fallout dominated the Pu input in the 1950s, as was observed with higher (240)Pu/(239)Pu atom ratios (>0.30) at the Ishigaki site. Specific fallout Pu contamination from the Nagasaki atomic bomb and the Ivy Mike thermonuclear detonation at the PPG were identified at Ishigaki Island from the (240)Pu/(239)Pu atom ratios of 0.07 and 0.46, respectively. During the 1960s and 1970s, global fallout was the major Pu source to the Northwest Pacific with over 60% contribution to the total Pu. After the cessation of the atmospheric nuclear tests, the PPG again dominated the Pu input due to the continuous transport of remobilised Pu from the Marshall Islands along the North Equatorial Current and the subsequent Kuroshio Current. The Pu contributions from the PPG in recent coral bands (1984 onwards) varied over time with average estimated PPG contributions between 54% and 72% depending on location. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wong, Yen F.; Kegege, Obadiah; Schaire, Scott H.; Bussey, George; Altunc, Serhat; Zhang, Yuwen; Patel, Chitra
2016-01-01
National Aeronautics and Space Administration (NASA) CubeSat missions are expected to grow rapidly in the next decade. Higher data rate CubeSats are transitioning away from Amateur Radio bands to higher frequency bands. A high-level communication architecture for future space-to-ground CubeSat communication was proposed within NASA Goddard Space Flight Center. This architecture addresses CubeSat direct-to-ground communication, CubeSat to Tracking Data Relay Satellite System (TDRSS) communication, CubeSat constellation with Mothership direct-to-ground communication, and CubeSat Constellation with Mothership communication through K-Band Single Access (KSA).A Study has been performed to explore this communication architecture, through simulations, analyses, and identifying technologies, to develop the optimum communication concepts for CubeSat communications. This paper will present details of the simulation and analysis that include CubeSat swarm, daughter shipmother ship constellation, Near Earth Network (NEN) S and X-band direct to ground link, TDRS Multiple Access (MA) array vs Single Access mode, notional transceiverantenna configurations, ground asset configurations and Code Division Multiple Access (CDMA) signal trades for daughter mother CubeSat constellation inter-satellite crosslink. Results of Space Science X-band 10 MHz maximum achievable data rate study will be summarized. Assessment of Technology Readiness Level (TRL) of current CubeSat communication technologies capabilities will be presented. Compatibility test of the CubeSat transceiver through NEN and Space Network (SN) will be discussed. Based on the analyses, signal trade studies and technology assessments, the functional design and performance requirements as well as operation concepts for future CubeSat end-to-end communications will be derived.
A Specific Long-Term Plan for Management of U.S. Nuclear Spent Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, Salomon
2006-07-01
A specific plan consisting of six different steps is proposed to accelerate and improve the long-term management of U.S. Light Water Reactor (LWR) spent nuclear fuel. The first step is to construct additional, centralized, engineered (dry cask) spent fuel facilities to have a backup solution to Yucca Mountain (YM) delays or lack of capacity. The second step is to restart the development of the Integral Fast Reactor (IFR), in a burner mode, because of its inherent safety characteristics and its extensive past development in contrast to Acceleration Driven Systems (ADS). The IFR and an improved non-proliferation version of its pyro-processingmore » technology can burn the plutonium (Pu) and minor actinides (MA) obtained by reprocessing LWR spent fuel. The remaining IFR and LWR fission products will be treated for storage at YM. The radiotoxicity of that high level waste (HLW) will fall below that of natural uranium in less than one thousand years. Due to anticipated increased capital, maintenance, and research costs for IFR, the third step is to reduce the required number of IFRs and their potential delays by implementing multiple recycles of Pu and Neptunium (Np) MA in LWR. That strategy is to use an advanced separation process, UREX+, and the MIX Pu option where the role and degradation of Pu is limited by uranium enrichment. UREX+ will decrease proliferation risks by avoiding Pu separation while the MIX fuel will lead to an equilibrium fuel recycle mode in LWR which will reduce U. S. Pu inventory and deliver much smaller volumes of less radioactive HLW to YM. In both steps two and three, Research and Development (R and D) is to emphasize the demonstration of multiple fuel reprocessing and fabrication, while improving HLW treatment, increasing proliferation resistance, and reducing losses of fissile material. The fourth step is to license and construct YM because it is needed for the disposal of defense wastes and the HLW to be generated under the proposed plan. The fifth step consists of developing a risk informed methodology to assess the various options available for disposition of LWR spent fuel and to select among them. The sixth step is to modify the current U. S. infrastructure and to create a climate to increase the utilization of uranium and the sustainability of nuclear generated electricity. (author)« less
CubeIndexer: Indexer for regions of interest in data cubes
NASA Astrophysics Data System (ADS)
Chilean Virtual Observatory; Araya, Mauricio; Candia, Gabriel; Gregorio, Rodrigo; Mendoza, Marcelo; Solar, Mauricio
2015-12-01
CubeIndexer indexes regions of interest (ROIs) in data cubes reducing the necessary storage space. The software can process data cubes containing megabytes of data in fractions of a second without human supervision, thus allowing it to be incorporated into a production line for displaying objects in a virtual observatory. The software forms part of the Chilean Virtual Observatory (ChiVO) and provides the capability of content-based searches on data cubes to the astronomical community.
Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations
NASA Technical Reports Server (NTRS)
Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mile; Perrotto, Trish;
2017-01-01
CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for lunar and L1/L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, Jet Propulsion Laboratory, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASA’s Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1/L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1/L2 orbits. Potential CubeSat radios and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. This paper will describe modifications in process for the Morehead ground station, as well as further enhancements of the Morehead ground station and NASA Near Earth Network (NEN) that are being considered. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. This paper also describes how the NEN may support lunar and L1/L2 CubeSats without any enhancements. In addition, NEN is studying other initiatives to better support the CubeSat community, including streamlining the compatibility testing, planning and scheduling associated with CubeSat missions. Because of the lower cost, opportunity for simultaneous multipoint observations, it is inevitable that CubeSats will continue to increase in popularity for not only LEO missions, but for lunar and L1/L2 missions as well. The challenges for lunar and L1/L2 missions for communication and navigation are much greater than for LEO missions, but are not insurmountable. Advancements in flight hardware and ground infrastructure will ease the burden.
NASA Astrophysics Data System (ADS)
Wang, Jinlong; Baskaran, Mark; Hou, Xiaolin; Du, Jinzhou; Zhang, Jing
2017-05-01
Concentrations and isotopic compositions of plutonium (Pu) are widely used for its source identification and to determine transport processes of Pu-associated particulate matter and water. We investigated the concentrations of 239Pu and 240Pu and their ratios in a number of sediment samples from the East China Sea (ECS) collected in the summer of 2013 (August 6-28). The 239+240Pu activity concentrations in surface sediment samples were found to range between 0.048 and 0.492 Bq kg-1 and the 240Pu/239Pu atom ratios showed a similar trend as that of the 239, 240Pu activities; the Pu atom ratios ranged from 0.158 to 0.297 and were mostly higher than the mean global fallout value of 0.18. The 239, 240Pu inventories in the ECS varied widely, from 2 to 807 Bq m-2, with the highest values commonly found in the coastal areas. In the Yangtze Estuary, the mean 239+240Pu activity concentration is close to the estimated value of the suspended material from the Yangtze River catchment (0.18 Bq kg-1), and the 240Pu/239Pu atom ratio was found to be ∼0.18, which indicates that the Yangtze River input is the dominant source of Pu for this area. The total annual Yangtze River input of 239+240Pu was estimated to be 2.4 ×1010 Bq, which is small compared to the total amount of 239+240Pu buried, 3.1 ×1013 Bq in the whole ECS. The Pacific Proving Ground input appears to be the dominant source of Pu to the ECS, accounting for 45%-52% of the total inventory. The fractional amount of 239+240Pu scavenged from the total 239+240Pu transported by the Kuroshio Current (KC) and Taiwan Warm Current (TWC) into ECS sediments is estimated to be ∼10%. Our study shows that the 240Pu/239Pu atom ratio is useful not only to obtain a better insight of the biogeochemistry influenced by the KC, but also to trace the long-range transport of other particle-reactive species. Besides, the sedimentation rates obtained based on the penetration depths of 239+240Pu and vertical profiles of excess 210Pb agree within uncertainties, which suggests that 239+240Pu can potentially be used as a chronostratigraphic time marker in the marine environment.
The Pulsed Fission-Fusion (PUFF) Concept for Deep Space Exploration and Terrestrial Power Generation
NASA Technical Reports Server (NTRS)
Adams, Robert; Cassibry, Jason; Schillo, Kevin
2017-01-01
This team is exploring a modified Z-pinch geometry as a propulsion system, imploding a liner of liquid lithium onto a pellet containing both fission and fusion fuel. The plasma resulting from the fission and fusion burn expands against a magnetic nozzle, for propulsion, or a magnetic confinement system, for terrestrial power generation. There is considerable synergy in the concept; the lithium acts as a temporary virtual cathode, and adds reaction mass for propulsion. Further, the lithium acts as a radiation shield against generated neutrons and gamma rays. Finally, the density profile of the column can be tailored using the lithium sheath. Recent theoretical and experimental developments (e.g. tailored density profile in the fuel injection, shear stabilization, and magnetic shear stabilization) have had great success in mitigating instabilities that have plagued previous fusion efforts. This paper will review the work in evaluating the pellet sizes and z-pinch conditions for optimal PuFF propulsion. Trades of pellet size and composition with z-pinch power levels and conditions for the tamper and lithium implosion are evaluated. Current models, both theoretical and computational, show that a z-pinch can ignite a small (1 cm radius) fission-fusion target with significant yield. Comparison is made between pure fission and boosted fission targets. Performance is shown for crewed spacecraft for high speed Mars round trip missions and near interstellar robotic missions. The PuFF concept also offers a solution for terrestrial power production. PuFF can, with recycling of the effluent, achieve near 100% burnup of fission fuel, providing a very attractive power source with minimal waste. The small size of PuFF relative to today's plants enables a more distributed power network and less exposure to natural or man-made disruptions.
US/UK second level panel discussions on the health and value of: Ageing and lifetime predictions (u)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, Richard G
2011-01-18
Many healthy physics, engineering, and materials exchanges are being accomplished in ageing and lifetime prediction that directly supports US and UK Stockpile Management Programs. Lifetime assessment studies of silicon foams under compression - Joint AWE/LANLlLLNL study of compression set in stress cushions completed. Provides phenomenological prediction out to 50 years. Polymer volatile out-gassing studies - New exchange on the out-gassing of Ethylene Vinyl Acetate (EVA) using isotopic {sup 13}C labeling studies to interrogate mechanistic processes. Infra-red (IR) gas cell analytical capabilities developed by AWE will be used to monitor polymer out-gassing profiles. Pu Strength ageing Experiments and Constitutive Modeling -more » In recently compared modeling strategies for ageing effects on Pu yield strength at high strain rates, a US/UK consensus was reached on the general principle that the ageing effect is additive and not multiplicative. The fundamental mechanisms for age-strengthening in Pu remains unknown. Pu Surface and Interface Reactions - (1) US/UK secondment resulted in developing a metal-metal oxide model for radiation damaged studies consistent with a Modified Embedded Atom Method (MEAM) potential; and (2) Joint US/UK collaboration to study the role of impurities in hydride initiation. Detonator Ageing (wide range of activities) - (1) Long-term ageing study with field trials at Pantex incorporating materials from LANL, LLNL, SNL and AWE; (2) Characterization of PETN growth to detonation process; (3) Detonator performance modeling; and (4) Performance fault tree analysis. Benefits are a unified approach to lifetime prediction that Includes: materials characterization and the development of ageing models through improved understanding of the relationship between materials properties, ageing properties and detonator performance.« less
U-PuO2, U-PuC, U-PuN cermet fuel for fast reactor
NASA Astrophysics Data System (ADS)
Mishra, Sudhir; Kaity, Santu; Banerjee, Joydipta; Nandi, Chiranjeet; Dey, G. K.; Khan, K. B.
2018-02-01
Cermet fuel combines beneficial properties of both ceramic and metal and attracts global interest for research as a candidate fuel for nuclear reactors. In the present study, U matrix PuC/PuN/PuO2 cermet for fast reactor have been fabricated on laboratory scale by the powder metallurgy route. Characterization of the fuel has been carried out using Dilatometer, Differential Thermal analysis (DTA), X-ray diffractometer and Optical microscope. X ray diffraction study of the fuel reveals presence of different phases. The PuN dispersed cermet was observed to have high solidus temperature as compared to PuC and PuO2 dispersed cermet. Swelling was observed in U matrix PuO2 cermet which also showed higher thermal expansion. Among the three cermets studied, U matrix PuC cermet showed maximum thermal conductivity.
Yamada, Masatoshi; Zheng, Jian
2012-07-15
The (239+240)Pu concentrations and (240)Pu/(239)Pu atom ratios were determined by alpha spectrometry and inductively coupled plasma mass spectrometry for seawater samples from two stations, one at the equator and the other in the equatorial South Pacific. To better understand the fate of Pu isotopes, this study dealt with the contribution of the close-in fallout Pu from the Pacific Proving Grounds (PPG) in water columns of the Pacific Ocean. The (239)Pu, (240)Pu and (239+240)Pu inventories over the depth interval 0-3000 m at the equator station were 10.4, 8.9 and 19.3 Bq m(-2), respectively. Further, no noticeable difference was observed in (239)Pu, (240)Pu and (239+240)Pu inventories over the depth interval 0-3000 m between the two stations. The total (239+240)Pu inventories were significantly higher than the expected cumulative deposition density of global fallout. Water column (239+240)Pu inventories measured in this study were lower than those reported for comparable stations in the Geochemical Ocean Sections Study, indicating that these inventories have been decreasing at average rates of 0.89 ± 0.07 and 0.16 ± 0.07 Bq m(-2)yr(-1) at the equator and equatorial South Pacific stations, respectively, from 1973 to 1990. The obtained (240)Pu/(239)Pu atom ratios were higher than the mean global fallout ratio of 0.18. These high atom ratios proved the existence of close-in tropospheric fallout Pu from the PPG in the Marshall Islands. The (239+240)Pu inventories originating from the close-in fallout in the entire water column were estimated to be 11.1 Bq m(-2) at the equator station and 7.1 Bq m(-2) at the equatorial South Pacific Ocean station, and the relative percentages of close-in fallout Pu were 40% at the former and 34% at the latter. A significant amount of close-in fallout Pu originating from the PPG has been transported to deep layers below the 1000 m depth in the equatorial Pacific Ocean. Copyright © 2012 Elsevier B.V. All rights reserved.
2009-06-01
2 3. Space Access Challenges to the CubeSat Community........ 3 B. NPSCUL/NPSCUL-LITE PROGRAM HISTORY TO DATE...Astronautics, AIAA Space 2008 Conference and Exhibition, 2008. 3 3. Space Access Challenges to the CubeSat Community In less than ten years since... challenges to space access for CubeSats.5 Launch of a CubeSat aboard US launch vehicles from US launch facilities would allow CubeSats of a sensitive nature
NASA Technical Reports Server (NTRS)
O'Hara, Charles G. (Inventor); Shrestha, Bijay (Inventor); Vijayaraj, Veeraraghavan (Inventor); Mali, Preeti (Inventor)
2011-01-01
A compositing process for selecting spatial data collected over a period of time, creating temporal data cubes from the spatial data, and processing and/or analyzing the data using temporal mapping algebra functions. In some embodiments, the temporal data cube is creating a masked cube using the data cubes, and computing a composite from the masked cube by using temporal mapping algebra.
Localized 5f electrons in superconducting PuCoIn₅: consequences for superconductivity in PuCoGa₅.
Bauer, E D; Altarawneh, M M; Tobash, P H; Gofryk, K; Ayala-Valenzuela, O E; Mitchell, J N; McDonald, R D; Mielke, C H; Ronning, F; Griveau, J-C; Colineau, E; Eloirdi, R; Caciuffo, R; Scott, B L; Janka, O; Kauzlarich, S M; Thompson, J D
2012-02-08
The physical properties of the first In analog of the PuMGa(5) (M = Co, Rh) family of superconductors, PuCoIn(5), are reported. With its unit cell volume being 28% larger than that of PuCoGa(5), the characteristic spin-fluctuation energy scale of PuCoIn(5) is three to four times smaller than that of PuCoGa(5), which suggests that the Pu 5f electrons are in a more localized state relative to PuCoGa(5). This raises the possibility that the high superconducting transition temperature T(c) = 18.5 K of PuCoGa(5) stems from the proximity to a valence instability, while the superconductivity at T(c) = 2.5 K of PuCoIn(5) is mediated by antiferromagnetic spin fluctuations associated with a quantum critical point.
Transport of (137)Cs, (241)Am and Pu isotopes in the Curonian Lagoon and the Baltic Sea.
Lujanienė, G; Remeikaitė-Nikienė, N; Garnaga, G; Jokšas, K; Šilobritienė, B; Stankevičius, A; Šemčuk, S; Kulakauskaitė, I
2014-01-01
Activities of (137)Cs, (241)Am and (239,240)Pu were analyzed with special emphasis on better understanding of radionuclide transport from land via the Neman River estuaries to the Baltic Sea and behavior in the marine environment. Although activity concentrations of (137)Cs in water samples collected the Baltic Sea were almost 100 times higher as compared to the Curonian Lagoon, its activities in the bottom sediments were found to be comparable. Activity (238)Pu/(239,240)Pu and atom (240)Pu/(239)Pu ratios indicated a different contribution of the Chernobyl-originated Pu to the suspended particulate matter (SPM) and bottom sediments. The largest amount of the Chernobyl-derived Pu was found in the smallest suspended matter particles of 0.2-1 μm in size collected in the Klaipeda Strait in 2011-2012. The decrease of characteristic activity (238)Pu/(239,240)Pu and atom (240)Pu/(239)Pu ratios towards the global fallout ones in surface soil and the corresponding increase of plutonium (Pu) ratios in the suspended particulate matter and bottom sediments have indicated that the Chernobyl-derived Pu, primarily deposited on the soil surface, was washed out and transported to the Baltic Sea. Behavior of (241)Am was found to be similar to that of Pu isotopes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Donard, O F X; Bruneau, F; Moldovan, M; Garraud, H; Epov, V N; Boust, D
2007-03-28
Among the transuranic elements present in the environment, plutonium isotopes are mainly attached to particles, and therefore they present a great interest for the study and modelling of particle transport in the marine environment. Except in the close vicinity of industrial sources, plutonium concentration in marine sediments is very low (from 10(-4) ng kg(-1) for (241)Pu to 10 ng kg(-1) for (239)Pu), and therefore the measurement of (238)Pu, (239)Pu, (240)Pu, (241)Pu and (242)Pu in sediments at such concentration level requires the use of very sensitive techniques. Moreover, sediment matrix contains huge amounts of mineral species, uranium and organic substances that must be removed before the determination of plutonium isotopes. Hence, an efficient sample preparation step is necessary prior to analysis. Within this work, a chemical procedure for the extraction, purification and pre-concentration of plutonium from marine sediments prior to sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) analysis has been optimized. The analytical method developed yields a pre-concentrated solution of plutonium from which (238)U and (241)Am have been removed, and which is suitable for the direct and simultaneous measurement of (239)Pu, (240)Pu, (241)Pu and (242)Pu by SF-ICP-MS.
EarthCube's Assessment Framework: Ensuring Return on Investment
NASA Astrophysics Data System (ADS)
Lehnert, K.
2016-12-01
EarthCube is a community-governed, NSF-funded initiative to transform geoscience research by developing cyberinfrastructure that improves access, sharing, visualization, and analysis of all forms of geosciences data and related resources. EarthCube's goal is to enable geoscientists to tackle the challenges of understanding and predicting a complex and evolving solid Earth, hydrosphere, atmosphere, and space environment systems. EarthCube's infrastructure needs capabilities around data, software, and systems. It is essential for EarthCube to determine the value of new capabilities for the community and the progress of the overall effort to demonstrate its value to the science community and Return on Investment for the NSF. EarthCube is therefore developing an assessment framework for research proposals, projects funded by EarthCube, and the overall EarthCube program. As a first step, a software assessment framework has been developed that addresses the EarthCube Strategic Vision by promoting best practices in software development, complete and useful documentation, interoperability, standards adherence, open science, and education and training opportunities for research developers.
Mechanical properties of polymer-modified porous concrete
NASA Astrophysics Data System (ADS)
Ariffin, N. F.; Jaafar, M. F. Md.; Shukor Lim, N. H. Abdul; Bhutta, M. A. R.; Hussin, M. W.
2018-04-01
In this research work, polymer-modified porous concretes (permeable concretes) using polymer latex and redispersible polymer powder with water-cement ratio of 30 %, polymer-cement ratios of 0 to 10 % and cement content of 300 kg/m3 are prepared. The porous concrete was tested for compressive strength, flexural strength, water permeability and void ratio. The cubes size of specimen is 100 mm ×100 mm × 100 mm and 150 mm × 150 mm × 150 mm while the beam size is 100 mm × 100 mm × 500 mm was prepared for particular tests. The tests results show that the addition of polymer as a binder to porous concrete gives an improvement on the strength properties and coefficient of water permeability of polymer-modified porous concrete. It is concluded from the test results that increase in compressive and flexural strengths and decrease in the coefficient of water permeability of the polymer-modified porous concrete are clearly observed with increasing of polymer-cement ratio.
NASA Technical Reports Server (NTRS)
Swenson, Charles
2016-01-01
The Active CryoCubeSat project will demonstrate an advanced thermal control system for a 6-Unit (6U) CubeSat platform. A miniature, active thermal control system, in which a fluid is circulated in a closed loop from thermal loads to radiators, will be developed. A miniature cryogenic cooler will be integrated with this system to form a two-stage thermal control system. Key components will be miniaturized by using advanced additive manufacturing techniques resulting in a thermal testbed for proving out these technologies. Previous CubeSat missions have not tackled the problem of active thermal control systems nor have any past or current CubeSat missions included cryogenic instrumentation. This Active CryoCubeSat development effort will provide completely new capacities for CubeSats and constitutes a major advancement over the state-of-the-art in CubeSat thermal control.
Upward movement of plutonium to surface sediments during an 11-year field study.
Kaplan, D I; Demirkanli, D I; Molz, F J; Beals, D M; Cadieux, J R; Halverson, J E
2010-05-01
An 11-year lysimeter study was established to monitor the movement of Pu through vadose zone sediments. Sediment Pu concentrations as a function of depth indicated that some Pu moved upward from the buried source material. Subsequent numerical modeling suggested that the upward movement was largely the result of invading grasses taking up the Pu and translocating it upward. The objective of this study was to determine if the Pu of surface sediments originated from atmosphere fallout or from the buried lysimeter source material (weapons-grade Pu), providing additional evidence that plants were involved in the upward migration of Pu. The (240)Pu/(239)Pu and (242)Pu/(239)Pu atomic fraction ratios of the lysimeter surface sediments, as determined by Thermal Ionization Mass Spectroscopy (TIMS), were 0.063 and 0.00045, respectively; consistent with the signatures of the weapons-grade Pu. Our numerical simulations indicate that because plants create a large water flux, small concentrations over multiple years may result in a measurable accumulation of Pu on the ground surface. These results may have implications on the conceptual model for calculating risk associated with long-term stewardship and monitored natural attenuation management of Pu contaminated subsurface and surface sediments. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Zheng, Jian; Yamada, Masatoshi; Wang, Zhongliang; Aono, Tatsuo; Kusakabe, Masashi
2004-06-01
An analytical method for determining (239)Pu and (240)Pu in marine sediment samples, which uses quadrupole ICP-MS, was developed in this work. A simple anion-exchange chromatography system was employed for the separation and purification of Pu from the sample matrix. A sufficient decontamination factor of 1.4 x 10(4) for U, which interferes with the determination of (239)Pu, was achieved. High sensitivity Pu determination was obtained, which led to an extremely low concentration detection limit of approximately 8 fg/ml (0.019 mBq/ml for (239)Pu; 0.071 mBq/ml for (240)Pu) in a sample solution, or an absolute detection limit of 42 fg in a 5 ml sample solution, by using the shield torch technique. Analytical results for the determination of the (239+240)Pu and the (240)Pu/(239)Pu ratio in IAEA 368 (ocean sediment) reference material indicated that the accuracy of the method was satisfactory. The method developed was successfully applied to a study of Pu behavior in the sediments from Sagami Bay, Japan. The observed high (240)Pu/(239)Pu ratio in the sediment core indicated that there was additional Pu input derived from close-in fallout in addition to the global fallout.
AFS-2 FLOWSHEET MODIFICATIONS TO ADDRESS THE INGROWTH OF PU(VI) DURING METAL DISSOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crapse, K.; Rudisill, T.; O'Rourke, P.
2014-07-02
In support of the Alternate Feed Stock Two (AFS-2) PuO{sub 2} production campaign, Savannah River National Laboratory (SRNL) conducted a series of experiments concluding that dissolving Pu metal at 95°C using a 6–10 M HNO{sub 3} solution containing 0.05–0.2 M KF and 0–2 g/L B could reduce the oxidation of Pu(IV) to Pu(VI) as compared to dissolving Pu metal under the same conditions but at or near the boiling temperature. This flowsheet was demonstrated by conducting Pu metal dissolutions at 95°C to ensure that PuO{sub 2} solids were not formed during the dissolution. These dissolution parameters can be used formore » dissolving both Aqueous Polishing (AP) and MOX Process (MP) specification materials. Preceding the studies reported herein, two batches of Pu metal were dissolved in the H-Canyon 6.1D dissolver to prepare feed solution for the AFS-2 PuO{sub 2} production campaign. While in storage, UV-visible spectra obtained from an at-line spectrophotometer indicated the presence of Pu(VI). Analysis of the solutions also showed the presence of Fe, Ni, and Cr. Oxidation of Pu(IV) produced during metal dissolution to Pu(VI) is a concern for anion exchange purification. Anion exchange requires Pu in the +4 oxidation state for formation of the anionic plutonium(IV) hexanitrato complex which absorbs onto the resin. The presence of Pu(VI) in the anion feed solution would require a valence adjustment step to prevent losses. In addition, the presence of Cr(VI) would result in absorption of chromate ion onto the resin and could limit the purification of Pu from Cr which may challenge the purity specification of the final PuO{sub 2} product. Initial experiments were performed to quantify the rate of oxidation of Pu(IV) to Pu(VI) (presumed to be facilitated by Cr(VI)) as functions of the HNO{sub 3} concentration and temperature in simulated dissolution solutions containing Cr, Fe, and Ni. In these simulated Pu dissolutions studies, lowering the temperature from near boiling to 95 °C reduced the oxidation rate of Pu(IV) to Pu(VI). For 8.1 M HNO{sub 3} simulated dissolution solutions, at near boiling conditions >35% Pu(VI) was present in 50 h while at 95 °C <10% Pu(VI) was present at 50 h. At near boiling temperatures, eliminating the presence of Cr and varying the HNO{sub 3} concentration in the range of 7–8.5 M had little effect on the rate of conversion of Pu(IV) to Pu(VI). HNO{sub 3} oxidation of Pu(IV) to Pu(VI) in a pure solution has been reported previously. Based on simulated dissolution experiments, this study concluded that dissolving Pu metal at 95°C using a 6 to 10 M HNO{sub 3} solution 0.05–0.2 M KF and 0–2 g/L B could reduce the rate of oxidation of Pu(IV) to Pu(VI) as compared to near boiling conditions. To demonstrate this flowsheet, two small-scale experiments were performed dissolving Pu metal up to 6.75 g/L. No Pu-containing residues were observed in the solutions after cooling. Using Pu metal dissolution rates measured during the experiments and a correlation developed by Holcomb, the time required to completely dissolve a batch of Pu metal in an H-Canyon dissolver using this flowsheet was estimated to require nearly 5 days (120 h). This value is reasonably consistent with an estimate based on the Batch 2 and 3 dissolution times in the 6.1D dissolver and Pu metal dissolution rates measured in this study and by Rudisill et al. Data from the present and previous studies show that the Pu metal dissolution rate decreases by a factor of approximately two when the temperature decreased from boiling (112 to 116°C) to 95°C. Therefore, the time required to dissolve a batch of Pu metal in an H-Canyon dissolver at 95°C would likely double (from 36 to 54 h) and require 72 to 108 h depending on the surface area of the Pu metal. Based on the experimental studies, a Pu metal dissolution flowsheet utilizing 6–10 M HNO{sub 3} containing 0.05–0.2 M KF (with 0–2 g/L B) at 95°C is recommended to reduce the oxidation of Pu(IV) to Pu(VI) as compared to near boiling conditions. The time required to completely dissolve a batch of Pu metal will increase, however, by approximately a factor of two as compared to initial dissolutions at near boiling (assuming the KF concentration is maintained at nominally 0.1 M). By lowering the temperature to 95°C under otherwise the same operating parameters as previous dissolutions, the Pu(VI) concentration should not exceed 15% after a 120 h heating cycle. Increasing the HNO{sub 3} concentration and lowering Pu concentration are expected to further limit the amount of Pu(VI) formed.« less
CubeSat Launch Initiative Overview and CubeSat 101
NASA Technical Reports Server (NTRS)
Higginbotham, Scott
2017-01-01
The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results. This presentation will also provide high level CubeSat 101 information for prospective CubeSat developers, describing the development process from concept through mission operations while highlighting key points that developers need to be mindful of.
Effects of Plutonium on Soil Microorganisms
Wildung, Raymond E.; Garland, Thomas R.
1982-01-01
As a first phase in an investigation of the role of the soil microflora in Pu complex formation and solubilization in soil, the effects of Pu concentration, form, and specific activity on microbial types, colony-forming units, and CO2 evolution rate were determined in soils amended with C and N sources to optimize microbial activity. The effects of Pu differed with organism type and incubation time. After 30 days of incubation, aerobic sporeforming and anaerobic bacteria were significantly affected by soil Pu levels as low as 1 μg/g when Pu was added as the hydrolyzable 239Pu(NO3)4 (solubility, <0.1% in soil). Other classes of organisms, except the fungi, were significantly affected at soil Pu levels of 10 μg/g. Fungi were affected only at soil Pu levels of 180 μg/g. Soil CO2 evolution rate and total accumulated CO2 were affected by Pu only at the 180 μg/g level. Because of the possible role of resistant organisms in complex formation, the mechanisms of effects of Pu on the soil fungi were further evaluated. The effect of Pu on soil fungal colony-forming units was a function of Pu solubility in soil and Pu specific activity. When Pu was added in a soluble, complexed form [238Pu2(diethylenetriaminepentaacetate)3], effects occurred at Pu levels of 1 μg/g and persisted for at least 95 days. Toxicity was due primarily to radiation effects rather than to chemical effects, suggesting that, at least in the case of the fungi, formation of Pu complexes would result primarily from ligands associated with normal (in contrast to chemically-induced) biochemical pathways. PMID:16345947
Buesseler, Ken O; Kaplan, Daniel I; Dai, Minhan; Pike, Steven
2009-03-01
Plutonium (Pu) was characterized for its isotopic composition, oxidation states, and association with colloids in groundwater samples near disposal basins in F-Area of the Savannah River Site and compared to similar samples collected six years earlier. Two sources of Pu were identified, the disposal basins, which contained a 24Pu/l39Pu isotopic signature consistent with weapons grade Pu, and 244Cm, a cocontaminant that is a progenitor radionuclide of 24Pu. 24Pu that originated primarily from 244Cm tended to be appreciably more oxidized (Pu(V/VI)), less associated with colloids (approximately 1 kDa - 0.2 microm), and more mobile than 239Pu, as suggested by our prior studies at this site. This is not evidence of isotope fractionation but rather "source-dependent" controls on 240Pu speciation which are processes that are not at equilibrium, i.e., processes that appear kinetically hindered. There were also "source-independent" controls on 239Pu speciation, which are those processes that follow thermodynamic equilibrium with their surroundings. For example, a groundwater pH increase in one well from 4.1 in 1998 to 6.1 in 2004 resulted in an order of magnitude decrease in groundwater 239Pu concentrations. Similarly, the fraction of 239Pu in the reduced Pu(III/IV) and colloidal forms increased systematically with decreases in redox condition in 2004 vs 1998. This research demonstrates the importance of source-dependent and source-independent controls on Pu speciation which would impact Pu mobility during changes in hydrological, chemical, or biological conditions on both seasonal and decadal time scales, and over short spatial scales. This implies more dynamic shifts in Pu speciation, colloids association, and transport in groundwater than commonly believed.
NASA Astrophysics Data System (ADS)
Quinto, Francesca; Hrnecek, Erich; Krachler, Michael; Shotyk, William; Steier, Peter; Winkler, Stephan R.
2013-04-01
Plutonium (239Pu, 240Pu, 241Pu, 242Pu) and uranium (236U, 238U) isotopes were analyzed in an ombrotrophic peat core from the Black Forest, Germany, representing the last 80 years of atmospheric deposition. The reliable determination of these isotopes at ultra-trace levels was possible using ultra-clean laboratory procedures and accelerator mass spectrometry. The 240Pu/239Pu isotopic ratios are constant along the core with a mean value of 0.19 ±0.02 (N = 32). This result is consistent with the acknowledged average 240Pu/239Pu isotopic ratio from global fallout in the Northern Hemisphere. The global fallout origin of Pu is confirmed by the corresponding 241Pu/239Pu (0.0012 ±0.0005) and 242Pu/239Pu (0.004 ± 0.001) isotopic ratios. The identification of the Pu isotopic composition characteristic for global fallout in peat layers pre-dating the period of atmospheric atom bomb testing (AD 1956 - AD 1980) is a clear evidence of the migration of Pu downwards the peat profile. The maximum of global fallout derived 236U is detected in correspondence to the age/depth layer of maximum stratospheric fallout (AD 1963). This finding demonstrates that the 236U bomb peak can be successfully used as an independent chronological marker complementing the 210Pb dating of peat cores. The profiles of the global fallout derived 236U and 239Pu are compared with those of 137Cs and 241Am. As typical of ombrothrophic peat, the temporal fallout pattern of 137Cs is poorly retained. Similarly like for Pu, post-depositional migration of 241Am in peat layers preceding the era of atmospheric nuclear tests is observed.
NASA Astrophysics Data System (ADS)
Shakir, Amira Shakim Abdul; Badri, Khairiah Haji; Hua, Chia Chin
2016-11-01
An environmental-friendly blowing agent has been used to fabricate flexible polyurethane (PU) foam. Polyurethane foam was prepared from palm kernel oil-based monoester polyol (PKO-p) via prepolymerization method. Acetone has been used as solvent in this study. The developed polyurethane foam was characterized using tensile, differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TGA), optical microscope and drop shape analyzer. The mechanical properties of the PU-reference (PU-R) and PU-NaHCO3 foam was analyzed by tensile using ASTM D 3574-01. From the results, the elongation of PU- NaHCO3 shows reduction to 26.3 % compared to PU-R. The DSC showed two glass transition temperatures in all samples that belonged to the PU-R and PU-NaHCO3. TGA revealed that the incorporation of sodium hydrogen carbonate into the PU system did not show significant difference as compared to the control PU. The morphology of both PU was investigated using optical microscope. Contact angle has been measured to determine the hydrophobicity of the PU. The PU- NaHCO3 exhibited an increase in contact angle (93.1°).
Dark Matter or Modified Dynamics? Hints from Galaxy Kinematics
NASA Astrophysics Data System (ADS)
Gentile, G.
2010-12-01
I show two observational projects I am involved in, which are aimed at understanding better the existence and nature of dark matter, and also aimed at testing alternatives to galactic dark matter such as MOND (Modified Newtonian Dynamics). I present new HI observations of the nearby dwarf galaxy NGC 3741. This galaxy has an extremely extended HI disc (42 B-band exponential scalelengths). The distribution and kinematics are accurately derived by building model data cubes, which closely reproduce the observations. Mass modelling of the rotation curve shows that a cored dark matter halo or MOND provide very good fits, whereas Cold Dark Matter density profiles fail to fit the data. I also show new results about tidal dwarf galaxies, which within the CDM framework are expected to be dark matter-free but whose kinematics instead show a mass discrepancy, exactly of the magnitude that is expected in MOND (Modified Newtonian Dynamics).
Gibson, John K.; de Jong, Wibe A.; Dau, Phuong D.; ...
2017-11-14
The highest known actinide oxidation states are Np(VII) and Pu(VII), both of which have been identified in solution and solid compounds. Recently a molecular Np(VII) complex, NpO 3(NO 3) 2-, was prepared and characterized in the gas phase. In accord with the lower stability of heptavalent Pu, no Pu(VII) molecular species has been identified. Reported here are the gas-phase syntheses and characterizations of NpO 4 - and PuO 4 -. Reactivity studies and density functional theory computations indicate the heptavalent metal oxidation state in both. This is the first instance of Pu(VII) in the absence of stabilizing effects due tomore » condensed phase solvation or crystal fields. Here, the results indicate that addition of an electron to neutral PuO 4, which has a computed electron affinity of 2.56 eV, counterintuitively results in oxidation of Pu(V) to Pu(VII), concomitant with superoxide reduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, John K.; de Jong, Wibe A.; Dau, Phuong D.
The highest known actinide oxidation states are Np(VII) and Pu(VII), both of which have been identified in solution and solid compounds. Recently a molecular Np(VII) complex, NpO 3(NO 3) 2-, was prepared and characterized in the gas phase. In accord with the lower stability of heptavalent Pu, no Pu(VII) molecular species has been identified. Reported here are the gas-phase syntheses and characterizations of NpO 4 - and PuO 4 -. Reactivity studies and density functional theory computations indicate the heptavalent metal oxidation state in both. This is the first instance of Pu(VII) in the absence of stabilizing effects due tomore » condensed phase solvation or crystal fields. Here, the results indicate that addition of an electron to neutral PuO 4, which has a computed electron affinity of 2.56 eV, counterintuitively results in oxidation of Pu(V) to Pu(VII), concomitant with superoxide reduction.« less
In vivo canine studies of a Sinkhole valve and vascular graft coated with biocompatible PU-PEO-SO3.
Han, D K; Lee, K B; Park, K D; Kim, C S; Jeong, S Y; Kim, Y H; Kim, H M; Min, B G
1993-01-01
PU-PEO-SO3 was applied as a coating material over a newly designed Sinkhole bileaflet PU heart valve and a porous PU vascular graft. Performance and biocompatibility were evaluated using an in vivo canine shunt system between the right ventricle and pulmonary artery. The survival periods in three implantations were 14, 24, and 39 days, during which no mechanical failure occurred in any Sinkhole valve or vascular graft. Scanning electron microscopy (SEM) studies demonstrated much less platelet adhesion and thrombus formation on PU-PEO-SO3 grafts than on PU vascular grafts. Cracks in the valve leaflet were occasionally observed on PU surfaces, but not on PU-PEO-SO3. After a 39 day implantation, calcium deposition on vascular grafts was decreased as compared with valve leaflets, and calcification on PU-PEO-SO3 was much lower than on PU. These results suggest that Sinkhole valves and vascular grafts are promising, and PU-PEO-SO3 as a coating material is more blood compatible, biostable, and calcification resistant in vivo than in untreated PU.
Pu and 137Cs in the Yangtze River estuary sediments: distribution and source identification.
Liu, Zhiyong; Zheng, Jian; Pan, Shaoming; Dong, Wei; Yamada, Masatoshi; Aono, Tatsuo; Guo, Qiuju
2011-03-01
Pu isotopes and (137)Cs were analyzed using sector field ICP-MS and γ spectrometry, respectively, in surface sediment and core sediment samples from the Yangtze River estuary. (239+240)Pu activity and (240)Pu/(239)Pu atom ratios (>0.18) shows a generally increasing trend from land to sea and from north to south in the estuary. This spatial distribution pattern indicates that the Pacific Proving Grounds (PPG) source Pu transported by ocean currents was intensively scavenged into the suspended sediment under favorable conditions, and mixed with riverine sediment as the water circulated in the estuary. This process is the main control for the distribution of Pu in the estuary. Moreover, Pu is also an important indicator for monitoring the changes of environmental radioactivity in the estuary as the river basin is currently the site of extensive human activities and the sea level is rising because of global climate changes. For core sediment samples the maximum peak of (239+240)Pu activity was observed at a depth of 172 cm. The sedimentation rate was estimated on the basis of the Pu maximum deposition peak in 1963-1964 to be 4.1 cm/a. The contributions of the PPG close-in fallout Pu (44%) and the riverine Pu (45%) in Yangtze River estuary sediments are equally important for the total Pu deposition in the estuary, which challenges the current hypothesis that the riverine Pu input was the major source of Pu budget in this area.
CubeRovers for Lunar Exploration
NASA Astrophysics Data System (ADS)
Tallaksen, A. P.; Horchler, A. D.; Boirum, C.; Arnett, D.; Jones, H. L.; Fang, E.; Amoroso, E.; Chomas, L.; Papincak, L.; Sapunkov, O. B.; Whittaker, W. L.
2017-10-01
CubeRover is a 2-kg class of lunar rover that seeks to standardize and democratize surface mobility and science, analogous to CubeSats. This CubeRover will study in-situ lunar surface trafficability and descent engine blast ejecta phenomena.
Chemistry Cube Game - Exploring Basic Principles of Chemistry by Turning Cubes.
Müller, Markus T
2018-02-01
The Chemistry Cube Game invites students at secondary school level 1 and 2 to explore basic concepts of chemistry in a playful way, either as individuals or in teams. It consists of 15 different cubes, 9 cubes for different acids, their corresponding bases and precursors, and 6 cubes for different reducing and oxidising agents. The cubes can be rotated in those directions indicated. Each 'allowed' vertical or horizontal rotation of 90° stands for a chemical reaction or a physical transition. Two different games and playing modes are presented here: First, redox chemistry is introduced for the formation of salts from elementary metals and non-metals. Second, the speciation of acids and bases at different pH-values is shown. The cubes can be also used for games about environmental chemistry such as the carbon and sulphur cycle, covering the topic of acid rain, or the nitrogen cycle including ammoniac synthesis, nitrification and de-nitrification.
Methods for gas detection using stationary hyperspectral imaging sensors
Conger, James L [San Ramon, CA; Henderson, John R [Castro Valley, CA
2012-04-24
According to one embodiment, a method comprises producing a first hyperspectral imaging (HSI) data cube of a location at a first time using data from a HSI sensor; producing a second HSI data cube of the same location at a second time using data from the HSI sensor; subtracting on a pixel-by-pixel basis the second HSI data cube from the first HSI data cube to produce a raw difference cube; calibrating the raw difference cube to produce a calibrated raw difference cube; selecting at least one desired spectral band based on a gas of interest; producing a detection image based on the at least one selected spectral band and the calibrated raw difference cube; examining the detection image to determine presence of the gas of interest; and outputting a result of the examination. Other methods, systems, and computer program products for detecting the presence of a gas are also described.
Added value of lignin as lignin-based hybrid polyurethane for a compatibilizing agent
NASA Astrophysics Data System (ADS)
Ilmiati, S.; Haris Mustafa, J.; Yaumal, A.; Hanum, F.; Chalid, M.
2017-07-01
As biomass-based material, lignin contains abundant hydroxyl groups promising to be used as chain extender in building hybrid polyurethanes. Consisting of polyehtylene glycol (PEG) content as hydrophobic part and lignin as hydrophilic part, the hybrid PU is expected to be as a novel compatibilizing agent in new materials production such as polyblends and composites. The hybrid PU was synthesized via two reaction stages, viz. pre-polyurethanization through reacting 4,4'-Methylenebis (Cyclohexyl Isocyanate) (HMDI) and PEG as polyol, and chain extention through adding lignin in the pre-polyurethanization system. The composition effect of lignin in hybrid PU syntehsis, to chemical structure corelated to hydrophobic to hydrophilic ratio, thermal and morphological properties, was evaluated by measuring NMR, FTIR, DSC, TGA and FE-SEM. The experiments showed that addition of lignin was able to extend the pre-polyurethane into hybrid polyurethane and to increase the lignin/polyol ratio in the hybrid polyurethanes, which were indicated by NMR and FTIR Analysis. And change of the ratio lead to increase the glass transition from 60.9 until 62.1°C and degradation temperature from 413.9 until 416.0°C. Observation of the morphology implied that addition of lignin gave more agglomerations. A Further investigation for this characterization study should be focused on a feasibility for this modified lignin as a novel compatibilizing agent.
Zhang, Jun; Liu, Cheng; Feng, Fuling; Wang, Dawei; Lu, Shuaishuai; Wei, Guo; Mo, Hong; Qiao, Tong
2017-12-01
Composite vascular patches have gained increasingly attention due to the limited availability of autologous patches (vascular graft materials made from the blood vessels of the same recipient), the lack of growth capability of nonautologous patches (vascular graft materials made from the blood vessels of a different donor) and the disadvantages of synthetic patches. In this study, we report a highly biocompatible phosphatidylcholine-polyurethane nanoparticle/polyurethane/decellularized scaffold composite vascular patch (PCVP). It was fabricated by a facile method - cosedimentation. Its in vitro blood and cell compatibility including hemolysis, plasma recalcification time, coagulation time, platelet adhesion and cytotoxicity was evaluated. The surface modified with phosphatidylcholine-polyurethane (PC-PU) nanoparticles exhibited the improved anticoagulation activity. The in vivo performance of the PCVP was investigated in a mouse model. The nanopatterned surface that resembled the concave-convex structure of the luminal surface of native blood vessels enhanced cell attachment, proliferation, migration and differentiation. The decellularized scaffold had the mechanical property similar to that of the targeted blood vessels, which could withstand in vivo dynamic blood pressure. The overall performance of the PCVP was synergistically optimized by each layer of the multilayer design. The patched artery remained patent and the formation of endothelial tissue - endothelialization was achieved 30days after the in vivo implantation in a mouse model. Copyright © 2017 Elsevier B.V. All rights reserved.
PuTTY | High-Performance Computing | NREL
PuTTY PuTTY Learn how to use PuTTY to connect to NREL's high-performance computing (HPC) systems . Connecting When you start the PuTTY app, the program will display PuTTY's Configuration menu. When this comes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, R. O.; Beausang, C. W.; Ross, T. J.
2014-07-01
The Pu 236(n,f), Pu 237(n,f) and Pu 238(n,f) cross sections have been inferred by utilizing the surrogate ratio method. Targets of Pu 239 and U 235 were bombarded with 28.5-MeV protons, and the light ion recoils, as well as fission fragments, were detected using the STARS detector array at the K150 Cyclotron at the Texas A&M cyclotron facility. The (p, tf) reaction on Pu 239 and U 235 targets was used to deduce the σ (Pu 236(n,f))/σ(U 232(n,f)) ratio, and the Pu 236(n,f) cross section was subsequently determined for En=0.5–7.5 MeV. Similarly, the (p,df) reaction on the same two targetsmore » was used to deduce the σ(Pu 237(n,f))/σ(U 233(n,f)) ratio, and the Pu 237(n,f) cross section was extracted in the energy range En=0.5–7 MeV. The Pu 238(n,f) cross section was also deduced by utilizing the (p,p') reaction channel on the same targets. There is good agreement with the recent ENDF/B-VII.1 evaluated cross section data for Pu 238(n,f) in the range En=0.5–10.5 MeV and for Pu 237(n,f) in the range En=0.5–7 MeV; however, the Pu 236(n,f) cross section deduced in the present work is higher than the evaluation between 2 and 7 MeV.« less
Choi, Yeong-Gon; Kim, Jae-Il; Choi, Eun-Kyoung; Carp, Richard I; Kim, Yong-Sun
2016-01-01
Previous studies have shown that the Nε-carboxymethyl group is linked to not only one or more N-terminal Lys residues but also to one or more Lys residues of the protease-resistant core region of the pathogenic prion isoform (PrPSc) in prion-infected brains. Using an anti-advanced glycation end product (AGE) antibody, we detected nonenzymatically glycated PrPSc (AGE-PrPSc) in prion-infected brains following concentration by a series of ultracentrifugation steps with a sucrose cushion. In the present study, the levels of in vitro nonenzymatic glycation of PrPSc using sucrose were investigated to determine whether sucrose cushion can artificially and nonenzymatically induce in vitro glycation during ultracentrifugation. The first insoluble pellet fraction following the first ultracentrifugation (PU1st) collected from 263K scrapie-infected brains was incubated with sucrose, glucose or colloidal silica coated with polyvinylpyrrolidone (percoll). None of the compounds in vitro resulted in AGE-PrPSc. Nonetheless, glucose and percoll produced AGEs in vitro from other proteins within PU1st of the infected brains. This reaction could lead to the AGE-modified polymer(s) of nonenzymatic glycation-prone protein(s). This study showed that PrPSc is not nonenzymatically glycated in vitro with sucrose, glucose or percoll and that AGE-modified PrPSc can be isolated and enriched from prion-infected brains.
Point-source and diffuse high-energy neutrino emission from Type IIn supernovae
NASA Astrophysics Data System (ADS)
Petropoulou, M.; Coenders, S.; Vasilopoulos, G.; Kamble, A.; Sironi, L.
2017-09-01
Type IIn supernovae (SNe), a rare subclass of core collapse SNe, explode in dense circumstellar media that have been modified by the SNe progenitors at their last evolutionary stages. The interaction of the freely expanding SN ejecta with the circumstellar medium gives rise to a shock wave propagating in the dense SN environment, which may accelerate protons to multi-PeV energies. Inelastic proton-proton collisions between the shock-accelerated protons and those of the circumstellar medium lead to multimessenger signatures. Here, we evaluate the possible neutrino signal of Type IIn SNe and compare with IceCube observations. We employ a Monte Carlo method for the calculation of the diffuse neutrino emission from the SN IIn class to account for the spread in their properties. The cumulative neutrino emission is found to be ˜10 per cent of the observed IceCube neutrino flux above 60 TeV. Type IIn SNe would be the dominant component of the diffuse astrophysical flux, only if 4 per cent of all core collapse SNe were of this type and 20-30 per cent of the shock energy was channeled to accelerated protons. Lower values of the acceleration efficiency are accessible by the observation of a single Type IIn SN as a neutrino point source with IceCube using up-going muon neutrinos. Such an identification is possible in the first year following the SN shock breakout for sources within 20 Mpc.
Electronic and thermodynamic properties of α-Pu2O3
NASA Astrophysics Data System (ADS)
Lu, Yong; Yang, Yu; Zheng, Fawei; Zhang, Ping
2014-08-01
Based on density functional theory+U calculations and the quasi-annealing simulation method, we obtain the ground electronic state for α-Pu2O3 and present its phonon dispersion curves as well as various thermodynamic properties, which have seldom been theoretically studied because of the huge unit cell. We find that the Pu-O chemical bonding is weaker in α-Pu2O3 than in fluorite PuO2, and subsequently a frequency gap appears between oxygen and plutonium vibration density of states. Based on the calculated Helmholtz free energies at different temperatures, we further study the reaction energies for Pu oxidation, PuO2 reduction, and transformation between PuO2 and α-Pu2O3. Our reaction energy results are in agreements with available experiment. And it is revealed that high temperature and insufficient oxygen environment are in favor of the formation of α-Pu2O3.
Random sequential adsorption of cubes
NASA Astrophysics Data System (ADS)
Cieśla, Michał; Kubala, Piotr
2018-01-01
Random packings built of cubes are studied numerically using a random sequential adsorption algorithm. To compare the obtained results with previous reports, three different models of cube orientation sampling were used. Also, three different cube-cube intersection algorithms were tested to find the most efficient one. The study focuses on the mean saturated packing fraction as well as kinetics of packing growth. Microstructural properties of packings were analyzed using density autocorrelation function.
Validation of SMAP Radar Vegetation Data Cubes from Agricultural Field Measurements
NASA Astrophysics Data System (ADS)
Tsang, L.; Xu, X.; Liao, T.; Kim, S.; Njoku, E. G.
2012-12-01
The NASA Soil Moisture Active/Passive (SMAP) Mission will be launched in October 2014. The objective of the SMAP mission is to provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. In the active algorithm, the retrieval is performed based on the backscattering data cube, which are characterized by two surface parameters, which are soil moisture and soil surface rms height, and one vegetation parameter, the vegetation water content. We have developed a physical-based forward scattering model to generate the data cube for agricultural fields. To represent the agricultural crops, we include a layer of cylinders and disks on top of the rough surface. The scattering cross section of the vegetation layer and its interaction with the underground soil surface were calculated by the distorted Born approximation, which give explicitly three scattering mechanisms. A) The direct volume scattering B) The double bounce effect as, and C) The double bouncing effects. The direct volume scattering is calculated by using the Body of Revolution code. The double bounce effects, exhibited by the interaction of rough surface with the vegetation layer is considered by modifying the rough surface reflectivity using the coherent wave as computed by Numerical solution of Maxwell equations of 3 Dimensional simulations (NMM3D) of bare soil scattering. The rough surface scattering of the soil was calculated by NMM3D. We have compared the physical scattering models with field measurements. In the field campaign, the measurements were made on soil moisture, rough surface rms heights and vegetation water content as well as geometric parameters of vegetation. The three main crops lands are grassland, cornfield and soybean fields. The corresponding data cubes are validated using SGP99, SMEX02 and SMEX 08 field experiments.
Decreased solubilization of Pu(IV) polymers by humic acids under anoxic conditions
NASA Astrophysics Data System (ADS)
Xie, Jinchuan; Lin, Jianfeng; Liang, Wei; Li, Mei; Zhou, Xiaohua
2016-11-01
Pu(IV) polymer has a very low solubility (log[Pu(IV)aq]total = -10.4 at pH 7.2 and I = 0). However, some aspects of their environmental fate remain unclear. Humic acids are able to complex with Pu4+ ions and their dissolved species (<10 kD) in the groundwater (neutral to alkaline pH) may cause solubilization of the polymers. Also, humic acids have the native reducing capacity and potentially reduce the polymeric Pu(IV) to Pu(III)aq (log[Pu(III)aq]total = -5.3 at pH 7.2 and I = 0). Solubilization and reduction of the polymers can enhance their mobility in subsurface environments. Nevertheless, humic acids readily coat the surfaces of metal oxides via electrostatic interaction and ligand exchange mechanisms. The humic coatings are expected to prevent both solubilization and reduction of the polymers. Experiments were conducted under anoxic and slightly alkaline (pH 7.2) conditions in order to study whether humic acids have effects on stability of the polymers. The results show that the polymeric Pu(IV) was almost completely transformed into aqueous Pu(IV) in the presence of EDTA ligands. In contrast, the dissolved humic acids did not solubilize the polymers but in fact decreased their solubility by one order of magnitude. The humic coatings were responsible for the decreased solubilization. Such coatings limited the contact between the polymers and EDTA ligands, especially at the relatively high concentrations of humic acids (>0.57 mg/L). Solubilization of the humic-coated polymers was thus inhibited to a significant extent although EDTA, having the great complexation ability, was present in the humic solutions. Reduction of Pu(IV) polymers by the humic acids was also not observed in the absence of EDTA. In the presence of EDTA, the polymers were partially reduced to Pu(III)aq by the humic acids of 0.57 mg/L and the percentage of Pu(III)aq accounted for 51.7% of the total aqueous Pu. This demonstrates that the humic acids were able to reduce the aqueous Pu(IV), instead of the polymeric Pu(IV). Such a demonstration is supported by the very positive redox potential of aqueous Pu(IV)-EDTA complex: Eho ‧ (PuL24-/PuL25-) = 154.3 mV >>Eh (PuO2 (am) /Pu3+) = -182.7 mV calculated at 10-10 mol/L Pu3+ and pH 7.2. At the higher humic concentrations (>0.57 mg/L), the polymers were reduced to a lesser extent because the much denser humic coatings resulted in lower concentrations of the aqueous Pu(IV). Consequently, humic acids make Pu(IV) polymers pretty stable unless the artificial ligands such as EDTA are present in the groundwater.
Oxidation and reduction behaviors of a prototypic MgO-PuO2-x inert matrix fuel
NASA Astrophysics Data System (ADS)
Miwa, Shuhei; Osaka, Masahiko
2017-04-01
Oxidation and reduction behaviors of prototypic MgO-based inert matrix fuels (IMFs) containing PuO2-x were experimentally investigated by means of thermogravimetry. The oxidation and reduction kinetics of the MgO-PuO2-x specimen were determined. The oxidation and reduction rates of the MgO-PuO2-x were found to be low compared with those of PuO2-x. It is note that the changes in O/Pu ratios of MgO-PuO2-x from stoichiometry were smaller than those of PuO2-x at high oxygen partial pressure.
Age determination of single plutonium particles after chemical separation
NASA Astrophysics Data System (ADS)
Shinonaga, T.; Donohue, D.; Ciurapinski, A.; Klose, D.
2009-01-01
Age determination of single plutonium particles was demonstrated using five particles of the standard reference material, NBS 947 (Plutonium Isotopic Standard. National Bureau of Standards, Washington, D.C. 20234, August 19, 1982, currently distributed as NBL CRM-137) and the radioactive decay of 241Pu into 241Am. The elemental ratio of Am/Pu in Pu particles found on a carbon planchet was measured by wavelength dispersive X-ray spectrometry (WDX) coupled to a scanning electron microscope (SEM). After the WDX measurement, each plutonium particle, with an average size of a few μm, was picked up and relocated to a silicon wafer inside the SEM chamber using a micromanipulator. The silicon wafer was then transferred to a quartz tube for dissolution in an acid solution prior to chemical separation. After the Pu was chemically separated from Am and U, the isotopic ratios of Pu ( 240Pu/ 239Pu, 241Pu/ 239Pu and 242Pu/ 239Pu) were measured with a thermal ionization mass spectrometer (TIMS) for the calculation of Pu age. The age of particles determined in this study was in good agreement with the expected age (35.9 a) of NBS 947 within the measurement uncertainty.
Konegger-Kappel, Stefanie; Prohaska, Thomas
2016-01-01
Laser ablation-multi-collector-inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) was optimized and investigated with respect to its performance for determining spatially resolved Pu isotopic signatures within radioactive fuel particle clusters. Fuel particles had been emitted from the Chernobyl nuclear power plant (ChNPP) where the 1986 accident occurred and were deposited in the surrounding soil, where weathering processes caused their transformation into radioactive clusters, so-called micro-samples. The size of the investigated micro-samples, which showed surface alpha activities below 40 mBq, ranged from about 200 to 1000 μm. Direct single static point ablations allowed to identify variations of Pu isotopic signatures not only between distinct fuel particle clusters but also within individual clusters. The resolution was limited to 100 to 120 μm as a result of the applied laser ablation spot sizes and the resolving power of the nuclear track radiography methodology that was applied for particle pre-selection. The determined (242)Pu/(239)Pu and (240)Pu/(239)Pu isotope ratios showed a variation from low to high Pu isotope ratios, ranging from 0.007(2) to 0.047(8) for (242)Pu/(239)Pu and from 0.183(13) to 0.577(40) for (240)Pu/(239)Pu. In contrast to other studies, the applied methodology allowed for the first time to display the Pu isotopic distribution in the Chernobyl fallout, which reflects the differences in the spent fuel composition over the reactor core. The measured Pu isotopic signatures are in good agreement with the expected Pu isotopic composition distribution that is typical for a RBMK-1000 reactor, indicating that the analyzed samples are originating from the ill-fated Chernobyl reactor. The average Pu isotope ratios [(240)Pu/(239)Pu = 0.388(86), (242)Pu/(239)Pu = 0.028(11)] that were calculated from all investigated samples (n = 48) correspond well to previously published results of Pu analyses in contaminated samples from the vicinity of the Chernobyl NPP [e.g. (240)Pu/(239)Pu = 0.394(2) and (242)Pu/(239)Pu = 0.027(1); Nunnemann et al. (J Alloys Compd 271-273:45-48, 1998)].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santschi, Peter H.
2006-06-01
The overall objective of this proposed research is to understand the biogeochemical cycling of Pu in environments of interest to long-term DOE stewardship issues. Central to Pu cycling (transport initiation to immobilization) is the role of microorganisms. The hypothesis underlying this proposal is that microbial activity is the causative agent in initiating the mobilization of Pu in near-surface environments: through the transformation of Pu associated with solid phases, production of extracellular polymeric substances (EPS) carrier phases, and the creation of microenvironments. Also, microbial processes are central to the immobilization of Pu species, through the metabolism of organically complexed Pu speciesmore » and Pu associated with extracellular carrier phases and the creation of environments favorable for Pu transport retardation.« less
Sources of the transuranic elements plutonium and neptunium in arctic marine sediments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, L. W.; Kelley, J. M.; Bond, L. A.
2000-01-01
We report here thermal ionization mass spectrometry measurements of {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu, and {sup 237}Np isolated from oceanic, estuarine, and riverine sediments from the Arctic Ocean Basin. {sup 238}Pu/{sup 239+240}Pu activity ratios are also reported for alpha spectrometric analyses undertaken on a subset of these samples. Our results indicate that the Pu in sediments on the Alaskan shelf and slope, as well as that in the deep basins (Amerasian and Eurasian) of the Arctic Ocean, has its origin in stratospheric and tropospheric fallout. Sediments from the Ob and Yenisei Rivers show isotopic Pu signatures thatmore » are distinctly different from those of northern-hemisphere stratospheric fallout and indicate the presence of weapons-grade Pu originating from nuclear fuel reprocessing wastes generated at Russian facilities within these river catchments. Consequently, sediments of the Eurasian Arctic Ocean, particularly those in the Barents and Kara Seas, probably contain a mixture of Pu from stratospheric fallout, tropospheric fallout, and fuel-reprocessing wastes of riverine origin. In particular, the {sup 241}Pu/{sup 239}Pu ratios observed in these sediments are inconsistent with significant contributions of Pu to the arctic sediments studied from western European reprocessing facilities, principally Sellafield in the UK. Several other potential sources of Pu to arctic sediments can also be excluded as significant based upon the transuranic isotope ratios presented.« less
NASA Technical Reports Server (NTRS)
Jenkins, Kenneth T., Jr.
2012-01-01
CUBES stands for Creating Understanding and Broadening Education through Satellites. The goal of the project is to allow high school students to build a small satellite, or CubeSat. Merritt Island High School (MIHS) was selected to partner with NASA, and California Polytechnic State University (Cal-Poly}, to build a CubeSat. The objective of the mission is to collect flight data to better characterize maximum predicted environments inside the CubeSat launcher, Poly-Picosatellite Orbital Deplorer (P-POD), while attached to the launch vehicle. The MIHS CubeSat team will apply to the NASA CubeSat Launch Initiative, which provides opportunities for small satellite development teams to secure launch slots on upcoming expendable launch vehicle missions. The MIHS team is working to achieve a test launch, or proof of concept flight aboard a suborbital launch vehicle in early 2013.
Gola, Mateusz; Lewczuk, Karol; Skorko, Maciej
2016-05-01
Pornography has become popular with Internet technology. For most people, pornography use (PU) is entertainment; for some, it can result in seeking treatment for out-of-control behavior. Previous studies have suggested that PU can influence sexual behaviors, but the direct relation between frequency of PU and treatment-seeking behaviors has not been examined. To investigate whether individuals seeking treatment as a consequence of their problematic PU do so because of their quantity of pornography consumption or because of more complex psychological and behavioral factors related to PU, such as the severity of negative symptoms associated with PU and/or subjective feeling of loss of control over one's behavior. A survey study was conducted of 569 heterosexual Caucasian men 18 to 68 years old, including 132 seeking treatment for problematic PU (referred by psychotherapists after their initial visit). The main outcome measures were self-reported PU, its negative symptoms, and actual treatment-seeking behavior. We tested models explaining sources of seeking treatment for problematic PU with negative symptoms associated with PU and additional factors (eg, onset and number of years of PU, religiosity, age, dyadic sexual activity, and relationship status). Seeking treatment was significantly, yet weakly, correlated solely with the frequency of PU (r = 0.21, P < .05) and this relation was significantly mediated by negative symptoms associated with PU (strong, nearly full mediation effect size; k(2) = 0.266). The relation between PU and negative symptoms was significant and mediated by self-reported subjective religiosity (weak, partial mediation; k(2) = 0.066) in those not seeking treatment. Onset of PU and age appeared to be insignificant. Our model was fairly fitted (comparative fit index = 0.989; root mean square error of approximation = 0.06; standardized root mean square residual = 0.035) and explained 43% of the variance in treatment-seeking behavior (1% was explained by frequency of PU and 42% was explained by negative symptoms associated with PU). Negative symptoms associated with PU more strongly predict seeking treatment than mere quantity of pornography consumption. Thus, treatment of problematic PU should address qualitative factors, rather than merely mitigating the frequency of the behavior, because frequency of PU might not be a core issue for all patients. Future diagnostic criteria for problematic PU should consider the complexity of this issue. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Development of a methodology to evaluate material accountability in pyroprocess
NASA Astrophysics Data System (ADS)
Woo, Seungmin
This study investigates the effect of the non-uniform nuclide composition in spent fuel on material accountancy in the pyroprocess. High-fidelity depletion simulations are performed using the Monte Carlo code SERPENT in order to determine nuclide composition as a function of axial and radial position within fuel rods and assemblies, and burnup. For improved accuracy, the simulations use short burnups step (25 days or less), Xe-equilibrium treatment (to avoid oscillations over burnup steps), axial moderator temperature distribution, and 30 axial meshes. Analytical solutions of the simplified depletion equations are built to understand the axial non-uniformity of nuclide composition in spent fuel. The cosine shape of axial neutron flux distribution dominates the axial non-uniformity of the nuclide composition. Combined cross sections and time also generate axial non-uniformity, as the exponential term in the analytical solution consists of the neutron flux, cross section and time. The axial concentration distribution for a nuclide having the small cross section gets steeper than that for another nuclide having the great cross section because the axial flux is weighted by the cross section in the exponential term in the analytical solution. Similarly, the non-uniformity becomes flatter as increasing burnup, because the time term in the exponential increases. Based on the developed numerical recipes and decoupling of the results between the axial distributions and the predetermined representative radial distributions by matching the axial height, the axial and radial composition distributions for representative spent nuclear fuel assemblies, the Type-0, -1, and -2 assemblies after 1, 2, and 3 depletion cycles, is obtained. These data are appropriately modified to depict processing for materials in the head-end process of pyroprocess that is chopping, voloxidation and granulation. The expectation and standard deviation of the Pu-to-244Cm-ratio by the single granule sampling calculated by the central limit theorem and the Geary-Hinkley transformation. Then, the uncertainty propagation through the key-pyroprocess is conducted to analyze the Material Unaccounted For (MUF), which is a random variable defined as a receipt minus a shipment of a process, in the system. The random variable, LOPu, is defined for evaluating the non-detection probability at each Key Measurement Point (KMP) as the original Pu mass minus the Pu mass after a missing scenario. A number of assemblies for the LOPu to be 8 kg is considered in this calculation. The probability of detection for the 8 kg LOPu is evaluated with respect the size of granule and powder using the event tree analysis and the hypothesis testing method. We can observe there are possible cases showing the probability of detection for the 8 kg LOPu less than 95%. In order to enhance the detection rate, a new Material Balance Area (MBA) model is defined for the key-pyroprocess. The probabilities of detection for all spent fuel types based on the new MBA model are greater than 99%. Furthermore, it is observed that the probability of detection significantly increases by increasing granule sample sizes to evaluate the Pu-to-244Cm-ratio before the key-pyroprocess. Based on these observations, even though the Pu material accountability in pyroprocess is affected by the non-uniformity of nuclide composition when the Pu-to-244Cm-ratio method is being applied, that is surmounted by decreasing the uncertainty of measured ratio by increasing sample sizes and modifying the MBAs and KMPs. (Abstract shortened by ProQuest.).
X-ray excited Auger transitions of Pu compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Art J., E-mail: nelson63@llnl.gov; Grant, William K.; Stanford, Jeff A.
2015-05-15
X-ray excited Pu core–valence–valence and core–core–valence Auger line-shapes were used in combination with the Pu 4f photoelectron peaks to characterize differences in the oxidation state and local electronic structure for Pu compounds. The evolution of the Pu 4f core-level chemical shift as a function of sputtering depth profiling and hydrogen exposure at ambient temperature was quantified. The combination of the core–valence–valence Auger peak energies with the associated chemical shift of the Pu 4f photoelectron line defines the Auger parameter and results in a reliable method for definitively determining oxidation states independent of binding energy calibration. Results show that PuO{sub 2},more » Pu{sub 2}O{sub 3}, PuH{sub 2.7}, and Pu have definitive Auger line-shapes. These data were used to produce a chemical state (Wagner) plot for select plutonium oxides. This Wagner plot allowed us to distinguish between the trivalent hydride and the trivalent oxide, which cannot be differentiated by the Pu 4f binding energy alone.« less
A DFT+U study of Pu immobilization in Gd2Zr2O7
NASA Astrophysics Data System (ADS)
Zhao, F. A.; Xiao, H. Y.; Jiang, M.; Liu, Z. J.; Zu, X. T.
2015-12-01
The solubility of Pu in Gd2Zr2O7 has been investigated by the density functional theory plus Hubbard U correction. It is found that the formation of PuGdZr2O7, Gd2PuZrO7 and Gd2Pu1.5Zr0.5O7 are exothermic, whereas Pu0.5Gd1.5Zr2O7, Pu1.5Gd0.5Zr2O7 and Gd2Pu0.5Zr1.5O7 are energetically less stable than their respective separated states. The calculations show that both the Gd and Zr lattice sites can be substituted by the Pu, which is consistent with the immobilization behavior of uranium in Gd2Zr2O7 observed experimentally. The site preference of Pu in Gd2Zr2O7 is found to be dependent on the chemical environment, i.e., Pu prefers to substitute for Gd-site under Gd-rich and O2-rich conditions and for Zr-site under Zr-rich and O2-rich conditions.
EarthCube - A Community-led, Interdisciplinary Collaboration for Geoscience Cyberinfrastructure
NASA Astrophysics Data System (ADS)
Allison, M. L.; Keane, C. M.; Robinson, E.
2015-12-01
The EarthCube Test Enterprise Governance Project completed its initial two-year long process to engage the community and test a demonstration governing organization with the goal of facilitating a community-led process on designing and developing a geoscience cyberinfrastructure. Conclusions are that EarthCube is viable, has engaged a broad spectrum of end-users and contributors, and has begun to foster a sense of urgency around the importance of open and shared data. Levels of trust among participants are growing. At the same time, the active participants in EarthCube represent a very small sub-set of the larger population of geoscientists. Results from Stage I of this project have impacted NSF decisions on the direction of the EarthCube program. The overall tone of EarthCube events has had a constructive, problem-solving orientation. The technical and organizational elements of EarthCube are poised to support a functional infrastructure for the geosciences community. The process for establishing shared technological standards has notable progress but there is a continuing need to expand technological and cultural alignment. Increasing emphasis is being given to the interdependencies among EarthCube funded projects. The newly developed EarthCube Technology Plan highlights important progress in this area by five working groups focusing on: 1. Use cases; 2. Funded project gap analysis; 3. Testbed development; 4. Standards; and 5. Architecture. There is ample justification to continue running a community-led governance framework that facilitates agreement on a system architecture, guides EarthCube activities, and plays an increasing role in making the EarthCube vision of cyberinfrastructure for the geosciences operational. There is widespread community expectation for support of a multiyear EarthCube governing effort to put into practice the science, technical, and organizational plans that have and are continuing to emerge.
NASA Astrophysics Data System (ADS)
Pereira, L. C. J.; Wastin, F.; Winand, J. M.; Kanellakopoulos, B.; Rebizant, J.; Spirlet, J. C.; Almeida, M.
1997-11-01
The synthesis, structural, and physical characterization of nine new ternary intermetallic compounds belonging to the isostructural An2T2Xfamily with the transuranium Pu and Am elements, namely, Pu 2Ni 2In, Pu 2Pd 2In, Pu 2Pt 2In, Pu 2Rh 2In, Pu 2Ni 2Sn, Pu 2Pd 2Sn, Pu 2Pt 2Sn, Am 2Ni 2Sn, and Am 2Pd 2Sn, are reported. From these compounds only Pu 2Rh 2In, Am 2Ni 2Sn, and Am 2Pd 2Sn melt incongruently. All of these compounds crystallize in a tetragonal U 3Si 2-type structure, with the space group P4/ mbm, ( Z=2) as most of the U and Np 2-2-1 compounds already found. In this structure, Anatoms occupy the 4 h( x1, x1+0.5, 0.5), Tthe 4 g( x2, x2+0.5, 0), and Xthe 2 a(0, 0, 0) positions. The average values of x1and x2are, respectively, 0.17 and 0.37. Single-crystal X-ray data were refined to R/ RW=0.045/0.066, 0.043/0.072, 0.066/0.080, 0.070/0.098, 0.029/0.048, 0.055/0.080, 0.073/0.096, 0.048/0.086, 0.048/0.065 for Pu 2Ni 2In, Pu 2Pd 2In, Pu 2Pt 2In, Pu 2Rh 2In, Pu 2Ni 2Sn, Pu 2Pd 2Sn, Pu 2Pt 2Sn, Am 2Ni 2Sn, and Am 2Pd 2Sn, respectively, for seven variables. The variation of the lattice parameters and the range of stability of the 2-2-1 phase are discussed in terms of the substitution of different An(actinide), T(transition metal), and X( p-electron) elements in their crystal structure. The possible role of spin fluctuations in the low-temperature behavior of the Pu samples is indicated by magnetic and electrical resistivity measurements.
Build an Earthquake City! Grades 6-8.
ERIC Educational Resources Information Center
Rushton, Erik; Ryan, Emily; Swift, Charles
In this activity, students build a city out of sugar cubes, bouillon cubes, and gelatin cubes. The city is then put through simulated earthquakes to see which cube structures withstand the shaking the best. This activity requires a 50-minute time period for completion. (Author/SOE)
Yamamoto, M; Oikawa, S; Sakaguchi, A; Tomita, J; Hoshi, M; Apsalikov, K N
2008-09-01
Information on the 240Pu/239Pu isotope ratios in human tissues for people living around the Semipalatinsk Nuclear Test Site (SNTS) was deduced from 9 sets of soft tissues and bones, and 23 other bone samples obtained by autopsy. Plutonium was radiochemically separated and purified, and plutonium isotopes (239Pu and 240Pu) were determined by sector-field high resolution inductively coupled plasma-mass spectrometry. For most of the tissue samples from the former nine subjects, low 240Pu/239Pu isotope ratios were determined: bone, 0.125 +/- 0.018 (0.113-0.145, n = 4); lungs, 0.063 +/- 0.010 (0.051-0.078, n = 5); and liver, 0.148 +/- 0.026 (0.104-0.189, n = 9). Only 239Pu was detected in the kidney samples; the amount of 240Pu was too small to be measured, probably due to the small size of samples analyzed. The mean 240Pu/239Pu isotope ratio for bone samples from the latter 23 subjects was 0.152 +/- 0.034, ranging from 0.088 to 0.207. A significant difference (a two-tailed Student's t test; 95% significant level, alpha = 0.05) between mean 240Pu/239Pu isotope ratios for the tissue samples and for the global fallout value (0.178 +/- 0.014) indicated that weapons-grade plutonium from the atomic bombs has been incorporated into the human tissues, especially lungs, in the residents living around the SNTS. The present 239,240Pu concentrations in bone, lung, and liver samples were, however, not much different from ranges found for human tissues from other countries that were due solely to global fallout during the 1970's-1980's.
Lindahl, Patric; Keith-Roach, Miranda; Worsfold, Paul; Choi, Min-Seok; Shin, Hyung-Seon; Lee, Sang-Hoon
2010-06-25
Sources of plutonium isotopes to the marine environment are well defined, both spatially and temporally, which makes Pu a potential tracer for oceanic processes. This paper presents the selection, optimisation and validation of a sample preparation method for the ultra-trace determination of Pu isotopes ((240)Pu and (239)Pu) in marine samples by multi-collector (MC) ICP-MS. The method was optimised for the removal of the interference from (238)U and the chemical recovery of Pu. Comparison of various separation strategies using AG1-X8, TEVA, TRU, and UTEVA resins to determine Pu in marine calcium carbonate samples is reported. A combination of anion-exchange (AG1-X8) and extraction chromatography (UTEVA/TRU) was the most suitable, with a radiochemical Pu yield of 87+/-5% and a U decontamination factor of 1.2 x 10(4). Validation of the method was accomplished by determining Pu in various IAEA certified marine reference materials. The estimated MC-ICP-MS instrumental limit of detection for (239)Pu and (240)Pu was 0.02 fg mL(-1), with an absolute limit of quantification of 0.11 fg. The proposed method allows the determination of ultra-trace Pu, at femtogram levels, in small size marine samples (e.g., 0.6-2.0 g coral or 15-20 L seawater). Finally, the analytical method was applied to determining historical records of the Pu signature in coral samples from the tropical Northwest Pacific and (239+240)Pu concentrations and (240)Pu/(239)Pu atom ratios in seawater samples as part of the 2008 GEOTRACES intercalibration exercise. Copyright 2010 Elsevier B.V. All rights reserved.
Uptake, distribution, and velocity of organically complexed plutonium in corn (Zea mays).
Thompson, Shannon W; Molz, Fred J; Fjeld, Robert A; Kaplan, Daniel I
2012-10-01
Lysimeter experiments and associated simulations suggested that Pu moved into and through plants that invaded field lysimeters during an 11-year study at the Savannah River Site. However, probable plant uptake and transport mechanisms were not well defined, so more detailed study is needed. Therefore, experiments were performed to examine movement, distribution, and velocity of soluble, complexed Pu in corn. Corn was grown and exposed to Pu using a "long root" system in which the primary root extended through a soil pot and into a hydroponic container. To maintain solubility, Pu was complexed with the bacterial siderophore DFOB (Desferrioxamine B) or the chelating agent DTPA (diethylenetriaminepentaacetic acid). Corn plants were exposed to nutrient solutions containing Pu for periods of 10 min to 10 d. Analysis of root and shoot tissues permitted concentration measurement and calculation of uptake velocity and Pu retardation in corn. Results showed that depending on exposure time, 98.3-95.9% of Pu entering the plant was retained in the roots external to the xylem, and that 1.7-4.1% of Pu entered the shoots (shoot fraction increased with exposure time). Corn Pu uptake was 2-4 times greater as Pu(DFOB) than as Pu(2)(DTPA)(3). Pu(DFOB) solution entered the root xylem and moved 1.74 m h(-1) or greater upward, which is more than a million times faster than Pu(III/IV) downward movement through soil during the lysimeter study. The Pu(DFOB) xylem retardation factor was estimated to be 3.7-11, allowing for rapid upward Pu transport and potential environmental release. Copyright © 2012 Elsevier Ltd. All rights reserved.
Liu, Tian-Ming; Wu, Xing-Ze; Qiu, Yun-Ren
2016-08-01
Citric acid (CA) and chitosan (CS) were covalently immobilized on polyurethane (PU) materials to improve the biocompatibility and antibacterial property. The polyurethane pre-polymer with isocyanate group was synthesized by one pot method, and then grafted with citric acid, followed by blending with polyethersulfone (PES) to prepare the blend membrane by phase-inversion method so that chitosan can be grafted from the membrane via esterification and acylation reactions eventually. The native and modified membranes were characterized by attenuated total reflectance-Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, scanning electron microscopy, water contact angle measurement, and tensile strength test. Protein adsorption, platelet adhesion, hemolysis assay, activated partial thromboplastin time, prothrombin time, thrombin time, and adsorption of Ca(2+) were executed to evaluate the blood compatibility of the membranes decorated by CA and CS. Particularly, the antibacterial activities on the modified membranes were evaluated based on a vitro antibacterial test. It could be concluded that the modified membrane had good anticoagulant property and antibacterial property.
Corner-Cube Retroreflector Instrument for Advanced Lunar Laser Ranging
NASA Technical Reports Server (NTRS)
Turyshev, Slava G.; Folkner, William M.; Gutt, Gary M.; Williams, James G.; Somawardhana, Ruwan P.; Baran, Richard T.
2012-01-01
A paper describes how, based on a structural-thermal-optical-performance analysis, it has been determined that a single, large, hollow corner cube (170- mm outer diameter) with custom dihedral angles offers a return signal comparable to the Apollo 11 and 14 solid-corner-cube arrays (each consisting of 100 small, solid corner cubes), with negligible pulse spread and much lower mass. The design of the corner cube, and its surrounding mounting and casing, is driven by the thermal environment on the lunar surface, which is subject to significant temperature variations (in the range between 70 and 390 K). Therefore, the corner cube is enclosed in an insulated container open at one end; a narrow-bandpass solar filter is used to reduce the solar energy that enters the open end during the lunar day, achieving a nearly uniform temperature inside the container. Also, the materials and adhesive techniques that will be used for this corner-cube reflector must have appropriate thermal and mechanical characteristics (e.g., silica or beryllium for the cube and aluminum for the casing) to further reduce the impact of the thermal environment on the instrument's performance. The instrument would consist of a single, open corner cube protected by a separate solar filter, and mounted in a cylindrical or spherical case. A major goal in the design of a new lunar ranging system is a measurement accuracy improvement to better than 1 mm by reducing the pulse spread due to orientation. While achieving this goal, it was desired to keep the intensity of the return beam at least as bright as the Apollo 100-corner-cube arrays. These goals are met in this design by increasing the optical aperture of a single corner cube to approximately 170 mm outer diameter. This use of an "open" corner cube allows the selection of corner cube materials to be based primarily on thermal considerations, with no requirements on optical transparency. Such a corner cube also allows for easier pointing requirements, because there is no dependence on total internal reflection, which can fail off-axis.
Real-time monitoring of plutonium content in uranium-plutonium alloys
Li, Shelly Xiaowei; Westphal, Brian Robert; Herrmann, Steven Douglas
2015-09-01
A method and device for the real-time, in-situ monitoring of Plutonium content in U--Pu Alloys comprising providing a crucible. The crucible has an interior non-reactive to a metallic U--Pu alloy within said interior of said crucible. The U--Pu alloy comprises metallic uranium and plutonium. The U--Pu alloy is heated to a liquid in an inert or reducing atmosphere. The heated U--Pu alloy is then cooled to a solid in an inert or reducing atmosphere. As the U--Pu alloy is cooled, the temperature of the U--Pu alloy is monitored. A solidification temperature signature is determined from the monitored temperature of the U--Pu alloy during the step of cooling. The amount of Uranium and the amount of Plutonium in the U--Pu alloy is then determined from the determined solidification temperature signature.
Nicoletti, Gabrieli; Cipolatti, Eliane P; Valério, Alexsandra; Carbonera, NatáliaThaisa Gamba; Soares, Nicole Spillere; Theilacker, Eron; Ninow, Jorge L; de Oliveira, Débora
2015-09-01
With the aim of studying the best method for the interaction of polyurethane (PU) foam and Candida antarctica lipase B, different methods of CalB immobilization were studied: adsorption (PU-ADS), bond (using polyethyleneimine) (PU-PEI), ionic adsorption by PEI with cross-linking with glutaraldehyde (PU-PEI-GA) and entrapment (PU). The characterization of immobilized enzyme derivatives was performed by apparent density and Fourier transform infrared spectroscopy. The free enzyme and enzyme preparations were evaluated at different pH values and temperatures. The highest enzyme activity was obtained using the PU method (5.52 U/g). The methods that stood out to compare the stabilities and kinetic parameters were the PU and PU-ADS. Conversions of 83.5 and 95.9 % for PU and PU-ADS derivatives were obtained, in 24 h reaction, using citronella oil and propionic acid as substrates.
NASA Technical Reports Server (NTRS)
Berg, Jared J.
2014-01-01
Even though the Small PayLoad Integrated Testing Services or SPLITS line of business is newly established, KSC has been involved in a variety of CubeSat projects and programs. CubeSat development projects have been initiated through educational outreach partnerships with schools and universities, commercial partnerships and internal training initiatives. KSC has also been involved in CubeSat deployment through programs to find launch opportunities to fly CubeSats as auxiliary payloads on previously planned missions and involvement in the development of new launch capabilities for small satellites. This overview will highlight the CubeSat accomplishments at KSC and discuss planning for future projects and opportunities.
NASA Astrophysics Data System (ADS)
Pchelintseva, Svetlana V.; Runnova, Anastasia E.; Musatov, Vyacheslav Yu.; Hramov, Alexander E.
2017-03-01
In the paper we study the problem of recognition type of the observed object, depending on the generated pattern and the registered EEG data. EEG recorded at the time of displaying cube Necker characterizes appropriate state of brain activity. As an image we use bistable image Necker cube. Subject selects the type of cube and interpret it either as aleft cube or as the right cube. To solve the problem of recognition, we use artificial neural networks. In our paper to create a classifier we have considered a multilayer perceptron. We examine the structure of the artificial neural network and define cubes recognition accuracy.
Interplanetary CubeSat Navigational Challenges
NASA Technical Reports Server (NTRS)
Martin-Mur, Tomas J.; Gustafson, Eric D.; Young, Brian T.
2015-01-01
CubeSats are miniaturized spacecraft of small mass that comply with a form specification so they can be launched using standardized deployers. Since the launch of the first CubeSat into Earth orbit in June of 2003, hundreds have been placed into orbit. There are currently a number of proposals to launch and operate CubeSats in deep space, including MarCO, a technology demonstration that will launch two CubeSats towards Mars using the same launch vehicle as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) Mars lander mission. The MarCO CubeSats are designed to relay the information transmitted by the InSight UHF radio during Entry, Descent, and Landing (EDL) in real time to the antennas of the Deep Space Network (DSN) on Earth. Other CubeSatts proposals intend to demonstrate the operation of small probes in deep space, investigate the lunar South Pole, and visit a near Earth object, among others. Placing a CubeSat into an interplanetary trajectory makes it even more challenging to pack the necessary power, communications, and navigation capabilities into such a small spacecraft. This paper presents some of the challenges and approaches for successfully navigating CubeSats and other small spacecraft in deep space.
On the presence of plutonium in Madagascar following the SNAP-9A satellite failure.
Rääf, C; Holm, E; Rabesiranana, N; Garcia-Tenorio, R; Chamizo, E
2017-10-01
This study examined the 238 Pu and 239+240 Pu activity concentration and the 240 Pu/ 239 Pu atomic ratio in peat bogs sampled in 2012 from marshlands in central Madagascar. The purpose was to investigate the presence of plutonium isotopes, 238, 239, 240 Pu, from the 1964 satellite failure carrying a SNAP-9A radiothermal generator. With an average 238 Pu/ 239+240 Pu activity ratio of 0.165 ± 0.02 (decay corrected to 1964), the peat bogs in Madagascar exhibit similar values as the ones found in the southeastern African continent, except they are one order of magnitude higher than expected (0.025) from global fallout in the Southern Hemisphere. The 240 Pu/ 239 Pu atomic ratio showed a distinct decrease for layers dating back to the mid-1960s (down to 0.069 compared with an anticipated ratio of 0.17 for global fallout), indicating that the SNAP-9A failure also resulted in an elevated deposition of 239 Pu. The obtained results demonstrate that further Pu analysis in Madagascar and in southeastern continental Africa is necessary to fully account for the regional Pu deposition from the SNAP-9A event. Copyright © 2017 Elsevier Ltd. All rights reserved.
Park, Jong-Seok; Lim, Youn-Mook; Nho, Young-Chang
2015-01-01
Polyurethane (PU) is a very popular polymer that is used in a variety of applications due to its good mechanical, thermal, and chemical properties. However, PU recycling has received significant attention due to environmental issues. In this study, we developed a recycling method for waste PU that utilizes the radiation grafting technique. Grafting of waste PU was carried out using a radiation technique with polyethylene-graft-maleic anhydride (PE-g-MA). The PE-g-MA-grafted PU/high density polyethylene (HDPE) composite was prepared by melt-blending at various concentrations (0–10 phr) of PE-g-MA-grafted PU. The composites were characterized using fourier transform infrared spectroscopy (FT-IR), and their surface morphology and thermal/mechanical properties are reported. For 1 phr PU, the PU could be easily introduced to the HDPE during the melt processing in the blender after the radiation-induced grafting of PU with PE-g-MA. PE-g-MA was easily reacted with PU according to the increasing radiation dose and was located at the interface between the PU and the HDPE during the melt processing in the blender, which improved the interfacial interactions and the mechanical properties of the resultant composites. However, the elongation at break for a PU content >2 phr was drastically decreased. PMID:28788022
AMS of the Minor Plutonium Isotopes
NASA Astrophysics Data System (ADS)
Steier, P.; Hrnecek, E.; Priller, A.; Quinto, F.; Srncik, M.; Wallner, A.; Wallner, G.; Winkler, S.
2013-01-01
VERA, the Vienna Environmental Research Accelerator, is especially equipped for the measurement of actinides, and performs a growing number of measurements on environmental samples. While AMS is not the optimum method for each particular plutonium isotope, the possibility to measure 239Pu, 240Pu, 241Pu, 242Pu and 244Pu on the same AMS sputter target is a great simplification. We have obtained a first result on the global fallout value of 244Pu/239Pu = (5.7 ± 1.0) × 10-5 based on soil samples from Salzburg prefecture, Austria. Furthermore, we suggest using the 242Pu/240Pu ratio as an estimate of the initial 241Pu/239Pu ratio, which allows dating of the time of irradiation based solely on Pu isotopes. We have checked the validity of this estimate using literature data, simulations, and environmental samples from soil from the Salzburg prefecture (Austria), from the shut down Garigliano Nuclear Power Plant (Sessa Aurunca, Italy) and from the Irish Sea near the Sellafield nuclear facility. The maximum deviation of the estimated dates from the expected ages is 6 years, while relative dating of material from the same source seems to be possible with a precision of less than 2 years. Additional information carried by the minor plutonium isotopes may allow further improvements of the precision of the method.
Treatment seeking for problematic pornography use among women.
Lewczuk, Karol; Szmyd, Joanna; Skorko, Maciej; Gola, Mateusz
2017-12-01
Background and aims Previous studies examined psychological factors related to treatment seeking for problematic pornography use (PU) among males. In this study, we focused on females who seek treatment for problematic PU and compared them with non-problematic pornography users with regard to variables related to problematic PU. Second, we investigated the relationships between critical constructs related to problematic PU with the path analysis method, emphasizing the predictors for treatment seeking among women. We also compared our results with previous studies on males. Methods A survey study was conducted on 719 Polish-speaking Caucasian females, 14-63 years old, including 39 treatment seekers for problematic PU. Results The positive relationship between the mere amount of PU and treatment seeking loses its significance after introducing two other predictors of treatment-seeking: religiosity and negative symptoms associated with PU. This pattern is different from the results obtained in previous studies on males. Discussion Different from previous studies on male samples, our analysis showed that in the case of women, mere amount of PU may be related to treatment-seeking behavior even after accounting for negative symptoms associated with PU. Moreover, religiousness is a significant predictor of treatment seeking among women, which may indicate that in the case of women, treatment seeking for problematic PU is motivated not only by experienced negative symptoms of PU but also by personal beliefs about PU and social norms. Conclusion For females, negative symptoms associated with PU, the amount of PU and religiosity is associated with treatment seeking. Those factors should be considered in treatment.
How CubeSats contribute to Science and Technology in Astronomy and Astrophysics
NASA Astrophysics Data System (ADS)
Cahoy, Kerri Lynn; Douglas, Ewan; Carlton, Ashley; Clark, James; Haughwout, Christian
2017-01-01
CubeSats are nanosatellites, spacecraft typically the size of a shoebox or backpack. CubeSats are made up of one or more 10 cm x 10 cm x 10 cm units weighing 1.33 kg (each cube is called a “U”). CubeSats benefit from relatively easy and inexpensive access to space because they are designed to slide into fully enclosed spring-loaded deployer pods before being attached as an auxiliary payload to a larger vehicle, without adding risk to the vehicle or its primary payload(s). Even though CubeSats have inherent resource and aperture limitations due to their small size, over the past fifteen years, researchers and engineers have miniaturized components and subsystems, greatly increasing the capabilities of CubeSats. We discuss how state of the art CubeSats can address both science objectives and technology objectives in Astronomy and Astrophysics. CubeSats can contribute toward science objectives such as cosmic dawn, galactic evolution, stellar evolution, extrasolar planets and interstellar exploration.CubeSats can contribute to understanding how key technologies for larger missions, like detectors, microelectromechanical systems, and integrated optical elements, can not only survive launch and operational environments (which can often be simulated on the ground), but also meet performance specifications over long periods of time in environments that are harder to simulate properly, such as ionizing radiation, the plasma environment, spacecraft charging, and microgravity. CubeSats can also contribute to both science and technology advancements as multi-element space-based platforms that coordinate distributed measurements and use formation flying and large separation baselines to counter their restricted individual apertures.
Achieving Science with CubeSats: Thinking Inside the Box
NASA Astrophysics Data System (ADS)
Zurbuchen, Thomas H.; Lal, Bhavya
2017-01-01
We present the results of a study conducted by the National Academies of Sciences, Engineering, and Medicine. The study focused on the scientific potential and technological promise of CubeSats. We will first review the growth of the CubeSat platform from an education-focused technology toward a platform of importance for technology development, science, and commercial use, both in the United States and internationally. The use has especially exploded in recent years. For example, of the over 400 CubeSats launched since 2000, more than 80% of all science-focused ones have been launched just in the past four years. Similarly, more than 80% of peer-reviewed papers describing new science based on CubeSat data have been published in the past five years.We will then assess the technological and science promise of CubeSats across space science disciplines, and discuss a subset of priority science goals that can be achieved given the current state of CubeSat capabilities. Many of these goals address targeted science, often in coordination with other spacecraft, or by using sacrificial or high-risk orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms, deploying tens to hundreds of CubeSats that function as one distributed array of measurements.Finally, we will summarize our conclusions and recommendations from this study; especially those focused on nearterm investment that could improve the capabilities of CubeSats toward increased science and technological return and enable the science communities’ use of CubeSats.
Achieving Science with CubeSats: Thinking Inside the Box
NASA Astrophysics Data System (ADS)
Lal, B.; Zurbuchen, T.
2016-12-01
In this paper, we present a study conducted by the National Academies of Sciences, Engineering, and Medicine. The study focused on the scientific potential and technological promise of CubeSats. We will first review the growth of the CubeSat platform from an education-focused technology toward a platform of importance for technology development, science, and commercial use, both in the United States and internationally. The use has especially exploded in recent years. For example, of the over 400 CubeSats launched since 2000, more than 80% of all science-focused ones have been launched just in the past four years. Similarly, more than 80% of peer-reviewed papers describing new science based on CubeSat data have been published in the past five years. We will then assess the technological and science promise of CubeSats across space science disciplines, and discuss a subset of priority science goals that can be achieved given the current state of CubeSat capabilities. Many of these goals address targeted science, often in coordination with other spacecraft, or by using sacrificial or high-risk orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms, deploying tens to hundreds of CubeSats that function as one distributed array of measurements. Finally, we will summarize our conclusions and recommendations from this study; especially those focused on near-term investment that could improve the capabilities of CubeSats toward increased science and technological return and enable the science communities' use of CubeSats.
. PDF file High pT muons in Cosmic-Ray Air Showers with IceCube. PDF file IceCube Performance with Artificial Light Sources: the road to a Cascade Analyses + Energy scale calibration for EHE. PDF file , 2006. PDF file Thorsten Stetzelberger "IceCube DAQ Design & Performance" Nov 2005 PPT
Analytical Capability of Plasma Spectrometry Team
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallimore, David L.
2012-07-19
Samples analyzed were: (1) Pu and U metal; (2) Pu oxide for nuclear fuel; (3) {sup 238}Pu oxide for heat source; and (4) Nuclear forensic samples - filters, swipes. Sample preparations that we did were: metal dissolution, marple filter dissolution, Pu oxide closed vessel acid digestion, and column separation to remove Pu.
Uranium (III)-Plutonium (III) co-precipitation in molten chloride
NASA Astrophysics Data System (ADS)
Vigier, Jean-François; Laplace, Annabelle; Renard, Catherine; Miguirditchian, Manuel; Abraham, Francis
2018-02-01
Co-management of the actinides in an integrated closed fuel cycle by a pyrochemical process is studied at the laboratory scale in France in the CEA-ATALANTE facility. In this context the co-precipitation of U(III) and Pu(III) by wet argon sparging in LiCl-CaCl2 (30-70 mol%) molten salt at 705 °C is studied. Pu(III) is prepared in situ in the molten salt by carbochlorination of PuO2 and U(III) is then introduced as UCl3 after chlorine purge by argon to avoid any oxidation of uranium up to U(VI) by Cl2. The oxide conversion yield through wet argon sparging is quantitative. However, the preferential oxidation of U(III) in comparison to Pu(III) is responsible for a successive conversion of the two actinides, giving a mixture of UO2 and PuO2 oxides. Surprisingly, the conversion of sole Pu(III) in the same conditions leads to a mixture of PuO2 and PuOCl, characteristic of a partial oxidation of Pu(III) to Pu(IV). This is in contrast with coconversion of U(III)-Pu(III) mixtures but in agreement with the conversion of Ce(III).
Cusnir, Ruslan; Steinmann, Philipp; Christl, Marcus; Bochud, François; Froidevaux, Pascal
2015-11-09
The biological uptake of plutonium (Pu) in aquatic ecosystems is of particular concern since it is an alpha-particle emitter with long half-life which can potentially contribute to the exposure of biota and humans. The diffusive gradients in thin films technique is introduced here for in-situ measurements of Pu bioavailability and speciation. A diffusion cell constructed for laboratory experiments with Pu and the newly developed protocol make it possible to simulate the environmental behavior of Pu in model solutions of various chemical compositions. Adjustment of the oxidation states to Pu(IV) and Pu(V) described in this protocol is essential in order to investigate the complex redox chemistry of plutonium in the environment. The calibration of this technique and the results obtained in the laboratory experiments enable to develop a specific DGT device for in-situ Pu measurements in freshwaters. Accelerator-based mass-spectrometry measurements of Pu accumulated by DGTs in a karst spring allowed determining the bioavailability of Pu in a mineral freshwater environment. Application of this protocol for Pu measurements using DGT devices has a large potential to improve our understanding of the speciation and the biological transfer of Pu in aquatic ecosystems.
Ski can negatively regulates macrophage differentiation through its interaction with PU.1
Ueki, N; Zhang, L; Haymann, MJ
2010-01-01
In the hematopoietic cell system, the oncoprotein Ski dramatically affects growth and differentiation programs, in some cases leading to malignant leukemia. However, little is known about the interaction partners or signaling pathways involved in the Ski-mediated block of differentiation in hematopoietic cells. Here we show that Ski interacts with PU.1, a lineage-specific transcription factor essential for terminal myeloid differentiation, and thereby represses PU.1-dependent transcriptional activation. Consistent with this, Ski inhibits the biological function of PU.1 to promote myeloid cells to differentiate into macrophage colony-stimulating factor receptor (M-CSFR)-positive macrophages. Using a Ski mutant deficient in PU.1 binding, we demonstrate that Ski–PU.1 interaction is critical for Ski's ability to repress PU.1-dependent transcription and block macrophage differentiation. Furthermore, we provide evidence that Ski-mediated repression of PU.1 is due to Ski's ability to recruit histone deacetylase 3 to PU.1 bound to DNA. Since inactivation of PU.1 is closely related to the development of myeloid leukemia and Ski strongly inhibits PU.1 function, we propose that aberrant Ski expression in certain types of myeloid cell lineages might contribute to leukemogenesis. PMID:17621263
Wu, Junwen; Zheng, Jian; Dai, Minhan; Huh, Chih-An; Chen, Weifang; Tagami, Keiko; Uchida, Shigeo
2014-03-18
The (239+240)Pu activities and (240)Pu/(239)Pu atom ratios in sediments of the northern South China Sea and its adjacent Pearl River Estuary were determined to examine the spatial and temporal variations of Pu inputs. We clarified that Pu in the study area is sourced from a combination of global fallout and close-in fallout from the Pacific Proving Grounds in the Marshall Islands where above-ground nuclear weapons testing was carried out during the period of 1952-1958. The latter source dominated the Pu input in the 1950s, as evidenced by elevated (240)Pu/(239)Pu atom ratios (>0.30) in a dated sediment core. Even after the 1950s, the Pacific Proving Grounds was still a dominant Pu source due to continuous transport of remobilized Pu from the Marshall Islands, about 4500 km away, along the North Equatorial Current followed by the transport of the Kuroshio current and its extension into the South China Sea through the Luzon Strait. Using a simple two end-member mixing model, we have quantified the contributions of Pu from the Pacific Proving Grounds to the northern South China Sea shelf and the Pearl River Estuary are 68% ± 1% and 30% ± 5%, respectively. This study also confirmed that there were no clear signals of Pu from the Fukushima Daiichi Nuclear Power Plant accident impacting the South China Sea.
NASA Astrophysics Data System (ADS)
Huang, Xiaosan; Li, Kongqing; Jin, Cong; Zhang, Shaoling
2015-12-01
ICE1 transcription factor plays an important role in plant cold stress via regulating the expression of stress-responsive genes. In this study, a PuICE1 gene isolated from Pyrus ussuriensis was characterized for its function in cold tolerance. The expression levels of the PuICE1 were induced by cold, dehydration and salt, with the greatest induction under cold conditions. PuICE1 was localized in the nucleus and could bind specifically to the MYC element in the PuDREBa promoter. The PuICE1 fused to the GAL4 DNA-binding domain to have transcriptional activation activity. Ectopic expression of the PuICE1 in tomato conferred enhanced tolerance to cold stress at cold temperatures, less electrolyte leakage, less MDA content, higher chlorophyll content, higher survival rate, higher proline content, higher activities of enzymes. In additon, steady-state mRNA levels of six stress-responsive genes coding for either functional or regulatory genes were induced to higher levels in the transgenic lines by cold stress. Yeast two-hybrid, transient assay, split luciferase complementation and BiFC assays all revealed that PuHHP1 protein can physically interact with PuICE1. Taken together, these results demonstrated that PuICE1 plays a positive role in cold tolerance, which may be due to enhancement of PuDREBa transcriptional levels through interacting with the PuHHP1.
2014-05-01
UNCLASSIFIED UNCLASSIFIED Structural Stability Assessment of the High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth...DSTO-TN-1295 ABSTRACT The Buccaneer CubeSat will be fitted with a high frequency antenna made from spring steel measuring tape. The geometry...High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth Orbit Executive Summary The Buccaneer CubeSat will be fitted with a
Effect of biostimulation and bioaugmentation on degradation of polyurethane buried in soil.
Cosgrove, L; McGeechan, P L; Handley, P S; Robson, G D
2010-02-01
This work investigated biostimulation and bioaugmentation as strategies for removing polyurethane (PU) waste in soil. Soil microcosms were biostimulated with the PU dispersion agent "Impranil" and/or yeast extract or were bioaugmented with PU-degrading fungi, and the degradation of subsequently buried PU was determined. Fungal communities in the soil and colonizing buried PU were enumerated on solid media and were analyzed using denaturing gradient gel electrophoresis (DGGE). Biostimulation with yeast extract alone or in conjunction with Impranil increased PU degradation 62% compared to the degradation in untreated control soil and was associated with a 45% increase in putative PU degraders colonizing PU. Specific fungi were enriched in soil following biostimulation; however, few of these fungi colonized the surface of buried PU. Fungi used for soil bioaugmentation were cultivated on the surface of sterile wheat to form a mycelium-rich inoculum. Wheat, when added alone to soil, increased PU degradation by 28%, suggesting that wheat biomass had a biostimulating effect. Addition of wheat colonized with Nectria haematococca, Penicillium viridicatum, Penicillium ochrochloron, or an unidentified Mucormycotina sp. increased PU degradation a further 30 to 70%, suggesting that biostimulation and bioaugmentation were operating in concert to enhance PU degradation. Interestingly, few of the inoculated fungi could be detected by DGGE in the soil or on the surface of the PU 4 weeks after inoculation. Bioaugmentation did, however, increase the numbers of indigenous PU-degrading fungi and caused an inoculum-dependent change in the composition of the native fungal populations, which may explain the increased degradation observed. These results demonstrate that both biostimulation and bioaugmentation may be viable tools for the remediation of environments contaminated with polyurethane waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odoh, Samuel O.; Bylaska, Eric J.; De Jong, Wibe A.
Car-Parrinello molecular dynamics (CPMD) simulations have been used to examine the hydration structures, coordination energetics and the first hydrolysis constants of Pu3+, Pu4+, PuO2+ and PuO22+ ions in aqueous solution at 300 K. The coordination numbers and structural properties of the first shell of these ions are in good agreement with available experimental estimates. The hexavalent PuO22+ species is coordinated to 5 aquo ligands while the pentavalent PuO2+ complex is coordinated to 4 aquo ligands. The Pu3+ and Pu4+ ions are both coordinated to 8 water molecules. The first hydrolysis constants obtained for Pu3+ and PuO22+ are 6.65 and 5.70more » respectively, all within 0.3 pH units of the experimental values (6.90 and 5.50 respectively). The hydrolysis constant of Pu4+, 0.17, disagrees with the value of -0.60 in the most recent update of the Nuclear Energy Agency Thermochemical Database (NEA-TDB) but supports recent experimental findings. The hydrolysis constant of PuO2+, 9.51, supports the experimental results of Bennett et al. (Radiochim. Act. 1992, 56, 15). A correlation between the pKa of the first hydrolysis reaction and the effective charge of the plutonium center was found.« less
Biodegradation of PuEDTA and Impacts on Pu Mobility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, H., Jr.; Rai, D.; Xun, L.
The contamination of many DOE sites by Pu presents a long-term problem because of its long half-life (240,000 yrs) and the low drinking water standard (<10{sup -12} M). EDTA was co-disposed with radionuclides (e.g., Pu, {sup 60}Co), formed strong complexes, and enhanced radionuclide transport at several DOE sites. Biodegradation of EDTA should decrease Pu mobility. One objective of this project was to determine the biodegradation of EDTA in the presence of PuEDTA complexes. The aqueous system investigated at pH 7 (10{sup -4} M EDTA and 10{sup -6} M Pu) contained predominantly Pu(OH){sub 2}EDTA{sup 2-}. The EDTA was degraded at amore » faster rate in the presence of Pu. As the total concentration of both EDTA and PuEDTA decreased (i.e., 10{sup -5} M EDTA and 10{sup -7} M PuEDTA), the presence of Pu decreased the biodegradation rate of the EDTA. It is currently unclear why the concentration of Pu directly affects the increase/decrease in rate of EDTA biodegradation. The soluble Pu concentration decreased, in agreement with thermodynamic predictions, as the EDTA was biodegraded, indicating that biodegradation of EDTA will decrease Pu mobility when the Pu is initially present as Pu(IV)EDTA. A second objective was to investigate how the presence of competing metals, commonly encountered in geologic media, will influence the speciation and biodegradation of Pu(IV)-EDTA. Studies on the solubilities of Fe(OH){sub 3}(s) and of Fe(OH){sub 3}(s) plus PuO{sub 2}(am) in the presence of EDTA and as a function of pH showed that Fe(III) out competes the Pu(IV) for the EDTA complex, thereby showing that Pu(IV) will not form stable complexes with EDTA for enhanced transport of Pu in Fe(III) dominated subsurface systems. A third objective is to investigate the genes and enzymes involved in EDTA biodegradation. BNC1 can use EDTA and another synthetic chelating agent nitrilotriacetate (NTA) as sole carbon and nitrogen sources. The same catabolic enzymes are responsible for both EDTA and NTA degradation except that additional enzymes are required for EDTA degradation. When the catabolic genes were cloned and sequenced, the gene cluster also contained genes encoding a hypothetical ABC-type transporter. RT-PCR analysis showed that the transporter genes and EDTA monooxygenase gene (emoA) are co-transcribed. EppA is one of the transporter genes, and it codes for a periplasmic binding protein responsible for binding to the substrate before transport across the membrane can occur. EppA was cloned, expressed, and purified in Escherichia coli and found to bind, MgEDTA, CaEDTA, Fe(III)EDTA, MgNTA, CaNTA, and Fe(III)NTA. Our data also suggest that BNC1 uses the same ABC-type transporter for both EDTA and NTA uptake. Results from these studies can provide mechanistic understanding and approaches to assist in the bioremediate PuEDTA and other radionuclide-EDTA complexes at DOE sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, C.; Santschi, P; Roberts, K
Relatively recently, inorganic colloids have been invoked to reconcile the apparent contradictions between expectations based on classical dissolved-phase Pu transport and field observations of 'enhanced' Pu mobility (Kersting et al. Nature 1999, 397, 56-59). A new paradigm for Pu transport is mobilization and transport via biologically produced ligands. This study for the first time reports a new finding of Pu being transported, at sub-pM concentrations, by a cutin-like natural substance containing siderophore-like moieties and virtually all mobile Pu. Most likely, Pu is complexed by chelating groups derived from siderophores that are covalently bound to a backbone of cutin-derived soil degradationmore » products, thus revealing the history of initial exposure to Pu. Features such as amphiphilicity and small size make this macromolecule an ideal collector for actinides and other metals and a vector for their dispersal. Cross-linking to the hydrophobic domains (e.g., by polysaccharides) gives this macromolecule high mobility and a means of enhancing Pu transport. This finding provides a new mechanism for Pu transport through environmental systems that would not have been predicted by Pu transport models.« less
JPL-20180416-INSIGHf-0001-Marco Media Reel 1
2018-04-16
Mars Cube One is a Mars flyby mission consisting of two CubeSats that is planned for launch alongside NASA's InSight Mars lander mission. This will be the first interplanetary CubeSat mission. If successful, the CubeSats will relay entry, descent, and landing (EDL) data to Earth during InSight's landing.
NASA Astrophysics Data System (ADS)
Yamada, M.; Zheng, J.; Aono, T.
2011-12-01
Anthropogenic radionuclides such as Pu-239 (half-life: 24100 yr), Pu-240 (half-life: 6560 yr) and Pu-241 (half-life: 14.325 yr) mainly have been released into the environment as the result of atmospheric nuclear weapons testing. In the North Pacific Ocean, two distinct sources of Pu isotopes can be identified; i.e., the global stratospheric fallout and close-in tropospheric fallout from nuclear weapons testing at the Pacific Proving Grounds in the Marshall Islands. The atom ratio of Pu-240/Pu-239 is a powerful fingerprint to identify the sources of Pu in the ocean. The Pu-240/Pu-239 atom ratios in seawater and marine sediment samples collected in the western North Pacific before the accident at Fukushima Dai-ichi Nuclear Power Station will provide useful background data for understanding the process controlling Pu transport and for distinguishing future Pu sources. The atom ratios of Pu-240/Pu-239 in water columns from the Yamato and Tsushima Basins in the Japan Sea were significantly higher than the mean global fallout ratio of 0.18; however, there were no temporal variation of atom ratios during the period from 1984 to 1993 in the Japan Sea. The total Pu-239+240 inventories in the whole water columns were approximately doubled during the period from 1984 to 1993 in the two basins. The atom ratio of Pu-240/Pu-239 in surface water from Sagami Bay, western North Pacific Ocean, was 0.224 and showed no notable variation from the surface to the bottom with the mean atom ratio being 0.234. The atom ratios for the Pacific coast, near the Rokkasho nuclear fuel reprocessing plant, were approximately the same as the 0.224 ratio obtained from Sagami Bay, western North Pacific margin. The atom ratios in the surficial sediments from Sagami Bay ranged from 0.229 to 0.247. The mean atom ratio in the sediment columns in the East China Sea ranged from 0.248 for the Changjiang estuary to 0.268 for the shelf edge. The observed atom ratios were significantly higher than the mean global fallout ratio of 0.180, proving the existence of close-in fallout Pu originating from the Pacific Proving Grounds. The North Equatorial Current and Kuroshio Current were proposed as pathways for transporting Pacific Proving Grounds-origin Pu to the western North Pacific Ocean.
Plutonium Immobilization and Mobilization by Soil Organic Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santschi, Peter H.; Schwehr, Kathleen A.; Xu, Chen
The human and environmental risks associated with Pu disposal, remediation, and nuclear accidents scenarios stems mainly from the very long half-lives of several of its isotopes. The SRS, holding one-third of the nation’s Pu inventory, has a long-term stewardship commitment to investigation of Pu behavior in the groundwater and downgradient vast wetlands. Pu is believed to be essentially immobile due to its low solubility and high particle reactivity to mineral phase or natural organic matter (NOM). For example, in sediments collected from a region of SRS, close to a wetland and a groundwater plume, 239,240Pu concentrations suggest immobilization by NOMmore » compounds, as Pu correlate with NOM contents. Micro-SXRF data indicate, however, that Pu does not correlate with Fe. However, previous studies reported Pu can be transported several kilometers in surface water systems, in the form of a colloidal organic matter carrier, through wind/water interactions. The role of NOM in both immobilizing or re-mobilizing Pu thus has been demonstrated. Our results indicate that more Pu (IV) than (V) was bound to soil colloidal organic matter (COM), amended at far-field concentrations. Contrary to expectations, the presence of NOM in the F-Area soil did not enhance Pu fixation to the organic-rich soil, when compared to the organic-poor soil or the mineral phase from the same soil source, due to the formation of COM-bound Pu. Most importantly, Pu uptake by organic-rich soil decreased with increasing pH because more NOM in the colloidal size desorbed from the particulate fraction at elevated pH, resulting in greater amounts of Pu associated with the COM fraction. This is in contrast to previous observations with low-NOM sediments or minerals, which showed increased Pu uptake with increasing pH levels. This demonstrates that despite Pu immobilization by NOM, COM can convert Pu into a more mobile form. Sediment Pu concentrations in the SRS F-Area wetland were correlated to total organic carbon and total nitrogen contents and even more strongly to hydroxamate siderophore (HS) concentrations. The HS were detected in the particulate or colloidal phases of the sediments but not in the low molecular fractions (< 1000 Da). Macromolecules which scavenged the majority of the potentially mobile Pu were further separated from the bulk mobile organic matter fraction (“water extract”) via isoelectric focusing experiment (IEF). An ESI FTICR-MS spectral comparison of the IEF extract and a siderophore standard (desferrioxamine; DFO) suggested the presence of HS functionalities in the IEF extract.« less
Xing, Shan; Zhang, Weichao; Qiao, Jixin; Hou, Xiaolin
2018-09-01
In order to measure trace plutonium and its isotopes ratio ( 240 Pu/ 239 Pu) in environmental samples with a high uranium, an analytical method was developed using radiochemical separation for separation of plutonium from matrix and interfering elements including most of uranium and ICP-MS for measurement of plutonium isotopes. A novel measurement method was established for extensively removing the isobaric interference from uranium ( 238 U 1 H and 238 UH 2 + ) and tailing of 238 U, but significantly improving the measurement sensitivity of plutonium isotopes by employing NH 3 /He as collision/reaction cell gases and MS/MS system in the triple quadrupole ICP-MS instrument. The results show that removal efficiency of uranium interference was improved by more than 15 times, and the sensitivity of plutonium isotopes was increased by a factor of more than 3 compared to the conventional ICP-MS. The mechanism on the effective suppress of 238 U interference for 239 Pu measurement using NH 3 -He reaction gases was explored to be the formation of UNH + and UNH 2 + in the reactions of UH + and U + with NH 3 , while no reaction between NH 3 and Pu + . The detection limits of this method were estimated to be 0.55 fg mL -1 for 239 Pu, 0.09 fg mL -1 for 240 Pu. The analytical precision and accuracy of the method for Pu isotopes concentration and 240 Pu/ 239 Pu atomic ratio were evaluated by analysis of sediment reference materials (IAEA-385 and IAEA-412) with different levels of plutonium and uranium. The developed method were successfully applied to determine 239 Pu and 240 Pu concentrations and 240 Pu/ 239 Pu atomic ratios in soil samples collected in coastal areas of eastern China. Copyright © 2018 Elsevier B.V. All rights reserved.
Massively Clustered CubeSats NCPS Demo Mission
NASA Technical Reports Server (NTRS)
Robertson, Glen A.; Young, David; Kim, Tony; Houts, Mike
2013-01-01
Technologies under development for the proposed Nuclear Cryogenic Propulsion Stage (NCPS) will require an un-crewed demonstration mission before they can be flight qualified over distances and time frames representative of a crewed Mars mission. In this paper, we describe a Massively Clustered CubeSats platform, possibly comprising hundreds of CubeSats, as the main payload of the NCPS demo mission. This platform would enable a mechanism for cost savings for the demo mission through shared support between NASA and other government agencies as well as leveraged commercial aerospace and academic community involvement. We believe a Massively Clustered CubeSats platform should be an obvious first choice for the NCPS demo mission when one considers that cost and risk of the payload can be spread across many CubeSat customers and that the NCPS demo mission can capitalize on using CubeSats developed by others for its own instrumentation needs. Moreover, a demo mission of the NCPS offers an unprecedented opportunity to invigorate the public on a global scale through direct individual participation coordinated through a web-based collaboration engine. The platform we describe would be capable of delivering CubeSats at various locations along a trajectory toward the primary mission destination, in this case Mars, permitting a variety of potential CubeSat-specific missions. Cameras on various CubeSats can also be used to provide multiple views of the space environment and the NCPS vehicle for video monitoring as well as allow the public to "ride along" as virtual passengers on the mission. This collaborative approach could even initiate a brand new Science, Technology, Engineering and Math (STEM) program for launching student developed CubeSat payloads beyond Low Earth Orbit (LEO) on future deep space technology qualification missions. Keywords: Nuclear Propulsion, NCPS, SLS, Mars, CubeSat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavarin, M.; Zhao, P.; Joseph, C.
2015-05-27
The testing of nuclear weapons at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), has led to the deposition of substantial quantities of plutonium into the environment. Approximately 2.8 metric tons (3.1×10 4 TBq) of Pu were deposited in the NNSS subsurface as a result of underground nuclear testing. While 3H is the most abundant anthropogenic radionuclide deposited in the NNSS subsurface (4.7×10 6 TBq), plutonium is the most abundant from a molar standpoint. The only radioactive elements in greater molar abundance are the naturally occurring K, Th, and U isotopes. 239Pu and 240Pu represent themore » majority of alpha-emitting Pu isotopes. The extreme temperatures associated with underground nuclear tests and the refractory nature of Pu results in most of the Pu (98%) being sequestered in melted rock, referred to as nuclear melt glass (Iaea, 1998). As a result, Pu release to groundwater is controlled, in large part, by the leaching (or dissolution) of nuclear melt glass over time. The factors affecting glass dissolution rates have been studied extensively. The dissolution of Pu-containing borosilicate nuclear waste glasses at 90ºC has been shown to lead to the formation of dioctahedral smectite colloids. Colloid-facilitated transport of Pu at the NNSS has been observed. Recent groundwater samples collected from a number of contaminated wells have yielded a wide range of Pu concentrations from 0.00022 to 2.0 Bq/L. While Pu concentrations tend to fall below the Maximum Contaminant Level (MCL) established by the Environmental Protection Agency (EPA) for drinking water (0.56 Bq/L), we do not yet understand what factors limit the Pu concentration or its transport behavior. To quantify the upper limit of Pu concentrations produced as a result of melt glass dissolution and determine the nature of colloids and Pu associations, we performed a 3 year nuclear melt glass dissolution experiment across a range of temperatures (25-200 °C) that represent hydrothermal conditions representative of the underground nuclear test cavities (when groundwater has re-saturated the nuclear melt glass and glass dissolution occurs). Colloid loads and Pu concentrations were monitored along with the mineralogy of both the colloids and the secondary mineral phases. The intent was to establish an upper limit for Pu concentrations at the NNSS, provide context regarding the Pu concentrations observed at the NNSS to date and the Pu concentrations that may be observed in the future. The results provide a conceptual model for the risks posed by Pu migration at the NNSS.« less
NASA Near Earth Network (NEN) Support for Lunar and L1/L2 CubeSats
NASA Technical Reports Server (NTRS)
Schaire, Scott; Altunc, Serhat; Wong, Yen; Shelton, Marta; Celeste, Peter; Anderson, Michael; Perrotto, Trish
2017-01-01
The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO, GEO, HEO, lunar and L1/L2 orbits. The NENs future mission set includes and will continue to include CubeSat missions. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL) developed IRIS radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 lunar CubeSats.The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NENs mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configuration/ease of upgrade, to ensure compatibility with the IRIS radio. In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1/L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is supporting both the CubeSat community and radio developers to ensure future CubeSat missions have multiple options when choosing a network for their communications support.
Shinonaga, Taeko; Steier, Peter; Lagos, Markus; Ohkura, Takehisa
2014-04-01
Plutonium (Pu) and non-natural uranium (U) originating from the Fukushima Daiichi Nuclear Power Plant (FDNPP) were identified in the atmosphere at 120 km distance from the FDNPP analyzing the ratio of number of atoms, following written as n(isotope)/n(isotope), of Pu and U. The n((240)Pu)/n((239)Pu), n((241)Pu)/n((239)Pu), n((234)U)/n((238)U), n((235)U)/n((238)U) and n((236)U)/n((238)U) in aerosol samples collected before and after the FDNPP incident were analyzed by accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS). The activity concentrations of (137)Cs and (134)Cs in the same samples were also analyzed by gamma spectrometry before the destructive analysis. Comparing the time series of analytical data on Pu and U obtained in this study with previously reported data on Pu, U, and radioactive Cs, we concluded that Pu and non-natural U from the FDNPP were transported in the atmosphere directly over a 120 km distance by aerosol and wind within a few days after the reactor hydrogen explosions. Effective dose of Pu were calculated using the data of Pu: (130 ± 21) nBq/m(3), obtained in this study. We found that the airborne Pu contributes only negligibly to the total dose at the time of the incident. However the analytical results show that the amount of Pu and non-natural U certainly increased in the environment after the incident.
CubeSats for Astrophysics: The Current Perspective
NASA Astrophysics Data System (ADS)
Ardila, David R.; Shkolnik, Evgenya; Gorjian, Varoujan
2017-01-01
Cubesats are small satellites built to multiples of 1U (1000 cm3). The 2016 NRC Report “Achieving Science with CubeSats” indicates that between 2013 and 2018 NASA and NSF sponsored 104 CubeSats. Of those, only one is devoted to astrophysics: HaloSat (PI: P. Kaaret), a 6U CubeSat with an X-ray payload to study the hot galactic halo.Despite this paucity of missions, CubeSats have a lot of potential for astrophysics. To assess the science landscape that a CubeSat astrophysics mission may occupy, we consider the following parameters:1-Wavelength: CubeSats are not competitive in the visible, unless the application (e.g. high precision photometry) is difficult to do from the ground. Thermal IR science is limited by the lack of low-power miniaturized cryocoolers and by the large number of infrared astrophysical missions launched or planned. In the UV, advances in δ-doping processes result in larger sensitivity with smaller apertures. Commercial X-ray detectors also allow for competitive science.2-Survey vs. Pointed observations: All-sky surveys have been done at most wavelengths from X-rays to Far-IR and CubeSats will not be able to compete in sensitivity with them. CubeSat science should then center on specific objects or object classes. Due to poor attitude control, unresolved photometry is scientifically more promising that extended imaging.3-Single-epoch vs. time domain: CubeSat apertures cannot compete in sensitivity with big satellites when doing single-epoch observations. However, time-domain astrophysics is an area in which CubeSats can provide very valuable science return.Technologically, CubeSat astrophysics is limited by:1-Lack of large apertures: The largest aperture CubeSat launched is ~10 cm, although deployable apertures as large as 20 cm could be fitted to 6U buses.2-Poor attitude control: State-of-the-art systems have demonstrated jitter of ~10” on timescales of seconds. Jitter imposes limits on image quality and, coupled with detector errors, limits the S/N.Other technology limitations include the lack of high-bandwidth communication and low-power miniaturized cryocoolers. However, even with today’s technological limitations, astrophysics applications of CubeSats are only limited by our imagination.
Near Earth Network (NEN) CubeSat Communications
NASA Technical Reports Server (NTRS)
Schaire, Scott
2017-01-01
The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO (Low Earth Orbit), GEO (Geosynchronous Earth Orbit), HEO (Highly Elliptical Orbit), lunar and L1-L2 orbits. The NEN's future mission set includes and will continue to include CubeSat missions. The first NEN-supported CubeSat mission will be the Cubesat Proximity Operations Demonstration (CPOD) launching into LEO in 2017. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground-based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL)-developed IRIS (Satellite Communication for Air Traffic Management) radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 (Exploration Mission-1) lunar CubeSats. The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NEN's mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configuration ease of upgrade, to ensure compatibility with the IRIS radio. In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1-L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is supporting both the CubeSat community and radio developers to ensure future CubeSat missions have multiple options when choosing a network for their communications support.
NASA Near Earth Network (NEN) Support for Lunar and L1/L2 CubeSats
NASA Technical Reports Server (NTRS)
Schaire, Scott H.
2017-01-01
The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO, GEO, HEO, lunar and L1/L2 orbits. The NENs future mission set includes and will continue to include CubeSat missions. The first NEN supported CubeSat mission will be the Cubesat Proximity Operations Demonstration (CPOD) launching into low earth orbit (LEO) in early 2017. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL) developed IRIS radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 lunar CubeSats. The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NENs mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configurationease of upgrade, to ensure compatibility with the IRIS radio.In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1/L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is supporting both the CubeSat community and radio developers to ensure future CubeSat missions have multiple options when choosing a network for their communications support.
Privacy-preserving data cube for electronic medical records: An experimental evaluation.
Kim, Soohyung; Lee, Hyukki; Chung, Yon Dohn
2017-01-01
The aim of this study is to evaluate the effectiveness and efficiency of privacy-preserving data cubes of electronic medical records (EMRs). An EMR data cube is a complex of EMR statistics that are summarized or aggregated by all possible combinations of attributes. Data cubes are widely utilized for efficient big data analysis and also have great potential for EMR analysis. For safe data analysis without privacy breaches, we must consider the privacy preservation characteristics of the EMR data cube. In this paper, we introduce a design for a privacy-preserving EMR data cube and the anonymization methods needed to achieve data privacy. We further focus on changes in efficiency and effectiveness that are caused by the anonymization process for privacy preservation. Thus, we experimentally evaluate various types of privacy-preserving EMR data cubes using several practical metrics and discuss the applicability of each anonymization method with consideration for the EMR analysis environment. We construct privacy-preserving EMR data cubes from anonymized EMR datasets. A real EMR dataset and demographic dataset are used for the evaluation. There are a large number of anonymization methods to preserve EMR privacy, and the methods are classified into three categories (i.e., global generalization, local generalization, and bucketization) by anonymization rules. According to this classification, three types of privacy-preserving EMR data cubes were constructed for the evaluation. We perform a comparative analysis by measuring the data size, cell overlap, and information loss of the EMR data cubes. Global generalization considerably reduced the size of the EMR data cube and did not cause the data cube cells to overlap, but incurred a large amount of information loss. Local generalization maintained the data size and generated only moderate information loss, but there were cell overlaps that could decrease the search performance. Bucketization did not cause cells to overlap and generated little information loss; however, the method considerably inflated the size of the EMR data cubes. The utility of anonymized EMR data cubes varies widely according to the anonymization method, and the applicability of the anonymization method depends on the features of the EMR analysis environment. The findings help to adopt the optimal anonymization method considering the EMR analysis environment and goal of the EMR analysis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
CubeSat Integration into the Space Situational Awareness Architecture
NASA Astrophysics Data System (ADS)
Morris, K.; Wolfson, M.; Brown, J.
2013-09-01
Lockheed Martin Space Systems Company has recently been involved in developing GEO Space Situational Awareness architectures, which allows insights into how cubesats can augment the current national systems. One hole that was identified in the current architecture is the need for timelier metric track observations to aid in the chain of custody. Obtaining observations of objects at GEO can be supported by CubeSats. These types of small satellites are increasing being built and flown by government agencies like NASA and SMDC. CubeSats are generally mass and power constrained allowing for only small payloads that cannot typically mimic traditional flight capability. CubeSats do not have a high reliability and care must be taken when choosing mission orbits to prevent creating more debris. However, due to the low costs, short development timelines, and available hardware, CubeSats can supply very valuable benefits to these complex missions, affordably. For example, utilizing CubeSats for advanced focal plane demonstrations to support technology insertion into the next generation situational awareness sensors can help to lower risks before the complex sensors are developed. CubeSats can augment the planned ground and space based assets by creating larger constellations with more access to areas of interest. To aid in maintaining custody of objects, a CubeSat constellation at 500 km above GEO would provide increased point of light tracking that can augment the ground SSA assets. Key features of the Cubesat include a small visible camera looking along the GEO belt, a small propulsion system that allows phasing between CubeSats, and an image processor to reduce the data sent to the ground. An elegant communications network will also be used to provide commands to and data from multiple CubeSats. Additional CubeSats can be deployed on GSO launches or through ride shares to GEO, replenishing or adding to the constellation with each launch. Each CubeSat would take images of the GEO belt, process out the stars, and then downlink the data to the ground. This data can then be combined with the existing metric track data to enhance the coverage and timeliness. With the current capability of CubeSats and their payloads, along with the launch constraints, the near term focus is to integrate into existing architectures by reducing technology risks, understanding unique phenomenology, and augment mission collection capability. Understanding the near term benefits of utilizing CubeSats will better inform the SSA mission developers how to integrate CubeSats into the next generation of architectures from the start.
Data Evaluation of Actinide Cross Sections: 238Pu, 237Pu, and 236Pu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guaglioni, S.; Jurgenson, E.; Descalle, M. A.
This report documents the recent evaluation of the 236Pu, 237Pu, and 238Pu cross section sets. Nuclear data evaluation is the fundamental interface that takes measured nuclear cross section data and turns them into a continuous curve that 1) is consistent with other measurements and nuclear reaction theory/models, and 2) is required by down-stream users. All experiments that generate nuclear data need to include an evaluation step for their data to be broadly useful to the end users.
Pu isotopes in soils collected downwind from Lop Nor: regional fallout vs. global fallout.
Bu, Wenting; Ni, Youyi; Guo, Qiuju; Zheng, Jian; Uchida, Shigeo
2015-07-17
For the first time, soil core samples from the Jiuquan region have been analyzed for Pu isotopes for radioactive source identification and radiological assessment. The Jiuquan region is in downwind from the Lop Nor Chinese nuclear test (CNT) site. The high Pu inventories (13 to 546 Bq/m(2)) in most of the sampling locations revealed that this region was heterogeneously contaminated by the regional fallout Pu from the CNTs. The contributions of the CNTs to the total Pu in soils were estimated to be more than 40% in most cases. The (240)Pu/(239)Pu atom ratios in the soils ranged from 0.059 to 0.186 with an inventory-weighted average of 0.158, slightly lower than that of global fallout. This atom ratio could be considered as a mixed fingerprint of Pu from the CNTs. In addition, Pu in soils of Jiuquan region had a faster downward migration rate compared with other investigated places in China.
Pu isotopes in soils collected downwind from Lop Nor: regional fallout vs. global fallout
Bu, Wenting; Ni, Youyi; Guo, Qiuju; Zheng, Jian; Uchida, Shigeo
2015-01-01
For the first time, soil core samples from the Jiuquan region have been analyzed for Pu isotopes for radioactive source identification and radiological assessment. The Jiuquan region is in downwind from the Lop Nor Chinese nuclear test (CNT) site. The high Pu inventories (13 to 546 Bq/m2) in most of the sampling locations revealed that this region was heterogeneously contaminated by the regional fallout Pu from the CNTs. The contributions of the CNTs to the total Pu in soils were estimated to be more than 40% in most cases. The 240Pu/239Pu atom ratios in the soils ranged from 0.059 to 0.186 with an inventory-weighted average of 0.158, slightly lower than that of global fallout. This atom ratio could be considered as a mixed fingerprint of Pu from the CNTs. In addition, Pu in soils of Jiuquan region had a faster downward migration rate compared with other investigated places in China. PMID:26184740
Development of Novel Integrated Antennas for CubeSats
NASA Technical Reports Server (NTRS)
Jackson, David; Fink, Patrick W.; Martinez, Andres; Petro, Andrew
2015-01-01
The Development of Novel Integrated Antennas for CubeSats project is directed at the development of novel antennas for CubeSats to replace the bulky and obtrusive antennas (e.g., whip antennas) that are typically used. The integrated antennas will not require mechanical deployment and thus will allow future CubeSats to avoid potential mechanical problems and therefore improve mission reliability. Furthermore, the integrated antennas will have improved functionality and performance, such as circular polarization for improved link performance, compared with the conventional antennas currently used on CubeSats.
Sources and accumulation of plutonium in a large Western Pacific marginal sea: The South China Sea.
Wu, Junwen; Dai, Minhan; Xu, Yi; Zheng, Jian
2018-01-01
In order to examine the sources of plutonium (Pu) and elaborate its scavenging and accumulation processes, 240 Pu/ 239 Pu atom ratios and 239+240 Pu activities in the water column of the South China Sea (SCS) were determined and compared with our previously reported data for the sediments. Consistently high 240 Pu/ 239 Pu atom ratios that ranged from 0.184-0.250 (average=0.228±0.015), indicative of non-global fallout Pu sources were observed both in the surface water and at depth during 2012-2014. The spatial distribution of the 240 Pu/ 239 Pu atom ratio in the SCS showed a decreasing trend away from the Luzon Strait, which was very consistent with the introduction pathway of the Kuroshio Current. The Kuroshio had an even heavier Pu isotopic ratio ranging from 0.250-0.263 (average=0.255±0.006), traceable to the non-global fallout Pu signature from the Pacific Proving Grounds (PPG). Using a simple two end-member mixing model, we further revealed that this PPG source contributed 41±17% of the Pu in the SCS water column. The 239+240 Pu activities in the SCS surface seawater varied from 1.59 to 2.94mBqm -3 , with an average of 2.34±0.38mBqm -3 . Such an activity level was ~40% higher than that in the Kuroshio. The distribution of 239+240 Pu in the surface seawater further showed a general trend of increase from the Kuroshio to the SCS basin, suggesting significant accumulation of Pu within the SCS. The 239+240 Pu inventory of the water column in the SCS basin at the SEATS station with a total depth of ~3840m was estimated to be ~29Bqm -2 , which was substantially higher than the sediment core estimates made for the SCS basin (3.75Bqm -2 ) but much lower than the sediment core estimates made for the shelf of the northern SCS (365.6Bqm -2 ). Such differences were determined by the lower scavenging efficiency of Pu in the SCS basin compared to the northern SCS shelf. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Zhong-liang; Yamada, Masatoshi
2005-05-01
Plutonium concentrations and 240Pu/ 239Pu atom ratios in the East China Sea and Okinawa Trough sediment cores were determined by isotope dilution inductively coupled plasma mass spectrometry after separation using ion-exchange chromatography. The results showed that 240Pu/ 239Pu atom ratios in the East China Sea and Okinawa Trough sediments, ranging from 0.21 to 0.33, were much higher than the reported value of global fallout (0.18). The highest 240Pu/ 239Pu ratios (0.32-0.33) were observed in the deepest Okinawa Trough sediment samples. These ratios suggested the US nuclear weapons tests in the early 1950s at the Pacific Proving Grounds in the Marshall Islands were a major source of plutonium in the East China Sea and Okinawa Trough sediments, in addition to the global fallout source. It was proposed that close-in fallout plutonium was delivered from the Pacific Proving Grounds test sites via early direct tropospheric fallout and transportation by the North Pacific Equatorial Circulation system and Kuroshio Current into the Okinawa Trough and East China Sea. The total 239 + 240 Pu inventories in the cores were about 150-200% of that expected from direct global fallout; about 46-67% of the total inventories were delivered from the Pacific Proving Grounds. Much higher 239 + 240 Pu inventories were observed in the East China Sea sediments than in sediments of the Okinawa Trough, because in the open oceans, part of the 239 + 240 Pu was still retained in the water column, and continued Pu scavenging was higher over the margin than the trough. According to the vertical distributions of 239 + 240 Pu activities and 240Pu/ 239Pu atom ratios in these cores, it was concluded that sediment mixing was the dominant process in controlling profiles of plutonium in this area. Faster mixing in the coastal samples has homogenized the entire 240Pu/ 239Pu ratio record today; slightly slower mixing and less scavenging in the Okinawa Trough have left the surface sediment ratios closer to the modern North Pacific water end member and higher ratios (0.30-0.34) at the bottom of the cores.
Direct Determination of the Intracellular Oxidation State of Plutonium
Gorman-Lewis, Drew; Aryal, Baikuntha P.; Paunesku, Tatjana; Vogt, Stefan; Lai, Barry; Woloschak, Gayle E.; Jensen, Mark P.
2013-01-01
Microprobe X-ray absorption near edge structure (μ-XANES) measurements were used to determine directly, for the first time, the oxidation state of intracellular plutonium in individual 0.1 μm2 areas within single rat pheochromocytoma cells (PC12). The living cells were incubated in vitro for 3 hours in the presence of Pu added to the media in different oxidation states (Pu(III), Pu(IV), and Pu(VI)) and in different chemical forms. Regardless of the initial oxidation state or chemical form of Pu presented to the cells, the XANES spectra of the intracellular Pu deposits was always consistent with tetravalent Pu even though the intracellular milieu is generally reducing. PMID:21755934
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freibert, Franz J.
2012-08-09
Due to its nuclear properties, Pu will remain a material of global interest well into the future. Processing, Structure, Properties and Performance remains a good framework for discussion of Pu materials science Self-irradiation and aging effects continue to be central in discussions of Pu metallurgy Pu in its elemental form is extremely unstable, but alloying helps to stabilize Pu; but, questions remain as to how and why this stabilization occurs. Which is true Pu-Ga binary phase diagram: US or Russian? Metallurgical issues such as solute coring, phase instability, crystallographic texture, etc. result in challenges to casting, processing, and properties modelingmore » and experiments. For Ga alloyed FCC stabilized Pu, temperature and pressure remain as variables impacting phase stability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, J. T.; Alan, B. S.; Akindele, O. A.
The goal of this project was to develop a new approach to measuring (n,2n) reactions for isotopes of interest. We set out to measure the 239Pu(n,2n) and 241Pu(n,2n) cross sections by directly detecting the 2n neutrons that are emitted. With the goal of improving the 239Pu(n,2n) cross section and to measure the 241Pu(n,2n) cross section for the first time. To that end, we have constructed a new neutron-charged-particle detector array called NeutronSTARS. It has been described extensively in Casperson et al. [1] and in Akindele et al. [2]. We have used this new neutron-charged-particle array to measure the 241Pu andmore » 239Pu fission neutron multiplicity as a function of equivalent incident-neutron energy from 100 keV to 20 MeV. We have made a preliminary determination of the 239Pu(n,2n) and 241Pu(n,2n) cross sections from the surrogate 240Pu(α,α’2n) and 242Pu(α,α’2n) reactions respectively. The experimental approach, detector array, data analysis, and results to date are summarized in the following sections.« less
Xu, C; Santschi, P H; Zhong, J Y; Hatcher, P G; Francis, A J; Dodge, C J; Roberts, K A; Hung, C C; Honeyman, B D
2008-11-15
Relatively recently, inorganic colloids have been invoked to reconcile the apparent contradictions between expectations based on classical dissolved-phase Pu transport and field observations of "enhanced" Pu mobility (Kersting et al. Nature 1999, 397, 56-59). A new paradigm for Pu transport is mobilization and transport via biologically produced ligands. This study for the first time reports a new finding of Pu being transported, at sub-pM concentrations, by a cutin-like natural substance containing siderophore-like moieties and virtually all mobile Pu. Most likely, Pu is complexed by chelating groups derived from siderophores that are covalently bound to a backbone of cutin-derived soil degradation products, thus revealing the history of initial exposure to Pu. Features such as amphiphilicity and small size make this macromolecule an ideal collector for actinides and other metals and a vector for their dispersal. Cross-linking to the hydrophobic domains (e.g., by polysaccharides) gives this macromolecule high mobility and a means of enhancing Pu transport. This finding provides a new mechanism for Pu transport through environmental systems that would not have been predicted by Pu transport models.
DFT+U Study of Chemical Impurities in PuO 2
Hernandez, Sarah C.; Holby, Edward F.
2016-05-24
In this paper, we employ density functional theory to explore the effects of impurities in the fluorite crystal structure of PuO 2. The impurities that were considered are known impurities that exist in metallic δ-phase Pu, including H, C, Fe, and Ga. These impurities were placed at various high-symmetry sites within the PuO 2 structure including an octahedral interstitial site, an interstitial site with coordination to two neighboring O atoms, an O substitutional site, and a Pu substitutional site. Incorporation energies were calculated to be energetically unfavorable for all sites except the Pu substitutional site. When impurities were placed inmore » a Pu substitutional site, complexes incorporating the impurities and O formed within the PuO 2 structure. The observed defect-oxygen structures were OH, CO 3, FeO 5, and GaO 3. The presence of these defects led to distortion of the surrounding O atoms within the structure, producing long-range disorder of O atoms. In contrast, perturbations of Pu atoms had a relatively short-range effect on the relaxed structures. These effects are demonstrated via radial distribution functions for O and Pu vacancies. Calculated electronic structure revealed hybridization of the impurity atom with the O valence states and a relative decrease in the Pu 5f states. Minor differences in band gaps were observed for the defected PuO 2 structures containing H, C, and Ga. Finally, Fe-containing structures, however, were calculated to have a significantly decreased band gap, where the implementation of a Hubbard U parameter on the Fe 3d orbitals will maintain the calculated PuO 2 band gap.« less
Am phases in the matrix of a U–Pu–Zr alloy with Np, Am, and rare-earth elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janney, Dawn E.; Kennedy, J. Rory; Madden, James W.
2015-01-01
Phases and microstructures in the matrix of an as-cast U-Pu-Zr alloy with 3 wt% Am, 2% Np, and 8% rare-earth elements were characterized by scanning and transmission electron microscopy. The matrix consists primarily of two phases, both of which contain Am: ζ-(U, Np, Pu, Am) (~70 at% U, 5% Np, 14% Pu, 1% Am, and 10% Zr) and δ-(U, Np, Pu, Am)Zr 2 (~25% U, 2% Np, 10-15% Pu, 1-2% Am, and 55-60 at% Zr). These phases are similar to those in U-Pu-Zr alloys, although the Zr content in ζ-(U, Np, Pu, Am) is higher than that in ζ-(U, Pu)more » and the Zr content in δ-(U, Np, Pu, Am)Zr 2 is lower than that in δ-UZr 2. Nanocrystalline actinide oxides with structures similar to UO2 occurred in some areas, but may have formed by reactions with the atmosphere during sample handling. Planar features consisting of a central zone of ζ-(U, Np, Pu, Am) bracketed by zones of δ-(U, Np, Pu, Am)Zr 2 bound irregular polygons ranging in size from a few micrometers to a few tens of micrometers across. The rest of the matrix consists of elongated domains of ζ-(U, Np, Pu, Am) and δ-(U, Np, Pu, Am)Zr 2. Each of these domains is a few tens of nanometers across and a few hundred nanometers long. The domains display strong preferred orientations involving areas a few hundred nanometers to a few micrometers across.« less
NASA Astrophysics Data System (ADS)
Van Pelt, R. Scott; Ketterer, Michael E.
2013-06-01
In the previous paper, the use of soilborne 137Cs from atmospheric fallout to estimate rates of soil redistribution, particularly by wind, was reviewed. This method relies on the assumption that the source of 137Cs in the soil profile is from atmospheric fallout following the period of atmospheric weapons testing so that the temporal and, to a certain extent, the spatial patterns of 137Cs deposition are known. One of the major limitations occurs when local or regional sources of 137Cs contamination mask the pulse from global fallout, making temporal estimates of redistribution difficult or impossible. Like 137Cs, Pu exhibits strong affinity for binding to soil particle surfaces, and therefore, re-distribution of Pu inventory indicates inferred soil re-distribution. Compared to 137Cs, 239Pu and 240Pu offer several important advantages: (a) the two major Pu isotopes have much longer half-lives than 137Cs and (b) the ratio 240Pu/239Pu is used to examine whether the Pu is from stratospheric fallout. In this paper, we review the literature concerning Pu in soil and of current attempts to use this tracer to estimate rates of soil redistribution. We also present preliminary, unpublished data from a pilot study designed to test whether or not 239+240Pu can be used to estimate rates of soil redistribution by wind. Based on similarities of profile distribution and relative inventories between 137Cs measurements and 239+240Pu measurements of split samples from a series of fields with documented wind erosion histories, we conclude that 239+240Pu may well be the anthropogenic radioisotope of choice for future soil redistribution investigations.
Analysis of gene expression and Ig transcription in PU.1/Spi-B-deficient progenitor B cell lines.
Schweitzer, Brock L; DeKoter, Rodney P
2004-01-01
A number of presumptive target genes for the Ets-family transcription factor PU.1 have been identified in the B cell lineage. However, the precise function of PU.1 in B cells has not been studied because targeted null mutation of the PU.1 gene results in a block to lymphomyeloid development at an early developmental stage. In this study, we take advantage of recently developed PU.1(-/-)Spi-B(-/-) IL-7 and stromal cell-dependent progenitor B (pro-B) cell lines to analyze the function of PU.1 and Spi-B in B cell development. We show that contrary to previously published expectations, PU.1 and/or Spi-B are not required for Ig H chain (IgH) gene transcription in pro-B cells. In fact, PU.1(-/-)Spi-B(-/-) pro-B cells have increased levels of IgH transcription compared with wild-type pro-B cells. In addition, high levels of Igkappa transcription are induced after IL-7 withdrawal of wild-type or PU.1(-/-)Spi-B(-/-) pro-B cells. In contrast, we found that Iglambda transcription is reduced in PU.1(-/-)Spi-B(-/-) pro-B cells relative to wild-type pro-B cells after IL-7 withdrawal. These results suggest that Iglambda, but not IgH or Igkappa, transcription, is dependent on PU.1 and/or Spi-B. The PU.1(-/-)Spi-B(-/-) pro-B cells have other phenotypic changes relative to wild-type pro-B cells including increased proliferation, increased CD25 expression, decreased c-Kit expression, and decreased RAG-1 expression. Taken together, our observations suggest that reduction of PU.1 and/or Spi-B activity in pro-B cells promotes their differentiation to a stage intermediate between late pro-B cells and large pre-B cells.
Transport of Intrinsic Plutonium Colloids in Saturated Porous Media
NASA Astrophysics Data System (ADS)
Zhou, D.; Abdel-Fattah, A.; Boukhalfa, H.; Ware, S. D.; Tarimala, S.; Keller, A. A.
2011-12-01
Actinide contaminants were introduced to the subsurface environment as a result of nuclear weapons development and testing, as well as for nuclear power generation and related research activities for defense and civilian applications. Even though most actinide species were believed to be fairly immobile once in the subsurface, recent studies have shown the transport of actinides kilometers away from their disposal sites. For example, the treated liquid wastes released into Mortandad Canyon at the Los Alamos National Laboratory were predicted to travel less than a few meters; however, plutonium and americium have been detected 3.4 km away from the waste outfall. A colloid-facilitated mechanism has been suggested to account for this unexpected transport of these radioactive wastes. Clays, oxides, organic matters, and actinide hydroxides have all been proposed as the possible mobile phase. Pu ions associated with natural colloids are often referred to as pseudo-Pu colloids, in contrast with the intrinsic Pu colloids that consist of Pu oxides. Significant efforts have been made to investigate the role of pseudo-Pu colloids, while few studies have evaluated the environmental behavior of the intrinsic Pu colloids. Given the fact that Pu (IV) has extremely low solubility product constant, it can be inferred that the transport of Pu in the intrinsic form is highly likely at suitable environmental conditions. This study investigates the transport of intrinsic Pu colloids in a saturated alluvium material packed in a cylindrical column (2.5-cm Dia. x 30-cm high) and compares the results to previous data on the transport of pseudo Pu colloids in the same material. A procedure to prepare a stable intrinsic Pu colloid suspension that produced consistent and reproducible electrokinetic and stability data was developed. Electrokinetic properties and aggregation stability were characterized. The Pu colloids, together with trillium as a conservative tracer, were injected into the column at a flow rate of ~ 6 mL/hr. Despite that the Pu intrinsic colloids are positively charged while the alluvium grain surfaces are negatively charged under the current experimental conditions, about 30% of the Pu colloids population transported through the column and broke through earlier than trillium. Our previous experiments in the same column have shown a highly unretarded transport of the negatively charged pseudo Pu colloids (Pu sorbed onto smectite colloids) and complete retardation of the dissolved Pu. The enhanced transport of Pu colloids was explained by the effective pore volume concept. Combining the results of these two experiments, it is concluded that the intrinsic Pu colloids transported in the column by adsorbing onto the background clay colloids due to electrostatic repulsion.
The impact of Pu speciation on distribution coefficients in Mayak soil.
Skipperud, L; Oughton, D; Salbu, B
2000-08-10
To assess the long-term consequences when radionuclides are released into the environment, information on the source term, transport and transformation processes, interaction with soils (KD) and biological uptake (CF) is needed. Among the artificial radionuclides released to the environment by nuclear activities, the transuranium elements are a major concern, due to very long half-lives and their accumulation in bone as well as high radiotoxicity. Plutonium has been produced in greater quantity than other transuranic elements, however, environmental assessments are complicated by the complex environmental behaviour. Physico-chemical forms of Pu will determine the interactions with soils and, thus, the degree to which soils can act as a sink or a potential diffuse source of contaminants. In the present work, dynamic tracer experiments have been performed where different Pu-species are added to a 'Mayak soil-rainwater system' to obtain information on KD values. After a defined contact time, the samples where then sequentially extracted and results are used in a dynamic box model to estimate interaction and fixation rates. The interaction of all Pu-species with soils seems to be rapid and follows a two-step reaction. Up to contact times of a few weeks, the KD for Pu(III,IV) (730 +/- 240 l/kg) is approximately one order of magnitude higher than for Pu(V,VI) (90 +/- 20 l/kg) and Pu(III,IV)-organic (40-60 l/kg). After 3 months contact time, the KD in only the two organic-bound Pu-species were significantly lower. This shows that the initial association with the soil is dependent on the Pu-species in the rainwater. After only 1 h of contact, between 33 and 40% of the plutonium was strongly bound to the soil components, i.e. only extractable with strong HNO3. The extraction of soil-bound Pu followed a similar pattern for all the original species, suggesting that the next step of Pu interaction mechanism with soil was rather independent of the original species. For both the Pu(V,VI) and Pu-organic species, the rainwater-desorption extract gave consistently higher KD values than that calculated from the rainwater-sorption data; whereas for Pu(III,IV), desorption KD values were more similar to sorption KD values. This supports the suggestion that the observed difference in Pu adsorption to soils reflects Pu-speciation in the water soluble phase, and that actual soil-Pu interactions are rather independent of the original speciation. Modelling of the extraction data show a different in association rate for the different Pu species, where the Pu(III,IV) has the fastest association rate as expected.
EarthCube - A Community-led, Interdisciplinary Collaboration for Geoscience Cyberinfrastructure
NASA Astrophysics Data System (ADS)
Dick, Cindy; Allison, Lee
2016-04-01
The US NSF EarthCube Test Enterprise Governance Project completed its initial two-year long process to engage the community and test a demonstration governing organization with the goal of facilitating a community-led process on designing and developing a geoscience cyberinfrastructure. Conclusions are that EarthCube is viable, has engaged a broad spectrum of end-users and contributors, and has begun to foster a sense of urgency around the importance of open and shared data. Levels of trust among participants are growing. At the same time, the active participants in EarthCube represent a very small sub-set of the larger population of geoscientists. Results from Stage I of this project have impacted NSF decisions on the direction of the EarthCube program. The overall tone of EarthCube events has had a constructive, problem-solving orientation. The technical and organizational elements of EarthCube are poised to support a functional infrastructure for the geosciences community. The process for establishing shared technological standards has notable progress but there is a continuing need to expand technological and cultural alignment. Increasing emphasis is being given to the interdependencies among EarthCube funded projects. The newly developed EarthCube Technology Plan highlights important progress in this area by five working groups focusing on: 1. Use cases; 2. Funded project gap analysis; 3. Testbed development; 4. Standards; and 5. Architecture. The EarthCube governance implementing processes to facilitate community convergence on a system architecture, which is expected to emerge naturally from a set of data principles, user requirements, science drivers, technology capabilities, and domain needs.
Linking Humans to Data: Designing an Enterprise Architecture for EarthCube
NASA Astrophysics Data System (ADS)
Xu, C.; Yang, C.; Meyer, C. B.
2013-12-01
National Science Foundation (NSF)'s EarthCube is a strategic initiative towards a grand enterprise that holistically incorporates different geoscience research domains. The EarthCube as envisioned by NSF is a community-guided cyberinfrastructure (NSF 2011). The design of EarthCube enterprise architecture (EA) offers a vision to harmonize processes between the operations of EarthCube and its information technology foundation, the geospatial cyberinfrastructure. (Yang et al. 2010). We envision these processes as linking humans to data. We report here on fundamental ideas that would ultimately materialize as a conceptual design of EarthCube EA. EarthCube can be viewed as a meta-science that seeks to advance knowledge of the Earth through cross-disciplinary connections made using conventional domain-based earth science research. In order to build capacity that enables crossing disciplinary chasms, a key step would be to identify the cornerstones of the envisioned enterprise architecture. Human and data inputs are the two key factors to the success of EarthCube (NSF 2011), based upon which three hypotheses have been made: 1) cross disciplinary collaboration has to be achieved through data sharing; 2) disciplinary differences need to be articulated and captured in both computer and human understandable formats; 3) human intervention is crucial for crossing the disciplinary chasms. We have selected the Federal Enterprise Architecture Framework (FEAF, CIO Council 2013) as the baseline for the envisioned EarthCube EA, noting that the FEAF's deficiencies can be improved upon with inputs from three other popular EA frameworks. This presentation reports the latest on the conceptual design of an enterprise architecture in support of EarthCube.
Boulyga, Sergei F; Tibi, Markus; Heumann, Klaus G
2004-01-01
The methods available for determination of environmental contamination by plutonium at ultra-trace levels require labor-consuming sample preparation including matrix removal and plutonium extraction in both nuclear spectroscopy and mass spectrometry. In this work, laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied for direct analysis of Pu in soil and sediment samples. Application of a LINA-Spark-Atomizer system (a modified laser ablation system providing high ablation rates) coupled with a sector-field ICP-MS resulted in detection limits as low as 3x10(-13) g g(-1) for Pu isotopes in soil samples containing uranium at a concentration of a few microg g(-1). The isotope dilution (ID) technique was used for quantification, which compensated for matrix effects in LA-ICP-MS. Interferences by UH+ and PbO2+ ions and by the peak tail of 238U+ ions were reduced or separated by use of dry plasma conditions and a mass resolution of 4000, respectively. No other effects affecting measurement accuracy, except sample inhomogeneity, were revealed. Comparison of results obtained for three contaminated soil samples by use of alpha-spectrometry, ICP-MS with sample decomposition, and LA-ICP-IDMS showed, in general, satisfactory agreement of the different methods. The specific activity of (239+240)Pu (9.8 +/- 3.0 mBq g(-1)) calculated from LA-ICP-IDMS analysis of SRM NIST 4357 coincided well with the certified value of 10.4 +/- 0.2 mBq g(-1). However, the precision of LA-ICP-MS for determination of plutonium in inhomogeneous samples, i.e. if "hot" particles are present, is limited. As far as we are aware this paper reports the lowest detection limits and element concentrations yet measured in direct LA-ICP-MS analysis of environmental samples.
Reductive Dissolution of PuO2(am): The Effect of Fe(II) and Hydroquinone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Dhanpat; Gorby, Yuri A.; Fredrickson, Jim K.
2002-06-01
SYNOPIS-Reducing agents commonly present in geologic environments can increase solubility of PuO2(am), which is otherwise very insoluble, by many orders of magnitude through reduction of Pu(IV) to Pu(III). The reduction reactions involving Fe(II) and hydroquinone, hitherto unquantified under environmental pH values, were found to be relatively fast and controlled the extent of PuO2(am) dissolution: a decrease in redox potential (pe + pH) resulted in concomitant increase in PuO2(am) solubility.
Automatic Modelling of Rubble Mound Breakwaters from LIDAR Data
NASA Astrophysics Data System (ADS)
Bueno, M.; Díaz-Vilariño, L.; González-Jorge, H.; Martínez-Sánchez, J.; Arias, P.
2015-08-01
Rubble mound breakwaters maintenance is critical to the protection of beaches and ports. LiDAR systems provide accurate point clouds from the emerged part of the structure that can be modelled to make it more useful and easy to handle. This work introduces a methodology for the automatic modelling of breakwaters with armour units of cube shape. The algorithm is divided in three main steps: normal vector computation, plane segmentation, and cube reconstruction. Plane segmentation uses the normal orientation of the points and the edge length of the cube. Cube reconstruction uses the intersection of three perpendicular planes and the edge length. Three point clouds cropped from the main point cloud of the structure are used for the tests. The number of cubes detected is around 56 % for two of the point clouds and 32 % for the third one over the total physical cubes. Accuracy assessment is done by comparison with manually drawn cubes calculating the differences between the vertexes. It ranges between 6.4 cm and 15 cm. Computing time ranges between 578.5 s and 8018.2 s. The computing time increases with the number of cubes and the requirements of collision detection.
An evaluation of space time cube representation of spatiotemporal patterns.
Kristensson, Per Ola; Dahlbäck, Nils; Anundi, Daniel; Björnstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Mårtensson, Ingrid; Nordvall, Mathias; Ståhl, Josefine
2009-01-01
Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.
NASA Astrophysics Data System (ADS)
Ashby, Neil
2018-06-01
The comment (Nagornyi 2018 Metrologia) claims that, notwithstanding the conclusions stated in the paper Relativistic theory of the falling cube gravimeter (Ashby 2008 Metrologia 55 1–10), there is no need to consider the dimensions or refractive index of the cube in fitting data from falling cube absolute gravimeters; additional questions are raised about matching quartic polynomials while determining only three quantities. The comment also suggests errors were made in Ashby (2008 Metrologia 55 1–10) while implementing the fitting routines on which the conclusions were based. The main contention of the comment is shown to be invalid because retarded time was not properly used in constructing a fictitious cube position. Such a fictitious position, fixed relative to the falling cube, is derived and shown to be dependent on cube dimensions and refractive index. An example is given showing how in the present context, polynomials of fourth order can be effectively matched by determining only three quantities, and a new compact characterization of the interference signal arriving at the detector is given. Work of the U.S. government, not subject to copyright.
Survey on the implementation and reliability of CubeSat electrical bus interfaces
NASA Astrophysics Data System (ADS)
Bouwmeester, Jasper; Langer, Martin; Gill, Eberhard
2017-06-01
This paper provides results and conclusions on a survey on the implementation and reliability aspects of CubeSat bus interfaces, with an emphasis on the data bus and power distribution. It provides recommendations for a future CubeSat bus standard. The survey is based on a literature study and a questionnaire representing 60 launched CubeSats and 44 to be launched CubeSats. It is found that the bus interfaces are not the main driver for mission failures. However, it is concluded that the Inter Integrated Circuit (I2C) data bus, as implemented in a great majority of the CubeSats, caused some catastrophic satellite failures and a vast amount of bus lockups. The power distribution may lead to catastrophic failures if the power lines are not protected against overcurrent. A connector and wiring standard widely implemented in CubeSats is based on the PC/104 standard. Most participants find the 104 pin connector of this standard too large. For a future CubeSat bus interface standard, it is recommended to implement a reliable data bus, a power distribution with overcurrent protection and a wiring harness with smaller connectors compared with PC/104.
DEVELOPMENT OF PLUTONIUM-BEARING FUEL MATERIALS. Progress Report, October 1-December 31, 1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1962-10-31
Continued effort is reported on preparation and characterization of PuO/ sub 2/ and UO/sub 2/-- PuO/sub 2/ mixtures. Sintering and characterization of pellets for irradiation tests was emphasized, and efforts were also devoted to plasma torch production of spherical PuO /sub 2/ and coating of oxide materials. PuO/sub 2/ produced by the oxalate process from low concentration feed contains agglomerates which are not readily broken down, while that produced from normal feed contains larger agglomerates which are easily dispersed ultrasonically, and are more easily calcined. The water filtration method for determining total porosity of powders was adapted for use withmore » PuO/sub 2/. Moisture pickup studies show that the problems encountered with PuO/sub 2/ are similar to those found in handling ceramic-grade UO/. Reproducibility tests carried out on UO/sub 2/--PuO/ sub 2/ mixtures indicate that production methods are satisfactory. Lab-scale experiments on production of PuO/sub 2/-- UO/sub 2/feed for the plasma torch indicate that further work is worthwhile. Adaptation of a potentiometric filtration for Pu is reported. A twophase microstructure found in PuO/ after sintering in N6% H atmosphere was identified as PuO/sub 2/ and cubic Pu/sub 2/O/ sub 3/. Spherical particles were produced in the plasma torch using crushed or preformed high-fired particles. Spherical particles of PuO/sub 2/ were also produced by a multi-step process of drying, pressing, granulation, sizing, shaping, and sintering. Reactor physics studies were continued to determine the effect of cross section assumptions on the calculated behavior of Pu-fueled near- thermal reactor systems. It was concluded that relatively long core life (reactivity limiting) is attainable with these systems. (J.R.D.)« less
Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53
Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying
2011-01-01
Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618
NASA Astrophysics Data System (ADS)
Cusnir, Ruslan; Christl, Marcus; Steinmann, Philipp; Bochud, François; Froidevaux, Pascal
2017-06-01
The interaction of trace environmental plutonium with dissolved natural organic matter (NOM) plays an important role on its mobility and bioavailability in freshwater environments. Here we explore the speciation and biogeochemical behavior of Pu in freshwaters of the karst system in the Swiss Jura Mountains. Chemical extraction and ultrafiltration methods were complemented by diffusive gradients in thin films technique (DGT) to measure the dissolved and bioavailable Pu fraction in water. Accelerator mass spectrometry (AMS) was used to accurately determine Pu in this pristine environment. Selective adsorption of Pu (III, IV) on silica gel showed that 88% of Pu in the mineral water is found in +V oxidation state, possibly in a highly soluble [PuO2+(CO3)n]m- form. Ultrafiltration experiments at 10 kDa yielded a similar fraction of colloid-bound Pu in the organic-rich and in mineral water (18-25%). We also found that the concentrations of Pu measured by DGT in mineral water are similar to the bulk concentration, suggesting that dissolved Pu is readily available for biouptake. Sequential elution (SE) of Pu from aquatic plants revealed important co-precipitation of potentially labile Pu (60-75%) with calcite fraction within outer compartment of the plants. Hence, we suggest that plutonium is fully available for biological uptake in both mineral and organic-rich karstic freshwaters.
242Pu absolute neutron-capture cross section measurement
NASA Astrophysics Data System (ADS)
Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.
2017-09-01
The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. During target fabrication, a small amount of 239Pu was added to the active target so that the absolute scale of the 242Pu(n,γ) cross section could be set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. The relative scale of the 242Pu(n,γ) cross section covers four orders of magnitude for incident neutron energies from thermal to ≈ 40 keV. The cross section reported in ENDF/B-VII.1 for the 242Pu(n,γ) En,R = 2.68 eV resonance was found to be 2.4% lower than the new absolute 242Pu(n,γ) cross section.
GreenCube and RocketCube: Low-Resource Sensorcraft for Atmospheric and Ionospheric Science
NASA Astrophysics Data System (ADS)
Bracikowski, P. J.; Lynch, K. A.; Slagle, A. K.; Fagin, M. H.; Currey, S. R.; Siddiqui, M. U.
2009-12-01
In situ atmospheric and ionospheric studies benefit greatly from the ability to separate variations in space from variations in time. Arrays of many probes are a method of doing this, but because of the technical character and expense of developing large arrays, so far probe arrays have been the domain of well-funded science missions. CubeSats and low-resource craft (``Picosats") are an avenue for bringing array-based studies of the atmosphere and ionosphere into the mainstream. The Lynch Rocket Lab at Dartmouth College is attempting to develop the instruments, experience, and heritage to implement arrays of many low-resource sensorcraft while doing worthwhile science in the development process. We are working on two CubeSat projects to reach this goal: GreenCube for atmospheric studies and RocketCube for ionospheric studies. GreenCube is an undergraduate student-directed high-altitude balloon-borne 3U CubeSat. GreenCube I was a bus, telemetry, and mechanical system development project. GreenCube I flew in the fall of 2008. The flight was successfully recovered and tracked over the 97km range and through the 29km altitude rise. GreenCube I carried six thermal housekeeping sensors, a GPS, a magnetometer, and a HAM radio telemetry system with a reporting rate of once every 30 seconds. The velocity profile obtained from the GPS data implies the presence of atmospheric gravity waves during the flight. GreenCube II flew in August 2009 with the science goal of detecting atmospheric gravity waves over the White Mountains of New Hampshire. Two balloons with identical payloads were released 90 seconds apart to make 2-point observations. Each payload carried a magnetometer, 5 thermistors for ambient temperature readings, a GPS, and an amateur radio telemetry system with a 7 second reporting cadence. A vertically oriented video camera on one payload and a horizontally oriented video camera on the other recorded the characteristics of gravity waves in the nearby clouds. We expect to be able to detect atmospheric gravity waves from the GPS-derived position and velocity of the two balloons and the ambient temperature profiles. Preliminary analysis of the temperature data shows indications of atmospheric gravity waves. RocketCube is a graduate student-designed low-resource sensorcraft development project being designed for future ionospheric multi-point missions. The FPGA-based bus system, based on GreenCube’s systems, will be able to control and digitize analog data from any low voltage instrument and telemeter that data. RocketCube contains a GPS and high-resolution magnetometer for position and orientation information. The Lynch Rocket Lab's initial interest in developing RocketCube is to investigate the k-spectrum of density irregularities in the auroral ionosphere. To this end, RocketCube will test a new Petite retarding potential analyzer Ion Probe (PIP) for examining subsonic and supersonic thermal ion populations in the ionosphere. The tentatively planned launch will be from a Wallops Flight Facility sounding rocket test flight in 2011. RocketCube serves as a step toward a scientific auroral sounding rocket mission that will feature an array of subpayloads to study the auroral ionosphere.
Plutonium as a tracer for soil erosion assessment in northeast China.
Xu, Yihong; Qiao, Jixin; Pan, Shaoming; Hou, Xiaolin; Roos, Per; Cao, Liguo
2015-04-01
Soil erosion is one of the most serious environmental and agricultural problems faced by human society. Assessing intensity is an important issue for controlling soil erosion and improving eco-environmental quality. The suitability of the application of plutonium (Pu) as a tracer for soil erosion assessment in northeast China was investigated by comparing with that of 137Cs. Here we build on preliminary work, in which we investigated the potential of Pu as a soil erosion tracer by sampling additional reference sites and potential erosive sites, along the Liaodong Bay region in northeast China, for Pu isotopes and 137Cs. 240Pu/239Pu atomic ratios in all samples were approximately 0.18, which indicated that the dominant source of Pu was the global fallout. Pu showed very similar distribution patterns to those of 137Cs at both uncultivated and cultivated sites. 239+240Pu concentrations in all uncultivated soil cores followed an exponential decline with soil depth, whereas at cultivated sites, Pu was homogenously distributed in plow horizons. Factors such as planted crop types, as well as methods and frequencies of irrigation and tillage were suggested to influence the distribution of radionuclides in cultivated land. The baseline inventories of 239+240Pu and 137Cs were 88.4 and 1688 Bq m(-2) respectively. Soil erosion rates estimated by 239+240Pu tracing method were consistent with those obtained by the 137Cs method, confirming that Pu is an effective tracer with a similar tracing behavior to that of 137Cs for soil erosion assessment. Copyright © 2014 Elsevier B.V. All rights reserved.
Cluster analysis in systems of magnetic spheres and cubes
NASA Astrophysics Data System (ADS)
Pyanzina, E. S.; Gudkova, A. V.; Donaldson, J. G.; Kantorovich, S. S.
2017-06-01
In the present work we use molecular dynamics simulations and graph-theory based cluster analysis to compare self-assembly in systems of magnetic spheres, and cubes where the dipole moment is oriented along the side of the cube in the [001] crystallographic direction. We show that under the same conditions cubes aggregate far less than their spherical counterparts. This difference can be explained in terms of the volume of phase space in which the formation of the bond is thermodynamically advantageous. It follows that this volume is much larger for a dipolar sphere than for a dipolar cube.
ELaNa - Educational Launch of Nanosatellite Providing Routine RideShare Opportunities
NASA Technical Reports Server (NTRS)
Skrobot, Garrett Lee; Coelho, Roland
2012-01-01
Since the creation of the NASA CubeSat Launch Initiative (NCSLI), the need for CubeSat rideshares has dramatically increased. After only three releases of the initiative, a total of 66 CubeSats now await launch opportunities. So, how is this challenge being resolved? NASA's Launch Services Program (LSP) has studied how to integrate PPODs on Athena, Atlas V, and Delta IV launch vehicles and has been instrumental in developing several carrier systems to support CubeSats as rideshares on NASA missions. In support of the first two ELaNa missions the Poly-Picosatellite Orbital Deployer (P-POD) was adapted for use on a Taurus XL (ELaNa I) and a Delta n (ELaNa III). Four P-PODs, which contained a total eight CubeSats, were used on these first ELaNa missions. Next up is ELaNa VI, which will launch on an Atlas V in August 2012. The four ELaNa VI CubeSats, in three P-PODs, are awaiting launch, having been integrated in the NPSCuLite. To increase rideshare capabilities, the Launch Services Program (LSP) is working to integrate P-PODs on Falcon 9 missions. The proposed Falcon 9 manifest will provide greater opportunities for the CubeSat community. For years, the standard CubeSat size was 1 U to 3U. As the desire to include more science in each cube grows, so does the standard CubeSat size. No longer is a 1 U, 1.5U, 2U or 3U CubeSat the only option available; the new CubeSat standard will include 6U and possibly even 12U. With each increase in CubeSat size, the CubeSat community is pushing the capability of the current P-POD design. Not only is the carrier system affected, but integration to the Launch Vehicle is also a concern. The development of a system to accommodate not only the 3U P-POD but also carriers for larger CubeSats is ongoing. LSP considers payloads in the lkg to 180 kg range rideshare or small/secondary payloads. As new and emerging small payloads are developed, rideshare opportunities and carrier systems need to be identified and secured. The development of a rideshare carrier system is not always cost effective. Sometimes a launch vehicle with an excellent performance record appears to be a great rideshare candidate however, after completing a feasibility study, LSP may determine that the cost of the rideshare carrier system is too great and, due to budget constraints, the development cannot go forward. With the current budget environment, one cost effective way to secure rideshare opportunities is to look for synergy with other government organizations that share the same interest.
NASA Technical Reports Server (NTRS)
Geist, Alessandro; Lin, Michael; Flatley, Tom; Petrick, David
2013-01-01
SpaceCube 1.5 is a high-performance and low-power system in a compact form factor. It is a hybrid processing system consisting of CPU (central processing unit), FPGA (field-programmable gate array), and DSP (digital signal processor) processing elements. The primary processing engine is the Virtex- 5 FX100T FPGA, which has two embedded processors. The SpaceCube 1.5 System was a bridge to the SpaceCube 2.0 and SpaceCube 2.0 Mini processing systems. The SpaceCube 1.5 system was the primary avionics in the successful SMART (Small Rocket/Spacecraft Technology) Sounding Rocket mission that was launched in the summer of 2011. For SMART and similar missions, an avionics processor is required that is reconfigurable, has high processing capability, has multi-gigabit interfaces, is low power, and comes in a rugged/compact form factor. The original SpaceCube 1.0 met a number of the criteria, but did not possess the multi-gigabit interfaces that were required and is a higher-cost system. The SpaceCube 1.5 was designed with those mission requirements in mind. The SpaceCube 1.5 features one Xilinx Virtex-5 FX100T FPGA and has excellent size, weight, and power characteristics [4×4×3 in. (approx. = 10×10×8 cm), 3 lb (approx. = 1.4 kg), and 5 to 15 W depending on the application]. The estimated computing power of the two PowerPC 440s in the Virtex-5 FPGA is 1100 DMIPS each. The SpaceCube 1.5 includes two Gigabit Ethernet (1 Gbps) interfaces as well as two SATA-I/II interfaces (1.5 to 3.0 Gbps) for recording to data drives. The SpaceCube 1.5 also features DDR2 SDRAM (double data rate synchronous dynamic random access memory); 4- Gbit Flash for storing application code for the CPU, FPGA, and DSP processing elements; and a Xilinx Platform Flash XL to store FPGA configuration files or application code. The system also incorporates a 12 bit analog to digital converter with the ability to read 32 discrete analog sensor inputs. The SpaceCube 1.5 design also has a built-in accelerometer. In addition, the system has 12 receive and transmit RS- 422 interfaces for legacy support. The SpaceCube 1.5 processor card represents the first NASA Goddard design in a compact form factor featuring the Xilinx Virtex- 5. The SpaceCube 1.5 incorporates backward compatibility with the Space- Cube 1.0 form factor and stackable architecture. It also makes use of low-cost commercial parts, but is designed for operation in harsh environments.
NASA Astrophysics Data System (ADS)
Tosolin, A.; Souček, P.; Beneš, O.; Vigier, J.-F.; Luzzi, L.; Konings, R. J. M.
2018-05-01
PuF3 was synthetized by hydro-fluorination of PuO2 and subsequent reduction of the product by hydrogenation. The obtained PuF3 was analysed by X-Ray Diffraction (XRD) and found phase-pure. High purity was also confirmed by the melting point analysis using Differential Scanning Calorimetry (DSC). PuF3 was then used for thermodynamic assessment of the PuF3-LiF system. Phase equilibrium points and enthalpy of fusion of the eutectic composition were measured by DSC. XRD analyses of selected samples after DSC measurement confirm that after solidification from the liquid, the system returns to a mixture of LiF and PuF3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Khalil J.; Rim, Jung Ho; Porterfield, Donivan R.
2015-06-29
In this study, we re-analyzed late-1940’s, Manhattan Project era Plutonium-rich sludge samples recovered from the ''General’s Tanks'' located within the nation’s oldest Plutonium processing facility, Technical Area 21. These samples were initially characterized by lower accuracy, and lower precision mass spectrometric techniques. We report here information that was previously not discernable: the two tanks contain isotopically distinct Pu not only for the major (i.e., 240Pu, 239Pu) but trace ( 238Pu , 241Pu, 242Pu) isotopes. Revised isotopics slightly changed the calculated 241Am- 241Pu model ages and interpretations.
The heat of formation of gaseous PuO(2)2+ from relativistic density functional calculations.
Moskaleva, Lyudmila V; Matveev, Alexei V; Dengler, Joachim; Rösch, Notker
2006-08-28
Using a set of model reactions, we estimated the heat of formation of gaseous PuO2(2+) from quantum-chemical reaction enthalpies and experimental heats of formation of reference species. To this end, we carried out relativistic density functional calculations on the molecules PuO(2)2+, PuO2, PuF6, and PuF4. We used a revised variant (PBEN) of the Perdew-Burke-Ernzerhof gradient-corrected exchange-correlation functional, and we accounted for spin-orbit interaction in a self-consistent fashion. As open-shell Pu species with two or more unpaired 5f electrons are involved, spin-orbit interaction significantly affects the energies of the model reactions. Our theoretical estimate for the heat of formation DeltafH degree 0(PuO2(2+),g), 418+/-15 kcal mol-1, evaluated using plutonium fluorides as references, is in good agreement with a recent experimental result, 413+/-16 kcal mol-1. The theoretical value connected to the experimental heat of formation of PuO2(g) has a notably higher uncertainty and therefore was not included in the final result.
Self-irradiation damage to the local structure of plutonium and plutonium intermetallics
NASA Astrophysics Data System (ADS)
Booth, C. H.; Jiang, Yu; Medling, S. A.; Wang, D. L.; Costello, A. L.; Schwartz, D. S.; Mitchell, J. N.; Tobash, P. H.; Bauer, E. D.; McCall, S. K.; Wall, M. A.; Allen, P. G.
2013-03-01
The effect of self-irradiation damage on the local structure of δ-Pu, PuAl2, PuGa3, and other Pu intermetallics has been determined for samples stored at room temperature using the extended x-ray absorption fine-structure (EXAFS) technique. These measurements indicate that the intermetallic samples damage at a similar rate as indicated in previous studies of PuCoGa5. In contrast, δ-Pu data indicate a much slower damage accumulation rate. To explore the effect of storage temperature and possible room temperature annealing effects, we also collected EXAFS data on a δ-Pu sample that was held at less than 32 K for a two month period. This sample damaged much more quickly. In addition, the measurable damage was annealed out at above only 135 K. Data from samples of δ-Pu with different Ga concentrations and results on all samples collected from different absorption edges are also reported. These results are discussed in terms of the vibrational properties of the materials and the role of Ga in δ-Pu as a network former.
Sarika, P R; James, Nirmala Rachel; Nishna, N; Anil Kumar, P R; Raj, Deepa K
2015-09-01
Galactosylated pullulan-curcumin conjugate (LANH2-Pu Ald-Cur SA) is developed for target specific delivery of curcumin to hepatocarcinoma cells by five step synthetic strategy, which includes oxidation of pullulan (Pu Ald), introduction of amino group to the targeting ligand (LANH2), grafting of the LANH2 to Pu Ald, modification of curcumin (Cur SA) and conjugation of Cur SA to pullulan. Nongalactosylated pullulan-curcumin conjugate (Pu-Cur SA) is also prepared to compare the enhancement in cytotoxicity offered by the targeting group. Both LANH2-Pu Ald-Cur SA and Pu-Cur SA conjugates could self assemble to micelle in water with hydrodynamic diameters of 355±9nm and 363±10nm, respectively. Both conjugates show spherical morphology and enhance stability of curcumin in physiological pH. Compared to Pu-Cur SA, LANH2-Pu Ald-Cur SA exhibits higher toxicity and internalization towards HepG2 cells. This indicates the enhanced uptake of LANH2-Pu Ald-Cur SA conjugate via ASGPR (asialoglycoprotein receptor) mediated endocytosis into HepG2 cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Press and Public Interest IceCube Acronym Dictionary Articles about IceCube "Inside Story the End of the Earth" LBNL CRD Report Education/ Public Interest A New Window on the Universe Ice
CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions
NASA Astrophysics Data System (ADS)
Poghosyan, Armen; Golkar, Alessandro
2017-01-01
Traditionally, the space industry produced large and sophisticated spacecraft handcrafted by large teams of engineers and budgets within the reach of only a few large government-backed institutions. However, over the last decade, the space industry experienced an increased interest towards smaller missions and recent advances in commercial-off-the-shelf (COTS) technology miniaturization spurred the development of small spacecraft missions based on the CubeSat standard. CubeSats were initially envisioned primarily as educational tools or low cost technology demonstration platforms that could be developed and launched within one or two years. Recently, however, more advanced CubeSat missions have been developed and proposed, indicating that CubeSats clearly started to transition from being solely educational and technology demonstration platforms to offer opportunities for low-cost real science missions with potential high value in terms of science return and commercial revenue. Despite the significant progress made in CubeSat research and development over the last decade, some fundamental questions still habitually arise about the CubeSat capabilities, limitations, and ultimately about their scientific and commercial value. The main objective of this review is to evaluate the state of the art CubeSat capabilities with a special focus on advanced scientific missions and a goal of assessing the potential of CubeSat platforms as capable spacecraft. A total of over 1200 launched and proposed missions have been analyzed from various sources including peer-reviewed journal publications, conference proceedings, mission webpages as well as other publicly available satellite databases and about 130 relatively high performance missions were downselected and categorized into six groups based on the primary mission objectives including "Earth Science and Spaceborne Applications", "Deep Space Exploration", "Heliophysics: Space Weather", "Astrophysics", "Spaceborne In Situ Laboratory", and "Technology Demonstration" for in-detail analysis. Additionally, the evolution of CubeSat enabling technologies are surveyed for evaluating the current technology state of the art as well as identifying potential areas that will benefit the most from further technology developments for enabling high performance science missions based on CubeSat platforms.
Electronic structures of of PuX (X=S, Se, Te)
NASA Astrophysics Data System (ADS)
Maehira, Takahiro; Sakai, Eijiro; Tatetsu, Yasutomi
2013-08-01
We have calculated the energy band structures and the Fermi surfaces of PuS, PuSe, and PuTe by using a self-consistent relativistic linear augmented-plane-wave method with the exchange and correlation potential in the local density approximation. In general, the energy bands near the Fermi level are mainly caused by the hybridization between the Pu 5 f and the monochalcogenide p electrons. The obtained main Fermi surfaces consisted of two hole sheets and one electron sheet, which were constructed from the band having both the Pu 5 f state and the monochalcogenide p state.
Effect of equilibration time on Pu desorption from goethite
Wong, Jennifer C.; Zavarin, Mavrik; Begg, James D.; ...
2015-01-28
Strongly sorbing ions such as plutonium may become irreversibly bound to mineral surfaces over time implicates near- and far-field transport of Pu. Batch adsorption–desorption data were collected as a function of time and pH to study the surface stability of Pu on goethite. Pu(IV) was adsorbed to goethite over the pH range 4.2 to 6.6 for different periods of time (1, 6, 15, 34 and 116 d). Moreover, following adsorption, Pu was leached from the mineral surface with desferrioxamine B (DFOB), a complexant capable of effectively competing with the goethite surface for Pu. The amount of Pu desorbed from the goethitemore » was found to vary as a function of the adsorption equilibration time, with less Pu removed from the goethite following longer adsorption periods. This effect was most pronounced at low pH. Logarithmic desorption distribution ratios for each adsorption equilibration time were fit to a pH-dependent model. Model slopes decreased between 1 and 116 d adsorption time, indicating that overall Pu(IV) surface stability on goethite surfaces becomes less dependent on pH with greater adsorption equilibration time. The combination of adsorption and desorption kinetic data suggest that non-redox aging processes affect Pu sorption behavior on goethite.« less
Incipient class II mixed valency in a plutonium solid-state compound
NASA Astrophysics Data System (ADS)
Cary, Samantha K.; Galley, Shane S.; Marsh, Matthew L.; Hobart, David L.; Baumbach, Ryan E.; Cross, Justin N.; Stritzinger, Jared T.; Polinski, Matthew J.; Maron, Laurent; Albrecht-Schmitt, Thomas E.
2017-09-01
Electron transfer in mixed-valent transition-metal complexes, clusters and materials is ubiquitous in both natural and synthetic systems. The degree to which intervalence charge transfer (IVCT) occurs, dependent on the degree of delocalization, places these within class II or III of the Robin-Day system. In contrast to the d-block, compounds of f-block elements typically exhibit class I behaviour (no IVCT) because of localization of the valence electrons and poor spatial overlap between metal and ligand orbitals. Here, we report experimental and computational evidence for delocalization of 5f electrons in the mixed-valent PuIII/PuIV solid-state compound, Pu3(DPA)5(H2O)2 (DPA = 2,6-pyridinedicarboxylate). The properties of this compound are benchmarked by the pure PuIII and PuIV dipicolinate complexes, [PuIII(DPA)(H2O)4]Br and PuIV(DPA)2(H2O)3·3H2O, as well as by a second mixed-valent compound, PuIII[PuIV(DPA)3H0.5]2, that falls into class I instead. Metal-to-ligand charge transfer is involved in both the formation of Pu3(DPA)5(H2O)2 and in the IVCT.
Weng, Neng-Chiao; Wu, Chih-Fu; Tsen, Wen-Chin; Wu, Cheng-Lung; Suen, Maw-Cherng
2018-01-01
Abstract In this study, 4,4′-diphenylmethane diisocyanate and polytetramethylene glycol were used to prepare a prepolymer; N,N′-bis(4-hydroxybenzylidene)-2,6-diaminopyridine (BHBP) was used as a chain extender; and these elements were combined to prepare a novel polyurethane, BHBP/PU. Gel permeation chromatography revealed that the molecular weight of the BHBP/PU samples increased as the BHBP content was increased. Fourier transform infrared spectroscopy demonstrated that high BHBP content facilitated strong hydrogen bonding in the samples. Differential thermogravimetry indicated that the initial decomposition temperature of BHBP/PU-3 was approximately 10 °C higher than that of BHBP/PU-1. Differential scanning calorimetry and dynamic mechanical analysis revealed that increasing the BHBP content substantially increased both the glass transition and dynamic glass transition temperatures of the BHBP/PU samples. The tensile strengths of BHBP/PU-1, BHBP/PU-2, and BHBP/PU-3 were 7.7, 10.9, and 21.6 MPa, respectively, with corresponding Young’s moduli of 0.7, 1.9, and 3.3 MPa. These results demonstrated that both the tensile strength and Young’s modulus of the BHBP/PU samples increased as the BHBP content was increased. Moreover, the BHBP/PU samples exhibited excellent shape recovery of >90%. PMID:29706848
Zheng, Jian; Tagami, Keiko; Uchida, Shigeo
2013-09-03
The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident has caused serious contamination in the environment. The release of Pu isotopes renewed considerable public concern because they present a large risk for internal radiation exposure. In this Critical Review, we summarize and analyze published studies related to the release of Pu from the FDNPP accident based on environmental sample analyses and the ORIGEN model simulations. Our analysis emphasizes the environmental distribution of released Pu isotopes, information on Pu isotopic composition for source identification of Pu releases in the FDNPP-damaged reactors or spent fuel pools, and estimation of the amounts of Pu isotopes released from the FDNPP accident. Our analysis indicates that a trace amount of Pu isotopes (∼2 × 10(-5)% of core inventory) was released into the environment from the damaged reactors but not from the spent fuel pools located in the reactor buildings. Regarding the possible Pu contamination in the marine environment, limited studies suggest that no extra Pu input from the FDNPP accident could be detected in the western North Pacific 30 km off the Fukushima coast. Finally, we identified knowledge gaps remained on the release of Pu into the environment and recommended issues for future studies.
A Method for Continuous (239)Pu Determinations in Arctic and Antarctic Ice Cores.
Arienzo, M M; McConnell, J R; Chellman, N; Criscitiello, A S; Curran, M; Fritzsche, D; Kipfstuhl, S; Mulvaney, R; Nolan, M; Opel, T; Sigl, M; Steffensen, J P
2016-07-05
Atmospheric nuclear weapons testing (NWT) resulted in the injection of plutonium (Pu) into the atmosphere and subsequent global deposition. We present a new method for continuous semiquantitative measurement of (239)Pu in ice cores, which was used to develop annual records of fallout from NWT in ten ice cores from Greenland and Antarctica. The (239)Pu was measured directly using an inductively coupled plasma-sector field mass spectrometer, thereby reducing analysis time and increasing depth-resolution with respect to previous methods. To validate this method, we compared our one year averaged results to published (239)Pu records and other records of NWT. The (239)Pu profiles from the Arctic ice cores reflected global trends in NWT and were in agreement with discrete Pu profiles from lower latitude ice cores. The (239)Pu measurements in the Antarctic ice cores tracked low latitude NWT, consistent with previously published discrete records from Antarctica. Advantages of the continuous (239)Pu measurement method are (1) reduced sample preparation and analysis time; (2) no requirement for additional ice samples for NWT fallout determinations; (3) measurements are exactly coregistered with all other chemical, elemental, isotopic, and gas measurements from the continuous analytical system; and (4) the long half-life means the (239)Pu record is stable through time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostick, Debra A.; Hexel, Cole R.; Ticknor, Brian W.
2016-11-01
To shorten the lengthy and costly manual chemical purification procedures, sample preparation methods for mass spectrometry are being automated using commercial-off-the-shelf (COTS) equipment. This addresses a serious need in the nuclear safeguards community to debottleneck the separation of U and Pu in environmental samples—currently performed by overburdened chemists—with a method that allows unattended, overnight operation. In collaboration with Elemental Scientific Inc., the prepFAST-MC2 was designed based on current COTS equipment that was modified for U/Pu separations utilizing Eichrom™ TEVA and UTEVA resins. Initial verification of individual columns yielded small elution volumes with consistent elution profiles and good recovery. Combined columnmore » calibration demonstrated ample separation without crosscontamination of the eluent. Automated packing and unpacking of the built-in columns initially showed >15% deviation in resin loading by weight, which can lead to inconsistent separations. Optimization of the packing and unpacking methods led to a reduction in the variability of the packed resin to less than 5% daily. The reproducibility of the automated system was tested with samples containing 30 ng U and 15 pg Pu, which were separated in a series with alternating reagent blanks. These experiments showed very good washout of both the resin and the sample from the columns as evidenced by low blank values. Analysis of the major and minor isotope ratios for U and Pu provided values well within data quality limits for the International Atomic Energy Agency. Additionally, system process blanks spiked with 233U and 244Pu tracers were separated using the automated system after it was moved outside of a clean room and yielded levels equivalent to clean room blanks, confirming that the system can produce high quality results without the need for expensive clean room infrastructure. Comparison of the amount of personnel time necessary for successful manual vs. automated chemical separations showed a significant decrease in hands-on time from 9.8 hours to 35 minutes for seven samples, respectively. This documented time savings and reduced labor translates to a significant cost savings per sample. Overall, the system will enable faster sample reporting times at reduced costs by limiting personnel hours dedicated to the chemical separation.« less
EarthCube - Results of Test Governance in Geoscience Cyberinfrastructure
NASA Astrophysics Data System (ADS)
Davis, R.; Allison, M. L.; Keane, C. M.; Robinson, E.
2016-12-01
In September 2016, the EarthCube Test Enterprise Governance Project completed its three-year long process to engage the community and test a demonstration governing organization with the goal of facilitating a community-led process on designing and developing a geoscience cyberinfrastructure to transform geoscience research. The EarthCube initiative is making an important transition from creating a coherent community towards adoption and implemention of technologies that can serve scientists working in and across many domains. The emerging concept of a "system of systems" approach to cyberinfrastructure architecture is a critical concept in the EarthCube program, but has not been fully defined. Recommendations from an NSF-appointed Advisory Committee include: a. developing a succinct definition of EarthCube; b. changing the community-elected governance approach towards structured rather than consensus-driven decision-making; c. restructuring the process to articulate program solicitations; and d. producing an effective implementation roadmap. These are seen as prerequisites to adoption of best practices, system concepts, and evolving to a production track. The EarthCube governing body is preparing responses to the Advisory Committee findings and recommendations with a target delivery date of late 2016 but broader involvement may be warranted. We conclude that there is ample justification to continue evolving to a governance framework that facilitates convergence on a system architecture that guides EarthCube activities and plays an influential role in making operational the EarthCube vision of cyberinfrastructure for the geosciences. There is widespread community expectation for support of a multiyear EarthCube governing effort to put into practice the science, technical, and organizational plans that are continuing to emerge. However, the active participants in EarthCube represent a small sub-set of the larger population of geoscientists.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Pinaki P.; Ray, Ranjit K.; Tsuji, Nobuhiro
2010-11-01
An attempt has been made to study the evolution of texture in high-purity Ni and Ni-5 at. pct W alloy prepared by the powder metallurgy route followed by heavy cold rolling ( 95 pct deformation) and recrystallization. The deformation textures of the two materials are of typical pure metal or Cu-type texture. Cube-oriented ( left\\{ {00 1} right\\}left< { 100} rightrangle ) regions are present in the deformed state as long thin bands, elongated in the rolling direction (RD). These bands are characterized by a high orientation gradient inside, which is a result of the rotation of the cube-oriented cells around the RD toward the RD-rotated cube ( left\\{ {0 1 3} right\\}left< { 100} rightrangle ). Low-temperature annealing produces a weak cube texture along with the left\\{ {0 1 3} right\\}left< { 100} rightrangle component, with the latter being much stronger in high-purity Ni than in the Ni-W alloy. At higher temperatures, the cube texture is strengthened considerably in the Ni-W alloy; however, the cube volume fraction in high-purity Ni is significantly lower because of the retention of the left\\{ {0 1 3} right\\}left< { 100} rightrangle component. The difference in the relative strengths of the cube, and the left\\{ {0 1 3} right\\}left< { 100} rightrangle components in the two materials is evident from the beginning of recrystallization in which more left\\{ {0 1 3} right\\}left< { 100} rightrangle -oriented grains than near cube grains form in high-purity Ni. The preferential nucleation of the near cube and the left\\{ {0 1 3} right\\}left< { 100} rightrangle grains in these materials seems to be a result of the high orientation gradients associated with the cube bands that offer a favorable environment for early nucleation.
DAsHER CD: Developing a Data-Oriented Human-Centric Enterprise Architecture for EarthCube
NASA Astrophysics Data System (ADS)
Yang, C. P.; Yu, M.; Sun, M.; Qin, H.; Robinson, E.
2015-12-01
One of the biggest challenges that face Earth scientists is the resource discovery, access, and sharing in a desired fashion. EarthCube is targeted to enable geoscientists to address the challenges by fostering community-governed efforts that develop a common cyberinfrastructure for the purpose of collecting, accessing, analyzing, sharing and visualizing all forms of data and related resources, through the use of advanced technological and computational capabilities. Here we design an Enterprise Architecture (EA) for EarthCube to facilitate the knowledge management, communication and human collaboration in pursuit of the unprecedented data sharing across the geosciences. The design results will provide EarthCube a reference framework for developing geoscience cyberinfrastructure collaborated by different stakeholders, and identifying topics which should invoke high interest in the community. The development of this EarthCube EA framework leverages popular frameworks, such as Zachman, Gartner, DoDAF, and FEAF. The science driver of this design is the needs from EarthCube community, including the analyzed user requirements from EarthCube End User Workshop reports and EarthCube working group roadmaps, and feedbacks or comments from scientists obtained by organizing workshops. The final product of this Enterprise Architecture is a four-volume reference document: 1) Volume one is this document and comprises an executive summary of the EarthCube architecture, serving as an overview in the initial phases of architecture development; 2) Volume two is the major body of the design product. It outlines all the architectural design components or viewpoints; 3) Volume three provides taxonomy of the EarthCube enterprise augmented with semantics relations; 4) Volume four describes an example of utilizing this architecture for a geoscience project.
Advances in rubber/halloysite nanotubes nanocomposites.
Jia, Zhixin; Guo, Baochun; Jia, Demin
2014-02-01
The research advances in rubber/halloysite nanotubes (rubber/HNTs) nanocomposites are reviewed. HNTs are environmentally-friendly natural nanomaterials, which could be used to prepare the rubber-based nanocomposites with high performance and low cost. Unmodified HNTs could be adopted to prepare the rubber/HNTs composites with improved mechanical properties, however, the rubber/HNTs nanocomposites with fine morphology and excellent properties were chiefly prepared with various modifiers by in situ mixing method. A series of rubber/HNTs nanocomposites containing several rubbers (SBR, NR, xSBR, NBR, PU) and different modifiers (ENR, RH, Si69, SA, MAA, ILs) have been investigated. The results showed that all the rubber/HNTs nanocomposites achieved strong interfacial interaction via interfacial covalent bonds, hydrogen bonds or multiple interactions, realized significantly improved dispersion of HNTs at nanoscale and exhibited excellent mechanical performances and other properties.
Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property.
Liu, Peiming; Huang, Tao; Liu, Pingsheng; Shi, Shufeng; Chen, Qiang; Li, Li; Shen, Jian
2016-10-15
Polyurethane (PU) is a biopolymer that has been commonly used for biomedical applications. However, the biofouling phenomenon on the hydrophobic PU surface is one of the crucial issues that embarrassing its applications. Here, we report a facile & efficient approach to improve the anti-biofouling ability of the PU substrates. Active residues were firstly generated on the PU surface by using the low temperature air-plasma treatment, promoting the immobilization of the atom transfer radical polymerization (ATRP) initiators on the surface. Then, three types of zwitterionic polymer brushes, as well as PEG brushes, have been fabricated on the PU substrates through surface-initiated ATRP (SI-ATRP). Robust surface characterizations that capable of revealing the surface chemistry (including X-ray photoelectron spectroscopy (XPS) and wettability tests), and antifouling evaluations of the PU substrates (protein adsorption, platelet adhesion, and cell adhesion measurements) were performed. Results showed that three types of zwitterionic brushes have been successful grafted on the PU surface, respectively. And the three types of zwitterionic brushes, in general, significantly inhibited the protein adsorption, the platelet adhesion, and the cell adhesion on the PU surface, endowing a significantly improved anti-fouling ability to the PU substrates. Furthermore, we found that this facial zwitterionic surface modification did not compromise the mechanical property of the PU substrates. This strategy could be easily exploited to PU-based biomaterials to improve their performance in many applications. Copyright © 2016 Elsevier Inc. All rights reserved.
A millimeter-wave tunneLadder TWT
NASA Technical Reports Server (NTRS)
Jacquez, A.; Karp, A.; Wilson, D.; Scott, A.
1988-01-01
A millimeter wave traveling wave tube was developed using a dispersive, high impedance forward interaction structure based on a ladder, with non-space harmonic interaction, for a tube with high gain per unit length and high efficiency. The TunneLadder interaction structure combines ladder properties modified to accommodate Pierce gun beam optics in a radially magnetized permanent magnet focusing structure. The development involved the fabrication of chemically milled, shaped ladders diffusion brazed to diamond cubes which are in turn active-diffusion brazed to each ridge of a doubly ridged waveguide. Cold test data are presented, representing the omega-beta and impedance characteristics of the modified ladder circuit. These results were used in small and large signal computer programs to predict TWT gain and efficiency. Actual data from tested tubes verify the predicted performance while providing broader bandwidth than expected.
A millimeter-wave tunneladder TWT
NASA Technical Reports Server (NTRS)
Wilson, D.
1988-01-01
A millimeter-wave traveling wave tube (TWT) was developed using a dispersive, high-impedance forward wave interaction structure based on a ladder, with non-space-harmonic interaction, for a tube with high gain per inch and high efficiency. The 'TunneLadder' interaction structure combines ladder properties modified to accommodate Pierce gun beam optics in a radially magnetized PM focusing structure. The development involved the fabrication of chemically milled, shaped ladders diffusion brazed to diamond cubes which are in turn active diffusion brazed to each ridge of a doubly ridged waveguide. Cold-test data, representing the (omega)(beta) and and impedance characteristics of the modified ladder circuit, were used in small and large-signal computer programs to predict TWT gain and efficiency. The structural design emphasizes ruggedness and reliability. Actual data from tested tubes verify the predicted performance while providing broader bandwidth than expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, H.J.; Trier, R.M.
We have obtained a large set of sediment cores from the Hudson estuary through much of the ambient salinity range. A number of core sections and samples of suspended particles have been analyzed for /sup 137/Cs, /sup 134/Cs and /sup 60/Co by direct gamma counting, and /sup 239/Pu, /sup 240/Pu, and /sup 238/Pu by alpha spectrometry. The distribution of both /sup 137/Cs and /sup 239/Pu, /sup 240/Pu indicates rapid accumulation in marginal cover areas, and especially in the harbor region adjacent to New York City. The distributions of both /sup 137/Cs and /sup 239/Pu, /sup 240/Pu are similar in surfacemore » sediments and with depth in cores, but there are deviations from the fallout ratio due to addition of reactor /sup 137/Cs and loss of /sup 137/Cs from the particle phases at higher salinities. Measureable amounts of reactor-derived /sup 134/Cs and /sup 60/Co are found in nearly all sediment samples containing appreciable /sup 137/Cs, between 15 km upstream of Indian Point and the downstream extent of our sampling, 70 km south of the reactor. Accumulations of /sup 239/Pu, /sup 240/Pu in New York harbor sediments are more than an order of magnitude greater than the fallout delivery rate. The most likely explanation is accumulation of fine particles in the harbor which have been transported from upstream areas of the Hudson. Our evidence so far indicates that Indian Point is probably not a significant source of /sup 239/Pu, /sup 240/Pu or /sup 238/Pu compared with the fallout burden of these nuclides already in the sediments.« less
Sequeiros, R C P; Neng, N R; Portugal, F C M; Pinto, M L; Pires, J; Nogueira, J M F
2011-04-01
This work describes the development, validation, and application of a novel methodology for the determination of testosterone and methenolone in urine matrices by stir bar sorptive extraction using polyurethane foams [SBSE(PU)] followed by liquid desorption and high-performance liquid chromatography with diode array detection. The methodology was optimized in terms of extraction time, agitation speed, pH, ionic strength and organic modifier, as well as back-extraction solvent and desorption time. Under optimized experimental conditions, convenient accuracy were achieved with average recoveries of 49.7 8.6% for testosterone and 54.2 ± 4.7% for methenolone. Additionally, the methodology showed good precision (<9%), excellent linear dynamic ranges (>0.9963) and convenient detection limits (0.2-0.3 μg/L). When comparing the efficiency obtained by SBSE(PU) and with the conventional polydimethylsiloxane phase [SBSE(PDMS)], yields up to four-fold higher are attained for the former, under the same experimental conditions. The application of the proposed methodology for the analysis of testosterone and methenolone in urine matrices showed negligible matrix effects and good analytical performance.
Fission track astrology of three Apollo 14 gas-rich breccias
NASA Technical Reports Server (NTRS)
Graf, H.; Shirck, J.; Sun, S.; Walker, R.
1973-01-01
The three Apollo 14 breccias 14301, 14313, and 14318 all show fission xenon due to the decay of Pu-244. To investigate possible in situ production of the fission gas, an analysis was made of the U-distribution in these three breccias. The major amount of the U lies in glass clasts and in matrix material and no more than 25% occurs in distinct high-U minerals. The U-distribution of each breccia is discussed in detail. Whitlockite grains in breccias 14301 and 14318 found with the U-mapping were etched and analyzed for fission tracks. The excess track densities are much smaller than indicated by the Xe-excess. Because of a preirradiation history documented by very high track densities in feldspar grains, however, it is impossible to attribute the excess tracks to the decay of Pu-244. A modified track method has been developed for measuring average U-concentrations in samples containing a heterogeneous distribution of U in the form of small high-U minerals. The method is briefly discussed, and results for the rocks 14301, 14313, 14318, 68815, 15595, and the soil 64421 are given.
Electronic structure of an anticancer drug DC81 and its interaction with DNA base pairs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, Gargi, E-mail: gargi.tiwari@rediffmail.com; Sharma, Dipendra, E-mail: d-11sharma@rediffmail.com; Dwivedi, K. K., E-mail: dwivedikarunesh4@gmail.com
The drug, 8-Hydroxy-7-methoxy-pyrrolo-[2,1-c][1,4] benzodiazepine-5-one, commonly christened as DC81 belongs to the pyrrolo-[2,1-c][1,4]benzodiazepine (PBDs) family. It is a member of the group of naturally occurring antitumour antibiotics produced by various Streptomyces species. The antitumour activity of DC81 is attributed to its sequence specific interaction with G-C rich DNA region in particular, for Pu-G-Pu motifs. In the present paper, physico-chemical properties DC81 have been carried out using an ab-initio method, HF/6-31G(d,p) with GAMESS program. MEP, HOMO and LUMO surfaces have been scanned. Ionization potential, electron affinity, electronegativity, global hardness and softness of the drug have been calculated. Further, drug-DNA interactions have beenmore » examined using modified second order perturbation theory along with multicentred-multipole expansion technique. Results have been discussed in the light of other theoretical and experimental observations. Efforts have been made to elucidate the binding patterns and thereby biological properties of the drug.« less
Low-temperature resistant, elastic adhesives and sealants for gas tank insulation
NASA Astrophysics Data System (ADS)
Karrer, R.
The leading European insulating firms in the domain of liquid natural gas (LNG)/liquid petroleum gas (LPG) carriers have developed special sandwich elements for the insulation of liquid gas tanks. The trend to increasing tank volumes and, at the same time, to reducing the number of cargo tanks in modern liquid gas carriers with loading capacities of up to 135,000 m 3 has in some cases entailed major changes with respect to tank design (Kaefer-Isoliertechnik, Hansa Schiffahrt-Schiffbau-Hafen, 133rd year, 1996, 2, 20-22). These changes have equally influenced both the design and the assembly of the panels used for insulation, as well as the adhesives and sealants applied for this purpose. This article describes the requirement profile and the possible applications of solvent-free two-component polyurethane adhesives (2-K PU) and recently developed polyurethane hot-melt adhesives (PU-HM) for the manufacture and/or assembly of panels. Moreover, it deals with the role of the advanced solvent-free, silane-modified polymers (MS polymers) in the pointing of panels (seam-sealing) exposed to low temperatures.
A frequency-based window width optimized two-dimensional S-Transform profilometry
NASA Astrophysics Data System (ADS)
Zhong, Min; Chen, Feng; Xiao, Chao
2017-11-01
A new scheme is proposed to as a frequency-based window width optimized two-dimensional S-Transform profilometry, in which parameters pu and pv are introduced to control the width of a two-dimensional Gaussian window. Unlike the standard two-dimensional S-transform using the Gaussian window with window width proportional to the reciprocal local frequency of the tested signal, the size of window width for the optimized two-dimensional S-Transform varies with the pu th (pv th) power of the reciprocal local frequency fx (fy) in x (y) direction. The paper gives a detailed theoretical analysis of optimized two-dimensional S-Transform in fringe analysis as well as the characteristics of the modified Gauss window. Simulations are applied to evaluate the proposed scheme, the results show that the new scheme has better noise reduction ability and can extract phase distribution more precise in comparison with the standard two-dimensional S-transform even though the surface of the measured object varies sharply. Finally, the proposed scheme is demonstrated on three-dimensional surface reconstruction for a complex plastic cat mask to show its effectiveness.
ELECTRONUCLEAR RESEARCH DIVISION SEMIANNUAL PROGRESS REPORT FOR PERIOD ENDING MARCH 20, 1955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, F.T. ed.
1955-06-24
The 86-in. cyclotron is being modified to provide for deflection of the proton beam. Radioisotope production and cyclotron operation before shut-down are summarized. With the use of the 63-in. cyclotron, the absolute values of the electron capture and loss cross sections for elastic scattering of N by N was measured at energies from 13 to 22 Mev. A double-focusing 90 deg magnet is being designed for use in identifying the reaction products from N-induced nuclear reactions. The 44-in. cyclotron is being revised to provide for the acceleration of protons to 1.5 and 5 Mev. The feasibility of converting the 44-more » in. cyclotron to a 48-in. heavy-particle cyclotron is being studied, and design specifications are given. The production of Pu isotopes by electromagnetic separation, Pu recycle chemistry, and product processing are discussed. The Army Package Power Reactor program is summarized. APPR-type fuel assemblies have been fabricated for irradiation experiments and are being corrosion tested. Feasibility studies of a fixed-frequency 1-bev accelerator are reported. (W.L.H.)« less
Electronic structure of an anticancer drug DC81 and its interaction with DNA base pairs
NASA Astrophysics Data System (ADS)
Tiwari, Gargi; Sharma, Dipendra; Dwivedi, K. K.; Dwivedi, M. K.
2016-05-01
The drug, 8-Hydroxy-7-methoxy-pyrrolo-[2,1-c][1,4] benzodiazepine-5-one, commonly christened as DC81 belongs to the pyrrolo-[2,1-c][1,4]benzodiazepine (PBDs) family. It is a member of the group of naturally occurring antitumour antibiotics produced by various Streptomyces species. The antitumour activity of DC81 is attributed to its sequence specific interaction with G-C rich DNA region in particular, for Pu-G-Pu motifs. In the present paper, physico-chemical properties DC81 have been carried out using an ab-initio method, HF/6-31G(d,p) with GAMESS program. MEP, HOMO and LUMO surfaces have been scanned. Ionization potential, electron affinity, electronegativity, global hardness and softness of the drug have been calculated. Further, drug-DNA interactions have been examined using modified second order perturbation theory along with multicentred-multipole expansion technique. Results have been discussed in the light of other theoretical and experimental observations. Efforts have been made to elucidate the binding patterns and thereby biological properties of the drug.
NASA Technical Reports Server (NTRS)
Hudson, Jennifer; Martinez, Andres; Petro, Andrew
2015-01-01
The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.
ERIC Educational Resources Information Center
Lutke, Nikolay; Lange-Kuttner, Christiane
2015-01-01
This study introduces the new Rotated Colour Cube Test (RCCT) as a measure of object identification and mental rotation using single 3D colour cube images in a matching-to-sample procedure. One hundred 7- to 11-year-old children were tested with aligned or rotated cube models, distracters and targets. While different orientations of distracters…
Thales SESO's hollow and massive corner cube solutions
NASA Astrophysics Data System (ADS)
Fappani, Denis; Dahan, Déborah; Costes, Vincent; Luitot, Clément
2017-11-01
For Space Activities, more and more Corner Cubes, used as solution for retro reflection of light (telemetry and positioning), are emerging worldwide in different projects. Depending on the application, they can be massive or hollow Corner Cubes. For corners as well as for any kind of space optics, it usual that use of light/lightened components is always a baseline for purpose of mass reduction payloads. But other parameters, such as the system stability under severe environment, are also major issues, especially for the corner cube systems which require generally very tight angular accuracies. For the particular case of the hollow corner cube, an alternative solution to the usual cementing of the 3 reflective surfaces, has been developed with success in collaboration with CNES to guarantee a better stability and fulfill the weight requirements.. Another important parameter is the dihedral angles that have a great influence on the wavefront error. Two technologies can be considered, either a Corner Cubes array assembled in a very stable housing, or the irreversible adherence technology used for assembling the three parts of a cube. This latter technology enables in particular not having to use cement. The poster will point out the conceptual design, the manufacturing and control key-aspects of such corner cube assemblies as well as the technologies used for their assembling.
Working RideShare for the U Class Payload
NASA Technical Reports Server (NTRS)
Skrobot, Garrett L.
2014-01-01
Presentation to describe current status of the Launch Services Program's (LSP) education launch of nano satellite project. U class are payloads that are of a form factor of the 1U CubeSats - 10cm Cubed. Over the past three years these small spacecraft have grown in popularity in both the Government and the Commercial market. There is an increase in the number of NASA CubeSats selected and yet a very low launch rate. Why the low launch rate? - Funding, more money = more launches - CubeSat being selective about the orbit - CubeSats not being ready. This trend is expected to continue with current manifesting practices.
NASA Astrophysics Data System (ADS)
Bosanac, Natasha; Cox, Andrew D.; Howell, Kathleen C.; Folta, David C.
2018-03-01
Lunar IceCube is a 6U CubeSat that is designed to detect and observe lunar volatiles from a highly inclined orbit. This spacecraft, equipped with a low-thrust engine, is expected to be deployed from the upcoming Exploration Mission-1 vehicle. However, significant uncertainty in the deployment conditions for secondary payloads impacts both the availability and geometry of transfers that deliver the spacecraft to the lunar vicinity. A framework that leverages dynamical systems techniques is applied to a recently updated set of deployment conditions and spacecraft parameter values for the Lunar IceCube mission, demonstrating the capability for rapid trajectory design.
2013-11-17
CAPE CANAVERAL, Fla. -- At the News Center at NASA's Kennedy Space Center in Florida, Andrew Petro, the agency's acting director of the Early Stage Innovation Division of the Office of the Chief Technologist, discusses the agency’s CubeSat Launch initiative. CubeSats provide opportunities for small satellite payloads to fly on rockets planned for upcoming launches. CubeSats, a class of research spacecraft called nanosatellites, are flown as auxiliary payloads on previously planned missions. The cube-shaped satellites are approximately four inches long, have a volume of about one quart and weigh about three pounds. For more information, visit: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html Photo credit: NASA/Kim Shiflett
2013-11-17
CAPE CANAVERAL, Fla. -- At the News Center at NASA's Kennedy Space Center in Florida, Andrew Petro, the agency's acting director of the Early Stage Innovation Division of the Office of the Chief Technologist, discusses the agency’s CubeSat Launch initiative. CubeSats provide opportunities for small satellite payloads to fly on rockets planned for upcoming launches. CubeSats, a class of research spacecraft called nanosatellites, are flown as auxiliary payloads on previously planned missions. The cube-shaped satellites are approximately four inches long, have a volume of about one quart and weigh about three pounds. For more information, visit: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html Photo credit: NASA/Kim Shiflett
2013-11-17
CAPE CANAVERAL, Fla. -- At the News Center at NASA's Kennedy Space Center in Florida, Andrew Petro, the agency's acting director of the Early Stage Innovation Division of the Office of the Chief Technologist, discusses the agency’s CubeSat Launch initiative. CubeSats provide opportunities for small satellite payloads to fly on rockets planned for upcoming launches. CubeSats, a class of research spacecraft called nanosatellites, are flown as auxiliary payloads on previously planned missions. The cube-shaped satellites are approximately four inches long, have a volume of about one quart and weigh about three pounds. For more information, visit: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html Photo credit: NASA/Kim Shiflett
2013-11-17
CAPE CANAVERAL, Fla. -- At the News Center at NASA's Kennedy Space Center in Florida, Andrew Petro, the agency's acting director of the Early Stage Innovation Division of the Office of the Chief Technologist, discusses the agency’s CubeSat Launch initiative. CubeSats provide opportunities for small satellite payloads to fly on rockets planned for upcoming launches. CubeSats, a class of research spacecraft called nanosatellites, are flown as auxiliary payloads on previously planned missions. The cube-shaped satellites are approximately four inches long, have a volume of about one quart and weigh about three pounds. For more information, visit: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Sturm, Monika; Richter, Stephan; Aregbe, Yetunde; Wellum, Roger; Mayer, Klaus; Prohaska, Thomas
2014-05-01
Although the age determination of plutonium is and has been a pillar of nuclear forensic investigations for many years, additional research in the field of plutonium age dating is still needed and leads to new insights as the present work shows: Plutonium is commonly dated with the help of the 241Pu/241Am chronometer using gamma spectrometry; in fewer cases the 240Pu/236U chronometer has been used. The age dating results of the 239Pu/235U chronometer and the 238Pu/234U chronometer are scarcely applied in addition to the 240Pu/236U chronometer, although their results can be obtained simultaneously from the same mass spectrometric experiments as the age dating result of latter. The reliability of the result can be tested when the results of different chronometers are compared. The 242Pu/238U chronometer is normally not evaluated at all due to its sensitivity to contamination with natural uranium. This apparent 'weakness' that renders the age dating results of the 242Pu/238U chronometer almost useless for nuclear forensic investigations, however turns out to be an advantage looked at from another perspective: the 242Pu/238U chronometer can be utilized as an indicator for uranium contamination of plutonium samples and even help to identify the nature of this contamination. To illustrate this the age dating results of all four Pu/U clocks mentioned above are discussed for one plutonium sample (NBS 946) that shows no signs of uranium contamination and for three additional plutonium samples. In case the 242Pu/238U chronometer results in an older 'age' than the other Pu/U chronometers, contamination with either a small amount of enriched or with natural or depleted uranium is for example possible. If the age dating result of the 239Pu/235U chronometer is also influenced the nature of the contamination can be identified; enriched uranium is in this latter case a likely cause for the missmatch of the age dating results of the Pu/U chronometers.
Thermodynamic assessment of the LiF-ThF4-PuF3-UF4 system
NASA Astrophysics Data System (ADS)
Capelli, E.; Beneš, O.; Konings, R. J. M.
2015-07-01
The LiF-ThF4-PuF3-UF4 system is the reference salt mixture considered for the Molten Salt Fast Reactor (MSFR) concept started with PuF3. In order to obtain the complete thermodynamic description of this quaternary system, two binary systems (ThF4-PuF3 and UF4-PuF3) and two ternary systems (LiF-ThF4-PuF3 and LiF-UF4-PuF3) have been assessed for the first time. The similarities between CeF3/PuF3 and ThF4/UF4 compounds have been taken into account for the presented optimization as well as in the experimental measurements performed, which have confirmed the temperatures predicted by the model. Moreover, the experimental results and the thermodynamic database developed have been used to identify potential compositions for the MSFR fuel and to evaluate the influence of partial substitution of ThF4 by UF4 in the salt.
Thermodynamic assessments and inter-relationships between systems involving Al, Am, Ga, Pu, and U
NASA Astrophysics Data System (ADS)
Perron, A.; Turchi, P. E. A.; Landa, A.; Oudot, B.; Ravat, B.; Delaunay, F.
2016-12-01
A newly developed self-consistent CALPHAD thermodynamic database involving Al, Am, Ga, Pu, and U is presented. A first optimization of the slightly characterized Am-Al and completely unknown Am-Ga phase diagrams is proposed. To this end, phase diagram features as crystal structures, stoichiometric compounds, solubility limits, and melting temperatures have been studied along the U-Al → Pu-Al → Am-Al, and U-Ga → Pu-Ga → Am-Ga series, and the thermodynamic assessments involving Al and Ga alloying are compared. In addition, two distinct optimizations of the Pu-Al phase diagram are proposed to account for the low temperature and Pu-rich region controversy. The previously assessed thermodynamics of the other binary systems (Am-Pu, Am-U, Pu-U, and Al-Ga) is also included in the database and is briefly described in the present work. Finally, predictions on phase stability of ternary and quaternary systems of interest are reported to check the consistency of the database.
Nondestructive assay of EBR-II blanket elements using resonance transmission analysis
NASA Astrophysics Data System (ADS)
Klann, Raymond Todd
1998-10-01
Resonance transmission analysis utilizing a filtered reactor beam was examined as a means of determining the 239Pu content in Experimental Breeder Reactor - II depleted uranium blanket elements. The technique uses cadmium and gadolinium filters along with a 239Pu fission chamber to isolate the 0.3 eV resonance in 239Pu. In the energy range of this resonance (0.1 eV to 0.5 eV), the total microscopic cross-section of 239Pu is significantly greater than the cross- sections of 238U and 235U. This large difference allows small changes in the 239Pu content of a sample to result in large changes in the mass signal response. Tests with small stacks of depleted uranium and 239Pu foils indicate a significant change in response based on the 239Pu content of the foil stack. In addition, the tests indicate good agreement between the measured and predicted values of 239Pu up to approximately two weight percent.
Thermodynamic assessments and inter-relationships between systems involving Al, Am, Ga, Pu, and U
Perron, A.; Turchi, P. E. A.; Landa, A.; ...
2016-12-01
We present a newly developed self-consistent CALPHAD thermodynamic database involving Al, Am, Ga, Pu, and U. A first optimization of the slightly characterized Am-Al and completely unknown Am-Ga phase diagrams is proposed. To this end, phase diagram features as crystal structures, stoichiometric compounds, solubility limits, and melting temperatures have been studied along the U-Al → Pu-Al → Am-Al, and U-Ga → Pu-Ga → Am-Ga series, and the thermodynamic assessments involving Al and Ga alloying are compared. In addition, two distinct optimizations of the Pu-Al phase diagram are proposed to account for the low temperature and Pu-rich region controversy. We includedmore » the previously assessed thermodynamics of the other binary systems (Am-Pu, Am-U, Pu-U, and Al-Ga) in the database and is briefly described in the present work. In conclusion, predictions on phase stability of ternary and quaternary systems of interest are reported to check the consistency of the database.« less
Collapsible Cubes and Other Curiosities.
ERIC Educational Resources Information Center
Johnson, Scott; Walser, Hans
1997-01-01
Describes some general techniques for making collapsible models, including spiral models, for all the Platonic solids except the cube. Discusses the nature of the dissections of the faces necessary for the construction of the spiral cube. (ASK)
Plymale, Andrew E; Bailey, Vanessa L; Fredrickson, James K; Heald, Steve M; Buck, Edgar C; Shi, Liang; Wang, Zheming; Resch, Charles T; Moore, Dean A; Bolton, Harvey
2012-02-21
This study measured reductive solubilization of plutonium(IV) hydrous oxide (Pu(IV)O(2)·xH(2)O((am))) with hydrogen (H(2)) as electron donor, in the presence or absence of dissimilatory metal-reducing bacteria (DMRB), anthraquinone-2,6-disulfonate (AQDS), and ethylenediaminetetraacetate (EDTA). In PIPES buffer at pH 7 with excess H(2), Shewanella oneidensis and Geobacter sulfurreducens both solubilized <0.001% of 0.5 mM Pu(IV)O(2)·xH(2)O((am)) over 8 days, with or without AQDS. However, Pu((aq)) increased by an order of magnitude in some treatments, and increases in solubility were associated with production of Pu(III)((aq)). The solid phase of these treatments contained Pu(III)(OH)(3(am)), with more in the DMRB treatments compared with abiotic controls. In the presence of EDTA and AQDS, PuO(2)·xH(2)O((am)) was completely solubilized by S. oneidensis and G. sulfurreducens in ∼24 h. Without AQDS, bioreductive solubilization was slower (∼22 days) and less extensive (∼83-94%). In the absence of DMRB, EDTA facilitated reductive solubilization of 89% (without AQDS) to 98% (with AQDS) of the added PuO(2)·xH(2)O((am)) over 418 days. An in vitro assay demonstrated electron transfer to PuO(2)·xH(2)O((am)) from the S. oneidensis outer-membrane c-type cytochrome MtrC. Our results (1) suggest that PuO(2)·xH(2)O((am)) reductive solubilization may be important in reducing environments, especially in the presence of complexing ligands and electron shuttles, (2) highlight the environmental importance of polynuclear, colloidal Pu, (3) provide additional evidence that Pu(III)-EDTA is a more likely mobile form of Pu than Pu(IV)-EDTA, and (4) provide another example of outer-membrane cytochromes and electron-shuttling compounds facilitating bioreduction of insoluble electron acceptors in geologic environments.
Using Additive Manufacturing to Print a CubeSat Propulsion System
NASA Technical Reports Server (NTRS)
Marshall, William M.
2015-01-01
CubeSats are increasingly being utilized for missions traditionally ascribed to larger satellites CubeSat unit (1U) defined as 10 cm x 10 cm x 11 cm. Have been built up to 6U sizes. CubeSats are typically built up from commercially available off-the-shelf components, but have limited capabilities. By using additive manufacturing, mission specific capabilities (such as propulsion), can be built into a system. This effort is part of STMD Small Satellite program Printing the Complete CubeSat. Interest in propulsion concepts for CubeSats is rapidly gaining interest-Numerous concepts exist for CubeSat scale propulsion concepts. The focus of this effort is how to incorporate into structure using additive manufacturing. End-use of propulsion system dictates which type of system to develop-Pulse-mode RCS would require different system than a delta-V orbital maneuvering system. Team chose an RCS system based on available propulsion systems and feasibility of printing using a materials extrusion process. Initially investigated a cold-gas propulsion system for RCS applications-Materials extrusion process did not permit adequate sealing of part to make this a functional approach.
Girls in detail, boys in shape: gender differences when drawing cubes in depth.
Lange-Küttner, C; Ebersbach, M
2013-08-01
The current study tested gender differences in the developmental transition from drawing cubes in two- versus three dimensions (3D), and investigated the underlying spatial abilities. Six- to nine-year-old children (N = 97) drew two occluding model cubes and solved several other spatial tasks. Girls more often unfolded the various sides of the cubes into a layout, also called diagrammatic cube drawing (object design detail). In girls, the best predictor for drawing the cubes was Mental Rotation Test (MRT) accuracy. In contrast, boys were more likely to preserve the optical appearance of the cube array. Their drawing in 3D was best predicted by MRT reaction time and the Embedded Figures Test (EFT). This confirmed boys' stronger focus on the contours of an object silhouette (object shape). It is discussed whether the two gender-specific approaches to drawing in three dimensions reflect two sides of the appearance-reality distinction in drawing, that is graphic syntax of object design features versus visual perception of projective space. © 2012 The British Psychological Society.
Kopp, Bruno; Rösser, Nina; Tabeling, Sandra; Stürenburg, Hans Jörg; de Haan, Bianca; Karnath, Hans-Otto; Wessel, Karl
2014-01-01
One of Luria's favorite neuropsychological tasks for challenging frontal lobe functions was Link's cube test (LCT). The LCT is a cube construction task in which the subject must assemble 27 small cubes into one large cube in such a manner that only the painted surfaces of the small cubes are visible. We computed two new LCT composite scores, the constructive plan composite score, reflecting the capability to envisage a cubical-shaped volume, and the behavioral (dis-) organization composite score, reflecting the goal-directedness of cube construction. Voxel-based lesion-behavior mapping (VLBM) was used to test the relationship between performance on the LCT and brain injury in a sample of stroke patients with right hemisphere damage (N = 32), concentrated in the frontal lobe. We observed a relationship between the measure of behavioral (dis-) organization on the LCT and right frontal lesions. Further work in a larger sample, including left frontal lobe damage and with more power to detect effects of right posterior brain injury, is necessary to determine whether this observation is specific for right frontal lesions. PMID:24596552
Software Requirements Specification for Lunar IceCube
NASA Astrophysics Data System (ADS)
Glaser-Garbrick, Michael R.
Lunar IceCube is a 6U satellite that will orbit the moon to measure water volatiles as a function of position, altitude, and time, and measure in its various phases. Lunar IceCube, is a collaboration between Morehead State University, Vermont Technical University, Busek, and NASA. The Software Requirements Specification will serve as contract between the overall team and the developers of the flight software. It will provide a system's overview of the software that will be developed for Lunar IceCube, in that it will detail all of the interconnects and protocols for each subsystem's that Lunar IceCube will utilize. The flight software will be written in SPARK to the fullest extent, due to SPARK's unique ability to make software free of any errors. The LIC flight software does make use of a general purpose, reusable application framework called CubedOS. This framework imposes some structuring requirements on the architecture and design of the flight software, but it does not impose any high level requirements. It will also detail the tools that we will be using for Lunar IceCube, such as why we will be utilizing VxWorks.
NASA Technical Reports Server (NTRS)
Sims, William H.
2015-01-01
This paper will discuss a proposed CubeSat size (3 Units / 6 Units) telemetry system concept being developed at Marshall Space Flight Center (MSFC) in cooperation with Auburn University. The telemetry system incorporates efficient, high-bandwidth communications by developing flight-ready, low-cost, PROTOFLIGHT software defined radio (SDR) payload for use on CubeSats. The current telemetry system is slightly larger in dimension of footprint than required to fit within a 0.75 Unit CubeSat volume. Extensible and modular communications for CubeSat technologies will provide high data rates for science experiments performed by two CubeSats flying in formation in Low Earth Orbit. The project is a collaboration between the University of Alabama in Huntsville and Auburn University to study high energy phenomena in the upper atmosphere. Higher bandwidth capacity will enable high-volume, low error-rate data transfer to and from the CubeSats, while also providing additional bandwidth and error correction margin to accommodate more complex encryption algorithms and higher user volume.
Determining Pu-239 content by resonance transmission analysis using a filtered reactor beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klann, R. T.
A novel technique has been developed at Argonne National Laboratory to determine the {sup 239}Pu content in EBR-II blanket elements using resonance transmission analysis (RTA) with a filtered reactor beam. The technique uses cadmium and gadolinium filters along with a {sup 239}Pu fission chamber to isolate the 0.3 eV resonance in {sup 239}Pu. In the energy range from 0.1 to 0.5 eV, the total microscopic cross-section of {sup 239}Pu is significantly larger than the cross-sections of {sup 238}U and {sup 235}U. This large difference in cross-section allows small amounts of {sup 239}Pu to be detected in uranium samples. Tests usingmore » a direct beam from a 250 kW TRIGA reactor have been performed with stacks of depleted uranium and {sup 239}Pu foils. Preliminary measurement results are in good agreement with the predicted results up to about two weight percent of {sup 239}Pu in the sample. In addition, measured {sup 239}Pu masses were in agreement with actual sample masses with uncertainties less than 3.8 percent.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iranzo, E.; Salvador, S.; Iranzo, C.E.
1987-04-01
On 17 January 1966, an accident during a refueling operation resulted in the destruction of an air force KC-135 tanker and a B-52 bomber carrying four thermonuclear weapons. Two weapons, whose parachutes opened, were found intact. The others experienced non-nuclear explosion with some burning and release of the fissile fuel at impact. Joint efforts by the United States and Spain resulted in remedial action and a long-term program to monitor the effectiveness of the cleanup. Air concentrations of /sup 239/Pu and /sup 240/Pu have been continuously monitored since the accident. The average annual air concentration for each location was usedmore » to estimate committed dose equivalents for individuals living and working around the air sampling stations. The average annual /sup 239/Pu and /sup 240/Pu air concentrations during the 15-y period corresponding to 1966-1980 and the potential committed dose equivalents for various tissues due to the inhalation of the /sup 239/Pu and /sup 240/Pu average annual air concentration during this period are shown and discussed in the report.« less
PLUTONIUM UPTAKE AND BEHAVIOR IN PLANTS OF THE DESERT SOUTHWEST: A PRELIMINARY ASSESSMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, E.; Duff, M.; Ferguson, C.
2011-03-01
Eight species of desert vegetation and associated soils were collected from the Nevada National Security Site (N2S2) and analyzed for 238Pu and 239+240Pu concentrations. Amongst the plant species sampled were: atmospheric elemental accumulators (moss and lichen), the very slow growing, long-lived creosote bush and the rapidly growing, short-lived cheatgrass brome. The diversity of growth strategies provided insight into the geochemical behavior and bio-availability of Pu at the N2S2. The highest concentrations of Pu were measured in the onion moss (24.27 Bq kg-1 238Pu and 52.78 Bq kg-1 239+240Pu) followed by the rimmed navel lichen (8.18 Bq kg-1 and 18.4 Bqmore » kg-1 respectively), pointing to the importance of eolian transport of Pu. Brome and desert globemallow accumulated between 3 and 9 times higher concentrations of Pu than creosote and sage brush species. These results support the importance of species specific elemental accumulation strategies rather than exposure duration as the dominant variable influencing Pu concentrations in these plants. Total vegetation elemental concentrations of Ce, Fe, Al, Sm and others were also analyzed. Strong correlations were observed between Fe and Pu. This supports the conclusion that Pu was accumulated as a consequence of the active accumulation of Fe and other plant required nutrients. Cerium and Pu are considered to be chemical analogs. Strong correlations observed in plants support the conclusion that these elements displayed similar geochemical behavior in the environment as it related to the biochemical uptake process of vegetation. Soils were also sampled in association with vegetation samples. This allowed for the calculation of a concentration ratio (CR). The CR values for Pu in plants were highly influenced by the heterogeneity of Pu distribution among sites. Results from the naturally occurring elements of concern were more evenly distributed between sample sites. This allowed for the development of a pattern of plant species that accumulated Ce, Sm, Fe and Al. The highest accumulators of these elements were onion moss, lichen flowed by brome. The lowest accumulators were creosote bush and fourwing saltbush. This ranked order corresponds to plant accumulations of Pu.« less
Chelation of /sup 238/Pu(IV) in vivo by 3,4,3-LICAM(C): Effects of ligand methylation and pH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, P.W.; White, D.L.; Jeung, N.L.
1989-06-01
The linear tetracarboxycatecholate ligand, 3,4,3-LICAM(C) N1,N5,N10,N14-tetrakis(2,3-dihydroxy-4-carboxybenzoyl-tetraaza tet radecane, tetra sodium salt) injected within 1 h after injection of Pu(IV) citrate, removes about the same fraction of Pu from animals as CaNa3-DTPA but removes less inhaled Pu than CaNa3-DTPA and leaves a Pu residue in the renal cortex. However, the formation constant of the expected Pu-3,4,3-LICAM(C) complexes are orders of magnitude greater than that of Pu-DTPA, and 3,4,3-LICAM(C) is 100 times more efficient than CaNa3-DTPA for removing Pu from transferrin in vitro. Because the formation constants of their actinide complexes are central to in vivo actinide chelation, ligand design strategies aremore » dominated by the search for ligands with large Pu complex stabilities, and it was necessary to explain the failure of 3,4,3-LICAM(C) to achieve its thermodynamic potential in vivo. All the batches of 3,4,3-LICAM(C) prepared at Berkeley or in France (Euro-LICAM(C)) were found by high-pressure liquid chromatography to be mixtures of the pure ligand (55% in Berkeley preparations, 8.5% in Euro-LICAM(C)) and its four methylesters. A revised synthesis for 3,4,3-LICAM(C) is appended to this report. All of the incompletely hydrolyzed 3,4,3-LICAM(C) preparations and the pure ligand were tested for removal of Pu from mice (238Pu(IV) citrate intravenous, 30 mumol kg-1 of ligand at 1 h, kill at 24 h, radioanalyze tissues and separated excretal). The presence of methylesters did not significantly impair the ability of the ligands to remove Pu from mice, and it did not alter the fraction of injected Pu deposited in kidneys. Temporary elevation (reduction) of plasma and urine pH of mice by 0.5 mL of 0.1 M NaHCO3 (NH4Cl) injected before or simultaneously with pure 3,4,3-LICAM(C) somewhat improved (significantly reduced) Pu excretion but had little influence on Pu deposition in kidneys.« less
Drag De-Orbit Device: A New Standard Re-Entry Actuator for CubeSats
NASA Technical Reports Server (NTRS)
Guglielmo, David; Omar, Sanny; Bevilacqua, Riccardo
2017-01-01
With the advent of CubeSats, research in Low Earth Orbit (LEO) becomes possible for universities and small research groups. Only a handful of launch sites can be used, due to geographical and political restrictions. As a result, common orbits in LEO are becoming crowded due to the additional launches made possible by low-cost access to space. CubeSat design principles require a maximum of a 25-year orbital lifetime in an effort to reduce the total number of spacecraft in orbit at any time. Additionally, since debris may survive re-entry, it is ideal to de-orbit spacecraft over unpopulated areas to prevent casualties. The Drag Deorbit Device (D3) is a self-contained targeted re-entry subsystem intended for CubeSats. By varying the cross-wind area, the atmospheric drag can be varied in such a way as to produce desired maneuvers. The D3 is intended to be used to remove spacecraft from orbit to reach a desired target interface point. Additionally, attitude stabilization is performed by the D3 prior to deployment and can replace a traditional ADACS on many missions.This paper presents the hardware used in the D3 and operation details. Four stepper-driven, repeatedly retractable booms are used to modify the cross-wind area of the D3 and attached spacecraft. Five magnetorquers (solenoids) over three axes are used to damp rotational velocity. This system is expected to be used to improve mission flexibility and allow additional launches by reducing the orbital lifetime of spacecraft.The D3 can be used to effect a re-entry to any target interface point, with the orbital inclination limiting the maximum latitude. In the chance that the main spacecraft fails, a timer will automatically deploy the booms fully, ensuring the spacecraft will at the minimum reenter the atmosphere in the minimum possible time, although not necessarily at the desired target interface point. Although this does not reduce the risk of casualties, the 25-year lifetime limit is still respected, allowing a reduction of the risk associated with a hardware failure.
Lin, Jianfeng; Dang, Haijun; Xie, Jinchuan; Zhou, Guoqing; Li, Mei; Zhang, Jihong
2015-09-01
Traditional sorption experiments commonly treat the colloidal species of low-solubility contaminants as immobile species when separated by centrifugation or ultrafiltration. This study shows that, from a viewpoint of a three-phase system, the mobile Pu species, especially the colloidal species, play an important role in Pu partitioning in water-granite and water-α-FeOOH systems. A new distribution coefficient term Ks/(d+c) was defined to take the mobile colloidal species into consideration, and it differs to the traditional distribution coefficient Ks/d by orders of magnitude in the water-granite and water-α-FeOOH systems. This term, Ks/(d+c), can quantitatively describe Pu partitioning in the suspension, in particular the fraction of mobile species that dominate Pu migration in the environment. The effects of ionic strength (I) and pH on the Pu partitioning in water-granite and water-α-FeOOH systems are well interpreted with respect to the zeta potential change of granite grains, α-FeOOH colloid particles and polymeric Pu. It is concluded that the presence of the α-FeOOH colloid with a low concentration (<10 mg L(-1)) is favorable for the stability of colloidal Pu and leads to large proportion of mobile Pu, especially colloid-associated Pu, which will migrate much faster than dissolved Pu in groundwater.
A fast semi-quantitative method for Plutonium determination in an alpine firn/ice core
NASA Astrophysics Data System (ADS)
Gabrieli, J.; Cozzi, G.; Vallelonga, P.; Schwikowski, M.; Sigl, M.; Boutron, C.; Barbante, C.
2009-04-01
Plutonium is present in the environment as a consequence of atmospheric nuclear tests carried out in the 1960s, nuclear weapons production and releases by the nuclear industry over the past 50 years. Plutonium, unlike uranium, is essentially anthropogenic and it was first produced and isolated in 1940 by deuteron bombardment of uranium in the cyclotron of Berkeley University. It exists in five main isotopes, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, derived from civilian and military sources (weapons production and detonation, nuclear reactors, nuclear accidents). In the environment, 239Pu is the most abundant isotope. Approximately 6 tons of 239Pu have been released into the environment as a result of 541 atmospheric weapon tests Nuclear Pu fallout has been studied in various environmental archives, such as sediments, soil and herbarium grass. Mid-latitude ice cores have been studied as well, on Mont Blanc, the Western Alps and on Belukha Glacier, Siberian Altai. We present a Pu record obtained by analyzing 52 discrete samples of an alpine firn/ice core from Colle Gnifetti (M. Rosa, 4450 m a.s.l.), dating from 1945 to 1991. The239Pu signal was recorded directly, without preliminary cleaning or preconcentration steps, using an ICP-SFMS (Thermo Element2) equipped with a desolvation system (APEX). 238UH+ interferences were negligible for U concentrations lower than 50 ppt as verified both in spiked fresh snow and pre-1940 ice samples. The shape of 239Pu profile reflects the three main periods of atmospheric nuclear weapons testing: the earliest peak starts in 1954/55 to 1958 and includes the first testing period which reached a maximum in 1958. Despite a temporary halt in testing in 1959/60, the Pu concentration decreased only by half with respect to the 1958 peak. In 1961/62 Pu concentrations rapidly increased reaching a maximum in 1963, which was about 40% more intense than the 1958 peak. After the sign of the "Limited Test Ban Treaty" between USA and URSS in 1964, Pu deposition decreased very sharply reaching a minimum in 1967. The third period (1967-1975) is characterized by irregular Pu profiles with smaller peaks (about 20-30% compared to the 1964 peak) which could be due to French and Chinese tests. Comparison with the Pu profiles obtained from the Col du Dome and Belukha ice cores by AMS (Accelerator Mass Spectrometry) shows very good agreement. Considering the semi-quantitative method and the analytical uncertainty, the results are also quantitatively comparable. However, the Pu concentrations at Colle Gnifetti are normally 2-3 times greater than in Col du Dome. This could be explained by different air mass transport or, more likely, different accumulation rates at each site.
NASA Technical Reports Server (NTRS)
Higginbotham, Scott
2016-01-01
The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results.
Power generation and solar panels for an MSU CubeSat
NASA Astrophysics Data System (ADS)
Sassi, Soundouss
This thesis is a power generation study of a proposed CubeSat at Mississippi State University (MSU). CubeSats are miniaturized satellites of 10 x 10 x 10 cm in dimension. Their power source once in orbit is the sun during daylight and the batteries during eclipse. MSU CubeSat is equipped with solar panels. This effort will discuss two types of cells: Gallium Arsenide and Silicon; and which one will suit MSU CubeSat best. Once the cell type is chosen, another decision regarding the electrical power subsystem will be made. Solar array design can only be done once the choice of the electrical power subsystem and the solar cells is made. Then the power calculation for different mission durations will start along with the sizing of the solar arrays. In the last part the batteries are introduced and discussed in order to choose one type of batteries for MSU CubeSat.
Teaching group theory using Rubik's cubes
NASA Astrophysics Data System (ADS)
Cornock, Claire
2015-10-01
Being situated within a course at the applied end of the spectrum of maths degrees, the pure mathematics modules at Sheffield Hallam University have an applied spin. Pure topics are taught through consideration of practical examples such as knots, cryptography and automata. Rubik's cubes are used to teach group theory within a final year pure elective based on physical examples. Abstract concepts, such as subgroups, homomorphisms and equivalence relations are explored with the cubes first. In addition to this, conclusions about the cubes can be made through the consideration of algebraic approaches through a process of discovery. The teaching, learning and assessment methods are explored in this paper, along with the challenges and limitations of the methods. The physical use of Rubik's cubes within the classroom and examination will be presented, along with the use of peer support groups in this process. The students generally respond positively to the teaching methods and the use of the cubes.
NASA Astrophysics Data System (ADS)
Graves, S. J.; Keiser, K.; Law, E.; Yang, C. P.; Djorgovski, S. G.
2016-12-01
ECITE (EarthCube Integration and Testing Environment) is providing both cloud-based computational testing resources and an Assessment Framework for Technology Interoperability and Integration. NSF's EarthCube program is funding the development of cyberinfrastructure building block components as technologies to address Earth science research problems. These EarthCube building blocks need to support integration and interoperability objectives to work towards a coherent cyberinfrastructure architecture for the program. ECITE is being developed to provide capabilities to test and assess the interoperability and integration across funded EarthCube technology projects. EarthCube defined criteria for interoperability and integration are applied to use cases coordinating science problems with technology solutions. The Assessment Framework facilitates planning, execution and documentation of the technology assessments for review by the EarthCube community. This presentation will describe the components of ECITE and examine the methodology of cross walking between science and technology use cases.
EarthCube: A Community-Driven Cyberinfrastructure for the Geosciences
NASA Astrophysics Data System (ADS)
Koskela, Rebecca; Ramamurthy, Mohan; Pearlman, Jay; Lehnert, Kerstin; Ahern, Tim; Fredericks, Janet; Goring, Simon; Peckham, Scott; Powers, Lindsay; Kamalabdi, Farzad; Rubin, Ken; Yarmey, Lynn
2017-04-01
EarthCube is creating a dynamic, System of Systems (SoS) infrastructure and data tools to collect, access, analyze, share, and visualize all forms of geoscience data and resources, using advanced collaboration, technological, and computational capabilities. EarthCube, as a joint effort between the U.S. National Science Foundation Directorate for Geosciences and the Division of Advanced Cyberinfrastructure, is a quickly growing community of scientists across all geoscience domains, as well as geoinformatics researchers and data scientists. EarthCube has attracted an evolving, dynamic virtual community of more than 2,500 contributors, including earth, ocean, polar, planetary, atmospheric, geospace, computer and social scientists, educators, and data and information professionals. During 2017, EarthCube will transition to the implementation phase. The implementation will balance "innovation" and "production" to advance cross-disciplinary science goals as well as the development of future data scientists. This presentation will describe the current architecture design for the EarthCube cyberinfrastructure and implementation plan.
Miniature Radioisotope Thermoelectric Power Cubes
NASA Technical Reports Server (NTRS)
Patel, Jagdish U.; Fleurial, Jean-Pierre; Snyder, G. Jeffrey; Caillat, Thierry
2004-01-01
Cube-shaped thermoelectric devices energized by a particles from radioactive decay of Cm-244 have been proposed as long-lived sources of power. These power cubes are intended especially for incorporation into electronic circuits that must operate in dark, extremely cold locations (e.g., polar locations or deep underwater on Earth, or in deep interplanetary space). Unlike conventional radioisotope thermoelectric generators used heretofore as central power sources in some spacecraft, the proposed power cubes would be small enough (volumes would range between 0.1 and 0.2 cm3) to play the roles of batteries that are parts of, and dedicated to, individual electronic-circuit packages. Unlike electrochemical batteries, these power cubes would perform well at low temperatures. They would also last much longer: given that the half-life of Cm-244 is 18 years, a power cube could remain adequate as a power source for years, depending on the power demand in its particular application.
Actuators based on polyurethanes with different types of polyol
NASA Astrophysics Data System (ADS)
Lim, Hyun-Ok; Bark, Geong-Mi; Jo, Nam-Ju
2007-07-01
This study dealt with the electrostrictive responses of polyurethane (PU) actuators with different microphase separation structure, which was a promising candidate for a material used in polymer actuators. In order to construct PUs with different higher-order structure, we synthesized PUs with different diols; poly(neopentyl glycol adipate) (PNAD), poly(tetramethylene glycol) (PTMG), and poly(dimethyl siloxnae) (PDMS). Synthesized PU was characterized by FT-IR spectroscopy and GPC. Thermal analysis and mechanical properties of PU films were carried out with DSC and UTM, respectively. And PU actuator was formed in a monomorph type which made by carbon black electrodes on the both surfaces of PU film by spin coating method. Actuation behavior was mainly influenced on microphase separation structure and mechanical property of PU. In result, PU actuator with PNAD, polyester urethane, had the largest field-induced displacement.
Chemical thermodynamic representation of (U, Pu, Am)O 2- x
NASA Astrophysics Data System (ADS)
Osaka, Masahiko; Namekawa, Takashi; Kurosaki, Ken; Yamanaka, Shinsuke
2005-09-01
The oxygen potential isotherms of (U, Pu, Am)O 2- x were represented by a chemical thermodynamic model proposed by Lindemer et al. It was assumed in the present model that (U, Pu, Am)O 2- x consisted of the chemical species [UO 2], [PuO 2], [Pu 4/3O 2], [AmO 2] and [Am 5/4O 2] in a pseudo-quaternary system by treating the reduction rates of Pu and Am as identical; furthermore an interaction between [Am 5/4O 2] and [UO 2] was introduced. The agreement between analytical and experimental isotherms was good, but the analytical values slightly overestimated the experimental values especially in the case of lower Am content. Adding an interaction between [Am 5/4O 2] and [PuO 2] to the model resulted in a better representation.
239Pu fallout across continental Australia: Implications on 239Pu use as a soil tracer.
Lal, R; Fifield, L K; Tims, S G; Wasson, R J
2017-11-01
At present there is a need for the development of new radioisotopes for soil erosion and sediment tracing especially as fallout 137 Cs levels become depleted. Recent studies have shown that 239 Pu can be a useful new soil erosion and sediment radioisotope tracer. 239 Pu was released in the major atmospheric nuclear weapons tests of 1950's and 1960's. However 239 Pu has a half-life of 24110 years and more than 99% of this isotope is still present in the environment today. In contrast 137 Cs with a half-life of 30.07 year has decayed to <35% of initially deposited activities and this isotope will become increasingly difficult to measure in the coming decades especially in the southern hemisphere, which received only about a third of the total global fallout from the atmospheric tests (UNSCEAR, 2000). In this study an assessment of the 239 Pu fallout in Australia was carried out from comparison of measured 239 Pu inventories with expected 239 Pu inventories from fallout models. 239 Pu inventories were also compared with rainfall and measured 240 Pu/ 239 Pu ratios across Australia. 239 Pu fallout inventories ranged from 430 to 1461 μB/cm 2 . Central Australia, with fallout 107% in excess of expected values, seems to be strongly impacted by local fallout deposition. In comparison other sites typically show 5-40% variation between expected and measured fallout values. The fallout inventories were found to weakly correlate (using power functions, y = ax b ) with rainfall with r 2 = 0.50 across the southern catchments (25-40°S latitude band). Across the northern catchments (10-25°S latitude band) fallout showed greater variability with rainfall with r 2 = 0.24. Central Australia and Alice Springs which seem to be strongly impacted by local fallout are excluded from the rainfall correlation data (with these sites included r 2 = 0.08 and r 2 < 0.01 respectively). 240 Pu/ 239 Pu atom ratios range from 0.045 to 0.197, with averages of 0.139(0.017), 0.111(0.052) and 0.160(0.027) in the 10-20°S, 20-30°S and 30-40°S latitude bands respectively. The 240 Pu/ 239 Pu atom ratios in Central Australia (0.069) likely represent fallout from the Australian tests which also have low 240 Pu/ 239 Pu atom ratios i.e., Maralinga (0.113) and Montebello (0.045). The average ratios in the 20-30°S and 30-40° bands are closer to the global average (0.139 and 0.177 respectively when not including the close-in fallout data from the nuclear test sites) if the Australian test sites and Central Australian sites are neglected as they clearly represent the effects of close in fallout. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tanner, Scott D; Li, Chunsheng; Vais, Vladimir; Baranov, Vladimir I; Bandura, Dmitry R
2004-06-01
Determination of the concentration and distribution of the Pu and Am isotopes is hindered by the isobaric overlaps between the elements themselves and U, generally requiring time-consuming chemical separation of the elements. A method is described in which chemical resolution of the elemental ions is obtained through ion-molecule reactions in a reaction cell of an ICPMS instrument. The reactions of "natural" U(+), (242)Pu(+), and (243)Am(+) with ethylene, carbon dioxide, and nitric oxide are reported. Since the net sensitivities to the isotopes of an element are similar, chemical resolution is inferred when one isobaric element reacts rapidly with a given gas and the isobar (or in this instance surrogate isotope) is unreactive or slowly reactive. Chemical resolution of the m/z 238 isotopes of U and Pu can be obtained using ethylene as a reaction gas, but little improvement in the resolution of the m/z 239 isobars is obtained. However, high efficiency of reaction of U(+) and UH(+) with CO(2), and nonreaction of Pu(+), allows the sub-ppt determination of (239)Pu, (240)Pu, and (242)Pu (single ppt for (238)Pu) in the presence of 7 orders of magnitude excess U matrix without prior chemical separation. Similarly, oxidation of Pu(+) by NO, and nonreaction of Am(+), permit chemical resolution of the isobars of Pu and Am over 2-3 orders of magnitude relative concentration. The method provides the potential for analysis of the actinides with reduced sample matrix separation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fred J. Molz, III
To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flowmore » model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted to Pu uptake by corn roots and xylem transport. Plants were started in wet paper wrapped around each corn seed. When the tap roots were sufficiently long, the seedlings were transplanted to a soil container with the tap root extending out the container bottom. The soil container was then placed over a nutrient solution container, and the solution served as an additional medium for root growth. To conduct an uptake study, a radioactive substance, such as Pu complexed with the bacterial siderophore DFOB, was added to the nutrient solution. After a suitable elapsed time, the corn plant was sacrificed, cut into 10 cm lengths, and the activity distribution measured. Experimental results clarified the basic nature of Pu uptake and transport in corn plants, and resulting simulations suggested that each growing season Pu in the SRS lysimeters would move into the plant shoots and be deposited on the soil surface during the Fall dieback. Subsequent isotope ratio analyses showed that this did happen. OVERALL RESULTS AND CONCLUSIONS - (1) Pu transport downward from the source is controlled by advection, dispersion and adsorption, along with surface-mediated REDOX reactions. (2) Hysteresis, extreme root distribution functions, air-content dependent oxidation rate constants, and large evaporation rates from the soil surface were not able to explain the observed upward migration of Pu. (3) Small amounts of Pu uptake by plant roots and translocation in the transpiration stream creates a realistic mechanism for upward Pu migration (4) Realistic xylem cross-sectional areas imply high flow velocities under hot, wet conditions. Such flow velocities produce the correct shape for the observed activity distributions in the top 20 cm of the lysimeter soil. (5) Simulations imply that Pu should have moved into the above-ground grass tissue each year during the duration of the experiments, resulting in an activity residual accumulating on the soil surface. An isotope ratio analysis showed that the observed surface Pu residue was from the buried sources, not atmospheric fallout. (6) The plant experiments indicate a Pu-DFOB velocity in the corn xylem of at least 174 cm/hr, much higher than ionic Pu in soil. Thus, Pu complexation with chelating agents is probably what led to the observed enhanced uptake and mobility in grasses. (7) Plant experiments show that the uptake of Fe-DFOB, Pu-DFOB and the resulting distributions are very similar. This supports the hypothesis that plant and bacterial iron-seeking chemistry mistakes Pu for Fe.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, S.F.; Spall, W.D.; Abernathey, R.M.
1976-11-01
Relationships are provided to compute the decreasing plutonium content and changing isotopic distribution of plutonium materials for the radioactive decay of /sup 238/Pu, /sup 239/Pu, /sup 240/Pu and /sup 242/Pu to long-lived uranium daughters and of /sup 241/Pu to /sup 241/Am. This computation is important to the use of plutonium reference materials to calibrate destructive and nondestructive methods for assay and isotopic measurements, as well as to accountability inventory calculations.
AGILE confirmation of gamma-ray activity from the IceCube-170922A error region
NASA Astrophysics Data System (ADS)
Lucarelli, F.; Piano, G.; Pittori, C.; Verrecchia, F.; Tavani, M.; Bulgarelli, A.; Munar-Adrover, P.; Minervini, G.; Ursi, A.; Vercellone, S.; Donnarumma, I.; Fioretti, V.; Zoli, A.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.
2017-09-01
Following the IceCube observation of a high-energy neutrino candidate event, IceCube-170922A, at T0 = 17/09/22 20:54:30.43 UT (https://gcn.gsfc.nasa.gov/gcn3/21916.gcn3), and the detection of increased gamma-ray activity from a previously known Fermi-LAT gamma-ray source (3FGL J0509.4+0541) in the IceCube-170922A error region (ATel #10791), we have analysed the AGILE-GRID data acquired in the days before and after the neutrino event T0, searching for significant gamma-ray excess above 100 MeV from a position compatible with the IceCube and Fermi-LAT error regions.
Expanding Access: An Evaluation of ReadCube Access as an ILL Alternative.
Grabowsky, Adelia
2016-01-01
ReadCube Access is a patron-driven, document delivery system that provides immediate access to articles from journals owned by Nature Publishing Group. The purpose of this study was to evaluate the use of ReadCube Access as an interlibrary loan (ILL) alternative for nonsubscribed Nature journals at Auburn University, a research university with a School of Pharmacy and a School of Veterinary Medicine. An analysis of ten months' usage and costs are presented along with the results of a user satisfaction survey. Auburn University Libraries found ReadCube to be an acceptable alternative to ILL for unsubscribed Nature journals and at current levels of use and cost, consider ReadCube to be financially sustainable.
Constraining sterile neutrinos with AMANDA and IceCube atmospheric neutrino data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esmaili, Arman; Peres, O.L.G.; Halzen, Francis, E-mail: aesmaili@ifi.unicamp.br, E-mail: halzen@icecube.wisc.edu, E-mail: orlando@ifi.unicamp.br
2012-11-01
We demonstrate that atmospheric neutrino data accumulated with the AMANDA and the partially deployed IceCube experiments constrain the allowed parameter space for a hypothesized fourth sterile neutrino beyond the reach of a combined analysis of all other experiments, for Δm{sup 2}{sub 41}∼<1 eV{sup 2}. Although the IceCube data wins the statistics in the analysis, the advantage of a combined analysis of AMANDA and IceCube data is the partial remedy of yet unknown instrumental systematic uncertainties. We also illustrate the sensitivity of the completed IceCube detector, that is now taking data, to the parameter space of 3+1 model.
NASA Technical Reports Server (NTRS)
Slettebo, Christian; Jonsson, Lars Jonas
2016-01-01
This presentation introduces and discusses the development of the CubeSub submersible concept, an Autonomous Underwater Vehicle (AUV) designed around the CubeSat satellite form factor. The presented work is part of the author's MSc thesis in Aerospace Engineering at the Royal Institute of Technology, Stockholm, Sweden, and was performed during an internship at the Mission Design Division of the NASA Ames Research Center, Moffett Field, CA. Still in the early stages of its development, the CubeSub is to become a submersible test-bed for technology qualified for underwater and space environments. With the long-term goal of exploring the underwater environments in outer space, such as the alleged subsurface ocean of Jupiter's moon Europa, a number of technology and operational procedures must be developed and matured. To assist in this, the CubeSub platform is introduced as a tool to allow engineers and scientists to easily test qualified technology underwater. A CubeSat is a class of miniaturized satellite built to a standardized size. The base size is 1U (U for unit), corresponding to a 100 x 100 x 113.5 cu mm cube. A 1U CubeSat can in other words easily be held in one hand. Stacking units give larger satellite sizes such as the also commonly used 1.5U, 2U and 3U. The CubeSat standard is in itself already well established and hundreds of CubeSats have to date been launched into space. Compatible technology is readily available and the know-how exists in the space industry, all of which makes it a firm ground to stand on for the CubeSub. The rationale behind using the CubeSat form factor is to make use of this pre-existing foundation, making the CubeSub easy to develop, modular and readily available. It will thereby aid in the process of maturing the concept of a fully space qualified submersible headed for outer space. As a further clarification, the CubeSub is itself not meant for outer space, but to facilitate development of such a vessel. Along with its uses as a testbed, the CubeSub also holds the potential to become a useful tool for exploration and experimentation here on Earth. A highly standardized system utilizing well-known hardware can reduce the cost and required work load for researchers wishing to perform experiments and exploration. Users could design sensors and experiments to comply with the already well established CubeSat standard, which are then carried by the CubeSub to the region of interest. This in turn means that the end users can focus more on formulating the experiment itself and less about how to get it where they want it. The CubeSub is designed to be built up by modules, which can be assembled in different configurations to fulfill different needs. Each module will be powered individually and intermodular communication will be wireless, removing the need for wiring. The inside of the cylindrical hull will be flooded with ambient water to enhance the interaction between payloads and surrounding environment. The overall torpedo-like shape is similar to that of a conventional AUV, slender and smooth. This is to make for a low drag, reduce the risk of snagging on surrounding objects and make it possible to deploy through an ice sheet via a narrow borehole or navigate in tight areas. To keep costs low and further accelerate development, rapid prototyping is utilized wherever possible. Full-scale prototypes are being constructed through 3D-printing and using COTS (Commercial Off-The-Shelf) components. 3D-printing is used both for the largest hull components and the relatively small and delicate propellers. Arduino boards are used for control and internal communication
Supercritical Fluid Extraction and Separation of Uranium from Other Actinides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donna L. Quach; Bruce J. Mincher; Chien M. Wai
2014-06-01
This paper investigates the feasibility of separating uranium from other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of an extraction and counter current stripping technique, which would be a more efficient and environmentally benign technology for used nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U(VI), Np(VI), Pu(IV), and Am(III)) were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, the separation of uraniummore » from plutonium in sc-CO2 modified with TBP was successful at nitric acid concentrations of less than 3 M in the presence of acetohydroxamic acid or oxalic acid, and the separation of uranium from neptunium was successful at nitric acid concentrations of less than 1 M in the presence of acetohydroxamic acid, oxalic acid, or sodium nitrite.« less
[Progress in research for pharmacological effects of Pu-erh tea].
Gu, Xiao-Pan; Pan, Bo; Wu, Zhen; Zhao, Yun-Fang; Tu, Peng-Fei; Zheng, Jiao
2017-06-01
Pu-erh tea has gradually aroused general concern with social development and people's enhanced awareness of health. Pu-erh tea is rich in multiple active constitute such as flavonoids, catechins, phenolic acids, flavanols polymer, purine alkaloids, and hydrolysable tannin as a microbial-fermented tea.It is reported that Pu-erh tea have a variety of pharmacologically activities, such as anti-hyperlipidemic, anti-diabetic, anti-oxidative, anti-tumor, anti-bacterial, anti-inflammatory, and anti-viral effects. In this paper, the main pharmacological effects of Pu-erh tea are reviewed. We wish this work will provide some references and clues for further research of Pu-erh tea. Copyright© by the Chinese Pharmaceutical Association.
NPS CubeSat Launcher Design, Process and Requirements
2009-06-01
Soviet era ICBM. The first Dnepr launch in July 2006 consisted of fourteen CubeSats in five P-PODs, while the second in April 2007 consisted of...Regulations (ITAR). ITAR restricts the export of defense-related products and technology on the United States Munitions List. Although one might not...think that CubeSat technology would fall under ITAR, in fact a large amount of Aerospace technology , including some that could be used on CubeSats is
The design and performance of IceCube DeepCore
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.
2012-05-01
The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.
The Design and Performance of IceCube DeepCore
NASA Technical Reports Server (NTRS)
Stamatikos, M.
2012-01-01
The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking pbysics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.
EarthCube: A Community Organization for Geoscience Cyberinfrastructure
NASA Astrophysics Data System (ADS)
Patten, K.; Allison, M. L.
2014-12-01
The National Science Foundation's (NSF) EarthCube initiative is a community-driven approach to building cyberinfrastructure for managing, sharing, and exploring geoscience data and information to better address today's grand-challenge science questions. The EarthCube Test Enterprise Governance project is a two-year effort seeking to engage diverse geo- and cyber-science communities in applying a responsive approach to the development of a governing system for EarthCube. During Year 1, an Assembly of seven stakeholder groups representing the broad EarthCube community developed a draft Governance Framework. Finalized at the June 2014 EarthCube All Hands Meeting, this framework will be tested during the demonstration phase in Year 2, beginning October 2014. A brief overview of the framework: Community-elected members of the EarthCube Leadership Council will be responsible for managing strategic direction and identifying the scope of EarthCube. Three Standing Committees will also be established to oversee the development of technology and architecture, to coordinate among new and existing data facilities, and to represent the academic geosciences community in driving development of EarthCube cyberinfrastructure. An Engagement Team and a Liaison Team will support communication and partnerships with internal and external stakeholders, and a central Office will serve a logistical support function to the governance as a whole. Finally, ad hoc Working Groups and Special Interest Groups will take on other issues related to EarthCube's goals. The Year 2 demonstration phase will test the effectiveness of the proposed framework and allow for elements to be changed to better meet community needs. It will begin by populating committees and teams, and finalizing leadership and decision-making processes to move forward on community-selected priorities including identifying science drivers, coordinating emerging technical elements, and coming to convergence on system architecture. A January mid-year review will assemble these groups to analyze the effectiveness of the framework and make adjustments as necessary. If successful, this framework will move EarthCube forward as a collaborative platform and potentially act as a model for future NSF investments in geoscience cyberinfrastructure.
SEMIANNUAL PROGRESS REPORT ON CHEMISTRY FOR THE PERIOD, JANUARY 1961-JULY 1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1962-03-01
A procedure is presented for the determination of both Mo and Sn in a wide variety of samples with 8-quinolinol (oxine). The Mo complex is extracted with chloroform from a sulfate solution of the sample at pH 0.85 and determined spectrophotometrically at 385 m mu . The Sn complex is then similarly extracted and determined after the addition of chloride to the sample solution. A procedure is also given in which B is separated quantitatively from various B minerals by pyrohydrolysis. The distillate is passed through a cation-exchange resin column to remove interfering Sr, Ru, and other cations, after whichmore » the effluent is neutralized to pH 9.3 tc 9.4 and evaporated to dryness. The residue is suitable for the mass spectrometric determination of the B/sup 11//B/sup 10/ ratio. In other work, a single-focusing mass spectrometer of 6-in. radius, 60 deg sector magnetic analyzer was designed to analyze a wide range of sample materials that require high precision and accuracy in the low-mass range but which offers considerable flexibility to evaluate highmass materials for comparison purposes. A gas, solid, or liquid type of analysis may be performed. A change-over can be raade from one type of analysis to another with minimum loss of instrument tirae and requiring minimum technical knowledge. Single peak measurement, or ratio measurement may be made from M/e 6/7 to M/e 238/235, with the use of vibrating reed electrometers or an electron multiplier for measuring the ion beams. The stability of plutonium sulfate tetrshydrate and anhydrous plutonium sulfate was evaluated. Recent tests disclose no signlficant change in the Pu content of the tetrahydrate or the anhydrous salt for periods of at least 18 and 6 months, respectively. Both thermogravimetry and chemical analysis showed the formula of anhydrous plutonium sulfate to be Pu(SO/sub 4/)/sub 2.000/ / sub plus or minus / /sub 0.002/. Preparation of dicesium plutoniu m hexachloride is reported along with evaluation of its suitability as a primary standard for Pu. The composition of the material was determined by analysis and fits the formula susceptible to changes in relative humidities greater than 17%, and showed a small but significant weight loss during a six-month testing period. A procedure is described for Si separation from Pu using a cation-exchange procedure prior to spectrographic determination. Plutonium(III) in 0.2N nitric acid is adsorbed on Dowex-50 cation resin while Si, as silicate anion or colloid, passes unadsorbed into the effluent. The effluent is evaporated to dryness and the residue is dissolved in dilute nitric acid containing hydrofluoric acid. Aliquots of the solution are dried on graphite electrodes and excited in a d-c arc. Typical results on synthetic solutions give an estimated over-all average deviation of plus or minus 25% and sensitivities from 1 to 5 ppm Si. This method offers an alternate procedure to the carrier distillation technique which employs large amounts of PuO/sub 2/ as matrix for the determination of Si in Pu. The development of a sensitive method for the spectrographic determination of trace impurities in Pu is continuing. The method was modified for use with plutonium sulfate samples, and enlarged to include the determination of B, Cd, and some alkali elements, and also for the estimation of Am. Pu breakthrough during the ion-exchange separation of Pu from its impurities was found to be < 0.001%. Methods were investigated for preparing high-purity reagents and reducing reference blank values in order to obtain greater sensitivity. At present seventeen elements may be determined in the 1st and 2nd optical orders using only 200 mg. of sample. (auth)« less
NASA Astrophysics Data System (ADS)
Zhang, Xiaotan; Liu, Dongyan; Ma, Yuling; Nie, Jing; Sui, Guoxin
2017-11-01
The graphene/polyurethane (GN@PU) sponge was prepared via simple dip-coating PU sponges in graphene aqueous suspension containing cellulose nanowhiskers (CNWs), where CNWs played a vital role to facilitate the uniform graphene sheets coated on the skeletons of polyurethane sponge (PU). The super-hydrophobic GN@PU sponge was obtained by optimizing the ratio of GN and CNWs to choose the final coating suspensions of GN/CNWs mixture or pure graphene. The GN@PU sponge showed densely packed graphene sheets, contributing super-hydrophobicity to the sponge with water contact angle of 152° and a large lubricating oil absorption value of 31 g g-1. The elasticity, mechanical durability, thermal and chemical stability were all found to be improved after coating with the thin GN layers. Moreover, the GN@PU sponges possess outstanding recyclability and stability since no decline in absorption efficiency was observed after more than 100 cycles.
Effects of Pu-erh ripened tea on hyperuricemic mice studied by serum metabolomics.
Zhao, Ran; Chen, Dong; Wu, Hualing
2017-11-15
To evaluate effects of Pu-erh ripened tea in hyperuricemic mice, a mouse hyperuricemia model was developed by oral administration of potassium oxonate for 7 d. Serum metabolomics, based on gas chromatography-mass spectrometry, was used to generate metabolic profiles from normal control, hyperuricemic and allopurinol-treated hyperuricemic mice, as well as hyperuricemic mice given Pu-erh ripened tea at three doses. Pu-erh ripened tea significantly lowered serum uric acid levels. Twelve potential biomarkers associated with hyperuricemia were identified. Pu-erh ripened tea and allopurinol differed in their metabolic effects in the hyperuricemic mice. Levels of glutamic acid, indolelactate, L-allothreonine, nicotinoylglycine, isoleucine, l-cysteine and glycocyamine, all involved in amino acid metabolism, were significantly changed in hyperuricemic mice treated Pu-erh ripened tea. Thus, modulating amino acid metabolism might be the primary mechanism of anti-hyperuricemia by Pu-erh ripened tea. Copyright © 2017 Elsevier B.V. All rights reserved.
Park, Jong-Seok; Lim, Youn-Mook; Nho, Young-Chang
2015-01-01
The recycling of waste polyurethane (PU) using radiation-induced grafting was investigated. The grafting of waste PU onto a high-density polyethylene (HDPE) matrix was carried out using a radiation technique with maleic anhydride (MAH). HDPE pellets and PU powders were immersed in a MAH-acetone solution. Finally, the prepared mixtures were irradiated with an electron beam accelerator. The grafted composites were characterized by Fourier transformed infrared spectroscopy (FT-IR), surface morphology, and mechanical properties. To make a good composite, the improvement in compatibility between HDPE and PU is an important factor. Radiation-induced grafting increased interfacial adhesion between the PU domain and the HDPE matrix. When the absorbed dose was 75 kGy, the surface morphology of the irradiated PU/HDPE composite was nearly a smooth and single phase, and the elongation at break increased by approximately three times compared with that of non-irradiated PU/HDPE composite. PMID:28787813
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, P. L.; Decman, D.; Prasad, M.
An SNM attribute Information Barrier (IB) system was developed for a 2011 US/UK Exercise. The system was modified and extensively tested in a 2013-2014 US-UK Measurement Campaign. This work demonstrated rapid deployment of an IB system for potential treaty use. The system utilizes an Ortec Fission Meter neutron multiplicity counter and custom computer code. The system demonstrates a proof-of-principle automated Pu-240 mass determination with an information barrier. After a software start command is issued, the system automatically acquires and downloads data, performs an analysis, and displays the results. This system conveys the results of a Pu mass threshold measurements inmore » a way the does not reveal sensitive information. In full IB mode, only the pass/fail result is displayed as a “Mass <= Threshold Amount” or “Mass >= Threshold Amount” as shown in Figure 4. This can easily be adapted to a red/green “lights” display similar to the Detective IB system for Pu isotopics as shown in Figure 6. In test mode, more detailed information is displayed. The code can also read in, analyze, and display results from previously acquired or simulated data. Because the equipment is commercial-off-the-shelf (COTS), the system demonstrates a low-cost short-lead-time technology for treaty SNM attribute measurements. A deployed system will likely require integration of additional authentication and tamper-indicating technologies. This will be discussed for the project in this and future progress reports.« less
Transcription factor PU.1 is expressed in white adipose and inhibits adipocyte differentiation
USDA-ARS?s Scientific Manuscript database
PU.1 transcription factor is a critical regulator of hematopoiesis and leukemogenesis. Because PU.1 interacts with transcription factors GATA-2 and C/EBPa, both of which are involved in the regulation of adipogenesis, we investigated whether PU.1 also plays a role in the regulation of adipocyte diff...
NASA Astrophysics Data System (ADS)
Huzaizi, Rahmatina Mohd; Tahir, Syuhada Mohd; Mahbor, Kamisah Mohamad
2017-12-01
Waste cooking oil-based polyol was synthesized using epoxidation and hydroxylation methods. The polyol was combined with 4,4-diphenylmethane diisocyanate to produce polyurethane (PU) to be used as polymer host in solid polymer electrolyte. 30 wt% LiClO4 was added as doping salt and two types of plasticizers were used; ethylene carbonate (PU-EC) and polyethylene glycol (PU-PEG). The SPE films were characterized using Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The highest conductivity achieved was 8.4 x 10-8 S cm-1 upon addition of 10 wt% EC. The XRD results showed a decrease of crystalline peaks in PU-EC and the increase in PU-PEG. DSC results revealed that the films; PU, PU-EC and PU-PEG had glass transition temperatures of 159.7, 106.0 and 179.7 °C, respectively. The results showed that the addition of EC increased the amorphous region and the free volume in the SPE structure, thus resulted in higher ionic conductivity.
Effect of fulvic acid surface coatings on plutonium sorption and desorption kinetics on goethite
Tinnacher, Ruth M.; Begg, James D.; Mason, Harris; ...
2015-01-21
The rates and extent of plutonium (Pu) sorption and desorption onto mineral surfaces are important parameters for predicting Pu mobility in subsurface environments. The presence of natural organic matter, such as fulvic acid (FA), may influence these parameters. We investigated the effects of FA on Pu(IV) sorption/desorption onto goethite in two scenarios: when FA was (1) initially present in solution or (2) found as organic coatings on the mineral surface. A low pH was used to maximize FA coatings on goethite. Experiments were combined with kinetic modeling and speciation calculations to interpret variations in Pu sorption rates in the presencemore » of FA. Our results indicate that FA can change the rates and extent of Pu sorption onto goethite at pH 4. Differences in the kinetics of Pu sorption were observed as a function of the concentration and initial form of FA. The fraction of desorbed Pu decreased in the presence of FA, indicating that organic matter can stabilize sorbed Pu on goethite. These results suggest that ternary Pu–FA–mineral complexes could enhance colloid-facilitated Pu transport. In conclusion, more representative natural conditions need to be investigated to quantify the relevance of these findings.« less
Plutonium isotopes and 241Am in the atmosphere of Lithuania: A comparison of different source terms
NASA Astrophysics Data System (ADS)
Lujanienė, G.; Valiulis, D.; Byčenkienė, S.; Šakalys, J.; Povinec, P. P.
2012-12-01
137Cs, 241Am and Pu isotopes collected in aerosol samples during 1994-2011 were analyzed with special emphasis on better understanding of Pu and Am behavior in the atmosphere. The results from long-term measurements of 240Pu/239Pu atom ratios showed a bimodal frequency distribution with median values of 0.195 and 0.253, indicating two main sources contributing to the Pu activities at the Vilnius sampling station. The low Pu atom ratio of 0.141 could be attributed to the weapon-grade plutonium derived from the nuclear weapon test sites. The frequency of air masses arriving from the North-West and North-East correlated with the Pu atom ratio indicating the input from the sources located in these regions (the Novaya Zemlya test site, Siberian nuclear plants), while no correlation with the Chernobyl region was observed. Measurements carried out during the Fukushima accident showed a negligible impact of this source with Pu activities by four orders of magnitude lower as compared to the Chernobyl accident. The activity concentration of actinides measured in the integrated sample collected in March-April, 2011 showed a small contribution of Pu with unusual activity and atom ratios indicating the presence of the spent fuel of different origin than that of the Chernobyl accident.
Ge, Jun Cong; Choi, Nag Jung
2017-01-01
Volatile organic compounds (VOCs) are a source of air pollution and are harmful to both human health and the environment. In this study, we fabricated polyurethane/rare earth (PU/RE) composite nanofibrous membranes via electrospinning with the aim of removing VOCs from air. The morphological structure of PU/RE nanofibrous mats was investigated using field emission scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) experimental analyses. A certain amount of RE (up to 50 wt. % compared to PU pellets) nanoparticles (NPs) could be loaded on/into PU fibers. The tensile strength of PU/RE nanofibrous membranes decreased slightly with the increasing RE powder content. The PU nanofiber containing 50 wt. % RE powder had the smallest fiber diameter of 356 nm; it also showed the highest VOC absorption capacity compared with other composite membranes, having an absorption capacity about three times greater than pure PU nanofibers. In addition, all of the PU/RE nanofibrous membranes readily absorbed styrene the most, followed by xylene, toluene, benzene and chloroform. Therefore, the PU/RE nanofibrous membrane can play an important role in removing VOCs from the air, and its development prospects are impressive because they are emerging materials. PMID:28336894
NASA Astrophysics Data System (ADS)
Zoriy, Miroslav V.; Ostapczuk, Peter; Halicz, Ludwik; Hille, Ralf; Becker, J. Sabine
2005-04-01
A sensitive analytical method for determining the artificial radionuclides 90Sr, 239Pu and 240Pu at the ultratrace level in groundwater samples from the Semipalatinsk Test Site area in Kazakhstan by double-focusing sector field inductively coupled plasma mass spectrometry (ICP-SFMS) was developed. In order to avoid possible isobaric interferences at m/z 90 for 90Sr determination (e.g. 90Zr+, 40Ar50Cr+, 36Ar54Fe+, 58Ni16O2+, 180Hf2+, etc.), the measurements were performed at medium mass resolution under cold plasma conditions. Pu was separated from uranium by means of extraction chromatography using Eichrom TEVA resin with a recovery of 83%. The limits of detection for 90Sr, 239Pu and 240Pu in water samples were determined as 11, 0.12 and 0.1 fg ml-1, respectively. Concentrations of 90Sr and 239Pu in contaminated groundwater samples ranged from 18 to 32 and from 28 to 856 fg ml-1, respectively. The 240Pu/239Pu isotopic ratio in groundwater samples was measured as 0.17. This isotope ratio indicates that the most probable source of contamination of the investigated groundwater samples was the nuclear weapons tests at the Semipalatinsk Test Site conducted by the USSR in the 1960s.
Maleknia, Laleh; Dilamian, Mandana; Pilehrood, Mohammad Kazemi; Sadeghi-Aliabadi, Hojjat; Hekmati, Amir Houshang
2018-06-01
In this paper, polyurethane (PU), chitosan (Cs)/polyethylene oxide (PEO), and core-shell PU/Cs nanofibers were produced at the optimal processing conditions using electrospinning technique. Several methods including SEM, TEM, FTIR, XRD, DSC, TGA and image analysis were utilized to characterize these nanofibrous structures. SEM images exhibited that the core-shell PU/Cs nanofibers were spun without any structural imperfections at the optimized processing conditions. TEM image confirmed the PU/Cs core-shell nanofibers were formed apparently. It that seems the inclusion of Cs/PEO to the shell, did not induce the significant variations in the crystallinity in the core-shell nanofibers. DSC analysis showed that the inclusion of Cs/PEO led to the glass temperature of the composition increased significantly compared to those of neat PU nanofibers. The thermal degradation of core-shell PU/Cs was similar to PU nanofibers degradation due to the higher PU concentration compared to other components. It was hypothesized that the core-shell PU/Cs nanofibers can be used as a potential platform for the bioactive scaffolds in tissue engineering. Further biological tests should be conducted to evaluate this platform as a three dimensional scaffold with the capabilities of releasing the bioactive molecules in a sustained manner.
Moll, Henry; Cherkouk, Andrea; Bok, Frank; Bernhard, Gert
2017-05-01
Since plutonium could be released from nuclear waste disposal sites, the exploration of the complex interaction processes between plutonium and bacteria is necessary for an improved understanding of the fate of plutonium in the vicinity of such a nuclear waste disposal site. In this basic study, the interaction of plutonium with cells of the bacterium, Sporomusa sp. MT-2.99, isolated from Mont Terri Opalinus Clay, was investigated anaerobically (in 0.1 M NaClO 4 ) with or without adding Na-pyruvate as an electron donor. The cells displayed a strong pH-dependent affinity for Pu. In the absence of Na-pyruvate, a strong enrichment of stable Pu(V) in the supernatants was discovered, whereas Pu(IV) polymers dominated the Pu oxidation state distribution on the biomass at pH 6.1. A pH-dependent enrichment of the lower Pu oxidation states (e.g., Pu(III) at pH 6.1 which is considered to be more mobile than Pu(IV) formed at pH 4) was observed in the presence of up to 10 mM Na-pyruvate. In all cases, the presence of bacterial cells enhanced removal of Pu from solution and accelerated Pu interaction reactions, e.g., biosorption and bioreduction.
Huang, Yen-Jang; Hung, Kun-Che; Hung, Huey-Shan; Hsu, Shan-Hui
2018-06-13
Nanomaterials with surface functionalized by different chemical groups can either provoke or attenuate the immune responses of the nanomaterials, which is critical to their biomedical efficacies. In this study, we demonstrate that synthetic waterborne polyurethane nanoparticles (PU NPs) can inhibit the macrophage polarization toward the M1 phenotype but not M2 phenotype. The surface-functionalized PU NPs decrease the secretion levels of proinflammatory cytokines (TNF-α and IL-1β) for M1 macrophages. Specifically, PU NPs with carboxyl groups on the surface exhibit a greater extent of inhibition on M1 polarization than those with amine groups. These water-suspended PU NPs reduce the nuclear factor-κB (NF-κB) activation and suppress the subsequent NLR family pyrin domain containing 3 (NLRP3) inflammasome signals. Furthermore, the dried PU films assembled from PU NPs have a similar effect on macrophage polarization and present a smaller shifting foreign body reaction (FBR) in vivo than the conventional poly(l-lactic acid). Taken together, the biodegradable waterborne PU NPs demonstrate surface-dependent immunosuppressive properties and macrophage polarization effects. The findings suggest potential therapeutic applications of PU NPs in anti-inflammation and macrophage-related disorders and propose a mechanism for the low FBR observed for biodegradable PU materials.
Sulyok, Michael; Liu, Xingzhong; Rao, Mingyong
2016-01-01
Pu-erh is a tea produced in Yunnan, China by microbial fermentation of fresh Camellia sinensis leaves by two processes, the traditional raw fermentation and the faster, ripened fermentation. We characterized fungal and bacterial communities in leaves and both Pu-erhs by high-throughput, rDNA-amplicon sequencing and we characterized the profile of bioactive extrolite mycotoxins in Pu-erh teas by quantitative liquid chromatography-tandem mass spectrometry. We identified 390 fungal and 629 bacterial OTUs from leaves and both Pu-erhs. Major findings are: 1) fungal diversity drops and bacterial diversity rises due to raw or ripened fermentation, 2) fungal and bacterial community composition changes significantly between fresh leaves and both raw and ripened Pu-erh, 3) aging causes significant changes in the microbial community of raw, but not ripened, Pu-erh, and, 4) ripened and well-aged raw Pu-erh have similar microbial communities that are distinct from those of young, raw Ph-erh tea. Twenty-five toxic metabolites, mainly of fungal origin, were detected, with patulin and asperglaucide dominating and at levels supporting the Chinese custom of discarding the first preparation of Pu-erh and using the wet tea to then brew a pot for consumption. PMID:27337135
NASA Technical Reports Server (NTRS)
Lin, Michael; Petrick, David; Geist, Alessandro; Flatley, Thomas
2012-01-01
This version of the SpaceCube will be a full-fledged, onboard space processing system capable of 2500+ MIPS, and featuring a number of plug-andplay gigabit and standard interfaces, all in a condensed 3x3x3 form factor [less than 10 watts and less than 3 lb (approximately equal to 1.4 kg)]. The main processing engine is the Xilinx SIRF radiation- hardened-by-design Virtex-5 FX-130T field-programmable gate array (FPGA). Even as the SpaceCube 2.0 version (currently under test) is being targeted as the platform of choice for a number of the upcoming Earth Science Decadal Survey missions, GSFC has been contacted by customers who wish to see a system that incorporates key features of the version 2.0 architecture in an even smaller form factor. In order to fulfill that need, the SpaceCube Mini is being designed, and will be a very compact and low-power system. A similar flight system with this combination of small size, low power, low cost, adaptability, and extremely high processing power does not otherwise exist, and the SpaceCube Mini will be of tremendous benefit to GSFC and its partners. The SpaceCube Mini will utilize space-grade components. The primary processing engine of the Mini is the Xilinx Virtex-5 SIRF FX-130T radiation-hardened-by-design FPGA for critical flight applications in high-radiation environments. The Mini can also be equipped with a commercial Xilinx Virtex-5 FPGA with integrated PowerPCs for a low-cost, high-power computing platform for use in the relatively radiation- benign LEOs (low-Earth orbits). In either case, this version of the Space-Cube will weigh less than 3 pounds (.1.4 kg), conform to the CubeSat form-factor (10x10x10 cm), and will be low power (less than 10 watts for typical applications). The SpaceCube Mini will have a radiation-hardened Aeroflex FPGA for configuring and scrubbing the Xilinx FPGA by utilizing the onboard FLASH memory to store the configuration files. The FLASH memory will also be used for storing algorithm and application code for the PowerPCs and the Xilinx FPGA. In addition, it will feature highspeed DDR SDRAM (double data rate synchronous dynamic random-access memory) to store the instructions and data of active applications. This version will also feature SATA-II and Gigabit Ethernet interfaces. Furthermore, there will also be general-purpose, multi-gigabit interfaces. In addition, the system will have dozens of transceivers that can support LVDS (low-voltage differential signaling), RS-422, or SpaceWire. The SpaceCube Mini includes an I/O card that can be customized to meet the needs of each mission. This version of the SpaceCube will be designed so that multiple Minis can be networked together using SpaceWire, Ethernet, or even a custom protocol. Scalability can be provided by networking multiple SpaceCube Minis together. Rigid-Flex technology is being targeted for the construction of the SpaceCube Mini, which will make the extremely compact and low-weight design feasible. The SpaceCube Mini is designed to fit in the compact CubeSat form factor, thus allowing deployment in a new class of missions that the previous SpaceCube versions were not suited for. At the time of this reporting, engineering units should be available in the summer 2012.
ELaNa - Educational Launch of Nanosatellite Enhance Education Through Space Flight
NASA Technical Reports Server (NTRS)
Skrobot, Garrett Lee
2011-01-01
One of NASA's missions is to attract and retain students in the science, technology, engineering and mathematics (STEM) disciplines. Creating missions or programs to achieve this important goal helps strengthen NASA and the nation's future work force as well as engage and inspire Americans and the rest of the world. During the last three years, in an attempt to revitalize educational space flight, NASA generated a new and exciting initiative. This initiative, NASA's Educational Launch of Nanosatellite (ELaNa), is now fully operational and producing exciting results. Nanosatellites are small secondary satellite payloads called CubeSats. One of the challenges that the CubeSat community faced over the past few years was the lack of rides into space. Students were building CubeSats but they just sat on the shelf until an opportunity arose. In some cases, these opportunities never developed and so the CubeSat never made it to orbit. The ELaNa initiative is changing this by providing sustainable launch opportunities for educational CubeSats. Across America, these CubeSats are currently being built by students in high school all the way through graduate school. Now students know that if they build their CubeSat, submit their proposal and are selected for an ELaNa mission, they will have the opportunity to fly their satellite. ELaNa missions are the first educational cargo to be carried on expendable launch vehicles (ELY) for NASA's Launch Services Program (LSP). The first ELaNa CubeSats were slated to begin their journey to orbit in February 2011 with NASA's Glory mission. Due to an anomaly with the launch vehicle, ELaNa II and Glory failed to reach orbit. This first ELaNa mission was comprised of three IU CubeSats built by students at Montana State University (Explorer Prime Flight 1), the University of Colorado (HERMES), and Kentucky Space, a consortium of state universities (KySat). The interface between the launch vehicle and the CubeSat, the Poly-Picosatellite Orbital Deployer (P-POD), was developed and built by students at California Polytechnic State University (Cal Poly). Integrating a P-POD on a NASA ELV was not an easy task. The creation of new processes and requirements as well as numerous reviews and approvals were necessary within NASA before the first ELaNa mission could be attached to a NASA launch vehicle (LV). One of the key objectives placed on an ELaNa mission is that the CubeSat and PPOD does not increase the baseline risk to the primary mission and launch vehicle. The ELaNa missions achieve this objective by placing a rigorous management and engineering process on both the LV and CubeSat teams. So, what is the future of ELaNa? Currently there are 16 P-POD missions manifested across four launch vehicles to support educational CubeSats selected under the NASA CubeSat Initiative. From this initiative, a rigorous selection process produced 22-student CubeSat missions that are scheduled to fly before the end of 2012. For the initiative to continue, organizations need to submit proposals to the annual CubeSat initiative call so they have the opportunity to be manifested and launched.
Improving the elasticity and cytophilicity of biodegradable polyurethane by changing chain extender.
Zhang, Changhong; Zhang, Ning; Wen, Xuejun
2006-11-01
Two types of biodegradable polyurethanes (PUs) were synthesized from methylene di-p-phenyl-diisocyanate (MDI), polycaprolactone diol (PCL-diol), and chain extenders of either butanediol (BD) or 2,2'-(methylimino)diethanol (MIDE). The effects of two types of chain extenders on the degradation, mechanical properties, hydrophilicity, and cytophilicity of PUs were evaluated. In vitro degradation studies showed that PU containing MIDE has a higher degradation rate than PU synthesized using BD as a chain extender. Mechanical testing on dry and wet samples demonstrated that PU containing MIDE has a much higher elongation in the elastic region than PU containing BD. PU containing MIDE is more hydrophilic and retains more liquid during in vitro culture. Furthermore, preliminary cytocompatibility studies showed that both types of degradable PU are nontoxic, and fibroblasts adhere better and proliferate faster on MIDE containing PU than BD containing PU. To compare the cytocompatibility and degradation behaviors of the synthesized PU with existing FDA approved biocompatible material, polylactide (PLA), with a similar degradation rate, was used as negative control. Two types of PU were shown to have similar cytocompatibility and degradation behaviors as those of the PLA material. To verify the effectiveness of the cytotoxicity assay, latex was used as a positive control. Latex samples showed toxicity to cultured cells as expected. In conclusion, by changing the type of chain extender used during the synthesis of degradable PUs, the degradation rate, mechanical properties, hydrophilicity, and cytophilicity can be adjusted for different tissue engineering applications. (c) 2006 Wiley Periodicals, Inc.
Depth profile of 236U/238U in soil samples in La Palma, Canary Islands
Srncik, M.; Steier, P.; Wallner, G.
2011-01-01
The vertical distribution of the 236U/238U isotopic ratio was investigated in soil samples from three different locations on La Palma (one of the seven Canary Islands, Spain). Additionally the 240Pu/239Pu atomic ratio, as it is a well establish tool for the source identification, was determined. The radiochemical procedure consisted of a U separation step by extraction chromatography using UTEVA® Resin (Eichrom Technologies, Inc.). Afterwards Pu was separated from Th and Np by anion exchange using Dowex 1x2 (Dow Chemical Co.). Furthermore a new chemical procedure with tandem columns to separate Pu and U from the matrix was tested. For the determination of the uranium and plutonium isotopes by alpha spectrometry thin sources were prepared by microprecipitation techniques. Additionally these fractions separated from the soil samples were measured by Accelerator Mass Spectrometry (AMS) to get information on the isotopic ratios 236U/238U, 240Pu/239Pu and 236U/239Pu, respectively. The 236U concentrations [atoms/g] in each surface layer (∼2 cm) were surprisingly high compared to deeper layers where values around two orders of magnitude smaller were found. Since the isotopic ratio 240Pu/239Pu indicated a global fallout signature we assume the same origin as the probable source for 236U. Our measured 236U/239Pu value of around 0.2 is within the expected range for this contamination source. PMID:21481502
Measurement of the 242Pu neutron capture cross section
NASA Astrophysics Data System (ADS)
Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Chyzh, A.; Dance Collaboration
2015-10-01
Precision (n,f) and (n, γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE's Stockpile Stewardship Program. 242Pu(n, γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n, γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n, γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n, γ) cross section spans four orders of magnitude for incident neutron energies from thermal to ~ 30 keV. The absolute scale of the 242Pu(n, γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n, γ) neutron capture cross section is ~ 30% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported. Funded by U.S. DOE Contract No. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).
Xie, Jinchuan; Han, Xiaoyuan; Wang, Weixian; Zhou, Xiaohua; Lin, Jianfeng
2017-10-05
The role of humic acid concentration in the microbially-mediated reductive solubilization of Pu(IV) polymers remains unclear until now. The effects of humic concentration (0-150.5mg/L) on the rate and extent of reduction of polymeric Pu(IV) were studied under anaerobic and pH 7.2 conditions. The results show that Shewanella putrefaciens, secreting flavins as endogenous electron shuttles, cannot notably stimulate the reduction of polymeric Pu(IV). In the presence of humic acids, the reduction rate of polymeric Pu(IV) increased with increasing humic concentrations (0-15.0mg/L): e.g., a 102-fold increase from 4.1×10 -15 (HA=0) to 4.2×10 -13 mol Pu(III) aq /h (HA=15.0mg/L). The bioreduced humic acids by S. putrefaciens facilitated the extracellular electron transfer to Pu(IV) polymers and thus the reduction of polymeric Pu(IV) to Pu(III) aq became thermodynamically favorable. However, the reduction rate did not increase but decrease with increasing humic concentrations from 15.0 to 150.5mg/L. Humic coatings formed on the polymer surfaces at relatively high humic concentrations limited the electron transfer to the polymers and thus decreased the reduction rate. The finding of the dynamic role of humic acids in the bioreductive solubilization may be helpful in evaluating Pu mobility in the geosphere. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ding, Wan; Wu, Jianxu; Yao, Yan'an
2015-07-01
Lattice modular robots possess diversity actuation methods, such as electric telescopic rod, gear rack, magnet, robot arm, etc. The researches on lattice modular robots mainly focus on their hardware descriptions and reconfiguration algorithms. Meanwhile, their design architectures and actuation methods perform slow telescopic and moving speeds, relative low actuation force verse weight ratio, and without internal space to carry objects. To improve the mechanical performance and reveal the locomotion and reconfiguration binary essences of the lattice modular robots, a novel cube-shaped, frame-like, pneumatic-based reconfigurable robot module called pneumatic expandable cube(PE-Cube) is proposed. The three-dimensional(3D) expanding construction and omni-directional rolling analysis of the constructed robots are the main focuses. The PE-Cube with three degrees of freedom(DoFs) is assembled by replacing the twelve edges of a cube with pneumatic cylinders. The proposed symmetric construction condition makes the constructed robots possess the same properties in each supporting state, and a binary control strategy cooperated with binary actuator(pneumatic cylinder) is directly adopted to control the PE-Cube. Taking an eight PE-Cube modules' construction as example, its dynamic rolling simulation, static rolling condition, and turning gait are illustrated and discussed. To testify telescopic synchronization, respond speed, locomotion feasibility, and repeatability and reliability of hardware system, an experimental pneumatic-based robotic system is built and the rolling and turning experiments of the eight PE-Cube modules' construction are carried out. As an extension, the locomotion feasibility of a thirty-two PE-Cube modules' construction is analyzed and proved, including dynamic rolling simulation, static rolling condition, and dynamic analysis in free tipping process. The proposed PE-Cube module, construction method, and locomotion analysis enrich the family of the lattice modular robot and provide the instruction to design the lattice modular robot.
PolarCube: A High Resolution Passive Microwave Satellite for Sounding and Imaging at 118 GHz
NASA Astrophysics Data System (ADS)
Weaver, R. L.; Gallaher, D. W.; Gasiewski, A. J.; Sanders, B.; Periasamy, L.; Hwang, K.; Alvarenga, G.; Hickey, A. M.
2013-12-01
PolarCube is a 3U CubeSat hosting an eight-channel passive microwave spectrometer operating at the 118.7503 GHz oxygen resonance that is currently in development. The project has an anticipated launch date in early 2015. It is currently being designed to operate for approximately12 months on orbit to provide the first global 118-GHz spectral imagery of the Earth over full seasonal cycle and to sound Arctic vertical temperature structure. The principles used by PolarCube for temperature sounding are well established in number of peer-reviewed papers going back more than two decades, although the potential for sounding from a CubeSat has never before been demonstrated in space. The PolarCube channels are selected to probe atmospheric emission over a range of vertical levels from the surface to lower stratosphere. This capability has been available operationally for over three decades, but at lower frequencies and higher altitudes that do not provide the spatial resolution that will be achieved by PolarCube. While the NASA JPSS ATMS satellite sensor provides global coverage at ~32 km resolution, the PolarCube will improve on this resolution by a factor of two, thus facilitating the primary science goal of determining sea ice concentration and extent while at the same time collecting profile data on atmospheric temperature. Additionally, we seek to correlate freeze-thaw line data from SMAP with our near simultaneously collected atmospheric temperature data. In addition to polar science, PolarCube will provide a first demonstration of a very low cost passive microwave sounder that if operated in a fleet configuration would have the potential to fulfill the goals of the Precipitation Atmospheric Temperature and Humidity (PATH) mission, as defined in the NRC Decadal Survey. PolarCube 118-GHz passive microwave spectrometer in deployed configuration
Effect of Natural Organic Matter on Plutonium Sorption to Goethite
Conroy, Nathan A.; Zavarin, Mavrik; Kersting, Annie B.; ...
2016-11-21
For this research, the effect of citric acid (CA), desferrioxamine B (DFOB), fulvic acid (FA), and humic acid (HA) on plutonium (Pu) sorption to goethite was studied as a function of organic carbon concentration and pH using batch sorption experiments at 5 mg C·L –1 and 50 mg C·L –1 natural organic matter (NOM), 10 –9–10 –10 M 238Pu, and 0.1 g·L –1 goethite concentrations, at pH 3, 5, 7, and 9. Low sorption of ligands coupled with strong Pu complexation decreased Pu sorption at pH 5 and 7, relative to a ligand-free system. Conversely, CA, FA, and HA increasedmore » Pu sorption to goethite at pH 3, suggesting ternary complex formation or, in the case of humic acid, incorporation into HA aggregates. Mechanisms for ternary complex formation were characterized by Fourier transform infrared spectroscopy in the absence of Pu. CA and FA demonstrated clear surface interactions at pH 3, HA appeared unchanged suggesting HA aggregates had formed, and no DFOB interactions were observed. Plutonium sorption decreased in the presence of DFOB (relative to a ligand free system) at all pH values examined. Thus, DFOB does not appear to facilitate formation of ternary Pu-DFOB-goethite complexes. At pH 9, Pu sorption in the presence of all NOM increased relative to pH 5 and 7; speciation models attributed this to Pu(IV) hydrolysis competing with ligand complexation, increasing sorption. In conclusion, the results indicate that in simple Pu-NOM-goethite ternary batch systems, NOM will decrease Pu sorption to goethite at all but particularly low pH conditions.« less
Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Permana, Sidik; Novitrian,; Waris, Abdul
Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissilemore » material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.« less
Soban, Lynn M; Finley, Erin P; Miltner, Rebecca S
2016-01-01
To describe the presence or absence of key components of hospital pressure ulcer (PU) prevention programs in 6 acute care hospitals. Multisite comparative case study. Using purposeful selection based on PU rates (high vs low) and hospital size, 6 hospitals within the Veterans Health Administration health care system were invited to participate. Key informant interviews (n = 48) were conducted in each of the 6 participating hospitals among individuals playing key roles in PU prevention: senior nursing leadership (n = 9), nurse manager (n = 7), wound care specialist (n = 6), frontline RNs (n = 26). Qualitative data were collected during face-to-face, semistructured interviews. Interview protocols were tailored to each interviewee's role with a core set of common questions covering 3 major content areas: (1) practice environment (eg, policies and wound care specialists), (2) current prevention practices (eg, conduct of PU risk assessment and skin inspection), and (3) barriers to PU prevention. We conducted structured coding of 5 key components of PU prevention programs and cross-case analysis to identify patterns in operationalization and implementation of program components across hospitals based on facility size and PU rates (low vs high). All hospitals had implemented all PU prevention program components. Component operationalization varied considerably across hospitals. Wound care specialists were integral to the operationalization of the 4 other program components examined; however, staffing levels and work assignments of wound care specialists varied widely. Patterns emerged among hospitals with low and high PU rates with respect to wound care specialist staffing, data monitoring, and staff education. We found hospital-level variations in PU prevention programs. Wound care specialist staffing may represent a potential point of leverage in achieving other PU program components, particularly performance monitoring and staff education.
PU.1 regulates TCR expression by modulating GATA-3 activity
Chang, Hua-Chen; Han, Ling; Jabeen, Rukhsana; Carotta, Sebastian; Nutt, Stephen L.; Kaplan, Mark H.
2009-01-01
The Ets transcription factor PU.1 is a master regulator for the development of multiple lineages during hematopoiesis. The expression pattern of PU.1 is dynamically regulated during early T lineage development in the thymus. We previously revealed that PU.1 delineates heterogeneity of effector Th2 populations. In this study, we further define the function of PU.1 on the Th2 phenotype using mice that specifically lack PU.1 in T cells using an lck-Cre transgene with a conditional Sfpi1 allele (Sfpi1lck-/-). While deletion of PU.1 by the lck-Cre transgene does not affect T cell development, Sfpi1lck-/- T cells have a lower activation threshold than wild type T cells. When TCR engagement is limiting, Sfpi1lck-/- T cells cultured in Th2 polarizing conditions secrete higher levels of Th2 cytokines and have greater cytokine homogeneity than wild type cells. We show that PU.1 modulates the levels of TCR expression in CD4+ T cells by regulating the DNA-binding activity of GATA-3 and limiting GATA-3 regulation of TCR gene expression. GATA-3 dependent regulation of TCR expression is also observed in Th1 and Th2 cells. In CD4+ T cells, PU.1 expression segregates into subpopulations of cells that have lower levels of surface TCR, suggesting that PU.1 contributes to the heterogeneity of TCR expression. Thus, we have identified a mechanism whereby increased GATA-3 function in the absence of the antagonizing activity of PU.1 leads to increased TCR expression, a reduced activation threshold and increased homogeneity in Th2 populations. PMID:19801513
Effect of Natural Organic Matter on Plutonium Sorption to Goethite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Nathan A.; Zavarin, Mavrik; Kersting, Annie B.
For this research, the effect of citric acid (CA), desferrioxamine B (DFOB), fulvic acid (FA), and humic acid (HA) on plutonium (Pu) sorption to goethite was studied as a function of organic carbon concentration and pH using batch sorption experiments at 5 mg C·L –1 and 50 mg C·L –1 natural organic matter (NOM), 10 –9–10 –10 M 238Pu, and 0.1 g·L –1 goethite concentrations, at pH 3, 5, 7, and 9. Low sorption of ligands coupled with strong Pu complexation decreased Pu sorption at pH 5 and 7, relative to a ligand-free system. Conversely, CA, FA, and HA increasedmore » Pu sorption to goethite at pH 3, suggesting ternary complex formation or, in the case of humic acid, incorporation into HA aggregates. Mechanisms for ternary complex formation were characterized by Fourier transform infrared spectroscopy in the absence of Pu. CA and FA demonstrated clear surface interactions at pH 3, HA appeared unchanged suggesting HA aggregates had formed, and no DFOB interactions were observed. Plutonium sorption decreased in the presence of DFOB (relative to a ligand free system) at all pH values examined. Thus, DFOB does not appear to facilitate formation of ternary Pu-DFOB-goethite complexes. At pH 9, Pu sorption in the presence of all NOM increased relative to pH 5 and 7; speciation models attributed this to Pu(IV) hydrolysis competing with ligand complexation, increasing sorption. In conclusion, the results indicate that in simple Pu-NOM-goethite ternary batch systems, NOM will decrease Pu sorption to goethite at all but particularly low pH conditions.« less
Interaction of aerobic soil bacteria with plutonium(VI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panak, Petra J.; Nitsche, Heino
2000-08-22
We studied the interaction of Pu(VI) with Pseudomonas stutzeri ATCC 17588 and Bacillus sphaericus ATCC 14577, representatives of the main aerobic groups of soil bacteria present in the upper soil layers. The accumulation studies have shown that these soil bacteria accumulate high amounts of Pu(VI). The sorption efficiency toward Pu(VI) decreased with increasing biomass concentration due to increased agglomeration of the bacteria resulting in a decreased total surface area and number of available complexing groups. Spores of Bacillus sphaericus showed a higher biosorption than the vegetative cells at low biomass concentration which decreased significantly with increasing biomass concentration. At highermore » biomass concentrations (> 0.7 g/L), the vegetative cells of both strains and the spores of B. sphaericus showed comparable sorption efficiencies. Investigations on the pH dependency of the biosorption and extraction studies with 0.01 M EDTA solution have shown that the biosorption of plutonium is a reversible process and the plutonium is bound by surface complexation. Optical absorption spectroscopy showed that one third of the initially present Pu(VI) was reduced to Pu(V) after 24 hours. Kinetic studies and solvent extraction to separate different oxidation states of Pu after contact with the biomass provided further information on the yield and the kinetics of the bacteria-mediated reduction. Long-term studies showed that also 16% of Pu(IV) was formed after one month. The comparison of the amount of Pu(IV) formed during that time period with literature data of the Pu(V) disproportionation, indicated that the Pu(IV) seemed to be rather the result of the disproportionation of the formed Pu(V) than of a further microbial reduction.« less
New approaches for MOX multi-recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gain, T.; Bouvier, E.; Grosman, R.
Due to its low fissile content after irradiation, Pu from used MOX fuel is considered by some as not recyclable in LWR (Light Water Reactors). The point of this paper is hence to go back to those statements and provide a new analysis based on AREVA extended experience in the fields of fissile and fertile material management and optimized waste management. This is done using the current US fuel inventory as a case study. MOX Multi-recycling in LWRs is a closed cycle scenario where U and Pu management through reprocessing and recycling leads to a significant reduction of the usedmore » assemblies to be stored. The recycling of Pu in MOX fuel is moreover a way to maintain the self-protection of the Pu-bearing assemblies. With this scenario, Pu content is also reduced repetitively via a multi-recycling of MOX in LWRs. Simultaneously, {sup 238}Pu content decreases. All along this scenario, HLW (High-Level Radioactive Waste) vitrified canisters are produced and planned for deep geological disposal. Contrary to used fuel, HLW vitrified canisters do not contain proliferation materials. Moreover, the reprocessing of used fuel limits the space needed on current interim storage. With MOX multi-recycling in LWR, Pu isotopy needs to be managed carefully all along the scenario. The early introduction of a limited number of SFRs (Sodium Fast Reactors) can therefore be a real asset for the overall system. A few SFRs would be enough to improve the Pu isotopy from used LWR MOX fuel and provide a Pu-isotopy that could be mixed back with multi-recycled Pu from LWRs, hence increasing the Pu multi-recycling potential in LWRs.« less
Gilbert, R O; Engel, D W; Anspaugh, L R
1989-09-01
In this paper, estimates are obtained of the fraction of ingested 239+240Pu, 238Pu, 241Am and 137Cs transferred to blood, muscle, liver, kidney, femur, vertebra, and gonads of a reproducing herd of 17 beef cattle, individuals of which grazed within fenced enclosures for up to 1064 days under natural conditions with no supplemental feeding at an arid site contaminated 16 years previously with transuranic radionuclides. The estimated geometric mean (GM) GI-to-blood fractional transfer of 238Pu (0.0001) was about 20 times larger than the estimated transfer of 239+240Pu (0.000005), while the estimated transfer of 241Am (0.00001) was about 2 times larger than that of 239+240Pu. These GM GI-to-blood transfers were smaller than the GI-to-blood transfer value of 0.001 recommended by the International Commission on Radiological Protection (ICRP) for humans exposed via food chains or occupationally from unknown mixtures or compounds of plutonium and americium. Statistical tests indicated significantly (p less than 0.05) larger GI-to-tissue transfers of (1) 238Pu as compared to 239+240Pu for all tissues examined, (2) of 238Pu as compared to 241Am for muscle, liver, femur, and vertebra, and (3) of 241Am as compared to 239+240Pu for blood serum, femur, and kidney. The estimated GM fractional transfers of 137Cs from GI to muscle and liver were 0.03 (n = 8) and 0.001 (n = 3), respectively, assuming a 50-day biological half-time of 137Cs in cattle tissue.
Chronology of Pu isotopes and 236U in an Arctic ice core.
Wendel, C C; Oughton, D H; Lind, O C; Skipperud, L; Fifield, L K; Isaksson, E; Tims, S G; Salbu, B
2013-09-01
In the present work, state of the art isotopic fingerprinting techniques are applied to an Arctic ice core in order to quantify deposition of U and Pu, and to identify possible tropospheric transport of debris from former Soviet Union test sites Semipalatinsk (Central Asia) and Novaya Zemlya (Arctic Ocean). An ice core chronology of (236)U, (239)Pu, and (240)Pu concentrations, and atom ratios, measured by accelerator mass spectrometry in a 28.6m deep ice core from the Austfonna glacier at Nordaustlandet, Svalbard is presented. The ice core chronology corresponds to the period 1949 to 1999. The main sources of Pu and (236)U contamination in the Arctic were the atmospheric nuclear detonations in the period 1945 to 1980, as global fallout, and tropospheric fallout from the former Soviet Union test sites Novaya Zemlya and Semipalatinsk. Activity concentrations of (239+240)Pu ranged from 0.008 to 0.254 mBq cm(-2) and (236)U from 0.0039 to 0.053 μBq cm(-2). Concentrations varied in concordance with (137)Cs concentrations in the same ice core. In contrast to previous published results, the concentrations of Pu and (236)U were found to be higher at depths corresponding to the pre-moratorium period (1949 to 1959) than to the post-moratorium period (1961 and 1962). The (240)Pu/(239)Pu ratio ranged from 0.15 to 0.19, and (236)U/(239)Pu ranged from 0.18 to 1.4. The Pu atom ratios ranged within the limits of global fallout in the most intensive period of nuclear atmospheric testing (1952 to 1962). To the best knowledge of the authors the present work is the first publication on biogeochemical cycles with respect to (236)U concentrations and (236)U/(239)Pu atom ratios in the Arctic and in ice cores. Copyright © 2013 Elsevier B.V. All rights reserved.
Solid state reactions of CeO 2, PuO 2, (U,Ce)O 2 and (U,Pu)O 2 with K 2S 2O 8
NASA Astrophysics Data System (ADS)
Keskar, Meera; Kasar, U. M.; Mudher, K. D. Singh; Venugopal, V.
2004-09-01
Solid state reactions of CeO 2, PuO 2 and mixed oxides (U,Ce)O 2 and (U,Pu)O 2 containing different mol.% of Ce and Pu, were carried out with K 2S 2O 8 at different temperatures to identify the formation of various products and to investigate their dissolution behaviour. X-ray, chemical and thermal analysis methods were used to characterise the products formed at various temperatures. The products obtained by heating two moles of K 2S 2O 8 with one mole each of CeO 2, PuO 2, (U,Ce)O 2 and (U,Pu)O 2 at 400 °C were identified as K 4Ce(SO 4) 4, K 4Pu(SO 4) 4, K 4(U,Ce)(SO 4) 4 and K 4(U,Pu)(SO 4) 4, respectively. K 4Ce(SO 4) 4 further decomposed to form K 4Ce(SO 4) 3.5 at 600 °C and mixture of K 2SO 4 and CeO 2 at 950 °C. Thus the products formed during the reaction of 2K 2S 2O 8 + CeO 2 show that cerium undergoes changes in oxidation state from +4 to +3 and again to +4. XRD data of K 4Ce(SO 4) 4 and K 4Ce(SO 4) 3.5 were indexed on triclinic and monoclinic system, respectively. PuO 2 + 2K 2S 2O 8 reacts at 400 °C to form K 4Pu(SO 4) 4 which was stable upto 750 °C and further decomposes to form K 2SO 4 + PuO 2 at 1000 °C. The products formed at 400 °C during the reactions of the oxides and mixed oxides were found to be readily soluble in 1-2 M HNO 3.
Neutrino Astronomy with IceCube
NASA Astrophysics Data System (ADS)
Meagher, Kevin J.
The IceCube Neutrino Observatory is a cubic kilometer neutrino telescope located at the Geographic South Pole. Cherenkov radiation emitted by charged secondary particles from neutrino interactions is observed by IceCube using an array of 5160 photomultiplier tubes embedded between a depth of 1.5 km to 2.5 km in the Antarctic glacial ice. The detection of astrophysical neutrinos is a primary goal of IceCube and has now been realized with the discovery of a diffuse, high-energy flux consisting of neutrino events from tens of TeV up to several PeV. Many analyses have been performed to identify the source of these neutrinos: correlations with active galactic nuclei, gamma-ray bursts, and the galactic plane. IceCube also conducts multi-messenger campaigns to alert other observatories of possible neutrino transients in real-time. However, the source of these neutrinos remains elusive as no corresponding electromagnetic counterparts have been identified. This proceeding will give an overview of the detection principles of IceCube, the properties of the observed astrophysical neutrinos, the search for corresponding sources (including real-time searches), and plans for a next-generation neutrino detector, IceCube-Gen2.
NASA Technical Reports Server (NTRS)
1975-01-01
The main tasks described involved an interferometric evaluation of several cubes, a prediction of their dihedral angles, a comparison of these predictions with independent measurements, a prediction and comparison of far field performance, recommendations as to revised dihedral angles and a subsequent analysis of cubes which were reworked to confirm the recommendations. A tolerance study and theoretical evaluation of several cubes was also performed to aid in understanding the results. The far field characteristics evaluated included polarization effects and treated both intensity distribution and encircled energy data. The energy in the 13.2 - 16.9 arc-sec annular region was tabulated as an indicator of performance sensitivity. The results are provided in viewgraph form, and show the average dihedral angle of an original set of test cubes to have been 1.8 arc-sec with an average far field annulus diameter of 18 arc-sec. Since the peak energy in the 13.2 - 16.9 arc-sec annulus was found to occur for a 1.35 arc-sec cube, and since cube tolerances were shown to increase the annulus diameter slightly, a nominal dihedral angle of 1.25 arc-sec was recommended.
Bu, Kaixuan; Cizdziel, James V; Dasher, Douglas
2013-10-01
Three underground nuclear tests, including the Unites States' largest, were conducted on Amchitka Island, Alaska. Monitoring of the radiological environment around the island is challenging because of its remote location. In 2008, the Department of Energy (DOE) Office of Legacy Management (LM) became responsible for the long term maintenance and surveillance of the Amchitka site. The first DOE LM environmental survey occurred in 2011 and is part of a cycle of activities that will occur every 5 years. The University of Alaska Fairbanks, a participant in the 2011 study, provided the lichen (Cladonia spp.), freshwater moss (Fontinalis neomexicanus), kelp (Eualaria fistulosa) and horse mussel (Modiolus modiolus) samples from Amchitka Island and Adak Island (a control site). These samples were analyzed for (239)Pu and (240)Pu concentration and (240)Pu/(239)Pu atom ratio using inductively coupled plasma sector field mass spectrometry (ICP-SFMS). Plutonium concentrations and (240)Pu/(239)Pu atom ratios were generally consistent with previous terrestrial and marine studies in the region. The ((239)+)(240)Pu levels (mBq kg(-1), dry weight) ranged from 3.79 to 57.1 for lichen, 167-700 for kelp, 27.9-148 for horse mussel, and 560-573 for moss. Lichen from Adak Island had higher Pu concentrations than Amchitka Island, the difference was likely the result of the higher precipitation at Adak compared to Amchitka. The (240)Pu/(239)Pu atom ratios were significantly higher in marine samples compared to terrestrial and freshwater samples (t-test, p < 0.001); lichen and moss averaged 0.184 ± 0.007, similar to the integrated global fallout ratio, whereas kelp and mussel (soft tissue) averaged 0.226 ± 0.003. These observations provide supporting evidence that a large input of isotopically heavier Pu occurred into the North Pacific Ocean, likely from the Marshall Island high yield nuclear tests, but other potential sources, such as the Kamchatka Peninsula Rybachiy Naval Base and Amchitka Island underground nuclear test site cannot be ruled out. Copyright © 2013 Elsevier Ltd. All rights reserved.
Desideri, D; Meli, M A; Roselli, C; Testa, C; Boulyga, S F; Becker, J S
2002-11-01
It is well known that ammunition containing depleted uranium (DU) was used by NATO during the Balkan conflict. To evaluate the origin of DU (the enrichment of natural uranium or the reprocessing of spent nuclear fuel) it is necessary to directly detect the presence of activation products ((236)U, (239)Pu, (240)Pu, (241)Am, and (237)Np) in the ammunition. In this work the analysis of actinides by alpha-spectrometry was compared with that by inductively coupled plasma mass spectrometry (ICP-MS) after selective separation of ultratraces of transuranium elements from the uranium matrix. (242)Pu and (243)Am were added to calculate the chemical yield. Plutonium was separated from uranium by extraction chromatography, using tri- n-octylamine (TNOA), with a decontamination factor higher than 10(6); after elution plutonium was determined by ICP-MS ((239)Pu and (240)Pu) and alpha-spectrometry ((239+240)Pu) after electroplating. The concentration of Pu in two DU penetrator samples was 7 x 10(-12) g g(-1) and 2 x 10(-11) g g(-1). The (240)Pu/(239)Pu isotope ratio in one penetrator sample (0.12+/-0.04) was significantly lower than the (240)Pu/(239)Pu ratios found in two soil samples from Kosovo (0.35+/-0.10 and 0.27+/-0.07). (241)Am was separated by extraction chromatography, using di(2-ethylhexyl)phosphoric acid (HDEHP), with a decontamination factor as high as 10(7). The concentration of (241)Am in the penetrator samples was 2.7 x 10(-14) g g(-1) and <9.4 x 10(-15) g g(-1). In addition (237)Np was detected at ultratrace levels. In general, ICP-MS and alpha-spectrometry results were in good agreement. The presence of anthropogenic radionuclides ((236)U, (239)Pu,(240)Pu, (241)Am, and (237)Np) in the penetrators indicates that at least part of the uranium originated from the reprocessing of nuclear fuel. Because the concentrations of radionuclides are very low, their radiotoxicological effect is negligible.
Equilibrium, kinetic, and reactive transport models for plutonium
NASA Astrophysics Data System (ADS)
Schwantes, Jon Michael
Equilibrium, kinetic, and reactive transport models for plutonium (Pu) have been developed to help meet environmental concerns posed by past war-related and present and future peacetime nuclear technologies. A thorough review of the literature identified several hurdles that needed to be overcome in order to develop capable predictive tools for Pu. These hurdles include: (1) missing or ill-defined chemical equilibrium and kinetic constants for environmentally important Pu species; (2) no adequate conceptual model describing the formation of Pu oxy/hydroxide colloids and solids; and (3) an inability of two-phase reactive transport models to adequately simulate Pu behavior in the presence of colloids. A computer program called INVRS K was developed that integrates the geochemical modeling software of PHREEQC with a nonlinear regression routine. This program provides a tool for estimating equilibrium and kinetic constants from experimental data. INVRS K was used to regress on binding constants for Pu sorbing onto various mineral and humic surfaces. These constants enhance the thermodynamic database for Pu and improve the capability of current predictive tools. Time and temperature studies of the Pu intrinsic colloid were also conducted and results of these studies were presented here. Formation constants for the fresh and aged Pu intrinsic colloid were regressed upon using INVRS K. From these results, it was possible to develop a cohesive diagenetic model that describes the formation of Pu oxy/hydroxide colloids and solids. This model provides for the first time a means of deciphering historically unexplained observations with respect to the Pu intrinsic colloid, as well as a basis for simulating the behavior within systems containing these solids. Discussion of the development and application of reactive transport models is also presented and includes: (1) the general application of a 1-D in flow, three-phase (i.e., dissolved, solid, and colloidal), reactive transport model; (2) a simulation of the effects of dissolution of PuO2 solid and radiolysis on the behavior of Pu diffusing out of a confined pore space; and (3) application of a steady-state three phase reactive transport model to groundwater at the Nevada Test Site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohnuki, T.; Francis, A.; Kozai, N.
2010-04-01
We conducted a series of basic studies on the microbial accumulation of actinides to elucidate their migration behavior around backfill materials used in the geological disposal of radioactive wastes. We explored the interactions of U(VI) and Pu(VI) with Bacillus subtilis, kaolinite clay, and within a mixture of the two, directly analyzing their association with the bacterium in the mixture by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The accumulation of U by the mixture rose as the numbers of B. subtilis cells increased. Treating the kaolinite with potassium acetate (CH{sub 3}COOK) removed approximately 80% of the associated uraniummore » while only 65% was removed in the presence of B. subtilis. TEM-EDS analysis confirmed that most of the U taken from solution was associated with B. subtilis. XANES analyses revealed that the oxidation state of uranium associated with B. subtilis, kaolinite, and with the mixture containing both was U(VI). The amount of Pu sorbed by B. subtilis increased with time, but did not reach equilibrium in 48 h; in kaolinite alone, equilibrium was attained within 8 h. After 48 h, the oxidation state of Pu in the solutions exposed to B. subtilis and to the mixture had changed to Pu(V), whereas the oxidation state of the Pu associated with both was Pu(IV). In contrast, there was no change in the oxidation state of Pu in the solution nor on kaolinite after exposure to Pu(VI). SEM-EDS analysis indicated that most of the Pu in the mixture was associated with the bacteria. These results suggest that U(VI) and Pu(VI) preferentially are sorbed to bacterial cells in the presence of kaolinite clay, and that the mechanism of accumulation of U and Pu differs. U(VI) is sorbed directly to the bacterial cells, whereas Pu(VI) first is reduced to Pu(V) and then to Pu(IV), and the latter is associated with the cells. These results have important implications on the migrations of radionuclides around the repository sites of geological disposal. Microbial cells compete with clay colloids for radionuclides accumulation, and because of their higher affinity and larger size, the microbes accumulate radionuclides and migrate much slower than do the clay colloids. Additionally, biofilm coatings formed on the fractured rock surfaces also accumulate radionuclides, thereby retarding radionuclide migration.« less
NASA Astrophysics Data System (ADS)
Demirkanli, I.; Molz, F. J.; Kaplan, D. I.; Fjeld, R. A.; Serkiz, S. M.
2006-05-01
An improved understanding of flow and radionuclide transport in vadose zone sediments is fundamental to all types of future planning involving radioactive materials. One way to obtain such understanding is to perform long-term experimental studies of Pu transport in complex natural systems. With this in mind, a series of field experiments were initiated at the SRNL in the early 1980s. Lysimeters containing sources of different Pu oxidation states were placed in the shallow subsurface and left open to the natural environment for 2 to 11 years. At the end of the experiments, Pu activities were measured along vertical cores obtained from the lysimeters. Pu distributions were anomalous in nature, with transport from oxidized Pu sources being less than expected, and a small fraction of Pu from reduced sources moving more. Laboratory studies with lysimeter sediments suggested that surface-mediated, oxidation/reduction (redox) reactions could be responsible for the anomalous behavior, and this hypothesis is tested by performing both steady-state and transient Pu transport simulations that include retardation along with first-order redox reactions on mineral surfaces. Based on the simulations, we conclude that the surface-mediated, redox hypothesis is consistent with the observed downward Pu activity profiles in the experiments, and such profiles are captured well by a steady-state, net downward, flow model. (Discussion is presented as to why a steady model appears to work in a highly transient flow environment.) The redox model explains how Pu(V/VI) sources release activity that moves downward more slowly than expected based on adsorptive retardation alone, and how Pu(III/IV) sources result in a small fraction of activity that moves downward more rapidly than expected. The calibrated parameter values were robust and relatively well-defined throughout all four sets of simulations. Pu(V/VI) (i.e., oxidized Pu)retardation factors were about 15, and reduced Pu(III/IV) retardation factors were about 10,000. For these values, ko (1st order oxidation rate) averaged 2.4x10-7/hr with a standard deviation of 1.6x10-7, and kr (reduction rate)was 7.1x10-4/hr with a standard deviation of 1.6x10-4. Preliminary transient flow simulations showed a very slight increase in the fitted reaction rate constants, but otherwise reproduced the steady-state results. To date, neither approach is able to simulate the observed Pu movement above the source.
CAPABILITY TO RECOVER PLUTONIUM-238 IN H-CANYON/HB-LINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R.
2013-01-09
Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site hadmore » previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np-237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-anyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase-3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ~ 2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase-1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diwu, Juan; Wang, Shuao; Good, Justin J.
2011-06-06
The heterobimetallic actinide compound UO₂Ce(H₂O)[C₆H₄(PO₃H)₂]₂·H₂O was prepared via the hydrothermal reaction of U(VI) and Ce(IV) in the presence of 1,2-phenylenediphosphonic acid. We demonstrate that this is a kinetic product that is not stable with respect to decomposition to the monometallic compounds. Similar reactions have been explored with U(VI) and Ce(III), resulting in the oxidation of Ce(III) to Ce(IV) and the formation of the Ce(IV) phosphonate, Ce[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O, UO₂Ce(H₂O)[C₆H₄(PO₃H)₂]₂·H₂O, and UO₂[C₆H₄(PO₃H)₂](H₂O)·H₂O. In comparison, the reaction of U(VI) with Np(VI) only yields Np[C₆H₄(PO₃H)₂]₂·2H₂O and aqueous U(VI), whereas the reaction of U(VI) with Pu(VI) yields the disordered U(VI)/Pu(VI) compound, (U 0.9Pu 0.1)O₂[C₆H₄(PO₃H)₂](H₂O)·H₂O, and themore » Pu(IV) phosphonate, Pu[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O. The reactions of Ce(IV) with Np(VI) yield disordered heterobimetallic phosphonates with both M[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O (M = Ce, Np) and M[C₆H₄(PO₃H)₂]₂·2H₂O (M = Ce, Np) structures, as well as the Ce(IV) phosphonate Ce[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O. Ce(IV) reacts with Pu(IV) to yield the Pu(VI) compound, PuO₂[C₆H₄(PO₃H)₂](H₂O)·3H₂O, and a disordered heterobimetallic Pu(IV)/Ce(IV) compound with the M[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O (M = Ce, Pu) structure. Mixtures of Np(VI) and Pu(VI) yield disordered heterobimetallic Np(IV)/Pu(IV) phosphonates with both the An[C₆H₄(PO₃H)(PO₃H₂)][C₆H₄(PO₃H)(PO₃)]·2H₂O (M = Np, Pu) and An[C₆H₄(PO₃H)₂]₂·2H₂O (M = Np, Pu) formulas.« less
CUBE: Information-optimized parallel cosmological N-body simulation code
NASA Astrophysics Data System (ADS)
Yu, Hao-Ran; Pen, Ue-Li; Wang, Xin
2018-05-01
CUBE, written in Coarray Fortran, is a particle-mesh based parallel cosmological N-body simulation code. The memory usage of CUBE can approach as low as 6 bytes per particle. Particle pairwise (PP) force, cosmological neutrinos, spherical overdensity (SO) halofinder are included.
2016-09-15
Investigative Questions This research will quantitatively address the impact of proposed benefits of a 3D printed satellite architecture on the...subsystems of a CubeSat. The objective of this research is to bring a quantitative analysis to the discussion of whether a fully 3D printed satellite...manufacturers to quantitatively address what impact the architecture would have on the subsystems of a CubeSat. Summary of Research Gap, Research Questions, and
2014-06-01
release is controlled by a non-explosive actuator (NEA). Once the NEA is actuated, it releases the P-POD door, which springs open due to torsion ...deemed to be undesirable to OSL as it limited flexibility in final CubeSat position choices on NPSCuL. 24 Building on the lessons learned from the...OUTSat mission that included maintaining flexibility of CubeSat positions on NPSCuL, it was decided that the option to proto-qualify a CubeSat on the
Equilibrium cycle pin by pin transport depletion calculations with DeCART
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochunas, B.; Downar, T.; Taiwo, T.
As the Advanced Fuel Cycle Initiative (AFCI) program has matured it has become more important to utilize more advanced simulation methods. The work reported here was performed as part of the AFCI fellowship program to develop and demonstrate the capability of performing high fidelity equilibrium cycle calculations. As part of the work here, a new multi-cycle analysis capability was implemented in the DeCART code which included modifying the depletion modules to perform nuclide decay calculations, implementing an assembly shuffling pattern description, and modifying iteration schemes. During the work, stability issues were uncovered with respect to converging simultaneously the neutron flux,more » isotopics, and fluid density and temperature distributions in 3-D. Relaxation factors were implemented which considerably improved the stability of the convergence. To demonstrate the capability two core designs were utilized, a reference UOX core and a CORAIL core. Full core equilibrium cycle calculations were performed on both cores and the discharge isotopics were compared. From this comparison it was noted that the improved modeling capability was not drastically different in its prediction of the discharge isotopics when compared to 2-D single assembly or 2-D core models. For fissile isotopes such as U-235, Pu-239, and Pu-241 the relative differences were 1.91%, 1.88%, and 0.59%), respectively. While this difference may not seem large it translates to mass differences on the order of tens of grams per assembly, which may be significant for the purposes of accounting of special nuclear material. (authors)« less
Plutonium oxalate precipitation for trace elemental determination in plutonium materials
Xu, Ning; Gallimore, David; Lujan, Elmer; ...
2015-05-26
In this study, an analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix.
PRODUCTION OF PLUTONIUM FROM PLUTONIUM FLUORIDE
Baker, R.D.
1959-06-01
Reduction of PuF/sub 4/ to metal is described. In the example given, PuF/sub 4/ is mixed with 0.3 mole I/sub 2/ per mole of Pu and Ca powder 25% in excess of that required for eduction of the Pu salt, and I/sub 2/ is added. The mixture is charged to a magnesia-lined steel bomb which is heated until reacted in a furnace. The Pu is reduced to metal and recovered as a slug after the bomb is cooled and opened. About 90% yield is obtained. (T.R.H.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, Amanda M.; Adami, Susan R.; Casella, Amanda J.
The solution chemistry of Pu in nitric acid is explored via electrochemistry and spectroelectrochemistry. By utilizing and comparing these techniques, an improved understanding of Pu behavior and its dependence on nitric acid concentration can be achieved. Here the Pu (III/IV) couple is characterized using cyclic voltammetry, square wave voltammetry, and a spectroelectrochemical Nernst step. Results indicate the formal reduction potential of the couple shifts negative with increasing acid concentration and reversible electrochemistry is no longer attainable above 6 M HNO3. Spectroelectrochemistry is also used to explore the irreversible oxidation of Pu(IV) to Pu(VI) and shine light on the mechanism andmore » acid dependence of the redox reaction.« less
Ye, Sheng-Hua; He, Xu-Jun; Ding, Liang-Xin; Pan, Zheng-Wei; Tong, Ye-Xiang; Wu, Mingmei; Li, Gao-Ren
2014-10-21
Novel PtCu alloy yolk-shell cubes were fabricated via the disproportionation and displacement reactions in Cu2O yolk-shell cubes, and they exhibit significantly improved catalytic activity and durability for methanol electrooxidation.
2018-05-15
The first image captured by one of NASA's Mars Cube One (MarCO) CubeSats. The image, which shows both the CubeSat's unfolded high-gain antenna at right and the Earth and its moon in the center, was acquired by MarCO-B on May 9. MarCO is a pair of small spacecraft accompanying NASA's InSight (Interior Investigations Using Seismic Investigations, Geodesy and Heat Transport) lander. Together, MarCO-A and MarCO-B are the first CubeSats ever sent to deep space. InSight is the first mission to ever explore Mars' deep interior. If the MarCO CubeSats make the entire journey to Mars, they will attempt to relay data about InSight back to Earth as the lander enters the Martian atmosphere and lands. MarCO will not collect any science, but are intended purely as a technology demonstration. They could serve as a pathfinder for future CubeSat missions. An annotated version is available at https://photojournal.jpl.nasa.gov/catalog/PIA22323
An Asymmetric Image Encryption Based on Phase Truncated Hybrid Transform
NASA Astrophysics Data System (ADS)
Khurana, Mehak; Singh, Hukum
2017-09-01
To enhance the security of the system and to protect it from the attacker, this paper proposes a new asymmetric cryptosystem based on hybrid approach of Phase Truncated Fourier and Discrete Cosine Transform (PTFDCT) which adds non linearity by including cube and cube root operation in the encryption and decryption path respectively. In this cryptosystem random phase masks are used as encryption keys and phase masks generated after the cube operation in encryption process are reserved as decryption keys and cube root operation is required to decrypt image in decryption process. The cube and cube root operation introduced in the encryption and decryption path makes system resistant against standard attacks. The robustness of the proposed cryptosystem has been analysed and verified on the basis of various parameters by simulating on MATLAB 7.9.0 (R2008a). The experimental results are provided to highlight the effectiveness and suitability of the proposed cryptosystem and prove the system is secure.
Monosodium glutamate in chicken and beef stock cubes using high-performance liquid chromatography.
Demirhan, Buket Er; Demirhan, Burak; Sönmez, Ceren; Torul, Hilal; Tamer, Uğur; Yentür, Gülderen
2015-01-01
In this survey monosodium glutamate (MSG) levels in chicken and beef stock cube samples were determined. A total number of 122 stock cube samples (from brands A, B, C, D) were collected from local markets in Ankara, Turkey. High-performance liquid chromatography with diode array detection (HPLC-DAD) was used for quantitative MSG determination. Mean MSG levels (±SE) in samples of A, B, C and D brands were 14.6 ± 0.2 g kg⁻¹, 11.9 ± 0.3 g kg⁻¹, 9.7 ± 0.1 g kg⁻¹ and 7.2 ± 0.1 g kg⁻¹, respectively. Differences between mean levels of brands were significant. Also, mean levels of chicken stock cube samples were lower than in beef stock cubes. Maximum limits for MSG in stock cubes are not specified in the Turkish Food Codex (TFC). Generally the limit for MSG in foods (except some foods) is established as 10 g kg⁻¹ (individually or in combination).
Ka-Band Parabolic Deployable Antenna (KaPDA) Enabling High Speed Data Communication for CubeSats
NASA Technical Reports Server (NTRS)
Sauder, Jonathan F.; Chahat, Nacer; Hodges, Richard; Thomson, Mark W.; Rahmat-Samii, Yahya
2015-01-01
CubeSats are at a very exciting point as their mission capabilities and launch opportunities are increasing. But as instruments become more advanced and operational distances between CubeSats and earth increase communication data rate becomes a mission-limiting factor. Improving data rate has become critical enough for NASA to sponsor the Cube Quest Centennial Challenge when: one of the key metrics is transmitting as much data as possible from the moon and beyond Currently, many CubeSats communicate on UHF bands and those that have high data rate abilities use S-band or X-band patch antennas. The CubeSat Aneas, which was launched in September 2012, pushed the envelope with a half-meter S-band dish which could achieve 100x the data rate of patch antennas. A half-meter parabolic antenna operating at Ka-band would increase data rates by over 100x that of the AMOS antenM and 10,000 that of X-band patch antennas.
NASA Astrophysics Data System (ADS)
Toscano, S.; IceCube Collaboration
2017-12-01
The IceCube Neutrino Observatory is a cubic-kilometer neutrino telescope located at the geographic South Pole. Buried deep under the Antarctic ice sheet, an array of 5160 Digital Optical Modules (DOMs) is used to capture the Cherenkov light emitted by relativistic particles generated from neutrino interactions. The main goal of IceCube is the detection of astrophysical neutrinos. In 2013 the IceCube neutrino telescope discovered a high-energy diffuse flux of neutrino events with energy ranging from tens of TeV up to few PeV of cosmic origin. Meanwhile, different analyses confirm the discovery and search for possible correlations with astrophysical sources. However, the source of these neutrinos remains a mystery, since no counterparts have been identified yet. In this contribution we give an overview of the detection principles of IceCube, the most recent results, and the plans for a next-generation neutrino detector, dubbed IceCube-Gen2.
Wind power research at Oregon State University. [for selecting windpowered machinery sites
NASA Technical Reports Server (NTRS)
Hewson, E. W.
1973-01-01
There have been two primary thrusts of the research effort to date, along with several supplementary ones. One primary area has been an investigation of the wind fields along coastal areas of the Pacific Northwest, not only at the shoreline but also for a number of miles inland and offshore as well. Estimates have been made of the influence of the wind turbulence as measured at coastal sites in modifying the predicted dependence of power generated on the cube of the wind speed. Wind flow patterns in the Columbia River valley have also been studied. The second primary thrust has been to substantially modify and improve an existing wind tunnel to permit the build up of a boundary layer in which various model studies will be conducted. One of the secondary studies involved estimating the cost of building an aerogenerator.
Analyzing Molecular Clouds with the Spectral Correlation Function
NASA Astrophysics Data System (ADS)
Rosolowsky, E. W.; Goodman, A. A.; Williams, J. P.; Wilner, D. J.
1997-12-01
The Spectral Correlation Function (SCF) is a new data analysis algorithm that measures how the properites of spectra vary from position to position in a spectral-line map. For each spectrum in a data cube, the SCF measures the ``difference" between that spectrum and a specified subset of its neighbors. This algorithm is intended for use on both simulated and observed position-position-velocity data cubes. In initial tests of the SCF, we have shown that a histogram of the SCF for a map is a good descriptor of the spatial-velocity distribution of material. In one test, we compare the SCF distributions for: 1) a real data cube; 2) a cube made from the real cube's spectra with randomized positions; and 3) the results of a preliminary MHD simulation by Gammie, Ostriker, and Stone. The results of the test show that the real cloud and the simulation are much closer to each other in their SCF distributions than is either to the randomized cube. We are now in the process of applying the SCF to a larger set of observed and simulated data cubes. Our ultimate aim is to use the SCF both on its own, as a descriptor of the spatial-kinetic properties of interstellar gas, and also as a tool for evaluating how well simulations resemble observations. Our expectation is that the SCF will be more discriminatory (less likely to produce a false match) than the data cube descriptors currently available.
NASA Technical Reports Server (NTRS)
Miner, R. V.
1997-01-01
Prototypical single-crystal NiAlCrX superalloys were studied to examine the effects of the common major alloying elements, Co, Mo, Nb, Ta, Ti, and W, on yielding behavior. The alloys contained about 10 at. pct Cr, 60 vol pct of the gamma' phase, and about 3 at. pct of X in the gamma'. The critical resolved shear stresses (CRSSs) for octahedral and primary cube slip were measured at 760 C, which is about the peak strength temperature. The CRSS(sub oct) and CRSS(sub cube) are discussed in relation to those of Ni, (Al, X) gamma' alloys taken from the literature and the gamma'/gamma lattice mismatch. The CRSS(sub oct) of the gamma + gamma' alloys reflected a similar compositional dependence to that of both the CRSS(sub cube) of the gamma' phase and the gamma'/gamma lattice parameter mismatch. The CRSS(sub cube) of the gamma + gamma' alloys also reflected the compositional dependence of the gamma'/gamma mismatch, but bore no similarity to that of CRSS(sub cube) for gamma' alloys since it is controlled by the gamma matrix. The ratio of CRSS(sub cube)/CRSS(sub oct) was decreased by all alloying elements except Co, which increased the ratio. The decrease in CRSS(sub cube)/CRSS(sub oct) was related to the degree in which elements partition to the gamma' rather than the gamma phase.
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.; Lehnert, K.; Zanzerkia, E. E.
2017-12-01
The United States National Science Foundation's EarthCube program is a community-driven activity aimed at transforming the conduct of geosciences research and education by creating a well-connected cyberinfrastructure for sharing and integrating data and knowledge across all geoscience disciplines in an open, transparent, and inclusive manner and to accelerate our ability to understand and predict the Earth system. After five years of community engagement, governance, and development activities, EarthCube is now transitioning into an implementation phase. In the first phase of implementing the EarthCube architecture, the project leadership has identified the following architectural components as the top three priorities, focused on technologies, interfaces and interoperability elements that will address: a) Resource Discovery; b) Resource Registry; and c) Resource Distribution and Access. Simultaneously, EarthCube is exploring international partnerships to leverage synergies with other e-infrastructure programs and projects in Europe, Australia, and other regions and discuss potential partnerships and mutually beneficial collaborations to increase interoperability of systems for advancing EarthCube's goals in an efficient and effective manner. In this session, we will present the progress of EarthCube on a number of fronts and engage geoscientists and data scientists in the future steps toward the development of EarthCube for advancing research and discovery in the geosciences. The talk will underscore the importance of strategic partnerships with other like eScience projects and programs across the globe.
Cheng, Kuo-Wei; Hsu, Shan-hui
2017-01-01
Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs) with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz) ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm) suspended in water. SPIO-PU hybrid NPs contained ~50–60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer) as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3]) or (9-(methylaminomethyl) anthracene [MAMA]) could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95%) without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg) and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers. PMID:28280341
Barratt, S R; Ennos, A R; Greenhalgh, M; Robson, G D; Handley, P S
2003-01-01
To investigate the relationship between soil water holding capacity (WHC) and biodegradation of polyester polyurethane (PU) and to quantify and identify the predominant degrading micro-organisms in the biofilms on plastic buried in soil. High numbers of both fungi and bacteria were recovered from biofilms on soil-buried dumb-bell-shaped pieces of polyester PU after 44 days at 15-100% WHC. The tensile strength of the polyester PU was reduced by up to 60% over 20-80% soil WHC, but no reduction occurred at 15, 90 or 100% soil WHC. A PU agar clearance assay indicated that fungi, but not bacteria were, the major degrading organisms in the biofilms on polyester PU and 10-30% of all the isolated fungi were able to degrade polyester PU in this assay. A 5.8S rDNA sequencing identified 13 strains of fungi representing the three major colony morphology types responsible for PU degradation. Sequence homology matches identified these strains as Nectria gliocladioides (five strains), Penicillium ochrochloron (one strain) and Geomyces pannorum (seven strains). Geomyces pannorum was the predominant organism in the biofilms comprising 22-100% of the viable polyester PU degrading fungi. Polyester PU degradation was optimum under a wide range of soil WHC and the predominant degrading organisms were fungi. By identifying the predominant degrading fungi in soil and studying the optimum WHC conditions for degradation of PU it allows us to better understand how plastics are broken down in the environment such as in landfill sites.
Cheng, Kuo-Wei; Hsu, Shan-Hui
2017-01-01
Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs) with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz) ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm) suspended in water. SPIO-PU hybrid NPs contained ~50-60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer) as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3]) or (9-(methylaminomethyl) anthracene [MAMA]) could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95%) without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg) and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers.
NASA Astrophysics Data System (ADS)
Belin, Renaud C.; Strach, Michal; Truphémus, Thibaut; Guéneau, Christine; Richaud, Jean-Christophe; Rogez, Jacques
2015-10-01
The region of the U-Pu-O phase diagram delimited by the compounds UO2-PuO2-Pu2O3 is known to exhibit a miscibility gap at low temperature. Consequently, MOX fuels with a composition entering this region could decompose into two fluorite phases and thus exhibit chemical heterogeneities. The experimental data on this domain found in the literature are scarce and usually provided using DTA that is not suitable for the investigation of such decomposition phenomena. In the present work, new experimental data, i.e. crystallographic phases, lattice parameters, phase fractions and temperature of phase separation, were measured in the composition range 0.14 < Pu/(U + Pu) < 0.62 and 1.85 < O/(U + Pu) < 2 from 298 to 1750 K using a novel in situ high temperature X-ray diffraction apparatus. A very good agreement is found between the temperature of phase separation determined from our results and using the thermodynamic model of the U-Pu-O system based on the CALPHAD method. Also, the combined use of thermodynamic calculations and XRD results refinement proved helpful in the determination of the O/M ratio of the samples during cooling. The methodology used in the current work might be useful to investigate other oxides systems exhibiting a miscibility gap.
2014-02-11
ISS038-E-044916 (11 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the Small Satellite Orbital Deployer (SSOD). The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
SpaceCube Technology Brief Hybrid Data Processing System
NASA Technical Reports Server (NTRS)
Petrick, Dave
2016-01-01
The intent of this presentation is to give status to multiple audience types on the SpaceCube data processing technology at GSFC. SpaceCube has grown to support multiple missions inside and outside of NASA, and we are being requested to give technology overviews in various forums.
Applications of Nano-Satellites and Cube-Satellites in Microwave and RF Domain
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Goverdhanam, Kavita
2015-01-01
This paper presents an overview of microwave technologies for Small Satellites including NanoSats and CubeSats. In addition, examples of space communication technology demonstration projects using CubeSats are presented. Furthermore, examples of miniature instruments for Earth science measurements are discussed.
Applications of Nano-satellites and Cube-satellites in Microwave and RF Domain
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Goverdhanam, Kavita
2015-01-01
This paper presents an overview of microwave technologies for Small Satellites including NanoSats and CubeSats. In addition, examples of space communication technology demonstration projects using CubeSats are presented. Furthermore, examples of miniature instruments for Earth science measurements are discussed.
Knope, Karah E.; Skanthakumar, S.; Soderholm, L.
2015-10-13
We report the room temperature synthesis and structural characterization of a μ2-hydroxobridged PuIV dimer obtained from an acidic, nitric acid solution. The discrete Pu 2(OH) 2(NO 3) 6(H 2O) 4 moiety crystallized with two distinct crystal structures, (1) [Pu 2(OH) 2(NO 3) 6(H 2O) 4] 2·11H 2O and (2) Pu 2(OH) 2(NO 3) 6(H 2O) 4·2H 2O, which differ primarily in the number of incorporated water molecules. High-energy X-ray scattering (HEXS) data obtained from the mother liquor showed evidence of a correlation at 3.7(10) Å but only after concentration of the stock solution. This distance is consistent with the dihydroxo-bridgedmore » distance of 3.799(1) Å seen in the solid-state structure as well as with the known Pu-Pu distance in PuO 2. The structural characterization of a dihydroxo-bridged Pu moiety is discussed in terms of its relevance to the underlying mechanisms of tetravalent-metal-ion condensation« less
Separation of plutonium from lanthanum by electrolysis in LiCl KCl onto molten bismuth electrode
NASA Astrophysics Data System (ADS)
Serp, J.; Lefebvre, P.; Malmbeck, R.; Rebizant, J.; Vallet, P.; Glatz, J.-P.
2005-04-01
This work presents a study on the electroseparation of plutonium from lanthanum using molten bismuth electrodes in LiCl-KCl eutectic at 733 K. The reduction potentials of Pu3+ and La3+ ions were measured on a Bi thin film electrode using cyclic voltammetry (CV). A difference between the peak potentials for the formation of PuBi2 and LaBi2 of approximately 100 mV was found. Separation tests were then carried out using different current densities and salt phase compositions between a plutonium rod anode and an unstirred molten Bi cathode in order to evaluate the efficiency of an electrolytic separation process. At a current density of 12 mA/cm2/wt% (Pu3+), only Pu3+ ions are reduced into the molten Bi electrode, leaving La3+ ions in the salt melt. Similar results were found at two different Pu/La concentration ratios ([Pu]/[La] = 4 and 10). At a current density of 26 mA/cm2/wt% (Pu3+), co-reduction of Pu and La was observed as expected by the large negative potential of the Bi cathode during the separation test.
Will, Britta; Vogler, Thomas O.; Narayanagari, Swathi; Bartholdy, Boris; Todorova, Tihomira I.; da Silva Ferreira, Mariana; Chen, Jiahao; Yu, Yiting; Mayer, Jillian; Barreyro, Laura; Carvajal, Luis; Ben Neriah, Daniela; Roth, Michael; van Oers, Johanna; Schaetzlein, Sonja; McMahon, Christine; Edelmann, Winfried; Verma, Amit; Steidl, Ulrich
2016-01-01
Modest transcriptional changes caused by genetic or epigenetic mechanisms are frequent in human cancer. Although loss or near-complete loss of the hematopoietic transcription factor PU.1 induces acute myeloid leukemia (AML) in mice, a similar degree of PU.1 impairment is exceedingly rare in human AML; yet moderate PU.1 inhibition is common in AML patients. We assessed functional consequences of modest reduction of PU.1 expression on leukemia development in mice harboring DNA lesions resembling those acquired during human stem cell aging. Heterozygous deletion of an enhancer of PU.1, which resulted in 35% reduction of PU.1 expression, was sufficient to induce myeloid biased preleukemic stem cells and subsequent transformation to AML in a DNA mismatch repair-deficient background. AML progression was mediated by inhibition of expression of a PU.1 cooperating transcription factor, Irf8. Strikingly, we found significant molecular similarities with human myelodysplastic syndrome and AML. This study demonstrates that minimal reduction of a key lineage-specific transcription factor that commonly occurs in human disease is sufficient to initiate cancer development and provides mechanistic insight into the formation and progression of preleukemic stem cells in AML. PMID:26343801
Electrowinning of U-Pu onto inert solid cathode in LiCl-KCl eutectic melts containing UCl3 and PuCl3
NASA Astrophysics Data System (ADS)
Sakamura, Yoshiharu; Murakami, Tsuyoshi; Tada, Kohei; Kitawaki, Shinichi
2018-04-01
Electrowinning process was investigated for extracting actinides from molten salts used for the pyrochemical reprocessing of spent nuclear fuels. The separation of actinides from lanthanides is expected to be enhanced by employing inert solid cathodes due to larger potential differences on these cathodes. In this study, the co-deposition behavior of Pu and U metals onto an inert solid cathode made of tungsten was examined in LiCl-KCl eutectic melts containing UCl3 and PuCl3 at 773 K. The standard potential of U3+/U is 0.31 V more positive than that of Pu3+/Pu. The U3+ concentration was varied in the range of 0.11-0.66 wt%, while the Pu3+ concentration was maintained at approximately 2.9 wt%. When the U3+ concentration was not sufficiently low, the deposited U metal readily grew outward from the electrode surface and the electrode surface area rapidly increased, which facilitated only the deposition of U metal. It was estimated that metallic Pu can be efficiently collected along with U at U3+ concentrations lower than ∼0.2 wt%.
Kong, Xiaohua; Zhao, Liyan; Curtis, Jonathan M
2016-11-05
High solids content polyurethane (PU) nanocomposites with enhanced thermal and mechanical properties were produced by incorporating of low fractions of cellulose nanocrystals (CNC) in a solvent-free process. This involved the use of a simple procedure to produce well dispersed and stable suspensions of CNC in biobased polyols, which were then used to produce PU-CNC nanocomposites. Transmission electron microscopy revealed that individual CNC particles were dispersed homogenously within the PU matrix. FTIR results suggested that CNC particles are covalently bonded to the PU molecular chains during polymerization. The thermal mechanical properties of the nanocomposites are significantly improved over pure PU as indicated by differential scanning calorimetry and dynamic mechanical analysis. Compared to pure PU, the PU nanocomposites made with the addition of only 0.5% of CNC had glass transition temperatures that were 6°C higher, their Young's moduli were about 10% higher and their abrasion resistance was higher by about 25%. The optimal composition contains only 0.5% CNC (w/w) which indicates that there is good potential for utilization of low levels of CNC for reinforcement of PU composites made using biobased polyols. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ikeda-Ohno, Atsushi; Harrison, Jennifer J; Thiruvoth, Sangeeth; Wilsher, Kerry; Wong, Henri K Y; Johansen, Mathew P; Waite, T David; Payne, Timothy E
2014-09-02
During the 1960s, radioactive waste containing small amounts of plutonium (Pu) and americium (Am) was disposed in shallow trenches at the Little Forest Burial Ground (LFBG), located near the southern suburbs of Sydney, Australia. Because of periodic saturation and overflowing of the former disposal trenches, Pu and Am have been transferred from the buried wastes into the surrounding surface soils. The presence of readily detected amounts of Pu and Am in the trench waters provides a unique opportunity to study their aqueous speciation under environmentally relevant conditions. This study aims to comprehensively investigate the chemical speciation of Pu and Am in the trench water by combining fluoride coprecipitation, solvent extraction, particle size fractionation, and thermochemical modeling. The predominant oxidation states of dissolved Pu and Am species were found to be Pu(IV) and Am(III), and large proportions of both actinides (Pu, 97.7%; Am, 86.8%) were associated with mobile colloids in the submicron size range. On the basis of this information, possible management options are assessed.
The incorporation of plutonium in lanthanum zirconate pyrochlore
NASA Astrophysics Data System (ADS)
Gregg, Daniel J.; Zhang, Yingjie; Middleburgh, Simon C.; Conradson, Steven D.; Triani, Gerry; Lumpkin, Gregory R.; Vance, Eric R.
2013-11-01
The incorporation of plutonium (Pu) within lanthanum zirconate pyrochlore was investigated using air, argon, and N2-3.5%H2 sintering atmospheres together with Ca2+ and Sr2+ incorporation for charge compensation. The samples have been characterised in the first instance by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectroscopy (DRS). The results show Pu can be exchanged for La3+ on the A-site with and without charge compensation and for Zr4+ on the B-site. DRS measurements were made over the wavenumber range of 4000-19,000 cm-1 and the Pu in all air- and argon-sintered samples was found to be present as Pu4+ while that in samples sintered in N2-3.5%H2 was present as Pu3+. The Pu valence was confirmed for three of the samples using X-ray near-edge absorption spectroscopy (XANES). Pu valences >4+ were not observed in any of the samples.
NASA Astrophysics Data System (ADS)
Goclon, Jakub; Panczyk, Tomasz; Winkler, Krzysztof
2018-03-01
Considering the varied applications of hybrid polymer/carbon nanotube composites and the constant progress in the synthesis methods of such materials, we report a theoretical study of interfacial layer formation between pristine single-wall carbon nanotubes (SWCNTs) and polyurethane (PU) using molecular dynamic simulations. We vary the SWCNT diameter and the number of PU chains to examine various PU-SWCNT interaction patterns. Our simulations indicate the important role of intra-chain forces in PU. No regular polymeric structures could be identified on the carbon nanotube surface during the simulations. We find that increasing the SWCNT diameter results in stronger polymer binding. However, higher surface loadings of PU lead to stronger interpenetration by the polymeric segments; this effect is more apparent for SWCNTs with small diameters. Our core finding is that the attached PU binds most strongly to the carbon nanotubes with the largest diameters. Polymer dynamics reveal the loose distribution of PU chains in these systems.
Determination of 241Pu in low-level radioactive wastes from reactors.
Martin, J E
1986-11-01
Plutonium-241 is unique in low-level radioactive wastes (LLW) from nuclear power plants because it is the only significant beta-emitting transuranic nuclide in LLW, has a relatively short half-life of 14.4 y, and has a fairly high allowable concentration for shallow land burial. Radiochemical separation of Pu followed by liquid scintillation analysis was used to quantitate 241Pu in a wide range of solid, semi-solid, and liquid LLW samples from two nuclear plants in Michigan. The 241Pu concentrations varied considerably by sample type and reactor operational period as did their correlation with 137Cs, 144Ce, 239Pu and 240Pu concentrations in the same sample. These patterns were also found in reported data for 241Pu in LLW from other reactors, raising the difficulty of accurately determining the inventory (or source term) in a LLW shallow land burial site and its implications for predicting and controlling the future environmental and public health impacts of such disposal.
NASA Astrophysics Data System (ADS)
Chamizo, E.; García-León, M.; Synal, H.-A.; Suter, M.; Wacker, L.
2006-08-01
In 1966, the nuclear fuel of two thermonuclear bombs was released over the Spanish region of Palomares, due to a B52 bomber accident during a refuelling operation. Since then, much effort has been made to assess its impact to the different environmental compartments of this area in South-East Spain, mostly by measuring the 239+240Pu activity concentration and the 238Pu/239+240Pu activity ratio. Nevertheless, these measurements do not give enough information on the problem. In order to recognize unambiguously small traces of the weapon-grade plutonium released in the accident, the ratio of the two major isotopes of plutonium, 240Pu/239Pu, has to be determined. In this work, this ratio has been measured in low- and high-activity samples from Palomares by means of low-energy accelerator mass spectrometry (AMS). That way, we will show the potential of the new generation of compact AMS facilities in terms of plutonium characterization at ultra-trace levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofstetter, K.J.; Sigg, R.
1990-12-31
A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in eachmore » of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofstetter, K.J.; Sigg, R.
1990-01-01
A number of concrete culverts used to retrievably store drummed, dry, radioactive waste at the Savannah River Site (SRS), were suspected of containing ambiguous quantities of transuranic (TRU) nuclides. These culverts were assayed in place for Pu-239 content using thermal and fast neutron counting techniques. High resolution gamma-ray spectroscopy on 17 culverts, having neutron emission rates several times higher than expected, showed characteristic gamma-ray signatures of neutron emitters other than Pu-239 (e.g., Pu-238, Pu/Be, or Am/Be neutron sources). This study confirmed the Pu-239 content of the culverts with anomalous neutron rates and established limits on the Pu-239 mass in eachmore » of the 17 suspect culverts by in-field, non-intrusive gamma-ray measurements.« less
Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS
Isselhardt, B. H.; Savina, M. R.; Kucher, A.; ...
2015-09-01
Resonance ionization mass spectrometry (RIMS) holds the promise of rapid, isobar-free quantification of actinide isotope ratios in as-received materials (i.e. not chemically purified). Recent progress in achieving this potential using two Pu test materials is presented. RIMS measurements were conducted multiple times over a period of two months on two different Pu solutions deposited on metal surfaces. Measurements were bracketed with a Pu isotopic standard, and yielded absolute accuracies of the measured 240Pu/ 239Pu ratios of 0.7% and 0.58%, with precisions (95% confidence intervals) of 1.49% and 0.91%. In conclusion, the minor isotope 238Pu was also quantified despite the presencemore » of a significant quantity of 238U in the samples.« less
Learning Experiences in a Giant Interactive Environment: Insights from The Cube
ERIC Educational Resources Information Center
Stoodley, Ian; Sayyad Abdi, Elham; Bruce, Christine; Hughes, Hilary
2018-01-01
In November 2012, Queensland University of Technology in Australia launched a giant interactive learning environment known as "The Cube". This article reports a phenomenographic investigation into visitors' different experiences of learning in The Cube. At present very little is known about people's learning experience in spaces…
Search for counterpart to IceCube-171015A with ANTARES
NASA Astrophysics Data System (ADS)
Dornic, Damien; Colei, Alexis
2017-10-01
Damien Dornic (CPPM/CNRS) and Alexis Coleiro (IFIC/APC) report on behalf of the ANTARES Collaboration. Using online data from the ANTARES detector, we have performed a follow-up analysis of the recently reported high-energy starting event (HESE) neutrino IceCube-171015 (AMON IceCube HESE 56068624_130126).
Extinct 244Pu in ancient zircons.
Turner, Grenville; Harrison, T Mark; Holland, Greg; Mojzsis, Stephen J; Gilmour, Jamie
2004-10-01
We have found evidence, in the form of fissiogenic xenon isotopes, for in situ decay of 244Pu in individual 4.1- to 4.2-billion-year-old zircons from the Jack Hills region of Western Australia. Because of its short half-life, 82 million years, 244Pu was extinct within 600 million years of Earth's formation. Detrital zircons are the only known relics to have survived from this period, and a study of their Pu geochemistry will allow us to date ancient metamorphic events and determine the terrestrial Pu/U ratio for comparison with the solar ratio.
Ferro- and antiferro-magnetism in (Np, Pu)BC
NASA Astrophysics Data System (ADS)
Klimczuk, T.; Shick, A. B.; Kozub, A. L.; Griveau, J.-C.; Colineau, E.; Falmbigl, M.; Wastin, F.; Rogl, P.
2015-04-01
Two new transuranium metal boron carbides, NpBC and PuBC, have been synthesized. Rietveld refinements of powder XRD patterns of {Np,Pu}BC confirmed in both cases isotypism with the structure type of UBC. Temperature dependent magnetic susceptibility data reveal antiferromagnetic ordering for PuBC below TN = 44 K, whereas ferromagnetic ordering was found for NpBC below TC = 61 K. Heat capacity measurements prove the bulk character of the observed magnetic transition for both compounds. The total energy electronic band structure calculations support formation of the ferromagnetic ground state for NpBC and the antiferromagnetic ground state for PuBC.
Kim, Hwi; Min, Sung-Wook; Lee, Byoungho
2008-12-01
Geometrical optics analysis of the structural imperfection of retroreflection corner cubes is described. In the analysis, a geometrical optics model of six-beam reflection patterns generated by an imperfect retroreflection corner cube is developed, and its structural error extraction is formulated as a nonlinear optimization problem. The nonlinear conjugate gradient method is employed for solving the nonlinear optimization problem, and its detailed implementation is described. The proposed method of analysis is a mathematical basis for the nondestructive optical inspection of imperfectly fabricated retroreflection corner cubes.
NASA Astrophysics Data System (ADS)
Liu, Hongwei; Liu, Jiangwen; Su, Guangcai; Li, Weizhou; Zeng, Jianmin; Hu, Zhiliu
2012-10-01
The crystallography of body-centered-cube to face-centered cube (bcc-to-fcc) diffusion phase transformations in a duplex stainless steel and a Cu-Zn alloy, including long axis, orientation relationship (OR), habit plane (HP), and dislocation spacing, is successfully interpreted with one-step rotation from the Bain lattice relationship by applying a simplified invariant line (IL) analysis. It is proposed that the dislocation slipping direction in the matrix plays an important role in controlling the crystallography of precipitation.
NASA Astrophysics Data System (ADS)
Heald, George
2017-08-01
RM-CLEAN reads in dirty Q and U cubes, generates rmtf based on the frequencies given in an ASCII file, and cleans the RM spectra following the algorithm given by Brentjens (2007). The output cubes contain the clean model components and the CLEANed RM spectra. The input cubes must be reordered with mode=312, and the output cubes will have the same ordering and thus must be reordered after being written to disk. RM-CLEAN runs as a MIRIAD (ascl:1106.007) task and a Python wrapper is included with the code.
NASA Astrophysics Data System (ADS)
Khachaturov, R. V.
2015-01-01
The basic properties of a new type of lattices—a lattice of cubes—are described. It is shown that, with a suitable choice of union and intersection operations, the set of all subcubes of an N-cube forms a lattice, which is called a lattice of cubes. Algorithms for constructing such lattices are described, and the results produced by these algorithms in the case of lattices of various dimensions are illustrated. It is proved that a lattice of cubes is a lattice with supplements, which makes it possible to minimize and maximize supermodular functions on it. Examples of such functions are given. The possibility of applying previously developed efficient optimization algorithms to the formulation and solution of new classes of problems on lattices of cubes.
Capability to Recover Plutonium-238 in H-Canyon/HB-Line - 13248
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R.
2013-07-01
Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site hadmore » previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np- 237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-Canyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase- 3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ∼2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase- 1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material. (authors)« less
Design, Analysis and Testing of a PRSEUS Pressure Cube to Investigate Assembly Joints
NASA Technical Reports Server (NTRS)
Yovanof, Nicolette; Lovejoy, Andrew E.; Baraja, Jaime; Gould, Kevin
2012-01-01
Due to its potential to significantly increase fuel efficiency, the current focus of NASA's Environmentally Responsible Aviation Program is the hybrid wing body (HWB) aircraft. Due to the complex load condition that exists in HWB structure, as compared to traditional aircraft configurations, light-weight, cost-effective and manufacturable structural concepts are required to enable the HWB. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is one such structural concept. A building block approach for technology development of the PRSEUS concept is being conducted. As part of this approach, a PRSEUS pressure cube was developed as a risk reduction test article to examine a new integral cap joint concept. This paper describes the design, analysis and testing of the PRSEUS pressure cube test article. The pressure cube was required to withstand a 2P, 18.4 psi, overpressure load requirement. The pristine pressure cube was tested to 2.2P with no catastrophic failure. After the addition of barely visible impact damage, the cube was pressure loaded to 48 psi where catastrophic failure occurred, meeting the scale-up requirement. Comparison of pretest and posttest analyses with the cube test response agree well, and indicate that current analysis methods can be used to accurately analyze PRSEUS structure for initial failure response.
NASA Astrophysics Data System (ADS)
Miszczyk, M. M.; Paul, H.
2015-08-01
The cube texture formation during primary recrystallization was analysed in plane strain deformed samples of a commercial AA1050 alloy and an Al-1%wt.Mn model alloy single crystal of the Goss{110}<001> orientation. The textures were measured with the use of X-ray diffraction and scanning electron microscopy equipped with an electron backscattered diffraction facility. After recrystallization of the Al-1%wt.Mn single crystal, the texture of the recrystallized grains was dominated by four variants of the S{123}<634> orientation. The cube grains were only sporadically detected by the SEM/EBSD system. Nevertheless, an increased density of <111> poles corresponding to the cube orientation was observed. The latter was connected with the superposition of four variants of the S{123}<634> orientation. This indicates that the cube texture after the recrystallization was a ‘compromise texture’. In the case of the recrystallized AA1050 alloy, the strong cube texture results from both the increased density of the particular <111> poles of the four variants of the S orientation and the ∼40°(∼< 111>)-type rotation. The first mechanism transforms the Sdef-oriented areas into Srex ones, whereas the second the near S-oriented, as-deformed areas into near cube-oriented grains.
Preserving Plutonium-244 as a National Asset
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, Bradley D; Alexander, Charles W; Benker, Dennis
Plutonium-244 (244 Pu) is an extremely rare and long-lived isotope of plutonium with a half-life of 80 million years. Measureable amounts of 244 Pu are found in neither reactor-grade nor weapons-grade plutonium. Production of this isotope requires a very high thermal flux to permit the two successive neutron captures that convert 242 Pu to 243 Pu to 244 Pu, particularly given the short (about 5 hour) half-life of 243 Pu. Such conditions simply do not exist in plutonium production processes. Therefore, 244 Pu is ideal for precise radiochemical analyses measuring plutonium material properties and isotopic concentrations in items containing plutonium.more » Isotope dilution mass spectrometry is about ten times more sensitive when using 244 Pu rather than 242 Pu for determining plutonium isotopic content. The isotope can also be irradiated in small quantities to produce superheavy elements. The majority of the existing global inventory of 244 Pu is contained in the outer housing of Mark-18A targets at the Savannah River Site (SRS). The total inventory is about 20 grams of 244 Pu in about 400 grams of plutonium distributed among the 65 targets. Currently, there are no specific plans to preserve these targets. Although the cost of separating and preserving this material would be considerable, it is trivial in comparison to new production costs. For all practical purposes, the material is irreplaceable, because new production would cost billions of dollars and require a series of irradiation and chemical separation cycles spanning up to 50 years. This paper will discuss a set of options for overcoming the significant challenges to preserve the 244 Pu as a National Asset: (1) the need to relocate the material from SRS in a timely manner, (2) the need to reduce the volume of material to the extent possible for storage, and (3) the need to establish an operational capability to enrich the 244 Pu in significant quantities. This paper suggests that if all the Mark-18A plutonium is separated, it would occupy a small volume and would be inexpensive to store while an enrichment capability is developed. Very small quantities could be enriched in existing mass separators to support critical needs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Murray E.; Tao, Yong
Cerium oxide (CeO2) dust is recommended as a surrogate for plutonium oxide (PuO2) in airborne release fraction experiments. The total range of applicable particle sizes for PuO2 extends from 0.0032 μm (the diameter of a single PuO2 molecule) to 10 μm (the defined upper boundary for respirable particles). For particulates with a physical particle diameter of 1.0 μm, the corresponding aerodynamic diameters for CeO2 and PuO2 are 2.7 μm and 3.4 μm, respectively. Cascade impactor air samplers are capable of measuring the size distributions of CeO2 or PuO2 particulates. In this document, the aerodynamic diameters for CeO2 and PuO2 weremore » calculated for seven different physical diameters (0.0032, 0.02, 0.11, 0.27, 1.0, 3.2, and 10 μm). For cascade impactor measurements, CeO2 and PuO2 particulates with the same physical diameter would be collected onto the same or adjacent collection substrates. The difference between the aerodynamic diameter of CeO2 and PuO2 particles (that have the same physical diameter) is 39% of the resolution of a twelve-stage MSP Inc. 125 cascade impactor, and 34% for an eight-stage Andersen impactor. An approach is given to calculate the committed effective dose (CED) coefficient for PuO2 aerosol particles, compared to a corresponding aerodynamic diameter of CeO2 particles. With this approach, use of CeO2 as a surrogate for PuO2 material would follow a direct conversion based on a molar equivalent. In addition to the analytical information developed for this document, several US national labs have published articles about the use of CeO2 as a PuO2 surrogate. Different physical and chemical aspects were considered by these investigators, including thermal properties, ceramic formulations, cold pressing, sintering, molecular reactions, and mass loss in high temperature gas flows. All of those US national lab studies recommended the use of CeO2 as a surrogate material for PuO2.« less
Srncik, M; Tims, S G; De Cesare, M; Fifield, L K
2014-06-01
The variation of the (236)U and (239)Pu concentrations as a function of depth has been studied in a soil profile at a site in the Southern Hemisphere well removed from nuclear weapon test sites. Total inventories of (236)U and (239)Pu as well as the (236)U/(239)Pu isotopic ratio were derived. For this investigation a soil core from an undisturbed forest area in the Herbert River catchment (17°30' - 19°S) which is located in north-eastern Queensland (Australia) was chosen. The chemical separation of U and Pu was carried out with a double column which has the advantage of the extraction of both elements from a relatively large soil sample (∼20 g) within a day. The samples were measured by Accelerator Mass Spectrometry using the 14UD pelletron accelerator at the Australian National University. The highest atom concentrations of both (236)U and (239)Pu were found at a depth of 2-3 cm. The (236)U/(239)Pu isotopic ratio in fallout at this site, as deduced from the ratio of the (236)U and (239)Pu inventories, is 0.085 ± 0.003 which is clearly lower than the Northern Hemisphere value of ∼0.2. The (236)U inventory of (8.4 ± 0.3) × 10(11) at/m(2) was more than an order of magnitude lower than values reported for the Northern Hemisphere. The (239)Pu activity concentrations are in excellent agreement with a previous study and the (239+240)Pu inventory was (13.85 ± 0.29) Bq/m(2). The weighted mean (240)Pu/(239)Pu isotopic ratio of 0.142 ± 0.005 is slightly lower than the value for global fallout, but our results are consistent with the average ratio of 0.173 ± 0.027 for the southern equatorial region (0-30°S). Copyright © 2014 Elsevier Ltd. All rights reserved.
A multifunctional solar panel antenna for cube satellites
NASA Astrophysics Data System (ADS)
Fawole, Olutosin C.
The basic cube satellite (CubeSat) is a modern small satellite that has a standard size of about one liter (the 1U CubeSat). Three 1U CubeSats could be stacked to form a 3U CubeSat. Their low-cost, short development time, and ease of deployment make CubeSats popular for space research, geographical information gathering, and communication applications. An antenna is a key part of the CubeSat communication subsystem. Traditionally, antennas used on CubeSats are wrapped-up wire dipole antennas, which are deployed after satellite launch. Another antenna type used on CubeSats is the patch antenna. In addition to their low gain and efficiency, deployable dipole antennas may also fail to deploy on satellite launch. On the other hand, a solid patch antenna will compete for space with solar cells when placed on a CubeSat face, interfering with satellite power generation. Slot antennas are promising alternatives to dipole and patch antennas on CubeSats. When excited, a thin slot aperture etched on a conductive sheet (ground plane) is an efficient bidirectional radiator. This open slot antenna can be backed by a reflector or cavity for unidirectional radiation, and solar cells can be placed in spaces on the ground plane not occupied by the slot. The large surface areas of 3U CubeSats can be exploited for a multifunctional antenna by integrating multiple thin slot radiators, which are backed by a thin cavity on the CubeSat surfaces. Solar cells can then be integrated on the antenna surface. Polarization diversity and frequency diversity improve the overall performance of a communication system. Having a single radiating structure that could provide these diversities is desired. It has been demonstrated that when a probe excites a square cavity with two unequal length crossed-slots, the differential radiation from the two slots combines in the far-field to yield circular polarization. In addition, it has been shown that two equal-length proximal slots, when both fed with a stripline, resonate at a frequency due to their original lengths, and also resonate at a lower frequency due to mutual coupling between the slots, leading to a dual-band operation. The multifunctional antenna designs presented are harmonizations and extensions of these two independent works. In the multifunctional antenna designs presented, multiple slots were etched on a 83 mm x 340 mm two-layer shallow cavity. The slots were laid out on the cavity such when the cavity was excited by a probe at a particular point, the differential radiation from the slots would combine in the far-field to yield Left-Handed Circular Polarization (LHCP). Furthermore, when the cavity was excited by another probe at an opposite point, the slots would produce Right-Handed Circular Polarization (RHCP). In addition, as forethought, these slots were laid out on the cavity such that some slots were close together enough to give Linearly Polarized (LP) dual-band operation when fed with a stripline. This antenna was designed and optimized via computer simulations, fabricated using Printed Circuit Board (PCB) technology, and characterized using a Vector Network Analyzer (VNA) and NSI Far Field Systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begg, James D.; Zavarin, Mavrik; Kersting, Annie B.
Desorption of plutonium (Pu) will likely control the extent to which it is transported by mineral colloids. In this article, we evaluated the adsorption/desorption behavior of Pu on SWy-1 montmorillonite colloids at pH 4, pH 6, and pH 8 using batch adsorption and flow cell desorption experiments. After 21 days adsorption, Pu(IV) affinity for montmorillonite displayed a pH dependency, with K d values highest at pH 4 and lowest at pH 8. The pH 8 experiment was further allowed to equilibrate for 6 months and showed an increase in K d, indicating that true sorption equilibrium was not achieved withinmore » the first 21 days. For the desorption experiments, aliquots of the sorption suspensions were placed in a flow cell, and Pu-free solutions were then pumped through the cell for a period of 12 days. Changes in influent solution flow rate were used to investigate the kinetics of Pu desorption and demonstrated that it was rate-limited over the experimental timescales. At the end of the 12-day flow cell experiments, the extent of desorption was again pH dependent, with pH 8 > pH 6 > pH 4. Further, at pH 8, less Pu was desorbed after an adsorption contact time of 6 months than after a contact time of 21 days, consistent with an aging of Pu on the clay surface. In addition, a conceptual model for Pu adsorption/desorption that incorporated known surface-mediated Pu redox reactions was used to fit the experimental data. The resulting rate constants indicated processes occurring on timescales of months and even years which may, in part, explain observations of clay colloid-facilitated Pu transport on decadal timescales. Importantly, however, our results also imply that migration of Pu adsorbed to montmorillonite colloids at long (50–100 year) timescales under oxic conditions may not be possible without considering additional phenomena, such as co-precipitation.« less
Desorption of plutonium from montmorillonite: An experimental and modeling study
Begg, James D.; Zavarin, Mavrik; Kersting, Annie B.
2017-01-15
Desorption of plutonium (Pu) will likely control the extent to which it is transported by mineral colloids. In this article, we evaluated the adsorption/desorption behavior of Pu on SWy-1 montmorillonite colloids at pH 4, pH 6, and pH 8 using batch adsorption and flow cell desorption experiments. After 21 days adsorption, Pu(IV) affinity for montmorillonite displayed a pH dependency, with K d values highest at pH 4 and lowest at pH 8. The pH 8 experiment was further allowed to equilibrate for 6 months and showed an increase in K d, indicating that true sorption equilibrium was not achieved withinmore » the first 21 days. For the desorption experiments, aliquots of the sorption suspensions were placed in a flow cell, and Pu-free solutions were then pumped through the cell for a period of 12 days. Changes in influent solution flow rate were used to investigate the kinetics of Pu desorption and demonstrated that it was rate-limited over the experimental timescales. At the end of the 12-day flow cell experiments, the extent of desorption was again pH dependent, with pH 8 > pH 6 > pH 4. Further, at pH 8, less Pu was desorbed after an adsorption contact time of 6 months than after a contact time of 21 days, consistent with an aging of Pu on the clay surface. In addition, a conceptual model for Pu adsorption/desorption that incorporated known surface-mediated Pu redox reactions was used to fit the experimental data. The resulting rate constants indicated processes occurring on timescales of months and even years which may, in part, explain observations of clay colloid-facilitated Pu transport on decadal timescales. Importantly, however, our results also imply that migration of Pu adsorbed to montmorillonite colloids at long (50–100 year) timescales under oxic conditions may not be possible without considering additional phenomena, such as co-precipitation.« less
The hematopoietic cell-specific transcription factor PU.1 is critical for expression of CD11c.
Yashiro, Takuya; Kasakura, Kazumi; Oda, Yoshihito; Kitamura, Nao; Inoue, Akihito; Nakamura, Shusuke; Yokoyama, Hokuto; Fukuyama, Kanako; Hara, Mutsuko; Ogawa, Hideoki; Okumura, Ko; Nishiyama, Makoto; Nishiyama, Chiharu
2017-02-01
PU.1 is a hematopoietic cell-specific transcription factor belonging to the Ets family, which plays an important role in the development of dendritic cells (DCs). CD11c (encoded by Itgax) is well established as a characteristic marker of hematopoietic lineages including DCs. In the present study, we analyzed the role of PU.1 (encoded by Spi-1) in the expression of CD11c. When small interfering RNA (siRNA) for Spi-1 was introduced into bone marrow-derived DCs (BMDCs), the mRNA level and cell surface expression of CD11c were dramatically reduced. Using reporter assays, the TTCC sequence at -56/-53 was identified to be critical for PU.1-mediated activation of the promoter. An EMSA showed that PU.1 directly bound to this region. ChIP assays demonstrated that a significant amount of PU.1 bound to this region on chromosomal DNA in BMDCs, which was decreased in LPS-stimulated BMDCs in accordance with the reduced levels of mRNAs of Itgax and Spi-1, and the histone acetylation degree. Enforced expression of exogenous PU.1 induced the expression of the CD11c protein on the cell surface of mast cells, whereas control transfectants rarely expressed CD11c. Quantitative RT-PCR also showed that the expression of a transcription factor Irf4, which is a partner molecule of PU.1, was reduced in PU.1-knocked down BMDCs. IRF4 transactivated the Itgax gene in a synergistic manner with PU.1. Taken together, these results indicate that PU.1 functions as a positive regulator of CD11c gene expression by directly binding to the Itgax promoter and through transactivation of the Irf4 gene. © The Japanese Society for Immunology. 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Desorption of plutonium from montmorillonite: An experimental and modeling study
NASA Astrophysics Data System (ADS)
Begg, James D.; Zavarin, Mavrik; Kersting, Annie B.
2017-01-01
Desorption of plutonium (Pu) will likely control the extent to which it is transported by mineral colloids. We evaluated the adsorption/desorption behavior of Pu on SWy-1 montmorillonite colloids at pH 4, pH 6, and pH 8 using batch adsorption and flow cell desorption experiments. After 21 days adsorption, Pu(IV) affinity for montmorillonite displayed a pH dependency, with Kd values highest at pH 4 and lowest at pH 8. The pH 8 experiment was further allowed to equilibrate for 6 months and showed an increase in Kd, indicating that true sorption equilibrium was not achieved within the first 21 days. For the desorption experiments, aliquots of the sorption suspensions were placed in a flow cell, and Pu-free solutions were then pumped through the cell for a period of 12 days. Changes in influent solution flow rate were used to investigate the kinetics of Pu desorption and demonstrated that it was rate-limited over the experimental timescales. At the end of the 12-day flow cell experiments, the extent of desorption was again pH dependent, with pH 8 > pH 6 > pH 4. Further, at pH 8, less Pu was desorbed after an adsorption contact time of 6 months than after a contact time of 21 days, consistent with an aging of Pu on the clay surface. A conceptual model for Pu adsorption/desorption that incorporated known surface-mediated Pu redox reactions was used to fit the experimental data. The resulting rate constants indicated processes occurring on timescales of months and even years which may, in part, explain observations of clay colloid-facilitated Pu transport on decadal timescales. Importantly, however, our results also imply that migration of Pu adsorbed to montmorillonite colloids at long (50-100 year) timescales under oxic conditions may not be possible without considering additional phenomena, such as co-precipitation.
Guan, Yayuan; Su, Yuling; Zhao, Lili; Meng, Fancui; Wang, Quanxin; Yao, Yongchao; Luo, Jianbin
2017-06-01
Polyurethane micelles with disulfide linkage located at the interface of hydrophilic shell and hydrophobic core (PU-SS-I) have been shown enhanced drug release profiles. However, the payloads could not be released completely. The occurrence of aggregation of hydrophobic cores upon shedding hydrophilic PEG coronas was considered as the reason for the incomplete release. To verify the above hypothesis and to develop a new polyurethane based micelles with dual stimuli respond properties and controllable location of pH and reduction responsive groups in the PU main chains, a tertiary amine was incorporated into the hydrophobic core PU-SS-I, which resulted polyurethane with both reduction and pH sensitive properties (PU-SS-N). Biodegradable polyurethane with only disulfide linkages located between the hydrophilic PEG segment and the hydrophobic PCL segments (PU-SS-I) and polyurethane with only pH sensitive tertiary amine at the hydrophobic core (PU-N-C) were used as comparisons. Paclitaxel (PTX) was chosen as mode hydrophobic drug to evaluate the loading and redox triggered release profiles of the PU micelles. It was demonstrated that PU-SS-N micelles disassembled instantly at the presence of 10mM GSH and at an acidic environment (pH=5.5), which resulted the nearly complete release (~90%) of the payloads within 48h, while about ~70% PTX was released from PU-SS-I and PU-SS-N micelles at neutral environment (pH=7.4) with the presence of 10mM GSH. The rapid and complete redox and pH stimuli release properties of the PU-SS-N nanocarrier will be a promising anticancer drug delivery system to ensure sufficient drug concentration to kill the cancer cells and to prevent the emergency of MDR. The in vitro cytotoxicity and cell uptake of the PTX-loaded micelles was also assessed in H460 and HepG2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Progress Report on FY15 Crystalline Experiments M4FT-15LL0807052
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavarin, M.; Zhao, P.; Joseph, C.
2015-08-13
Colloid-facilitated plutonium transport is expected to be the dominant mechanism in its migration through the environment. The forms of Pu colloids (intrinsic versus pseudo-colloid) and their stabilities control temporal and spatial scales of Pu transport in the environment. In the present study, we examine the stability of Pu intrinsic colloids freshly prepared in alkaline solution relative to Pu-montmorillonite pseudo-colloids using a dialysis device and modeling approaches. Intrinsic colloids prepared under alkaline conditions were found to be unstable over a timescale of months. The kinetics of multiple processes, including hydrolysis/precipitation of Pu(IV), dissolution of intrinsic colloids in the absence and presencemore » of the clay colloids, transport of dissolved Pu species across the dialysis membrane, and formation of pseudo-colloids were examined. The dissolution of intrinsic colloids was the rate-limiting process in most cases. The apparent intrinsic colloid dissolution rate constants range from 6×10 -7 to 1×10 - 6 mol·m -2·day -1 and 4×10 -6 to 8×10 -6 mol·m -2·day -1 at 25 and 80°C, respectively, while the apparent diffusion rate constants for Pu ions crossing the dialysis membrane are >200 times higher. Elevated temperatures enhance dissolution of Pu colloids and the activation energy for the process is estimated to be 28 kJ mol -1. The sorption of Pu to montmorillonite appears to be endothermic as the affinity of Pu for the clay increases with increasing temperature. Our results provide an in-depth understanding of how intrinsic and pseudo-colloids interact with each other kinetically. Although the fact that intrinsic colloids tend to dissolve in the presence of montmorillonite and transform into pseudo-colloids may limit the migration of intrinsic colloids, the thermodynamically more stable pseudo-colloids may play an important role in Pu transport in the environment over significant temporal and spatial scales.« less
Demirag, Alp; Pastor, Catherine M; Morel, Philippe; Jean-Christophe, Copin; Sielenkämper, Andreas W; Güvener, Nilgun; Mai, Gang; Berney, Thierry; Frossard, Jean-Louis; Bühler, Leo H
2006-01-01
AIM: To investigate the effect of epidural anaesthesia (EA) on pancreatic microcirculation during acute pancreatitis (AP). METHODS: AP was induced by injection of sodium taurocholate into the pancreatic duct of Sprague-Dawley rats. To realize EA, a catheter was introduced into the epidural space between T7 and T9 and bupivacaine was injected. Microcirculatory flow was measured by laser Doppler flowmetry. Arterial blood gas analyses were performed. At the end of the experiment (≤ 5 h), pancreas was removed for histology. The animals were divided into three groups: Group 1 (n = 9), AP without EA; Group 2 (n = 4), EA without AP; and Group 3 (n = 6), AP treated by EA. RESULTS: In Group 1, pancreatic microcirculatory flow prior to AP was 141 ± 39 perfusion units (PU). After AP, microcirculatory flow obviously decreased to 9 ± 6 PU (P < 0.05). Metabolic acidosis developed with base excess (BE) of - 14 ± 3 mmol/L. Histology revealed extensive edema and tissue necrosis. In Group 2, EA did not significantly modify microcirculatory flow. BE remained unchanged and histological analysis showed normal pancreatic tissue. In Group 3, AP initially caused a significant decrease in microcirculatory flow from 155 ± 25 to 11 ± 7 PU (P < 0.05). After initiation of EA, microcirculatory flow obviously increased again to 81 ± 31 PU (P < 0.05). BE was -6 ± 4 mmol/L, which was significantly different compared to Group 1 (P < 0.05). Furthermore, histology revealed less extensive edema and necrosis in pancreatic tissue in Group 3 than that in Group 1. CONCLUSION: AP caused dramatic microcirculatory changes within the pancreas, with development of metabolic acidosis and tissue necrosis. EA allowed partial restoration of microcirculatory flow and prevented development of tissue necrosis and systemic complications. Therefore, EA should be considered as therapeutic option to prevent evolution from edematous to necrotic AP. PMID:16521220
Understanding oxygen adsorption on 9.375 at. % Ga-stabilized δ-Pu (111) surface: A DFT study
Hernandez, Sarah C.; Wilkerson, Marianne P.; Huda, Muhammad N.
2015-08-30
Plutonium (Pu) metal reacts rapidly in the presence of oxygen (O), resulting in an oxide layer that will eventually have an olive green rust appearance over time. Recent experimental work suggested that the incorporation of gallium (Ga) as an alloying impurity to stabilize the highly symmetric high temperature δ-phase lattice may also provide resistance against corrosion/oxidation of plutonium. In this paper, we modeled a 9.375 at. % Ga stabilized δ-Pu (111) surface and investigated adsorption of atomic O using all-electron density functional theory. Key findings revealed that the O bonded strongly to a Pu-rich threefold hollow fcc site with amore » chemisorption energy of –5.06 eV. Migration of the O atom to a Pu-rich environment was also highly sensitive to the surface chemistry of the Pu–Ga surface; when the initial on-surface O adsorption site included a bond to a nearest neighboring Ga atom, the O atom relaxed to a Ga deficient environment, thus affirming the O preference for Pu. Only one calculated final on-surface O adsorption site included a Ga-O bond, but this chemisorption energy was energetically unfavorable. Chemisorption energies for interstitial adsorption sites that included a Pu or Pu-Ga environment suggested that over-coordination of the O atom was energetically unfavorable as well. Electronic structure properties of the on-surface sites, illustrated by the partial density of states, implied that the Ga 4p states indirectly but strongly influenced the Pu 6d states strongly to hybridize with the O 2p states, while also weakly influenced the Pu 5f states to hybridize with the O 2p states, even though Ga was not participating in bonding with O.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lind, O.C.; Salbu, B.; Janssens, K.
2007-07-10
Following the USAF B-52 bomber accidents at Palomares, Spain in 1966 and at Thule, Greenland in 1968, radioactive particles containing uranium (U) and plutonium (Pu) were dispersed into the environment. To improve long-term environmental impact assessments for the contaminated ecosystems, particles from the two sites have been isolated and characterized with respect to properties influencing particle weathering rates. Low [239]Pu/[235]U (0.62-0.78) and [240]Pu/[239]Pu (0.055-0.061) atom ratios in individual particles from both sites obtained by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) show that the particles contain highly enriched U and weapon-grade Pu. Furthermore, results from electron microscopy with Energy Dispersive X-raymore » analysis (EDX) and synchrotron radiation (SR) based micrometer-scale X-ray fluorescence ({micro}-XRF) 2D mapping demonstrated that U and Pu coexist throughout the 1-50 {micro}m sized particles, while surface heterogeneities were observed in EDX line scans. SR-based micrometer-scale X-ray Absorption Near Edge Structure Spectroscopy ({micro}-XANES) showed that the particles consisted of an oxide mixture of U (predominately UO[2] with the presence ofU[3][8]) and Pu ((III)/(IV), (V)/(V) or (III), (IV) and (V)). Neither metallic U or Pu nor uranyl or Pu(VI) could be observed. Characteristics such as elemental distributions, morphology and oxidation states are remarkably similar for the Palomares and Thule particles, reflecting that they originate from similar source and release scenarios. Thus, these particle characteristics are more dependent on the original material from which the particles are derived (source) and the formation of particles (release scenario) than the environmental conditions to which the particles have been exposed since the late 1960s.« less
Biodegradation of polyester polyurethane by Aspergillus tubingensis.
Khan, Sehroon; Nadir, Sadia; Shah, Zia Ullah; Shah, Aamer Ali; Karunarathna, Samantha C; Xu, Jianchu; Khan, Afsar; Munir, Shahzad; Hasan, Fariha
2017-06-01
The xenobiotic nature and lack of degradability of polymeric materials has resulted in vast levels of environmental pollution and numerous health hazards. Different strategies have been developed and still more research is being in progress to reduce the impact of these polymeric materials. This work aimed to isolate and characterize polyester polyurethane (PU) degrading fungi from the soil of a general city waste disposal site in Islamabad, Pakistan. A novel PU degrading fungus was isolated from soil and identified as Aspergillus tubingensis on the basis of colony morphology, macro- and micro-morphology, molecular and phylogenetic analyses. The PU degrading ability of the fungus was tested in three different ways in the presence of 2% glucose: (a) on SDA agar plate, (b) in liquid MSM, and (c) after burial in soil. Our results indicated that this strain of A. tubingensis was capable of degrading PU. Using scanning electron microscopy (SEM), we were able to visually confirm that the mycelium of A. tubingensis colonized the PU material, causing surface degradation and scarring. The formation or breakage of chemical bonds during the biodegradation process of PU was confirmed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. The biodegradation of PU was higher when plate culture method was employed, followed by the liquid culture method and soil burial technique. Notably, after two months in liquid medium, the PU film was totally degraded into smaller pieces. Based on a comprehensive literature search, it can be stated that this is the first report showing A. tubingensis capable of degrading PU. This work provides insight into the role of A. tubingensis towards solving the dilemma of PU wastes through biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Understanding oxygen adsorption on 9.375 at. % Ga-stabilized δ-Pu (111) surface: A DFT study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, Sarah C.; Wilkerson, Marianne P.; Huda, Muhammad N.
Plutonium (Pu) metal reacts rapidly in the presence of oxygen (O), resulting in an oxide layer that will eventually have an olive green rust appearance over time. Recent experimental work suggested that the incorporation of gallium (Ga) as an alloying impurity to stabilize the highly symmetric high temperature δ-phase lattice may also provide resistance against corrosion/oxidation of plutonium. In this paper, we modeled a 9.375 at. % Ga stabilized δ-Pu (111) surface and investigated adsorption of atomic O using all-electron density functional theory. Key findings revealed that the O bonded strongly to a Pu-rich threefold hollow fcc site with amore » chemisorption energy of –5.06 eV. Migration of the O atom to a Pu-rich environment was also highly sensitive to the surface chemistry of the Pu–Ga surface; when the initial on-surface O adsorption site included a bond to a nearest neighboring Ga atom, the O atom relaxed to a Ga deficient environment, thus affirming the O preference for Pu. Only one calculated final on-surface O adsorption site included a Ga-O bond, but this chemisorption energy was energetically unfavorable. Chemisorption energies for interstitial adsorption sites that included a Pu or Pu-Ga environment suggested that over-coordination of the O atom was energetically unfavorable as well. Electronic structure properties of the on-surface sites, illustrated by the partial density of states, implied that the Ga 4p states indirectly but strongly influenced the Pu 6d states strongly to hybridize with the O 2p states, while also weakly influenced the Pu 5f states to hybridize with the O 2p states, even though Ga was not participating in bonding with O.« less
Sources and pathways of artificial radionuclides to soils at a High Arctic site.
Lokas, E; Bartmiński, P; Wachniew, P; Mietelski, J W; Kawiak, T; Srodoń, J
2014-11-01
Activity concentrations, inventories and activity ratios of (137)Cs, (238)Pu, (239 + 240)Pu and (241)Am in soil profiles were surveyed in the dry tundra and the adjoining proglacial zones of glaciers at a High Arctic site on Svalbard. Vertical profiles of radionuclide activities were determined in up to 14-cm-thick soil sequences. Additionally, soil properties (pH, organic matter, texture, mineral composition and sorption capacity) were analyzed. Results obtained in this study revealed a large range of activity concentrations and inventories of the fallout radionuclides from the undetectable to the uncommonly high levels (inventories of 30,900 ± 940, 47 ± 6, 886 ± 80 and 296 ± 19 Bq/m(2) for (137)Cs, (238)Pu, (239 + 240)Pu and (241)Am, respectively) found in two profiles from the proglacial zone. Concentration of these initially airborne radionuclides in the proglacial zone soils is related to their accumulation in cryoconites that have a large ability to concentrate trace metals. The cryoconites develop on the surface of glaciers, and the material they accumulate is deposited on land surface after the glaciers retreat. The radionuclide inventories in the tundra soils, which effectively retain radionuclides due to high organic matter contents, were comparable to the global fallout deposition for this region of the world. The (238)Pu/(239 + 240)Pu activity ratios for tundra soils suggested global fallout as the dominant source of Pu. The (238)Pu/(239 + 240)Pu and (239 + 240)Pu/(137)Cs activity ratios in the proglacial soils pointed to possible contributions of these radionuclides from other, unidentified sources.
CubeSat Material Limits For Design for Demise
NASA Technical Reports Server (NTRS)
Kelley, R. L.; Jarkey, D. R.
2014-01-01
The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with reentry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with reentry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for reentry survivability analysis tool comparison will be discussed.
CubeSat Material Limits for Design for Demise
NASA Technical Reports Server (NTRS)
Kelley, R. L.; Jarkey, D. R.
2014-01-01
The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with re-entry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with re-entry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for re-entry survivability analysis tool comparison will be discussed.
Radionuclide Basics: Plutonium
Plutonium (chemical symbol Pu) is a radioactive metal. Plutonium is considered a man-made element. Plutonium-239 is used to make nuclear weapons. Pu-239 and Pu-240 are byproducts of nuclear reactor operations and nuclear bomb explosions.
Solomon, Lauren A; Podder, Shreya; He, Jessica; Jackson-Chornenki, Nicholas L; Gibson, Kristen; Ziliotto, Rachel G; Rhee, Jess; DeKoter, Rodney P
2017-05-15
During macrophage development, myeloid progenitor cells undergo terminal differentiation coordinated with reduced cell cycle progression. Differentiation of macrophages from myeloid progenitors is accompanied by increased expression of the E26 transformation-specific transcription factor PU.1. Reduced PU.1 expression leads to increased proliferation and impaired differentiation of myeloid progenitor cells. It is not understood how PU.1 coordinates macrophage differentiation with reduced cell cycle progression. In this study, we utilized cultured PU.1-inducible myeloid cells to perform genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis coupled with gene expression analysis to determine targets of PU.1 that may be involved in regulating cell cycle progression. We found that genes encoding cell cycle regulators and enzymes involved in lipid anabolism were directly and inducibly bound by PU.1 although their steady-state mRNA transcript levels were reduced. Inhibition of lipid anabolism was sufficient to reduce cell cycle progression in these cells. Induction of PU.1 reduced expression of E2f1 , an important activator of genes involved in cell cycle and lipid anabolism, indirectly through microRNA 223. Next-generation sequencing identified microRNAs validated as targeting cell cycle and lipid anabolism for downregulation. These results suggest that PU.1 coordinates cell cycle progression with differentiation through induction of microRNAs targeting cell cycle regulators and lipid anabolism. Copyright © 2017 American Society for Microbiology.
Froehlich, M B; Tims, S G; Fallon, S J; Wallner, A; Fifield, L K
2017-11-01
A slice from a Porites Lutea coral core collected inside the Enewetak Atoll lagoon, within 15 km of all major nuclear tests conducted at the atoll, was analysed for 236 U, 239 Pu and 240 Pu over the time interval 1952-1964 using a higher time resolution than previously reported for a parallel slice from the same core. In addition two sediment samples from the Koa and Oak craters were analysed. The strong peaks in the concentrations of 236 U and 239 Pu in the testing years are confirmed to be considerably wider than the flushing time of the lagoon. This is likely due to the growth mechanism of the coral. Following the last test in 1958 atom concentrations of both 236 U and 239 Pu decreased from their peak values by more than 95% and showed a seasonal signal thereafter. Between 1959 and 1964 the weighted average of the 240 Pu/ 239 Pu atom ratio is 0.124 ± 0.008 which is similar to that in the lagoon sediments (0.129 ± 0.006) but quite distinct from the global fallout value of ∼0.18. This, and the high 239,240 Pu and 236 U concentrations in the sediments, provides clear evidence that the post-testing signal in the coral is dominated by remobilisation of the isotopes from the lagoon sediments rather than from global fallout. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Chunjie; Chai, Shaomeng; Ju, Yongzhi; Hou, Lu; Zhao, Hang; Ma, Wei; Li, Tian; Sheng, Jun; Shi, Wei
2017-09-01
Glutamate is one of the major excitatory neurotransmitters of the CNS and is essential for numerous key neuronal functions. However, excess glutamate causes massive neuronal death and brain damage owing to excitotoxicity via the glutamate receptors. Metabotropic glutamate receptor 5 (mGluR5) is one of the glutamate receptors and represents a promising target for studying neuroprotective agents of potential application in neurodegenerative diseases. Pu-erh tea, a fermented tea, mainly produced in Yunnan province, China, has beneficial effects, including the accommodation of the CNS. In this study, pu-erh tea markedly decreased the transcription and translation of mGluR5 compared to those by black and green teas. Pu-erh tea also inhibited the expression of Homer, one of the synaptic scaffolding proteins binding to mGluR5. Pu-erh tea protected neural cells from necrosis via blocked Ca 2+ influx and inhibited protein kinase C (PKC) activation induced by excess glutamate. Pu-erh tea relieved rat epilepsy induced by LiCl-pilocarpine in behavioural and physiological assays. Pu-erh tea also decreased the expression of mGluR5 in the hippocampus. These results show that the inhibition of mGluR5 plays a role in protecting neural cells from glutamate. The results also indicate that pu-erh tea contains biological compounds binding transcription factors and inhibiting the expression of mGluR5 and identify pu-erh tea as a novel natural neuroprotective agent.
Lee, Younghyun; Li, Huizi Keiko; Masaoka, Aya; Sunada, Shigeaki; Hirakawa, Hirokazu; Fujimori, Akira; Nickoloff, Jac A; Okayasu, Ryuichi
2016-10-01
PU-H71 is a purine-scaffold Hsp90 inhibitor developed to overcome limitations of conventional Hsp90 inhibitors. This study was designed to investigate the combined effect of PU-H71 and heavy ion irradiation on human tumor and normal cells. The effects of PU-H71 were determined by monitoring cell survival by colony formation, and DNA double-strand break (DSB) repair by γ-H2AX foci and immuno-blotting DSB repair proteins. The mode of cell death was evaluated by sub-G1 DNA content (as an indicator for apoptosis), and mitotic catastrophe. PU-H71 enhanced heavy ion irradiation-induced cell death in three human cancer cell lines, but the drug did not radiosensitize normal human fibroblasts. In irradiated tumor cells, PU-H71 increased the persistence of γ-H2AX foci, and it reduced RAD51 foci and phosphorylated DNA-PKcs, key DSB repair proteins involved in homologous recombination (HR) and non-homologous end joining (NHEJ). In some tumor cell lines, PU-H71 altered the sub-G1 cell fraction and mitotic catastrophe following carbon ion irradiation. Our results demonstrate that PU-H71 sensitizes human cancer cells to heavy ion irradiation by inhibiting both HR and NHEJ DSB repair pathways. PU-H71 holds promise as a radiosensitizer for enhancing the efficacy of heavy ion radiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Quantitative non-destructive assay of PuBe neutron sources
NASA Astrophysics Data System (ADS)
Lakosi, László; Bagi, János; Nguyen, Cong Tam
2006-02-01
PuBe neutron sources were assayed, using a combination of high resolution γ-spectrometry (HRGS) and neutron correlation technique. In a previous publication [J. Bagi, C. Tam Nguyen, L. Lakosi, Nucl. Instr. and Meth. B 222 (2004) 242] a passive neutron well-counter was reported with 3He tubes embedded in a polyamide (TERRAMID) moderator (lined inside with Cd) surrounding the sources to be measured. Gross and coincidence neutron counting was performed, and the Pu content of the sources was found out from isotope analysis and by adopting specific (α, n) reaction yields of the Pu isotopes and 241Am in Be, based on supplier's information and literature data. The method was further developed and refined. Evaluation algorithm was more precisely worked out. The contribution of secondary (correlated) neutrons to the total neutron output was derived from the coincidence (doubles) count rate and taken into account in assessing the Pu content. A new evaluation of former results was performed. Assay was extended to other PuBe sources, and new results were added. In order to attain higher detection efficiency, a more efficient moderator was also applied, with and without Cd shielding around the assay chamber. Calibration seems possible using neutron measurements only (without γ-spectrometry), based on a correlation between the Pu amount and the coincidence-to-total ratio. It is expected that the method could be used for Pu accountancy and safeguards verification as well as identification and assay of seized, found, or not documented PuBe neutron sources.
NASA Astrophysics Data System (ADS)
Conradson, Steven D.; Begg, Bruce D.; Clark, David L.; den Auwer, Christophe; Ding, Mei; Dorhout, Peter K.; Espinosa-Faller, Francisco J.; Gordon, Pamela L.; Haire, Richard G.; Hess, Nancy J.; Hess, Ryan F.; Webster Keogh, D.; Lander, Gerard H.; Manara, Dario; Morales, Luis A.; Neu, Mary P.; Paviet-Hartmann, Patricia; Rebizant, Jean; Rondinella, Vincenzo V.; Runde, Wolfgang; Drew Tait, C.; Kirk Veirs, D.; Villella, Phillip M.; Wastin, Franck
2005-02-01
The local structure and chemical speciation of the mixed valence, fluorite-based oxides UO 2+x (0.00⩽ x⩽0.20) and PuO 2+x/PuO 2+x-y(OH) 2y· zH 2O have been determined by U/Pu L III XAFS spectroscopy. The U spectra indicate (1) that the O atoms are incorporated as oxo groups at short (1.75 Å) U-O distances consistent with U(VI) concomitant with a large range of U displacements that reduce the apparent number of U neighbors and (2) that the UO 2 fraction remains intact implying that these O defects interact to form clusters and give the heterogeneous structure consistent with the diffraction patterns. The PuO 2+x system, which does not show a separate phase at its x=0.25 endpoint, also displays (1) oxo groups at longer 1.9 Å distances consistent with Pu(V+ δ), (2) a multisite Pu-O distribution even when x is close to zero indicative of the formation of stable species with H 2O and its hydrolysis products with O 2-, and (3) a highly disordered, spectroscopically invisible Pu-Pu component. The structure and bonding in AnO 2+x are therefore more complicated than have previously been assumed and show both similarities but also distinct differences among the different elements.
Tran, Phat L; Hamood, Abdul N; de Souza, Anselm; Schultz, Gregory; Liesenfeld, Bernd; Mehta, Dilip; Reid, Ted W
2015-01-01
Bacterial infection of acute and chronic wounds impedes wound healing significantly. Part of this impediment is the ability of bacterial pathogens to grow in wound dressings. In this study, we examined the effectiveness of a polyurethane (PU) foam wound dressings coated with poly diallyl-dimethylammonium chloride (pDADMAC-PU) to inhibit the growth and biofilm development by three main wound pathogens, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, within the wound dressing. pDADMAC-PU inhibited the growth of all three pathogens. Time-kill curves were conducted both with and without serum to determine the killing kinetic of pDADMAC-PU. pDADMAC-PU killed S. aureus, A. baumannii, and P. aeruginosa. The effect of pDADMAC-PU on biofilm development was analyzed quantitatively and qualitatively. Quantitative analysis, colony-forming unit assay, revealed that pDADMAC-PU dressing produced more than eight log reduction in biofilm formation by each pathogen. Visualization of the biofilms by either confocal laser scanning microscopy or scanning electron microscopy confirmed these findings. In addition, it was found that the pDADMAC-PU-treated foam totally inhibited migration of bacteria through the foam for all three bacterial strains. These results suggest that pDADMAC-PU is an effective wound dressing that inhibits the growth of wound pathogens both within the wound and in the wound dressing. © 2014 by the Wound Healing Society.
the IEEE Spectrum reflects on the deployment of IceCube's last string. (February 2011). From the Daily Californian (January 26, 2011) includes current group photo. From the Guardian and Observer (UK) (January 23 , 2011) NSF Press Release (December 2010) Major Milestone - Completion of the IceCube Detector December
2014-02-13
ISS038-E-046586 (13 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
2014-02-13
ISS038-E-046579 (13 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
On the verge of an astronomy CubeSat revolution
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya L.
2018-05-01
CubeSats are small satellites built in standard sizes and form factors, which have been growing in popularity but have thus far been largely ignored within the field of astronomy. When deployed as space-based telescopes, they enable science experiments not possible with existing or planned large space missions, filling several key gaps in astronomical research. Unlike expensive and highly sought after space telescopes such as the Hubble Space Telescope, whose time must be shared among many instruments and science programs, CubeSats can monitor sources for weeks or months at time, and at wavelengths not accessible from the ground such as the ultraviolet, far-infrared and low-frequency radio. Science cases for CubeSats being developed now include a wide variety of astrophysical experiments, including exoplanets, stars, black holes and radio transients. Achieving high-impact astronomical research with CubeSats is becoming increasingly feasible with advances in technologies such as precision pointing, compact sensitive detectors and the miniaturization of propulsion systems. CubeSats may also pair with the large space- and ground-based telescopes to provide complementary data to better explain the physical processes observed.
NASA Astrophysics Data System (ADS)
Mertsch, Philipp; Rameez, Mohamed; Tamborra, Irene
2017-03-01
Constraints on the number and luminosity of the sources of the cosmic neutrinos detected by IceCube have been set by targeted searches for point sources. We set complementary constraints by using the 2MASS Redshift Survey (2MRS) catalogue, which maps the matter distribution of the local Universe. Assuming that the distribution of the neutrino sources follows that of matter, we look for correlations between ``warm'' spots on the IceCube skymap and the 2MRS matter distribution. Through Monte Carlo simulations of the expected number of neutrino multiplets and careful modelling of the detector performance (including that of IceCube-Gen2), we demonstrate that sources with local density exceeding 10-6 Mpc-3 and neutrino luminosity Lν lesssim 1042 erg s-1 (1041 erg s-1) will be efficiently revealed by our method using IceCube (IceCube-Gen2). At low luminosities such as will be probed by IceCube-Gen2, the sensitivity of this analysis is superior to requiring statistically significant direct observation of a point source.
Cubic map algebra functions for spatio-temporal analysis
Mennis, J.; Viger, R.; Tomlin, C.D.
2005-01-01
We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.
Structural and chemical orders in N i64.5Z r35.5 metallic glass by molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Tang, L.; Wen, T. Q.; Wang, N.; Sun, Y.; Zhang, F.; Yang, Z. J.; Ho, K. M.; Wang, C. Z.
2018-03-01
The atomic structure of N i64.5Z r35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the x-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types of dominant short-range order (SRO) motifs around Ni atoms in the glass sample of N i64.5Z r35.5 , i.e., mixed-icosahedron(ICO)-cube, intertwined-cube, and icosahedronlike clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the mixed-ICO-cube and intertwined-cube clusters exhibit the characteristics of the crystalline B2 phase. Our simulation results suggest that the weak glass-forming ability (GFA) of N i64.5Z r35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline mixed-ICO-cube and intertwined-cube motifs.
Criticality Safety Controls for 55-Gallon Drums with a Mass Limit of 200 grams Pu-239
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, P
The following 200-gram Pu drum criticality safety controls are applicable to RHWM drum storage operations: (1) Mass (Fissile/Pu) - each 55-gallon drum or its equivalent shall be limited to 200 gram Pu or Pu equivalent; (2) Moderation - Hydrogen materials with a hydrogen density greater than that (0.133 g H/cc) of polyethylene and paraffin are not allowed and hydrogen materials with a hydrogen density no greater than that of polyethylene and paraffin are allowed with unlimited amounts; (3) Interaction - a spacing of 30-inches (76 cm) is required between arrays and 200-gram Pu drums shall be placed in arrays formore » 200-gram Pu drums only (no mingling of 200-gram Pu drums with other drums not meeting the drum controls associated with the 200-gram limit); (4) Reflection - no beryllium and carbon/graphite (other than the 50-gram waiver amount) is allowed, (note that Nat-U exceeding the waiver amount is allowed when its U-235 content is included in the fissile mass limit of 200 grams); and (5) Geometry - drum geometry, only 55-gallon drum or its equivalent shall be used and array geometry, 55-gallon drums are allowed for 2-high stacking. Steel waste boxes may be stacked 3-high if constraint.« less
Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonat Sen; Gilles Youinou
2013-02-01
It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this casemore » the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)« less
An equivalent n-source for WGPu derived from a spectrum-shifted PuBe source
NASA Astrophysics Data System (ADS)
Ghita, Gabriel; Sjoden, Glenn; Baciak, James; Walker, Scotty; Cornelison, Spring
2008-04-01
We have designed, built, and laboratory-tested a unique shield design that transforms the complex neutron spectrum from PuBe source neutrons, generated at high energies, to nearly exactly the neutron signature leaking from a significant spherical mass of weapons grade plutonium (WGPu). This equivalent "X-material shield assembly" (Patent Pending) enables the harder PuBe source spectrum (average energy of 4.61 MeV) from a small encapsulated standard 1-Ci PuBe source to be transformed, through interactions in the shield, so that leakage neutrons are shifted in energy and yield to become a close reproduction of the neutron spectrum leaking from a large subcritical mass of WGPu metal (mean energy 2.11 MeV). The utility of this shielded PuBe surrogate for WGPu is clear, since it directly enables detector field testing without the expense and risk of handling large amounts of Special Nuclear Materials (SNM) as WGPu. Also, conventional sources using Cf-252, which is difficult to produce, and decays with a 2.7 year half life, could be replaced by this shielded PuBe technology in order to simplify operational use, since a sealed PuBe source relies on Pu-239 (T½=24,110 y), and remains viable for more than hundreds of years.
Bioactivity and biotechnological production of punicic acid.
Holic, Roman; Xu, Yang; Caldo, Kristian Mark P; Singer, Stacy D; Field, Catherine J; Weselake, Randall J; Chen, Guanqun
2018-04-01
Punicic acid (PuA; 18: 3Δ 9cis,11trans,13cis ) is an unusual 18-carbon fatty acid bearing three conjugated double bonds. It has been shown to exhibit a myriad of beneficial bioactivities including anti-cancer, anti-diabetes, anti-obesity, antioxidant, and anti-inflammatory properties. Pomegranate (Punica granatum) seed oil contains approximately 80% PuA and is currently the major natural source of this remarkable fatty acid. While both PuA and pomegranate seed oil have been used as functional ingredients in foods and cosmetics for some time, their value in pharmaceutical/medical and industrial applications are presently under further exploration. Unfortunately, the availability of PuA is severely limited by the low yield and unstable supply of pomegranate seeds. In addition, efforts to produce PuA in transgenic crops have been limited by a relatively low content of PuA in the resulting seed oil. The production of PuA in engineered microorganisms with modern fermentation technology is therefore a promising and emerging method with the potential to resolve this predicament. In this paper, we provide a comprehensive review of this unusual fatty acid, covering topics ranging from its natural sources, biosynthesis, extraction and analysis, bioactivity, health benefits, and industrial applications, to recent efforts and future perspectives on the production of PuA in engineered plants and microorganisms.
Trench 'bathtubbing' and surface plutonium contamination at a legacy radioactive waste site.
Payne, Timothy E; Harrison, Jennifer J; Hughes, Catherine E; Johansen, Mathew P; Thiruvoth, Sangeeth; Wilsher, Kerry L; Cendón, Dioni I; Hankin, Stuart I; Rowling, Brett; Zawadzki, Atun
2013-01-01
Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (~12 Bq/L of (239+240)Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest (239+240)Pu soil activity was 829 Bq/kg in a shallow sample (0-1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the 'bathtub' effect.
IceCube results from point-like source searches using 6 years of through-going muon data
NASA Astrophysics Data System (ADS)
Coenders, Stefan
2016-04-01
The IceCube Neutrino Observatory located at the geographic South Pole was designed to study and discover high energy neutrinos coming from both galactic and extra-galactic astrophysical sources. Track-like events induced by charged-current muon-neutrino interactions close to the IceCube detector give an angular resolution better than 1∘ above TeV energies. We present here the results of searches for point-like astrophysical neutrino sources on the full sky using 6 years of detector livetime, of which three years use the complete IceCube detector. Within 2000 days of detector livetime, IceCube is sensitive to a steady flux substantially below E2∂ϕ/∂E = 10-12 TeV cm-2 s-1 in the northern sky for neutrino energies above 10 TeV.
Interplay between spherical confinement and particle shape on the self-assembly of rounded cubes.
Wang, Da; Hermes, Michiel; Kotni, Ramakrishna; Wu, Yaoting; Tasios, Nikos; Liu, Yang; de Nijs, Bart; van der Wee, Ernest B; Murray, Christopher B; Dijkstra, Marjolein; van Blaaderen, Alfons
2018-06-08
Self-assembly of nanoparticles (NPs) inside drying emulsion droplets provides a general strategy for hierarchical structuring of matter at different length scales. The local orientation of neighboring crystalline NPs can be crucial to optimize for instance the optical and electronic properties of the self-assembled superstructures. By integrating experiments and computer simulations, we demonstrate that the orientational correlations of cubic NPs inside drying emulsion droplets are significantly determined by their flat faces. We analyze the rich interplay of positional and orientational order as the particle shape changes from a sharp cube to a rounded cube. Sharp cubes strongly align to form simple-cubic superstructures whereas rounded cubes assemble into icosahedral clusters with additionally strong local orientational correlations. This demonstrates that the interplay between packing, confinement and shape can be utilized to develop new materials with novel properties.
Seid-Karbasi, Puya; Ye, Xin C; Zhang, Allen W; Gladish, Nicole; Cheng, Suzanne Y S; Rothe, Katharina; Pilsworth, Jessica A; Kang, Min A; Doolittle, Natalie; Jiang, Xiaoyan; Stirling, Peter C; Wasserman, Wyeth W
2017-03-01
Student creation of educational materials has the capacity both to enhance learning and to decrease costs. Three successive honors-style classes of undergraduate students in a cancer genetics class worked with a new software system, CuboCube, to create an e-textbook. CuboCube is an open-source learning materials creation system designed to facilitate e-textbook development, with an ultimate goal of improving the social learning experience for students. Equipped with crowdsourcing capabilities, CuboCube provides intuitive tools for nontechnical and technical authors alike to create content together in a structured manner. The process of e-textbook development revealed both strengths and challenges of the approach, which can inform future efforts. Both the CuboCube platform and the Cancer Genetics E-textbook are freely available to the community.
Seid-Karbasi, Puya; Ye, Xin C.; Zhang, Allen W.; Gladish, Nicole; Cheng, Suzanne Y. S.; Rothe, Katharina; Pilsworth, Jessica A.; Kang, Min A.; Doolittle, Natalie; Jiang, Xiaoyan; Stirling, Peter C.; Wasserman, Wyeth W.
2017-01-01
Student creation of educational materials has the capacity both to enhance learning and to decrease costs. Three successive honors-style classes of undergraduate students in a cancer genetics class worked with a new software system, CuboCube, to create an e-textbook. CuboCube is an open-source learning materials creation system designed to facilitate e-textbook development, with an ultimate goal of improving the social learning experience for students. Equipped with crowdsourcing capabilities, CuboCube provides intuitive tools for nontechnical and technical authors alike to create content together in a structured manner. The process of e-textbook development revealed both strengths and challenges of the approach, which can inform future efforts. Both the CuboCube platform and the Cancer Genetics E-textbook are freely available to the community. PMID:28267757
Electronic structures of Plutonium compounds with the NaCl-type monochalcogenides structure
NASA Astrophysics Data System (ADS)
Maehira, Takahiro; Tatetsu, Yasutomi
2012-12-01
We calculate the energy band structure and the Fermi surface of PuS, PuSe and PuTe by using a self-consistent relativistic linear augmented-plane-wave method with the exchange and correlation potential in a local density approximation. It is found in common that the energy bands in the vicinity of the Fermi level are mainly due to the hybridization between Pu 5/ and monochalcogenide p electrons. The obtained main Fermi surfaces are composed of two hole sheets and one electron sheet, all of which are constructed from the band having the Pu 5/ state and the monochalcogenide p state.
Seaborg's plutonium? A case study in nuclear forensics
Norman, Eric B.; Thomas, Keenan J.; Telhami, Kristina E.
2015-10-01
Passive X-ray and gamma-ray analysis was performed on a curious sample from UC Berkeley's Hazardous Material Facility inventory, and the object was found to contain 239Pu. No other radioactive isotopes were observed. The mass of 239Pu contained in this object was determined to be 2.0 ± 0.3 μg. These observations are consistent with the identification of this object as containing the 2.77-μg PuO2 (2.44 μg 239Pu) sample produced in 1942 and described by Seaborg and his collaborators as the first sample of 239Pu that was large enough to be weighed.
Plutonium hexaboride is a correlated topological insulator.
Deng, Xiaoyu; Haule, Kristjan; Kotliar, Gabriel
2013-10-25
We predict that plutonium hexaboride (PuB(6)) is a strongly correlated topological insulator, with Pu in an intermediate valence state of Pu(2.7+). Within the combination of dynamical mean field theory and density functional theory, we show that PuB(6) is an insulator in the bulk, with nontrivial Z(2) topological invariants. Its metallic surface states have a large Fermi pocket at the X[over ¯] point and the Dirac cones inside the bulk derived electronic states, causing a large surface thermal conductivity. PuB(6) has also a very high melting temperature; therefore, it has ideal solid state properties for a nuclear fuel material.
Method for selectively reducing plutonium values by a photochemical process
Friedman, Horace A.; Toth, Louis M.; Bell, Jimmy T.
1978-01-01
The rate of reduction of Pu(IV) to Pu(III) in nitric acid solution containing a reducing agent is enhanced by exposing the solution to 200-500 nm electromagnetic radiation. Pu values are recovered from an organic extractant solution containing Pu(IV) values and U(VI) values by the method of contacting the extractant solution with an aqueous nitric acid solution in the presence of a reducing agent and exposing the aqueous solution to electromagnetic radiation having a wavelength of 200-500 nm. Under these conditions, Pu values preferentially distribute to the aqueous phase and U values preferentially distribute to the organic phase.
Experimental geochemistry of Pu and Sm and the thermodynamics of trace element partitioning
NASA Technical Reports Server (NTRS)
Jones, John H.; Burnett, Donald S.
1987-01-01
An experimental study of the partitioning of Pu and Sm between diopside/liquid and whitlockite/liquid supports the hypothesis that Pu behaves as a light rare earth element during igneous processes in reducing environments. D-Pu/D-Sm is found to be about 2 for both diopsidic pyroxene and whitlockite, and the amount of fractionation would be decreased further if Pu were compared to Ce or Nd. Data indicate that temperature, rather than melt composition, is the most important control on elemental partitioning, and that P2O5 in aluminosilicate melts serves as a complexing agent for the actinides and lanthanides.
Surbella, Robert G; Ducati, Lucas C; Pellegrini, Kristi L; McNamara, Bruce K; Autschbach, Jochen; Schwantes, Jon M; Cahill, Christopher L
2017-09-28
Crystals of a hydrated Pu(iii) chloride, (C 5 H 5 NBr) 2 [PuCl 3 (H 2 O) 5 ]·2Cl·2H 2 O, were grown via slow evaporation from acidic aqueous, high chloride media. X-ray diffraction data reveals the neutral [PuCl 3 (H 2 O) 5 ] tecton is assembled via charge assisted hydrogen and halogen bonds donated by 4-bromopyridinium cations and a series of inter-tecton hydrogen bonds.
NASA Astrophysics Data System (ADS)
Kato, Masato; Watanabe, Masashi; Matsumoto, Taku; Hirooka, Shun; Akashi, Masatoshi
2017-04-01
Oxygen potential of (U,Pu)O2±x was evaluated based on defect chemistry using an updated experimental data set. The relationship between oxygen partial pressure and deviation x in (U,Pu)O2±x was analyzed, and equilibrium constants of defect formation were determined as functions of Pu content and temperature. Brouwer's diagrams were constructed using the determined equilibrium constants, and a relational equation to determine O/M ratio was derived as functions of O/M ratio, Pu content and temperature. In addition, relationship between oxygen potential and oxygen diffusion coefficients were described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lell, R. M.; Morman, J. A.; Schaefer, R.W.
ZPR-6 Assembly 7 (ZPR-6/7) encompasses a series of experiments performed at the ZPR-6 facility at Argonne National Laboratory in 1970 and 1971 as part of the Demonstration Reactor Benchmark Program (Reference 1). Assembly 7 simulated a large sodium-cooled LMFBR with mixed oxide fuel, depleted uranium radial and axial blankets, and a core H/D near unity. ZPR-6/7 was designed to test fast reactor physics data and methods, so configurations in the Assembly 7 program were as simple as possible in terms of geometry and composition. ZPR-6/7 had a very uniform core assembled from small plates of depleted uranium, sodium, iron oxide,more » U{sub 3}O{sub 8} and Pu-U-Mo alloy loaded into stainless steel drawers. The steel drawers were placed in square stainless steel tubes in the two halves of a split table machine. ZPR-6/7 had a simple, symmetric core unit cell whose neutronic characteristics were dominated by plutonium and {sup 238}U. The core was surrounded by thick radial and axial regions of depleted uranium to simulate radial and axial blankets and to isolate the core from the surrounding room. The ZPR-6/7 program encompassed 139 separate core loadings which include the initial approach to critical and all subsequent core loading changes required to perform specific experiments and measurements. In this context a loading refers to a particular configuration of fueled drawers, radial blanket drawers and experimental equipment (if present) in the matrix of steel tubes. Two principal core configurations were established. The uniform core (Loadings 1-84) had a relatively uniform core composition. The high {sup 240}Pu core (Loadings 85-139) was a variant on the uniform core. The plutonium in the Pu-U-Mo fuel plates in the uniform core contains 11% {sup 240}Pu. In the high {sup 240}Pu core, all Pu-U-Mo plates in the inner core region (central 61 matrix locations per half of the split table machine) were replaced by Pu-U-Mo plates containing 27% {sup 240}Pu in the plutonium component to construct a central core zone with a composition closer to that in an LMFBR core with high burnup. The high {sup 240}Pu configuration was constructed for two reasons. First, the composition of the high {sup 240}Pu zone more closely matched the composition of LMFBR cores anticipated in design work in 1970. Second, comparison of measurements in the ZPR-6/7 uniform core with corresponding measurements in the high {sup 240}Pu zone provided an assessment of some of the effects of long-term {sup 240}Pu buildup in LMFBR cores. The uniform core version of ZPR-6/7 is evaluated in ZPR-LMFR-EXP-001. This document only addresses measurements in the high {sup 240}Pu core version of ZPR-6/7. Many types of measurements were performed as part of the ZPR-6/7 program. Measurements of criticality, sodium void worth, control rod worth and reaction rate distributions in the high {sup 240}Pu core configuration are evaluated here. For each category of measurements, the uncertainties are evaluated, and benchmark model data are provided.« less
The application of N,N-dimethyl-3-oxa-glutaramic acid (DOGA) in the PUREX process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianchen, Wang; Jing, Chen
2007-07-01
The new salt-free complexant, DOGA for separating trace Pu(IV) and Np(IV) from U(VI) nitric acid solution was studied. DOGA has stronger complexing abilities to Pu(IV) and Np(IV), but complexing ability of DOGA to U(VI) was weaker. The DOGA can be used in the PUREX process to separate Pu(IV) and Np(IV) from U(VI) nitric solution. On one hand, U(IV) in the nitric acid solution containing trace Pu(IV) and Np(IV) was extracted by 30%TBP - kerosene(v/v) in the presence of DOGA, but Pu(IV) and Np(IV) were kept in the aqueous phase. On the other hand, Pu(IV) and Np(IV) loading in 30% TBPmore » - kerosene were effectively stripped by DOGA into the aqueous phase, but U(VI) loading in 30% TBP - kerosene was remained in 30% TBP - kerosene. DOGA is a promising complexant to separate Pu(IV) and Np(IV) from U(VI) solution in the U-cycle of the PUREX process. (authors)« less
Periasamy, Arun Prakash; Wu, Wen-Ping; Ravindranath, Rini; Roy, Prathik; Lin, Guan-Lin; Chang, Huan-Tsung
2017-01-30
Polyurethane dish-washing (PU-DW) sponges are functionalized sequentially with polyethylenimine (PEI) and graphene oxide (GO) to form PEI/reduced graphene oxide (RGO) PU-DW sponges. The PEI/RGO PU-DW sponge consists of PEI/RGO sheets having numerous pores, with diameters ranging from 236 to 254nm. To further enhance hydrophobicity and absorption capacity of oil, PEI/RGO PU-DW sponge is further coated with 20% phenyltrimethoxysilane (PTMOS). The PTMOS/PEI/RGO PU-DW sponge absorbs various oils within 20s, with maximum absorption capacity values of 880% and 840% for bicycle chain oil and motorcycle engine oil, respectively. The absorbed oils were released completely by squeezing or immersed in hexane. The PTMOS/PEI/RGO PU-DW sponge efficiently separates oil/water mixtures through a flowing system. Having the advantages of faster absorption rate, reusability, and low cost, the PTMOS/PEI/RGO PU-DW sponge holds great potential as a superabsorbent for efficient removal and recovery of oil spills as well as for the separation of oil/water mixtures. Copyright © 2016 Elsevier Ltd. All rights reserved.
PU/SS EUTECTIC ASSESSMENT IN 9975 PACKAGINGS IN A STORAGE FACILITY DURING EXTENDED FIRE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, N.
2012-03-26
In a radioactive material (RAM) packaging, the formation of eutectic at the Pu/SS (plutonium/stainless steel) interface is a serious concern and must be avoided to prevent of leakage of fissile material to the environment. The eutectic temperature for the Pu/SS is rather low (410 C) and could seriously impact the structural integrity of the containment vessel under accident conditions involving fire. The 9975 packaging is used for long term storage of Pu bearing materials in the DOE complex where the Pu comes in contact with the stainless steel containment vessel. Due to the serious consequences of the containment breach atmore » the eutectic site, the Pu/SS interface temperature is kept well below the eutectic formation temperature of 410 C. This paper discusses the thermal models and the results for the extended fire conditions (1500 F for 86 minutes) that exist in a long term storage facility and concludes that the 9975 packaging Pu/SS interface temperature is well below the eutectic temperature.« less
Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism
Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; ...
2015-01-14
Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M₄,₅ edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [μ L = 2.8(1)μ B/Pu] and spin moments [μ S = –2.0(1)μ B/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of L z and S z are inmore » excellent agreement with the values that have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. We demonstrate that a split M₅ as well as a narrow M₄ XMCD signal may serve as a signature of 5f electron localization in actinide compounds.« less
Some Thermodynamic Features of Uranium-Plutonium Nitride Fuel in the Course of Burnup
NASA Astrophysics Data System (ADS)
Rusinkevich, A. A.; Ivanov, A. S.; Belov, G. V.; Skupov, M. V.
2017-12-01
Calculation studies on the effect of carbon and oxygen impurities on the chemical and phase compositions of nitride uranium-plutonium fuel in the course of burnup are performed using the IVTANTHERMO code. It is shown that the number of moles of UN decreases with increasing burnup level, whereas UN1.466, UN1.54, and UN1.73 exhibit a considerable increase. The presence of oxygen and carbon impurities causes an increase in the content of the UN1.466, UN1.54 and UN1.73 phases in the initial fuel by several orders of magnitude, in particular, at a relatively low temperature. At the same time, the presence of impurities abruptly reduces the content of free uranium in unburned fuel. Plutonium in the considered system is contained in form of Pu, PuC, PuC2, Pu2C3, and PuN. Plutonium carbides, as well as uranium carbides, are formed in small amounts. Most of the plutonium remains in the form of nitride PuN, whereas unbound Pu is present only in the areas with a low burnup level and high temperatures.
Plutonium isotopes in the Hungarian environment.
Varga, Beata; Tarján, Sandor; Vajda, Nora
2008-04-01
More than 50 soil samples were analysed from different parts of the country, the activity concentration of 239+240Pu was in the range of 0.01-0.84 Bq/kg dry soil with the average of 0.10 Bq/kg. 238Pu could be detected only in few moss samples and 238Pu/239+240Pu ratio determines the origin of plutonium. 241Pu was determined by liquid scintillation spectrometry. The activity concentration of this isotope in the soil is between 0.04 and 3.74 Bq/kg with the average of 0.82 Bq/kg, while in the moss is also similar 0.01-2.07 Bq/kg fresh mass with the average of 0.43 Bq/kg. Significant difference could not be observed between the different types of soils occurring in the country, but the results could be sorted according to the sampling carried out on undisturbed or cultivated area. The isotope ratios 241Pu/239+240Pu prove that the origin of the plutonium in Hungary is the global fallout determined by the atmospheric nuclear weapon tests.
Sorption/Desorption Interactions of Plutonium with Montmorillonite
NASA Astrophysics Data System (ADS)
Begg, J.; Zavarin, M.; Zhao, P.; Kersting, A. B.
2012-12-01
Plutonium (Pu) release to the environment through nuclear weapon development and the nuclear fuel cycle is an unfortunate legacy of the nuclear age. In part due to public health concerns over the risk of Pu contamination of drinking water, predicting the behavior of Pu in both surface and sub-surface water is a topic of continued interest. Typically it was assumed that Pu mobility in groundwater would be severely restricted, as laboratory adsorption studies commonly show that naturally occurring minerals can effectively remove plutonium from solution. However, evidence for the transport of Pu over significant distances at field sites highlights a relative lack of understanding of the fundamental processes controlling plutonium behavior in natural systems. At several field locations, enhanced mobility is due to Pu association with colloidal particles that serve to increase the transport of sorbed contaminants (Kersting et al., 1999; Santschi et al., 2002, Novikov et al., 2006). The ability for mineral colloids to transport Pu is in part controlled by its oxidation state and the rate of plutonium adsorption to, and desorption from, the mineral surface. Previously we have investigated the adsorption affinity of Pu for montmorillonite colloids, finding affinities to be similar over a wide range of Pu concentrations. In the present study we examine the stability of adsorbed Pu on the mineral surface. Pu(IV) at an initial concentration of 10-10 M was pre-equilibrated with montmorillonite in a background electrolyte at pH values of 4, 6 and 8. Following equilibration, aliquots of the suspensions were placed in a flow cell and Pu-free background electrolyte at the relevant pH was passed through the system. Flow rates were varied in order to investigate the kinetics of desorption and hence gain a mechanistic understanding of the desorption process. The flow cell experiments demonstrate that desorption of Pu from the montmorillonite surface cannot be modeled as a simple first order process. Furthermore, a pH dependence was observed, with less desorbed at pH 4 compared to pH 8. We suggest the pH dependence is likely controlled by reoxidation of Pu(IV) to Pu(V) and aqueous speciation. We will present models used to describe desorption behavior and discuss the implications for Pu transport. References: Kersting, A.B.; Efurd, D.W.; Finnegan, D.L.; Rokop, D.J.; Smith, D.K.; Thompson J.L. (1999) Migration of plutonium in groundwater at the Nevada Test Site, Nature, 397, 56-59. Novikov A.P.; Kalmykov, S.N.; Utsunomiya, S.; Ewing, R.C.; Horreard, F.; Merkulov, A.; Clark, S.B.; Tkachev, V.V.; Myasoedov, B.F. (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia, Science, 314, 638-641. Santschi, P.H.; Roberts, K.; Guo, L. (2002) The organic nature of colloidal actinides transported in surface water environments. Environ. Sci. Technol., 36, 3711-3719. This work was funded by U. S. DOE Office of Biological & Environmental Sciences, Subsurface Biogeochemistry Research Program, and performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344. LLNL-ABS-570161
Brachymetatarsia of the Fourth Metatarsal, Lengthening Scarf Osteotomy with Bone Graft
Desai, Ankit; Lidder, Surjit; R. Armitage, Andrew; S. Rajaratnam, Samuel; D. Skyrme, Andrew
2013-01-01
A 16-year-old girl presented with left fourth metatarsal shortening causing significant psychological distress. She underwent lengthening scarf osteotomy held with an Omnitech® screw (Biotech International, France) with the addition of two 1 cm cancellous cubes (RTI Biologics, United States). A lengthening zplasty of the extensor tendons and skin were also performed. At 6 weeks the patient was fully weight bearing and at one-year follow up, the patient was satisfied and discharged. A modified technique of lengthening scarf osteotomy is described for congenital brachymatatarsia. This technique allows one stage lengthening through a single incision with graft incorporation by 6 weeks. PMID:24191181
Brachymetatarsia of the fourth metatarsal, lengthening scarf osteotomy with bone graft.
Desai, Ankit; Lidder, Surjit; R Armitage, Andrew; S Rajaratnam, Samuel; D Skyrme, Andrew
2013-01-01
A 16-year-old girl presented with left fourth metatarsal shortening causing significant psychological distress. She underwent lengthening scarf osteotomy held with an Omnitech(®) screw (Biotech International, France) with the addition of two 1 cm cancellous cubes (RTI Biologics, United States). A lengthening zplasty of the extensor tendons and skin were also performed. At 6 weeks the patient was fully weight bearing and at one-year follow up, the patient was satisfied and discharged. A modified technique of lengthening scarf osteotomy is described for congenital brachymatatarsia. This technique allows one stage lengthening through a single incision with graft incorporation by 6 weeks.
3D Printing the Complete CubeSat
NASA Technical Reports Server (NTRS)
Kief, Craig
2015-01-01
The 3D Printing the Complete CubeSat project is designed to advance the state-of-the-art in 3D printing for CubeSat applications. Printing in 3D has the potential to increase reliability, reduce design iteration time and provide greater design flexibility in the areas of radiation mitigation, communications, propulsion, and wiring, among others. This project is investigating the possibility of including propulsion systems into the design of printed CubeSat components. One such concept, an embedded micro pulsed plasma thruster (mPPT), could provide auxiliary reaction control propulsion for a spacecraft as a means to desaturate momentum wheels.
NASA Technical Reports Server (NTRS)
Smith, Harrison Brodsky; Hu, Steven Hung Kee; Cockrell, James J.
2013-01-01
Operators of a constellation of CubeSats have to confront a number of daunting challenges that can be cost prohibitive, or operationally prohibitive, to missions that could otherwise be enabled by a satellite constellation. Challenges including operations complexity, intersatellite communication, intersatellite navigation, and time sharing tasks between satellites are all complicated by operating with the usual CubeSat size, power, and budget constraints. EDSN pioneers innovative solutions to these problems as they are presented on the nano-scale satellite platform.
Felgueiras, Helena P; Wang, L M; Ren, K F; Querido, M M; Jin, Q; Barbosa, M A; Ji, J; Martins, M C L
2017-03-08
Infection and thrombus formation are still the biggest challenges for the success of blood contact medical devices. This work aims the development of an antimicrobial and hemocompatible biomaterial coating through which selective binding of albumin (passivant protein) from the bloodstream is promoted and, thus, adsorption of other proteins responsible for bacterial adhesion and thrombus formation can be prevented. Polyurethane (PU) films were coated with hyaluronic acid, an antifouling agent, that was previously modified with thiol groups (HA-SH), using polydopamine as the binding agent. Octadecyl acrylate (C18) was used to attract albumin since it resembles the circulating free fatty acids and albumin is a fatty acid transporter. Thiol-ene "click chemistry" was explored for C18 immobilization on HA-SH through a covalent bond between the thiol groups from the HA and the alkene groups from the C18 chains. Surfaces were prepared with different C18 concentrations (0, 5, 10, and 20%) and successful immobilization was demonstrated by scanning electron microscopy (SEM), water contact angle determinations, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The ability of surfaces to bind albumin selectively was determined by quartz crystal microbalance with dissipation (QCM-D). Albumin adsorption increased in response to the hydrophobic nature of the surfaces, which augmented with C18 saturation. HA-SH coating reduced albumin adsorption to PU. C18 immobilized onto HA-SH at 5% promoted selective binding of albumin, decreased Staphylococcus aureus adhesion and prevented platelet adhesion and activation to PU in the presence of human plasma. C18/HA-SH coating was established as an innovative and promising strategy to improve the antimicrobial properties and hemocompatibility of any blood contact medical device.
Analysis of C/E results of fission rate ratio measurements in several fast lead VENUS-F cores
NASA Astrophysics Data System (ADS)
Kochetkov, Anatoly; Krása, Antonín; Baeten, Peter; Vittiglio, Guido; Wagemans, Jan; Bécares, Vicente; Bianchini, Giancarlo; Fabrizio, Valentina; Carta, Mario; Firpo, Gabriele; Fridman, Emil; Sarotto, Massimo
2017-09-01
During the GUINEVERE FP6 European project (2006-2011), the zero-power VENUS water-moderated reactor was modified into VENUS-F, a mock-up of a lead cooled fast spectrum system with solid components that can be operated in both critical and subcritical mode. The Fast Reactor Experiments for hybrid Applications (FREYA) FP7 project was launched in 2011 to support the designs of the MYRRHA Accelerator Driven System (ADS) and the ALFRED Lead Fast Reactor (LFR). Three VENUS-F critical core configurations, simulating the complex MYRRHA core design and one configuration devoted to the LFR ALFRED core conditions were investigated in 2015. The MYRRHA related cores simulated step by step design peculiarities like the BeO reflector and in pile sections. For all of these cores the fuel assemblies were of a simple design consisting of 30% enriched metallic uranium, lead rodlets to simulate the coolant and Al2O3 rodlets to simulate the oxide fuel. Fission rate ratios of minor actinides such as Np-237, Am-241 as well as Pu-239, Pu-240, Pu-242 and U-238 to U-235 were measured in these VENUS-F critical assemblies with small fission chambers in specially designed locations, to determine the spectral indices in the different neutron spectrum conditions. The measurements have been analyzed using advanced computational tools including deterministic and stochastic codes and different nuclear data sets like JEFF-3.1, JEFF-3.2, ENDF/B7.1 and JENDL-4.0. The analysis of the C/E discrepancies will help to improve the nuclear data in the specific energy region of fast neutron reactor spectra.
NASA Astrophysics Data System (ADS)
Stephen, Diggs; Lee, Allison
2014-05-01
The National Science Foundation's EarthCube initiative aims to create a community-driven data and knowledge management system that will allow for unprecedented data sharing across the geosciences. More than 2,500 participants through forums, work groups, EarthCube events, and virtual and in-person meetings have participated. The individuals that have engaged represent the core earth-system sciences of solid Earth, Atmosphere, Oceans, and Polar Sciences. EarthCube is a cornerstone of NSF's Cyberinfrastructure for the 21st Century (CIF21) initiative, whose chief objective is to develop a U.S. nationwide, sustainable, and community-based cyberinfrastructure for researchers and educators. Increasingly effective community-driven cyberinfrastructure allows global data discovery and knowledge management and achieves interoperability and data integration across scientific disciplines. There is growing convergence across scientific and technical communities on creating a networked, knowledge management system and scientific data cyberinfrastructure that integrates Earth system and human dimensions data in an open, transparent, and inclusive manner. EarthCube does not intend to replicate these efforts, but build upon them. An agile development process is underway for the development and governance of EarthCube. The agile approach was deliberately selected due to its iterative and incremental nature while promoting adaptive planning and rapid and flexible response. Such iterative deployment across a variety of EarthCube stakeholders encourages transparency, consensus, accountability, and inclusiveness.
Breaking Wave Impact on a Partially Submerged Rigid Cube in Deep Water
NASA Astrophysics Data System (ADS)
Ikeda, C. M.; Choquette, M.; Duncan, J. H.
2011-11-01
The impact of a plunging breaking wave on a partially submerged cube is studied experimentally. The experiments are performed in a wave tank that is 14.8 m long, 1.15 m wide and 2.2 m high with a water depth of 0.91 m. A single repeatable plunging breaker is generated from a dispersively focused wave packet (average frequency of 1.4 Hz) that is created with a programmable wave maker. The rigid (L = 30 . 5 cm) cube is centered in the width of the tank and mounted from above with one face oriented normal to the oncoming wave. The position of the center of the front face of the cube is varied from the breaker location (xb ~ 6 . 35 m) to xb + 0 . 05 m in the streamwise direction and from - 0 . 25 L to 0 . 25 L vertically relative to the mean water level. A high-speed digital camera is used to record both white-light and laser-induced fluorescence (LIF) movies of the free surface shape in front of the cube before and after the wave impact. When the wave hits the cube just as the plunging jet is formed, a high-velocity vertical jet is created and the trajectory and maximum height of the jet are strongly influenced by the vertical position of the cube. Supported by the Office of Naval Research, Contract Monitor R. D. Joslin.
NASA Astrophysics Data System (ADS)
Agarwal, Karuna; Gao, Jian; Katz, Joseph
2017-11-01
The shape, size, and spacing between roughness elements in turbulent boundary layers affect the associated drag and noise. Understanding them require data on the flow structure around these elements. Dual-view tomographic holography is used to study the 3D 3-component velocity field around a pair of cubic roughness elements immersed in a turbulent boundary layer at Reτ = 2500 . These a = 1 mm high cubes correspond to 4% of the half channel height and 90 wall units (δν = 11 μ m). Tests are performed for spanwise spacings of a, 1.5 a and 2.5 a. The sample volume is 385δν × 250δν × 190δν and the vector spacing is 5.4δν. Conversed statistics is obtained by recording 1500 realizations in volumes centered upstream, downstream and around a cube. The boundary layer separating upstream of the cube does not reattach until the wake region, resulting in formation of a vortical ``canopy'' that engulfs each cube. It is dominated by spanwise vorticity above the cube and separated region, bounded by vertical vorticity on the sides. Flow channeling in the space between cubes causes asymmetry in the vorticity distributions along the inner and outer walls. The legs of horseshoe vortices remain near the wall between cubes, but grow and expand in the wake region. Funded by NSF and ONR.
Wide-Field Imaging Interferometry Spatial-Spectral Image Synthesis Algorithms
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Leisawitz, David T.; Rinehart, Stephen A.; Memarsadeghi, Nargess; Sinukoff, Evan J.
2012-01-01
Developed is an algorithmic approach for wide field of view interferometric spatial-spectral image synthesis. The data collected from the interferometer consists of a set of double-Fourier image data cubes, one cube per baseline. These cubes are each three-dimensional consisting of arrays of two-dimensional detector counts versus delay line position. For each baseline a moving delay line allows collection of a large set of interferograms over the 2D wide field detector grid; one sampled interferogram per detector pixel per baseline. This aggregate set of interferograms, is algorithmically processed to construct a single spatial-spectral cube with angular resolution approaching the ratio of the wavelength to longest baseline. The wide field imaging is accomplished by insuring that the range of motion of the delay line encompasses the zero optical path difference fringe for each detector pixel in the desired field-of-view. Each baseline cube is incoherent relative to all other baseline cubes and thus has only phase information relative to itself. This lost phase information is recovered by having point, or otherwise known, sources within the field-of-view. The reference source phase is known and utilized as a constraint to recover the coherent phase relation between the baseline cubes and is key to the image synthesis. Described will be the mathematical formalism, with phase referencing and results will be shown using data collected from NASA/GSFC Wide-Field Imaging Interferometry Testbed (WIIT).
Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...
2016-09-28
We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011–2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, < σ A v > , formore » dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on < σ A v > , reaching a level of 10 - 23 cm 3 s - 1 , depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in IceCube.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Abraham, K.; Ackermann, M.
We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011–2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, < σ A v > , formore » dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on < σ A v > , reaching a level of 10 - 23 cm 3 s - 1 , depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in IceCube.« less
Iron Corrosion Observations: Pu(VI)-Fe Reduction Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Donald T.; Swanson, Juliet S.; Richmann, Michael K.
Iron and Pu Reduction: (1) Very different appearances in iron reaction products were noted depending on pH, brine and initial iron phase; (2) Plutonium was associated with the Fe phases; (3) Green rust was often noted at the higher pH; (4) XANES established the green rust to be an Fe2/3 phase with a bromide center; and (5) This green rust phase was linked to Pu as Pu(IV).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, B.R.; Muggenburg, B.A.; Welsh, C.A.
The alpha emitter plutonium-238 ({sup 238}Pu), which is produced in uranium-fueled, light-water reactors, is used as a thermoelectric power source for space applications. Inhalation of a mixed oxide form of Pu is the most likely mode of exposure of workers and the general public. Occupational exposures to {sup 238}PuO{sub 2} have occurred in association with the fabrication of radioisotope thermoelectric generators. Organs and tissue at risk for deterministic and stochastic effects of {sup 238}Pu-alpha irradiation include the lung, liver, skeleton, and lymphatic tissue. Little has been reported about the effects of inhaled {sup 238}PuO{sub 2} on peripheral blood cell countsmore » in humans. The purpose of this study was to investigate hematological responses after a single inhalation exposure of Beagle dogs to alpha-emitting {sup 238}PuO{sub 2} particles and to extrapolate results to humans.« less
Statistical properties of Pu 243 , and Pu 242 ( n , γ ) cross section calculation
Laplace, T. A.; Zeiser, F.; Guttormsen, M.; ...
2016-01-29
The level density and γ-ray strength function (γSF) of 243Pu have been measured in the quasicontinuum using the Oslo method. Excited states in 243Pu were populated using the 242Pu(d,p) reaction. The level density closely follows the constant-temperature level density formula for excitation energies above the pairing gap. The γSF displays a double-humped resonance at low energy as also seen in previous investigations of actinide isotopes. The structure is interpreted as the scissors resonance and has a centroid of ω SR = 2.42(5) MeV and a total strength of B SR = 10.1(15) μ 2 N, which is in excellent agreementmore » with sum-rule estimates. Lastly, the measured level density and γSF were used to calculate the 242Pu(n,γ) cross section in a neutron energy range for which there were previously no measured data.« less
PU.1 is a major transcriptional activator of the tumour suppressor gene LIMD1
Foxler, Daniel E.; James, Victoria; Shelton, Samuel J.; Vallim, Thomas Q. de A.; Shaw, Peter E.; Sharp, Tyson V.
2011-01-01
LIMD1 is a tumour suppressor gene (TSG) down regulated in ∼80% of lung cancers with loss also demonstrated in breast and head and neck squamous cell carcinomas. LIMD1 is also a candidate TSG in childhood acute lymphoblastic leukaemia. Mechanistically, LIMD1 interacts with pRB, repressing E2F-driven transcription as well as being a critical component of microRNA-mediated gene silencing. In this study we show a CpG island within the LIMD1 promoter contains a conserved binding motif for the transcription factor PU.1. Mutation of the PU.1 consensus reduced promoter driven transcription by 90%. ChIP and EMSA analysis demonstrated that PU.1 specifically binds to the LIMD1 promoter. siRNA depletion of PU.1 significantly reduced endogenous LIMD1 expression, demonstrating that PU.1 is a major transcriptional activator of LIMD1. PMID:21402070
Chemical potential of oxygen in (U, Pu) mixed oxide with Pu/(U+Pu) = 0.46
NASA Astrophysics Data System (ADS)
Dawar, Rimpi; Chandramouli, V.; Anthonysamy, S.
2016-05-01
Chemical potential of oxygen in (U,Pu) mixed oxide with Pu/(U + Pu) = 0.46 was measured for the first time using H2/H2O gas equilibration combined with solid electrolyte EMF technique at 1073, 1273 and 1473 K covering an oxygen potential range of -525 to -325 kJ mol-1. The effect of oxygen potential on the oxygen to metal ratio was determined. Increase in oxygen potential increases the O/M. In this study the minimum O/M obtained was 1.985 below which reduction was not possible. Partial molar enthalpy ΔHbar O2 and entropy ΔSbar O2 of oxygen were calculated from the oxygen potential data. The values of -752.36 kJ mol-1 and 0.25 kJ mol-1 were obtained for ΔHbar O2 and ΔSbar O2 respectively.
Jaul, Efraim; Menczel, Jacob
2015-03-01
Sacral pressure ulcers (PUs) are a serious complication in frail elderly patients. Thin tissue in the sacral area, low body mass index, and anatomical location contribute to the development of sacral PUs. A comparative, descriptive study was conducted to identify patient systemic factors associated with sacral PUs and to compare survival time in patients with and without PU. All consecutive patients with PUs (n = 77) and without sacral PUs (n = 53) admitted to the skilled nursing department of a geriatric hospital in Jerusalem, Israel between July 1, 2008 and December 31, 2011 were eligible to participate. Charts of previously admitted patients were abstracted and patients were prospectively followed until discharge, death, or the end of the study. Patient demographics, comorbidities, nutritional status, physical and cognitive function (measured using the Reisberg's Functional Assessment Staging Tool [FAST], Stages of Dementia of Alzheimer Scale, and the Glasgow Coma Scale), PU status, number of courses of antibiotic treatment during admission, length of hospitalization, and mortality were compared between patients admitted with and without a sacral PU using descriptive and univariate statistics. Logistic regression models were used to estimate the odds ratio (OR) and 95% confidence intervals (CI) for sacral PU versus without PU by study covariate. The association between sacral PU and survival time was assessed using Kaplan-Meier models. Patients with a sacral PU were significantly older (average age 81.60 ±10.78 versus 77.06±11.19 years old, P = 0.02) and had a higher prevalence of dementia (70% versus 30%, P = 0.007), Parkinson's disease (92.3% versus 7.7%, P = 0.03), and anemia (67.7% versus 32.3%, P = 0.06) than patients admitted without a PU. Patients with a sacral PU also had a lower body mass index (23.1 versus 25.4, P = 0.04), and lower hemoglobin (10.54 versus 11.11, P = 0.03), albumin (26.2 versus 29.7, P = 0.002), and total protein levels (61.3 versus 65.7, P = 0.04). In addition, antibiotic treatment was significantly higher in the patients with PU (50.6% versus 28.3%, P = 0.01). Patients with a sacral PU also had significantly lower physical and cognitive functioning scores and their median survival time was 70 days compared to 401 days in the non-PU group (P <0.001). These findings are generally consistent with the literature regarding risk factors for PU development and confirm the need for preventive measures. In addition, clinicians need to address the overall goal of patient care and patient quality of life when considering PU management interventions in this patient population.
2014-02-11
ISS038-E-044887 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
2014-02-11
ISS038-E-044889 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
2014-02-11
ISS038-E-044890 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowder, M.; Pierce, R.
2012-08-22
H-Canyon and HB-Line are tasked with the production of PuO{sub 2} from a feed of plutonium metal. The PuO{sub 2} will provide feed material for the MOX Fuel Fabrication Facility. After dissolution of the Pu metal in H-Canyon, the solution will be transferred to HB-Line for purification by anion exchange. Subsequent unit operations include Pu(IV) oxalate precipitation, filtration and calcination to form PuO{sub 2}. This report details the results from SRNL anion exchange, precipitation, filtration, calcination, and characterization tests, as requested by HB-Line1 and described in the task plan. This study involved an 80-g batch of Pu and employed testmore » conditions prototypical of HB-Line conditions, wherever feasible. In addition, this study integrated lessons learned from earlier anion exchange and precipitation and calcination studies. H-Area Engineering selected direct strike Pu(IV) oxalate precipitation to produce a more dense PuO{sub 2} product than expected from Pu(III) oxalate precipitation. One benefit of the Pu(IV) approach is that it eliminates the need for reduction by ascorbic acid. The proposed HB-Line precipitation process involves a digestion time of 5 minutes after the time (44 min) required for oxalic acid addition. These were the conditions during HB-line production of neptunium oxide (NpO{sub 2}). In addition, a series of small Pu(IV) oxalate precipitation tests with different digestion times were conducted to better understand the effect of digestion time on particle size, filtration efficiency and other factors. To test the recommended process conditions, researchers performed two nearly-identical larger-scale precipitation and calcination tests. The calcined batches of PuO{sub 2} were characterized for density, specific surface area (SSA), particle size, moisture content, and impurities. Because the 3013 Standard requires that the calcination (or stabilization) process eliminate organics, characterization of PuO{sub 2} batches monitored the presence of oxalate by thermogravimetric analysis-mass spectrometry (TGA-MS). To use the TGA-MS for carbon or oxalate content, some method development will be required. However, the TGA-MS is already used for moisture measurements. Therefore, SRNL initiated method development for the TGA-MS to allow quantification of oxalate or total carbon. That work continues at this time and is not yet ready for use in this study. However, the collected test data can be reviewed later as those analysis tools are available.« less
Sakaguchi, Aya; Steier, Peter; Takahashi, Yoshio; Yamamoto, Masayoshi
2014-04-01
Black-colored road dusts were collected in high-radiation areas in Fukushima Prefecture. Measurement of (236)U and Pu isotopes and (134,137)Cs in samples was performed to confirm whether refractory elements, such as U and Pu, from the fuel core were discharged and to ascertain the extent of fractionation between volatile and refractory elements. The concentrations of (134,137)Cs in all samples were exceptionally high, ranging from 0.43 to 17.7 MBq/kg, respectively. (239+240)Pu was detected at low levels, ranging from 0.15 to 1.14 Bq/kg, and with high (238)Pu/(239+240)Pu activity ratios of 1.64-2.64. (236)U was successfully determined in the range of (0.28 to 6.74) × 10(-4) Bq/kg. The observed activity ratios for (236)U/(239+240)Pu were in reasonable agreement with those calculated for the fuel core inventories, indicating that trace amounts of U from the fuel cores were released together with Pu isotopes but without large fractionation. The quantities of U and (239+240)Pu emitted to the atmosphere were estimated as 3.9 × 10(6) Bq (150 g) and 2.3 × 10(9) Bq (580 mg), respectively. With regard to U, this is the first report to give a quantitative estimation of the amount discharged. Appreciable fractionation between volatile and refractory radionuclides associated with the dispersal/deposition processes with distance from the Fukushima Dai-ichi Nuclear Power Plant was found.
Gaaz, Tayser Sumer; Sulong, Abu Bakar; Ansari, M. N. M.; Kadhum, Abdul Amir H.; Nassir, Mohamed H.
2017-01-01
The advancements in material science and technology have made polyurethane (PU) one of the most important renewable polymers. Enhancing the physio-chemical and mechanical properties of PU has become the theme of this and many other studies. One of these enhancements was carried out by adding starch to PU to form new renewable materials called polyurethane-starch composites (PUS). In this study, PUS composites are prepared by adding starch at 0.5, 1.0, 1.5, and 2.0 wt.% to a PU matrix. The mechanical, thermal, and morphological properties of PU and PUS composites were investigated. Scanning electron microscope (SEM) images of PU and PUS fractured surfaces show cracks and agglomeration in PUS at 1.5 wt.% starch. The thermo-mechanical properties of the PUS composites were improved as starch content increased to 1.5 wt.% and declined by more starch loading. Despite this reduction, the mechanical properties were still better than that of neat PU. The mechanical strength increased as starch content increased to 1.5 wt.%. The tensile, flexural, and impact strengths of the PUS composites were found to be 9.62 MPa, 126.04 MPa, and 12.87 × 10−3 J/mm2, respectively, at 1.5 wt.% starch. Thermal studies showed that the thermal stability and crystallization temperature of the PUS composites increased compared to that of PU. The loss modulus curves showed that neat PU crystallizes at 124 °C and at 127 °C for PUS-0.5 wt.% and rises with increasing loading from 0.5 to 2 wt.%. PMID:28773134