Flexible Multi-Body Spacecraft Simulator: Design, Construction, and Experiments
2017-12-01
BODY SPACECRAFT SIMULATOR: DESIGN , CONSTRUCTION, AND EXPERIMENTS by Adam L. Atwood December 2017 Thesis Advisor: Mark Karpenko Second...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE FLEXIBLE MULTI-BODY SPACECRAFT SIMULATOR: DESIGN , CONSTRUCTION, AND EXPERIMENTS 5...spacecraft simulator for use in testing optimal control-based slew and maneuver designs . The simulator is modified from an earlier prototype, which
N-MODY: A Code for Collisionless N-body Simulations in Modified Newtonian Dynamics
NASA Astrophysics Data System (ADS)
Londrillo, Pasquale; Nipoti, Carlo
2011-02-01
N-MODY is a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.
N-body simulations in modified Newtonian dynamics
NASA Astrophysics Data System (ADS)
Nipoti, C.; Londrillo, P.; Ciotti, L.
We describe some results obtained with N-MODY, a code for N-body simulations of collisionless stellar systems in modified Newtonian dynamics (MOND). We found that a few fundamental dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter. In particular, violent relaxation, phase mixing and galaxy merging take significantly longer in MOND than in Newtonian gravity, while dynamical friction is more effective in a MOND system than in an equivalent Newtonian system with dark matter.
Rispoli, Joseph V; Wright, Steven M; Malloy, Craig R; McDougall, Mary P
2017-01-01
Human voxel models incorporating detailed anatomical features are vital tools for the computational evaluation of electromagnetic (EM) fields within the body. Besides whole-body human voxel models, phantoms representing smaller heterogeneous anatomical features are often employed; for example, localized breast voxel models incorporating fatty and fibroglandular tissues have been developed for a variety of EM applications including mammography simulation and dosimetry, magnetic resonance imaging (MRI), and ultra-wideband microwave imaging. However, considering wavelength effects, electromagnetic modeling of the breast at sub-microwave frequencies necessitates detailed breast phantoms in conjunction with whole-body voxel models. Heterogeneous breast phantoms are sized to fit within radiofrequency coil hardware, modified by voxel-wise extrusion, and fused to whole-body models using voxel-wise, tissue-dependent logical operators. To illustrate the utility of this method, finite-difference time-domain simulations are performed using a whole-body model integrated with a variety of available breast phantoms spanning the standard four tissue density classifications representing the majority of the population. The software library uses a combination of voxel operations to seamlessly size, modify, and fuse eleven breast phantoms to whole-body voxel models. The software is publicly available on GitHub and is linked to the file exchange at MATLAB ® Central. Simulations confirm the proportions of fatty and fibroglandular tissues in breast phantoms have significant yet predictable implications on projected power deposition in tissue. Breast phantoms may be modified and fused to whole-body voxel models using the software presented in this work; user considerations for the open-source software and resultant phantoms are discussed. Furthermore, results indicate simulating breast models as predominantly fatty tissue can considerably underestimate the potential for tissue heating in women with substantial fibroglandular tissue.
Rispoli, Joseph V.; Wright, Steven M.; Malloy, Craig R.; McDougall, Mary P.
2017-01-01
Background Human voxel models incorporating detailed anatomical features are vital tools for the computational evaluation of electromagnetic (EM) fields within the body. Besides whole-body human voxel models, phantoms representing smaller heterogeneous anatomical features are often employed; for example, localized breast voxel models incorporating fatty and fibroglandular tissues have been developed for a variety of EM applications including mammography simulation and dosimetry, magnetic resonance imaging (MRI), and ultra-wideband microwave imaging. However, considering wavelength effects, electromagnetic modeling of the breast at sub-microwave frequencies necessitates detailed breast phantoms in conjunction with whole-body voxel models. Methods Heterogeneous breast phantoms are sized to fit within radiofrequency coil hardware, modified by voxel-wise extrusion, and fused to whole-body models using voxel-wise, tissue-dependent logical operators. To illustrate the utility of this method, finite-difference time-domain simulations are performed using a whole-body model integrated with a variety of available breast phantoms spanning the standard four tissue density classifications representing the majority of the population. Results The software library uses a combination of voxel operations to seamlessly size, modify, and fuse eleven breast phantoms to whole-body voxel models. The software is publicly available on GitHub and is linked to the file exchange at MATLAB® Central. Simulations confirm the proportions of fatty and fibroglandular tissues in breast phantoms have significant yet predictable implications on projected power deposition in tissue. Conclusions Breast phantoms may be modified and fused to whole-body voxel models using the software presented in this work; user considerations for the open-source software and resultant phantoms are discussed. Furthermore, results indicate simulating breast models as predominantly fatty tissue can considerably underestimate the potential for tissue heating in women with substantial fibroglandular tissue. PMID:28798837
N-MODY: a code for collisionless N-body simulations in modified Newtonian dynamics.
NASA Astrophysics Data System (ADS)
Londrillo, P.; Nipoti, C.
We describe the numerical code N-MODY, a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.
Fan, Yu; Kong, Gaiqing; Meng, Yisen; Tan, Shutao; Wei, Kunlin; Zhang, Qian; Jin, Jie
2014-11-01
Flank position is extensively used in retroperitoneoscopic urological practice. Most surgeons follow the patients' position in open approaches. However, surgical ergonomics of the conventional position in the retroperitoneoscopic surgery is poor. We introduce a modified position and evaluated task performance and surgical ergonomics of both positions with simulated surgical tasks. Twenty-one novice surgeons were recruited to perform four tasks: bead transfer, ring transfer, continuous suturing, and cutting a circle. The conventional position was simulated by setting an endo-surgical simulator parallel to the long axis of a surgical desk. The modified position was simulated by rotating the simulator 30° with respect to the long axis of the desk. The outcome measurements include task performance measures, kinematic measures for body alignment, surface electromyography, relative loading between feet, and subjective ratings of fatigue. We observed significant improvements in both task performance and surgical ergonomics parameters under the modified position. For all four tasks, subjects finished tasks faster with higher accuracy (p < 0.005 or < 0.001). For ergonomics part: (1) The angle between the upper body and the head was decreased by 7.4 ± 1.7°; (2) The EMG amplitude collected from shoulders and left lumber was significantly lower (p < 0.05); (3) Relative loading between feet was more balanced (p < 0.001); (4) Manual-action muscles and postural muscles are rated less fatiguing according to the questionnaire (p < 0.05). Conventional position of patient in retroperitoneoscopic upper urinary tract surgery is associated with poor surgical ergonomics. With a simulated surgery, we demonstrated that our modified position could significantly improve task performance and surgical ergonomics. Further studies are still warranted to validate these benefits for both patients and surgeons.
2017-01-01
Methodology 3 2.1 Modified Embedded-Atom Method Theory 3 2.1.1 Embedding Energy Function 3 2.1.2 Screening Factor 8 2.1.3 Modified Embedded-Atom...Simulation Methodology 2.1 Modified Embedded-Atom Method Theory In the EAM and MEAM formalisms1,2,5 the total energy of a system of atoms (Etot) is...An interatomic potential for saturated hydrocarbons using the modified embedded-atom method (MEAM), a semiempirical many-body potential based on
Pramatarova, L; Pecheva, E; Krastev, V
2007-03-01
The interest in stainless steel as a material widely used in medicine and dentistry has stimulated extensive studies on improving its bone-bonding properties. AISI 316 stainless steel is modified by a sequential ion implantation of Ca and P ions (the basic ions of hydroxyapatite), and by Ca and P implantation and subsequent thermal treatment in air (600( composite function)C, 1 h). This paper investigates the ability of the as-modified surfaces to induce hydroxyapatite deposition by using a biomimetic approach, i.e. immersion in a supersaturated aqueous solution resembling the human blood plasma (the so-called simulated body fluid). We describe our experimental procedure and results, and discuss the physico-chemical properties of the deposed hydroxyapatite on the modified stainless steel surfaces. It is shown that the implantation of a selected combination of ions followed by the applied methodology of the sample soaking in the simulated body fluid yield the growth of hydroxyapatite layers with composition and structure resembling those of the bone apatite. The grown layers are found suitable for studying the process of mineral formation in nature (biomineralization).
RAY-RAMSES: a code for ray tracing on the fly in N-body simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barreira, Alexandre; Llinares, Claudio; Bose, Sownak
2016-05-01
We present a ray tracing code to compute integrated cosmological observables on the fly in AMR N-body simulations. Unlike conventional ray tracing techniques, our code takes full advantage of the time and spatial resolution attained by the N-body simulation by computing the integrals along the line of sight on a cell-by-cell basis through the AMR simulation grid. Moroever, since it runs on the fly in the N-body run, our code can produce maps of the desired observables without storing large (or any) amounts of data for post-processing. We implemented our routines in the RAMSES N-body code and tested the implementationmore » using an example of weak lensing simulation. We analyse basic statistics of lensing convergence maps and find good agreement with semi-analytical methods. The ray tracing methodology presented here can be used in several cosmological analysis such as Sunyaev-Zel'dovich and integrated Sachs-Wolfe effect studies as well as modified gravity. Our code can also be used in cross-checks of the more conventional methods, which can be important in tests of theory systematics in preparation for upcoming large scale structure surveys.« less
DSMC Simulations of Blunt Body Flows for Mars Entries: Mars Pathfinder and Mars Microprobe Capsules
NASA Technical Reports Server (NTRS)
Moss, James N.; Wilmoth, Richard G.; Price, Joseph M.
1997-01-01
The hypersonic transitional flow aerodynamics of the Mars Pathfinder and Mars Microprobe capsules are simulated with the direct simulation Monte Carlo method. Calculations of axial, normal, and static pitching coefficients were obtained over an angle of attack range comparable to actual flight requirements. Comparisons are made with modified Newtonian and free-molecular-flow calculations. Aerothermal results were also obtained for zero incidence entry conditions.
NASA Technical Reports Server (NTRS)
Simanonok, K. E.; Srinivasan, R. S.; Myrick, E. E.; Blomkalns, A. L.; Charles, J. B.
1994-01-01
The Guyton model of fluid, electrolyte, and circulatory regulation is an extensive mathematical model capable of simulating a variety of experimental conditions. It has been modified for use at NASA to simulate head-down tilt, a frequently used analog of weightlessness. Weightlessness causes a headward shift of body fluids that is believed to expand central blood volume, triggering a series of physiologic responses resulting in large losses of body fluids. We used the modified Guyton model to test the hypothesis that preadaptation of the blood volume before weightless exposure could counteract the central volume expansion caused by fluid shifts, and thereby attenuate the circulatory and renal responses that result in body fluid losses. Simulation results show that circulatory preadaptation, by a procedure resembling blood donation immediately before head-down bedrest, is effective in damping the physiologic responses to fluid shifts and reducing body fluid losses. After 10 hours of head-down tilt, preadaptation also produces higher blood volume, extracellular volume, and total body water for 20 to 30 days of bedrest, compared with non-preadapted control. These results indicate that circulatory preadaptation before current Space Shuttle missions may be beneficial for the maintenance of reentry and postflight orthostatic tolerance in astronauts. This paper presents a comprehensive examination of the simulation results pertaining to changes in relevant physiologic variables produced by blood volume reduction before a prolonged head-down tilt. The objectives were to study and develop the countermeasure theoretically, to aid in planning experimental studies of the countermeasure, and to identify potentially disadvantageous physiologic responses that may be caused by the countermeasure.
Valanezahad, Alireza; Ishikawa, Kunio; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki
2011-01-01
To understand the feasibility of calcium (Ca) modification of type 316L stainless steel (316L SS) surface using hydrothermal treatment, 316L SS plates were treated hydrothermally in calcium chloride (CaCl(2)) solution. X-ray photoelectron spectroscopic analysis revealed that the surface of 316L SS plate was modified with Ca after hydrothermal treatment at 200°C. And the immobilized Ca increased with CaCl(2) concentration. However no Ca-modification was occurred for 316L SS plates treated at 100°C. When Ca-modified 316L SS plate was immersed in simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma, low crystalline apatite was precipitated on its surface whereas no precipitate was observed on non Ca-modified 316L SS. The results obtained in the present study indicated that hydrothermal treatment at 200°C in CaCl(2) solution is useful for Ca-modification of 316L SS, and Ca-modification plays important role for apatite precipitation in SBF.
Very low-dose adult whole-body tumor imaging with F-18 FDG PET/CT
NASA Astrophysics Data System (ADS)
Krol, Andrzej; Naveed, Muhammad; McGrath, Mary; Lisi, Michele; Lavalley, Cathy; Feiglin, David
2015-03-01
The aim of this study was to evaluate if effective radiation dose due to PET component in adult whole-body tumor imaging with time-of-flight F-18 FDG PET/CT could be significantly reduced. We retrospectively analyzed data for 10 patients with the body mass index ranging from 25 to 50. We simulated F-18 FDG dose reduction to 25% of the ACR recommended dose via reconstruction of simulated shorter acquisition time per bed position scans from the acquired list data. F-18 FDG whole-body scans were reconstructed using time-of-flight OSEM algorithm and advanced system modeling. Two groups of images were obtained: group A with a standard dose of F-18 FDG and standard reconstruction parameters and group B with simulated 25% dose and modified reconstruction parameters, respectively. Three nuclear medicine physicians blinded to the simulated activity independently reviewed the images and compared diagnostic quality of images. Based on the input from the physicians, we selected optimal modified reconstruction parameters for group B. In so obtained images, all the lesions observed in the group A were visible in the group B. The tumor SUV values were different in the group A, as compared to group B, respectively. However, no significant differences were reported in the final interpretation of the images from A and B groups. In conclusion, for a small number of patients, we have demonstrated that F-18 FDG dose reduction to 25% of the ACR recommended dose, accompanied by appropriate modification of the reconstruction parameters provided adequate diagnostic quality of PET images acquired on time-of-flight PET/CT.
Jafari, Sajjad; Singh Raman, R K
2017-09-01
A calcium phosphate coating was directly synthesized on AZ91D magnesium (Mg) alloy. Resistance of this coating to corrosion in a modified-simulated body fluid (m-SBF) was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Mechanical properties of the bare and coated alloy were investigated using slow strain rate tensile (SSRT) and fatigue testing in air and m-SBF. Very little is reported in the literature on human-body-fluid-assisted cracking of Mg alloys, viz., resistance to corrosion fatigue (CF) and stress corrosion cracking (SCC). This study has a particular emphasis on the effect of bio-compatible coatings on mechanical and electrochemical degradations of Mg alloys for their applications as implants. The results suggest the coating to improve the general as well as pitting corrosion resistance of the alloy. The coating also provides visible improvement in resistance to SCC, but little improvement in CF resistance. This is explained on the basis of pitting behaviour in the presence and absence of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.
Systematic simulations of modified gravity: chameleon models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brax, Philippe; Davis, Anne-Christine; Li, Baojiu
2013-04-01
In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference withmore » the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc{sup −1}, since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future.« less
NASA Astrophysics Data System (ADS)
Valogiannis, Georgios; Bean, Rachel
2017-05-01
We implement an adaptation of the cola approach, a hybrid scheme that combines Lagrangian perturbation theory with an N-body approach, to model nonlinear collapse in chameleon and symmetron modified gravity models. Gravitational screening is modeled effectively through the attachment of a suppression factor to the linearized Klein-Gordon equations. The adapted cola approach is benchmarked, with respect to an N-body code both for the Λ cold dark matter (Λ CDM ) scenario and for the modified gravity theories. It is found to perform well in the estimation of the dark matter power spectra, with consistency of 1% to k ˜2.5 h /Mpc . Redshift space distortions are shown to be effectively modeled through a Lorentzian parametrization with a velocity dispersion fit to the data. We find that cola performs less well in predicting the halo mass functions but has consistency, within 1 σ uncertainties of our simulations, in the relative changes to the mass function induced by the modified gravity models relative to Λ CDM . The results demonstrate that cola, proposed to enable accurate and efficient, nonlinear predictions for Λ CDM , can be effectively applied to a wider set of cosmological scenarios, with intriguing properties, for which clustering behavior needs to be understood for upcoming surveys such as LSST, DESI, Euclid, and WFIRST.
NASA Technical Reports Server (NTRS)
Kibbee, G. W.
1978-01-01
The development, evaluation, and evaluation results of a DC-9-10 runway directional control simulator are described. An existing wide bodied flight simulator was modified to this aircraft configuration. The simulator was structured to use either two of antiskid simulations; (1) an analog mechanization that used aircraft hardware; or (2) a digital software simulation. After the simulation was developed it was evaluated by 14 pilots who made 818 simulated flights. These evaluations involved landings, rejected takeoffs, and various ground maneuvers. Qualitatively most pilots evaluated the simulator as realistic with good potential especially for pilot training for adverse runway conditions.
A study of the limitations of linear theory methods as applied to sonic boom calculations
NASA Technical Reports Server (NTRS)
Darden, Christine M.
1990-01-01
Current sonic boom minimization theories have been reviewed to emphasize the capabilities and flexibilities of the methods. Flexibility is important because it is necessary for the designer to meet optimized area constraints while reducing the impact on vehicle aerodynamic performance. Preliminary comparisons of sonic booms predicted for two Mach 3 concepts illustrate the benefits of shaping. Finally, for very simple bodies of revolution, sonic boom predictions were made using two methods - a modified linear theory method and a nonlinear method - for signature shapes which were both farfield N-waves and midfield waves. Preliminary analysis on these simple bodies verified that current modified linear theory prediction methods become inadequate for predicting midfield signatures for Mach numbers above 3. The importance of impulse is sonic boom disturbance and the importance of three-dimensional effects which could not be simulated with the bodies of revolution will determine the validity of current modified linear theory methods in predicting midfield signatures at lower Mach numbers.
Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angus, G.W.; Gentile, G.; Diaferio, A.
2014-10-01
In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two-component cosmological simulations to separate the baryonic N-body particles from the sterile neutrinomore » ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.« less
Huettig, Fabian; Chekhani, Usama; Klink, Andrea; Said, Fadi; Rupp, Frank
2018-06-08
The shark-fin test was modified to convey the clinical application of a single-step/double-mix technique assessing the behavior of two viscosities applied at one point in time. A medium and light body polyether (PE), a medium and light body polyvinylsiloxane (PVS), and a medium as well as heavy and light body vinyl polyether silicone (PVXE) impression material were analyzed solely, and in a layered mixture of 1:1 and 3:1 at working times of 50, 80, and 120 s. The fin heights were measured with a digital ruler. The wettability was measured 50 and 80 s after mixing by drop shape analysis. The results showed a synergistic effect of the medium and light body PE. This was not observed in PVXE and PVS. Interestingly, PVXE showed an antagonistic flow behavior in 3:1 mixture with medium body. PVXE was more hydrophilic than PE and PVS. Future rheological studies should clarify the detected flow effects.
Muscle activity patterns altered during pedaling at different body orientations.
Brown, D A; Kautz, S A; Dairaghi, C A
1996-10-01
Gravity is a contributing force that is believed to influence strongly the control of limb movements since it affects sensory input and also contributes to task mechanics. By altering the relative contribution of gravitational force to the overall forces used to control pedaling at different body orientations, we tested the hypothesis that joint torque and muscle activation patterns would be modified to generate steady-state pedaling at altered body orientations. Eleven healthy subjects pedaled a modified ergometer at different body orientations (from horizontal to vertical), maintaining the same workload (80 J), cadence (60 rpm), and hip and knee kinematics. Pedal reaction forces and crank and pedal kinematics were measured and used to calculate joint torques and angles. EMG was recorded from four muscles (tibialis anterior, triceps surae, rectus femoris, biceps femoris). Measures of muscle activation (joint torque and EMG activity) showed strong dependence on body orientation, indicating that muscle activity is not fixed and is modified in response to altered body orientation. Simulations confirmed that, while joint torque changes were not necessary to pedal at different body orientations, observed changes were necessary to maintain consistent crank angular velocity profiles. Dependence of muscle activity on body orientation may be due to neural integration of sensory information with an internal model that includes characteristics of the endpoint, to produce consistent pedaling trajectories. Thus, both sensory consequences and mechanical aspects of gravitational forces are important determinants of locomotor tasks such as pedaling.
The use of the articulated total body model as a robot dynamics simulation tool
NASA Technical Reports Server (NTRS)
Obergfell, Louise A.; Avula, Xavier J. R.; Kalegs, Ints
1988-01-01
The Articulated Total Body (ATB) model is a computer sumulation program which was originally developed for the study of aircrew member dynamics during ejection from high-speed aircraft. This model is totally three-dimensional and is based on the rigid body dynamics of coupled systems which use Euler's equations of motion with constraint relations of the type employed in the Lagrange method. In this paper the use of the ATB model as a robot dynamics simulation tool is discussed and various simulations are demonstrated. For this purpose the ATB model has been modified to allow for the application of torques at the joints as functions of state variables of the system. Specifically, the motion of a robotic arm with six revolute articulations with joint torques prescribed as functions of angular displacement and angular velocity are demonstrated. The simulation procedures developed in this work may serve as valuable tools for analyzing robotic mechanisms, dynamic effects, joint load transmissions, feed-back control algorithms employed in the actuator control and end-effector trajectories.
NASA Technical Reports Server (NTRS)
Simanonok, K. E.; Srinivasan, R.; Charles, J. B.
1992-01-01
Fluid shifts in weightlessness may cause a central volume expansion, activating reflexes to reduce the blood volume. Computer simulation was used to test the hypothesis that preadaptation of the blood volume prior to exposure to weightlessness could counteract the central volume expansion due to fluid shifts and thereby attenuate the circulatory and renal responses resulting in large losses of fluid from body water compartments. The Guyton Model of Fluid, Electrolyte, and Circulatory Regulation was modified to simulate the six degree head down tilt that is frequently use as an experimental analog of weightlessness in bedrest studies. Simulation results show that preadaptation of the blood volume by a procedure resembling a blood donation immediately before head down bedrest is beneficial in damping the physiologic responses to fluid shifts and reducing body fluid losses. After ten hours of head down tilt, blood volume after preadaptation is higher than control for 20 to 30 days of bedrest. Preadaptation also produces potentially beneficial higher extracellular volume and total body water for 20 to 30 days of bedrest.
AQUIFEM-SALT; a finite-element model for aquifers containing a seawater interface
Voss, C.I.
1984-01-01
Described are modifications to AQUIFEM, a finite element areal ground-water flow model for aquifer evaluation. The modified model, AQUIFEM-SALT, simulates an aquifer containing a freshwater body that freely floats on seawater. Parts of the freshwater lens may be confined above and below by less permeable units. Theory, code modifications, and model verification are discussed. A modified input data list is included. This report is intended as a companion to the original AQUIFEM documentation. (USGS)
The effect of power-law body forces on a thermally driven flow between concentric rotating spheres
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.
1986-01-01
A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.
The effect of power law body forces on a thermally-driven flow between concentric rotating spheres
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.
1985-01-01
A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.
NASA Astrophysics Data System (ADS)
Nasir, Rizal E. M.; Ali, Zurriati; Kuntjoro, Wahyu; Wisnoe, Wirachman
2012-06-01
Previous wind tunnel test has proven the improved aerodynamic charasteristics of Baseline-II E-2 Blended Wing-Body (BWB) aircraft studied in Universiti Teknologi Mara. The E-2 is a version of Baseline-II BWB with modified outer wing and larger canard, solely-designed to gain favourable longitudinal static stability during flight. This paper highlights some results from current investigation on the said aircraft via computational fluid dynamics simulation as a mean to validate the wind tunnel test results. The simulation is conducted based on standard one-equation turbulence, Spalart-Allmaras model with polyhedral mesh. The ambience of the flight simulation is made based on similar ambience of wind tunnel test. The simulation shows lift, drag and moment results to be near the values found in wind tunnel test but only within angles of attack where the lift change is linear. Beyond the linear region, clear differences between computational simulation and wind tunnel test results are observed. It is recommended that different type of mathematical model be used to simulate flight conditions beyond linear lift region.
Speeding up N-body simulations of modified gravity: chameleon screening models
NASA Astrophysics Data System (ADS)
Bose, Sownak; Li, Baojiu; Barreira, Alexandre; He, Jian-hua; Hellwing, Wojciech A.; Koyama, Kazuya; Llinares, Claudio; Zhao, Gong-Bo
2017-02-01
We describe and demonstrate the potential of a new and very efficient method for simulating certain classes of modified gravity theories, such as the widely studied f(R) gravity models. High resolution simulations for such models are currently very slow due to the highly nonlinear partial differential equation that needs to be solved exactly to predict the modified gravitational force. This nonlinearity is partly inherent, but is also exacerbated by the specific numerical algorithm used, which employs a variable redefinition to prevent numerical instabilities. The standard Newton-Gauss-Seidel iterative method used to tackle this problem has a poor convergence rate. Our new method not only avoids this, but also allows the discretised equation to be written in a form that is analytically solvable. We show that this new method greatly improves the performance and efficiency of f(R) simulations. For example, a test simulation with 5123 particles in a box of size 512 Mpc/h is now 5 times faster than before, while a Millennium-resolution simulation for f(R) gravity is estimated to be more than 20 times faster than with the old method. Our new implementation will be particularly useful for running very high resolution, large-sized simulations which, to date, are only possible for the standard model, and also makes it feasible to run large numbers of lower resolution simulations for covariance analyses. We hope that the method will bring us to a new era for precision cosmological tests of gravity.
Simulating cosmologies beyond ΛCDM with PINOCCHIO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, Luca A.; Villaescusa-Navarro, Francisco; Monaco, Pierluigi
2017-01-01
We present a method that extends the capabilities of the PINpointing Orbit-Crossing Collapsed HIerarchical Objects (PINOCCHIO) code, allowing it to generate accurate dark matter halo mock catalogues in cosmological models where the linear growth factor and the growth rate depend on scale. Such cosmologies comprise, among others, models with massive neutrinos and some classes of modified gravity theories. We validate the code by comparing the halo properties from PINOCCHIO against N-body simulations, focusing on cosmologies with massive neutrinos: νΛCDM. We analyse the halo mass function, halo two-point correlation function and halo power spectrum, showing that PINOCCHIO reproduces the results frommore » simulations with the same level of precision as the original code (∼ 5–10%). We demonstrate that the abundance of halos in cosmologies with massless and massive neutrinos from PINOCCHIO matches very well the outcome of simulations, and point out that PINOCCHIO can reproduce the Ω{sub ν}–σ{sub 8} degeneracy that affects the halo mass function. We finally show that the clustering properties of the halos from PINOCCHIO matches accurately those from simulations both in real and redshift-space, in the latter case up to k = 0.3 h Mpc{sup −1}. We emphasize that the computational time required by PINOCCHIO to generate mock halo catalogues is orders of magnitude lower than the one needed for N-body simulations. This makes this tool ideal for applications like covariance matrix studies within the standard ΛCDM model but also in cosmologies with massive neutrinos or some modified gravity theories.« less
Multiple-body simulation with emphasis on integrated Space Shuttle vehicle
NASA Technical Reports Server (NTRS)
Chiu, Ing-Tsau
1993-01-01
The program to obtain intergrid communications - Pegasus - was enhanced to make better use of computing resources. Periodic block tridiagonal and penta-diagonal diagonal routines in OVERFLOW were modified to use a better algorithm to speed up the calculation for grids with periodic boundary conditions. Several programs were added to collar grid tools and a user friendly shell script was developed to help users generate collar grids. User interface for HYPGEN was modified to cope with the changes in HYPGEN. ET/SRB attach hardware grids were added to the computational model for the space shuttle and is currently incorporated into the refined shuttle model jointly developed at Johnson Space Center and Ames Research Center. Flow simulation for the integrated space shuttle vehicle at flight Reynolds number was carried out and compared with flight data as well as the earlier simulation for wind tunnel Reynolds number.
The Flostation - an Immersive Cyberspace System
NASA Technical Reports Server (NTRS)
Park, Brian
2006-01-01
A flostation is a computer-controlled apparatus that, along with one or more computer(s) and other computer-controlled equipment, is part of an immersive cyberspace system. The system is said to be immersive in two senses of the word: (1) It supports the body in a modified form neutral posture experienced in zero gravity and (2) it is equipped with computer-controlled display equipment that helps to give the occupant of the chair a feeling of immersion in an environment that the system is designed to simulate. Neutral immersion was conceived during the Gemini program as a means of training astronauts for working in a zerogravity environment. Current derivatives include neutral-buoyancy tanks and the KC-135 airplane, each of which mimics the effects of zero gravity. While these have performed well in simulating the shorter-duration flights typical of the space program to date, a training device that can take astronauts to the next level will be needed for simulating longer-duration flights such as that of the International Space Station. The flostation is expected to satisfy this need. The flostation could also be adapted and replicated for use in commercial ventures ranging from home entertainment to medical treatment. The use of neutral immersion in the flostation enables the occupant to recline in an optimal posture of rest and meditation. This posture, combines savasana (known to practitioners of yoga) and a modified form of the neutral posture assumed by astronauts in outer space. As the occupant relaxes, awareness of the physical body is reduced. The neutral body posture, which can be maintained for hours without discomfort, is extended to the eyes, ears, and hands. The occupant can be surrounded with a full-field-of-view visual display and nearphone sound, and can be stimulated with full-body vibration and motion cueing. Once fully immersed, the occupant can use neutral hand controllers (that is, hand-posture sensors) to control various aspects of the simulated environment.
Formation of apatite layers on modified canasite glass-ceramics in simulated body fluid.
Miller, C A; Kokubo, T; Reaney, I M; Hatton, P V; James, P F
2002-03-05
Canasite glass-ceramics were modified by either increasing the concentration of calcium in the glass, or by the addition of P2O5. Samples of these novel materials were placed in simulated body fluid (SBF), along with a control material (commercial canasite), for periods ranging from 12 h to 28 days. After immersion, surface analysis was performed using thin film X-ray diffraction, Fourier transform infrared reflection spectroscopy, and scanning electron microscopy equipped with energy dispersive X-ray detectors. The concentrations of sodium, potassium, calcium, silicon, and phosphorus in the SBF solution were measured using inductively coupled plasma emission spectroscopy. No apatite was detected on the surface of commercial canasite, even after 28 days of immersion in SBF. A crystalline apatite layer was formed on the surface of a P2O5-containing canasite after 5 days, and after 3 days for calcium-enriched canasite. Ion release data suggested that the mechanism for apatite deposition was different for P2O5 and non-P2O5-containing glass-ceramics. Copyright 2001 John Wiley & Sons, Inc.
Simulating the Rayleigh-Taylor instability with the Ising model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, Justin R.; Elliott, James B.
2011-08-26
The Ising model, implemented with the Metropolis algorithm and Kawasaki dynamics, makes a system with its own physics, distinct from the real world. These physics are sophisticated enough to model behavior similar to the Rayleigh-Taylor instability and by better understanding these physics, we can learn how to modify the system to better re ect reality. For example, we could add a v x and a v y to each spin and modify the exchange rules to incorporate them, possibly using two body scattering laws to construct a more realistic system.
Biologically-inspired hexapod robot design and simulation
NASA Technical Reports Server (NTRS)
Espenschied, Kenneth S.; Quinn, Roger D.
1994-01-01
The design and construction of a biologically-inspired hexapod robot is presented. A previously developed simulation is modified to include models of the DC drive motors, the motor driver circuits and their transmissions. The application of this simulation to the design and development of the robot is discussed. The mechanisms thought to be responsible for the leg coordination of the walking stick insect were previously applied to control the straight-line locomotion of a robot. We generalized these rules for a robot walking on a plane. This biologically-inspired control strategy is used to control the robot in simulation. Numerical results show that the general body motion and performance of the simulated robot is similar to that of the robot based on our preliminary experimental results.
Flight Simulation of ARES in the Mars Environment
NASA Technical Reports Server (NTRS)
Kenney, P. Sean; Croom, Mark A.
2011-01-01
A report discusses using the Aerial Regional- scale Environmental Survey (ARES) light airplane as an observation platform on Mars in order to gather data. It would have to survive insertion into the atmosphere, fly long enough to meet science objectives, and provide a stable platform. The feasibility of such a platform was tested using the Langley Standard Real- Time Simulation in C++. The unique features of LaSRS++ are: full, six-degrees- of-freedom flight simulation that can be used to evaluate the performance of the aircraft in the Martian environment; capability of flight analysis from start to finish; support of Monte Carlo analysis of aircraft performance; and accepting initial conditions from POST results for the entry and deployment of the entry body. Starting with a general aviation model, the design was tweaked to maintain a stable aircraft under expected Martian conditions. Outer mold lines were adjusted based on experience with the Martian atmosphere. Flight control was modified from a vertical acceleration control law to an angle-of-attack control law. Navigation was modified from a vertical acceleration control system to an alpha control system. In general, a pattern of starting with simple models with well-understood behaviors was selected and modified during testing.
Laser surface modification of 316 L stainless steel with bioactive hydroxyapatite.
Balla, Vamsi Krishna; Das, Mitun; Bose, Sreyashree; Ram, G D Janaki; Manna, Indranil
2013-12-01
Laser-engineered net shaping (LENS™), a commercial additive manufacturing process, was used to modify the surfaces of 316 L stainless steel with bioactive hydroxyapatite (HAP). The modified surfaces were characterized in terms of their microstructure, hardness and apatite forming ability. The results showed that with increase in laser energy input from 32 J/mm(2) to 59 J/mm(2) the thickness of the modified surface increased from 222±12 μm to 355±6 μm, while the average surface hardness decreased marginally from 403±18 HV0.3 to 372±8 HV0.3. Microstructural studies showed that the modified surface consisted of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. Finally, the surface-modified 316 L samples immersed in simulated body fluids showed significantly higher apatite precipitation compared to unmodified 316 L samples. © 2013.
Maleki-Ghaleh, H; Khalil-Allafi, J; Sadeghpour-Motlagh, M; Shakeri, M S; Masoudfar, S; Farrokhi, A; Beygi Khosrowshahi, Y; Nadernezhad, A; Siadati, M H; Javidi, M; Shakiba, M; Aghaie, E
2014-12-01
The aim of this investigation was to enhance the biological behavior of NiTi shape memory alloy while preserving its super-elastic behavior in order to facilitate its compatibility for application in human body. The surfaces of NiTi samples were bombarded by three different nitrogen doses. Small-angle X-ray diffraction was employed for evaluating the generated phases on the bombarded surfaces. The electrochemical behaviors of the bare and surface-modified NiTi samples were studied in simulated body fluid (SBF) using electrochemical impedance and potentio-dynamic polarization tests. Ni ion release during a 2-month period of service in the SBF environment was evaluated using atomic absorption spectrometry. The cellular behavior of nitrogen-modified samples was studied using fibroblast cells. Furthermore, the effect of surface modification on super-elasticity was investigated by tensile test. The results showed the improvement of both corrosion and biological behaviors of the modified NiTi samples. However, no significant change in the super-elasticity was observed. Samples modified at 1.4E18 ion cm(-2) showed the highest corrosion resistance and the lowest Ni ion release.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valkenburg, Wessel; Hu, Bin, E-mail: valkenburg@lorentz.leidenuniv.nl, E-mail: hu@lorentz.leidenuniv.nl
2015-09-01
We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zel'dovich Approximation to nontrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond Λ-Cold Dark Matter initial conditions for modifications of gravitymore » outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology.« less
A new method to quantify the effects of baryons on the matter power spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Aurel; Teyssier, Romain, E-mail: aurel@physik.uzh.ch, E-mail: teyssier@physik.uzh.ch
2015-12-01
Future large-scale galaxy surveys have the potential to become leading probes for cosmology provided the influence of baryons on the total mass distribution is understood well enough. As hydrodynamical simulations strongly depend on details in the feedback implementations, no unique and robust predictions for baryonic effects currently exist. In this paper we propose a baryonic correction model that modifies the density field of dark-matter-only N-body simulations to mimic the effects of baryons from any underlying adopted feedback recipe. The model assumes haloes to consist of 4 components: 1- hot gas in hydrostatical equilibrium, 2- ejected gas from feedback processes, 3-more » central galaxy stars, and 4- adiabatically relaxed dark matter, which all modify the initial dark-matter-only density profiles. These altered profiles allow to define a displacement field for particles in N-body simulations and to modify the total density field accordingly. The main advantage of the baryonic correction model is to connect the total matter density field to the observable distribution of gas and stars in haloes, making it possible to parametrise baryonic effects on the matter power spectrum. We show that the most crucial quantities are the mass fraction of ejected gas and its corresponding ejection radius. The former controls how strongly baryons suppress the power spectrum, while the latter provides a measure of the scale where baryonic effects become important. A comparison with X-ray and Sunyaev-Zel'dovich cluster observations suggests that baryons suppress wave modes above k∼0.5 h/Mpc with a maximum suppression of 10-25 percent around k∼ 2 h/Mpc. More detailed observations of the gas in the outskirts of groups and clusters are required to decrease the large uncertainties of these numbers.« less
1-D blood flow modelling in a running human body.
Szabó, Viktor; Halász, Gábor
2017-07-01
In this paper an attempt was made to simulate blood flow in a mobile human arterial network, specifically, in a running human subject. In order to simulate the effect of motion, a previously published immobile 1-D model was modified by including an inertial force term into the momentum equation. To calculate inertial force, gait analysis was performed at different levels of speed. Our results show that motion has a significant effect on the amplitudes of the blood pressure and flow rate but the average values are not effected significantly.
An Impact Ejecta Behavior Model for Small, Irregular Bodies
NASA Technical Reports Server (NTRS)
Richardson, J. E.; Melosh, H. J.; Greenberg, R.
2003-01-01
In recent years, spacecraft observations of asteroids 951 Gaspra, 243 Ida, 253 Mathilde, and 433 Eros have shown the overriding dominance of impact processes with regard to the structure and surface morphology of these small, irregular bodies. In particular, impact ejecta play an important role in regolith formation, ranging from small particles to large blocks, as well as surface feature modification and obscuration. To investigate these processes, a numerical model has been developed based upon the impact ejecta scaling laws provided by Housen, Schmidt, and Holsapple, and modified to more properly simulate the late-stage ejection velocities and ejecta plume shape changes (ejection angle variations) shown in impact cratering experiments. A target strength parameter has also been added to allow the simulation of strength-dominated cratering events in addition to the more familiar gravity-dominated cratering events. The result is a dynamical simulation which models -- via tracer particles -- the ejecta plume behavior, ejecta blanket placement, and impact crater area resulting from a specified impact on an irregularly shaped target body, which is modeled in 3-dimensional polygon fashion. This target body can be placed in a simple rotation state about one of its principal axes, with the impact site and projectile/target parameters selected by the user. The gravitational force from the irregular target body (on each tracer particle) is determined using the polygonized surface (polyhedron) gravity technique developed by Werner.
Image Reconstruction for a Partially Collimated Whole Body PET Scanner
Alessio, Adam M.; Schmitz, Ruth E.; MacDonald, Lawrence R.; Wollenweber, Scott D.; Stearns, Charles W.; Ross, Steven G.; Ganin, Alex; Lewellen, Thomas K.; Kinahan, Paul E.
2008-01-01
Partially collimated PET systems have less collimation than conventional 2-D systems and have been shown to offer count rate improvements over 2-D and 3-D systems. Despite this potential, previous efforts have not established image-based improvements with partial collimation and have not customized the reconstruction method for partially collimated data. This work presents an image reconstruction method tailored for partially collimated data. Simulated and measured sensitivity patterns are presented and provide a basis for modification of a fully 3-D reconstruction technique. The proposed method uses a measured normalization correction term to account for the unique sensitivity to true events. This work also proposes a modified scatter correction based on simulated data. Measured image quality data supports the use of the normalization correction term for true events, and suggests that the modified scatter correction is unnecessary. PMID:19096731
Image Reconstruction for a Partially Collimated Whole Body PET Scanner.
Alessio, Adam M; Schmitz, Ruth E; Macdonald, Lawrence R; Wollenweber, Scott D; Stearns, Charles W; Ross, Steven G; Ganin, Alex; Lewellen, Thomas K; Kinahan, Paul E
2008-06-01
Partially collimated PET systems have less collimation than conventional 2-D systems and have been shown to offer count rate improvements over 2-D and 3-D systems. Despite this potential, previous efforts have not established image-based improvements with partial collimation and have not customized the reconstruction method for partially collimated data. This work presents an image reconstruction method tailored for partially collimated data. Simulated and measured sensitivity patterns are presented and provide a basis for modification of a fully 3-D reconstruction technique. The proposed method uses a measured normalization correction term to account for the unique sensitivity to true events. This work also proposes a modified scatter correction based on simulated data. Measured image quality data supports the use of the normalization correction term for true events, and suggests that the modified scatter correction is unnecessary.
White, Nicholas A; Moreno, Daniel P; Brown, Philip J; Gayzik, F Scott; Hsu, Wesley; Powers, Alexander K; Stitzel, Joel D
2014-09-01
Whereas arthrodesis is the most common surgical intervention for the treatment of symptomatic cervical degenerative disc disease, arthroplasty has become increasingly more popular over the past decade. Although literature exists comparing the effects of anterior cervical discectomy and fusion and cervical total disc replacement (CTDR) on neck kinematics and loading, the vast majority of these studies apply only quasi-static, noninjurious loading conditions to a segment of the cervical spine. The objective of this study was to investigate the effects of arthrodesis and arthroplasty on biomechanical neck response during a simulated frontal automobile collision with air bag deployment. This study used a full-body, 50th percentile seated male finite element (FE) model to evaluate neck response during a dynamic impact event. The cervical spine was modified to simulate either an arthrodesis or arthroplasty procedure at C5-C6. Five simulations of a belted driver, subjected to a 13.3 m/s ΔV frontal impact with air bag deployment, were run in LS-DYNA with the Global Human Body Models Consortium full-body FE model. The first simulation used the original model, with no modifications to the neck, whereas the remaining four were modified to represent either interbody arthrodesis or arthroplasty of C5-C6. Cross-sectional forces and moments at the C5 and C6 cervical levels of the neck, along with interbody and facet forces between C5 and C6, were reported. Adjacent-level, cross-sectional neck loading was maintained in all simulations without exceeding any established injury thresholds. Interbody compression was greatest for the CTDRs, and interbody tension occurred only in the fused and nonmodified spines. Some interbody separation occurred between the superior and inferior components of the CTDRs during flexion-induced tension of the cervical spine, increasing the facet loads. This study evaluated the effects of C5-C6 cervical arthrodesis and arthroplasty on neck response during a simulated frontal automobile impact. Although cervical arthrodesis and arthroplasty at C5-C6 did not appear to significantly alter the adjacent-level, cross-sectional neck responses during a simulated frontal automobile impact, key differences were noted in the interbody and facet loading. Copyright © 2014 Elsevier Inc. All rights reserved.
Ozbilgin, M.M.; Dickerman, D.C.
1984-01-01
The two-dimensional finite-difference model for simulation of groundwater flow was modified to enable simulation of surface-water/groundwater interactions during periods of low streamflow. Changes were made to the program code in order to calculate surface-water heads for, and flow either to or from, contiguous surface-water bodies; and to allow for more convenient data input. Methods of data input and output were modified and entries (RSORT and HDRIVER) were added to the COEF and CHECKI subroutines to calculate surface-water heads. A new subroutine CALC was added to the program which initiates surface-water calculations. If CALC is not specified as a simulation option, the program runs the original version. The subroutines which solve the ground-water flow equations were not changed. Recharge, evapotranspiration, surface-water inflow, number of wells, pumping rate, and pumping duration can be varied for any time period. The Manning formula was used to relate stream depth and discharge in surface-water streams. Interactions between surface water and ground water are represented by the leakage term in the ground-water flow and surface-water mass balance equations. Documentation includes a flow chart, data deck instructions, input data, output summary, and program listing. Numerical results from the modified program are in good agreement with published analytical results. (USGS)
Quantum simulation of an ultrathin body field-effect transistor with channel imperfections
NASA Astrophysics Data System (ADS)
Vyurkov, V.; Semenikhin, I.; Filippov, S.; Orlikovsky, A.
2012-04-01
An efficient program for the all-quantum simulation of nanometer field-effect transistors is elaborated. The model is based on the Landauer-Buttiker approach. Our calculation of transmission coefficients employs a transfer-matrix technique involving the arbitrary precision (multiprecision) arithmetic to cope with evanescent modes. Modified in such way, the transfer-matrix technique turns out to be much faster in practical simulations than that of scattering-matrix. Results of the simulation demonstrate the impact of realistic channel imperfections (random charged centers and wall roughness) on transistor characteristics. The Landauer-Buttiker approach is developed to incorporate calculation of the noise at an arbitrary temperature. We also validate the ballistic Landauer-Buttiker approach for the usual situation when heavily doped contacts are indispensably included into the simulation region.
Three-Dimensional Navier-Stokes Calculations Using the Modified Space-Time CESE Method
NASA Technical Reports Server (NTRS)
Chang, Chau-lyan
2007-01-01
The space-time conservation element solution element (CESE) method is modified to address the robustness issues of high-aspect-ratio, viscous, near-wall meshes. In this new approach, the dependent variable gradients are evaluated using element edges and the corresponding neighboring solution elements while keeping the original flux integration procedure intact. As such, the excellent flux conservation property is retained and the new edge-based gradients evaluation significantly improves the robustness for high-aspect ratio meshes frequently encountered in three-dimensional, Navier-Stokes calculations. The order of accuracy of the proposed method is demonstrated for oblique acoustic wave propagation, shock-wave interaction, and hypersonic flows over a blunt body. The confirmed second-order convergence along with the enhanced robustness in handling hypersonic blunt body flow calculations makes the proposed approach a very competitive CFD framework for 3D Navier-Stokes simulations.
The effect of carbohydrate ingestion on performance during a simulated soccer match.
Goedecke, Julia H; White, Nicholas J; Chicktay, Waheed; Mahomed, Hafsa; Durandt, Justin; Lambert, Michael I
2013-12-16
This study investigated how performance was affected after soccer players, in a postprandial state, ingested a 7% carbohydrate (CHO) solution compared to a placebo (0% CHO) during a simulated soccer match. Using a double-blind placebo-controlled design, 22 trained male league soccer players (age: 24 ± 7 years, wt: 73.4 ± 12.0 kg, VO2max: 51.8 ± 4.3 mL O2/kg/min) completed two trials, separated by 7 days, during which they ingested, in random order, 700 mL of either a 7% CHO or placebo drink during a simulated soccer match. Ratings of perceived exertion (RPE), agility, timed and run to fatigue were measured during the trials. Change in agility times was not altered by CHO vs. placebo ingestion (0.57 ± 1.48 vs. 0.66 ± 1.00, p = 0.81). Timed runs to fatigue were 381 ± 267 s vs. 294 ± 159 s for the CHO and placebo drinks, respectively (p = 0.11). Body mass modified the relationship between time to fatigue and drink ingestion (p = 0.02 for drink × body mass), such that lower body mass was associated with increased time to fatigue when the players ingested CHO, but not placebo. RPE values for the final stage of the simulated soccer match were 8.5 ± 1.7 and 8.6 ± 1.5 for the CHO and placebo drinks respectively (p = 0.87). The group data showed that the 7% CHO solution (49 g CHO) did not significantly improve performance during a simulated soccer match in league soccer players who had normal pre-match nutrition. However, when adjusting for body mass, increasing CHO intake was associated with improved time to fatigue during the simulated soccer match.
The Effect of Carbohydrate Ingestion on Performance during a Simulated Soccer Match
Goedecke, Julia H.; White, Nicholas J.; Chicktay, Waheed; Mahomed, Hafsa; Durandt, Justin; Lambert, Michael I.
2013-01-01
Aim: This study investigated how performance was affected after soccer players, in a postprandial state, ingested a 7% carbohydrate (CHO) solution compared to a placebo (0% CHO) during a simulated soccer match. Methods: Using a double-blind placebo-controlled design, 22 trained male league soccer players (age: 24 ± 7 years, wt: 73.4 ± 12.0 kg, VO2max: 51.8 ± 4.3 mL O2/kg/min) completed two trials, separated by 7 days, during which they ingested, in random order, 700 mL of either a 7% CHO or placebo drink during a simulated soccer match. Ratings of perceived exertion (RPE), agility, timed and run to fatigue were measured during the trials. Results: Change in agility times was not altered by CHO vs. placebo ingestion (0.57 ± 1.48 vs. 0.66 ± 1.00, p = 0.81). Timed runs to fatigue were 381 ± 267 s vs. 294 ± 159 s for the CHO and placebo drinks, respectively (p = 0.11). Body mass modified the relationship between time to fatigue and drink ingestion (p = 0.02 for drink × body mass), such that lower body mass was associated with increased time to fatigue when the players ingested CHO, but not placebo. RPE values for the final stage of the simulated soccer match were 8.5 ± 1.7 and 8.6 ± 1.5 for the CHO and placebo drinks respectively (p = 0.87). Conclusions: The group data showed that the 7% CHO solution (49 g CHO) did not significantly improve performance during a simulated soccer match in league soccer players who had normal pre-match nutrition. However, when adjusting for body mass, increasing CHO intake was associated with improved time to fatigue during the simulated soccer match. PMID:24352094
A Novel Model to Simulate Flexural Complements in Compliant Sensor Systems
Tang, Hongyan; Zhang, Dan; Guo, Sheng; Qu, Haibo
2018-01-01
The main challenge in analyzing compliant sensor systems is how to calculate the large deformation of flexural complements. Our study proposes a new model that is called the spline pseudo-rigid-body model (spline PRBM). It combines dynamic spline and the pseudo-rigid-body model (PRBM) to simulate the flexural complements. The axial deformations of flexural complements are modeled by using dynamic spline. This makes it possible to consider the nonlinear compliance of the system using four control points. Three rigid rods connected by two revolute (R) pins with two torsion springs replace the three lines connecting the four control points. The kinematic behavior of the system is described using Lagrange equations. Both the optimization and the numerical fitting methods are used for resolving the characteristic parameters of the new model. An example is given of a compliant mechanism to modify the accuracy of the model. The spline PRBM is important in expanding the applications of the PRBM to the design and simulation of flexural force sensors. PMID:29596377
Resorption Rate Tunable Bioceramic: Si, Zn-Modified Tricalcium Phosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xiang
2006-01-01
This dissertation is organized in an alternate format. Several manuscripts which have already been published or are to be submitted for publication have been included as separate chapters. Chapter 1 is a general introduction which describes the dissertation organization and introduces the human bone and ceramic materials as bone substitute. Chapter 2 is the background and literature review on dissolution behavior of calcium phosphate, and discussion of motivation for this research. Chapter 3 is a manuscript entitled ''Si,Zn-modified tricalcium phosphate: a phase composition and crystal structure study'', which was published in ''Key Engineering Materials'' [1]. Chapter 4 gives more crystalmore » structure details by neutron powder diffraction, which identifies the position for Si and Zn substitution and explains the stabilization mechanism of the structure. A manuscript entitled ''Crystal structure analysis of Si, Zn-modified Tricalcium phosphate by Neutron Powder Diffraction'' will be submitted to Biomaterials [2]. Chapter 5 is a manuscript, entitled ''Dissolution behavior and cytotoxicity test of Si, Zn-modified tricalcium phosphate'', which is to be submitted to Biomaterials [3]. This paper discusses the additives effect on the dissolution behavior of TCP, and cytotoxicity test result is also included. Chapter 6 is the study of hydrolysis process of {alpha}-tricalcium phosphate in the simulated body fluid, and the phase development during drying process is discussed. A manuscript entitled ''Hydrolysis of {alpha}-tricalcium phosphate in simulated body fluid and phase transformation during drying process'' is to be submitted to Biomaterials [4]. Ozan Ugurlu is included as co-authors in these two papers due to his TEM contributions. Appendix A is the general introduction of the materials synthesis, crystal structure and preliminary dissolution result. A manuscript entitled ''Resorption rate tunable bioceramic: Si and Zn-modified tricalcium phosphate'' was published in Ceramic Engineering and Science Proceedings (the 29th International Conference on Advanced Ceramics and Composites - Advances in Bioceramics and Biocomposites) [5].« less
Szubert, M; Adamska, K; Szybowicz, M; Jesionowski, T; Buchwald, T; Voelkel, A
2014-01-01
The aim of this study was the surface modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) grafting and characterization of modificates. The bioactivity examination was carried out by the determination to grow an apatite layer on modified materials during incubation in simulated body fluid at 37°C. The additional issue taken up in this paper was to investigate the influence of fluid replacement. The process of the surface modification of biomaterials was evaluated by means of infrared and Raman spectroscopy. Formation of the apatite layer was assessed by means of scanning electron microscopy and confirmed by energy dispersive, Raman and Fourier transformed infrared spectroscopy. During exposure in simulated body fluid, the variation of the zeta potential, pH measurement and relative weight was monitored. Examination of scanning electron microscopy micrographs suggests that modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) significantly increases apatite layer formation. Raman spectroscopy evaluation revealed that the formation of the apatite layer was more significant in the case of hydroxyapatite modificate, when compared to the β-tricalcium phosphate modificate. Both modificates were characterized by stable pH, close to the natural pH of human body fluids. Furthermore, we have shown that a weekly changed, simulated body fluid solution increases apatite layer formation. © 2013.
Wang, Jinliang; Shao, Jing'an; Wang, Dan; Ni, Jiupai; Xie, Deti
2015-11-01
Nonpoint source pollution is one of the primary causes of eutrophication of water bodies. The concentrations and loads of dissolved pollutants have a direct bearing on the environmental quality of receiving water bodies. Based on the Johnes export coefficient model, a pollutant production coefficient was established by introducing the topographical index and measurements of annual rainfall. A pollutant interception coefficient was constructed by considering the width and slope of present vegetation. These two coefficients were then used as the weighting factors to modify the existing export coefficients of various land uses. A modified export coefficient model was created to estimate the dissolved nitrogen and phosphorus loads in different land uses in the Three Gorges Reservoir Region (TGRR) in 1990, 1995, 2000, 2005, and 2010. The results show that the new land use export coefficient was established by the modification of the production pollution coefficient and interception pollution coefficient. This modification changed the single numerical structure of the original land use export coefficient and takes into consideration temporal and spatial differentiation features. The modified export coefficient retained the change structure of the original single land use export coefficient, and also demonstrated that the land use export coefficient was not only impacted by the change of land use itself, but was also influenced by other objective conditions, such as the characteristics of the underlying surface, amount of rainfall, and the overall presence of vegetation. In the five analyzed years, the simulation values of the dissolved nitrogen and phosphorus loads in paddy fields increased after applying the modification in calculation. The dissolved nitrogen and phosphorus loads in dry land comprised the largest proportions of the TGRR's totals. After modification, the dry land values showed an initial increase and then a decrease over time, but the increments were much smaller than those of the paddy field. The dissolved nitrogen and phosphorus loads in the woodland and meadow decreased after modification. The dissolved nitrogen and phosphorus loads in the building lot were the lowest but showed an increase with the progression of time. These results demonstrate that the modified export coefficient model significantly improves the accuracy of dissolved pollutant load simulation for different land uses in the TGRR, especially the accuracy of dissolved nitrogen load simulation.
Kannan, M Bobby; Raman, R K Singh
2008-05-01
The successful applications of magnesium-based alloys as degradable orthopaedic implants are mainly inhibited due to their high degradation rates in physiological environment and consequent loss in the mechanical integrity. This study examines the degradation behaviour and the mechanical integrity of calcium-containing magnesium alloys using electrochemical techniques and slow strain rate test (SSRT) method, respectively, in modified-simulated body fluid (m-SBF). Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) results showed that calcium addition enhances the general and pitting corrosion resistances of magnesium alloys significantly. The corrosion current was significantly lower in AZ91Ca alloy than that in AZ91 alloy. Furthermore, AZ91Ca alloy exhibited a five-fold increase in the surface film resistance than AZ91 alloy. The SSRT results showed that the ultimate tensile strength and elongation to fracture of AZ91Ca alloy in m-SBF decreased only marginally (approximately 15% and 20%, respectively) in comparison with these properties in air. The fracture morphologies of the failed samples are discussed in the paper. The in vitro study suggests that calcium-containing magnesium alloys to be a promising candidate for their applications in degradable orthopaedic implants, and it is worthwhile to further investigate the in vivo corrosion behaviour of these alloys.
Modelling Size Structured Food Webs Using a Modified Niche Model with Two Predator Traits
Klecka, Jan
2014-01-01
The structure of food webs is frequently described using phenomenological stochastic models. A prominent example, the niche model, was found to produce artificial food webs resembling real food webs according to a range of summary statistics. However, the size structure of food webs generated by the niche model and real food webs has not yet been rigorously compared. To fill this void, I use a body mass based version of the niche model and compare prey-predator body mass allometry and predator-prey body mass ratios predicted by the model to empirical data. The results show that the model predicts weaker size structure than observed in many real food webs. I introduce a modified version of the niche model which allows to control the strength of size-dependence of predator-prey links. In this model, optimal prey body mass depends allometrically on predator body mass and on a second trait, such as foraging mode. These empirically motivated extensions of the model allow to represent size structure of real food webs realistically and can be used to generate artificial food webs varying in several aspects of size structure in a controlled way. Hence, by explicitly including the role of species traits, this model provides new opportunities for simulating the consequences of size structure for food web dynamics and stability. PMID:25119999
Peng, Haipeng; Tian, Ye; Kurths, Jurgen; Li, Lixiang; Yang, Yixian; Wang, Daoshun
2017-06-01
Applications of wireless body area networks (WBANs) are extended from remote health care to military, sports, disaster relief, etc. With the network scale expanding, nodes increasing, and links complicated, a WBAN evolves to a body-to-body network. Along with the development, energy saving and data security problems are highlighted. In this paper, chaotic compressive sensing (CCS) is proposed to solve these two crucial problems, simultaneously. Compared with the traditional compressive sensing, CCS can save vast storage space by only storing the matrix generation parameters. Additionally, the sensitivity of chaos can improve the security of data transmission. Aimed at image transmission, modified CCS is proposed, which uses two encryption mechanisms, confusion and mask, and performs a much better encryption quality. Simulation is conducted to verify the feasibility and effectiveness of the proposed methods. The results show that the energy efficiency and security are strongly improved, while the storage space is saved. And the secret key is extremely sensitive, [Formula: see text] perturbation of the secret key could lead to a total different decoding, the relative error is larger than 100%. Particularly for image encryption, the performance of the modified method is excellent. The adjacent pixel correlation is smaller than 0.04 in different directions including horizontal, vertical, and diagonal; the entropy of the cipher image with a 256-level gray value is larger than 7.98.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Bill S.; Winther, Hans A.; Koyama, Kazuya, E-mail: bill.wright@port.ac.uk, E-mail: hans.winther@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk
The effect of massive neutrinos on the growth of cold dark matter perturbations acts as a scale-dependent Newton's constant and leads to scale-dependent growth factors just as we often find in models of gravity beyond General Relativity. We show how to compute growth factors for ΛCDM and general modified gravity cosmologies combined with massive neutrinos in Lagrangian perturbation theory for use in COLA and extensions thereof. We implement this together with the grid-based massive neutrino method of Brandbyge and Hannestad in MG-PICOLA and compare COLA simulations to full N -body simulations of ΛCDM and f ( R ) gravity withmore » massive neutrinos. Our implementation is computationally cheap if the underlying cosmology already has scale-dependent growth factors and it is shown to be able to produce results that match N -body to percent level accuracy for both the total and CDM matter power-spectra up to k ∼< 1 h /Mpc.« less
NASA Astrophysics Data System (ADS)
Wright, Bill S.; Winther, Hans A.; Koyama, Kazuya
2017-10-01
The effect of massive neutrinos on the growth of cold dark matter perturbations acts as a scale-dependent Newton's constant and leads to scale-dependent growth factors just as we often find in models of gravity beyond General Relativity. We show how to compute growth factors for ΛCDM and general modified gravity cosmologies combined with massive neutrinos in Lagrangian perturbation theory for use in COLA and extensions thereof. We implement this together with the grid-based massive neutrino method of Brandbyge and Hannestad in MG-PICOLA and compare COLA simulations to full N-body simulations of ΛCDM and f(R) gravity with massive neutrinos. Our implementation is computationally cheap if the underlying cosmology already has scale-dependent growth factors and it is shown to be able to produce results that match N-body to percent level accuracy for both the total and CDM matter power-spectra up to klesssim 1 h/Mpc.
Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor
NASA Technical Reports Server (NTRS)
McLoughlin, Terence H.; Campbell, Mark
2004-01-01
Recent advances in formation keeping for large numbers of spacecraft using the Autonomous Formation Flying are presented. This sensor, currently under development at JPL, has been identified as a key component in future formation flying spacecraft missions. The sensor provides accurate range and bearing measurements between pairs of spacecraft using GPS technology. Previous theoretical work by the authors has focused on developing a decentralized scheduling algorithm to control the tasking of such a sensor between the relative range and bearing measurements to each node in the formation. The resulting algorithm has been modified to include switching constraints in the sensor. This paper also presents a testbed for real time validation of a sixteen-node formation based on the Stellar Imager mission. Key aspects of the simulation include minimum fuel maneuvers based on free-body dynamics and a three body propagator for simulating the formation at L2.
COUPLED SPIN AND SHAPE EVOLUTION OF SMALL RUBBLE-PILE ASTEROIDS: SELF-LIMITATION OF THE YORP EFFECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotto-Figueroa, Desireé; Statler, Thomas S.; Richardson, Derek C.
2015-04-10
We present the first self-consistent simulations of the coupled spin-shape evolution of small gravitational aggregates under the influence of the YORP effect. Because of YORP’s sensitivity to surface topography, even small centrifugally driven reconfigurations of aggregates can alter the YORP torque dramatically, resulting in spin evolution that can differ qualitatively from the rigid-body prediction. One-third of our simulations follow a simple evolution described as a modified YORP cycle. Two-thirds exhibit one or more of three distinct behaviors—stochastic YORP, self-governed YORP, and stagnating YORP—which together result in YORP self-limitation. Self-limitation confines rotation rates of evolving aggregates to far narrower ranges thanmore » those expected in the classical YORP cycle, greatly prolonging the times over which objects can preserve their sense of rotation. Simulated objects are initially randomly packed, disordered aggregates of identical spheres in rotating equilibrium, with low internal angles of friction. Their shape evolution is characterized by rearrangement of the entire body, including the deep interior. They do not evolve to axisymmetric top shapes with equatorial ridges. Mass loss occurs in one-third of the simulations, typically in small amounts from the ends of a prolate-triaxial body. We conjecture that YORP self-limitation may inhibit formation of top-shapes, binaries, or both, by restricting the amount of angular momentum that can be imparted to a deformable body. Stochastic YORP, in particular, will affect the evolution of collisional families whose orbits drift apart under the influence of Yarkovsky forces, in observable ways.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandao, C. S. S.; De Araujo, J. C. N., E-mail: claudiosoriano.uesc@gmail.com, E-mail: jcarlos.dearaujo@inpe.br
2012-05-01
A way to probe alternative theories of gravitation is to study if they could account for the structures of the universe. We therefore modified the well-known Gadget-2 code to probe alternative theories of gravitation through galactic dynamics. As an application, we simulate the evolution of spiral galaxies to probe alternative theories of gravitation whose weak field limits have a Yukawa-like gravitational potential. These simulations show that galactic dynamics can be used to constrain the parameters associated with alternative theories of gravitation. It is worth stressing that the recipe given in this study can be applied to any other alternative theorymore » of gravitation in which the superposition principle is valid.« less
Shrestha, Bharat; Hossain, Ekram; Camorlinga, Sergio
2011-09-01
In wireless personal area networks, such as wireless body-area sensor networks, stations or devices have different bandwidth requirements and, thus, create heterogeneous traffics. For such networks, the IEEE 802.15.4 medium access control (MAC) can be used in the beacon-enabled mode, which supports guaranteed time slot (GTS) allocation for time-critical data transmissions. This paper presents a general discrete-time Markov chain model for the IEEE 802.15.4-based networks taking into account the slotted carrier sense multiple access with collision avoidance and GTS transmission phenomena together in the heterogeneous traffic scenario and under nonsaturated condition. For this purpose, the standard GTS allocation scheme is modified. For each non-identical device, the Markov model is solved and the average service time and the service utilization factor are analyzed in the non-saturated mode. The analysis is validated by simulations using network simulator version 2.33. Also, the model is enhanced with a wireless propagation model and the performance of the MAC is evaluated in a wheelchair body-area sensor network scenario.
Toward Anatomical Simulation for Breath Training in Mind/Body Medicine
NASA Astrophysics Data System (ADS)
Sanders, Benjamin; Dilorenzo, Paul; Zordan, Victor; Bakal, Donald
The use of breath in healing is poorly understood by patients and professionals alike. Dysfunctional breathing is a characteristic of many unexplained symptoms and mind/body medical professionals seek methods for breath training to alleviate such problems. Our approach is to re-purpose and evolve a recently developed anatomically inspired respiration simulation which was created for synthesizing motion in entertainment for the use of visualization in breath training. In mind/body medicine, problems are often created from patients being advised to breathe according to some standard based on pace or volume. However, a breathing pattern that is comfortable and effortless for one person may not have the same benefits for the next person. The breathing rhythm which is most effortless for each person needs to be dynamically identified. To this end, in this chapter, we employ optimization to modify a generic model of respiration to fit the breath patterns of specific individuals. In practice, the corresponding visualization which is specific to individual patients could be used to train proper breath behavior, both by showing specific (abnormal) practice and recommended modification(s).
Stars with relativistic speeds in the Hills scenario
NASA Astrophysics Data System (ADS)
Dremova, G. N.; Dremov, V. V.; Tutukov, A. V.
2017-07-01
The dynamical capture of a binary system consisting of a supermassive black hole (SMBH) and an ordinary star in the gravitational field of a central (more massive) SMBH is considered in the three-body problem in the framework of a modified Hills scenario. The results of numerical simulations predict the existence of objects whose spatial speeds are comparable to the speed of light. The conditions for and constraints imposed on the ejection speeds realized in a classical scenario and the modified Hills scenario are analyzed. The star is modeled using an N-body approach, making it possible to treat it as a structured object, enabling estimation of the probability that the object survives when it is ejected with relativistic speed as a function of the mass of the star, the masses of both SMBHs, and the pericenter distance. It is possible that the modern kinematic classification for stars with anomalously high spatial velocities will be augmented with a new class—stars with relativistic speeds.
NASA Astrophysics Data System (ADS)
Hassoon, O. H.; Tarfaoui, M.; El Moumen, A.; Benyahia, H.; Nachtane, M.
2018-06-01
The deformable composite structures subjected to water-entry impact can be caused a phenomenon called hydroelastic effect, which can modified the fluid flow and estimated hydrodynamic loads comparing with rigid body. This is considered very important for ship design engineers to predict the global and the local hydrodynamic loads. This paper presents a numerical model to simulate the slamming water impact of flexible composite panels using an explicit finite element method. In order to better describe the hydroelastic influence and mechanical properties, composite materials panels with different stiffness and under different impact velocities with deadrise angle of 100 have been studied. In the other hand, the inertia effect was observed in the early stage of the impact that relative to the loading rate. Simulation results have been indicated that the lower stiffness panel has a higher hydroelastic effect and becomes more important when decreasing of the deadrise angle and increasing the impact velocity. Finally, the simulation results were compared with the experimental data and the analytical approaches of the rigid body to describe the behavior of the hydroelastic influence.
Melting curves and entropy of fusion of body-centered cubic tungsten under pressure
NASA Astrophysics Data System (ADS)
Liu, Chun-Mei; Chen, Xiang-Rong; Xu, Chao; Cai, Ling-Cang; Jing, Fu-Qian
2012-07-01
The melting curves and entropy of fusion of body-centered cubic (bcc) tungsten (W) under pressure are investigated via molecular dynamics (MD) simulations with extended Finnis-Sinclair (EFS) potential. The zero pressure melting point obtained is better than other theoretical results by MD simulations with the embedded-atom-method (EAM), Finnis-Sinclair (FS) and modified EAM potentials, and by ab initio MD simulations. Our radial distribution function and running coordination number analyses indicate that apart from the expected increase in disorder, the main change on going from solid to liquid is thus a slight decrease in coordination number. Our entropy of fusion of W during melting, ΔS, at zero pressure, 7.619 J/mol.K, is in good agreement with the experimental and other theoretical data. We found that, with the increasing pressure, the entropy of fusion ΔS decreases fast first and then oscillates with pressure; when the pressure is higher than 100 GPa, the entropy of fusion ΔS is about 6.575 ± 0.086 J/mol.K, which shows less pressure effect.
NASA Astrophysics Data System (ADS)
Hassoon, O. H.; Tarfaoui, M.; El Moumen, A.; Benyahia, H.; Nachtane, M.
2017-10-01
The deformable composite structures subjected to water-entry impact can be caused a phenomenon called hydroelastic effect, which can modified the fluid flow and estimated hydrodynamic loads comparing with rigid body. This is considered very important for ship design engineers to predict the global and the local hydrodynamic loads. This paper presents a numerical model to simulate the slamming water impact of flexible composite panels using an explicit finite element method. In order to better describe the hydroelastic influence and mechanical properties, composite materials panels with different stiffness and under different impact velocities with deadrise angle of 100 have been studied. In the other hand, the inertia effect was observed in the early stage of the impact that relative to the loading rate. Simulation results have been indicated that the lower stiffness panel has a higher hydroelastic effect and becomes more important when decreasing of the deadrise angle and increasing the impact velocity. Finally, the simulation results were compared with the experimental data and the analytical approaches of the rigid body to describe the behavior of the hydroelastic influence.
Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field
NASA Astrophysics Data System (ADS)
Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun
2014-06-01
The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Gong-Bo, E-mail: gongbo@icosmology.info; Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX
2014-04-01
Based on a suite of N-body simulations of the Hu-Sawicki model of f(R) gravity with different sets of model and cosmological parameters, we develop a new fitting formula with a numeric code, MGHalofit, to calculate the nonlinear matter power spectrum P(k) for the Hu-Sawicki model. We compare the MGHalofit predictions at various redshifts (z ≤ 1) to the f(R) simulations and find that the relative error of the MGHalofit fitting formula of P(k) is no larger than 6% at k ≤ 1 h Mpc{sup –1} and 12% at k in (1, 10] h Mpc{sup –1}, respectively. Based on a sensitivitymore » study of an ongoing and a future spectroscopic survey, we estimate the detectability of a signal of modified gravity described by the Hu-Sawicki model using the power spectrum up to quasi-nonlinear scales.« less
NASA Astrophysics Data System (ADS)
Courageot, Estelle; Sayah, Rima; Huet, Christelle
2010-05-01
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.
Courageot, Estelle; Sayah, Rima; Huet, Christelle
2010-05-07
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.
Ordered cubic nanoporous silica support MCM-48 for delivery of poorly soluble drug indomethacin
NASA Astrophysics Data System (ADS)
Zeleňák, Vladimír; Halamová, Dáša; Almáši, Miroslav; Žid, Lukáš; Zeleňáková, Adriána; Kapusta, Ondrej
2018-06-01
Ordered MCM-48 nanoporous silica (SBET = 923(3) m2·g-1, VP = 0.63(2) cm3·g-1) with cubic Ia3d symmetry was used as a support for drug delivery of anti-inflammatory poorly soluble drug indomethacin. The delivery from parent, unmodified MCM-48, and 3-aminopropyl modified silica carrier was studied into the simulated body fluids with the pH = 2 and pH = 7.4. The studied samples were characterized by thermal analysis (TG/DTG-DTA), N2 adsorption/desorption, infrared spectroscopy (FT-IR), powder XRD, SEM, HRTEM methods, measurements of zeta potential (ζ) and dynamic light scattering (DLS). The determined content of indomethacin in pure MCM-48 was 21 wt.% and in the amine-modified silica MCM-48A-I the content was 45 wt.%. The release profile of the drug, in the time period up to 72 h, was monitored by TLC chromatographic method. It as shown, that by the modification of the surface, the drug release can be controlled. The slower release of indomethacin was observed from amino modified sample MCM-48A-I in the both types of studied simulated body fluids (slightly alkaline intravenous solution with pH = 7.4 and acidic gastric fluid with pH = 2), which was supported and explained by zeta potential and DLS measurements. The amount of the released indomethacin into the fluids with various pH was different. The maximum released amount of the drug was 97% for sample containing unmodified silica, MCM-48-I at pH = 7.4 and lowest released amount, 57%, for amine modified sample MCM-48A-I at pH = 2. To compare the indomethacin release profile four kinetic models were tested. Results showed, that that the drug release based on diffusion Higuchi model, mainly governs the release.
Effect of clothing material on thermal responses of the human body
NASA Astrophysics Data System (ADS)
Fengzhi, Li; Yi, Li
2005-09-01
The influence of clothing material on thermal responses of the human body are investigated by using an integrated model of a clothed thermoregulatory human body. A modified 25-nodes model considering the sweat accumulation on the skin surface is applied to simulate the human physiological regulatory responses. The heat and moisture coupled transfer mechanisms, including water vapour diffusion, the moisture evaporation/condensation, the moisture sorbtion/desorption by fibres, liquid sweat transfer under capillary pressure, and latent heat absorption/release due to phase change, are considered in the clothing model. On comparing prediction results with the experimental data in the literature, the proposed model seems able to predict dynamic heat and moisture transfer between the human body and the clothing system. The human body's thermal responses and clothing temperature and moisture variations are compared for different clothing materials during transient periods. We concluded that the hygroscopicity of clothing materials influences the human thermoregulation process significantly during environmental transients.
Qu, Xue; Cui, Wenjin; Yang, Fei; Min, Changchun; Shen, Hong; Bei, Jianzhong; Wang, Shenguo
2007-01-01
In this study, biodegradable poly(lactide-co-glycolide) (PLGA) (70/30) films and scaffolds were first treated with oxygen plasma and then incubated in a modified simulated body fluid 1.5SBF0 to prepare a bone-like apatite layer. The formation of the apatite and its influence on osteoblast-like cells growth were investigated. It was found that the bone-like apatite formability of PLGA(70/30) was enhanced by plasma pretreatment. The changes of surface chemistry and surface topography induced by oxygen plasma treatment were both effective for apatite formation. The apatite formability increased with increasing plasma-treating time. Under a treating condition of 20 W for 30 min, oxygen plasma treatment could penetrate into the inner scaffold. After 6 days incubation, the apatite formed in plasma-treated scaffold was better distributed than in untreated scaffold, and the weight and mechanical strength of the plasma-treated scaffold were both enhanced. Compared with PLGA(70/30), the apatite layer formed on oxygen plasma-treated PLGA(70/30) surface enhanced adhesion and proliferation of OCT-1 osteoblast-like cell, but had no significant effect on cell's ALP activity at day 7. A prolonged investigation is being in process to further verify the bone-like apatite effects on osteogenic differentiation.
Modification of Ti6Al4V surface by diazonium compounds
NASA Astrophysics Data System (ADS)
Sandomierski, Mariusz; Buchwald, Tomasz; Strzemiecka, Beata; Voelkel, Adam
2018-02-01
Ti6Al4V alloy is the most commonly used in orthopedic industry as an endoprosthesis. Ti6Al4V exhibits good mechanical properties, except the abrasion resistance. Surface modification of Ti6Al4V in order to obtain organic layer, and then the attachment of the polymer, can allow for overcoming this problem. The aim of the work was the modification of Ti6Al4V surface by diazonium compounds: salt or cation generated in situ and examine the influence of the reducing agent - ascorbic acid, and the temperature of reaction on modification process. Moreover, the simulated body fluid was used for the assessment of the organic layer stability on Ti6Al4V surface. The evaluation of the modification was carried out using the following methods: Raman microspectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Higher temperature of modification by 4-hydroxymethylbenzenediazonium cation, provides the largest amount of organic layer on the Ti6Al4V alloy. In the case of the Ti6Al4V modified by Variamine Blue B salt, the amount of organic layer is not dependent on the reaction condition. Moreover, the ascorbic acid and the presence of TiO2 does not effect on the modification. The modified surface is completely coated with the organic layer which is stable in simulated body fluid.
A transonic wind tunnel wall interference prediction code
NASA Technical Reports Server (NTRS)
Phillips, Pamela S.; Waggoner, Edgar G.
1988-01-01
A small disturbance transonic wall interference prediction code has been developed that is capable of modeling solid, open, perforated, and slotted walls as well as slotted and solid walls with viscous effects. This code was developed by modifying the outer boundary conditions of an existing aerodynamic wing-body-pod-pylon-winglet analysis code. The boundary conditions are presented in the form of equations which simulate the flow at the wall, as well as finite difference approximations to the equations. Comparisons are presented at transonic flow conditions between computational results and experimental data for a wing alone in a solid wall wind tunnel and wing-body configurations in both slotted and solid wind tunnels.
OpenWorm: an open-science approach to modeling Caenorhabditis elegans.
Szigeti, Balázs; Gleeson, Padraig; Vella, Michael; Khayrulin, Sergey; Palyanov, Andrey; Hokanson, Jim; Currie, Michael; Cantarelli, Matteo; Idili, Giovanni; Larson, Stephen
2014-01-01
OpenWorm is an international collaboration with the aim of understanding how the behavior of Caenorhabditis elegans (C. elegans) emerges from its underlying physiological processes. The project has developed a modular simulation engine to create computational models of the worm. The modularity of the engine makes it possible to easily modify the model, incorporate new experimental data and test hypotheses. The modeling framework incorporates both biophysical neuronal simulations and a novel fluid-dynamics-based soft-tissue simulation for physical environment-body interactions. The project's open-science approach is aimed at overcoming the difficulties of integrative modeling within a traditional academic environment. In this article the rationale is presented for creating the OpenWorm collaboration, the tools and resources developed thus far are outlined and the unique challenges associated with the project are discussed.
Applications of Space-Filling-Curves to Cartesian Methods for CFD
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.; Berger, Marsha J.; Murman, Scott M.
2003-01-01
The proposed paper presents a variety novel uses of Space-Filling-Curves (SFCs) for Cartesian mesh methods in 0. While these techniques will be demonstrated using non-body-fitted Cartesian meshes, most are applicable on general body-fitted meshes -both structured and unstructured. We demonstrate the use of single O(N log N) SFC-based reordering to produce single-pass (O(N)) algorithms for mesh partitioning, multigrid coarsening, and inter-mesh interpolation. The intermesh interpolation operator has many practical applications including warm starts on modified geometry, or as an inter-grid transfer operator on remeshed regions in moving-body simulations. Exploiting the compact construction of these operators, we further show that these algorithms are highly amenable to parallelization. Examples using the SFC-based mesh partitioner show nearly linear speedup to 512 CPUs even when using multigrid as a smoother. Partition statistics are presented showing that the SFC partitions are, on-average, within 10% of ideal even with only around 50,000 cells in each subdomain. The inter-mesh interpolation operator also has linear asymptotic complexity and can be used to map a solution with N unknowns to another mesh with M unknowns with O(max(M,N)) operations. This capability is demonstrated both on moving-body simulations and in mapping solutions to perturbed meshes for finite-difference-based gradient design methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M.
2015-12-28
A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching ofmore » the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.« less
Nonlinear stability and control study of highly maneuverable high performance aircraft
NASA Technical Reports Server (NTRS)
Mohler, R. R.
1993-01-01
This project is intended to research and develop new nonlinear methodologies for the control and stability analysis of high-performance, high angle-of-attack aircraft such as HARV (F18). Past research (reported in our Phase 1, 2, and 3 progress reports) is summarized and more details of final Phase 3 research is provided. While research emphasis is on nonlinear control, other tasks such as associated model development, system identification, stability analysis, and simulation are performed in some detail as well. An overview of various models that were investigated for different purposes such as an approximate model reference for control adaptation, as well as another model for accurate rigid-body longitudinal motion is provided. Only a very cursory analysis was made relative to type 8 (flexible body dynamics). Standard nonlinear longitudinal airframe dynamics (type 7) with the available modified F18 stability derivatives, thrust vectoring, actuator dynamics, and control constraints are utilized for simulated flight evaluation of derived controller performance in all cases studied.
NASA Astrophysics Data System (ADS)
Hooseria, S. J.; Skews, B. W.
2017-01-01
A complex interference flowfield consisting of multiple shocks and expansion waves is produced when high-speed slender bodies are placed in close proximity. The disturbances originating from a generator body impinge onto the adjacent receiver body, modifying the local flow conditions over the receiver. This paper aims to uncover the basic gas dynamics produced by two closely spaced slender bodies in a supersonic freestream. Experiments and numerical simulations were used to interpret the flowfield, where good agreement between the predictions and measurements was observed. The numerical data were then used to characterise the attenuation associated with shock wave diffraction, which was found to be interdependent with the bow shock contact perimeter over the receiver bodies. Shock-induced boundary layer separation was observed over the conical and hemispherical receiver bodies. These strong viscous-shock interactions result in double-reflected, as well as double-diffracted shock wave geometries in the interference region, and the diffracting waves progress over the conical and hemispherical receivers' surfaces in "lambda" type configurations. This gives evidence that viscous effects can have a substantial influence on the local bow shock structure surrounding high-speed slender bodies in close proximity.
Robitaille, Arnaud; Perron, Roger; Germain, Jean-François; Tanoubi, Issam; Georgescu, Mihai
2015-04-01
Transcutaneous cardiac pacing (TCP) is a potentially lifesaving technique that is part of the recommended treatment for symptomatic bradycardia. Transcutaneous cardiac pacing however is used uncommonly, and its successful application is not straightforward. Simulation could, therefore, play an important role in the teaching and assessment of TCP competence. However, even the highest-fidelity mannequins available on the market have important shortcomings, which limit the potential of simulation. Six criteria defining clinical competency in TCP were established and used as a starting point in the creation of an improved TCP simulator. The goal was a model that could be used to assess experienced clinicians, an objective that justifies the additional effort required by the increased fidelity. The proposed 2-mannequin model (TMM) combines a highly modified Human Patient Simulator with a SimMan 3G, the latter being used solely to provide the electrocardiography (ECG) tracing. The TMM improves the potential of simulation to assess experienced clinicians (1) by reproducing key features of TCP, like using the same multifunctional pacing electrodes used clinically, allowing dual ECG monitoring, and responding with upper body twitching when stimulated, but equally importantly (2) by reproducing key pitfalls of the technique, like allowing pacing electrode misplacement and reproducing false signs of ventricular capture, commonly, but erroneously, used clinically to establish that effective pacing has been achieved (like body twitching, electrical artifact on the ECG, and electrical capture without ventricular capture). The proposed TMM uses a novel combination of 2 high-fidelity mannequins to improve TCP simulation until upgraded mannequins become commercially available.
Aerodynamics of powered missile separation from a wing
NASA Technical Reports Server (NTRS)
Shanks, S. P.; Ahmad, J. U.
1991-01-01
A 3D dynamic 'chimera' algorithm that solves the thin-layer Navier-Stokes equations over multiple moving bodies was modified to numerically simulate the aerodynamics, missile dynamics, and missile plume of a finless missile separating from a wing in transonic flow. A powered missile separation case was considered to examine the influence of the missile and plume on the wing. The wing and missile is at a two degree angle of attack. The computational results show the details of the flow field.
Space Weathering: Laboratory Analyses and In-Situ Instrumentation
NASA Technical Reports Server (NTRS)
Bentley, M. S.; Ball, A. J.; Dyar, M. D.; Pieters, C. M.; Wright, I. P.; Zarnecki, J. C.
2005-01-01
Space weathering is now understood to be a key modifier of visible and near infrared reflectance spectra of airless bodies. Believed to be caused by vapour recondensation after either ion sputtering or impact vaporization, space weathering has been successfully simulated in the laboratory over the past few years. The optical changes caused by space weathering have been attributed to the accumulation of sub-microscopic iron on regolith grain surfaces. Such fine-grained metallic iron has distinctive magnetic properties that can be used to study it.
NASA Astrophysics Data System (ADS)
Angus, G. W.; Diaferio, Antonaldo
2011-10-01
We present a new particle mesh cosmological N-body code for accurately solving the modified Poisson equation of the quasi-linear formulation of modified Newtonian dynamics (MOND). We generate initial conditions for the Angus cosmological model, which is identical to Λ cold dark matter (ΛCDM) except that the CDM is switched for a single species of thermal sterile neutrinos. We set the initial conditions at z= 250 for a (512 Mpc h-1)3 box with 2563 particles, and we evolve them down to z= 0. We clearly demonstrate the ability of MOND to develop the large-scale structure in a hot dark matter cosmology and contradict the naive expectation that MOND cannot form galaxy clusters. We find that the correct order of magnitude of X-ray clusters (with TX > 4.5 keV) can be formed, but that we overpredict the number of very rich clusters and seriously underpredict the number of lower mass clusters. We present evidence that suggests the density profiles of our simulated clusters are compatible with those of the observed X-ray clusters in MOND. As a last test, we computed the relative velocity between pairs of haloes within 10 Mpc and find that pairs with velocities larger than 3000 km s-1, like the bullet cluster, can form without difficulty.
SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Y; Tian, Z; Jiang, S
Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized tomore » define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged particle transport in this geometry are currently in progress.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamek, Julian; Daverio, David; Durrer, Ruth
We present a new N-body code, gevolution , for the evolution of large scale structure in the Universe. Our code is based on a weak field expansion of General Relativity and calculates all six metric degrees of freedom in Poisson gauge. N-body particles are evolved by solving the geodesic equation which we write in terms of a canonical momentum such that it remains valid also for relativistic particles. We validate the code by considering the Schwarzschild solution and, in the Newtonian limit, by comparing with the Newtonian N-body codes Gadget-2 and RAMSES . We then proceed with a simulation ofmore » large scale structure in a Universe with massive neutrinos where we study the gravitational slip induced by the neutrino shear stress. The code can be extended to include different kinds of dark energy or modified gravity models and going beyond the usually adopted quasi-static approximation. Our code is publicly available.« less
Xu, Henglong; Jiang, Yong; Xu, Guangjian
2016-06-15
Based on a modified trait hierarchy of body-size units, the feasibility for bioassessment of water pollution using body-size distinctness of planktonic ciliates was studied in a semi-enclosed bay, northern China. An annual dataset was collected at five sampling stations within a gradient of heavy metal contaminants. Results showed that: (1) in terms of probability density, the body-size spectra of the ciliates represented significant differences among the five stations; (2) bootstrap average analysis demonstrated a spatial variation in body-size rank patterns in response to pollution stress due to heavy metals; and (3) the average body-size distinctness (Δz(+)) and variation in body-size distinctness (Λz(+)), based on the modified trait hierarchy, revealed a clear departure pattern from the expected body-size spectra in areas with pollutants. These results suggest that the body-size diversity measures based on the modified trait hierarchy of the ciliates may be used as a potential indicator of marine pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Peng, Ping; Kumar, Sunil; Voelcker, Nicolas H; Szili, Endre; Smart, Roger St C; Griesser, Hans J
2006-02-01
Adherent and optically semitransparent thin calcium phosphate (CaP) films were electrochemically deposited on titanium substrates in a modified simulated body fluid at 37 degrees C. Coatings deposited by using periodic pulsed potentials showed better adhesion and better mechanical properties than coatings deposited with use of a constant potential. Scanning electron microscopy was used to study the morphology of the coatings. The coatings displayed a polydispersed porous structure with pores in the range of a few nanometers to 1 mum. Furthermore, X-ray diffractometry and the O(1s) satellite peaks in X-ray photoelectron spectroscopy indicated that the coatings possessed a similar surface chemistry to that of natural bone minerals. These results were confirmed by inductively coupled plasma optical emission spectrometry, which yielded a Ca:P ratio of 1.65, close to that of hydroxyapatite. Contact mode atomic force microscopy (AFM) showed the average thickness of the coatings was in the order of 200 nm. Root-mean-square (RMS) roughness values, also derived by AFM, were shown to be much higher on the titanium-CaP surfaces in comparison with untreated titanium substrates, with RMS values of about 300 and 110 nm, respectively. Cell culture experiments showed that the CaP surfaces are nontoxic to MG63 osteoblastic cells in vitro and were able to support cell growth for up to 4 days, outperforming the untreated titanium surface in a direct comparison. These easily prepared coatings show promise for hard-tissue biomaterials. (c) 2005 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Xie, Dongfeng; Gao, Shu; Wang, Zheng Bing; Pan, Cunhong; Wu, Xiuguang; Wang, Qiushun
2017-08-01
We investigate the evolution of a large-scale sand body, a unique type of sandbars in a convergent estuary. Specifically, we analyze and simulate the sand deposition system (defined as an inside bar) in the Qiantang Estuary (QE) in China. The deposit is 130 km long and up to 10 m thick and is characterized by a dextral morphology in the lower QE. Numerical simulation is carried out using an idealized horizontal 2-D morphodynamic model mimicking the present QE settings. Our results indicate that the morphological evolution is controlled by the combination of river discharge and tides. The seasonal and interannual cycles of river discharges play a major role on the inside bar evolution. The bar is eroding during high river discharge periods, but accretion prevails during low river discharge periods. Meanwhile, the highest part of the sand body can move downstream or upstream by several kilometers, modifying the seasonal sediment exchange patterns. We also show that the Coriolis force plays an important role on the dextral morphology patterns in wide, convergent estuaries. It induces a significant lateral water level difference and a large-scale gyre of residual sediment transport. Subsequently, the seaward tail of the inside bar shifts southward to help create a condition for the development of tidal flats in the lower reach of the estuary. The lateral bed level differences induced by Coriolis force are up to several meters. Coriolis effects also modify the behavior of flood and ebb tidal channels.
Modification of Ti6Al4V surface by diazonium compounds.
Sandomierski, Mariusz; Buchwald, Tomasz; Strzemiecka, Beata; Voelkel, Adam
2018-02-15
Ti6Al4V alloy is the most commonly used in orthopedic industry as an endoprosthesis. Ti6Al4V exhibits good mechanical properties, except the abrasion resistance. Surface modification of Ti6Al4V in order to obtain organic layer, and then the attachment of the polymer, can allow for overcoming this problem. The aim of the work was the modification of Ti6Al4V surface by diazonium compounds: salt or cation generated in situ and examine the influence of the reducing agent - ascorbic acid, and the temperature of reaction on modification process. Moreover, the simulated body fluid was used for the assessment of the organic layer stability on Ti6Al4V surface. The evaluation of the modification was carried out using the following methods: Raman microspectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Higher temperature of modification by 4-hydroxymethylbenzenediazonium cation, provides the largest amount of organic layer on the Ti6Al4V alloy. In the case of the Ti6Al4V modified by Variamine Blue B salt, the amount of organic layer is not dependent on the reaction condition. Moreover, the ascorbic acid and the presence of TiO 2 does not effect on the modification. The modified surface is completely coated with the organic layer which is stable in simulated body fluid. Copyright © 2017 Elsevier B.V. All rights reserved.
Lefort, Stelly; Aumont, Olivier; Bopp, Laurent; Arsouze, Thomas; Gehlen, Marion; Maury, Olivier
2015-01-01
Temperature, oxygen, and food availability directly affect marine life. Climate models project a global warming of the ocean's surface (~+3 °C), a de-oxygenation of the ocean's interior (~-3%) and a decrease in total marine net primary production (~-8%) under the 'business as usual' climate change scenario (RCP8.5). We estimated the effects of these changes on biological communities using a coupled biogeochemical (PISCES)--ecosystems (APECOSM) model forced by the physical outputs of the last generation of the IPSL-CM Earth System Model. The APECOSM model is a size-structured bio-energetic model that simulates the 3D dynamical distributions of three interactive pelagic communities (epipelagic, mesopelagic, and migratory) under the effects of multiple environmental factors. The PISCES-APECOSM model ran from 1850 to 2100 under historical forcing followed by RCP8.5. Our RCP8.5 simulation highlights significant changes in the spatial distribution, biomass, and maximum body-size of the simulated pelagic communities. Biomass and maximum body-size increase at high latitude over the course of the century, reflecting the capacity of marine organisms to respond to new suitable environment. At low- and midlatitude, biomass and maximum body-size strongly decrease. In those regions, large organisms cannot maintain their high metabolic needs because of limited and declining food availability. This resource reduction enhances the competition and modifies the biomass distribution among and within the three communities: the proportion of small organisms increases in the three communities and the migrant community that initially comprised a higher proportion of small organisms is favored. The greater resilience of small body-size organisms resides in their capacity to fulfill their metabolic needs under reduced energy supply and is further favored by the release of predation pressure due to the decline of large organisms. These results suggest that small body-size organisms might be more resilient to climate change than large ones. © 2014 John Wiley & Sons Ltd.
Applications of Space-Filling-Curves to Cartesian Methods for CFD
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.; Murman, S. M.; Berger, M. J.
2003-01-01
This paper presents a variety of novel uses of space-filling-curves (SFCs) for Cartesian mesh methods in CFD. While these techniques will be demonstrated using non-body-fitted Cartesian meshes, many are applicable on general body-fitted meshes-both structured and unstructured. We demonstrate the use of single theta(N log N) SFC-based reordering to produce single-pass (theta(N)) algorithms for mesh partitioning, multigrid coarsening, and inter-mesh interpolation. The intermesh interpolation operator has many practical applications including warm starts on modified geometry, or as an inter-grid transfer operator on remeshed regions in moving-body simulations Exploiting the compact construction of these operators, we further show that these algorithms are highly amenable to parallelization. Examples using the SFC-based mesh partitioner show nearly linear speedup to 640 CPUs even when using multigrid as a smoother. Partition statistics are presented showing that the SFC partitions are, on-average, within 15% of ideal even with only around 50,000 cells in each sub-domain. The inter-mesh interpolation operator also has linear asymptotic complexity and can be used to map a solution with N unknowns to another mesh with M unknowns with theta(M + N) operations. This capability is demonstrated both on moving-body simulations and in mapping solutions to perturbed meshes for control surface deflection or finite-difference-based gradient design methods.
Hydroxyapatite growth on cotton fibers modified chemically
NASA Astrophysics Data System (ADS)
Varela Caselis, J. L.; Reyes Cervantes, E.; Landeta Cortés, G.; Agustín Serrano, R.; Rubio Rosas, E.
2014-09-01
We have prepared carboxymethyl cellulose fibers (CMC) by chemically modifying cotton cellulose with monochloroacetic acid and calcium chloride solution. This modification favored the growth of hydroxyapatite (HAP) on the surface of the CMC fibers in contact with simulated body fluid solutions (SBF). After soaking in SBF for periods of 7, 14 and 21 days, formation of HAP was observed. Analysis by scanning electron microscopy and X-ray diffraction showed that crystallinity, crystallite size, and growth of HAP increased with the soaking time. The amount of HAP deposited on CMC fibers increased greatly after 21 days of immersion in the SBF, while the substrate surface was totally covered with hemispherical aggregates with the size of the order of 2 microns. Elemental analysis showed the presence of calcium and phosphate, with calcium/phosphate atomic ratio of 1.54. Fourier transform infrared spectroscopy bands confirmed the presence of HAP. The results suggest that cotton modified by calcium treatment has a nucleating ability and can accelerate the nucleation of HAP crystals.
Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds
NASA Astrophysics Data System (ADS)
Egorov, I. V.; Novikov, A. V.
2016-06-01
A method for direct numerical simulation of a laminar-turbulent flow around bodies at hypersonic flow speeds is proposed. The simulation is performed by solving the full three-dimensional unsteady Navier-Stokes equations. The method of calculation is oriented to application of supercomputers and is based on implicit monotonic approximation schemes and a modified Newton-Raphson method for solving nonlinear difference equations. By this method, the development of three-dimensional perturbations in the boundary layer over a flat plate and in a near-wall flow in a compression corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation characteristic, distributions of the mean coefficients of the viscous flow in the transient section of the streamlined surface are obtained, which enables one to determine the beginning of the laminar-turbulent transition and estimate the characteristics of the turbulent flow in the boundary layer.
Clinical study and numerical simulation of brain cancer dynamics under radiotherapy
NASA Astrophysics Data System (ADS)
Nawrocki, S.; Zubik-Kowal, B.
2015-05-01
We perform a clinical and numerical study of the progression of brain cancer tumor growth dynamics coupled with the effects of radiotherapy. We obtained clinical data from a sample of brain cancer patients undergoing radiotherapy and compare it to our numerical simulations to a mathematical model of brain tumor cell population growth influenced by radiation treatment. We model how the body biologically receives a physically delivered dose of radiation to the affected tumorous area in the form of a generalized LQ model, modified to account for the conversion process of sublethal lesions into lethal lesions at high radiation doses. We obtain good agreement between our clinical data and our numerical simulations of brain cancer progression given by the mathematical model, which couples tumor growth dynamics and the effect of irradiation. The correlation, spanning a wide dataset, demonstrates the potential of the mathematical model to describe the dynamics of brain tumor growth influenced by radiotherapy.
NASA Technical Reports Server (NTRS)
Wolfson, R. G.; Sibley, C. B.
1978-01-01
The three components required to modify the furnace for batch and continuous recharging with granular silicon were designed. The feasibility of extended growth cycles up to 40 hours long was demonstrated by a recharge simulation experiment; a 6 inch diameter crystal was pulled from a 20 kg charge, remelted, and pulled again for a total of four growth cycles, 59-1/8 inch of body length, and approximately 65 kg of calculated mass.
Particle Methods for Simulating Atomic Radiation in Hypersonic Reentry Flows
NASA Astrophysics Data System (ADS)
Ozawa, T.; Wang, A.; Levin, D. A.; Modest, M.
2008-12-01
With a fast reentry speed, the Stardust vehicle generates a strong shock region ahead of its blunt body with a temperature above 60,000 K. These extreme Mach number flows are sufficiently energetic to initiate gas ionization processes and thermal and chemical ablation processes. The nonequilibrium gaseous radiation from the shock layer is so strong that it affects the flowfield macroparameter distributions. In this work, we present the first loosely coupled direct simulation Monte Carlo (DSMC) simulations with the particle-based photon Monte Carlo (p-PMC) method to simulate high-Mach number reentry flows in the near-continuum flow regime. To efficiently capture the highly nonequilibrium effects, emission and absorption cross section databases using the Nonequilibrium Air Radiation (NEQAIR) were generated, and atomic nitrogen and oxygen radiative transport was calculated by the p-PMC method. The radiation energy change calculated by the p-PMC method has been coupled in the DSMC calculations, and the atomic radiation was found to modify the flow field and heat flux at the wall.
NASA Astrophysics Data System (ADS)
Suarez, Berta; Felez, Jesus; Maroto, Joaquin; Rodriguez, Pablo
2013-02-01
A sensitivity analysis has been performed to assess the influence of the inertial properties of railway vehicles on their dynamic behaviour. To do this, 216 dynamic simulations were performed modifying, one at a time, the masses, moments of inertia and heights of the centre of gravity of the carbody, the bogie and the wheelset. Three values were assigned to each parameter, corresponding to the percentiles 10, 50 and 90 of a data set stored in a database of railway vehicles. After processing the results of these simulations, the analysed parameters were sorted by increasing influence. It was also found which of these parameters could be estimated with a lesser degree of accuracy for future simulations without appreciably affecting the simulation results. In general terms, it was concluded that the most sensitive inertial properties are the mass and the vertical moment of inertia, and the least sensitive ones the longitudinal and lateral moments of inertia.
Walowska, Jagoda; Bolach, Bartosz; Bolach, Eugeniusz
2017-11-13
Hearing impairment may affect the body posture maintenance. The aim of the study was to evaluate the effect of modified Pilates exercise program on the body posture maintenance in hearing impaired people. Eighty students (aged 13-24) were enrolled and randomly allocated into two groups: test group (n = 41) which attended an original program based on modified Pilates exercises and control group (n = 39) which attended standard physical education classes. Stabilographic tests were conducted at baseline and after 6-week training program. Both groups showed improved control of body balance in a standing position manifested in reductions of the length of path, surface area, and speed of deflection. Modified Pilates program was significantly more effective in improving body balance control in relaxed posture and with feet together than standard physical education classes. The greater efficiency of the modified Pilates program was expressed in a significant improvement in balance control parameters, i.e., path length, surface area, and speed of deflection. The modified Pilates program was more effective in improving body balance control in the hearing impaired people than standard physical education classes. Modification of physical activity recommendations for hearing impaired students may be considered; however, further research is required. Implications for Rehabilitation Hearing impairment impacts the mental, social and, physical spheres of life as well as deteriorates equivalent reactions and the way body posture is maintained. In hearing impaired people, control of body balance and muscle coordination is often disturbed, thus more attention should be paid to exercises associated with balance which may improve the ability to learn and develop motor skills. Modified Pilates program was significantly more effective in improving body balance control than standard physical education classes in hearing impaired people.
Active technique by suction to control the flow structure over a van model
NASA Astrophysics Data System (ADS)
Harinaldi, Budiarso, Warjito, Kosasih, Engkos A.; Tarakka, Rustan; Simanungkalit, Sabar P.
2012-06-01
Today research trend in car aerodynamics are carried out from the point of view of the durable development. Some car companies have the objective to develop control solution that enable to reduce the aerodynamic drag of vehicle. It provides the possibility to modify the flow separation to reduce the development of the swirling structures around the vehicle. In this study, a family van is modeled with a modified form of Ahmed's body by changing the orientation of the flow from its original form (modified/reversed Ahmed Body). This model is equipped with a suction on the rear side to comprehensively examine the pressure field modifications that occur. The investigation combines computational and experimental work. The computational simulation used is k-epsilon flow turbulence model. The reversed Ahmed body used in the investigation has slant angle (φ) 35° at the front part. In the computational work, meshing type is tetra/hybrid element with hex core type and the grid number is more than 1.7 million in order to ensure detail discretization and more accurate calculation results. The boundary condition is upstream velocity of 11.1 m/s. Mean free stream at far upstream region is assumed in a steady state condition and uniform. The suction velocity is set at 1 m/s. Meanwhile in the experimental work a reversed Ahmed model is tested in a controlled wind tunnel experiments. The main measurement is the drag aerodynamic measurement at rear of the body of the model using strain gage. The results show that the application of a suction in the rear part of the van model give the effect of reducing the wake and the vortex is formed. Aerodynamic drag reduction close to 24% for the computational approach and 14.8% for the experimental approach by introducing a suction have been obtained.
Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows
NASA Astrophysics Data System (ADS)
Sun, P. N.; Colagrossi, A.; Marrone, S.; Antuono, M.; Zhang, A. M.
2018-03-01
It is well known that the use of SPH models in simulating flow at high Reynolds numbers is limited because of the tensile instability inception in the fluid region characterized by high vorticity and negative pressure. In order to overcome this issue, the δ+-SPH scheme is modified by implementing a Tensile Instability Control (TIC). The latter consists of switching the momentum equation to a non-conservative formulation in the unstable flow regions. The loss of conservation properties is shown to induce small errors, provided that the particle distribution is regular. The latter condition can be ensured thanks to the implementation of a Particle Shifting Technique (PST). The novel variant of the δ+-SPH is proved to be effective in preventing the onset of tensile instability. Several challenging benchmark tests involving flows past bodies at large Reynolds numbers have been used. Within this a simulation characterized by a deforming foil that resembles a fish-like swimming body is used as a practical application of the δ+-SPH model in biological fluid mechanics.
NASA Technical Reports Server (NTRS)
Putnam, L. E.
1979-01-01
A Neumann solution for inviscid external flow was coupled to a modified Reshotko-Tucker integral boundary-layer technique, the control volume method of Presz for calculating flow in the separated region, and an inviscid one-dimensional solution for the jet exhaust flow in order to predict axisymmetric nozzle afterbody pressure distributions and drag. The viscous and inviscid flows are solved iteratively until convergence is obtained. A computer algorithm of this procedure was written and is called DONBOL. A description of the computer program and a guide to its use is given. Comparisons of the predictions of this method with experiments show that the method accurately predicts the pressure distributions of boattail afterbodies which have the jet exhaust flow simulated by solid bodies. For nozzle configurations which have the jet exhaust simulated by high-pressure air, the present method significantly underpredicts the magnitude of nozzle pressure drag. This deficiency results because the method neglects the effects of jet plume entrainment. This method is limited to subsonic free-stream Mach numbers below that for which the flow over the body of revolution becomes sonic.
[Corrosion resistant properties of different anodized microtopographies on titanium surfaces].
Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian
2015-12-01
To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.
Secondary emission from dust grains: Comparison of experimental and model results
NASA Astrophysics Data System (ADS)
Richterova, I.; Pavlu, J.; Nemecek, Z.; Safrankova, J.; Zilavy, P.
The motion, coalescence, and other processes in dust clouds are determined by the dust charge. Since dust grains in the space are bombarded by energetic electrons, the secondary emission is an important process contributing to their charge. It is generally expected that the secondary emission yield is related to surface properties of the bombarded body. However, it is well known that secondary emission from small bodies is determined not only by their composition but an effect of dimension can be very important when the penetration depth of primary electrons is comparable with the grain size. It implies that the secondary emission yield can be influenced by the substrate material if the surface layer is thin enough. We have developed a simple Monte Carlo model of secondary emission that was successfully applied on the dust simulants from glass and melanine formaldehyd (MF) resin and matched very well experimental results. In order to check the influence of surface layers, we have modified the model for spheres covered by a layer with different material properties. The results of model simulations are compared with measurements on MF spheres covered by different metals.
NASA Astrophysics Data System (ADS)
Michel, P.; Richardson, D. C.
2007-08-01
During their evolutions, the small bodies of our Solar System are affected by several mechanisms which can modify their properties. While dynamical mechanisms are at the origin of their orbital variations, there are other mechanisms which can change their shape, spin, and even their size when their strength threshold is reached, resulting in their disruption. Such mechanisms have been identified and studied, both by analytical and numerical tools. The main mechanisms that can result in the disruption of a small body are collisional events, tidal perturbations, and spin-ups. However, the efficiency of these mechanisms depends on the strength of the material constituing the small body, which also plays a role in its possible equilibrium shape. We will present several important aspects of material strength that are believed to be adapted to Solar System small bodies and briefly review the most recent studies of the different mechanisms that can be at the origin of the disruption of these bodies. In particular, we have recently made a major improvement in the simulations of asteroid disruption by computing explicitly the formation of aggregates during the gravitational reaccumulation of small fragments, allowing us to obtain information on their spin, the number of boulders composing them or lying on their surface, and their shape.We will present the first and preliminary results of this process taking as examples some asteroid families that we reproduced successfully with our previous simulations (Michel et al. 2001, 2002, 2003, 2004a,b), and their possible implications on the properties of asteroids generated by a disruption. Such information can for instance be compared with data provided by the Japanese space mission Hayabusa of the asteroid Itokawa, a body now understood to be a fragment of a larger parent body. It is also clear that future space missions to small bodies devoted to precise in-situ analysis and sample return will allow us to improve our understanding on the physical properties of these objects, and to check whether our theoretical and numerical works are valid. References Michel P., BenzW., Tanga P., Richardson D.C. 2001. Collisions and gravitational reaccumulation: forming asteroid families and satellites. Science 294 1696-1700 (+cover of the journal). Michel P., Benz W., Tanga P., Richardson D.C. 2002. Formation of asteroid families by catastrophic disruption: simulations with fragmentation and gravitational reaccumulation. Icarus 160, 10-23. Michel P., Benz W., Richardson D.C. 2003. Fragmented parent bodies as the origin of asteroid families. Nature 421, 608-611 (+cover of the journal). Michel P., BenzW., Richardson D.C. 2004a. Disruption of pre-shattered parent bodies. Icarus 168, 420-432. Michel P., Benz W., Richardson D.C. 2004b. Catastrophic disruptions and family formation: a review of numerical simulations including both fragmentation and gravitational reaccumulations. Planet. Space. Sci. 52, 1109-1117.
Cardiovascular and hormonal changes induced by a simulation of a lunar mission.
Pavy-Le Traon, A; Allevard, A M; Fortrat, J O; Vasseur, P; Gauquelin, G; Guell, A; Bes, A; Gharib, C
1997-09-01
This is the first simulation of a 14-d lunar mission including 6 d on the Moon. We hypothesized that a lunar gravity simulation in the middle of a head-down tilt (HDT) might result in some reversal of body fluid/hormonal responses, and influence cardiovascular deconditioning. Six men (28 +/- 2.5 yr) were placed in bed rest (BR): in (HDT) (-6 degrees) to simulate microgravity during the travel (two 4-d periods), and in head-up tilt (HUT) (+10 degrees) (6-d period) to simulate lunar gravity (1/6 g). Muscular exercise was performed during the HUT period to simulate 6 h of lunar EVA. Heart rate variability (HRV) and hormonal responses were studied. An orthostatic arterial hypotension was observed after the BR (tilt test) in 4 of the 6 subjects. Plasma volume measured at D14 decreased by -11.1% (vs. D-3, sitting position). A decrease in atrial natriuretic peptide (26 +/- 3.5 pg.ml-1 (D14) vs. 37.9 +/- 3.5 pg.ml-1 (D-3, sitting) and an increase in plasma renin activity (198 +/- 9.2 mg.L-1.min-1 (D14) vs. 71 +/- 9.2 mg.L-1.min-1 (D-3, sitting) were observed during the BR, more pronounced in HUT at 7:00 p.m. Sympathetic-parasympathetic balance (HRV) at rest showed a decrease in parasympathetic indicator and an increase in sympathetic indicator in BR (p < 0.05), without differences within HDT and HUT periods. These changes were mostly similar to those reported in spaceflights, and HDT. Although the exposure to 1/6 g with exercise modified some hormonal and body fluid responses, this partial gravity simulation was not sufficient to prevent the decrease in orthostatic tolerance observed here as well as after Apollo lunar missions.
Kwak, Dae Hyun; Lee, Eun Ju; Kim, Deug Joong
2014-11-01
Hydroxyapatite/cellulose acetate composite webs were fabricated by an electro-spinning process. This electro-spinning process makes it possible to fabricate complex three-dimensional shapes. Nano fibrous web consisting of cellulose acetate and hydroxyapatite was produced from their mixture solution by using an electro-spinning process under high voltage. The surface of the electro-spun fiber was modified by a plasma and alkaline solution in order to increase its bioactivity. The structure, morphology and properties of the electro-spun fibers were investigated and an in-vitro bioactivity test was evaluated in simulated body fluid (SBF). Bioactivity of the electro-spun web was enhanced with the filler concentration and surface treatment. The surface changes of electro-spun fibers modified by plasma and alkaline solution were investigated by FT-IR (Fourier Transform Infrared Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy).
Simulation and analysis of light scattering by multilamellar bodies present in the human eye
Méndez-Aguilar, Emilia M.; Kelly-Pérez, Ismael; Berriel-Valdos, L. R.; Delgado-Atencio, José A.
2017-01-01
A modified computational model of the human eye was used to obtain and compare different probability density functions, radial profiles of light pattern distributions, and images of the point spread function formed in the human retina under the presence of different kinds of particles inside crystalline lenses suffering from cataracts. Specifically, this work uses simple particles without shells and multilamellar bodies (MLBs) with shells. The emergence of such particles alters the formation of images on the retina. Moreover, the MLBs change over time, which affects properties such as the refractive index of their shell. Hence, this work not only simulates the presence of such particles but also evaluates the incidence of particle parameters such as particle diameter, particle thickness, and shell refractive index, which are set based on reported experimental values. In addition, two wavelengths (400 nm and 700 nm) are used for light passing through the different layers of the computational model. The effects of these parameters on light scattering are analyzed using the simulation results. Further, in these results, the effects of light scattering on image formation can be seen when single particles, early-stage MLBs, or mature MLBs are incorporated in the model. Finally, it is found that particle diameter has the greatest impact on image formation. PMID:28663924
Simulation and analysis of light scattering by multilamellar bodies present in the human eye.
Méndez-Aguilar, Emilia M; Kelly-Pérez, Ismael; Berriel-Valdos, L R; Delgado-Atencio, José A
2017-06-01
A modified computational model of the human eye was used to obtain and compare different probability density functions, radial profiles of light pattern distributions, and images of the point spread function formed in the human retina under the presence of different kinds of particles inside crystalline lenses suffering from cataracts. Specifically, this work uses simple particles without shells and multilamellar bodies (MLBs) with shells. The emergence of such particles alters the formation of images on the retina. Moreover, the MLBs change over time, which affects properties such as the refractive index of their shell. Hence, this work not only simulates the presence of such particles but also evaluates the incidence of particle parameters such as particle diameter, particle thickness, and shell refractive index, which are set based on reported experimental values. In addition, two wavelengths (400 nm and 700 nm) are used for light passing through the different layers of the computational model. The effects of these parameters on light scattering are analyzed using the simulation results. Further, in these results, the effects of light scattering on image formation can be seen when single particles, early-stage MLBs, or mature MLBs are incorporated in the model. Finally, it is found that particle diameter has the greatest impact on image formation.
NASA Technical Reports Server (NTRS)
Yamauchi, G.; Johnson, W.
1984-01-01
A computationally efficient body analysis designed to couple with a comprehensive helicopter analysis is developed in order to calculate the body-induced aerodynamic effects on rotor performance and loads. A modified slender body theory is used as the body model. With the objective of demonstrating the accuracy, efficiency, and application of the method, the analysis at this stage is restricted to axisymmetric bodies at zero angle of attack. By comparing with results from an exact analysis for simple body shapes, it is found that the modified slender body theory provides an accurate potential flow solution for moderately thick bodies, with only a 10%-20% increase in computational effort over that of an isolated rotor analysis. The computational ease of this method provides a means for routine assessment of body-induced effects on a rotor. Results are given for several configurations that typify those being used in the Ames 40- by 80-Foot Wind Tunnel and in the rotor-body aerodynamic interference tests being conducted at Ames. A rotor-hybrid airship configuration is also analyzed.
Vibration of a flexible spacecraft with momentum exchange controllers
NASA Technical Reports Server (NTRS)
Canavin, J. R.
1976-01-01
Floating reference frames were investigated in order to allow first order vibration analysis in the presence of large system rotations. When the deformations of an elastic continuum are expanded in terms of the free-free modes of an unconstrained system, the rigid body modes are found to be fixed relative to the Tisserand frame, with respect to which the relative momentum is zero. The proof presented for this is based on the orthogonality condition for modes with distinct natural frequencies. This result also guarantees the independence of coordinates for all modes with nonzero natural frequencies. A Modified Tisserand Constraint is introduced in order to define a floating reference frame with similar properties for an elastic body which contains a spinning rotor. Finite element equations of motion are derived for a completely flexible spacecraft with momentum exchange controllers, using a Modified Tisserand Frame. The deformable systems covered in this application are assumed to undergo only small rotations, and therefore the rotor torques must formally be small, although in engineering applications it may be possible to relax this constraint. A modal analysis is performed for the system and the resulting set of equations is reduced in number by a truncation procedure for more efficient system simulation.
Discovering body site and severity modifiers in clinical texts
Dligach, Dmitriy; Bethard, Steven; Becker, Lee; Miller, Timothy; Savova, Guergana K
2014-01-01
Objective To research computational methods for discovering body site and severity modifiers in clinical texts. Methods We cast the task of discovering body site and severity modifiers as a relation extraction problem in the context of a supervised machine learning framework. We utilize rich linguistic features to represent the pairs of relation arguments and delegate the decision about the nature of the relationship between them to a support vector machine model. We evaluate our models using two corpora that annotate body site and severity modifiers. We also compare the model performance to a number of rule-based baselines. We conduct cross-domain portability experiments. In addition, we carry out feature ablation experiments to determine the contribution of various feature groups. Finally, we perform error analysis and report the sources of errors. Results The performance of our method for discovering body site modifiers achieves F1 of 0.740–0.908 and our method for discovering severity modifiers achieves F1 of 0.905–0.929. Discussion Results indicate that both methods perform well on both in-domain and out-domain data, approaching the performance of human annotators. The most salient features are token and named entity features, although syntactic dependency features also contribute to the overall performance. The dominant sources of errors are infrequent patterns in the data and inability of the system to discern deeper semantic structures. Conclusions We investigated computational methods for discovering body site and severity modifiers in clinical texts. Our best system is released open source as part of the clinical Text Analysis and Knowledge Extraction System (cTAKES). PMID:24091648
Discovering body site and severity modifiers in clinical texts.
Dligach, Dmitriy; Bethard, Steven; Becker, Lee; Miller, Timothy; Savova, Guergana K
2014-01-01
To research computational methods for discovering body site and severity modifiers in clinical texts. We cast the task of discovering body site and severity modifiers as a relation extraction problem in the context of a supervised machine learning framework. We utilize rich linguistic features to represent the pairs of relation arguments and delegate the decision about the nature of the relationship between them to a support vector machine model. We evaluate our models using two corpora that annotate body site and severity modifiers. We also compare the model performance to a number of rule-based baselines. We conduct cross-domain portability experiments. In addition, we carry out feature ablation experiments to determine the contribution of various feature groups. Finally, we perform error analysis and report the sources of errors. The performance of our method for discovering body site modifiers achieves F1 of 0.740-0.908 and our method for discovering severity modifiers achieves F1 of 0.905-0.929. Results indicate that both methods perform well on both in-domain and out-domain data, approaching the performance of human annotators. The most salient features are token and named entity features, although syntactic dependency features also contribute to the overall performance. The dominant sources of errors are infrequent patterns in the data and inability of the system to discern deeper semantic structures. We investigated computational methods for discovering body site and severity modifiers in clinical texts. Our best system is released open source as part of the clinical Text Analysis and Knowledge Extraction System (cTAKES).
A Fixed-Base-Simulator Study of the Ability of a Pilot to Establish Close Orbits Around the Moon
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Riley, Donald R.
1961-01-01
A study was made on a six-degree-of-freedom fixed-base simulator of the ability of human pilots to modify ballistic trajectories of a 5 space vehicle approaching the moon to establish a circular orbit about 50 miles above the lunar surface. The unmodified ballistic trajectories had miss distances from the lunar surface of from 40 to 80 miles, and a velocity range of from 8,200 to 8,700 feet per second at closest approach. The pilot was given control of the thrust (along the vehicle longitudinal axis) and torques about all three body axes. The information display given to the pilot was a hodograph of the vehicle rate of descent and circumferential velocity, an altimeter, and vehicle attitude and rate meters.
Caffeine Improves Basketball Performance in Experienced Basketball Players
Puente, Carlos; Areces, Francisco
2017-01-01
The aim of this study was to determine the effect of caffeine intake on overall basketball performance in experienced players. A double-blind, placebo-controlled, randomized experimental design was used for this investigation. In two different sessions separated by one week, 20 experienced basketball players ingested 3 mg of caffeine/kg of body mass or a placebo. After 60 min, participants performed 10 repetitions of the following sequence: Abalakov jump, Change-of-Direction and Acceleration Test (CODAT) and two free throws. Later, heart rate, body impacts and game statistics were recorded during a 20-min simulated basketball game. In comparison to the placebo, the ingestion of caffeine increased mean jump height (37.3 ± 6.8 vs. 38.2 ± 7.4 cm; p = 0.012), but did not change mean time in the CODAT test or accuracy in free throws. During the simulated game, caffeine increased the number of body impacts (396 ± 43 vs. 410 ± 41 impacts/min; p < 0.001) without modifying mean or peak heart rate. Caffeine also increased the performance index rating (7.2 ± 8.6 vs. 10.6 ± 7.1; p = 0.037) during the game. Nevertheless, players showed a higher prevalence of insomnia (19.0 vs. 54.4%; p = 0.041) after the game. Three mg of caffeine per kg of body mass could be an effective ergogenic substance to increase physical performance and overall success in experienced basketball players. PMID:28925969
The Contribution of Pre-impact Spine Posture on Human Body Model Response in Whole-body Side Impact.
Poulard, David; Subit, Damien; Donlon, John-Paul; Lessley, David J; Kim, Taewung; Park, Gwansik; Kent, Richard W
2014-11-01
The objective of the study was to analyze independently the contribution of pre-impact spine posture on impact response by subjecting a finite element human body model (HBM) to whole-body, lateral impacts. Seven postured models were created from the original HBM: one matching the standard driving posture and six matching pre-impact posture measured for each of six subjects tested in previously published experiments. The same measurements as those obtained during the experiments were calculated from the simulations, and biofidelity metrics based on signals correlation were established to compare the response of HBM to that of the cadavers. HBM responses showed good correlation with the subject response for the reaction forces, the rib strain (correlation score=0.8) and the overall kinematics. The pre-impact posture was found to greatly alter the reaction forces, deflections and the strain time histories mainly in terms of time delay. By modifying only the posture of HBM, the variability in the impact response was found to be equivalent to that observed in the experiments performed with cadavers with different anthropometries. The patterns observed in the responses of the postured HBM indicate that the inclination of the spine in the frontal plane plays a major role. The postured HBM sustained from 2 to 5 bone fractures, including the scapula in some cases, confirming that the pre-impact posture influences the injury outcome predicted by the simulation.
Stochastic Methods for Aircraft Design
NASA Technical Reports Server (NTRS)
Pelz, Richard B.; Ogot, Madara
1998-01-01
The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.
Ogrodnik, Justyna; Piszczatowski, Szczepan
2017-01-01
The aim of the present study was to evaluate the influence of modified morphological parameters of the muscle model and excitation pattern on the results of musculoskeletal system numerical simulation in a cerebral palsy patient. The modelling of the musculoskeletal system was performed in the AnyBody Modelling System. The standard model (MoCap) was subjected to modifications consisting of changes in morphological parameters and excitation patterns of selected muscles. The research was conducted with the use of data of a 14-year-old cerebral palsy patient. A reduction of morphological parameters (variant MI) caused a decrease in the value of active force generated by the muscle with changed geometry, and as a consequence the changes in active force generated by other muscles. A simulation of the abnormal excitation pattern (variant MII) resulted in the muscle's additional activity during its lengthening. The simultaneous modification of the muscle morphology and excitation pattern (variant MIII) points to the interdependence of both types of muscle model changes. A significant increase in the value of the reaction force in the hip joint was observed as a consequence of modification of the hip abductor activity. The morphological parameters and the excitation pattern of modelled muscles have a significant influence on the results of numerical simulation of the musculoskeletal system functioning.
Airborne Simulation of Launch Vehicle Dynamics
NASA Technical Reports Server (NTRS)
Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.
2014-01-01
In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity-turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is optimized for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using NASA Dryden Flight Research Center's Full-scale Advanced Systems Testbed (FAST), a modified F/A-18 airplane, over a range of scenarios designed to stress the SLS's adaptive augmenting control (AAC) algorithm.
New Probe of Departures from General Relativity Using Minkowski Functionals.
Fang, Wenjuan; Li, Baojiu; Zhao, Gong-Bo
2017-05-05
The morphological properties of the large scale structure of the Universe can be fully described by four Minkowski functionals (MFs), which provide important complementary information to other statistical observables such as the widely used 2-point statistics in configuration and Fourier spaces. In this work, for the first time, we present the differences in the morphology of the large scale structure caused by modifications to general relativity (to address the cosmic acceleration problem), by measuring the MFs from N-body simulations of modified gravity and general relativity. We find strong statistical power when using the MFs to constrain modified theories of gravity: with a galaxy survey that has survey volume ∼0.125(h^{-1} Gpc)^{3} and galaxy number density ∼1/(h^{-1} Mpc)^{3}, the two normal-branch Dvali-Gabadadze-Porrati models and the F5 f(R) model that we simulated can be discriminated from the ΛCDM model at a significance level ≳5σ with an individual MF measurement. Therefore, the MF of the large scale structure is potentially a powerful probe of gravity, and its application to real data deserves active exploration.
Dynamics of a flexible helical filament rotating in a viscous fluid near a rigid boundary
NASA Astrophysics Data System (ADS)
Jawed, M. K.; Reis, P. M.
2017-03-01
We study the effect of a no-slip rigid boundary on the dynamics of a flexible helical filament rotating in a viscous fluid, at low Reynolds number conditions (Stokes limit). This system is taken as a reduced model for the propulsion of uniflagellar bacteria, whose locomotion is known to be modified near solid boundaries. Specifically, we focus on how the propulsive force generated by the filament, as well as its buckling onset, are modified by the presence of a wall. We tackle this problem through numerical simulations that couple the elasticity of the filament, the hydrodynamic loading, and the wall effect. Each of these three ingredients is respectively modeled by the discrete elastic rods method (for a geometrically nonlinear description of the filament), Lighthill's slender body theory (for a nonlocal fluid force model), and the method of images (to emulate the boundary). The simulations are systematically validated by precision experiments on a rescaled macroscopic apparatus. We find that the propulsive force increases near the wall, while the critical rotation frequency for the onset of buckling usually decreases. A systematic parametric study is performed to quantify the dependence of the wall effects on the geometric parameters of the helical filament.
Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi
2010-01-01
The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.
Transonic Flow Field Analysis for Wing-Fuselage Configurations
NASA Technical Reports Server (NTRS)
Boppe, C. W.
1980-01-01
A computational method for simulating the aerodynamics of wing-fuselage configurations at transonic speeds is developed. The finite difference scheme is characterized by a multiple embedded mesh system coupled with a modified or extended small disturbance flow equation. This approach permits a high degree of computational resolution in addition to coordinate system flexibility for treating complex realistic aircraft shapes. To augment the analysis method and permit applications to a wide range of practical engineering design problems, an arbitrary fuselage geometry modeling system is incorporated as well as methodology for computing wing viscous effects. Configuration drag is broken down into its friction, wave, and lift induced components. Typical computed results for isolated bodies, isolated wings, and wing-body combinations are presented. The results are correlated with experimental data. A computer code which employs this methodology is described.
Effect of Mach number on the efficiency of microwave energy deposition in supersonic flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashkov, V. A., E-mail: valerial180150@gmail.com; Karpenko, A. G., E-mail: aspera.2003.ru@mail.ru; Khoronzhuk, R. S.
The article is devoted to experimental and numerical studies of the efficiency of microwave energy deposition into a supersonic flow around the blunt cylinder at different Mach numbers. Identical conditions for energy deposition have been kept in the experiments, thus allowing to evaluate the pure effect of varying Mach number on the pressure drop. Euler equations are solved numerically to model the corresponding unsteady flow compressed gas. The results of numerical simulations are compared to the data obtained from the physical experiments. It is shown that the momentum, which the body receives during interaction of the gas domain modified bymore » microwave discharge with a shock layer before the body, increases almost linearly with rising of Mach number and the efficiency of energy deposition also rises.« less
An experimental microcomputer controlled system for synchronized pulsating anti-gravity suit.
Moore, T W; Foley, J; Reddy, B R; Kepics, F; Jaron, D
1987-07-01
An experimental system to deliver synchronized external pressure pulsations to the lower body is described in this technical note. The system is designed using a microcomputer with a real time interface and an electro-pneumatic subsystem capable of delivering pressure pulses to a modified anti-G suit at a fast rate. It is versatile, containing many options for synchronizing, phasing and sequencing of the pressure pulsations and controlling the pressure level in the suit bladders. Details of its software and hardware are described along with the results of initial testing in a Dynamic Flight Simulator on human volunteers.
Radial-orbit instability in modified Newtonian dynamics
NASA Astrophysics Data System (ADS)
Nipoti, Carlo; Ciotti, Luca; Londrillo, Pasquale
2011-07-01
The stability of radially anisotropic spherical stellar systems in modified Newtonian dynamics (MOND) is explored by means of numerical simulations performed with the N-body code N-MODY. We find that Osipkov-Merritt MOND models require for stability larger minimum anisotropy radii than equivalent Newtonian systems (ENSs) with the dark matter, and also than purely baryonic Newtonian models with the same density profile. The maximum value for stability of the Fridman-Polyachenko-Shukhman parameter in MOND models is lower than in ENSs, but higher than in Newtonian models with no dark matter. We conclude that MOND systems are substantially more prone to radial-orbit instability than ENSs with dark matter, while they are able to support a larger amount of kinetic energy stored in radial orbits than purely baryonic Newtonian systems. An explanation of these results is attempted and their relevance to the MOND interpretation of the observed kinematics of globular clusters, dwarf spheroidal and elliptical galaxies is briefly discussed.
Synthesis of Monodispersed Ag-Doped Bioactive Glass Nanoparticles via Surface Modification
Kozon, Dominika; Zheng, Kai; Boccardi, Elena; Liu, Yufang; Liverani, Liliana; Boccaccini, Aldo R.
2016-01-01
Monodispersed spherical Ag-doped bioactive glass nanoparticles (Ag-BGNs) were synthesized by a modified Stöber method combined with surface modification. The surface modification was carried out at 25, 60, and 80 °C, respectively, to investigate the influence of processing temperature on particle properties. Energy-dispersive X-ray spectroscopy (EDS) results indicated that higher temperatures facilitate the incorporation of Ag. Hydroxyapatite (HA) formation on Ag-BGNs was detected upon immersion of the particles in simulated body fluid for 7 days, which indicated that Ag-BGNs maintained high bioactivity after surface modification. The conducted antibacterial assay confirmed that Ag-BGNs had an antibacterial effect on E. coli. The above results thereby suggest that surface modification is an effective way to incorporate Ag into BGNs and that the modified BGNs can remain monodispersed as well as exhibit bioactivity and antibacterial capability for biomedical applications. PMID:28773349
Neutron organ dose and the influence of adipose tissue
NASA Astrophysics Data System (ADS)
Simpkins, Robert Wayne
Neutron fluence to dose conversion coefficients have been assessed considering the influences of human adipose tissue. Monte Carlo code MCNP4C was used to simulate broad parallel beam monoenergetic neutrons ranging in energy from thermal to 10 MeV. Simulated Irradiations were conducted for standard irradiation geometries. The targets were on gender specific mathematical anthropomorphic phantoms modified to approximate human adipose tissue distributions. Dosimetric analysis compared adipose tissue influence against reference anthropomorphic phantom characteristics. Adipose Male and Post-Menopausal Female Phantoms were derived introducing interstitial adipose tissue to account for 22 and 27 kg additional body mass, respectively, each demonstrating a Body Mass Index (BMI) of 30. An Adipose Female Phantom was derived introducing specific subcutaneous adipose tissue accounting for 15 kg of additional body mass demonstrating a BMI of 26. Neutron dose was shielded in the superficial tissues; giving rise to secondary photons which dominated the effective dose for Incident energies less than 100 keV. Adipose tissue impact on the effective dose was a 25% reduction at the anterior-posterior incidence ranging to a 10% increase at the lateral incidences. Organ dose impacts were more distinctive; symmetrically situated organs demonstrated a 15% reduction at the anterior-posterior Incidence ranging to a 2% increase at the lateral incidences. Abdominal or asymmetrically situated organs demonstrated a 50% reduction at the anterior-posterior incidence ranging to a 25% increase at the lateral incidences.
NASA Astrophysics Data System (ADS)
Lee, S.-H.; Kim, S.-W.; Angevine, W. M.; Bianco, L.; McKeen, S. A.; Senff, C. J.; Trainer, M.; Tucker, S. C.; Zamora, R. J.
2011-03-01
The performance of different urban surface parameterizations in the WRF (Weather Research and Forecasting) in simulating urban boundary layer (UBL) was investigated using extensive measurements during the Texas Air Quality Study 2006 field campaign. The extensive field measurements collected on surface (meteorological, wind profiler, energy balance flux) sites, a research aircraft, and a research vessel characterized 3-dimensional atmospheric boundary layer structures over the Houston-Galveston Bay area, providing a unique opportunity for the evaluation of the physical parameterizations. The model simulations were performed over the Houston metropolitan area for a summertime period (12-17 August) using a bulk urban parameterization in the Noah land surface model (original LSM), a modified LSM, and a single-layer urban canopy model (UCM). The UCM simulation compared quite well with the observations over the Houston urban areas, reducing the systematic model biases in the original LSM simulation by 1-2 °C in near-surface air temperature and by 200-400 m in UBL height, on average. A more realistic turbulent (sensible and latent heat) energy partitioning contributed to the improvements in the UCM simulation. The original LSM significantly overestimated the sensible heat flux (~200 W m-2) over the urban areas, resulting in warmer and higher UBL. The modified LSM slightly reduced warm and high biases in near-surface air temperature (0.5-1 °C) and UBL height (~100 m) as a result of the effects of urban vegetation. The relatively strong thermal contrast between the Houston area and the water bodies (Galveston Bay and the Gulf of Mexico) in the LSM simulations enhanced the sea/bay breezes, but the model performance in predicting local wind fields was similar among the simulations in terms of statistical evaluations. These results suggest that a proper surface representation (e.g. urban vegetation, surface morphology) and explicit parameterizations of urban physical processes are required for accurate urban atmospheric numerical modeling.
Effects of simulated weightlessness on meiosis. Fertilization, and early development in mice
NASA Technical Reports Server (NTRS)
Wolgemuth, D. J.
1986-01-01
The initial goal was to construct a clinostat which could support mammalian cell culture. The clinostat was selected as a means by which to simulate microgravity conditions within the laboratory, by constant re-orientation of cells with respect to the gravity vector. The effects of this simulated microgravity on in-vitro meiotic maturation of oocytes, using mouse as the model system, was investigated. The effects of clinostat rotation on fertilization in-vitro was then examined. Specific endpoints included examining the timely appearance of male and female pronuclei (indicating fertilization) and the efficiency of extrusion of the second polar body. Particular attention was paid to detecting anomalies of fertilization, including parthenogenetic activation and multiple pronuclei. Finally, for the preliminary studies on mouse embryogenesis, a key feature of the clinostat was modified, that of the position of the cells during rotation. A means was found to immobilize the cells during the clinostat reotation, permitting the cells to remain at the axis of rotation yet not interfering with cellular development.
NASA Astrophysics Data System (ADS)
Jones, Scott B.; Or, Dani
1999-04-01
Plants grown in porous media are part of a bioregenerative life support system designed for long-duration space missions. Reduced gravity conditions of orbiting spacecraft (microgravity) alter several aspects of liquid flow and distribution within partially saturated porous media. The objectives of this study were to evaluate the suitability of conventional capillary flow theory in simulating water distribution in porous media measured in a microgravity environment. Data from experiments aboard the Russian space station Mir and a U.S. space shuttle were simulated by elimination of the gravitational term from the Richards equation. Qualitative comparisons with media hydraulic parameters measured on Earth suggest narrower pore size distributions and inactive or nonparticipating large pores in microgravity. Evidence of accentuated hysteresis, altered soil-water characteristic, and reduced unsaturated hydraulic conductivity from microgravity simulations may be attributable to a number of proposed secondary mechanisms. These are likely spawned by enhanced and modified paths of interfacial flows and an altered force ratio of capillary to body forces in microgravity.
Hydrodynamic Simulations of Giant Impacts
NASA Astrophysics Data System (ADS)
Reinhardt, Christian; Stadel, Joachim
2013-07-01
We studied the basic numerical aspects of giant impacts using Smoothed Particles Hydrodynamics (SPH), which has been used in most of the prior studies conducted in this area (e.g., Benz, Canup). Our main goal was to modify the massive parallel, multi-stepping code GASOLINE widely used in cosmological simulations so that it can properly simulate the behavior of condensed materials such as granite or iron using the Tillotson equation of state. GASOLINE has been used to simulate hundreds of millions of particles for ideal gas physics so that using several millions of particles in condensed material simulations seems possible. In order to focus our attention of the numerical aspects of the problem we neglected the internal structure of the protoplanets and modelled them as homogenous (isothermal) granite spheres. For the energy balance we only considered PdV work and shock heating of the material during the impact (neglected cooling of the material). Starting at a low resolution of 2048 particles for the target and the impactor we run several simulations for different impact parameters and impact velocities and successfully reproduced the main features of the pioneering work of Benz from 1986. The impact sends a shock wave through both bodies heating the target and disrupting the remaining impactor. As in prior simulations material is ejected from the collision. How much, and whether it leaves the system or survives in an orbit for a longer time, depends on the initial conditions but also on resolution. Increasing the resolution (to 1.2x10⁶ particles) results in both a much clearer shock wave and deformation of the bodies during the impact and a more compact and detailed "arm" like structure of the ejected material. Currently we are investigating some numerical issues we encountered and are implementing differentiated models, making one step closer to more realistic protoplanets in such giant impact simulations.
Ondrejcakova, M; Bakos, J; Garafova, A; Kovacs, L; Kvetnansky, R; Jezova, D
2010-07-01
Physiological functions of oxytocin released during stress are not well understood. We have (1) investigated the release of oxytocin during chronic stress using two long-term stress models and (2) simulated stress-induced oxytocin secretion by chronic treatment with oxytocin via osmotic minipumps. Plasma oxytocin levels were significantly elevated in rats subjected to acute immobilization stress for 120 min, to repeated immobilization for 7 days and to combined chronic cold stress exposure for 28 days with 7 days immobilization. To simulate elevation of oxytocin during chronic stress, rats were implanted with osmotic minipumps subcutaneously and treated with oxytocin (3.6 microg/100 g body weight/day) or vehicle for 2 weeks. Chronic subcutaneous oxytocin infusion led to an increase in plasma oxytocin, adrenocorticotropic hormone, corticosterone, adrenal weights and heart/body weight ratio. Oxytocin treatment had no effect on the incorporation of 5-bromo-2-deoxyuridine into DNA in the heart ventricle. Mean arterial pressure response to intravenous phenylephrine was reduced in oxytocin-treated animals. Decrease in adrenal tyrosin hydroxylase mRNA following oxytocin treatment was not statistically significant. Oxytocin treatment failed to modify food intake and slightly increased water consumption. These data provide evidence on increased concentrations of oxytocin during chronic stress. It is possible that the role of oxytocin released during stress is in modulating hypothalamic-pituitary-adrenocortical axis and selected sympathetic functions.
Optimal Inlet Shape Design of N2B Hybrid Wing Body Configuration
NASA Technical Reports Server (NTRS)
Kim, Hyoungjin; Liou, Meng-Sing
2012-01-01
The N2B hybrid wing body aircraft was conceptually designed to meet environmental and performance goals for the N+2 generation transport set by the Subsonic Fixed Wing project of NASA Fundamental Aeronautics Program. In the present study, flow simulations are conducted around the N2B configuration by a Reynolds-averaged Navier-Stokes flow solver using unstructured meshes. Boundary conditions at engine fan face and nozzle exhaust planes are provided by the NPSS thermodynamic engine cycle model. The flow simulations reveal challenging design issues arising from boundary layer ingestion offset inlet and airframe-propulsion integration. Adjoint-based optimal designs are then conducted for the inlet shape to minimize the airframe drag force and flow distortion at fan faces. Design surfaces are parameterized by NURBS, and the cowl lip geometry is modified by a spring analogy approach. By the drag minimization design, flow separation on the cowl surfaces are almost removed, and shock wave strength got remarkably reduced. For the distortion minimization design, a circumferential distortion indicator DPCP(sub avg) is adopted as the design objective and diffuser bottom and side wall surfaces are perturbed for the design. The distortion minimization results in a 12.5 % reduction in the objective function.
NASA Technical Reports Server (NTRS)
Karam, E. H.; Srinivasan, R. S.; Charles, J. B.; Fortney, S. M.
1994-01-01
Different mathematical models of varying complexity have been proposed in recent years to study the cardiovascular (CV) system. However, only a few of them specifically address the response to lower body negative pressure (LBNP), a stress that can be applied in weightlessness to predict changes in orthostatic tolerance. Also, the simulated results produced by these models agree only partially with experimental observations. In contrast, the model proposed by Melchior et al., and modified by Karam et al. is a simple representation of the CV system capable of accurately reproducing observed LBNP responses up to presyncopal levels. There are significant changes in LBNP response due to a loss of blood volume and other alterations that occur in weightlessness and related one-g conditions such as bedrest. A few days of bedrest can cause up to 15% blood volume loss (BVL), with consequent decreases in both stroke volume and cardiac output, and increases in heart rate, mean arterial pressure, and total peripheral resistance. These changes are more pronounced at higher levels of LBNP. This paper presents the results of a simulation study using our CV model to examine the effect of BVL on LBNP response.
Re-Evaluation of Development of the TMDL Using Long-Term Monitoring Data and Modeling
NASA Astrophysics Data System (ADS)
Squires, A.; Rittenburg, R.; Boll, J.; Brooks, E. S.
2012-12-01
Since 1996, 47,979 Total Maximum Daily Loads (TMDLs) have been approved throughout the United States for impaired water bodies. TMDLs are set through the determination of natural background loads for a given water body which then estimate contributions from point and nonpoint sources to create load allocations and determine acceptable pollutant levels to meet water quality standards. Monitoring data and hydrologic models may be used in this process. However, data sets used are often limited in duration and frequency, and model simulations are not always accurate. The objective of this study is to retrospectively look at the development and accuracy of the TMDL for a stream in an agricultural area using long-term monitoring data and a robust modeling process. The study area is the Paradise Creek Watershed in northern Idaho. A sediment TMDL was determined for the Idaho section of Paradise Creek in 1997. Sediment TMDL levels were determined using a short-term data set and the Water Erosion Prediction Project (WEPP) model. Background loads used for the TMDL in 1997 were from pre-agricultural levels, based on WEPP model results. We modified the WEPP model for simulation of saturation excess overland flow, the dominant runoff generation mechanism, and analyzed more than 10 years of high resolution monitoring data from 2001 - 2012, including discharge and total suspended solids. Results will compare background loading and current loading based on present-day land use documented during the monitoring period and compare previous WEPP model results with the modified WEPP model results. This research presents a reevaluation of the TMDL process with recommendations for a more scientifically sound methodology to attain realistic water quality goals.
Designing Kerr interactions using multiple superconducting qubit types in a single circuit
NASA Astrophysics Data System (ADS)
Elliott, Matthew; Joo, Jaewoo; Ginossar, Eran
2018-02-01
The engineering of Kerr interactions is of great interest for processing quantum information in multipartite quantum systems and for investigating many-body physics in a complex cavity-qubit network. We study how coupling multiple different types of superconducting qubits to the same cavity modes can be used to modify the self- and cross-Kerr effects acting on the cavities and demonstrate that this type of architecture could be of significant benefit for quantum technologies. Using both analytical perturbation theory results and numerical simulations, we first show that coupling two superconducting qubits with opposite anharmonicities to a single cavity enables the effective self-Kerr interaction to be diminished, while retaining the number splitting effect that enables control and measurement of the cavity field. We demonstrate that this reduction of the self-Kerr effect can maintain the fidelity of coherent states and generalised Schrödinger cat states for much longer than typical coherence times in realistic devices. Next, we find that the cross-Kerr interaction between two cavities can be modified by coupling them both to the same pair of qubit devices. When one of the qubits is tunable in frequency, the strength of entangling interactions between the cavities can be varied on demand, forming the basis for logic operations on the two modes. Finally, we discuss the feasibility of producing an array of cavities and qubits where intermediary and on-site qubits can tune the strength of self- and cross-Kerr interactions across the whole system. This architecture could provide a way to engineer interesting many-body Hamiltonians and be a useful platform for quantum simulation in circuit quantum electrodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Chengyu, E-mail: shicy1974@yahoo.com; Chen, Yong; Fang, Deborah
2015-04-01
Liver stereotactic body radiation therapy (SBRT) is a feasible treatment method for the nonoperable, patient with early-stage liver cancer. Treatment planning for the SBRT is very important and has to consider the simulation accuracy, planning time, treatment efficiency effects etc. The modified dynamic conformal arc (MDCA) technique is a 3-dimensional conformal arc planning method, which has been proposed for liver SBRT planning at our center. In this study, we compared the MDCA technique with the RapidArc technique in terms of planning target volume (PTV) coverage and sparing of organs at risk (OARs). The results show that the MDCA technique hasmore » comparable plan quality to RapidArc considering PTV coverage, hot spots, heterogeneity index, and effective liver volume. For the 5 PTVs studied among 4 patients, the MDCA plan, when compared with the RapidArc plan, showed 9% more hot spots, more heterogeneity effect, more sparing of OARs, and lower liver effective volume. The monitor unit (MU) number for the MDCA plan is much lower than for the RapidArc plans. The MDCA plan has the advantages of less planning time, no-collision treatment, and a lower MU number.« less
An extended Zel'dovich model for the halo mass function
NASA Astrophysics Data System (ADS)
Lim, Seunghwan; Lee, Jounghun
2013-01-01
A new way to construct a fitting formula for the halo mass function is presented. Our formula is expressed as a solution to the modified Jedamzik matrix equation that automatically satisfies the normalization constraint. The characteristic parameters expressed in terms of the linear shear eigenvalues are empirically determined by fitting the analytic formula to the numerical results from the high-resolution N-body simulation and found to be independent of scale, redshift and background cosmology. Our fitting formula with the best-fit parameters is shown to work excellently in the wide mass-range at various redshifts: The ratio of the analytic formula to the N-body results departs from unity by up to 10% and 5% over 1011 <= M/(h-1Msolar) <= 5 × 1015 at z = 0,0.5 and 1 for the FoF-halo and SO-halo cases, respectively.
Wages, Nolan A; Read, Paul W; Petroni, Gina R
2015-01-01
Dose-finding studies that aim to evaluate the safety of single agents are becoming less common, and advances in clinical research have complicated the paradigm of dose finding in oncology. A class of more complex problems, such as targeted agents, combination therapies and stratification of patients by clinical or genetic characteristics, has created the need to adapt early-phase trial design to the specific type of drug being investigated and the corresponding endpoints. In this article, we describe the implementation of an adaptive design based on a continual reassessment method for heterogeneous groups, modified to coincide with the objectives of a Phase I/II trial of stereotactic body radiation therapy in patients with painful osseous metastatic disease. Operating characteristics of the Institutional Review Board approved design are demonstrated under various possible true scenarios via simulation studies. Copyright © 2015 John Wiley & Sons, Ltd.
Airborne Simulation of Launch Vehicle Dynamics
NASA Technical Reports Server (NTRS)
Miller, Christopher J.; Orr, Jeb S.; Hanson, Curtis E.; Gilligan, Eric T.
2015-01-01
In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is configured for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight-test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Fullscale Advanced Systems Testbed (FAST), a modified F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois), over a range of scenarios designed to stress the SLS's Adaptive Augmenting Control (AAC) algorithm.
An Advanced N -body Model for Interacting Multiple Stellar Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brož, Miroslav
We construct an advanced model for interacting multiple stellar systems in which we compute all trajectories with a numerical N -body integrator, namely the Bulirsch–Stoer from the SWIFT package. We can then derive various observables: astrometric positions, radial velocities, minima timings (TTVs), eclipse durations, interferometric visibilities, closure phases, synthetic spectra, spectral energy distribution, and even complete light curves. We use a modified version of the Wilson–Devinney code for the latter, in which the instantaneous true phase and inclination of the eclipsing binary are governed by the N -body integration. If all of these types of observations are at one’s disposal,more » a joint χ {sup 2} metric and an optimization algorithm (a simplex or simulated annealing) allow one to search for a global minimum and construct very robust models of stellar systems. At the same time, our N -body model is free from artifacts that may arise if mutual gravitational interactions among all components are not self-consistently accounted for. Finally, we present a number of examples showing dynamical effects that can be studied with our code and we discuss how systematic errors may affect the results (and how to prevent this from happening).« less
The dynamics of the Local Group as a probe of dark energy and modified gravity
NASA Astrophysics Data System (ADS)
Carlesi, Edoardo; Mota, David F.; Winther, Hans A.
2017-04-01
In this work, we study the dynamics of the Local Group (LG) within the context of cosmological models beyond General Relativity (GR). Using observable kinematic quantities to identify candidate pairs, we build up samples of simulated LG-like objects drawing from f(R), symmetron, Dvali, Gabadadze & Porrati and quintessence N-body simulations together with their Λ cold dark matter (ΛCDM) counterparts featuring the same initial random phase realizations. The variables and intervals used to define LG-like objects are referred to as LG model; different models are used throughout this work and adapted to study their dynamical and kinematic properties. The aim is to determine how well the observed LG dynamics can be reproduced within cosmological theories beyond GR, We compute kinematic properties of samples drawn from alternative theories and ΛCDM and compare them to actual observations of the LG mass, velocity and position. As a consequence of the additional pull, pairwise tangential and radial velocities are enhanced in modified gravity and coupled dark energy with respect to ΛCDM inducing significant changes to the total angular momentum and energy of the LG. For example, in models such as f(R) and the symmetron this increase can be as large as 60 per cent, peaking well outside of the 95 per cent confidence region allowed by the data. This shows how simple considerations about the LG dynamics can lead to clear small-scale observational signatures for alternative scenarios, without the need of expensive high-resolution simulations.
NASA Technical Reports Server (NTRS)
Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi
2010-01-01
The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.
Simulations of Prebiotic Chemistry under Post-Impact Conditions on Titan.
Turse, Carol; Leitner, Johannes; Firneis, Maria; Schulze-Makuch, Dirk
2013-12-17
The problem of how life began can be considered as a matter of basic chemistry. How did the molecules of life arise from non-biological chemistry? Stanley Miller's famous experiment in 1953, in which he produced amino acids under simulated early Earth conditions, was a huge leap forward in our understanding of this problem. Our research first simulated early Earth conditions based on Miller's experiment and we then repeated the experiment using Titan post-impact conditions. We simulated conditions that could have existed on Titan after an asteroid strike. Specifically, we simulated conditions after a potential strike in the subpolar regions of Titan that exhibit vast methane-ethane lakes. If the asteroid or comet was of sufficient size, it would also puncture the icy crust and bring up some of the subsurface liquid ammonia-water mixture. Since, O'Brian, Lorenz and Lunine showed that a liquid water-ammonia body could exist between about 102-104 years on Titan after an asteroid impact we modified our experimental conditions to include an ammonia-water mixture in the reaction medium. Here we report on the resulting amino acids found using the Titan post-impact conditions in a classical Miller experimental reaction set-up and how they differ from the simulated early Earth conditions.
Effect of microgravity & space radiation on microbes.
Senatore, Giuliana; Mastroleo, Felice; Leys, Natalie; Mauriello, Gianluigi
2018-06-01
One of the new challenges facing humanity is to reach increasingly further distant space targets. It is therefore of upmost importance to understand the behavior of microorganisms that will unavoidably reach the space environment together with the human body and equipment. Indeed, microorganisms could activate their stress defense mechanisms, modifying properties related to human pathogenesis. The host-microbe interactions, in fact, could be substantially affected under spaceflight conditions and the study of microorganisms' growth and activity is necessary for predicting these behaviors and assessing precautionary measures during spaceflight. This review gives an overview of the effects of microgravity and space radiation on microorganisms both in real and simulated conditions.
Simulating Regoliths in a Microgravity Environment
NASA Astrophysics Data System (ADS)
Murdoch, N.; Rozitis, B.; Green, S. F.; Michel, P.; Losert, W.; de Lophem, T. L.
2011-10-01
The dynamics of granular materials are involved in the evolution of solid planets and small bodies in our Solar System, whose surfaces are generally covered with regolith. An understanding of granular dynamics appears also to be critical for the design and/or operations of landers, sampling devices and rovers to be included in space missions. The AstEx experiment uses a microgravity modified Taylor-Couette shear cell to investigate granular motion caused by shear and shear reversal forces under the microgravity conditions of parabolic flight. The results will lead to a greater understanding of the mechanical response of granular materials subject to external forces in varying gravitational environments.
NASA Technical Reports Server (NTRS)
Maglieri, Domenic J.; Sothcott, Victor E.; Keefer, Thomas N., Jr.
1993-01-01
A study was performed to determine the feasibility of establishing if a 'shaped' sonic boom signature, experimentally shown in wind tunnel models out to about 10 body lengths, will persist out to representative flight conditions of 200 to 300 body lengths. The study focuses on the use of a relatively large supersonic remotely-piloted and recoverable vehicle. Other simulation methods that may accomplish the objective are also addressed and include the use of nonrecoverable target drones, missiles, full-scale drones, very large wind tunnels, ballistic facilities, whirling-arm techniques, rocket sled tracks, and airplane nose probes. In addition, this report will also present a background on the origin of the feasibility study including a brief review of the equivalent body concept, a listing of the basic sonic boom signature characteristics and requirements, identification of candidate vehicles in terms of desirable features/availability, and vehicle characteristics including geometries, area distributions, and resulting sonic boom signatures. A program is developed that includes wind tunnel sonic boom and force models and tests for both a basic and modified vehicles and full-scale flight tests.
Pressure-based high-order TVD methodology for dynamic stall control
NASA Astrophysics Data System (ADS)
Yang, H. Q.; Przekwas, A. J.
1992-01-01
The quantitative prediction of the dynamics of separating unsteady flows, such as dynamic stall, is of crucial importance. This six-month SBIR Phase 1 study has developed several new pressure-based methodologies for solving 3D Navier-Stokes equations in both stationary and moving (body-comforting) coordinates. The present pressure-based algorithm is equally efficient for low speed incompressible flows and high speed compressible flows. The discretization of convective terms by the presently developed high-order TVD schemes requires no artificial dissipation and can properly resolve the concentrated vortices in the wing-body with minimum numerical diffusion. It is demonstrated that the proposed Newton's iteration technique not only increases the convergence rate but also strongly couples the iteration between pressure and velocities. The proposed hyperbolization of the pressure correction equation is shown to increase the solver's efficiency. The above proposed methodologies were implemented in an existing CFD code, REFLEQS. The modified code was used to simulate both static and dynamic stalls on two- and three-dimensional wing-body configurations. Three-dimensional effect and flow physics are discussed.
Pesticide trapping efficiency of a modified backwater wetland using a simulated runoff event
USDA-ARS?s Scientific Manuscript database
This study examined the trapping efficiency of a modified backwater wetland amended with a mixture of three pesticides, atrazine, metolachlor, and fipronil, using a simulated runoff event. The 700 m long, 25 m wide wetland, located along the Coldwater River in Tunica County, Mississippi, was modifie...
A new approach to characterize the effect of fabric deformation on thermal protective performance
NASA Astrophysics Data System (ADS)
Li, Jun; Li, Xiaohui; Lu, Yehu; Wang, Yunyi
2012-04-01
It is very important to evaluate thermal protective performance (TPP) in laboratory-simulated fire scenes as accurately as possible. For this paper, to thoroughly understand the effect of fabric deformation on basic physical properties and TPP of flame-retardant fabrics exposed to flash fire, a new modified TPP testing apparatus was developed. Different extensions were employed to simulate the various extensions displayed during different body motions. The tests were also carried out with different air gaps. The results showed a significant decrease in air permeability after deformation. However, the change of thickness was slight. The fabric deformation had a complicated effect on thermal protection with different air gaps. The change of TPP depended on the balance between the surface contact area and the thermal insulation. The newly developed testing apparatus could be well employed to evaluate the effect of deformation on TPP of flame-resistant fabrics.
Velocity bias in the distribution of dark matter halos
NASA Astrophysics Data System (ADS)
Baldauf, Tobias; Desjacques, Vincent; Seljak, Uroš
2015-12-01
The standard formalism for the coevolution of halos and dark matter predicts that any initial halo velocity bias rapidly decays to zero. We argue that, when the purpose is to compute statistics like power spectra etc., the coupling in the momentum conservation equation for the biased tracers must be modified. Our new formulation predicts the constancy in time of any statistical halo velocity bias present in the initial conditions, in agreement with peak theory. We test this prediction by studying the evolution of a conserved halo population in N -body simulations. We establish that the initial simulated halo density and velocity statistics show distinct features of the peak model and, thus, deviate from the simple local Lagrangian bias. We demonstrate, for the first time, that the time evolution of their velocity is in tension with the rapid decay expected in the standard approach.
Computational strategies in the dynamic simulation of constrained flexible MBS
NASA Technical Reports Server (NTRS)
Amirouche, F. M. L.; Xie, M.
1993-01-01
This research focuses on the computational dynamics of flexible constrained multibody systems. At first a recursive mapping formulation of the kinematical expressions in a minimum dimension as well as the matrix representation of the equations of motion are presented. The method employs Kane's equation, FEM, and concepts of continuum mechanics. The generalized active forces are extended to include the effects of high temperature conditions, such as creep, thermal stress, and elastic-plastic deformation. The time variant constraint relations for rolling/contact conditions between two flexible bodies are also studied. The constraints for validation of MBS simulation of gear meshing contact using a modified Timoshenko beam theory are also presented. The last part deals with minimization of vibration/deformation of the elastic beam in multibody systems making use of time variant boundary conditions. The above methodologies and computational procedures developed are being implemented in a program called DYAMUS.
Alizadeh-Rahrovi, Joulia; Shayesteh, Alireza; Ebrahim-Habibi, Azadeh
2015-09-01
Glycoproteins are formed as the result of enzymatic glycosylation or chemical glycation in the body, and produced in vitro in industrial processes. The covalently attached carbohydrate molecule(s) confer new properties to the protein, including modified stability. In the present study, the structural stability of a glycoprotein form of myoglobin, bearing a glucose unit in the N-terminus, has been compared with its native form by the use of molecular dynamics simulation. Both structures were subjected to temperatures of 300 and 500 K in an aqueous environment for 10 ns. Changes in secondary structures and RMSD were then assessed. An overall higher stability was detected for glycomyoglobin, for which the most stable segments/residues were highlighted and compared with the native form. The simple addition of a covalently bound glucose is suggested to exert its stabilizing effect via increased contacts with surrounding water molecules, as well as a different pattern of interactions with neighbor residues.
FASTPM: a new scheme for fast simulations of dark matter and haloes
NASA Astrophysics Data System (ADS)
Feng, Yu; Chu, Man-Yat; Seljak, Uroš; McDonald, Patrick
2016-12-01
We introduce FASTPM, a highly scalable approximated particle mesh (PM) N-body solver, which implements the PM scheme enforcing correct linear displacement (1LPT) evolution via modified kick and drift factors. Employing a two-dimensional domain decomposing scheme, FASTPM scales extremely well with a very large number of CPUs. In contrast to Comoving-Lagrangian (COLA) approach, we do not require to split the force or track separately the 2LPT solution, reducing the code complexity and memory requirements. We compare FASTPM with different number of steps (Ns) and force resolution factor (B) against three benchmarks: halo mass function from friends-of-friends halo finder; halo and dark matter power spectrum; and cross-correlation coefficient (or stochasticity), relative to a high-resolution TREEPM simulation. We show that the modified time stepping scheme reduces the halo stochasticity when compared to COLA with the same number of steps and force resolution. While increasing Ns and B improves the transfer function and cross-correlation coefficient, for many applications FASTPM achieves sufficient accuracy at low Ns and B. For example, Ns = 10 and B = 2 simulation provides a substantial saving (a factor of 10) of computing time relative to Ns = 40, B = 3 simulation, yet the halo benchmarks are very similar at z = 0. We find that for abundance matched haloes the stochasticity remains low even for Ns = 5. FASTPM compares well against less expensive schemes, being only 7 (4) times more expensive than 2LPT initial condition generator for Ns = 10 (Ns = 5). Some of the applications where FASTPM can be useful are generating a large number of mocks, producing non-linear statistics where one varies a large number of nuisance or cosmological parameters, or serving as part of an initial conditions solver.
Fang, Pan; Hou, Yongjun; Nan, Yanghai
2015-01-01
A new mechanism is proposed to implement synchronization of the two unbalanced rotors in a vibration system, which consists of a double vibro-body, two induction motors and spring foundations. The coupling relationship between the vibro-bodies is ascertained with the Laplace transformation method for the dynamics equation of the system obtained with the Lagrange's equation. An analytical approach, the average method of modified small parameters, is employed to study the synchronization characteristics between the two unbalanced rotors, which is converted into that of existence and the stability of zero solutions for the non-dimensional differential equations of the angular velocity disturbance parameters. By assuming the disturbance parameters that infinitely approach to zero, the synchronization condition for the two rotors is obtained. It indicated that the absolute value of the residual torque between the two motors should be equal to or less than the maximum of their coupling torques. Meanwhile, the stability criterion of synchronization is derived with the Routh-Hurwitz method, and the region of the stable phase difference is confirmed. At last, computer simulations are preformed to verify the correctness of the approximate solution of the theoretical computation for the stable phase difference between the two unbalanced rotors, and the results of theoretical computation is in accordance with that of computer simulations. To sum up, only the parameters of the vibration system satisfy the synchronization condition and the stability criterion of the synchronization, the two unbalanced rotors can implement the synchronization operation.
Fang, Pan; Hou, Yongjun; Nan, Yanghai
2015-01-01
A new mechanism is proposed to implement synchronization of the two unbalanced rotors in a vibration system, which consists of a double vibro-body, two induction motors and spring foundations. The coupling relationship between the vibro-bodies is ascertained with the Laplace transformation method for the dynamics equation of the system obtained with the Lagrange’s equation. An analytical approach, the average method of modified small parameters, is employed to study the synchronization characteristics between the two unbalanced rotors, which is converted into that of existence and the stability of zero solutions for the non-dimensional differential equations of the angular velocity disturbance parameters. By assuming the disturbance parameters that infinitely approach to zero, the synchronization condition for the two rotors is obtained. It indicated that the absolute value of the residual torque between the two motors should be equal to or less than the maximum of their coupling torques. Meanwhile, the stability criterion of synchronization is derived with the Routh-Hurwitz method, and the region of the stable phase difference is confirmed. At last, computer simulations are preformed to verify the correctness of the approximate solution of the theoretical computation for the stable phase difference between the two unbalanced rotors, and the results of theoretical computation is in accordance with that of computer simulations. To sum up, only the parameters of the vibration system satisfy the synchronization condition and the stability criterion of the synchronization, the two unbalanced rotors can implement the synchronization operation. PMID:25993472
NASA Astrophysics Data System (ADS)
Chang, Dong Eui; Jiménez, Fernando; Perlmutter, Matthew
2016-12-01
A new method is proposed to numerically integrate a dynamical system on a manifold such that the trajectory stably remains on the manifold and preserves the first integrals of the system. The idea is that given an initial point in the manifold we extend the dynamics from the manifold to its ambient Euclidean space and then modify the dynamics outside the intersection of the manifold and the level sets of the first integrals containing the initial point such that the intersection becomes a unique local attractor of the resultant dynamics. While the modified dynamics theoretically produces the same trajectory as the original dynamics, it yields a numerical trajectory that stably remains on the manifold and preserves the first integrals. The big merit of our method is that the modified dynamics can be integrated with any ordinary numerical integrator such as Euler or Runge-Kutta. We illustrate this method by applying it to three famous problems: the free rigid body, the Kepler problem and a perturbed Kepler problem with rotational symmetry. We also carry out simulation studies to demonstrate the excellence of our method and make comparisons with the standard projection method, a splitting method and Störmer-Verlet schemes.
Unscreening Modified Gravity in the Matter Power Spectrum.
Lombriser, Lucas; Simpson, Fergus; Mead, Alexander
2015-06-26
Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the screened high-density regions in the matter power spectrum, allowing a greater contribution of unscreened low densities, modified gravity models can be more readily discriminated from the concordance cosmology. Moreover, by variation of density thresholds, degeneracies with other effects may be dealt with more adequately. Specializing to chameleon gravity as a worked example for screening in modified gravity, employing N-body simulations of f(R) models and the halo model of chameleon theories, we demonstrate the effectiveness of this method. We find that a percent-level measurement of the clipped power at k<0.3h/Mpc can yield constraints on chameleon models that are more stringent than what is inferred from Solar System tests or distance indicators in unscreened dwarf galaxies. Finally, we verify that our method is also applicable to the Vainshtein mechanism.
Two-body and three-body wear of glass ionomer cements.
Kunzelmann, K H; Bürkle, V; Bauer, C
2003-11-01
Glass ionomer cements (GIC) have been modified in an attempt to improve their mechanical properties. The objective of the present paper was to compare the two-body and three-body wear of four modified GIC. The tested materials were Fuji IX (GC Corporation), Hi-Fi (Shofu) and Ketac Molar Aplicap (3M/ESPE). The cermet cement Ketac Silver Maxicap (3M/ESPE) was used as reference material. Two-body wear tests were carried out in the computer controlled 'artificial mouth' of the Munich Dental School, three-body wear was tested with the ACTA wear machine. The resulting average two-body wear rates (in microm) were: Fuji IX 327 (SD +/- 82) < Ketac Molar 379 (SD +/- 94) < Hi-Fi 376 (SD +/- 90) < Ketac silver 449 (SD +/- 127). The differences between the materials were significant (P < 0.05, ANOVA, modified LSD-test) with the exception of Ketac Molar and Hi-Fi. The average three-body wear rates (in microm) were: Hi-Fi 30 (SD +/- 10) < Ketac Molar +/- 42 (SD +/- 12) < Fuji IX 49 (SD +/- 14) < Ketac silver 73 (SD +/- 23). The difference between Ketac silver and the three other materials was significant (P < 0.05, ANOVA, modified LSD-test). No significant difference was calculated between Hi-Fi, Ketac Molar and Fuji IX. As Ketac Molar, Hi-Fi and Fuji IX show better wear resistance compared to Ketac silver both in occlusal-contact and contact-free areas, it may be assumed that the wear resistance of a glass ionomer cement may be improved more by changing the powder: liquid ratio than by incorporating silver particles into the glass powder.
Comparison of dynamical approximation schemes for nonlinear gravitaional clustering
NASA Technical Reports Server (NTRS)
Melott, Adrian L.
1994-01-01
We have recently conducted a controlled comparison of a number of approximations for gravitational clustering against the same n-body simulations. These include ordinary linear perturbation theory (Eulerian), the lognormal approximation, the adhesion approximation, the frozen-flow approximation, the Zel'dovich approximation (describable as first-order Lagrangian perturbation theory), and its second-order generalization. In the last two cases we also created new versions of the approximation by truncation, i.e., by smoothing the initial conditions with various smoothing window shapes and varying their sizes. The primary tool for comparing simulations to approximation schemes was cross-correlation of the evolved mass density fields, testing the extent to which mass was moved to the right place. The Zel'dovich approximation, with initial convolution with a Gaussian e(exp -k(exp 2)/k(sub G(exp 2)), where k(sub G) is adjusted to be just into the nonlinear regime of the evolved model (details in text) worked extremely well. Its second-order generalization worked slightly better. We recommend either n-body simulations or our modified versions of the Zel'dovich approximation, depending upon the purpose. The theoretical implication is that pancaking is implicit in all cosmological gravitational clustering, at least from Gaussian initial conditions, even when subcondensations are present. This in turn provides a natural explanation for the presence of sheets and filaments in the observed galaxy distribution. Use of the approximation scheme can permit extremely rapid generation of large numbers of realizations of model universes with good accuracy down to galaxy group mass scales.
Episodic foresight and anxiety: Proximate and ultimate perspectives.
Miloyan, Beyon; Bulley, Adam; Suddendorf, Thomas
2016-03-01
In this paper, we examine the relationship between episodic foresight and anxiety from an evolutionary perspective, proposing that together they confer an advantage for modifying present moment decision-making and behaviour in the light of potential future threats to fitness. We review the body of literature on the role of episodic foresight in anxiety, from both proximate and ultimate perspectives. We propose that anxious feelings associated with episodic simulation of possible threat-related future events serve to imbue these simulations with motivational currency. Episodic and semantic details of a future threat may be insufficient for motivating its avoidance, but anxiety associated with a simulation can provoke adaptive threat management. As such, we detail how anxiety triggered by a self-generated, threat-related future simulation prepares the individual to manage that threat (in terms of its likelihood and/or consequences) over greater temporal distances than observed in other animals. We then outline how anxiety subtypes may represent specific mechanisms for predicting and managing particular classes of fitness threats. This approach offers an inroad for understanding the nature of characteristic future thinking patterns in anxiety disorders and serves to illustrate the adaptive function of the mechanism from which clinical anxiety deviates. © 2015 The British Psychological Society.
NASA Technical Reports Server (NTRS)
Raiszadeh, Behzad; Queen, Eric M.; Hotchko, Nathaniel J.
2009-01-01
A capability to simulate trajectories of multiple interacting rigid bodies has been developed, tested and validated. This capability uses the Program to Optimize Simulated Trajectories II (POST 2). The standard version of POST 2 allows trajectory simulation of multiple bodies without force interaction. In the current implementation, the force interaction between the parachute and the suspended bodies has been modeled using flexible lines, allowing accurate trajectory simulation of the individual bodies in flight. The POST 2 multibody capability is intended to be general purpose and applicable to any parachute entry trajectory simulation. This research paper explains the motivation for multibody parachute simulation, discusses implementation methods, and presents validation of this capability.
The Modified Dynamics is Conducive to Galactic Warp Formation
NASA Astrophysics Data System (ADS)
Brada, Rafael; Milgrom, Mordehai
2000-03-01
There is an effect in the modified dynamics that is conducive to the formation of warps. Because of the nonlinearity of the theory, the internal dynamics of a galaxy is affected by a perturber over and above possible tidal effects. For example, a relatively distant and light companion or the mean influence of a parent cluster, with negligible tidal effects, could still produce a significant warp in the outer part of a galactic disk. We present results of numerical calculations for simplified models that show, for instance, that a satellite with the (baryonic) mass and distance of the Magellanic Clouds can distort the axisymmetric field of the Milky Way enough to produce a warp of the magnitude (and position) observed. Details of the warp geometry remain to be explained; we use a static configuration that can produce only warps with a straight line of nodes. In more realistic simulations, one must reckon with the motion of the perturbing body, which sometimes occurs on timescales not much longer than the response time of the disk.
NASA Astrophysics Data System (ADS)
Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; He, Kun; Yuan, Y. F.; Ma, Xiao-Ni; Li, Ying
2014-02-01
Sandblasting is one of the most effective methods to modify a metal surface and improve its properties for application. Micro-arc oxidation (MAO) could produce a ceramic coating on a dental implant, facilitating cellular differentiation and osseocomposite on it. This study aims to deposit bioceramic Ca- and P-containing coatings on sandblasted commercially pure titanium by an optimum composite technique to improve the bioactive performance. The effect of sandblasting intensity on microstructures and properties of the implant coatings is examined, and the modified surfaces are characterized in terms of their topography, phase, chemical composition, mechanical properties and hydroxyapatite (HA)-inducing ability. The results show that a moderate sandblasting micromachines the substrate in favorable combination of rough and residual stresses; its MAO coating deposits nano-hydroxyapatite after immersion in simulated body fluid (SBF) for 5 days exhibiting better bioactivity. The further improvement of the implant surface performance is attributed to an optimized composite technique.
NASA Astrophysics Data System (ADS)
Zhou, Shuai; Huang, Danian
2015-11-01
We have developed a new method for the interpretation of gravity tensor data based on the generalized Tilt-depth method. Cooper (2011, 2012) extended the magnetic Tilt-depth method to gravity data. We take the gradient-ratio method of Cooper (2011, 2012) and modify it so that the source type does not need to be specified a priori. We develop the new method by generalizing the Tilt-depth method for depth estimation for different types of source bodies. The new technique uses only the three vertical tensor components of the full gravity tensor data observed or calculated at different height plane to estimate the depth of the buried bodies without a priori specification of their structural index. For severely noise-corrupted data, our method utilizes different upward continuation height data, which can effectively reduce the influence of noise. Theoretical simulations of the gravity source model with and without noise illustrate the ability of the method to provide source depth information. Additionally, the simulations demonstrate that the new method is simple, computationally fast and accurate. Finally, we apply the method using the gravity data acquired over the Humble Salt Dome in the USA as an example. The results show a good correspondence to the previous drilling and seismic interpretation results.
Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou
2012-10-09
Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz-5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication.
Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou
2012-01-01
Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz–5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication. PMID:23202010
Modified social force model based on information transmission toward crowd evacuation simulation
NASA Astrophysics Data System (ADS)
Han, Yanbin; Liu, Hong
2017-03-01
In this paper, the information transmission mechanism is introduced into the social force model to simulate pedestrian behavior in an emergency, especially when most pedestrians are unfamiliar with the evacuation environment. This modified model includes a collision avoidance strategy and an information transmission model that considers information loss. The former is used to avoid collision among pedestrians in a simulation, whereas the latter mainly describes how pedestrians obtain and choose directions appropriate to them. Simulation results show that pedestrians can obtain the correct moving direction through information transmission mechanism and that the modified model can simulate actual pedestrian behavior during an emergency evacuation. Moreover, we have drawn four conclusions to improve evacuation based on the simulation results; and these conclusions greatly contribute in optimizing a number of efficient emergency evacuation schemes for large public places.
Mahjoubi, Hesameddin; Kinsella, Joseph M; Murshed, Monzur; Cerruti, Marta
2014-07-09
Scaffolds made with synthetic polymers such as polyesters are commonly used in bone tissue engineering. However, their hydrophobicity and the lack of specific functionalities make their surface not ideal for cell adhesion and growth. Surface modification of these materials is thus crucial to enhance the scaffold's integration in the body. Different surface modification techniques have been developed to improve scaffold biocompatibility. Here we show that diazonium chemistry can be used to modify the outer and inner surfaces of three-dimensional poly(D,L-lactic acid) (PDLLA) scaffolds with phosphonate groups, using a simple two-step method. By changing reaction time and impregnation procedure, we were able to tune the concentration of phosphonate groups present on the scaffolds, without degrading the PDLLA matrix. To test the effectiveness of this modification, we immersed the scaffolds in simulated body fluid, and characterized them with scanning electron microscopy, X-ray photoelectron spectroscopy, Raman, and infrared spectroscopy. Our results showed that a layer of hydroxyapatite particles was formed on all scaffolds after 2 and 4 weeks of immersion; however, the precipitation was faster and in larger amounts on the phosphonate-modified than on the bare PDLLA scaffolds. Both osteogenic MC3T3-E1 and chondrogenic ATDC5 cell lines showed increased cell viability/metabolic activity when grown on a phosphonated PDLLA surface in comparison to a control PDLLA surface. Also, more calcium-containing minerals were deposited by cultures grown on phosphonated PDLLA, thus showing the pro-mineralization properties of the proposed modification. This work introduces diazonium chemistry as a simple and biocompatible technique to modify scaffold surfaces, allowing to covalently and homogeneously bind a number of functional groups without degrading the scaffold's polymeric matrix.
Computational Investigations on the Aerodynamics of a Generic Car Model in Proximity to a Side Wall
NASA Astrophysics Data System (ADS)
Mallapragada, Srivatsa
A moving road vehicle is subjected to many fluid interferences caused by a number of external agents apart from the vehicle itself. Vehicles moving in proximity to a side wall is an interesting aspect that has been little investigated in the literature. This is of great interest in motorsports, more specifically in NASCAR racing. The aim of this thesis is to develop a Computational Fluid Dynamics (CFD) model that can simulate the motion of a race car moving close to a side wall with an objective of understanding the influence of this side barrier on the overall aerodynamic characteristics of the vehicle, like the force and moment coefficients. Additionally, flow visualization tools are used to gain insights into the flow field and to explain the causes of the observed aerodynamic characteristics of the vehicle. This is accomplished by using a generic car model, a 25-degree slant angle Ahmed Body, in proximity to a side wall in a virtual wind tunnel where the vehicle body is allowed to move at constant velocity. This methodology is different from the traditional CFD approach where the air is blown over a stationary vehicle. The simulation process used in this thesis requires the use of a recently developed meshing methodology called the Overset mesh. All simulations were run using a commercial finite volume CFD code called StarCCM+ where the Unsteady Reynolds Averaged Navier-Stokes URANS fluid flow solver was used to model turbulence. However, the existing literature suggests that no URANS model can correctly predict the flow field around a 25-degree slant Ahmed body model; all models under-predict turbulence in the initial separated shear layer and over-predict the separation region. Subsequently, the first phase of this thesis involved the determination of a modeling methodology that can accurately predict the flow-field over a 25-degree Ahmed body. Two two-equation eddy-viscosity turbulence models, the AKN and SST preferred by many researchers for CFD simulations of massively separated flows, were tested. It turned out that only the latter with modified model coefficients was capable of reproducing the experimental results with a reasonable accuracy. Compared to the eddy viscosity CFD simulations of an isolated 25-degree slant angle Ahmed body seen in existing literature, the results presented in this thesis show significantly better correlations with experiments. The wall proximity studies show a strong influence of the presence of the wall on the overall aerodynamic characteristics of the vehicle body. When compared with the experimental studies, although both show similar trends, however, there exists a significant difference between the experimental and CFD predicted results which tend to worsen as one approaches the wall. These differences can be attributed to fact that the CFD emulation of the flow around the side-wall is more realistic compared to the experimental implementation.
Simulation and Analysis of AUTODIN 2 Network Design
1980-12-01
BOtfsiriMrtrvooeeiriMrir. «4v4«4«4«4«49> eN >KKfw«p’«e«r Hw4iMMivjfsiMe0«4ee«4c*ec» oeeirMTirus^eoeireee eeeiMririMraeoireo’ KK.«e^rv<M(vi#.r »»»»o »o K N. K...responsive. Thus network configurations and conditions can be tested before hardware is modified. However, a body of basic knowledge is required...LOmwOLOoooocomLO • to LO • en m CO - H • • rH • • • OOOOOOCOd-OOOOOOCOCOd- LOLOLOLOOOOOOOtOLO • LO LO .000000 rH
"Plug-and-Play" potentials: Investigating quantum effects in (H2)2-Li+-benzene
NASA Astrophysics Data System (ADS)
D'Arcy, Jordan H.; Kolmann, Stephen J.; Jordan, Meredith J. T.
2015-08-01
Quantum and anharmonic effects are investigated in (H2)2-Li+-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials, using rigid-body diffusion Monte Carlo (RBDMC) simulations. The potential-energy surface (PES) is calculated as a modified Shepard interpolation of M05-2X/6-311+G(2df,p) electronic structure data. The RBDMC simulations yield zero-point energies (ZPE) and probability density histograms that describe the ground-state nuclear wavefunction. Binding a second H2 molecule to the H2-Li+-benzene complex increases the ZPE of the system by 5.6 kJ mol-1 to 17.6 kJ mol-1. This ZPE is 42% of the total electronic binding energy of (H2)2-Li+-benzene and cannot be neglected. Our best estimate of the 0 K binding enthalpy of the second H2 to H2-Li+-benzene is 7.7 kJ mol-1, compared to 12.4 kJ mol-1 for the first H2 molecule. Anharmonicity is found to be even more important when a second (and subsequent) H2 molecule is adsorbed; use of harmonic ZPEs results in significant error in the 0 K binding enthalpy. Probability density histograms reveal that the two H2 molecules are found at larger distance from the Li+ ion and are more confined in the θ coordinate than in H2-Li+-benzene. They also show that both H2 molecules are delocalized in the azimuthal coordinate, ϕ. That is, adding a second H2 molecule is insufficient to localize the wavefunction in ϕ. Two fragment-based (H2)2-Li+-benzene PESs are developed. These use a modified Shepard interpolation for the Li+-benzene and H2-Li+-benzene fragments, and either modified Shepard interpolation or a cubic spline to model the H2-H2 interaction. Because of the neglect of three-body H2, H2, Li+ terms, both fragment PESs lead to overbinding of the second H2 molecule by 1.5 kJ mol-1. Probability density histograms, however, indicate that the wavefunctions for the two H2 molecules are effectively identical on the "full" and fragment PESs. This suggests that the 1.5 kJ mol-1 error is systematic over the regions of configuration space explored by our simulations. Notwithstanding this, modified Shepard interpolation of the weak H2-H2 interaction is problematic and we obtain more accurate results, at considerably lower computational cost, using a cubic spline interpolation. Indeed, the ZPE of the fragment-with-spline PES is identical, within error, to the ZPE of the full PES. This fragmentation scheme therefore provides an accurate and inexpensive method to study higher hydrogen loading in this and similar systems.
"Plug-and-Play" potentials: Investigating quantum effects in (H2)2-Li(+)-benzene.
D'Arcy, Jordan H; Kolmann, Stephen J; Jordan, Meredith J T
2015-08-21
Quantum and anharmonic effects are investigated in (H2)2-Li(+)-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials, using rigid-body diffusion Monte Carlo (RBDMC) simulations. The potential-energy surface (PES) is calculated as a modified Shepard interpolation of M05-2X/6-311+G(2df,p) electronic structure data. The RBDMC simulations yield zero-point energies (ZPE) and probability density histograms that describe the ground-state nuclear wavefunction. Binding a second H2 molecule to the H2-Li(+)-benzene complex increases the ZPE of the system by 5.6 kJ mol(-1) to 17.6 kJ mol(-1). This ZPE is 42% of the total electronic binding energy of (H2)2-Li(+)-benzene and cannot be neglected. Our best estimate of the 0 K binding enthalpy of the second H2 to H2-Li(+)-benzene is 7.7 kJ mol(-1), compared to 12.4 kJ mol(-1) for the first H2 molecule. Anharmonicity is found to be even more important when a second (and subsequent) H2 molecule is adsorbed; use of harmonic ZPEs results in significant error in the 0 K binding enthalpy. Probability density histograms reveal that the two H2 molecules are found at larger distance from the Li(+) ion and are more confined in the θ coordinate than in H2-Li(+)-benzene. They also show that both H2 molecules are delocalized in the azimuthal coordinate, ϕ. That is, adding a second H2 molecule is insufficient to localize the wavefunction in ϕ. Two fragment-based (H2)2-Li(+)-benzene PESs are developed. These use a modified Shepard interpolation for the Li(+)-benzene and H2-Li(+)-benzene fragments, and either modified Shepard interpolation or a cubic spline to model the H2-H2 interaction. Because of the neglect of three-body H2, H2, Li(+) terms, both fragment PESs lead to overbinding of the second H2 molecule by 1.5 kJ mol(-1). Probability density histograms, however, indicate that the wavefunctions for the two H2 molecules are effectively identical on the "full" and fragment PESs. This suggests that the 1.5 kJ mol(-1) error is systematic over the regions of configuration space explored by our simulations. Notwithstanding this, modified Shepard interpolation of the weak H2-H2 interaction is problematic and we obtain more accurate results, at considerably lower computational cost, using a cubic spline interpolation. Indeed, the ZPE of the fragment-with-spline PES is identical, within error, to the ZPE of the full PES. This fragmentation scheme therefore provides an accurate and inexpensive method to study higher hydrogen loading in this and similar systems.
NASA Technical Reports Server (NTRS)
Raiszadeh, Ben; Queen, Eric M.
2002-01-01
A capability to simulate trajectories Of Multiple interacting rigid bodies has been developed. This capability uses the Program to Optimize Simulated Trajectories II (POST II). Previously, POST II had the ability to simulate multiple bodies without interacting forces. The current implementation is used for the Simulation of parachute trajectories, in which the parachute and suspended bodies can be treated as rigid bodies. An arbitrary set of connecting lines can be included in the model and are treated as massless spring-dampers. This paper discusses details of the connection line modeling and results of several test cases used to validate the capability.
NASA Astrophysics Data System (ADS)
Zhang, Chengjian; Ding, Zihao; Xie, Lechun; Zhang, Lai-Chang; Wu, Laizhi; Fu, Yuanfei; Wang, Liqiang; Lu, Weijie
2017-11-01
Although Ti-6Al-4V has been widely used in biomaterial field. Compared with other classes of materials, it still encounters some problems such as low surface hardness and relative low biocompatibility. To solve these problems friction stir processing (FSP) was applied to fabricate a nanosized composite layer of TiO2 and Ti-6Al-4V. Uniform distribution of TiO2 particles with some clusters on the surface of alloy can be observed. Due to severe plastic deformation and stirring heat, nanocrystallines and amorphous TiO2 can be observed in stir zone. FSPed samples show significant improvement in surface microhardness and biocompatibility due to its modified structure compared with original sample. In addition, through corrosion behaviors of the samples in simulated body fluid, it is found that FSP can enhance whilst TiO2 reduces the possibility and corrosion rate of material in environment of human body.
[A study on alpha-tricalcium phosphate bone cement carbon fiber-reinforced].
Wu, Wenjin; Yang, Weizhong; Zhou, Dali; Ma, Jiang; Xiao, Bin
2006-06-01
In order to improve the mechanical properties of alpha-tricalcium phosphate (alpha-TCP), we prepared surface-modified carbon fibers (CF) reinforced alpha-TCP composite bone cement. Bone cement was soaked in Ringer's body solution to test its capacity of fast formation of hydroxyapatite crystals and self-solidification. Scan electronic microscope (SEM) observation and compressive strength measurement were taken to analyze the mechanical properties and the micro- morphological structure of CF reinforced alpha-TCP bone cement. The results showed that the bone cement was transferred into hydroxyapatite plates after being soaked in Ringer's simulated body fluid for 5 days. Suitable amount of carbon fibers could well spread in and bond with the matrix of the bone cement. The mechanical properties of the bone cement have been improved by CF reinforcing; the compressive strength reaches 46.7 MPa when the amount of carbon fibers is 0.5% in weight percent, which is 22% higher than that of the non-reinforced alpha-TCP bone cement.
CHAM: a fast algorithm of modelling non-linear matter power spectrum in the sCreened HAlo Model
NASA Astrophysics Data System (ADS)
Hu, Bin; Liu, Xue-Wen; Cai, Rong-Gen
2018-05-01
We present a fast numerical screened halo model algorithm (CHAM, which stands for the sCreened HAlo Model) for modelling non-linear power spectrum for the alternative models to Λ cold dark matter. This method has three obvious advantages. First of all, it is not being restricted to a specific dark energy/modified gravity model. In principle, all of the screened scalar-tensor theories can be applied. Secondly, the least assumptions are made in the calculation. Hence, the physical picture is very easily understandable. Thirdly, it is very predictable and does not rely on the calibration from N-body simulation. As an example, we show the case of the Hu-Sawicki f(R) gravity. In this case, the typical CPU time with the current parallel PYTHON script (eight threads) is roughly within 10 min. The resulting spectra are in a good agreement with N-body data within a few percentage accuracy up to k ˜ 1 h Mpc-1.
Coupling of three-dimensional field and human thermoregulatory models in a crowded enclosure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, H.; Kang, Z.J.; Bong, T.Y.
1999-11-12
Health, comfort, and energy conservation are important factors to consider in the design of a building and its HVAC systems. Advanced tools are required to evaluate parameters regarding airflow, temperature, and humidity ratio in buildings, with the end results being better indoor air quality and thermal environment as well as increased confidence in the performance of buildings. A numerical model coupling the three-dimensional field and human thermoregulatory models is proposed and developed. A high-Re {kappa}-{epsilon} turbulence model is used for the field simulation. A modified 25-mode model of human thermoregulation is adopted to predict human thermal response in physiological parameters,more » such as body temperature and body heat loss. Distributions of air velocity, temperature, and moisture content are demonstrated in a crowded enclosure with mechanical ventilation under two ventilation rates. The results are analyzed and discussed. The coupling model is useful in assisting and verifying ventilation and air-conditioning system designs.« less
Self-organizing plasma behavior in multiple grid IEC fusion devices for propulsion
NASA Astrophysics Data System (ADS)
McGuire, Thomas; Dietrich, Carl; Sedwick, Raymond
2004-11-01
Inertial Electrostatic Confinement, IEC, of charged particles for the purpose of producing fusion energy is a low mass alternative to more traditional magnetic and inertial confinement fusion schemes. Experimental fusion production and energy efficiency in IEC devices to date has been hindered by confinement limitations. Analysis of the major loss mechanisms suggests that the low pressure beam-beam interaction regime holds the most promise for improved efficiency operation. Numerical simulation of multiple grid schemes shows greatly increased confinement times over contemporary single grid designs by electrostatic focusing of the ion beams. An analytical model of this focusing is presented. With the increased confinement, beams self-organize from a uniform condition into bunches that oscillate at the bounce frequency. The bunches from neighboring beams are then observed to synchronize with each other. Analysis of the anisotropic collisional dynamics responsible for the synchronization is presented. The importance of focusing and density on the beam dynamics are examined. Further, this synchronization appears to modify the particle distribution so as to maintain the non-maxwellian, beam-like energy profile within a bunch. The ability of synchronization to modify and counter-act the thermalization process is examined analytically at the 2-body interaction level and as a conglomeration of particles via numerical simulation. Detailed description of the experiment under development at MIT to investigate the synchronization phenomenon is presented.
Effect of short range hydrodynamic on bimodal colloidal gel systems
NASA Astrophysics Data System (ADS)
Boromand, Arman; Jamali, Safa; Maia, Joao
2015-03-01
Colloidal Gels and disordered arrested systems has been studied extensively during the past decades. Although, they have found their place in multiple industries such as cosmetic, food and so on, their physical principals are still far beyond being understood. The interplay between different types of interactions from quantum scale, Van der Waals interaction, to short range interactions, depletion interaction, and long range interactions such as electrostatic double layer makes this systems challenging from simulation point of view. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation of colloidal system with short range attractive force. However, BD is not capable to include multi-body hydrodynamic interaction and MD is limited by the computational resources and is limited to short time and length scales. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal suspensions. Due to the possibility to include and separate short and long ranged-hydrodynamic forces in this method we studied the effect of each of those forces on the final morphology and report one of the controversial question in this field on the effect of hydrodynamics on the cluster formation process on bimodal, soft-hard colloidal mixtures.
Creation and Delphi-method refinement of pediatric disaster triage simulations.
Cicero, Mark X; Brown, Linda; Overly, Frank; Yarzebski, Jorge; Meckler, Garth; Fuchs, Susan; Tomassoni, Anthony; Aghababian, Richard; Chung, Sarita; Garrett, Andrew; Fagbuyi, Daniel; Adelgais, Kathleen; Goldman, Ran; Parker, James; Auerbach, Marc; Riera, Antonio; Cone, David; Baum, Carl R
2014-01-01
There is a need for rigorously designed pediatric disaster triage (PDT) training simulations for paramedics. First, we sought to design three multiple patient incidents for EMS provider training simulations. Our second objective was to determine the appropriate interventions and triage level for each victim in each of the simulations and develop evaluation instruments for each simulation. The final objective was to ensure that each simulation and evaluation tool was free of bias toward any specific PDT strategy. We created mixed-methods disaster simulation scenarios with pediatric victims: a school shooting, a school bus crash, and a multiple-victim house fire. Standardized patients, high-fidelity manikins, and low-fidelity manikins were used to portray the victims. Each simulation had similar acuity of injuries and 10 victims. Examples include children with special health-care needs, gunshot wounds, and smoke inhalation. Checklist-based evaluation tools and behaviorally anchored global assessments of function were created for each simulation. Eight physicians and paramedics from areas with differing PDT strategies were recruited as Subject Matter Experts (SMEs) for a modified Delphi iterative critique of the simulations and evaluation tools. The modified Delphi was managed with an online survey tool. The SMEs provided an expected triage category for each patient. The target for modified Delphi consensus was ≥85%. Using Likert scales and free text, the SMEs assessed the validity of the simulations, including instances of bias toward a specific PDT strategy, clarity of learning objectives, and the correlation of the evaluation tools to the learning objectives and scenarios. After two rounds of the modified Delphi, consensus for expected triage level was >85% for 28 of 30 victims, with the remaining two achieving >85% consensus after three Delphi iterations. To achieve consensus, we amended 11 instances of bias toward a specific PDT strategy and corrected 10 instances of noncorrelation between evaluations and simulation. The modified Delphi process, used to derive novel PDT simulation and evaluation tools, yielded a high degree of consensus among the SMEs, and eliminated biases toward specific PDT strategies in the evaluations. The simulations and evaluation tools may now be tested for reliability and validity as part of a prehospital PDT curriculum.
On the Evolution of Pulsatile Flow Subject to a Transverse Impulse Body Force
NASA Astrophysics Data System (ADS)
di Labbio, Giuseppe; Keshavarz-Motamed, Zahra; Kadem, Lyes
2014-11-01
In the event of an unexpected abrupt traffic stop or car accident, automotive passengers will experience an abrupt body deceleration. This may lead to tearing or dissection of the aortic wall known as Blunt Traumatic Aortic Rupture (BTAR). BTAR is the second leading cause of death in automotive accidents and, although quite frequent, the mechanisms leading to BTAR are still not clearly identified, particularly the contribution of the flow field. As such, this work is intended to provide a fundamental framework for the investigation of the flow contribution to BTAR. In this fundamental study, pulsatile flow in a three-dimensional, straight pipe of circular cross-section is subjected to a unidirectional, transverse, impulse body force applied on a strictly bounded volume of fluid. These models were simulated using the Computational Fluid Dynamics (CFD) software FLUENT. The evolution of fluid field characteristics was investigated during and after the application of the force. The application of the force significantly modified the flow field. The force induces a transverse pressure gradient causing the development of secondary flow structures that dissipate the energy added by the acceleration. Once the force ceases to act, these structures are carried downstream and gradually dissipate their excess energy.
Bing, Zhenshan; Cheng, Long; Chen, Guang; Röhrbein, Florian; Huang, Kai; Knoll, Alois
2017-04-04
Snake-like robots with 3D locomotion ability have significant advantages of adaptive travelling in diverse complex terrain over traditional legged or wheeled mobile robots. Despite numerous developed gaits, these snake-like robots suffer from unsmooth gait transitions by changing the locomotion speed, direction, and body shape, which would potentially cause undesired movement and abnormal torque. Hence, there exists a knowledge gap for snake-like robots to achieve autonomous locomotion. To address this problem, this paper presents the smooth slithering gait transition control based on a lightweight central pattern generator (CPG) model for snake-like robots. First, based on the convergence behavior of the gradient system, a lightweight CPG model with fast computing time was designed and compared with other widely adopted CPG models. Then, by reshaping the body into a more stable geometry, the slithering gait was modified, and studied based on the proposed CPG model, including the gait transition of locomotion speed, moving direction, and body shape. In contrast to sinusoid-based method, extensive simulations and prototype experiments finally demonstrated that smooth slithering gait transition can be effectively achieved using the proposed CPG-based control method without generating undesired locomotion and abnormal torque.
Generalized environmental control and life support system computer program (G1894), phase 3
NASA Technical Reports Server (NTRS)
Mcenulty, R. E.
1978-01-01
The work performed during Phase 3 of the Generalized Environmental Control Life Support System (ECLSS) Computer Program is reported. Phase 3 of this program covered the period from December 1977 to September 1978. The computerized simulation of the Shuttle Orbiter ECLSS was upgraded in the following areas: (1) the payload loop of the Shuttle simulation was completely recoded and checked out; (2) the Shuttle simulation water and freon loop initialization logic was simplified to permit easier program input for the user; (3) the computerized simulation was modified to accept the WASP subroutine, which is a subroutine to evaluate thermal properties of water and freon; (4) the 1108 operating system was upgraded by LEC; (5) the Shuttle simulation was modified to permit failure cases which simulate zero component flow values; and (6) the Shuttle SEPS version was modified and secure files were setup on the 1108 and 1110 systems to permit simulation runs to be made from remote terminals.
Modified blank ammunition injuries.
Ogunc, Gokhan I; Ozer, M Tahir; Coskun, Kagan; Uzar, Ali Ihsan
2009-12-15
Blank firing weapons are designed only for discharging blank ammunition cartridges. Because they are cost-effective, are easily accessible and can be modified to live firearms plus their unclear legal situation in Turkish Law makes them very popular in Turkey. 2004 through 2008, a total of 1115 modified blank weapons were seized in Turkey. Blank firing weapons are easily modified by owners, making them suitable for discharging live firearm ammunition or modified blank ammunitions. Two common methods are used for modification of blank weapons. After the modification, these weapons can discharge the live ammunition. However, due to compositional durability problems with these types of weapons; the main trend is to use the modified blank ammunitions rather than live firearm ammunition fired from modified blank firing weapons. In this study, two types of modified blank weapons and two types of modified blank cartridges were tested on three different target models. Each of the models' shooting side was coated with 1.3+/-2 mm thickness chrome tanned cowhide as a skin simulant. The first model was only coated with skin simulant. The second model was coated with skin simulant and 100% cotton police shirt. The third model was coated with skin simulant and jean denim. After the literature evaluation four high risky anatomic locations (the neck area; the eyes; the thorax area and inguinal area) were pointed out for the steel and lead projectiles are discharged from the modified blank weapons especially in close range (0-50 cm). The target models were designed for these anatomic locations. For the target models six Transparent Ballistic Candle blocks (TCB) were prepared and divided into two test groups. The first group tests were performed with lead projectiles and second group with steel projectile. The shortest penetration depth (lead projectile: 4.358 cm; steel projectile 8.032 cm) was recorded in the skin simulant and jean denim coated block for both groups. In both groups, the longest penetration depth (lead projectile: 6.434 cm; steel projectile 8.608 cm) was recorded in the only skin simulant coated block. And the penetration depth of skin simulant and 100% cotton police shirt coated model was 5.870 cm for lead projectile; 8.440 cm for steel projectile. According to penetration results, national and international legislations and production standards should be re-evaluated in order to prevent the modification of blank weapons and ammunitions. There are three methods for preventing modification of blank weapons: completely closed barrel structure; intersected restrain pieces application; eccentric barrel structure.
Fliszkiewicz, Monika; Giejdasz, Karol; Wasielewski, Oskar; Krishnan, Natraj
2012-12-01
The influence of simulated climate change on body weight and depletion of fat body reserves was studied during diapause in the European solitary bee Osmia rufa L. (Hymenoptera: Megachilidae). Insects (females) were reared and collected from outdoor nests from September to March. One cohort of females was weighed and dissected immediately for analyses, whereas another cohort was subjected to simulated warmer temperature (15°C for 7 d) before analyses. A gradual decline in body mass and fat body content was recorded with declining temperatures from September to January in female bees from natural conditions. Temperature increased gradually from January to March with a further decline in body mass and fat body content. The fat body development index dropped from five in September-October (≈ 89% individuals) to four for the period from November to February (≈ 84% individuals) and further to three in March (95% individuals) before emergence. Simulated warmer winter temperature also resulted in a similar decline in body weight and fat body content; however, body weight and fat body content declined faster. The fat body development index dropped to three in December in the majority of individuals and continued at this level until March just before emergence. Taken together, our data indicate an earlier depletion of fat body reserves under simulated climate change conditions that may impact ovarian development and reproductive fitness in O. rufa.
NASA Astrophysics Data System (ADS)
Scroccaro, Isabella; Mattassi, Giorgio
2014-05-01
The Water Framework Directive 2000/60/EC (WFD) contemplates the classification of water bodies and establishes the quality objectives of water bodies to achieve a good status within 2015. Further, the Italian law which takes in the WFD with Decree n. 152/2006, allows to identify some water bodies as heavily modified (HMWB). The Regional Administration, involved in the setting up of the Water Protection Plan, according with the above mentioned decree and directive, has to establish specific programs to maintain or conform water quality to the requested quality objectives, also for heavily modified water bodies that have to reach the ecological potential. In the north-eastern part of Italy, in the Friuli Venezia Giulia Region, the Marano and Grado Lagoon is the most complex transitional ecosystem in which four water bodies have been temporarily classified as heavily modified. They are identified as FM1, FM2, FM3 and FM4. In particular, FM2 - "Paludo della Carogna" and FM3 - "Barbana" water bodies seem to be characterized by some confinement since they are delimited by a bridge, called "Ponte Belvedere". The preliminary evaluation of the quality status of FM2 and FM3 water bodies is conditioned by the value of one of the quality criteria: the macrophytes. In fact, macrophytes are represented by very few species in these two water bodies. In a preliminary way the overall judgement of FM2 and FM3 water bodies has been indicated by the experts as scarse. This means that a specific programme of measures has to be proposed to improve the quality status of these water bodies in order to reach the ecological potential. In this context modeling may be used as a scientific and technical tool to support the evaluation on FM2 and FM3 water bodies and the effectiveness of specific measures for the achievement of the quality objectives. Numerical simulations of the Marano and Grado lagoon were performed for hydrodynamic circulation, temperature and salinity behavior with the SHYFEM model, a shallow water finite element model developed at ISMAR-CNR in Venice (Ferrarin et al., 2010) and experimental data were used to calibrate the numerical model. In this study the effectiveness of some proposed measures is investigated with the SHYFEM model, trying to solve the problem of the scarse quality evaluation of FM2 and FM3 in the eastern part of the Marano and Grado lagoon. The proposals are: Modification of the bridge "Ponte Belvedere": the bridge, which divides FM2 and FM3 from the western part of the lagoon, has some openings which are not very large. The proposal is to enlarge these openings on the dam to assess if this action might improve the circulation and consequently the water quality. Excavation of a new channel on the bottom of the lagoon: besides the openings on the dam, it is also possible to hypothetically excavate one or more channels; these are preferential ways for the water to pass in and arrive to the areas in which the circulation has to be increased. This proposal seems to be efficient, with good effects on the inner circulation of the eastern lagoon.
Tang, Xueming; Zou, Weizhong; Koenig, Peter H; McConaughy, Shawn D; Weaver, Mike R; Eike, David M; Schmidt, Michael J; Larson, Ronald G
2017-03-23
We link micellar structures to their rheological properties for two surfactant body-wash formulations at various concentrations of salts and perfume raw materials (PRMs) using molecular simulations and micellar-scale modeling, as well as traditional surfactant packing arguments. The two body washes, namely, BW-1EO and BW-3EO, are composed of sodium lauryl ethylene glycol ether sulfate (SLEnS, where n is the average number of ethylene glycol repeat units), cocamidopropyl betaine (CAPB), ACCORD (which is a mixture of six PRMs), and NaCl salt. BW-3EO is an SLE3S-based body wash, whereas BW-1EO is an SLE1S-based body wash. Additional PRMs are also added into the body washes. The effects of temperature, salt, and added PRMs on micellar lengths, breakage times, end-cap free energies, and other properties are obtained from fits of the rheological data to predictions of the "Pointer Algorithm" [ Zou , W. ; Larson , R.G. J. Rheol. 2014 , 58 , 1 - 41 ], which is a simulation method based on the Cates model of micellar dynamics. Changes in these micellar properties are interpreted using the Israelachvili surfactant packing argument. From coarse-grained molecular simulations, we infer how salt modifies the micellar properties by changing the packing between the surfactant head groups, with the micellar radius remaining nearly constant. PRMs do so by partitioning to different locations within the micelles according to their octanol/water partition coefficient P OW and chemical structures, adjusting the packing of the head and/or tail groups, and by changing the micelle radius, in the case of a large hydrophobic PRM. We find that relatively hydrophilic PRMs with log P OW < 2 partition primarily to the head group region and shrink micellar length, decreasing viscosity substantially, whereas more hydrophobic PRMs, with log P OW between 2 and 4, mix with the hydrophobic surfactant tails within the micellar core and slightly enhance the viscosity and micelle length, which is consistent with the packing argument. Large and very hydrophobic PRMs, with log P OW > 4, are isolated deep inside the micelle, separating from the tails and swelling the radius of the micelle, leading to shorter micelles and much lower viscosities, leading eventually to swollen-droplet micelles.
Collisionless stellar hydrodynamics as an efficient alternative to N-body methods
NASA Astrophysics Data System (ADS)
Mitchell, Nigel L.; Vorobyov, Eduard I.; Hensler, Gerhard
2013-01-01
The dominant constituents of the Universe's matter are believed to be collisionless in nature and thus their modelling in any self-consistent simulation is extremely important. For simulations that deal only with dark matter or stellar systems, the conventional N-body technique is fast, memory efficient and relatively simple to implement. However when extending simulations to include the effects of gas physics, mesh codes are at a distinct disadvantage compared to Smooth Particle Hydrodynamics (SPH) codes. Whereas implementing the N-body approach into SPH codes is fairly trivial, the particle-mesh technique used in mesh codes to couple collisionless stars and dark matter to the gas on the mesh has a series of significant scientific and technical limitations. These include spurious entropy generation resulting from discreteness effects, poor load balancing and increased communication overhead which spoil the excellent scaling in massively parallel grid codes. In this paper we propose the use of the collisionless Boltzmann moment equations as a means to model the collisionless material as a fluid on the mesh, implementing it into the massively parallel FLASH Adaptive Mesh Refinement (AMR) code. This approach which we term `collisionless stellar hydrodynamics' enables us to do away with the particle-mesh approach and since the parallelization scheme is identical to that used for the hydrodynamics, it preserves the excellent scaling of the FLASH code already demonstrated on peta-flop machines. We find that the classic hydrodynamic equations and the Boltzmann moment equations can be reconciled under specific conditions, allowing us to generate analytic solutions for collisionless systems using conventional test problems. We confirm the validity of our approach using a suite of demanding test problems, including the use of a modified Sod shock test. By deriving the relevant eigenvalues and eigenvectors of the Boltzmann moment equations, we are able to use high order accurate characteristic tracing methods with Riemann solvers to generate numerical solutions which show excellent agreement with our analytic solutions. We conclude by demonstrating the ability of our code to model complex phenomena by simulating the evolution of a two-armed spiral galaxy whose properties agree with those predicted by the swing amplification theory.
Sánchez-Montero, Rocío; Camacho-Gómez, Carlos; López-Espí, Pablo-Luís; Salcedo-Sanz, Sancho
2018-06-21
This paper proposes a low-profile textile-modified meander line Inverted-F Antenna (IFA) with variable width and spacing meanders, for Industrial Scientific Medical (ISM) 2.4-GHz Wireless Body Area Networks (WBAN), optimized with a novel metaheuristic algorithm. Specifically, a metaheuristic known as Coral Reefs Optimization with Substrate Layer (CRO-SL) is used to obtain an optimal antenna for sensor systems, which allows covering properly and resiliently the 2.4⁻2.45-GHz industrial scientific medical bandwidth. Flexible pad foam has been used to make the designed prototype with a 1.1-mm thickness. We have used a version of the algorithm that is able to combine different searching operators within a single population of solutions. This approach is ideal to deal with hard optimization problems, such as the design of the proposed meander line IFA. During the optimization phase with the CRO-SL, the proposed antenna has been simulated using CST Microwave Studio software, linked to the CRO-SL by means of MATLAB implementation and Visual Basic Applications (VBA) code. We fully describe the antenna design process, the adaptation of the CRO-SL approach to this problem and several practical aspects of the optimization and details on the algorithm’s performance. To validate the simulation results, we have constructed and measured two prototypes of the antenna, designed with the proposed algorithm. Several practical aspects such as sensitivity during the antenna manufacturing or the agreement between the simulated and constructed antenna are also detailed in the paper.
Embodied Medicine: Mens Sana in Corpore Virtuale Sano
Riva, Giuseppe; Serino, Silvia; Di Lernia, Daniele; Pavone, Enea Francesco; Dakanalis, Antonios
2017-01-01
Progress in medical science and technology drastically improved physicians’ ability to interact with patient’s physical body. Nevertheless, medicine still addresses the human body from a Hippocratic point of view, considering the organism and its processes just as a matter of mechanics and fluids. However, the interaction between the cognitive neuroscience of bodily self-consciousness (BSC), fundamentally rooted in the integration of multisensory bodily inputs, with virtual reality (VR), haptic technologies and robotics is giving a new meaning to the classic Juvenal’s latin dictum “Mens sana in corpore sano” (a healthy mind in a healthy body). This vision provides the basis for a new research field, “Embodied Medicine”: the use of advanced technologies for altering the experience of being in a body with the goal of improving health and well-being. Up to now, most of the research efforts in the field have been focused upon how external bodily information is processed and integrated. Despite the important results, we believe that existing bodily illusions still need to be improved to enhance their capability to effectively correct pathological dysfunctions. First, they do not follow the suggestions provided by the free-energy and predictive coding approaches. More, they lacked to consider a peculiar feature of the human body, the multisensory integration of internal inputs (interoceptive, proprioceptive and vestibular) that constitute our inner body dimension. So, a future challenge is the integration of simulation/stimulation technologies also able to measure and modulate this internal/inner experience of the body. Finally, we also proposed the concept of “Sonoception” as an extension of this approach. The core idea is to exploit recent technological advances in the acoustic field to use sound and vibrations to modify the internal/inner body experience. PMID:28360849
Embodied Medicine: Mens Sana in Corpore Virtuale Sano.
Riva, Giuseppe; Serino, Silvia; Di Lernia, Daniele; Pavone, Enea Francesco; Dakanalis, Antonios
2017-01-01
Progress in medical science and technology drastically improved physicians' ability to interact with patient's physical body. Nevertheless, medicine still addresses the human body from a Hippocratic point of view, considering the organism and its processes just as a matter of mechanics and fluids. However, the interaction between the cognitive neuroscience of bodily self-consciousness (BSC), fundamentally rooted in the integration of multisensory bodily inputs, with virtual reality (VR), haptic technologies and robotics is giving a new meaning to the classic Juvenal's latin dictum " Mens sana in corpore sano " (a healthy mind in a healthy body). This vision provides the basis for a new research field, "Embodied Medicine": the use of advanced technologies for altering the experience of being in a body with the goal of improving health and well-being. Up to now, most of the research efforts in the field have been focused upon how external bodily information is processed and integrated. Despite the important results, we believe that existing bodily illusions still need to be improved to enhance their capability to effectively correct pathological dysfunctions. First, they do not follow the suggestions provided by the free-energy and predictive coding approaches. More, they lacked to consider a peculiar feature of the human body, the multisensory integration of internal inputs (interoceptive, proprioceptive and vestibular) that constitute our inner body dimension. So, a future challenge is the integration of simulation/stimulation technologies also able to measure and modulate this internal/inner experience of the body. Finally, we also proposed the concept of "Sonoception" as an extension of this approach. The core idea is to exploit recent technological advances in the acoustic field to use sound and vibrations to modify the internal/inner body experience.
NASA Astrophysics Data System (ADS)
Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila
2016-02-01
The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.
NASA Technical Reports Server (NTRS)
Weed, Richard Allen; Sankar, L. N.
1994-01-01
An increasing amount of research activity in computational fluid dynamics has been devoted to the development of efficient algorithms for parallel computing systems. The increasing performance to price ratio of engineering workstations has led to research to development procedures for implementing a parallel computing system composed of distributed workstations. This thesis proposal outlines an ongoing research program to develop efficient strategies for performing three-dimensional flow analysis on distributed computing systems. The PVM parallel programming interface was used to modify an existing three-dimensional flow solver, the TEAM code developed by Lockheed for the Air Force, to function as a parallel flow solver on clusters of workstations. Steady flow solutions were generated for three different wing and body geometries to validate the code and evaluate code performance. The proposed research will extend the parallel code development to determine the most efficient strategies for unsteady flow simulations.
Mean velocities and Reynolds stresses upstream of a simulated wing-fuselage juncture
NASA Technical Reports Server (NTRS)
Mcmahon, H.; Hubbartt, J.; Kubendran, L. R.
1983-01-01
Values of three mean velocity components and six turbulence stresses measured in a turbulent shear layer upstream of a simulated wing-fuselage juncture and immediately downstream of the start of the juncture are presented nd discussed. Two single-sensor hot-wire probes were used in the measurements. The separated region just upstream of the wing contains an area of reversed flow near the fuselage surface where the turbulence level is high. Outside of this area the flow skews as it passes around the body, and in this skewed region the magnitude and distribution of the turbulent normal and shear stresses within the shear layer are modified slightly by the skewing and deceleration of the flow. A short distance downstream of the wing leading edge the secondary flow vortext is tightly rolled up and redistributes both mean flow and turbulence in the juncture. The data acquisition technique employed here allows a hot wire to be used in a reversed flow region to indicate flow direction.
He, Jinsong; Chen, J Paul
2014-05-01
Heavy metals contamination has become a global issue of concern due to their higher toxicities, nature of non-biodegradability, high capabilities in bioaccumulation in human body and food chain, and carcinogenicities to humans. A series of researches demonstrate that biosorption is a promising technology for removal of heavy metals from aqueous solutions. Algae serve as good biosorbents due to their abundance in seawater and fresh water, cost-effectiveness, reusability and high metal sorption capacities. This article provides a comprehensive review of recent findings on performances, applications and chemistry of algae (e.g., brown, green and red algae, modified algae and the derivatives) for sequestration of heavy metals. Biosorption kinetics and equilibrium models are reviewed. The mechanisms for biosorption are presented. Biosorption is a complicated process involving ion-exchange, complexation and coordination. Finally the theoretical simulation tools for biosorption equilibrium and kinetics are presented so that the readers can use them for further studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liquid-Gas-Like Phase Transition in Sand Flow Under Microgravity
NASA Astrophysics Data System (ADS)
Huang, Yu; Zhu, Chongqiang; Xiang, Xiang; Mao, Wuwei
2015-06-01
In previous studies of granular flow, it has been found that gravity plays a compacting role, causing convection and stratification by density. However, there is a lack of research and analysis of the characteristics of different particles' motion under normal gravity contrary to microgravity. In this paper, we conduct model experiments on sand flow using a model test system based on a drop tower under microgravity, within which the characteristics and development processes of granular flow under microgravity are captured by high-speed cameras. The configurations of granular flow are simulated using a modified MPS (moving particle simulation), which is a mesh-free, pure Lagrangian method. Moreover, liquid-gas-like phase transitions in the sand flow under microgravity, including the transitions to "escaped", "jumping", and "scattered" particles are highlighted, and their effects on the weakening of shear resistance, enhancement of fluidization, and changes in particle-wall and particle-particle contact mode are analyzed. This study could help explain the surface geology evolution of small solar bodies and elucidate the nature of granular interaction.
Simulations of Dynamical Friction Including Spatially-Varying Magnetic Fields
NASA Astrophysics Data System (ADS)
Bell, G. I.; Bruhwiler, D. L.; Litvinenko, V. N.; Busby, R.; Abell, D. T.; Messmer, P.; Veitzer, S.; Cary, J. R.
2006-03-01
A proposed luminosity upgrade to the Relativistic Heavy Ion Collider (RHIC) includes a novel electron cooling section, which would use ˜55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions. We consider the dynamical friction force exerted on individual ions due to a relevant electron distribution. The electrons may be focussed by a strong solenoid field, with sensitive dependence on errors, or by a wiggler field. In the rest frame of the relativistic co-propagating electron and ion beams, where the friction force can be simulated for nonrelativistic motion and electrostatic fields, the Lorentz transform of these spatially-varying magnetic fields includes strong, rapidly-varying electric fields. Previous friction force simulations for unmagnetized electrons or error-free solenoids used a 4th-order Hermite algorithm, which is not well-suited for the inclusion of strong, rapidly-varying external fields. We present here a new algorithm for friction force simulations, using an exact two-body collision model to accurately resolve close interactions between electron/ion pairs. This field-free binary-collision model is combined with a modified Boris push, using an operator-splitting approach, to include the effects of external fields. The algorithm has been implemented in the VORPAL code and successfully benchmarked.
Fan, Ming; Thongsri, Tepwitoon; Axe, Lisa; Tyson, Trevor A
2005-06-01
A probabilistic approach was applied in an ecological risk assessment (ERA) to characterize risk and address uncertainty employing Monte Carlo simulations for assessing parameter and risk probabilistic distributions. This simulation tool (ERA) includes a Window's based interface, an interactive and modifiable database management system (DBMS) that addresses a food web at trophic levels, and a comprehensive evaluation of exposure pathways. To illustrate this model, ecological risks from depleted uranium (DU) exposure at the US Army Yuma Proving Ground (YPG) and Aberdeen Proving Ground (APG) were assessed and characterized. Probabilistic distributions showed that at YPG, a reduction in plant root weight is considered likely to occur (98% likelihood) from exposure to DU; for most terrestrial animals, likelihood for adverse reproduction effects ranges from 0.1% to 44%. However, for the lesser long-nosed bat, the effects are expected to occur (>99% likelihood) through the reduction in size and weight of offspring. Based on available DU data for the firing range at APG, DU uptake will not likely affect survival of aquatic plants and animals (<0.1% likelihood). Based on field and laboratory studies conducted at APG and YPG on pocket mice, kangaroo rat, white-throated woodrat, deer, and milfoil, body burden concentrations observed fall into the distributions simulated at both sites.
The edge of galaxy formation - I. Formation and evolution of MW-satellite analogues before accretion
NASA Astrophysics Data System (ADS)
Macciò, Andrea V.; Frings, Jonas; Buck, Tobias; Penzo, Camilla; Dutton, Aaron A.; Blank, Marvin; Obreja, Aura
2017-12-01
The satellites of the Milky Way and Andromeda represent the smallest galaxies we can observe in our Universe. In this series of papers, we aim to shed light on their formation and evolution using cosmological hydrodynamical simulations. In this first paper, we focus on the galaxy properties before accretion, by simulating 27 haloes with masses between 5 × 108 and 1010 M⊙. Out of this set 19 haloes successfully form stars, while 8 remain dark. The simulated galaxies match quite well present day observed scaling relations between stellar mass, size and metallicity, showing that such relations are in place before accretion. Our galaxies show a large variety of star formation histories, from extended star formation periods to single bursts. As in more massive galaxies, large star formation bursts are connected with major mergers events, which greatly contribute to the overall stellar mass build up. The intrinsic stochasticity of mergers induces a large scatter in the stellar mass-halo mass relation, up to two orders of magnitude. Despite the bursty star formation history, on these mass scales baryons are very ineffective in modifying the dark matter profiles, and galaxies with a stellar mass below ≈106 M⊙ retain their cuspy central dark matter distribution, very similar to results from pure N-body simulations.
New clinical staging for pharyngeal surgery in obstructive sleep apnea patients.
Vidigal, Tatiana Aguiar; Haddad, Fernanda Louise Martinho; Cabral, Rafael Ferreira Pacheco; Oliveira, Maria Claudia Soares; Cavalcante, Ricardo Rodrigues; Bittencourt, Lia Rita Azeredo; Tufik, Sergio; Gregório, Luis Carlos
2014-01-01
The success of pharyngeal surgery in the treatment of obstructive sleep apnea syndrome depends on the appropriate selection of patients. To propose a new staging for indication of pharyngeal surgery in obstructive sleep apnea syndrome. A total of 54 patients undergoing extended tonsillectomy were retrospectively included, divided into six stages. Stage I: patients with palatine tonsils grade 3/4 and modified Mallampati index 1/2; stage II: palatine tonsils 3/4 and modified Mallampati index 3/4; stage III: palatine tonsils 1/2 and modified Mallampati index 1/2; stage IV: palatine tonsils 1/2 and modified Mallampati index 3/4; stage V: body mass index ≥40 kg/m(2) with palatine tonsils 3/4 and modified Mallampati index 1, 2, 3, or 4. Stage VI: body mass index ≥40 with palatine tonsils 1/2 and modified Mallampati index 1, 2, 3, or 4. The surgical success rates were 88.9%, 75.0%, 35.7%, 38.5%, and 100.0% in stages I-V. The presence of hypertrophic palatine tonsils was the anatomical factor in common in the most successful stages (I, II, and V), regardless of body mass index. Although the modified Mallampati index classes 3 and 4 reduced the success rate of surgery in patients with hypertrophic tonsils (stage II), the presence of modified Mallampati index classes 1 and 2 did not favor surgical success in patients with normal tonsils (stage III). Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoo, Jin-Hyeong; Murugan, Muthuvel; Wereley, Norman M.
2013-04-01
This study investigates a lumped-parameter human body model which includes lower leg in seated posture within a quarter-car model for blast injury assessment simulation. To simulate the shock acceleration of the vehicle, mine blast analysis was conducted on a generic land vehicle crew compartment (sand box) structure. For the purpose of simulating human body dynamics with non-linear parameters, a physical model of a lumped-parameter human body within a quarter car model was implemented using multi-body dynamic simulation software. For implementing the control scheme, a skyhook algorithm was made to work with the multi-body dynamic model by running a co-simulation with the control scheme software plug-in. The injury criteria and tolerance levels for the biomechanical effects are discussed for each of the identified vulnerable body regions, such as the relative head displacement and the neck bending moment. The desired objective of this analytical model development is to study the performance of adaptive semi-active magnetorheological damper that can be used for vehicle-occupant protection technology enhancements to the seat design in a mine-resistant military vehicle.
NASA Astrophysics Data System (ADS)
Duc-Toan, Nguyen; Tien-Long, Banh; Young-Suk, Kim; Dong-Won, Jung
2011-08-01
In this study, a modified Johnson-Cook (J-C) model and an innovated method to determine (J-C) material parameters are proposed to predict more correctly stress-strain curve for tensile tests in elevated temperatures. A MATLAB tool is used to determine material parameters by fitting a curve to follow Ludwick's hardening law at various elevated temperatures. Those hardening law parameters are then utilized to determine modified (J-C) model material parameters. The modified (J-C) model shows the better prediction compared to the conventional one. As the first verification, an FEM tensile test simulation based on the isotropic hardening model for boron sheet steel at elevated temperatures was carried out via a user-material subroutine, using an explicit finite element code, and compared with the measurements. The temperature decrease of all elements due to the air cooling process was then calculated when considering the modified (J-C) model and coded to VUMAT subroutine for tensile test simulation of cooling process. The modified (J-C) model showed the good agreement between the simulation results and the corresponding experiments. The second investigation was applied for V-bending spring-back prediction of magnesium alloy sheets at elevated temperatures. Here, the combination of proposed J-C model with modified hardening law considering the unusual plastic behaviour for magnesium alloy sheet was adopted for FEM simulation of V-bending spring-back prediction and shown the good comparability with corresponding experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Na; Chen Shuo; Wang Hongtao
2008-10-15
A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO{sub 2} nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum andmore » increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO{sub 2} nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO{sub 2} nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated. - Graphical abstract: A tetracycline hydrochloride molecularly imprinted polymer modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. It showed improved response to simulated solar light and higher adsorption capability for tetracycline hydrochloride, thereby exhibiting increased PEC activity under simulated solar light irradiation. The apparent first-order rate constant was 1.2-fold of that on TiO{sub 2} nanotube array electrode.« less
NASA Astrophysics Data System (ADS)
Green, Tim; Faulkner, Andrew; Rosen, Stuart; Macherey, Olivier
2005-07-01
Standard continuous interleaved sampling processing, and a modified processing strategy designed to enhance temporal cues to voice pitch, were compared on tests of intonation perception, and vowel perception, both in implant users and in acoustic simulations. In standard processing, 400 Hz low-pass envelopes modulated either pulse trains (implant users) or noise carriers (simulations). In the modified strategy, slow-rate envelope modulations, which convey dynamic spectral variation crucial for speech understanding, were extracted by low-pass filtering (32 Hz). In addition, during voiced speech, higher-rate temporal modulation in each channel was provided by 100% amplitude-modulation by a sawtooth-like wave form whose periodicity followed the fundamental frequency (F0) of the input. Channel levels were determined by the product of the lower- and higher-rate modulation components. Both in acoustic simulations and in implant users, the ability to use intonation information to identify sentences as question or statement was significantly better with modified processing. However, while there was no difference in vowel recognition in the acoustic simulation, implant users performed worse with modified processing both in vowel recognition and in formant frequency discrimination. It appears that, while enhancing pitch perception, modified processing harmed the transmission of spectral information.
Simulation of spacecraft attitude dynamics using TREETOPS and model-specific computer Codes
NASA Technical Reports Server (NTRS)
Cochran, John E.; No, T. S.; Fitz-Coy, Norman G.
1989-01-01
The simulation of spacecraft attitude dynamics and control using the generic, multi-body code called TREETOPS and other codes written especially to simulate particular systems is discussed. Differences in the methods used to derive equations of motion--Kane's method for TREETOPS and the Lagrangian and Newton-Euler methods, respectively, for the other two codes--are considered. Simulation results from the TREETOPS code are compared with those from the other two codes for two example systems. One system is a chain of rigid bodies; the other consists of two rigid bodies attached to a flexible base body. Since the computer codes were developed independently, consistent results serve as a verification of the correctness of all the programs. Differences in the results are discussed. Results for the two-rigid-body, one-flexible-body system are useful also as information on multi-body, flexible, pointing payload dynamics.
Investigating Young Children's Perceptions of Body Size and Healthy Habits
ERIC Educational Resources Information Center
Xu, Tingting; Nerren, Jannah S.
2017-01-01
Attitudes and biases toward body size perceived as fat and body size perceived as thin are present in young children (Cramer and Steinwert in "J Appl Dev Psychol" 19(3):429-451, 1998; Worobey and Worobey in "Body Image" 11:171-174, 2014). However, the information children have regarding body size and ways to modify body size…
Hektor - an exceptional D-type family among Jovian Trojans
NASA Astrophysics Data System (ADS)
Rozehnal, J.; Brož, M.; Nesvorný, D.; Durda, D. D.; Walsh, K.; Richardson, D. C.; Asphaug, E.
2016-11-01
In this work, we analyse Jovian Trojans in the space of suitable resonant elements and we identify clusters of possible collisional origin by two independent methods: the hierarchical clustering and a so-called randombox. Compared to our previous work, we study a twice larger sample. Apart from Eurybates, Ennomos and 1996 RJ families, we have found three more clusters - namely families around asteroids (20961) Arkesilaos, (624) Hektor in the L4 libration zone and (247341) 2001 UV209 in L5. The families fulfill our stringent criteria, I.e. a high statistical significance, an albedo homogeneity and a steeper size-frequency distribution than that of background. In order to understand their nature, we simulate their long term collisional evolution with the Boulder code and dynamical evolution using a modified SWIFT integrator. Within the framework of our evolutionary model, we were able to constrain the age of the Hektor family to be either 1-4 Gyr or, less likely, 0.1-2.5 Gyr, depending on initial impact geometry. Since (624) Hektor itself seems to be a bilobed-shape body with a satellite, I.e. an exceptional object, we address its association with the D-type family and we demonstrate that the moon and family could be created during a single impact event. We simulated the cratering event using a smoothed particle hydrodynamics. This is also the first case of a family associated with a D-type parent body.
Gaur, Swati; Singh Raman, R K; Khanna, A S
2014-09-01
A silane-based biodegradable coating was developed and investigated to improve corrosion resistance of an Mg-6Zn-Ca magnesium alloy to delay the biodegradation of the alloy in the physiological environment. Conditions were optimized to develop a stable and uniform hydroxide layer on the alloys surface-known to facilitate silane-substrate adhesion. A composite coating of two silanes, namely, diethylphosphatoethyltriethoxysilane (DEPETES) and bis-[3-(triethoxysilyl) propyl] tetrasulfide (BTESPT), was developed, by the sol-gel route. Corrosion resistance of the coated alloy was characterized in a modified-simulated body fluid (m-SBF), using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The silane coating provided significant and durable corrosion resistance. During the course of this, hydrogen evolution and pH variation, if any, were monitored for both bare and coated alloys. The coating morphology was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) and the cross-linking in the coating was studied using Fourier transform infrared spectroscopy (FTIR). As indicated by X-ray diffraction (XRD) results, an important finding was the presence of hydrated magnesium phosphate on the sample that was subjected to immersion in m-SBF for 216h. Magnesium phosphate is reported to support osteoblast formation and tissue healing. Copyright © 2014 Elsevier B.V. All rights reserved.
Rehman, Fozia; Rahim, Abdur; Airoldi, Claudio; Volpe, Pedro L O
2016-02-01
Mesoporous silica SBA-15 was synthesized and functionalized with bridged polysilsesquioxane monomers obtained by the reaction of 3-aminopropyltriethoxy silane with glycidyl methacrylate in 2:1 ratio. The synthesized mesoporous silica materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-ray diffraction, thermogravimetry and scanning electron microscopy. The nuclear magnetic resonance in the solid state is in agreement with the sequence of carbon distributed in the attached organic chains, as expected for organically functionalized mesoporous silica. After functionalization with organic bridges the BET surface area was reduced from 1311.80 to 494.2m(2)g(-1) and pore volume was reduced from 1.98 to 0.89cm(3)g(-1), when compared to original precursor silica. Modification of the silica surface with organic bridges resulted in high loading capacity and controlled release of ibuprofen and mesalamine in biological fluids. The Korsmeyer-Peppas model better fits the release data indicating Fickian diffusion and zero order kinetics for synthesized mesoporous silica. The drug release rate from the modified silica was slow in simulated gastric fluid, (pH1.2) where less than 10% of mesalamine and ibuprofen were released in initial 8h, while comparatively high release rates were observed in simulated intestinal (pH6.8) and simulated body fluids (pH7.2). The preferential release of mesalamine at intestinal pH suggests that the modified silica could be a simple, efficient, inexpensive and convenient carrier for colon targeted drugs, such a mesalamine and also as a controlled drug release system. Copyright © 2015 Elsevier B.V. All rights reserved.
Irreducible projective representations and their physical applications
NASA Astrophysics Data System (ADS)
Yang, Jian; Liu, Zheng-Xin
2018-01-01
An eigenfunction method is applied to reduce the regular projective representations (Reps) of finite groups to obtain their irreducible projective Reps. Anti-unitary groups are treated specially, where the decoupled factor systems and modified Schur’s lemma are introduced. We discuss the applications of irreducible Reps in many-body physics. It is shown that in symmetry protected topological phases, geometric defects or symmetry defects may carry projective Rep of the symmetry group; while in symmetry enriched topological phases, intrinsic excitations (such as spinons or visons) may carry projective Rep of the symmetry group. We also discuss the applications of projective Reps in problems related to spectrum degeneracy, such as in search of models without sign problem in quantum Monte Carlo simulations.
Macroscopic quantum tunneling escape of Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Zhao, Xinxin; Alcala, Diego A.; McLain, Marie A.; Maeda, Kenji; Potnis, Shreyas; Ramos, Ramon; Steinberg, Aephraim M.; Carr, Lincoln D.
2017-12-01
Recent experiments on macroscopic quantum tunneling reveal a nonexponential decay of the number of atoms trapped in a quasibound state behind a potential barrier. Through both experiment and theory, we demonstrate this nonexponential decay results from interactions between atoms. Quantum tunneling of tens of thousands of 87Rb atoms in a Bose-Einstein condensate is modeled by a modified Jeffreys-Wentzel-Kramers-Brillouin model, taking into account the effective time-dependent barrier induced by the mean field. Three-dimensional Gross-Pitaevskii simulations corroborate a mean-field result when compared with experiments. However, with one-dimensional modeling using time-evolving block decimation, we present an effective renormalized mean-field theory that suggests many-body dynamics for which a bare mean-field theory may not apply.
An analytic formula for the supercluster mass function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seunghwan; Lee, Jounghun, E-mail: slim@astro.umass.edu, E-mail: jounghun@astro.snu.ac.kr
2014-03-01
We present an analytic formula for the supercluster mass function, which is constructed by modifying the extended Zel'dovich model for the halo mass function. The formula has two characteristic parameters whose best-fit values are determined by fitting to the numerical results from N-body simulations for the standard ΛCDM cosmology. The parameters are found to be independent of redshifts and robust against variation of the key cosmological parameters. Under the assumption that the same formula for the supercluster mass function is valid for non-standard cosmological models, we show that the relative abundance of the rich superclusters should be a powerful indicatormore » of any deviation of the real universe from the prediction of the standard ΛCDM model.« less
NASA Technical Reports Server (NTRS)
Pendergrass, J. R.; Walsh, R. L.
1975-01-01
An examination of the factors which modify the simulation of a constraint in the motion of the aft attach points of the orbiter and external tank during separation has been made. The factors considered were both internal (spring and damper constants) and external (friction coefficient and dynamic pressure). The results show that an acceptable choice of spring/damper constant combinations exist over the expected range of the external factors and that the choice is consistent with a practical integration interval. The constraint model is shown to produce about a 10 percent increase in the relative body pitch angles over the unconstrained case whereas the MDC-STL constraint model is shown to produce about a 38 percent increase.
NASA Technical Reports Server (NTRS)
Kraft, Norbert O.; Lyons, Terence J.; Binder, Heidi; Inoue, Natsuhiko; Ohshima, Hiroshi; Sekiguchi, Chiharu
2003-01-01
PURPOSE: The objectives of this project were to investigate exercise load and body weight related to long-duration confinement in a closed environment simulating ISS flight conditions, and to evaluate subjects' motivation to continue the experiment and their adaptation to isolation. METHODS: Four Russian male subjects participated in a 240-d experiment (Group I), and four subjects (three male subjects and one female subject) from Austria, Canada, Japan, and Russia participated in a 110-d experiment (Group II). Exercise load was estimated during confinement using a modified Rating of Perceived Exertion scale. Free reports were used to determine subjects' motivation. Body weight was measured before, during, and after confinement. RESULTS: Group I achieved their lowest exercise loads during their first month of isolation; problems with adaptation to the isolation environment were also reported during this first month. Group II exercise load was significantly lower in the second month due to crewmember problems; loss of motivation could be noted from their free reports. The subject with the lowest exercise load retired from the isolation experiment earlier than scheduled. Exercise load was not correlated with prior exercise habits. Significant differences in body weight was observed between group I and II and between Russian and non-Russian subjects. One subject in Group I experienced a significant increase in his body weight. CONCLUSION: Exercise load may be a good indicator for adaptation problems and motivation changes in closed environments. Immobility, lack of space, and smoking cessation in general did not induce significant body weight changes.
NASA Astrophysics Data System (ADS)
Câmara, L. D. T.
2015-09-01
The solvent-gradient simulated moving bed process (SG-SMB) is the new tendency in the performance improvement if compared to the traditional isocratic solvent conditions. In such SG-SMB separation process the modulation of the solvent strength leads to significant increase in the purities and productivity followed by reduction in the solvent consumption. A stepwise modelling approach was utilized in the representation of the interconnected chromatographic columns of the system combined with lumped mass transfer models between the solid and liquid phase. The influence of the solvent modifier was considered applying the Abel model which takes into account the effect of modifier volume fraction over the partition coefficient. The modelling and simulations were carried out and compared to the experimental SG-SMB separation of the amino acids phenylalanine and tryptophan. A lumped mass transfer kinetic model was applied for both the modifier (ethanol) as well as the solutes. The simulation results showed that such simple and global mass transfer models are enough to represent all the mass transfer effect between the solid adsorbent and the liquid phase. The separation performance can be improved reducing the interaction or the mass transfer kinetic effect between the solid adsorbent phase and the modifier. The simulations showed great agreement fitting the experimental data of the amino acids concentrations both at the extract as well as at the raffinate.
NASA Astrophysics Data System (ADS)
Guo, Lili; Qin, Lin; Kong, Fanyou; Yi, Hong; Tang, Bin
2016-12-01
Molybdenum, an alloying element, was deposited and diffused on Ti-5Zr-3Sn-5Mo-15Nb (TLM) substrate by double glow plasma surface alloying technology at 900, 950 and 1000 °C. The microstructure, composition distribution and micro-hardness of the Mo modified layers were analyzed. Contact angles on deionized water and wear behaviors of the samples against corundum balls in simulated human body fluids were investigated. Results show that the surface microhardness is significantly enhanced after alloying and increases with treated temperature rising, and the contact angles are lowered to some extent. More importantly, compared to as-received TLM alloy, the Mo modified samples, especially the one treated at 1000 °C, exhibit the significant improvement of tribological properties in reciprocating wear tests, with lower specific wear rate and friction coefficient. To conclude, Mo alloying treatment is an effective approach to obtain excellent comprehensive properties including optimal wear resistance and improved wettability, which ensure the lasting and safety application for titanium alloys as the biomedical implants.
Fluid compartment and renal function alterations in the rat during 7 and 14 day head down tilt
NASA Technical Reports Server (NTRS)
Tucker, Bryan J.
1991-01-01
Exposure to conditions of microgravity for any extended duration can modify the distribution of fluid within the vascular and interstitial spaces, and eventually intracellular volume. Whether the redistribution of fluid and resetting of volume homeostasis mechanisms is appropriate for the long term environmental requirements of the body in microgravity remains to be fully defined. The event that initiates the change in fluid volume homeostasis is the cephalad movement of fluid which potentially triggers volume sensors and stretch receptors (atrial stretch with the resulting release of atrial natriuretic peptide) and suppresses adrenergic activity via the carotid and aortic arch baroreceptors. All these events act in concert to reset blood and interstitial volume to new levels, which in turn modify the renin-angiotensin system. All these factors have an influence on the kidney, the end organ for fluid volume control. How the fluid compartment volume changes interrelate with alterations in renal functions under conditions of simulated microgravity is the focus of the present investigation which utilizes 25-30 deg head-down tilt in the rat.
Freezing of soft spheres: A critical test for weighted-density-functional theories
NASA Astrophysics Data System (ADS)
Laird, Brian B.; Kroll, D. M.
1990-10-01
We study the freezing properties of systems with inverse-power and Yukawa interactions (soft spheres), using recently developed weighted-density-functional theories. We find that the modified weighted-density-functional approximation (MWDA) of Denton and Ashcroft yields results for the liquid to face-centered-cubic (fcc) structure transition that represent a significant improvement over those of earlier ``second-order'' density-functional freezing theories; however, this theory, like the earlier ones, fails to predict any liquid to body-centered-cubic (bcc) transition, even under conditions where the computer simulations indicate that this should be the equilibrium solid structure. In addition, we show that both the modified effective-liquid approximation (MELA) of Baus [J. Phys. Condens. Matter 2, 2111 (1990)] and the generalized effective-liquid approximation of Lutsko and Baus [Phys. Rev. Lett. 64, 761 (1990)], while giving excellent results for the freezing of hard spheres, fail completely to predict freezing into either fcc or bcc solid phases for soft inverse-power potentials. We also give an alternate derivation of the MWDA that makes clearer its connection to earlier theories.
Cardiovascular reflexes during rest and exercise modified by gravitational stresses
NASA Astrophysics Data System (ADS)
Bonde-petersen, Flemming
The hypotheses tested were whether variations in central venous pressure via the low pressure baroreceptors would take over or modify the arterial baroreceptor function, and further to which extent local and "whole body" hydrostatic stresses influence blood flow distribution. We investigated total forearm and skin blood flow (venous occlusion plethysmography and 133-Xe clearance) and cardiac output (rebreathing method) among other parameters. Hypo-and hypergravitational stresses were simulated by LBNP, LBPP, water immersion and lowering of the arm. The changes in flow distribution in the arm were ascribed to arterial baroreceptor function and not to low pressure baroreceptor activity. The enhancement of venous return during water immersion increased exercise tolerance during heat stress presumably due both to increased stroke volume and decreased venous pooling. The response to sustained handgrip exercise during LBNP and LBPP was not different from control measurements and the effects explained by arterial baroreceptor function. Application of exercise and local hydrostatic stresses in combination with gravitational stresses represent an interesting model for further study of the mechanisms behind the distribution of cardiac output to the peripheral organs.
Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration.
Toskas, Georgios; Cherif, Chokri; Hund, Rolf-Dieter; Laourine, Ezzeddine; Mahltig, Boris; Fahmi, Amir; Heinemann, Christiane; Hanke, Thomas
2013-05-15
New hybrid nanofibers prepared with chitosan (CTS), containing a total amount of polyethylene oxide (PEO) down to 3.6wt.%, and silica precursors were produced by electrospinning. The solution of modified sol-gel particles contained tetraethoxysilane (TEOS) and the organosilane 3-glycidyloxypropyltriethoxysilane (GPTEOS). This is rending stable solution toward gelation and contributing in covalent bonding with chitosan. The fibers encompass advantages of biocompatible polymer template silicate components to form self-assembled core-shell structure of the polymer CTS/PEO encapsulated by the silica. Potential applicability of this hybrid material to bone tissue engineering was studied examining its cellular compatibility and bioactivity. The nanofiber matrices were proved cytocompatible when seeded with bone-forming 7F2-cells, promoting attachment and proliferation over 7 days. These found to enhance a fast apatite formation by incorporation of Ca(2+) ions and subsequent immersion in modified simulated body fluid (m-SBF). The tunable properties of these hybrid nanofibers can find applications as active biomaterials in bone repair and regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Global stability of self-gravitating discs in modified gravity
NASA Astrophysics Data System (ADS)
Ghafourian, Neda; Roshan, Mahmood
2017-07-01
Using N-body simulations, we study the global stability of a self-gravitating disc in the context of modified gravity (MOG). This theory is a relativistic scalar-tensor-vector theory of gravity and it is presented to address the dark matter problem. In the weak field limit, MOG possesses two free parameters α and μ0, which have already been determined using the rotation curve data of spiral galaxies. The evolution of a stellar self-gravitating disc and, more specifically, the bar instability in MOG are investigated and compared to a Newtonian case. Our models have exponential and Mestel-like surface densities as Σ ∝ exp (-r/h) and Σ ∝ 1/r. It is found that, surprisingly, the discs are more stable against the bar mode in MOG than in Newtonian gravity. In other words, the bar growth rate is effectively slower than the Newtonian discs. Also, we show that both free parameters (I.e. α and μ0) have stabilizing effects. In other words, an increase in these parameters will decrease the bar growth rate.
[Study on preparation and physicochemical properties of surface modified sintered bone].
Li, Jingfeng; Zheng, Qixin; Guo, Xiaodong
2012-06-01
The aim of this study is to investigate a new method for preparing a biomimetic bone material-surface modified sintered bovine cancellous bone, and to improve its bioactivity as a tissue engineering bone. The prepared sintered bovine cancellous bones with the same size were randomly divided into two groups, immersing in 1 and 1. 5 times simulated body fluid (SBF), respectively. The three time periods of soak time were 7, 14, and 21 days. After sintered bone was dried, the surface morphology of sintered bone and surface mineralization composition were observed under scanning electron microscopy (SEM). By comparing the effect of surface modification of sintered bone materials, we chose the most ideal material and studied its pore size, the rate of the porosity, the compress and bend intensity. And then the material and the sintered bone material without surface modification were compared. The study indicated that sintered bone material immersed in SBF (1.5 times) for 14 days showed the best effect of surface modification, retaining the original physico-chemical properties of sintered bone.
Discrete crack growth analysis methodology for through cracks in pressurized fuselage structures
NASA Technical Reports Server (NTRS)
Potyondy, David O.; Wawrzynek, Paul A.; Ingraffea, Anthony R.
1994-01-01
A methodology for simulating the growth of long through cracks in the skin of pressurized aircraft fuselage structures is described. Crack trajectories are allowed to be arbitrary and are computed as part of the simulation. The interaction between the mechanical loads acting on the superstructure and the local structural response near the crack tips is accounted for by employing a hierarchical modeling strategy. The structural response for each cracked configuration is obtained using a geometrically nonlinear shell finite element analysis procedure. Four stress intensity factors, two for membrane behavior and two for bending using Kirchhoff plate theory, are computed using an extension of the modified crack closure integral method. Crack trajectories are determined by applying the maximum tangential stress criterion. Crack growth results in localized mesh deletion, and the deletion regions are remeshed automatically using a newly developed all-quadrilateral meshing algorithm. The effectiveness of the methodology and its applicability to performing practical analyses of realistic structures is demonstrated by simulating curvilinear crack growth in a fuselage panel that is representative of a typical narrow-body aircraft. The predicted crack trajectory and fatigue life compare well with measurements of these same quantities from a full-scale pressurized panel test.
Tensegrity and motor-driven effective interactions in a model cytoskeleton
NASA Astrophysics Data System (ADS)
Wang, Shenshen; Wolynes, Peter G.
2012-04-01
Actomyosin networks are major structural components of the cell. They provide mechanical integrity and allow dynamic remodeling of eukaryotic cells, self-organizing into the diverse patterns essential for development. We provide a theoretical framework to investigate the intricate interplay between local force generation, network connectivity, and collective action of molecular motors. This framework is capable of accommodating both regular and heterogeneous pattern formation, arrested coarsening and macroscopic contraction in a unified manner. We model the actomyosin system as a motorized cat's cradle consisting of a crosslinked network of nonlinear elastic filaments subjected to spatially anti-correlated motor kicks acting on motorized (fibril) crosslinks. The phase diagram suggests there can be arrested phase separation which provides a natural explanation for the aggregation and coalescence of actomyosin condensates. Simulation studies confirm the theoretical picture that a nonequilibrium many-body system driven by correlated motor kicks can behave as if it were at an effective equilibrium, but with modified interactions that account for the correlation of the motor driven motions of the actively bonded nodes. Regular aster patterns are observed both in Brownian dynamics simulations at effective equilibrium and in the complete stochastic simulations. The results show that large-scale contraction requires correlated kicking.
Changes in Gait with Anteriorly Added Mass: A Pregnancy Simulation Study
Ogamba, Maureen I.; Loverro, Kari L.; Laudicina, Natalie M.; Gill, Simone V.; Lewis, Cara L.
2016-01-01
During pregnancy, the female body experiences structural changes, such as weight gain. As pregnancy advances, most of the additional mass is concentrated anteriorly on the lower trunk. The purpose of this study is to analyze kinematic and kinetic changes when load is added anteriorly to the trunk, simulating a physical change experienced during pregnancy. Twenty healthy females walked on a treadmill while wearing a custom made pseudo-pregnancy sac (1 kg) under three load conditions: sac only, 10 pound condition (4.535 kg added anteriorly), and 20 pound condition (9.07 kg added anteriorly), used to simulate pregnancy, in the second trimester and at full term pregnancy, respectively. The increase in anterior mass resulted in kinematic changes at the knee, hip, pelvis, and trunk in the sagittal and frontal planes. Additionally, ankle, knee, and hip joint moments normalized to baseline mass increased with increased load; however, these moments decreased when normalized to total mass. These kinematic and kinetic changes may suggest that women modify gait biomechanics to reduce the effect of added load. Furthermore, the increase in joint moments increases stress on the musculoskeletal system and may contribute to musculoskeletal pain. PMID:26958743
NASA Astrophysics Data System (ADS)
Zhu, Zichen; Wang, Yongzhi; Bian, Shuhua; Hu, Zejian; Liu, Jianqiang; Liu, Lejun
2017-11-01
We modified the sediment incipient motion in a numerical model and evaluated the impact of this modification using a study case of the coastal area around Weihai, China. The modified and unmodified versions of the model were validated by comparing simulated and observed data of currents, waves, and suspended sediment concentrations (SSC) measured from July 25th to July 26th, 2006. A fitted Shields diagram was introduced into the sediment model so that the critical erosional shear stress could vary with time. Thus, the simulated SSC patterns were improved to more closely reflect the observed values, so that the relative error of the variation range decreased by up to 34.5% and the relative error of simulated temporally averaged SSC decreased by up to 36%. In the modified model, the critical shear stress values of the simulated silt with a diameter of 0.035 mm and mud with a diameter of 0.004 mm varied from 0.05 to 0.13 N/m2, and from 0.05 to 0.14 N/m 2, respectively, instead of remaining constant in the unmodified model. Besides, a method of applying spatially varying fractions of the mixed grain size sediment improved the simulated SSC distribution to fit better to the remote sensing map and reproduced the zonal area with high SSC between Heini Bay and the erosion groove in the modified model. The Relative Mean Absolute Error was reduced by between 6% and 79%, depending on the regional attributes when we used the modified method to simulate incipient sediment motion. But the modification achieved the higher accuracy in this study at a cost of computation speed decreasing by 1.52%.
Particle Number Dependence of the N-body Simulations of Moon Formation
NASA Astrophysics Data System (ADS)
Sasaki, Takanori; Hosono, Natsuki
2018-04-01
The formation of the Moon from the circumterrestrial disk has been investigated by using N-body simulations with the number N of particles limited from 104 to 105. We develop an N-body simulation code on multiple Pezy-SC processors and deploy Framework for Developing Particle Simulators to deal with large number of particles. We execute several high- and extra-high-resolution N-body simulations of lunar accretion from a circumterrestrial disk of debris generated by a giant impact on Earth. The number of particles is up to 107, in which 1 particle corresponds to a 10 km sized satellitesimal. We find that the spiral structures inside the Roche limit radius differ between low-resolution simulations (N ≤ 105) and high-resolution simulations (N ≥ 106). According to this difference, angular momentum fluxes, which determine the accretion timescale of the Moon also depend on the numerical resolution.
Challal, Salima; Minichiello, Emeline; Boissier, Marie-Christophe; Semerano, Luca
2016-03-01
Altered body composition is a frequent finding in rheumatoid arthritis and is associated with the two major outcomes of the disease: disability and cardiovascular mortality. It is estimated that up to two thirds of patients may be affected by loss of lean mass, the so-called rheumatoid cachexia. Hence, body weight being equal, the relative amount of lean mass is lower and that of body fat is higher in rheumatoid arthritis patients vs. healthy controls. Both disease-related factors and other factors, like drug treatments, physical activity and nutrition contribute to modify body composition in rheumatoid arthritis. The effect of pharmacological treatments, and notably of anti-TNF drugs, on body composition is controversial. Conversely, training programs to stimulate muscle growth can restore lean mass and reduce adiposity. There is good evidence that amelioration of body composition ameliorates function and reduces disability. Currently, there is no evidence that interventions that modify body composition can reduce cardiovascular morbidity and mortality in rheumatoid arthritis. Copyright © 2015. Published by Elsevier SAS.
Simulation as a Teaching Technology: A Brief History of Its Use in Nursing Education
ERIC Educational Resources Information Center
Sanko, Jill S.
2017-01-01
Simulation can be used for teaching or practicing both technical skills (insertion of intravenous catheters, or suturing for example) and non-technical skills (communication and teamwork). A combination of full body, high and low technology simulators (mannequins designed to depict humans), body part or body system-specific task trainers (models…
ERIC Educational Resources Information Center
Grimes, William J.; Chambers, Linda; Kubo, Kenneth M.; Narro, Martha L.
1998-01-01
Describes a laboratory exercise that simulates the spread of an infectious agent among students in a classroom. Uses a modified Enzyme Linked ImmunoSorbent Assay (ELISA) to provide students with experience using an authentic diagnostic tool for detecting human infections. (DDR)
Corrosion and wear properties of laser surface modified NiTi with Mo and ZrO 2
NASA Astrophysics Data System (ADS)
Ng, K. W.; Man, H. C.; Yue, T. M.
2008-08-01
Because of its biocompatibility, superelasticity and shape memory characteristics, NiTi alloys have been gaining immense interest in the medical field. However, there is still concern on the corrosion resistance of this alloy if it is going to be implanted in the human body for a long time. Titanium is not toxic but nickel is carcinogenic and is implicated in various reactions including allergic response and degeneration of muscle tissue. Debris from wear and the subsequent release of Ni + ions due to corrosion in the body system are fatal issues for long-term application of this alloy in the human body. This paper reports the corrosion and wear properties of laser surface modified NiTi using Mo and ZrO 2 as surface alloying elements, respectively. The modified layers which are free from microcracks and porosity, act as both physical barrier to nickel release and enhance the bulk properties, such as hardness, wear resistance, and corrosion resistance. The electrochemical performance of the surface modified alloy was studied in Hanks' solution. Electrochemical impedance spectroscopy was measured.
In vivo response of bioactive PMMA-based bone cement modified with alkoxysilane and calcium acetate.
Sugino, Atsushi; Ohtsuki, Chikara; Miyazaki, Toshiki
2008-11-01
The use of polymethylmethacrylate (PMMA)-based bone cement is popular in orthopedics for the fixation of artificial joints with bone. However, it has a major problem with prostheses loosening because of coverage by fibrous tissue after long-term implantation. Recently, a bioactive bone cement has been developed that shows direct bonding to living bone through modification of PMMA resin with gamma-methacryloxypropyltrimethoxysilane (MPS) and calcium acetate. The cement is designed to exhibit bioactivity, through incorporation of silanol groups and calcium ions. Thus, it has the potential to form a layer of bone-like hydroxyapatite, which is essential for achieving direct bonding to living bone. This type of modification allows the cement to show spontaneous hydroxyapatite formation on its surface in a simulated body fluid after one day, and there is evidence of osteoconduction of the cement in rabbit tibia for periods of more than three weeks. However, the influence of the dissolved ions from the modified cement has not yet been clarified. Thus, the authors focused on the dissolution of the modified PMMA-based bone cement and its tissue response in muscle and bone by comparison with the behavior of non-modified PMMA-based bone cement. One week after implantation in the latissimus dorsi of a rabbit, the modified PMMA-based bone cement showed more inflammatory width than the commercial cement. However, four weeks after implantation, the inflammatory width of both cements was essentially the same. The osteoconductivity around the modified cement was higher than that for the conventional cement after four weeks implantation. These results indicate that the initial dissolution of calcium acetate from the modified cement to form the hydroxyapatite induced the acute inflammation around tissue, but also developed the osteoconductivity. It is suggested that the initial inflammation can be effective for inducing osteoconduction through a bone healing reaction when the material provides an environment that promotes bone formation.
Bellucci, Devis; Sola, Antonella; Salvatori, Roberta; Anesi, Alexandre; Chiarini, Luigi; Cannillo, Valeria
2017-03-01
The composition of a CaO-rich silicate bioglass (BG_Ca-Mix, in mol%: 2.3 Na 2 O; 2.3 K 2 O; 45.6 CaO; 2.6 P 2 O 5 ; 47.2 SiO 2 ) was modified by replacing a fixed 10mol% of CaO with MgO or SrO or fifty-fifty MgO-SrO. The thermal behaviour of the modified glasses was accurately evaluated via differential thermal analysis (DTA), heating microscopy and direct sintering tests. The presence of MgO and/or SrO didn't interfere with the thermal stability of the parent glass, since all the new glasses remained completely amorphous after sintering (treatment performed at 753°C for the glass with MgO; at 750°C with SrO; at 759°C with MgO and SrO). The sintered samples achieved good mechanical properties, with a Young's modulus ranging between 57.9±6.7 for the MgO-SrO modified composition and 112.6±8.0GPa for the MgO-modified one. If immersed in a simulated body fluid (SBF), the modified glasses after sintering retained the strong apatite forming ability of the parent glass, in spite of the presence of MgO and/or SrO. Moreover, the sintered glasses, tested with MLO-Y4 osteocytes by means of a multi-parametrical approach, showed a good bioactivity in vitro, since neither the glasses nor their extracts caused any negative effect on cell viability or any inhibition on cell growth. The best results were achieved by the MgO-modified glasses, both BGMIX_Mg and BGMIX_MgSr, which were able to exert a strong stimulating effect on the cell growth, thus confirming the beneficial effect of MgO on the glass bioactivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Miniature modified Faraday cup for micro electron beams
Teruya, Alan T.; Elmer, John W.; Palmer, Todd A.; Walton, Chris C.
2008-05-27
A micro beam Faraday cup assembly includes a refractory metal layer with an odd number of thin, radially positioned traces in this refractory metal layer. Some of the radially positioned traces are located at the edge of the micro modified Faraday cup body and some of the radially positioned traces are located in the central portion of the micro modified Faraday cup body. Each set of traces is connected to a separate data acquisition channel to form multiple independent diagnostic networks. The data obtained from the two diagnostic networks are combined and inputted into a computed tomography algorithm to reconstruct the beam shape, size, and power density distribution.
NASA Astrophysics Data System (ADS)
Baushev, A. N.; del Valle, L.; Campusano, L. E.; Escala, A.; Muñoz, R. R.; Palma, G. A.
2017-05-01
Galaxy observations and N-body cosmological simulations produce conflicting dark matter halo density profiles for galaxy central regions. While simulations suggest a cuspy and universal density profile (UDP) of this region, the majority of observations favor variable profiles with a core in the center. In this paper, we investigate the convergency of standard N-body simulations, especially in the cusp region, following the approach proposed by [1]. We simulate the well known Hernquist model using the SPH code Gadget-3 and consider the full array of dynamical parameters of the particles. We find that, although the cuspy profile is stable, all integrals of motion characterizing individual particles suffer strong unphysical variations along the whole halo, revealing an effective interaction between the test bodies. This result casts doubts on the reliability of the velocity distribution function obtained in the simulations. Moreover, we find unphysical Fokker-Planck streams of particles in the cusp region. The same streams should appear in cosmological N-body simulations, being strong enough to change the shape of the cusp or even to create it. Our analysis, based on the Hernquist model and the standard SPH code, strongly suggests that the UDPs generally found by the cosmological N-body simulations may be a consequence of numerical effects. A much better understanding of the N-body simulation convergency is necessary before a `core-cusp problem' can properly be used to question the validity of the CDM model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baushev, A.N.; Valle, L. del; Campusano, L.E.
2017-05-01
Galaxy observations and N-body cosmological simulations produce conflicting dark matter halo density profiles for galaxy central regions. While simulations suggest a cuspy and universal density profile (UDP) of this region, the majority of observations favor variable profiles with a core in the center. In this paper, we investigate the convergency of standard N-body simulations, especially in the cusp region, following the approach proposed by [1]. We simulate the well known Hernquist model using the SPH code Gadget-3 and consider the full array of dynamical parameters of the particles. We find that, although the cuspy profile is stable, all integrals ofmore » motion characterizing individual particles suffer strong unphysical variations along the whole halo, revealing an effective interaction between the test bodies. This result casts doubts on the reliability of the velocity distribution function obtained in the simulations. Moreover, we find unphysical Fokker-Planck streams of particles in the cusp region. The same streams should appear in cosmological N-body simulations, being strong enough to change the shape of the cusp or even to create it. Our analysis, based on the Hernquist model and the standard SPH code, strongly suggests that the UDPs generally found by the cosmological N-body simulations may be a consequence of numerical effects. A much better understanding of the N-body simulation convergency is necessary before a 'core-cusp problem' can properly be used to question the validity of the CDM model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Arcy, Jordan H.; Kolmann, Stephen J.; Jordan, Meredith J. T.
Quantum and anharmonic effects are investigated in (H{sub 2}){sub 2}–Li{sup +}–benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials, using rigid-body diffusion Monte Carlo (RBDMC) simulations. The potential-energy surface (PES) is calculated as a modified Shepard interpolation of M05-2X/6-311+G(2df,p) electronic structure data. The RBDMC simulations yield zero-point energies (ZPE) and probability density histograms that describe the ground-state nuclear wavefunction. Binding a second H{sub 2} molecule to the H{sub 2}–Li{sup +}–benzene complex increases the ZPE of the system by 5.6 kJ mol{sup −1} to 17.6 kJ mol{sup −1}. This ZPE is 42% of the total electronic binding energymore » of (H{sub 2}){sub 2}–Li{sup +}–benzene and cannot be neglected. Our best estimate of the 0 K binding enthalpy of the second H{sub 2} to H{sub 2}–Li{sup +}–benzene is 7.7 kJ mol{sup −1}, compared to 12.4 kJ mol{sup −1} for the first H{sub 2} molecule. Anharmonicity is found to be even more important when a second (and subsequent) H{sub 2} molecule is adsorbed; use of harmonic ZPEs results in significant error in the 0 K binding enthalpy. Probability density histograms reveal that the two H{sub 2} molecules are found at larger distance from the Li{sup +} ion and are more confined in the θ coordinate than in H{sub 2}–Li{sup +}–benzene. They also show that both H{sub 2} molecules are delocalized in the azimuthal coordinate, ϕ. That is, adding a second H{sub 2} molecule is insufficient to localize the wavefunction in ϕ. Two fragment-based (H{sub 2}){sub 2}–Li{sup +}–benzene PESs are developed. These use a modified Shepard interpolation for the Li{sup +}–benzene and H{sub 2}–Li{sup +}–benzene fragments, and either modified Shepard interpolation or a cubic spline to model the H{sub 2}–H{sub 2} interaction. Because of the neglect of three-body H{sub 2}, H{sub 2}, Li{sup +} terms, both fragment PESs lead to overbinding of the second H{sub 2} molecule by 1.5 kJ mol{sup −1}. Probability density histograms, however, indicate that the wavefunctions for the two H{sub 2} molecules are effectively identical on the “full” and fragment PESs. This suggests that the 1.5 kJ mol{sup −1} error is systematic over the regions of configuration space explored by our simulations. Notwithstanding this, modified Shepard interpolation of the weak H{sub 2}–H{sub 2} interaction is problematic and we obtain more accurate results, at considerably lower computational cost, using a cubic spline interpolation. Indeed, the ZPE of the fragment-with-spline PES is identical, within error, to the ZPE of the full PES. This fragmentation scheme therefore provides an accurate and inexpensive method to study higher hydrogen loading in this and similar systems.« less
Mars Smart Lander Parachute Simulation Model
NASA Technical Reports Server (NTRS)
Queen, Eric M.; Raiszadeh, Ben
2002-01-01
A multi-body flight simulation for the Mars Smart Lander has been developed that includes six degree-of-freedom rigid-body models for both the supersonically-deployed and subsonically-deployed parachutes. This simulation is designed to be incorporated into a larger simulation of the entire entry, descent and landing (EDL) sequence. The complete end-to-end simulation will provide attitude history predictions of all bodies throughout the flight as well as loads on each of the connecting lines. Other issues such as recontact with jettisoned elements (heat shield, back shield, parachute mortar covers, etc.), design of parachute and attachment points, and desirable line properties can also be addressed readily using this simulation.
Compactified cosmological simulations of the infinite universe
NASA Astrophysics Data System (ADS)
Rácz, Gábor; Szapudi, István; Csabai, István; Dobos, László
2018-06-01
We present a novel N-body simulation method that compactifies the infinite spatial extent of the Universe into a finite sphere with isotropic boundary conditions to follow the evolution of the large-scale structure. Our approach eliminates the need for periodic boundary conditions, a mere numerical convenience which is not supported by observation and which modifies the law of force on large scales in an unrealistic fashion. We demonstrate that our method outclasses standard simulations executed on workstation-scale hardware in dynamic range, it is balanced in following a comparable number of high and low k modes and, its fundamental geometry and topology match observations. Our approach is also capable of simulating an expanding, infinite universe in static coordinates with Newtonian dynamics. The price of these achievements is that most of the simulated volume has smoothly varying mass and spatial resolution, an approximation that carries different systematics than periodic simulations. Our initial implementation of the method is called StePS which stands for Stereographically projected cosmological simulations. It uses stereographic projection for space compactification and naive O(N^2) force calculation which is nevertheless faster to arrive at a correlation function of the same quality than any standard (tree or P3M) algorithm with similar spatial and mass resolution. The N2 force calculation is easy to adapt to modern graphics cards, hence our code can function as a high-speed prediction tool for modern large-scale surveys. To learn about the limits of the respective methods, we compare StePS with GADGET-2 running matching initial conditions.
Ultrafiltration and modified ultrafiltration in pediatric open heart operations.
Elliott, M J
1993-12-01
The capillary leak associated with cardiopulmonary bypass results in an increase in content of water in the tissues measurable by an increase in total body water after cardiac operation. Following work by Magilligan in the 1970s, ultrafiltration was introduced during bypass as a means of hemoconcentrating patients and potentially removing water from the tissues. Conventional methods proved inconsistent; thus, we modified the technique to ultrafilter the patients immediately after cessation of bypass. Modified ultrafiltration takes 10 minutes and results in an elevation of the on-bypass hematocrit to about 35% or 40%. In pilot studies comparing bypass in absence of ultrafiltration with conventional ultrafiltration and modified ultrafiltration, only the modified technique was seen reliably to reduce the elevation in total body water to only 4%, within a narrow range. Subsequent prospective studies confirmed the reduction in accumulation of total body water and also demonstrated a reduction in blood loss and in requirements for blood transfusion. Systolic blood pressure was observed to increase uniformly in all patients undergoing modified ultrafiltration. This effect was investigated and found to be associated with a marked increase in cardiac index, no change in systemic vascular resistance, a decrease in heart rate, and a marked decrease in pulmonary vascular resistance. Recently, we have demonstrated an increase in contractility and a decrease in myocardial wall volume. The modified technique of ultrafiltration has been employed successfully in more than 400 patients in our institution, and represents an excellent option for perioperative management of both accumulation of fluid in the tissues and hemodynamics after hypothermic bypass.
A motion-constraint logic for moving-base simulators based on variable filter parameters
NASA Technical Reports Server (NTRS)
Miller, G. K., Jr.
1974-01-01
A motion-constraint logic for moving-base simulators has been developed that is a modification to the linear second-order filters generally employed in conventional constraints. In the modified constraint logic, the filter parameters are not constant but vary with the instantaneous motion-base position to increase the constraint as the system approaches the positional limits. With the modified constraint logic, accelerations larger than originally expected are limited while conventional linear filters would result in automatic shutdown of the motion base. In addition, the modified washout logic has frequency-response characteristics that are an improvement over conventional linear filters with braking for low-frequency pilot inputs. During simulated landing approaches of an externally blown flap short take-off and landing (STOL) transport using decoupled longitudinal controls, the pilots were unable to detect much difference between the modified constraint logic and the logic based on linear filters with braking.
The Development of Models to Optimize Selection of Nuclear Fuels through Atomic-Level Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prof. Simon Phillpot; Prof. Susan B. Sinnott; Prof. Hans Seifert
2009-01-26
Demonstrated that FRAPCON can be modified to accept data generated from first principles studies, and that the result obtained from the modified FRAPCON make sense in terms of the inputs. Determined the temperature dependence of the thermal conductivity of single crystal UO2 from atomistic simulation.
An Implementation of Wireless Body Area Networks for Improving Priority Data Transmission Delay.
Gündoğdu, Köksal; Çalhan, Ali
2016-03-01
The rapid growth of wireless sensor networks has enabled the human health monitoring of patients using body sensor nodes that gather and evaluate human body parameters and movements. This study describes both simulation model and implementation of a new traffic sensitive wireless body area network by using non-preemptive priority queue discipline. A wireless body area network implementation employing TDMA is designed with three different priorities of data traffics. Besides, a coordinator node having the non-preemptive priority queue is performed in this study. We have also developed, modeled and simulated example network scenarios by using the Riverbed Modeler simulation software with the purpose of verifying the implementation results. The simulation results obtained under various network load conditions are consistent with the implementation results.
Frame-dragging effect in the field of non rotating body due to unit gravimagnetic moment
NASA Astrophysics Data System (ADS)
Deriglazov, Alexei A.; Ramírez, Walberto Guzmán
2018-04-01
Nonminimal spin-gravity interaction through unit gravimagnetic moment leads to modified Mathisson-Papapetrou-Tulczyjew-Dixon equations with improved behavior in the ultrarelativistic limit. We present exact Hamiltonian of the resulting theory and compute an effective 1/c2-Hamiltonian and leading post-Newtonian corrections to the trajectory and spin. Gravimagnetic moment causes the same precession of spin S as a fictitious rotation of the central body with angular momentum J = M/m S. So the modified equations imply a number of qualitatively new effects, that could be used to test experimentally, whether a rotating body in general relativity has null or unit gravimagnetic moment.
NASA Technical Reports Server (NTRS)
Neuhaus, Jason R.
2018-01-01
This document describes the heads-up display (HUD) used in a piloted lifting-body entry, approach and landing simulation developed for the simulator facilities of the Simulation Development and Analysis Branch (SDAB) at NASA Langley Research Center. The HUD symbology originated with the piloted simulation evaluations of the HL-20 lifting body concept conducted in 1989 at NASA Langley. The original symbology was roughly based on Shuttle HUD symbology, as interpreted by Langley researchers. This document focuses on the addition of the precision approach path indicator (PAPI) lights to the HUD overlay.
Code C# for chaos analysis of relativistic many-body systems with reactions
NASA Astrophysics Data System (ADS)
Grossu, I. V.; Besliu, C.; Jipa, Al.; Stan, E.; Esanu, T.; Felea, D.; Bordeianu, C. C.
2012-04-01
In this work we present a reaction module for “Chaos Many-Body Engine” (Grossu et al., 2010 [1]). Following our goal of creating a customizable, object oriented code library, the list of all possible reactions, including the corresponding properties (particle types, probability, cross section, particle lifetime, etc.), could be supplied as parameter, using a specific XML input file. Inspired by the Poincaré section, we propose also the “Clusterization Map”, as a new intuitive analysis method of many-body systems. For exemplification, we implemented a numerical toy-model for nuclear relativistic collisions at 4.5 A GeV/c (the SKM200 Collaboration). An encouraging agreement with experimental data was obtained for momentum, energy, rapidity, and angular π distributions. Catalogue identifier: AEGH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 184 628 No. of bytes in distributed program, including test data, etc.: 7 905 425 Distribution format: tar.gz Programming language: Visual C#.NET 2005 Computer: PC Operating system: Net Framework 2.0 running on MS Windows Has the code been vectorized or parallelized?: Each many-body system is simulated on a separate execution thread. One processor used for each many-body system. RAM: 128 Megabytes Classification: 6.2, 6.5 Catalogue identifier of previous version: AEGH_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 1464 External routines: Net Framework 2.0 Library Does the new version supersede the previous version?: Yes Nature of problem: Chaos analysis of three-dimensional, relativistic many-body systems with reactions. Solution method: Second order Runge-Kutta algorithm for simulating relativistic many-body systems with reactions. Object oriented solution, easy to reuse, extend and customize, in any development environment which accepts .Net assemblies or COM components. Treatment of two particles reactions and decays. For each particle, calculation of the time measured in the particle reference frame, according to the instantaneous velocity. Possibility to dynamically add particle properties (spin, isospin, etc.), and reactions/decays, using a specific XML input file. Basic support for Monte Carlo simulations. Implementation of: Lyapunov exponent, “fragmentation level”, “average system radius”, “virial coefficient”, “clusterization map”, and energy conservation precision test. As an example of use, we implemented a toy-model for nuclear relativistic collisions at 4.5 A GeV/c. Reasons for new version: Following our goal of applying chaos theory to nuclear relativistic collisions at 4.5 A GeV/c, we developed a reaction module integrated with the Chaos Many-Body Engine. In the previous version, inheriting the Particle class was the only possibility of implementing more particle properties (spin, isospin, and so on). In the new version, particle properties can be dynamically added using a dictionary object. The application was improved in order to calculate the time measured in the own reference frame of each particle. two particles reactions: a+b→c+d, decays: a→c+d, stimulated decays, more complicated schemas, implemented as various combinations of previous reactions. Following our goal of creating a flexible application, the reactions list, including the corresponding properties (cross sections, particles lifetime, etc.), could be supplied as parameter, using a specific XML configuration file. The simulation output files were modified for systems with reactions, assuring also the backward compatibility. We propose the “Clusterization Map” as a new investigation method of many-body systems. The multi-dimensional Lyapunov Exponent was adapted in order to be used for systems with variable structure. Basic support for Monte Carlo simulations was also added. Additional comments: Windows forms application for testing the engine. Easy copy/paste based deployment method. Running time: Quadratic complexity.
Simulations of the modified gap experiment
NASA Astrophysics Data System (ADS)
Sutherland, Gerrit T.; Benjamin, Richard; Kooker, Douglas
2017-01-01
Modified gap experiment (test) hydrocode simulations predict the trends seen in experimental excess free surface velocity versus input pressure curves for explosives with both large and modest failure diameters. Simulations were conducted for explosive "A", an explosive with a large failure diameter, and for cast TNT, which has a modest failure diameter. Using the best available reactive rate models, the simulations predicted sustained ignition thresholds similar to experiment. This is a threshold where detonation is likely given a long enough run distance. For input pressures greater than the sustained ignition threshold pressure, the simulations predicted too little velocity for explosive "A" and too much velocity for TNT. It was found that a better comparison of experiment and simulation requires additional experimental data for both explosives. It was observed that the choice of reactive rate model for cast TNT can lead to large differences in the predicted modified gap experiment result. The cause of the difference is that the same data was not used to parameterize both models; one set of data was more shock reactive than the other.
Toe, Kyaw Kyar; Huang, Weimin; Yang, Tao; Duan, Yuping; Zhou, Jiayin; Su, Yi; Teo, Soo-Kng; Kumar, Selvaraj Senthil; Lim, Calvin Chi-Wan; Chui, Chee Kong; Chang, Stephen
2015-08-01
This work presents a surgical training system that incorporates cutting operation of soft tissue simulated based on a modified pre-computed linear elastic model in the Simulation Open Framework Architecture (SOFA) environment. A precomputed linear elastic model used for the simulation of soft tissue deformation involves computing the compliance matrix a priori based on the topological information of the mesh. While this process may require a few minutes to several hours, based on the number of vertices in the mesh, it needs only to be computed once and allows real-time computation of the subsequent soft tissue deformation. However, as the compliance matrix is based on the initial topology of the mesh, it does not allow any topological changes during simulation, such as cutting or tearing of the mesh. This work proposes a way to modify the pre-computed data by correcting the topological connectivity in the compliance matrix, without re-computing the compliance matrix which is computationally expensive.
Larina, I M
2003-01-01
The paper presents results of investigations into the effects of space flight and simulation experiments of various length on the hormonal regulation of metabolism in the human body. Microgravity was shown to instigate shifts on different levels of the hormonal regulation and consequent adjustment of metabolism to this new environment. For instance, adaptation occurs on the level of basal secretory activity resulting in altered metabolism and formation of a pool of hormones. Metabolism readaptation to the Earth's gravity is dependent on polymorphic processes in the system of hormonal regulation developing in the course of time. Trends in the hormonal regulation of water-electrolyte metabolism during early adaptation point to inequality of contributions of the antidiuretic hormone, natriuretic peptide, and the renin-angiotensin-aldosterone system. In the ground-based simulations responses of the hormonal regulation of water-electrolyte metabolism differ in intensity and types of hormones involved. Temperature variation can modify reactions of the comosis and volume regulating hormones at the beginning of adaptation. Physical-chemical regulation of calcium homeostasis in microgravity reveals itself by a rapid decline of the calcium-binding ability of blood buffers and, later on, degradation of the relative ability of extraplasmic structures to bind calcium. Qualitative and quantitative changes in the diurnal rhythm of the suprarenal steroidogenesis are indicative of modification of intensity of reactions of the main biosynthetic sequences. Countermeasures used by test-subjects in these investigations loosened significantly the aldosterone-secreting biosynthetic sequences but were favorable to the synthesis of testosterone and hydrocortisone. Some of the highly variable processes of hormonal regulation were mute to the diurnal rhythms in the pre-flight and preexperimental periods.
Configuration maintaining control of three-body ring tethered system based on thrust compensation
NASA Astrophysics Data System (ADS)
Huang, Panfeng; Liu, Binbin; Zhang, Fan
2016-06-01
Space multi-tethered systems have shown broad prospects in remote observation missions. This paper mainly focuses on the dynamics and configuration maintaining control of space spinning three-body ring tethered system for such mission. Firstly, we establish the spinning dynamic model of the three-body ring tethered system considering the elasticity of the tether using Newton-Euler method, and then validate the suitability of this model by numerical simulation. Subsequently, LP (Likins-Pringle) initial equilibrium conditions for the tethered system are derived based on rigid body's equilibrium theory. Simulation results show that tether slack, snapping and interaction between the tethers exist in the three-body ring system, and its' configuration can not be maintained without control. Finally, a control strategy based on thrust compensation, namely thrust to simulate tether compression under LP initial equilibrium conditions is designed to solve the configuration maintaining control problem. Control effects are verified by numerical simulation compared with uncontrolled situation. Simulation results show that the configuration of the three-body ring tethered system could maintain under this active control strategy.
Finite element methods in a simulation code for offshore wind turbines
NASA Astrophysics Data System (ADS)
Kurz, Wolfgang
1994-06-01
Offshore installation of wind turbines will become important for electricity supply in future. Wind conditions above sea are more favorable than on land and appropriate locations on land are limited and restricted. The dynamic behavior of advanced wind turbines is investigated with digital simulations to reduce time and cost in development and design phase. A wind turbine can be described and simulated as a multi-body system containing rigid and flexible bodies. Simulation of the non-linear motion of such a mechanical system using a multi-body system code is much faster than using a finite element code. However, a modal representation of the deformation field has to be incorporated in the multi-body system approach. The equations of motion of flexible bodies due to deformation are generated by finite element calculations. At Delft University of Technology the simulation code DUWECS has been developed which simulates the non-linear behavior of wind turbines in time domain. The wind turbine is divided in subcomponents which are represented by modules (e.g. rotor, tower etc.).
Bulk Chemical and Hf/W Isotopic Consequences of Lossy Accretion
NASA Astrophysics Data System (ADS)
Dwyer, C. A.; Nimmo, F.; Chambers, J.
2013-12-01
The late stages of planetary accretion involve stochastic, large collisions [1]. Many of these collisions likely resulted in hit-and-run events [2] or erosion of existing bodies' crusts [3] or mantles [4]. Here we present a preliminary investigation into the effects of lossy late-stage accretion on the bulk chemistry and isotopic characteristics of the resulting planets. Our model is composed of two parts: (1) an N-body accretion code [5] tracks the orbital and collisional evolution of the terrestrial bodies, including hit-and-run and fragmentation events; (2) post-processing evolves the chemistry in light of radioactive decay and impact-related mixing and partial equilibration. Sixteen runs were performed using the MERCURY N-body code [5]; each run contained Jupiter and Saturn in their current orbits as well as approx 150 initial bodies. Different collisional outcomes including fragmentation are possible depending on the velocity, angle, mass ratio, and total mass of the impact (modified from [6, 7]). The masses of the core and mantle of each body are tracked throughout the simulation. All bodies are assigned an initial mantle mass fraction, y, of 0.7. We track the Hf and W evolution of these bodies. Radioactive decay occurs between impacts. We calculate the effect of an impact by assuming an idealized model of mixing and partial equilibration [8]. The core equilibration factor is a free parameter; we use 0.4. Partition coefficients are assumed constant. Diversity increases as final mass decreases. The range in final y changes from 0.66-0.72 for approx Earth-mass planets to 0.41-1 for the smallest bodies in the simulation. The scatter in tungsten anomaly increases from 0.79-4.0 for approx Earth-mass to 0.11-18 for the smallest masses. This behavior is similar to that observed in our solar system in terms of both bulk and isotopic chemistry. There is no single impact event which defines the final state of the body, therefore talking about a single, specific age of formation does not make sense. Instead, it must be recognized that terrestrial planet formation occurs over a range of time spanning many tens to perhaps hundreds of millions of years. We are currently performing sensitivity analyses to determine the effect on the tungsten isotopic anomalies of the final bodies. [1] Agnor et al. (1999), Icarus 142, 219-237. [2] Asphaug et al. (2006), Nature 439, 155-160. [3] O'Neill & Palme (2008), Phil Trans R Soc Lond A 366, 4205-4238. [4] Benz et al. (2007), Sp SciRev 132, 189-202. [5] Chambers (2013), Icarus, 224, 43-56. [6] Genda et al. (2012), ApJ 744, 137. [7] Leinhardt & Stewart (2012), ApJ 745, 79. [8] Nimmo et al. (2010), EPSL 292, 363-370.
NASA Astrophysics Data System (ADS)
Weber, K. F.
1985-12-01
This study deals with a preliminary investigation of the effects of spin on the axisymmetric flow past a body of revolution. The study has its genesis larger problem of Magnus forces on spinning bodies at angle of attack. However, the fundamental behavior that arises when a spinning body is placed in a uniform stream is still not well understood; therefore, the problem of axisymmetric flow with spin was undertaken. The body consists of a 3-caliber cant-ogive blunted by a spherical nosecap, a 2-caliber cylindrical section, and a 1-caliber boattail. Numerical solutions of the compressible laminar Navier-Stokes equations are obtained using a modified version of the implicit-explicit method developed by MacCormack in 1981. The benchmark problem is the nonspinning body in uniform flow at a Reynolds number of 1.14. The results show that the modified method performs well and allows time steps that are in order of magnitude greater than those permitted by explicit stability criteria.
Szyda, Joanna; Liu, Zengting; Zatoń-Dobrowolska, Magdalena; Wierzbicki, Heliodor; Rzasa, Anna
2008-01-01
We analysed data from a selective DNA pooling experiment with 130 individuals of the arctic fox (Alopex lagopus), which originated from 2 different types regarding body size. The association between alleles of 6 selected unlinked molecular markers and body size was tested by using univariate and multinomial logistic regression models, applying odds ratio and test statistics from the power divergence family. Due to the small sample size and the resulting sparseness of the data table, in hypothesis testing we could not rely on the asymptotic distributions of the tests. Instead, we tried to account for data sparseness by (i) modifying confidence intervals of odds ratio; (ii) using a normal approximation of the asymptotic distribution of the power divergence tests with different approaches for calculating moments of the statistics; and (iii) assessing P values empirically, based on bootstrap samples. As a result, a significant association was observed for 3 markers. Furthermore, we used simulations to assess the validity of the normal approximation of the asymptotic distribution of the test statistics under the conditions of small and sparse samples.
Pluto-Charon solar wind interaction dynamics
NASA Astrophysics Data System (ADS)
Hale, J. P. M.; Paty, C. S.
2017-05-01
This work studies Charon's effects on the Pluto-solar wind interaction using a multifluid MHD model which simulates the interactions of Pluto and Charon with the solar wind as well as with each other. Specifically, it investigates the ionospheric dynamics of a two body system in which either one or both bodies possess an ionosphere. Configurations in which Charon is directly upstream and directly downstream of Pluto are considered. Depending on ionospheric and solar wind conditions, Charon could periodically pass into the solar wind flow upstream of Pluto. The results of this study demonstrate that in these circumstances Charon modifies the upstream flow, both in the case in which Charon possesses an ionosphere, and in the case in which Charon is without an ionosphere. This modification amounts to a change in the gross structure of the interaction region when Charon possesses an ionosphere but is more localized when Charon lacks an ionosphere. Furthermore, evidence is shown that supports Charon acting to partially shield Pluto from the solar wind when it is upstream of Pluto, resulting in a decrease in ionospheric loss by Pluto.
NASA Technical Reports Server (NTRS)
Reznick, Steve
1988-01-01
Transonic Euler/Navier-Stokes computations are accomplished for wing-body flow fields using a computer program called Transonic Navier-Stokes (TNS). The wing-body grids are generated using a program called ZONER, which subdivides a coarse grid about a fighter-like aircraft configuration into smaller zones, which are tailored to local grid requirements. These zones can be either finely clustered for capture of viscous effects, or coarsely clustered for inviscid portions of the flow field. Different equation sets may be solved in the different zone types. This modular approach also affords the opportunity to modify a local region of the grid without recomputing the global grid. This capability speeds up the design optimization process when quick modifications to the geometry definition are desired. The solution algorithm embodied in TNS is implicit, and is capable of capturing pressure gradients associated with shocks. The algebraic turbulence model employed has proven adequate for viscous interactions with moderate separation. Results confirm that the TNS program can successfully be used to simulate transonic viscous flows about complicated 3-D geometries.
X-38 vehicle #131R in first free flight
NASA Technical Reports Server (NTRS)
2000-01-01
The third iteration of the X-38, V-131R, glides down under a giant parafoil towards a landing on Rogers Dry Lake near NASA's Dryden Flight Research Center during its first free flight Nov. 2, 2000. The X-38 prototypes are intended to perfect technology for a planned Crew Return Vehicle (CRV) 'lifeboat' to carry a crew to safety in the event of an emergency on the International Space Station. Free-flight tests of X-38 V-131R are evaluating upgraded avionics and control systems and the aerodynamics of the modified upper body, which is more representative of the final design of the CRV than the two earlier X-38 test craft, including a simulated hatch atop the body. The huge 7,500 square-foot parafoil will enable the CRV to land in the length of a football field after returning from space. The first three X-38's are air-launched from NASA's venerable NB-52B mother ship, while the last version, V-201, will be carried into space by a Space Shuttle and make a fully autonomous re-entry and landing.
Ice hockey shoulder pad design and the effect on head response during shoulder-to-head impacts.
Richards, Darrin; Ivarsson, B Johan; Scher, Irving; Hoover, Ryan; Rodowicz, Kathleen; Cripton, Peter
2016-11-01
Ice hockey body checks involving direct shoulder-to-head contact frequently result in head injury. In the current study, we examined the effect of shoulder pad style on the likelihood of head injury from a shoulder-to-head check. Shoulder-to-head body checks were simulated by swinging a modified Hybrid-III anthropomorphic test device (ATD) with and without shoulder pads into a stationary Hybrid-III ATD at 21 km/h. Tests were conducted with three different styles of shoulder pads (traditional, integrated and tethered) and without shoulder pads for the purpose of control. Head response kinematics for the stationary ATD were measured. Compared to the case of no shoulder pads, the three different pad styles significantly (p < 0.05) reduced peak resultant linear head accelerations of the stationary ATD by 35-56%. The integrated shoulder pads reduced linear head accelerations by an additional 18-21% beyond the other two styles of shoulder pads. The data presented here suggest that shoulder pads can be designed to help protect the head of the struck player in a shoulder-to-head check.
Three-dimensional, ten-moment multifluid simulation of the solar wind interaction with Mercury
NASA Astrophysics Data System (ADS)
Dong, Chuanfei; Hakim, Ammar; Wang, Liang; Bhattacharjee, Amitava; Germaschewski, Kai; Dibraccio, Gina
2017-10-01
We investigate Mercury's magnetosphere by using Gkeyll ten-moment multifluid code that solves the continuity, momentum and pressure tensor equations of both protons and electrons, as well as the full Maxwell equations. Non-ideal effects like the Hall effect, inertia, and tensorial pressures are self-consistently embedded without the need to explicitly solve a generalized Ohm's law. Previously, we have benchmarked this approach in classical test problems like the Orszag-Tang vortex and GEM reconnection challenge problem. We first validate the model by using MESSENGER magnetic field data through data-model comparisons. Both day- and night-side magnetic reconnection are studied in detail. In addition, we include a mantle layer (with a resistivity profile) and a perfect conducting core inside the planet body to accurately represent Mercury's interior. The intrinsic dipole magnetic fields may be modified inside the planetary body due to the weak magnetic moment of Mercury. By including the planetary interior, we can capture the correct plasma boundary locations (e.g., bow shock and magnetopause), especially during a space weather event.
Lyu, Zhou; Wan, Li-Hua; Yang, Yong-Qiang; Tang, Rui; Xu, Lyu-Zi
2016-07-01
Examining the succession pattern of carrion insects on vertebrate carcasses is widely accepted as an effective method to estimate the postmortem interval (PMI) of decayed bodies. Investigation of the community of sarcosaprophagous insects, especially flies and beetles, is the foundation of the succession pattern study. This study aimed to investigate the sarcosaprophagous beetles succession on animal carcasses in the suburban area of southwestern China and to establish a basic catalog for forensic application. The present study was conducted in 2013 in a mountain in Chongqing municipality with modified Schoenly traps. Carcasses of miniature pig were used to simulate human bodies. For most carcasses, five decomposition stages were observed. A total of 2108 adult coleopterans belonging to at least 61 species and 18 families were collected in the study, and most of the specimens occurred at the advanced decay stage. Omosita colon (Linnaeus, 1758), Necrodes nigricornis (Harold, 1875), Necrobia ruficollis (Fabricius, 1775) and Neosilusa ceylonica (Kraatz, 1857) were the dominant species. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Quaternion-valued echo state networks.
Xia, Yili; Jahanchahi, Cyrus; Mandic, Danilo P
2015-04-01
Quaternion-valued echo state networks (QESNs) are introduced to cater for 3-D and 4-D processes, such as those observed in the context of renewable energy (3-D wind modeling) and human centered computing (3-D inertial body sensors). The introduction of QESNs is made possible by the recent emergence of quaternion nonlinear activation functions with local analytic properties, required by nonlinear gradient descent training algorithms. To make QENSs second-order optimal for the generality of quaternion signals (both circular and noncircular), we employ augmented quaternion statistics to introduce widely linear QESNs. To that end, the standard widely linear model is modified so as to suit the properties of dynamical reservoir, typically realized by recurrent neural networks. This allows for a full exploitation of second-order information in the data, contained both in the covariance and pseudocovariances, and a rigorous account of second-order noncircularity (improperness), and the corresponding power mismatch and coupling between the data components. Simulations in the prediction setting on both benchmark circular and noncircular signals and on noncircular real-world 3-D body motion data support the analysis.
NASA Astrophysics Data System (ADS)
Olsson, O.
2018-01-01
We present a novel heuristic derived from a probabilistic cost model for approximate N-body simulations. We show that this new heuristic can be used to guide tree construction towards higher quality trees with improved performance over current N-body codes. This represents an important step beyond the current practice of using spatial partitioning for N-body simulations, and enables adoption of a range of state-of-the-art algorithms developed for computer graphics applications to yield further improvements in N-body simulation performance. We outline directions for further developments and review the most promising such algorithms.
Serino, Andrea; Canzoneri, Elisa; Marzolla, Marilena; di Pellegrino, Giuseppe; Magosso, Elisa
2015-01-01
Stimuli from different sensory modalities occurring on or close to the body are integrated in a multisensory representation of the space surrounding the body, i.e., peripersonal space (PPS). PPS dynamically modifies depending on experience, e.g., it extends after using a tool to reach far objects. However, the neural mechanism underlying PPS plasticity after tool use is largely unknown. Here we use a combined computational-behavioral approach to propose and test a possible mechanism accounting for PPS extension. We first present a neural network model simulating audio-tactile representation in the PPS around one hand. Simulation experiments showed that our model reproduced the main property of PPS neurons, i.e., selective multisensory response for stimuli occurring close to the hand. We used the neural network model to simulate the effects of a tool-use training. In terms of sensory inputs, tool use was conceptualized as a concurrent tactile stimulation from the hand, due to holding the tool, and an auditory stimulation from the far space, due to tool-mediated action. Results showed that after exposure to those inputs, PPS neurons responded also to multisensory stimuli far from the hand. The model thus suggests that synchronous pairing of tactile hand stimulation and auditory stimulation from the far space is sufficient to extend PPS, such as after tool-use. Such prediction was confirmed by a behavioral experiment, where we used an audio-tactile interaction paradigm to measure the boundaries of PPS representation. We found that PPS extended after synchronous tactile-hand stimulation and auditory-far stimulation in a group of healthy volunteers. Control experiments both in simulation and behavioral settings showed that the same amount of tactile and auditory inputs administered out of synchrony did not change PPS representation. We conclude by proposing a simple, biological-plausible model to explain plasticity in PPS representation after tool-use, which is supported by computational and behavioral data. PMID:25698947
Serino, Andrea; Canzoneri, Elisa; Marzolla, Marilena; di Pellegrino, Giuseppe; Magosso, Elisa
2015-01-01
Stimuli from different sensory modalities occurring on or close to the body are integrated in a multisensory representation of the space surrounding the body, i.e., peripersonal space (PPS). PPS dynamically modifies depending on experience, e.g., it extends after using a tool to reach far objects. However, the neural mechanism underlying PPS plasticity after tool use is largely unknown. Here we use a combined computational-behavioral approach to propose and test a possible mechanism accounting for PPS extension. We first present a neural network model simulating audio-tactile representation in the PPS around one hand. Simulation experiments showed that our model reproduced the main property of PPS neurons, i.e., selective multisensory response for stimuli occurring close to the hand. We used the neural network model to simulate the effects of a tool-use training. In terms of sensory inputs, tool use was conceptualized as a concurrent tactile stimulation from the hand, due to holding the tool, and an auditory stimulation from the far space, due to tool-mediated action. Results showed that after exposure to those inputs, PPS neurons responded also to multisensory stimuli far from the hand. The model thus suggests that synchronous pairing of tactile hand stimulation and auditory stimulation from the far space is sufficient to extend PPS, such as after tool-use. Such prediction was confirmed by a behavioral experiment, where we used an audio-tactile interaction paradigm to measure the boundaries of PPS representation. We found that PPS extended after synchronous tactile-hand stimulation and auditory-far stimulation in a group of healthy volunteers. Control experiments both in simulation and behavioral settings showed that the same amount of tactile and auditory inputs administered out of synchrony did not change PPS representation. We conclude by proposing a simple, biological-plausible model to explain plasticity in PPS representation after tool-use, which is supported by computational and behavioral data.
Modified two-layer social force model for emergency earthquake evacuation
NASA Astrophysics Data System (ADS)
Zhang, Hao; Liu, Hong; Qin, Xin; Liu, Baoxi
2018-02-01
Studies of crowd behavior with related research on computer simulation provide an effective basis for architectural design and effective crowd management. Based on low-density group organization patterns, a modified two-layer social force model is proposed in this paper to simulate and reproduce a group gathering process. First, this paper studies evacuation videos from the Luan'xian earthquake in 2012, and extends the study of group organization patterns to a higher density. Furthermore, taking full advantage of the strength in crowd gathering simulations, a new method on grouping and guidance is proposed while using crowd dynamics. Second, a real-life grouping situation in earthquake evacuation is simulated and reproduced. Comparing with the fundamental social force model and existing guided crowd model, the modified model reduces congestion time and truly reflects group behaviors. Furthermore, the experiment result also shows that a stable group pattern and a suitable leader could decrease collision and allow a safer evacuation process.
NASA Technical Reports Server (NTRS)
Watson, Richard D.
2014-01-01
The use of an intravehicular activity (IVA) suit for a spacewalk or extravehicular activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Laboratory (NBL) environment at the Sonny Carter Training Facility near NASA Johnson Space Center in Houston, Texas. The Space Shuttle Advanced Crew Escape Suit was modified to integrate with the Orion spacecraft. The first several missions of the Orion Multi-Purpose Crew Vehicle will not have mass available to carry an EVA-specific suit; therefore, any EVA required will have to be performed by the Modified Advanced Crew Escape Suit (MACES). Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or whether a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects, including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, tool carrying, body stabilization, equipment handling, and tool usage. Hardware configurations included with and without Thermal Micrometeoroid Garment, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on International Space Station mock-ups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstrating the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determining critical sizing factors, and need for adjusting suit work envelope. Early testing demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight-like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission-specific modifications for umbilical management or Primary Life Support System integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.
ERIC Educational Resources Information Center
Fouladi, Rachel T.
2000-01-01
Provides an overview of standard and modified normal theory and asymptotically distribution-free covariance and correlation structure analysis techniques and details Monte Carlo simulation results on Type I and Type II error control. Demonstrates through the simulation that robustness and nonrobustness of structure analysis techniques vary as a…
Hybrid adaptive ascent flight control for a flexible launch vehicle
NASA Astrophysics Data System (ADS)
Lefevre, Brian D.
For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the hybrid adaptive flight controller, development of a Newton's method based online parameter update that is modified to include a step size which regulates the rate of change in the parameter estimates, comparison of the modified Newton's method and recursive least squares online parameter update algorithms, modification of the neural network's input structure to accommodate for the nature of the nonlinearities present in a launch vehicle's ascent flight, examination of both tracking error based and modeling error based neural network weight update laws, and integration of feedback filters for the purpose of preventing harmful interaction between the flight control system and flexible structural modes. To validate the hybrid adaptive controller, a high-fidelity Ares I ascent flight simulator and a classical gain-scheduled proportional-integral-derivative (PID) ascent flight controller were obtained from the NASA Marshall Space Flight Center. The classical PID flight controller is used as a benchmark when analyzing the performance of the hybrid adaptive flight controller. Simulations are conducted which model both nominal and off-nominal flight conditions with structural flexibility of the vehicle either enabled or disabled. First, rigid body ascent simulations are performed with the hybrid adaptive controller under nominal flight conditions for the purpose of selecting the update laws which drive the indirect and direct adaptive components. With the neural network disabled, the results revealed that the recursive least squares online parameter update caused high frequency oscillations to appear in the engine gimbal commands. This is highly undesirable for long and slender launch vehicles, such as the Ares I, because such oscillation of the rocket nozzle could excite unstable structural flex modes. In contrast, the modified Newton's method online parameter update produced smooth control signals and was thus selected for use in the hybrid adaptive launch vehicle flight controller. In the simulations where the online parameter identification algorithm was disabled, the tracking error based neural network weight update law forced the network's output to diverge despite repeated reductions of the adaptive learning rate. As a result, the modeling error based neural network weight update law (which generated bounded signals) is utilized by the hybrid adaptive controller in all subsequent simulations. Comparing the PID and hybrid adaptive flight controllers under nominal flight conditions in rigid body ascent simulations showed that their tracking error magnitudes are similar for a period of time during the middle of the ascent phase. Though the PID controller performs better for a short interval around the 20 second mark, the hybrid adaptive controller performs far better from roughly 70 to 120 seconds. Elevating the aerodynamic loads by increasing the force and moment coefficients produced results very similar to the nominal case. However, applying a 5% or 10% thrust reduction to the first stage rocket motor causes the tracking error magnitude observed by the PID controller to be significantly elevated and diverge rapidly as the simulation concludes. In contrast, the hybrid adaptive controller steadily maintains smaller errors (often less than 50% of the corresponding PID value). Under the same sets of flight conditions with flexibility enabled, the results exhibit similar trends with the hybrid adaptive controller performing even better in each case. Again, the reduction of the first stage rocket motor's thrust clearly illustrated the superior robustness of the hybrid adaptive flight controller.
Galactic Cosmic Ray Simulator at the NASA Space Radiation Laboratory
NASA Technical Reports Server (NTRS)
Norbury, John W.; Slaba, Tony C.; Rusek, Adam
2015-01-01
The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment is to attempt to reproduce the unmodified, external GCR spectrum at a ground based accelerator. A possibly better approach would use the modified, shielded tissue spectrum, to select accelerator beams impinging on biological targets. NASA plans for implementation of a GCR simulator at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory will be discussed.
Spike-Nosed Bodies and Forward Injected Jets in Supersonic Flow
NASA Technical Reports Server (NTRS)
Gilinsky, M.; Washington, C.; Blankson, I. M.; Shvets, A. I.
2002-01-01
The paper contains new numerical simulation and experimental test results of blunt body drag reduction using thin spikes mounted in front of a body and one- or two-phase jets injected against a supersonic flow. Numerical simulations utilizing the NASA CFL3D code were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory (FM&AL) and experimental tests were conducted using the facilities of the IM/MSU Aeromechanics and Gas Dynamics Laboratory. Previous results were presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Those results were based on some experimental and numerical simulation tests for supersonic flow around spike-nosed or shell-nosed bodies, and numerical simulations were conducted only for a single spike-nosed or shell-nosed body at zero attack angle, alpha=0. In this paper, experimental test results of gas, liquid and solid particle jet injection against a supersonic flow are presented. In addition, numerical simulation results for supersonic flow around a multiple spike-nosed body with non-zero attack angles and with a gas and solid particle forward jet injection are included. Aerodynamic coefficients: drag, C(sub D), lift, C(sub L), and longitudinal momentum, M(sub z), obtained by numerical simulation and experimental tests are compared and show good agreement.
Spike-Nosed Bodies and Forward Injected Jets in Supersonic Flow
NASA Technical Reports Server (NTRS)
Gilinsky, M.; Washington, C.; Blankson, I. M.; Shvets, A. I.
2002-01-01
The paper contains new numerical simulation and experimental test results of blunt body drag reduction using thin spikes mounted in front of a body and one- or two-phase jets injected against a supersonic flow. Numerical simulations utilizing the NASA CFL3D code were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory (FM&AL) and experimental tests were conducted using the facilities of the IM/MSU Aeromechanics and Gas Dynamics Laboratory. Previous results were presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Those results were based on some experimental and numerical simulation tests for supersonic flow around spike-nosed or shell-nosed bodies, and numerical simulations were conducted only for a single spike-nosed or shell-nosed body at zero attack angle, alpha = 0 degrees. In this paper, experimental test results of gas, liquid and solid particle jet injection against a supersonic flow are presented. In addition, numerical simulation results for supersonic flow around a multiple spike-nosed body with non-zero attack angles and with a gas and solid particle forward jet injection are included. Aerodynamic coefficients: drag, C (sub D), lift, C(sub L), and longitudinal momentum, M(sub z), obtained by numerical simulation and experimental tests are compared and show good agreement.
A new 6-part collisional model of the Main Asteroid Belt
NASA Astrophysics Data System (ADS)
Broz, Miroslav; Cibulkova, H.
2013-10-01
In this work, we constructed a new model for the collisional evolution of the Main Asteroid Belt. Our goals are to test the scaling law from the work of Benz & Asphaug (1999) and ascertain if it can be used for the whole belt. We want to find initial size-frequency distributions (SFDs) for the considered six parts of the belt, and to verify if the number of asteroid families created during the simulation matches the number of observed families as well. We used new observational data from the WISE satellite (Masiero et al., 2011) to construct the observed SFDs. We simulated mutual collisions of asteroids with a modified Boulder code (Morbidelli et al., 2009), in which the results of hydrodynamic (SPH) simulations from the work of Durda et al. (2007) are included. Because material characteristics can affect breakups, we created two models - for monolithic asteroids and for rubble-piles (Benavidez et al., 2012). To explain the observed SFDs in the size range D = 1 to 10 km we have to also account for dynamical depletion due to the Yarkovsky effect. Our work may also serve as a motivation for further SPH simulations of disruptions of smaller targets (parent body size of the order of 1 km). The work of MB was supported by grant GACR 13-013085 of the Czech Science Foundation and the Research Programme MSM0021620860 of the Czech Ministry of Education.
Pérez-Andújar, Angélica; Newhauser, Wayne D; Deluca, Paul M
2009-02-21
In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient.
NASA Astrophysics Data System (ADS)
Wu, Guosong; Xu, Ruizhen; Feng, Kai; Wu, Shuilin; Wu, Zhengwei; Sun, Guangyong; Zheng, Gang; Li, Guangyao; Chu, Paul K.
2012-07-01
Aluminum ion implantation is employed to modify pure Mg as well as AZ31 and AZ91 magnesium alloys and their surface degradation behavior in simulated body fluids is studied. Polarization tests performed in conjunction with scanning electron microscopy (SEM) reveal that the surface corrosion resistance after Al ion implantation is improved appreciably. This enhancement can be attributed to the formation of a gradient surface structure with a gradual transition from an Al-rich oxide layer to Al-rich metal layer. Compared to the high Al-content magnesium alloy (AZ91), a larger reduction in the degradation rate is achieved from pure magnesium and AZ31. Our results reveal that the surface corrosion resistance of Mg alloys with no or low Al content can be improved by Al ion implantation.
NASA Technical Reports Server (NTRS)
Zeman, Otto
1994-01-01
This work investigates the turbulent constitutive relation when turbulence is subjected to solid body rotation. Laws regarding spectra and asymptotic decay of rotating homogeneous turbulence were confirmed through large-eddy simulation (LES) computations. Rotating turbulent flows exist in many industrial, geophysical, and astrophysical applications. From Lagrangian analysis a relation between turbulent stress and strain in rotating homogeneous turbulence was inferred. This relation was used to derive the spectral energy flux and, ultimately, the energy spectrum form. If the rotation wavenumber k(sub Omega) lies in the inertial subrange, then for wavenumbers less than k(sub Omega) the turbulence motions are affected by rotation and the energy spectrum slope is modified. Energy decay laws inferred in other reports and the present results suggest a modification of the epsilon model equation and eddy viscosity in k-epsilon models.
Self-perpetuating Spiral Arms in Disk Galaxies
NASA Astrophysics Data System (ADS)
D'Onghia, Elena; Vogelsberger, Mark; Hernquist, Lars
2013-03-01
The causes of spiral structure in galaxies remain uncertain. Leaving aside the grand bisymmetric spirals with their own well-known complications, here we consider the possibility that multi-armed spiral features originate from density inhomogeneities orbiting within disks. Using high-resolution N-body simulations, we follow the motions of stars under the influence of gravity, and show that mass concentrations with properties similar to those of giant molecular clouds can induce the development of spiral arms through a process termed swing amplification. However, unlike in earlier work, we demonstrate that the eventual response of the disk can be highly non-linear, significantly modifying the formation and longevity of the resulting patterns. Contrary to expectations, ragged spiral structures can thus survive at least in a statistical sense long after the original perturbing influence has been removed.
Calcium Phosphate Growth at Electropolished Titanium Surfaces
Ajami, Elnaz; Aguey-Zinsou, Kondo-Francois
2012-01-01
This work investigated the ability of electropolished Ti surface to induce Hydroxyapatite (HA) nucleation and growth in vitro via a biomimetic method in Simulated Body Fluid (SBF). The HA induction ability of Ti surface upon electropolishing was compared to that of Ti substrates modified with common chemical methods including alkali, acidic and hydrogen peroxide treatments. Our results revealed the excellent ability of electropolished Ti surfaces in inducing the formation of bone-like HA at the Ti/SBF interface. The chemical composition, crystallinity and thickness of the HA coating obtained on the electropolished Ti surface was found to be comparable to that achieved on the surface of alkali treated Ti substrate, one of the most effective and popular chemical treatments. The surface characteristics of electropolished Ti contributing to HA growth were discussed thoroughly. PMID:24955535
Aspects relating to stability of modified passive stratum on TiO2 nanostructure
NASA Astrophysics Data System (ADS)
Ionita, Daniela; Mazare, Anca; Portan, Diana; Demetrescu, Ioana
2011-04-01
Two kinds of nanotube structures differing from the point of view of their dimensions were obtained using anodizing in two different fluoride electrolytes and these structures were investigated regarding stability. The nanotubes have diameters of around 100 and 65 nm, respectively, and the testing solutions were simulated body fluids (SBF) and NaCl 0.9%. As stability experiments, cyclic voltammetry was performed and ions release was measured. The quantity of released cations in time as a kinetic aspect of passive stratum behavior was followed with an inductively coupled plasma mass spectrometer (ICP-MS) and apatite forming in SBF was found with infrared spectra. This study led to a comparison between the modification and the behavior of passive stratum on nanotubes as a function of their diameters.
Space Trajectories Error Analysis (STEAP) Programs. Volume 1: Analytic manual, update
NASA Technical Reports Server (NTRS)
1971-01-01
Manual revisions are presented for the modified and expanded STEAP series. The STEAP 2 is composed of three independent but related programs: NOMAL for the generation of n-body nominal trajectories performing a number of deterministic guidance events; ERRAN for the linear error analysis and generalized covariance analysis along specific targeted trajectories; and SIMUL for testing the mathematical models used in the navigation and guidance process. The analytic manual provides general problem description, formulation, and solution and the detailed analysis of subroutines. The programmers' manual gives descriptions of the overall structure of the programs as well as the computational flow and analysis of the individual subroutines. The user's manual provides information on the input and output quantities of the programs. These are updates to N69-36472 and N69-36473.
Danwanichakul, Panu; Glandt, Eduardo D
2004-11-15
We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.
NASA Astrophysics Data System (ADS)
Danwanichakul, Panu; Glandt, Eduardo D.
2004-11-01
We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.
Parametric model of human body shape and ligaments for patient-specific epidural simulation.
Vaughan, Neil; Dubey, Venketesh N; Wee, Michael Y K; Isaacs, Richard
2014-10-01
This work is to build upon the concept of matching a person's weight, height and age to their overall body shape to create an adjustable three-dimensional model. A versatile and accurate predictor of body size and shape and ligament thickness is required to improve simulation for medical procedures. A model which is adjustable for any size, shape, body mass, age or height would provide ability to simulate procedures on patients of various body compositions. Three methods are provided for estimating body circumferences and ligament thicknesses for each patient. The first method is using empirical relations from body shape and size. The second method is to load a dataset from a magnetic resonance imaging (MRI) scan or ultrasound scan containing accurate ligament measurements. The third method is a developed artificial neural network (ANN) which uses MRI dataset as a training set and improves accuracy using error back-propagation, which learns to increase accuracy as more patient data is added. The ANN is trained and tested with clinical data from 23,088 patients. The ANN can predict subscapular skinfold thickness within 3.54 mm, waist circumference 3.92 cm, thigh circumference 2.00 cm, arm circumference 1.21 cm, calf circumference 1.40 cm, triceps skinfold thickness 3.43 mm. Alternative regression analysis method gave overall slightly less accurate predictions for subscapular skinfold thickness within 3.75 mm, waist circumference 3.84 cm, thigh circumference 2.16 cm, arm circumference 1.34 cm, calf circumference 1.46 cm, triceps skinfold thickness 3.89 mm. These calculations are used to display a 3D graphics model of the patient's body shape using OpenGL and adjusted by 3D mesh deformations. A patient-specific epidural simulator is presented using the developed body shape model, able to simulate needle insertion procedures on a 3D model of any patient size and shape. The developed ANN gave the most accurate results for body shape, size and ligament thickness. The resulting simulator offers the experience of simulating needle insertions accurately whilst allowing for variation in patient body mass, height or age. Copyright © 2014 Elsevier B.V. All rights reserved.
Tham, Leung-Mun; Lee, Heow Pueh; Lu, Chun
2007-07-01
We evaluated the effectiveness of modified lithotriptor shock waves using computer models. Finite element models were used to simulate the propagation of lithotriptor shock waves in human renal calculi in vivo. Kidney stones were assumed to be spherical, homogeneous, isotropic and linearly elastic, and immersed in a continuum fluid. Single and tandem shock wave pulses modified to intensify the collapse of cavitation bubbles near the stone surface to increase fragmentation efficiency and suppress the expansion of intraluminal bubbles for decreased vascular injury were analyzed. The effectiveness of the modified shock waves was assessed by comparing the states of loading in the renal calculi induced by these shock waves to those produced by conventional shock waves. Our numerical simulations revealed that modified shock waves produced marginally lower stresses in spherical renal calculi than those produced by conventional shock waves. Tandem pulses of conventional or modified shock waves produced peak stresses in the front and back halves of the renal calculi. However, the single shock wave pulses generated significant peak stresses in only the back halves of the renal calculi. Our numerical simulations suggest that for direct stress wave induced fragmentation modified shock waves should be as effective as conventional shock waves for fragmenting kidney stones. Also, with a small interval of 20 microseconds between the pulses tandem pulse lithotripsy using modified or conventional shock waves could be considerably more effective than single pulse lithotripsy for fragmenting kidney stones.
a Modified Genetic Algorithm for Finding Fuzzy Shortest Paths in Uncertain Networks
NASA Astrophysics Data System (ADS)
Heidari, A. A.; Delavar, M. R.
2016-06-01
In realistic network analysis, there are several uncertainties in the measurements and computation of the arcs and vertices. These uncertainties should also be considered in realizing the shortest path problem (SPP) due to the inherent fuzziness in the body of expert's knowledge. In this paper, we investigated the SPP under uncertainty to evaluate our modified genetic strategy. We improved the performance of genetic algorithm (GA) to investigate a class of shortest path problems on networks with vague arc weights. The solutions of the uncertain SPP with considering fuzzy path lengths are examined and compared in detail. As a robust metaheuristic, GA algorithm is modified and evaluated to tackle the fuzzy SPP (FSPP) with uncertain arcs. For this purpose, first, a dynamic operation is implemented to enrich the exploration/exploitation patterns of the conventional procedure and mitigate the premature convergence of GA technique. Then, the modified GA (MGA) strategy is used to resolve the FSPP. The attained results of the proposed strategy are compared to those of GA with regard to the cost, quality of paths and CPU times. Numerical instances are provided to demonstrate the success of the proposed MGA-FSPP strategy in comparison with GA. The simulations affirm that not only the proposed technique can outperform GA, but also the qualities of the paths are effectively improved. The results clarify that the competence of the proposed GA is preferred in view of quality quantities. The results also demonstrate that the proposed method can efficiently be utilized to handle FSPP in uncertain networks.
Pashkuleva, I; Marques, A P; Vaz, F; Reis, R L
2005-01-01
The surface modification of three starch based polymeric biomaterials, using a KMnO4/HNO3 oxidizing system, and the effect of that modification on the osteoblastic cell adhesion has been investigated. The rationale of this work is as follows--starch based polymers have been proposed for use as tissue engineering scaffolds in several publications. It is known that in biodegradable systems it is quite difficult to have both cell adhesion and proliferation. Starch based polymers have shown to perform better than poly-lactic acid based materials but there is still room for improvement. This particular work is aimed at enhancing cell adhesion and proliferation on the surface of several starch based polymer blends that are being proposed as tissue engineering scaffolds. The surface of the polymeric biomaterials was chemically modified using a KMnO4/HNO3 system. This treatment resulted in more hydrophilic surfaces, which was confirmed by contact angle measurements. The effect of the treatment on the bioactivity of the surface modified biomaterials was also studied. The bioactivity tests, performed in simulated body fluid after biomimetic coating, showed that a dense film of calcium phosphate was formed after 30 days. Finally, human osteoblast-like cells were cultured on unmodified (control) and modified materials in order to observe the effect of the presence of higher numbers of polar groups on the adhesion and proliferation of those cells. Two of the modified polymers presented changes in the adhesion behavior and a significant increase in the proliferation rate kinetics when compared to the unmodified controls.
COLA with scale-dependent growth: applications to screened modified gravity models
NASA Astrophysics Data System (ADS)
Winther, Hans A.; Koyama, Kazuya; Manera, Marc; Wright, Bill S.; Zhao, Gong-Bo
2017-08-01
We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f(R) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative to ΛCDM even when using a fairly small number of COLA time steps.
Fatigue properties on the failure mode of a dental implant in a simulated body environment
NASA Astrophysics Data System (ADS)
Kim, Min Gun
2011-10-01
This study undertook a fatigue test in a simulated body environment that has reflected the conditions (such as the body fluid conditions, the micro-current of cell membranes, and the chewing force) within a living body. First, the study sought to evaluate the fatigue limit under normal conditions and in a simulated body environment, looking into the governing factors of implant fatigue strength through an observation of the fracture mode. In addition, the crack initiation behavior of a tungsten-carbide-coated abutment screw was examined. The fatigue limit of an implant within the simulated body environment decreased by 19 % compared to the limit noted under normal conditions. Several corrosion pits were observed on the abutment screw after the fatigue test in the simulated body environment. For the model used in this study, the implant fracture was mostly governed by the fatigue failure of the abutment screw; accordingly, the influence by the fixture on the fatigue strength of the implant was noted to be low. For the abutment screw coated with tungsten carbide, several times the normal amount of stress was found to be concentrated on the contact part due to the elastic interaction between the coating material and the base material.
Simulation of the West African Monsoon using the MIT Regional Climate Model
NASA Astrophysics Data System (ADS)
Im, Eun-Soon; Gianotti, Rebecca L.; Eltahir, Elfatih A. B.
2013-04-01
We test the performance of the MIT Regional Climate Model (MRCM) in simulating the West African Monsoon. MRCM introduces several improvements over Regional Climate Model version 3 (RegCM3) including coupling of Integrated Biosphere Simulator (IBIS) land surface scheme, a new albedo assignment method, a new convective cloud and rainfall auto-conversion scheme, and a modified boundary layer height and cloud scheme. Using MRCM, we carried out a series of experiments implementing two different land surface schemes (IBIS and BATS) and three convection schemes (Grell with the Fritsch-Chappell closure, standard Emanuel, and modified Emanuel that includes the new convective cloud scheme). Our analysis primarily focused on comparing the precipitation characteristics, surface energy balance and large scale circulations against various observations. We document a significant sensitivity of the West African monsoon simulation to the choices of the land surface and convection schemes. In spite of several deficiencies, the simulation with the combination of IBIS and modified Emanuel schemes shows the best performance reflected in a marked improvement of precipitation in terms of spatial distribution and monsoon features. In particular, the coupling of IBIS leads to representations of the surface energy balance and partitioning that are consistent with observations. Therefore, the major components of the surface energy budget (including radiation fluxes) in the IBIS simulations are in better agreement with observation than those from our BATS simulation, or from previous similar studies (e.g Steiner et al., 2009), both qualitatively and quantitatively. The IBIS simulations also reasonably reproduce the dynamical structure of vertically stratified behavior of the atmospheric circulation with three major components: westerly monsoon flow, African Easterly Jet (AEJ), and Tropical Easterly Jet (TEJ). In addition, since the modified Emanuel scheme tends to reduce the precipitation amount, it improves the precipitation over regions suffering from systematic wet bias.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, Y.; Sato, T.
The resonance energies of strange dibaryons are investigated with the use of the KNN-{pi}YN coupled-channels Faddeev equation. It is found that the pole positions of the predicted three-body amplitudes are significantly modified when the three-body coupled-channels dynamics is approximated, as is done in the literature, by the effective two-body KN interactions.
Guleyupoglu, B; Schap, J; Kusano, K D; Gayzik, F S
2017-07-04
The objective of this study is to use a validated finite element model of the human body and a certified model of an anthropomorphic test dummy (ATD) to evaluate the effect of simulated precrash braking on driver kinematics, restraint loads, body loads, and computed injury criteria in 4 commonly injured body regions. The Global Human Body Models Consortium (GHBMC) 50th percentile male occupant (M50-O) and the Humanetics Hybrid III 50th percentile models were gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and driver airbag. Fifteen simulations per model (30 total) were conducted, including 4 scenarios at 3 severity levels: median, severe, and the U.S. New Car Assessment Program (U.S.-NCAP) and 3 extra per model with high-intensity braking. The 4 scenarios were no precollision system (no PCS), forward collision warning (FCW), FCW with prebraking assist (FCW+PBA), and FCW and PBA with autonomous precrash braking (FCW + PBA + PB). The baseline ΔV was 17, 34, and 56.4 kph for median, severe, and U.S.-NCAP scenarios, respectively, and were based on crash reconstructions from NASS/CDS. Pulses were then developed based on the assumed precrash systems equipped. Restraint properties and the generic pulse used were based on literature. In median crash severity cases, little to no risk (<10% risk for Abbreviated injury Scale [AIS] 3+) was found for all injury measures for both models. In the severe set of cases, little to no risk for AIS 3+ injury was also found for all injury measures. In NCAP cases, highest risk was typically found with No PCS and lowest with FCW + PBA + PB. In the higher intensity braking cases (1.0-1.4 g), head injury criterion (HIC), brain injury criterion (BrIC), and chest deflection injury measures increased with increased braking intensity. All other measures for these cases tended to decrease. The ATD also predicted and trended similar to the human body models predictions for both the median, severe, and NCAP cases. Forward excursion for both models decreased across median, severe, and NCAP cases and diverged from each other in cases above 1.0 g of braking intensity. The addition of precrash systems simulated through reduced precrash speeds caused reductions in some injury criteria, whereas others (chest deflection, HIC, and BrIC) increased due to a modified occupant position. The human model and ATD models trended similarly in nearly all cases with greater risk indicated in the human model. These results suggest the need for integrated safety systems that have restraints that optimize the occupant's position during precrash braking and prior to impact.
Massardier-Galatà, Lauriane; Morinay, Jennifer; Bailleul, Frédéric; Wajnberg, Eric; Guinet, Christophe; Coquillard, Patrick
2017-01-01
In response to climate warming, a southward shift in productive frontal systems serving as the main foraging sites for many top predator species is likely to occur in Subantarctic areas. Central place foragers, such as seabirds and pinnipeds, are thus likely to cope with an increase in the distance between foraging locations and their land-based breeding colonies. Understanding how central place foragers should modify their foraging behavior in response to changes in prey accessibility appears crucial. A spatially explicit individual-based simulation model (Marine Central Place Forager Simulator (MarCPFS)), including bio-energetic components, was built to evaluate effects of possible changes in prey resources accessibility on individual performances and breeding success. The study was calibrated on a particular example: the Antarctic fur seal (Arctocephalus gazella), which alternates between oceanic areas in which females feed and the land-based colony in which they suckle their young over a 120 days rearing period. Our model shows the importance of the distance covered to feed and prey aggregation which appeared to be key factors to which animals are highly sensitive. Memorization and learning abilities also appear to be essential breeding success traits. Females were found to be most successful for intermediate levels of prey aggregation and short distance to the resource, resulting in optimal female body length. Increased distance to resources due to climate warming should hinder pups' growth and survival while female body length should increase.
Massardier-Galatà, Lauriane; Morinay, Jennifer; Bailleul, Frédéric; Wajnberg, Eric; Guinet, Christophe; Coquillard, Patrick
2017-01-01
In response to climate warming, a southward shift in productive frontal systems serving as the main foraging sites for many top predator species is likely to occur in Subantarctic areas. Central place foragers, such as seabirds and pinnipeds, are thus likely to cope with an increase in the distance between foraging locations and their land-based breeding colonies. Understanding how central place foragers should modify their foraging behavior in response to changes in prey accessibility appears crucial. A spatially explicit individual-based simulation model (Marine Central Place Forager Simulator (MarCPFS)), including bio-energetic components, was built to evaluate effects of possible changes in prey resources accessibility on individual performances and breeding success. The study was calibrated on a particular example: the Antarctic fur seal (Arctocephalus gazella), which alternates between oceanic areas in which females feed and the land-based colony in which they suckle their young over a 120 days rearing period. Our model shows the importance of the distance covered to feed and prey aggregation which appeared to be key factors to which animals are highly sensitive. Memorization and learning abilities also appear to be essential breeding success traits. Females were found to be most successful for intermediate levels of prey aggregation and short distance to the resource, resulting in optimal female body length. Increased distance to resources due to climate warming should hinder pups’ growth and survival while female body length should increase. PMID:28355282
Zhao, Jingming; Hwang, K H; Choi, W S; Shin, S J; Lee, J K
2016-02-01
Titanium as one kind of biomaterials comes in direct contact with the body, making evaluation of biocompatibility an important aspect to biomaterials development. Surface chemistry of titanium plays an important role in osseointegration. Different surface modification alters the surface chemistry and result in different biological response. In this study, three kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coating successfully formed on the Ti surfaces in simulated body fluid. Strong mixed acid increased the roughness of the metal surface, because the porous and rough surface allows better adhesion between Ca-P coatings and substrates. After modification of titanium surface by mixed acidic solution and subsequently H2O2/HCL treatment evaluation of biocompatibility was conducted from hydroxyapatite formation by biomimetic process and cell viability on modified titanium surface. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Results from this study indicated that surface treatment methods affect the surface morphology, type of TiO2 layer formed and subsequent apatite deposition and biological responses. The thermo scientific alamarblue cell viability assay reagent is used to quantitatively measure the viability of mammalian cell lines, bacteria and fungi by incorporating a rapid, sensitive and reliable fluorometric/colorimetric growth indicator, without any toxic and side effect to cell line. In addition, mixed acid treatment uses a lower temperature and shorter time period than widely used alkali treatment.
Quantitative cardiac SPECT reconstruction with reduced image degradation due to patient anatomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, B.M.W.; Zhao, X.D.; Gregoriou, G.K.
1994-12-01
Patient anatomy has complicated effects on cardiac SPECT images. The authors investigated reconstruction methods which substantially reduced these effects for improved image quality. A 3D mathematical cardiac-torso (MCAT) phantom which models the anatomical structures in the thorax region were used in the study. The phantom was modified to simulate variations in patient anatomy including regions of natural thinning along the myocardium, body size, diaphragmatic shape, gender, and size and shape of breasts for female patients. Distributions of attenuation coefficients and Tl-201 uptake in different organs in a normal patient were also simulated. Emission projection data were generated from the phantomsmore » including effects of attenuation and detector response. The authors have observed the attenuation-induced artifacts caused by patient anatomy in the conventional FBP reconstructed images. Accurate attenuation compensation using iterative reconstruction algorithms and attenuation maps substantially reduced the image artifacts and improved quantitative accuracy. They conclude that reconstruction methods which accurately compensate for non-uniform attenuation can substantially reduce image degradation caused by variations in patient anatomy in cardiac SPECT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cataneo, Matteo; Rapetti, David; Lombriser, Lucas
We refine the mass and environment dependent spherical collapse model of chameleon f ( R ) gravity by calibrating a phenomenological correction inspired by the parameterized post-Friedmann framework against high-resolution N -body simulations. We employ our method to predict the corresponding modified halo mass function, and provide fitting formulas to calculate the enhancement of the f ( R ) halo abundance with respect to that of General Relativity (GR) within a precision of ∼< 5% from the results obtained in the simulations. Similar accuracy can be achieved for the full f ( R ) mass function on the condition thatmore » the modeling of the reference GR abundance of halos is accurate at the percent level. We use our fits to forecast constraints on the additional scalar degree of freedom of the theory, finding that upper bounds competitive with current Solar System tests are within reach of cluster number count analyses from ongoing and upcoming surveys at much larger scales. Importantly, the flexibility of our method allows also for this to be applied to other scalar-tensor theories characterized by a mass and environment dependent spherical collapse.« less
Structural evolution of Colloidal Gels under Flow
NASA Astrophysics Data System (ADS)
Boromand, Arman; Maia, Joao; Jamali, Safa
Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.
Extending a CAD-Based Cartesian Mesh Generator for the Lattice Boltzmann Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, J Nathan; Inclan, Eric J; Joshi, Abhijit S
2012-01-01
This paper describes the development of a custom preprocessor for the PaRAllel Thermal Hydraulics simulations using Advanced Mesoscopic methods (PRATHAM) code based on an open-source mesh generator, CartGen [1]. PRATHAM is a three-dimensional (3D) lattice Boltzmann method (LBM) based parallel flow simulation software currently under development at the Oak Ridge National Laboratory. The LBM algorithm in PRATHAM requires a uniform, coordinate system-aligned, non-body-fitted structured mesh for its computational domain. CartGen [1], which is a GNU-licensed open source code, already comes with some of the above needed functionalities. However, it needs to be further extended to fully support the LBM specificmore » preprocessing requirements. Therefore, CartGen is being modified to (i) be compiler independent while converting a neutral-format STL (Stereolithography) CAD geometry to a uniform structured Cartesian mesh, (ii) provide a mechanism for PRATHAM to import the mesh and identify the fluid/solid domains, and (iii) provide a mechanism to visually identify and tag the domain boundaries on which to apply different boundary conditions.« less
Lim, Hooi Been; Baumann, Dirk; Li, Er-Ping
2011-03-01
Wireless body area network (WBAN) is a new enabling system with promising applications in areas such as remote health monitoring and interpersonal communication. Reliable and optimum design of a WBAN system relies on a good understanding and in-depth studies of the wave propagation around a human body. However, the human body is a very complex structure and is computationally demanding to model. This paper aims to investigate the effects of the numerical model's structure complexity and feature details on the simulation results. Depending on the application, a simplified numerical model that meets desired simulation accuracy can be employed for efficient simulations. Measurements of ultra wideband (UWB) signal propagation along a human arm are performed and compared to the simulation results obtained with numerical arm models of different complexity levels. The influence of the arm shape and size, as well as tissue composition and complexity is investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, M.S., E-mail: meena.moran@yale.ed; Yale New Haven Hospital, New Haven, Connecticut and William W. Backus Hospital, Norwich, Connecticut; Castrucci, W.A.
2010-03-15
Purpose: Low-lying pelvic malignancies often require simultaneous radiation to pelvis and inguinal nodes. We previously reported improved homogeneity with the modified segmental boost technique (MSBT) compared to that with traditional methods, using phantom models. Here we report our institutional clinical experience with MSBT. Methods and Materials: MSBT patients from May 2001 to March 2007 were evaluated. Parameters analyzed included isocenter/multileaf collimation shifts, time per fraction (four fields), monitor units (MU)/fraction, femoral doses, maximal dose relative to body mass index, and inguinal node depth. In addition, a dosimetric comparison of the MSBT versus intensity modulated radiation therapy (IMRT) was conducted. Results:more » Of the 37 MSBT patients identified, 32 were evaluable. Port film adjustments were required in 6% of films. Median values for each analyzed parameter were as follows: MU/fraction, 298 (range, 226-348); delivery time, 4 minutes; inguinal depth, 4.5 cm; volume receiving 45 Gy (V45), 7%; V27.5, 87%; body mass index, 25 (range, 16.0-33.8). Inguinal dose was 100% in all cases; in-field inhomogeneity ranged from 111% to 118%. IMRT resulted in significantly decreased dose to normal tissue but required more time for treatment planning and a higher number of MUs (1,184 vs. 313 MU). Conclusions: In our clinical experience, the mono-isocentric MSBT provides a high degree of accuracy, improved homogeneity compared with traditional techniques, ease of simulation, treatment planning, treatment delivery, and acceptable femoral doses for pelvic/inguinal radiation fields requiring 45 to 50.4 Gy. In addition, the MSBT delivers a relatively uniform dose distribution throughout the treatment volume, despite varying body habitus. Clinical scenarios for the use of MSBT vs. intensity-modulated radiation therapy are discussed. To our knowledge, this is the first study reporting the utility of MSBT in the clinical setting.« less
Development of numerical techniques for simulation of magnetogasdynamics and hypersonic chemistry
NASA Astrophysics Data System (ADS)
Damevin, Henri-Marie
Magnetogasdynamics, the science concerned with the mutual interaction between electromagnetic field and flow of electrically conducting gas, offers promising advances in flow control and propulsion of future hypersonic vehicles. Numerical simulations are essential for understanding phenomena, and for research and development. The current dissertation is devoted to the development and validation of numerical algorithms for the solution of multidimensional magnetogasdynamic equations and the simulation of hypersonic high-temperature effects. Governing equations are derived, based on classical magnetogasdynamic assumptions. Two sets of equations are considered, namely the full equations and equations in the low magnetic Reynolds number approximation. Equations are expressed in a suitable formulation for discretization by finite differences in a computational space. For the full equations, Gauss law for magnetism is enforced using Powell's methodology. The time integration method is a four-stage modified Runge-Kutta scheme, amended with a Total Variation Diminishing model in a postprocessing stage. The eigensystem, required for the Total Variation Diminishing scheme, is derived in generalized three-dimensional coordinate system. For the simulation of hypersonic high-temperature effects, two chemical models are utilized, namely a nonequilibrium model and an equilibrium model. A loosely coupled approach is implemented to communicate between the magnetogasdynamic equations and the chemical models. The nonequilibrium model is a one-temperature, five-species, seventeen-reaction model solved by an implicit flux-vector splitting scheme. The chemical equilibrium model computes thermodynamics properties using curve fit procedures. Selected results are provided, which explore the different features of the numerical algorithms. The shock-capturing properties are validated for shock-tube simulations using numerical solutions reported in the literature. The computations of superfast flows over corners and in convergent channels demonstrate the performances of the algorithm in multiple dimensions. The implementation of diffusion terms is validated by solving the magnetic Rayleigh problem and Hartmann problem, for which analytical solutions are available. Prediction of blunt-body type flow are investigated and compared with numerical solutions reported in the literature. The effectiveness of the chemical models for hypersonic flow over blunt body is examined in various flow conditions. It is shown that the proposed schemes perform well in a variety of test cases, though some limitations have been identified.
NASA Astrophysics Data System (ADS)
Dong, Qi; Wan, Guoshun; Xu, Yongzheng; Guo, Yunli; Du, Tianxiang; Yi, Xiaosu; Jia, Yuxi
2017-12-01
The numerical model of carbon fiber reinforced polymer (CFRP) laminates with electrically modified interlayers subjected to lightning strike is constructed through finite element simulation, in which both intra-laminar and inter-laminar lightning damages are considered by means of coupled electrical-thermal-pyrolytic analysis method. Then the lightning damage extents including the damage volume and maximum damage depth are investigated. The results reveal that the simulated lightning damages could be qualitatively compared to the experimental counterparts of CFRP laminates with interlayers modified by nickel-coated multi-walled carbon nanotubes (Ni-MWCNTs). With higher electrical conductivity of modified interlayer and more amount of modified interlayers, both damage volume and maximum damage depth are reduced. This work provides an effective guidance to the anti-lightning optimization of CFRP laminates.
NASA Astrophysics Data System (ADS)
Ševeček, P.; Brož, M.; Nesvorný, D.; Enke, B.; Durda, D.; Walsh, K.; Richardson, D. C.
2017-11-01
We report on our study of asteroidal breakups, i.e. fragmentations of targets, subsequent gravitational reaccumulation and formation of small asteroid families. We focused on parent bodies with diameters Dpb = 10km . Simulations were performed with a smoothed-particle hydrodynamics (SPH) code combined with an efficient N-body integrator. We assumed various projectile sizes, impact velocities and impact angles (125 runs in total). Resulting size-frequency distributions are significantly different from scaled-down simulations with Dpb = 100km targets (Durda et al., 2007). We derive new parametric relations describing fragment distributions, suitable for Monte-Carlo collisional models. We also characterize velocity fields and angular distributions of fragments, which can be used as initial conditions for N-body simulations of small asteroid families. Finally, we discuss a number of uncertainties related to SPH simulations.
Simulations of ecosystem hydrological processes using a unified multi-scale model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin
2015-01-01
This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling ofmore » hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.« less
Numeric Modified Adomian Decomposition Method for Power System Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrovski, Aleksandar D; Simunovic, Srdjan; Pannala, Sreekanth
This paper investigates the applicability of numeric Wazwaz El Sayed modified Adomian Decomposition Method (WES-ADM) for time domain simulation of power systems. WESADM is a numerical method based on a modified Adomian decomposition (ADM) technique. WES-ADM is a numerical approximation method for the solution of nonlinear ordinary differential equations. The non-linear terms in the differential equations are approximated using Adomian polynomials. In this paper WES-ADM is applied to time domain simulations of multimachine power systems. WECC 3-generator, 9-bus system and IEEE 10-generator, 39-bus system have been used to test the applicability of the approach. Several fault scenarios have been tested.more » It has been found that the proposed approach is faster than the trapezoidal method with comparable accuracy.« less
Ceacareanu, Alice C; Brown, Geoffrey W; Moussa, Hoda A; Wintrob, Zachary A P
2018-01-01
We aimed to estimate the metformin-associated lactic acidosis (MALA) risk by assessing retrospectively the renal clearance variability and applying a pharmacokinetic (PK) model of metformin clearance in a population diagnosed with acute myeloid leukemia (AML) and diabetes mellitus (DM). All adults with preexisting DM and newly diagnosed AML at Roswell Park Cancer Institute were reviewed (January 2003-December 2010, n = 78). Creatinine clearance (CrCl) and total body weight distributions were used in a two-compartment PK model adapted for multiple dosing and modified to account for actual intra- and inter-individual variability. Based on this renal function variability evidence, 1000 PK profiles were simulated for multiple metformin regimens with the resultant PK profiles being assessed for safe CrCl thresholds. Metformin 500 mg up to three times daily was safe for all simulated profiles with CrCl ≥25 mL/min. Furthermore, the estimated overall MALA risk was below 10%, remaining under 5% for 500 mg given once daily. CrCl ≥65.25 mL/min was safe for administration in any of the tested regimens (500 mg or 850 mg up to three times daily or 1000 mg up to twice daily). PK simulation-guided prescribing can maximize metformin's beneficial effects on cancer outcomes while minimizing MALA risk.
Laleian, Artin; Valocchi, Albert J.; Werth, Charles J.
2015-11-24
Two-dimensional (2D) pore-scale models have successfully simulated microfluidic experiments of aqueous-phase flow with mixing-controlled reactions in devices with small aperture. A standard 2D model is not generally appropriate when the presence of mineral precipitate or biomass creates complex and irregular three-dimensional (3D) pore geometries. We modify the 2D lattice Boltzmann method (LBM) to incorporate viscous drag from the top and bottom microfluidic device (micromodel) surfaces, typically excluded in a 2D model. Viscous drag from these surfaces can be approximated by uniformly scaling a steady-state 2D velocity field at low Reynolds number. We demonstrate increased accuracy by approximating the viscous dragmore » with an analytically-derived body force which assumes a local parabolic velocity profile across the micromodel depth. Accuracy of the generated 2D velocity field and simulation permeability have not been evaluated in geometries with variable aperture. We obtain permeabilities within approximately 10% error and accurate streamlines from the proposed 2D method relative to results obtained from 3D simulations. Additionally, the proposed method requires a CPU run time approximately 40 times less than a standard 3D method, representing a significant computational benefit for permeability calculations.« less
Korocsec, D; Holobar, A; Divjak, M; Zazula, D
2005-12-01
Medicine is a difficult thing to learn. Experimenting with real patients should not be the only option; simulation deserves a special attention here. Virtual Reality Modelling Language (VRML) as a tool for building virtual objects and scenes has a good record of educational applications in medicine, especially for static and animated visualisations of body parts and organs. However, to create computer simulations resembling situations in real environments the required level of interactivity and dynamics is difficult to achieve. In the present paper we describe some approaches and techniques which we used to push the limits of the current VRML technology further toward dynamic 3D representation of virtual environments (VEs). Our demonstration is based on the implementation of a virtual baby model, whose vital signs can be controlled from an external Java application. The main contributions of this work are: (a) outline and evaluation of the three-level VRML/Java implementation of the dynamic virtual environment, (b) proposal for a modified VRML Timesensor node, which greatly improves the overall control of system performance, and (c) architecture of the prototype distributed virtual environment for training in neonatal resuscitation comprising the interactive virtual newborn, active bedside monitor for vital signs and full 3D representation of the surgery room.
Construction of a Lower Body Negative Pressure Chamber
ERIC Educational Resources Information Center
Esch, Ben T. A; Scott, Jessica M.; Warburton, Darren E. R.
2007-01-01
Lower body negative pressure (LBNP) is an established and important technique used to physiologically stress the human body, particularly the cardiovascular system. LBNP is most often used to simulate gravitational stress, but it has also been used to simulate hemorrhage, alter preload, and manipulate baroreceptors. During experimentation, the…
Nonlinear estimation theory applied to orbit determination
NASA Technical Reports Server (NTRS)
Choe, C. Y.
1972-01-01
The development of an approximate nonlinear filter using the Martingale theory and appropriate smoothing properties is considered. Both the first order and the second order moments were estimated. The filter developed can be classified as a modified Gaussian second order filter. Its performance was evaluated in a simulated study of the problem of estimating the state of an interplanetary space vehicle during both a simulated Jupiter flyby and a simulated Jupiter orbiter mission. In addition to the modified Gaussian second order filter, the modified truncated second order filter was also evaluated in the simulated study. Results obtained with each of these filters were compared with numerical results obtained with the extended Kalman filter and the performance of each filter is determined by comparison with the actual estimation errors. The simulations were designed to determine the effects of the second order terms in the dynamic state relations, the observation state relations, and the Kalman gain compensation term. It is shown that the Kalman gain-compensated filter which includes only the Kalman gain compensation term is superior to all of the other filters.
McKenzie, J.M.; Voss, C.I.; Siegel, D.I.
2007-01-01
In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ueyama, M.; Kondo, M.; Ichii, K.; Iwata, H.; Euskirchen, E. S.; Zona, D.; Rocha, A. V.; Harazono, Y.; Nakai, T.; Oechel, W. C.
2013-12-01
To better predict carbon and water cycles in Arctic ecosystems, we modified a process-based ecosystem model, BIOME-BGC, by introducing new processes: change in active layer depth on permafrost and phenology of tundra vegetation. The modified BIOME-BGC was optimized using an optimization method. The model was constrained using gross primary productivity (GPP) and net ecosystem exchange (NEE) at 23 eddy covariance sites in Alaska, and vegetation/soil carbon from a literature survey. The model was used to simulate regional carbon and water fluxes of Alaska from 1900 to 2011. Simulated regional fluxes were validated with upscaled GPP, ecosystem respiration (RE), and NEE based on two methods: (1) a machine learning technique and (2) a top-down model. Our initial simulation suggests that the original BIOME-BGC with default ecophysiological parameters substantially underestimated GPP and RE for tundra and overestimated those fluxes for boreal forests. We will discuss how optimization using the eddy covariance data impacts the historical simulation by comparing the new version of the model with simulated results from the original BIOME-BGC with default ecophysiological parameters. This suggests that the incorporation of the active layer depth and plant phenology processes is important to include when simulating carbon and water fluxes in Arctic ecosystems.
Drag and drop simulation: from pictures to full three-dimensional simulations
NASA Astrophysics Data System (ADS)
Bergmann, Michel; Iollo, Angelo
2014-11-01
We present a suite of methods to achieve ``drag and drop'' simulation, i.e., to fully automatize the process to perform thee-dimensional flow simulations around a bodies defined by actual images of moving objects. The overall approach requires a skeleton graph generation to get level set function from pictures, optimal transportation to get body velocity on the surface and then flow simulation thanks to a cartesian method based on penalization. We illustrate this paradigm simulating the swimming of a mackerel fish.
Dynamics of multiple bodies in a corotation resonance
NASA Astrophysics Data System (ADS)
A'Hearn, Joseph; Hedman, Matthew
2018-04-01
The orbital evolution of multiple massive bodies trapped in the same corotation resonance site has not yet been studied in depth, but could be relevant to the origins and history of small moons like Saturn's moon Aegaeon. We conduct numerical simulations of multiple bodies trapped within a corotation resonance and examine what happens to these bodies when they have close encounters. Compared to simulations with equal mass bodies, simulations with one body more massive than the others may be more likely to feature an asymmetry in the phase space of semi-major axis and mean longitude. That is, bodies on one side of phase space have a slightly greater tendency to lose angular momentum, while bodies on the other side gain angular momentum. With this asymmetry, the transfer of angular momentum during gravitational encounters makes it more likely for the most massive body rather than other bodies to approach the center of the corotation site. More work is needed to determine if this sort of process can significantly affect the orbital evolution of small moons like Aegaeon.
Modeling and characterization of different channels based on human body communication.
Jingzhen Li; Zedong Nie; Yuhang Liu; Lei Wang
2017-07-01
Human body communication (HBC), which uses the human body as a transmission medium for electrical signals, provides a prospective communication solution for body sensor networks (BSNs). In this paper, an inhomogeneous model which includes the tissue layers of skin, fat, and muscle is proposed to study the propagation characteristics of different HBC channels. Specifically, the HBC channels, namely, the on-body to on-body (OB-OB)channel, on-body to in-body (OB-IB) channel, in-body to on-body (IB-OB) channel, and in-body to in-body (IB-IB)channel, are studied over different frequencies (from 1MHz to 100MHz) through numerical simulations with finite-difference time-domain (FDTD) method. The results show that the gain of OB-IB channel and IB-OB channel is almost the same. The gain of IB-IB channel is greater than other channels in the frequency range 1MHz to 70MHz. In addition, the gain of all channels is associated with the channel length and communication frequency. The simulations are verified by experimental measurements in a porcine tissue sample. The results show that the simulations are in agreement with the measurements.
Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations
NASA Astrophysics Data System (ADS)
Eskandari Nasrabad, A.; Laghaei, R.
2018-04-01
Computer simulations and various theories are applied to compute the thermodynamic and transport properties of nitrogen fluid. To model the nitrogen interaction, an existing potential in the literature is modified to obtain a close agreement between the simulation results and experimental data for the orthobaric densities. We use the Generic van der Waals theory to calculate the mean free volume and apply the results within the modified Cohen-Turnbull relation to obtain the self-diffusion coefficient. Compared to experimental data, excellent results are obtained via computer simulations for the orthobaric densities, the vapor pressure, the equation of state, and the shear viscosity. We analyze the results of the theory and computer simulations for the various thermophysical properties.
An analysis of the 70-meter antenna hydrostatic bearing by means of computer simulation
NASA Technical Reports Server (NTRS)
Bartos, R. D.
1993-01-01
Recently, the computer program 'A Computer Solution for Hydrostatic Bearings with Variable Film Thickness,' used to design the hydrostatic bearing of the 70-meter antennas, was modified to improve the accuracy with which the program predicts the film height profile and oil pressure distribution between the hydrostatic bearing pad and the runner. This article presents a description of the modified computer program, the theory upon which the computer program computations are based, computer simulation results, and a discussion of the computer simulation results.
NASA Astrophysics Data System (ADS)
Cianciara, Aleksander J.; Anderson, Christopher J.; Chen, Xuelei; Chen, Zhiping; Geng, Jingchao; Li, Jixia; Liu, Chao; Liu, Tao; Lu, Wing; Peterson, Jeffrey B.; Shi, Huli; Steffel, Catherine N.; Stebbins, Albert; Stucky, Thomas; Sun, Shijie; Timbie, Peter T.; Wang, Yougang; Wu, Fengquan; Zhang, Juyong
A wide bandwidth, dual polarized, modified four-square antenna is presented as a feed antenna for radio astronomical measurements. A linear array of these antennas is used as a line-feed for cylindrical reflectors for Tianlai, a radio interferometer designed for 21cm intensity mapping. Simulations of the feed antenna beam patterns and scattering parameters are compared to experimental results at multiple frequencies across the 650-1420MHz range. Simulations of the beam patterns of the combined feed array/reflector are presented as well.
Efficient estimation of Pareto model: Some modified percentile estimators.
Bhatti, Sajjad Haider; Hussain, Shahzad; Ahmad, Tanvir; Aslam, Muhammad; Aftab, Muhammad; Raza, Muhammad Ali
2018-01-01
The article proposes three modified percentile estimators for parameter estimation of the Pareto distribution. These modifications are based on median, geometric mean and expectation of empirical cumulative distribution function of first-order statistic. The proposed modified estimators are compared with traditional percentile estimators through a Monte Carlo simulation for different parameter combinations with varying sample sizes. Performance of different estimators is assessed in terms of total mean square error and total relative deviation. It is determined that modified percentile estimator based on expectation of empirical cumulative distribution function of first-order statistic provides efficient and precise parameter estimates compared to other estimators considered. The simulation results were further confirmed using two real life examples where maximum likelihood and moment estimators were also considered.
Surface characterization of anodized zirconium for biomedical applications
NASA Astrophysics Data System (ADS)
Sanchez, A. Gomez; Schreiner, W.; Duffó, G.; Ceré, S.
2011-05-01
Mechanical properties and corrosion resistance of zirconium make this material suitable for biomedical implants. Its good in vivo performance is mainly due to the presence of a protective oxide layer that minimizes corrosion rate, diminishes the amount of metallic ions released to the biological media and facilitates the osseointegration process. Since the implant surface is the region in contact with living tissues, the characteristics of the surface film are of great interest. Surface modification is a route to enhance both biocompatibility and corrosion resistance of permanent implant materials. Anodizing is presented as an interesting process to modify metal surfaces with good reproducibility and independence of the geometry. In this work the surface of zirconium before and after anodizing in 1 mol/L phosphoric acid solution at a fixed potential between 3 and 30 V, was characterized by means of several surface techniques. It was found that during anodization the surface oxide grows with an inhomogeneous coverage on zirconium surface, modifying the topography. The incorporation of P from the electrolyte to the surface oxide during the anodizing process changes the surface chemistry. After 30 days of immersion in Simulated Body Fluid (SBF) solution, Ca-P rich compounds were present on anodized zirconium.
A cardiovascular system model for lower-body negative pressure response
NASA Technical Reports Server (NTRS)
Mitchell, B. A., Jr.; Giese, R. P.
1971-01-01
Mathematical models used to study complex physiological control systems are discussed. Efforts were made to modify a model of the cardiovascular system for use in studying lower body negative pressure. A computer program was written which allows orderly, straightforward expansion to include exercise, metabolism (thermal stress), respiration, and other body functions.
Addiction to Cosmetic Surgery: Representations and Medicalization of the Body
ERIC Educational Resources Information Center
Suissa, Amnon Jacob
2008-01-01
Contemporary social transformations of the body are essentially mediated by medical discourse. With the body conceived of as "soft and modifiable," we are witnessing an unprecedented rise in recourse to medicine in order to validate primarily social conditions. In this context, plastic surgery functions as a modality of social control and…
A generic multibody simulation
NASA Technical Reports Server (NTRS)
Hopping, K. A.; Kohn, W.
1986-01-01
Described is a dynamic simulation package which can be configured for orbital test scenarios involving multiple bodies. The rotational and translational state integration methods are selectable for each individual body and may be changed during a run if necessary. Characteristics of the bodies are determined by assigning components consisting of mass properties, forces, and moments, which are the outputs of user-defined environmental models. Generic model implementation is facilitated by a transformation processor which performs coordinate frame inversions. Transformations are defined in the initialization file as part of the simulation configuration. The simulation package includes an initialization processor, which consists of a command line preprocessor, a general purpose grammar, and a syntax scanner. These permit specifications of the bodies, their interrelationships, and their initial states in a format that is not dependent on a particular test scenario.
Multibody Simulation Software Testbed for Small-Body Exploration and Sampling
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Blackmore, James C.; Mandic, Milan
2011-01-01
G-TAG is a software tool for the multibody simulation of a spacecraft with a robotic arm and a sampling mechanism, which performs a touch-and-go (TAG) maneuver for sampling from the surface of a small celestial body. G-TAG utilizes G-DYN, a multi-body simulation engine described in the previous article, and interfaces to controllers, estimators, and environmental forces that affect the spacecraft. G-TAG can easily be adapted for the analysis of the mission stress cases to support the design of a TAG system, as well as for comprehensive Monte Carlo simulations to analyze and evaluate a particular TAG system design. Any future small-body mission will benefit from using G-TAG, which has already been extensively used in Comet Odyssey and Galahad Asteroid New Frontiers proposals.
Kinematics of Globular Cluster: new Perspectives of Energy Equipartition from N-body Simulations
NASA Astrophysics Data System (ADS)
Kim, Hyunwoo; Pasquato, Mario; Yoon, Suk-jin
2018-01-01
Globular clusters (GCs) evolve dynamically through gravitational two-body interactions between stars. We investigated the evolution towards energy equipartition in GCs using direct n-body simulations in NBODY6. If a GC reaches full energy equipartition, the velocity dispersion as a function of stars’ mass becomes a power law with exponent -1/2. However, our n-body simulations never reach full equipartition, which is similar to Trenti & van de Marel (2013) results. Instead we found that in simulations with a shallow mass spectrum the best fit exponent becomes positive slightly before core collapse time. This inversion is a new result, which can be used as a kinematic predictor of core collapse. We are currently exploring applications of this inversion indicator to the detection of intermediate mass black holes.
2HOT: An Improved Parallel Hashed Oct-Tree N-Body Algorithm for Cosmological Simulation
Warren, Michael S.
2014-01-01
We report on improvements made over the past two decades to our adaptive treecode N-body method (HOT). A mathematical and computational approach to the cosmological N-body problem is described, with performance and scalability measured up to 256k (2 18 ) processors. We present error analysis and scientific application results from a series of more than ten 69 billion (4096 3 ) particle cosmological simulations, accounting for 4×10 20 floating point operations. These results include the first simulations using the new constraints on the standard model of cosmology from the Planck satellite. Our simulations set a new standard for accuracy andmore » scientific throughput, while meeting or exceeding the computational efficiency of the latest generation of hybrid TreePM N-body methods.« less
NASA Technical Reports Server (NTRS)
Fitzjerrell, D. G.; Grounds, D. J.; Leonard, J. I.
1975-01-01
Using a whole body algorithm simulation model, a wide variety and large number of stresses as well as different stress levels were simulated including environmental disturbances, metabolic changes, and special experimental situations. Simulation of short term stresses resulted in simultaneous and integrated responses from the cardiovascular, respiratory, and thermoregulatory subsystems and the accuracy of a large number of responding variables was verified. The capability of simulating significantly longer responses was demonstrated by validating a four week bed rest study. In this case, the long term subsystem model was found to reproduce many experimentally observed changes in circulatory dynamics, body fluid-electrolyte regulation, and renal function. The value of systems analysis and the selected design approach for developing a whole body algorithm was demonstrated.
Renal and Cardio-Endocrine Responses in Humans to Simulated Microgravity
NASA Technical Reports Server (NTRS)
Williams, Gordon H.
1999-01-01
The volume regulating systems are integrated to produce an appropriate response to both acute and chronic volume changes. Their responses include changing the levels of the hormones and neural inputs of the involved systems and/or changing the responsiveness of their target tissues. Weightlessness during space travel produces a volume challenge that is unfamiliar to the organism. Thus, it is likely that these volume regulatory mechanisms may respond inappropriately, e.g., a decrease in total body volume in space and abnormal responses to upright posture and stress on return to Earth. A similar "inappropriateness" also can occur in disease states, e.g., congestive heart failure. While it is clear that weightlessness produces profound changes in sodium and volume homeostasis, the mechanisms responsible for these changes are incompletely understood. Confounding this analysis is sleep deprivation, common in space travel, which can also modify volume homeostatic mechanisms. The purpose of this project is to provide the required understanding and then to design appropriate countermeasures to reduce or eliminate the adverse effects of microgravity. To accomplish this we are addressing five Specific Aims: (1) To test the hypothesis that microgravity modifies the acute responsiveness of the renin-angiotensin-aldosterone system (RAAS) and renal blood flow; (2) Does simulated microgravity change the circadian rhythm of the volume- regulating hormones?; (3) Does simulated microgravity change the target tissue responsiveness to angiotensin 11 (AngII)?; (4) Does chronic sleep deprivation modify the circadian rhythm of the RAAS and change the acute responsiveness of this system to posture beyond what a microgravity environment alone does? and (5) What effect does salt restriction have on the volume homeostatic and neurohumoral responses to a microgravity environment? Because the RAAS plays a pivotal role in blood pressure control and volume homeostasis, it likely is a major mediator of the adaptive cardio-renal responses observed during space missions and is a special focus of this project. Thus, the overall goal of this project is to assess the impact of microgravity and sleep deprivation in humans on volume-regulating systems. To achieve this overall objective, we are evaluating renal blood flow and the status and responsiveness of the volume- regulating systems (RAAS, atrial natriuretic peptide and vasopressin), and the adrenergic system (plasma and urine catecholamines) in both simulated microgravity and normal gravity with and -Without sleep deprivation. Furthermore, the responses of the volume homeostatic mechanisms to acute stimulation by upright tilt testing, standing and exercise are being evaluated before and after achieving equilibrium with these interventions.
Modified current follower-based immittance function simulators
NASA Astrophysics Data System (ADS)
Alpaslan, Halil; Yuce, Erkan
2017-12-01
In this paper, four immittance function simulators consisting of a single modified current follower with single Z- terminal and a minimum number of passive components are proposed. The first proposed circuit can provide +L parallel with +R and the second proposed one can realise -L parallel with -R. The third proposed structure can provide +L series with +R and the fourth proposed one can realise -L series with -R. However, all the proposed immittance function simulators need a single resistive matching constraint. Parasitic impedance effects on all the proposed immittance function simulators are investigated. A second-order current-mode (CM) high-pass filter derived from the first proposed immittance function simulator is given as an application example. Also, a second-order CM low-pass filter derived from the third proposed immittance function simulator is given as an application example. A number of simulation results based on SPICE programme and an experimental test result are given to verify the theory.
NASA Astrophysics Data System (ADS)
Liu, Maoyuan; Jacob, Aurélie; Schmetterer, Clemens; Masset, Patrick J.; Hennet, Louis; Fischer, Henry E.; Kozaily, Jad; Jahn, Sandro; Gray-Weale, Angus
2016-04-01
Calcium aluminosilicate \\text{CaO}-\\text{A}{{\\text{l}}2}{{\\text{O}}3}-\\text{Si}{{\\text{O}}2} (CAS) melts with compositions {{≤ft(\\text{CaO}-\\text{Si}{{\\text{O}}2}\\right)}x}{{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}1-x} for x < 0.5 and {{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}x}{{≤ft(\\text{Si}{{\\text{O}}2}\\right)}1-x} for x≥slant 0.5 are studied using neutron diffraction with aerodynamic levitation and density functional theory molecular dynamics modelling. Simulated structure factors are found to be in good agreement with experimental structure factors. Local atomic structures from simulations reveal the role of calcium cations as a network modifier, and aluminium cations as a non-tetrahedral network former. Distributions of tetrahedral order show that an increasing concentration of the network former Al increases entropy, while an increasing concentration of the network modifier Ca decreases entropy. This trend is opposite to the conventional understanding that increasing amounts of network former should increase order in the network liquid, and so decrease entropy. The two-body correlation entropy S 2 is found to not correlate with the excess entropy values obtained from thermochemical databases, while entropies including higher-order correlations such as tetrahedral order, O-M-O or M-O-M bond angles and Q N environments show a clear linear correlation between computed entropy and database excess entropy. The possible relationship between atomic structures and excess entropy is discussed.
Triangular prismatic solid-shell element with generalised deformation description
NASA Astrophysics Data System (ADS)
Mataix, Vicente; Flores, Fernando G.; Rossi, Riccardo; Oñate, Eugenio
2018-01-01
The solid-shells are an attractive kind of element for the simulation of f orming processes, due to the fact that any kind of generic 3D constitutive law can be employed without any kind of additional modification, besides the thermomechanic problem is formulated without additional assumptions. Additionally, this type of element allows the three-dimensional description of the deformable body, thus contact on both sides of the element can be treated easily. The present work consists in the development of a triangular prism element as a solid-shell, for the analysis of thin/thick shell, undergoing large deformations. The element is formulated in total Lagrangian formulation, and employs the neighbour (adjacent) elements to perform a local patch to enrich the displacement field. In the original formulation by Flores, a modified right Cauchy-Green deformation tensor (?) is obtained; in the present work a modified deformation gradient (?) is obtained, which allows to generalise the methodology and allows to employ a wide range of constitutive laws. The element is based in three modifications: (a) a classical assumed strain approach for transverse shear strains (b) an assumed strain approach for the in-plane components using information from neighbour elements and (c) an averaging of the volumetric strain over the element. The objective is to use this type of elements for the simulation of shells avoiding transverse shear locking, improving the membrane behaviour of the in-plane triangle and to handle quasi-incompressible materials or materials with isochoric plastic flow. Some examples have been evaluated to show the good performance of the element and results.
Comparison of Tropical and Extratropical Gust Factors Using Observed and Simulated Data
NASA Astrophysics Data System (ADS)
Edwards, R. P.; Schroeder, J. L.
2011-12-01
Questions of whether differences exist between tropical cyclone (TC) and extratropical (ET) wind have been the subject of considerable debate. This study will focus on the behavior of the gust factor (GF), the ratio of a peak wind speed of a certain duration and a mean wind speed of a certain duration, for three types of data: TC, ET, and simulated. For this project, the Universal Spectrum, a normalized, averaged spectrum for wind, was un-normalized and used to create simulated wind speed time series at a variety of wind speeds. Additional time series were created after modifying the spectrum to simulate the additional low-frequency energy observed in the TC wind spectrum as well as the reduction of high-frequency energy caused by a mechanical anemometer. The T and ET data used for this study were collected by Texas Tech University's mobile towers as part of various field efforts since 1998. Before comparisons were made, the database was divided into four roughness regimes based on the roughness length to ensure that differences observed in the turbulence statistics are not caused by differences in upstream terrain. The mean GF for the TC data set (open roughness regime), 1.49, was slightly higher than the ET value of 1.44 (Table 1). The distributions of GFs from each data type show similarities in shape between the base-simulated and ET data sets and between the TC and modified-simulated data set (Figure 1). These similarities are expected given the spectral similarities between the TC and modified-simulated data sets, namely additional low-frequency energy relative to the ET and base-simulated data. These findings suggest that the higher amount of low-frequency energy present in the tropical wind spectrum is partially responsible for the resulting higher GF for the tropical cyclone data. However, the modest increase in GF from the base to the modified simulated data suggest that there are more factors at work.
On improving cold region hydrological processes in the Canadian Land Surface Scheme
NASA Astrophysics Data System (ADS)
Ganji, Arman; Sushama, Laxmi; Verseghy, Diana; Harvey, Richard
2017-01-01
Regional and global climate model simulated streamflows for high-latitude regions show systematic biases, particularly in the timing and magnitude of spring peak flows. Though these biases could be related to the snow water equivalent and spring temperature biases in models, a good part of these biases is due to the unaccounted effects of non-uniform infiltration capacity of the frozen ground and other related processes. In this paper, the treatment of frozen water in the Canadian Land Surface Scheme (CLASS), which is used in the Canadian regional and global climate models, is modified to include fractional permeable area, supercooled liquid water and a new formulation for hydraulic conductivity. The impact of these modifications on the regional hydrology, particularly streamflow, is assessed by comparing three simulations performed with the original and two modified versions of CLASS, driven by atmospheric forcing data from the European Centre for Medium-Range Weather Forecast (ECMWF) reanalysis (ERA-Interim) for the 1990-2001 period over a northeast Canadian domain. The two modified versions of CLASS differ in the soil hydraulic conductivity and matric potential formulations, with one version being based on formulations from a previous study and the other one is newly proposed. Results suggest statistically significant decreases in infiltration and therefore soil moisture during the snowmelt season for the simulation with the new hydraulic conductivity and matric potential formulations and fractional permeable area concept compared to the original version of CLASS, which is also reflected in the increased spring surface runoff and streamflows in this simulation with modified CLASS over most of the study domain. The simulated spring peaks and their timing in this simulation are also in better agreement to those observed. This study thus demonstrates the importance of treatment of frozen water for realistic simulation of streamflows.
Wang, Hailong; Sun, Yuqiu; Su, Qinghua; Xia, Xuewen
2018-01-01
The backtracking search optimization algorithm (BSA) is a population-based evolutionary algorithm for numerical optimization problems. BSA has a powerful global exploration capacity while its local exploitation capability is relatively poor. This affects the convergence speed of the algorithm. In this paper, we propose a modified BSA inspired by simulated annealing (BSAISA) to overcome the deficiency of BSA. In the BSAISA, the amplitude control factor (F) is modified based on the Metropolis criterion in simulated annealing. The redesigned F could be adaptively decreased as the number of iterations increases and it does not introduce extra parameters. A self-adaptive ε-constrained method is used to handle the strict constraints. We compared the performance of the proposed BSAISA with BSA and other well-known algorithms when solving thirteen constrained benchmarks and five engineering design problems. The simulation results demonstrated that BSAISA is more effective than BSA and more competitive with other well-known algorithms in terms of convergence speed. PMID:29666635
NASA Astrophysics Data System (ADS)
Pensia, R. K.; Sutar, D. L.; Sharma, S.
2018-05-01
The Jeans instability of self-gravitating optically thick quantum plasma is reanalyzed in the framework of viscosity, black body radiation and modify ohms law. The usual magnetohydrodynamic (MHD) equation is used for the present configuration with black body radiation, viscosity, electrical resistivity and quantum corrections. A general dispersion relation is obtained with the help of linearized perturbation equations. It is found that the quantum correction has stabilizing effect on the system. The instability of system is discussed for various cases as our interest.
NASA Astrophysics Data System (ADS)
Tan, X. G.; Przekwas, A. J.; Gupta, R. K.
2017-11-01
The modeling of human body biomechanics resulting from blast exposure poses great challenges because of the complex geometry and the substantial material heterogeneity. We developed a detailed human body finite element model representing both the geometry and the materials realistically. The model includes the detailed head (face, skull, brain and spinal cord), the neck, the skeleton, air cavities (lungs) and the tissues. Hence, it can be used to properly model the stress wave propagation in the human body subjected to blast loading. The blast loading on the human was generated from a simulated C4 explosion. We used the highly scalable solvers in the multi-physics code CoBi for both the blast simulation and the human body biomechanics. The meshes generated for these simulations are of good quality so that relatively large time-step sizes can be used without resorting to artificial time scaling treatments. The coupled gas dynamics and biomechanics solutions were validated against the shock tube test data. The human body models were used to conduct parametric simulations to find the biomechanical response and the brain injury mechanism due to blasts impacting the human body. Under the same blast loading condition, we showed the importance of inclusion of the whole body.
Yanamadala, Janakinadh; Noetscher, Gregory M; Rathi, Vishal K; Maliye, Saili; Win, Htay A; Tran, Anh L; Jackson, Xavier J; Htet, Aung T; Kozlov, Mikhail; Nazarian, Ara; Louie, Sara; Makarov, Sergey N
2015-01-01
Simulation of the electromagnetic response of the human body relies heavily upon efficient computational models or phantoms. The first objective of this paper is to present a new platform-independent full-body electromagnetic computational model (computational phantom), the Visible Human Project(®) (VHP)-Female v. 2.0 and to describe its distinct features. The second objective is to report phantom simulation performance metrics using the commercial FEM electromagnetic solver ANSYS HFSS.
Analytical stability and simulation response study for a coupled two-body system
NASA Technical Reports Server (NTRS)
Tao, K. M.; Roberts, J. R.
1975-01-01
An analytical stability study and a digital simulation response study of two connected rigid bodies are documented. Relative rotation of the bodies at the connection is allowed, thereby providing a model suitable for studying system stability and response during a soft-dock regime. Provisions are made of a docking port axes alignment torque and a despin torque capability for encountering spinning payloads. Although the stability analysis is based on linearized equations, the digital simulation is based on nonlinear models.
NASA Astrophysics Data System (ADS)
Baushev, A. N.
2015-03-01
While N-body simulations suggest a cuspy profile in the centra of the dark matter halos of galaxies, the majority of astronomical observations favor a relatively soft cored density distribution of these regions. The routine method of testing the convergence of N-body simulations (in particular, the negligibility of two-body scattering effect) is to find the conditions under which formed structures is insensitive to numerical parameters. The results obtained with this approach suggest a surprisingly minor role of the particle collisions: the central density profile remains untouched and close to the Navarro-Frenk-White shape, even if the simulation time significantly exceeds the collisional relaxation time τr . In order to check the influence of the unphysical test body collisions we use the Fokker-Planck equation. It turns out that a profile ρ ∝r-β where β ≃ 1 is an attractor: the Fokker-Planck diffusion transforms any reasonable initial distribution into it in a time shorter than τr , and then the cuspy profile should survive much longer than τr , since the Fokker-Planck diffusion is self-compensated if β ≃ 1 . Thus the purely numerical effect of test body scattering may create a stable NFW-like pseudosolution. Moreover, its stability may be mistaken for the simulation convergence. We present analytical estimations for this potential bias effect and call for numerical tests. For that purpose, we suggest a simple test that can be performed as the simulation progresses and would indicate the magnitude of the collisional influence and the veracity of the simulation results.
Computer simulation of multigrid body dynamics and control
NASA Technical Reports Server (NTRS)
Swaminadham, M.; Moon, Young I.; Venkayya, V. B.
1990-01-01
The objective is to set up and analyze benchmark problems on multibody dynamics and to verify the predictions of two multibody computer simulation codes. TREETOPS and DISCOS have been used to run three example problems - one degree-of-freedom spring mass dashpot system, an inverted pendulum system, and a triple pendulum. To study the dynamics and control interaction, an inverted planar pendulum with an external body force and a torsional control spring was modeled as a hinge connected two-rigid body system. TREETOPS and DISCOS affected the time history simulation of this problem. System state space variables and their time derivatives from two simulation codes were compared.
Relativistic initial conditions for N-body simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fidler, Christian; Tram, Thomas; Crittenden, Robert
2017-06-01
Initial conditions for (Newtonian) cosmological N-body simulations are usually set by re-scaling the present-day power spectrum obtained from linear (relativistic) Boltzmann codes to the desired initial redshift of the simulation. This back-scaling method can account for the effect of inhomogeneous residual thermal radiation at early times, which is absent in the Newtonian simulations. We analyse this procedure from a fully relativistic perspective, employing the recently-proposed Newtonian motion gauge framework. We find that N-body simulations for ΛCDM cosmology starting from back-scaled initial conditions can be self-consistently embedded in a relativistic space-time with first-order metric potentials calculated using a linear Boltzmann code.more » This space-time coincides with a simple ''N-body gauge'' for z < 50 for all observable modes. Care must be taken, however, when simulating non-standard cosmologies. As an example, we analyse the back-scaling method in a cosmology with decaying dark matter, and show that metric perturbations become large at early times in the back-scaling approach, indicating a breakdown of the perturbative description. We suggest a suitable ''forwards approach' for such cases.« less
Data-driven train set crash dynamics simulation
NASA Astrophysics Data System (ADS)
Tang, Zhao; Zhu, Yunrui; Nie, Yinyu; Guo, Shihui; Liu, Fengjia; Chang, Jian; Zhang, Jianjun
2017-02-01
Traditional finite element (FE) methods are arguably expensive in computation/simulation of the train crash. High computational cost limits their direct applications in investigating dynamic behaviours of an entire train set for crashworthiness design and structural optimisation. On the contrary, multi-body modelling is widely used because of its low computational cost with the trade-off in accuracy. In this study, a data-driven train crash modelling method is proposed to improve the performance of a multi-body dynamics simulation of train set crash without increasing the computational burden. This is achieved by the parallel random forest algorithm, which is a machine learning approach that extracts useful patterns of force-displacement curves and predicts a force-displacement relation in a given collision condition from a collection of offline FE simulation data on various collision conditions, namely different crash velocities in our analysis. Using the FE simulation results as a benchmark, we compared our method with traditional multi-body modelling methods and the result shows that our data-driven method improves the accuracy over traditional multi-body models in train crash simulation and runs at the same level of efficiency.
White, Nicholas A; Danelson, Kerry A; Gayzik, F Scott; Stitzel, Joel D
2014-11-01
A finite element (FE) simulation environment has been developed to investigate aviator head and neck response during a simulated rotary-wing aircraft impact using both an FE anthropomorphic test device (ATD) and an FE human body model. The head and neck response of the ATD simulation was successfully validated against an experimental sled test. The majority of the head and neck transducer time histories received a CORrelation and analysis (CORA) rating of 0.7 or higher, indicating good overall correlation. The human body model simulation produced a more biofidelic head and neck response than the ATD experimental test and simulation, including change in neck curvature. While only the upper and lower neck loading can be measured in the ATD, the shear force, axial force, and bending moment were reported for each level of the cervical spine in the human body model using a novel technique involving cross sections. This loading distribution provides further insight into the biomechanical response of the neck during a rotary-wing aircraft impact.
Oyane, Ayako; Kawashita, Masakazu; Nakanishi, Kazuki; Kokubo, Tadashi; Minoda, Masahiko; Miyamoto, Takeaki; Nakamura, Takashi
2003-05-01
An ethylene-vinyl alcohol copolymer (EVOH) was treated with a silane coupling agent and calcium silicate solutions, and then soaked in a simulated body fluid (SBF) with ion concentrations approximately equal to those of human blood plasma. A smooth and uniform bonelike apatite layer was successfully formed on both the EVOH plate and the EVOH-knitted fibers in SBF within 2 days. Part of the structure of the resulting apatite-EVOH fiber composite was similar to that of natural bone. If this kind of composite can be fabricated into a three-dimensional structure similar to natural bone, the resultant composite is expected to exhibit both mechanical properties analogous to those of natural bone and bone-bonding ability. Hence, it has great potential as a bone substitute. Copyright 2003 Elsevier Science Ltd.
A General Simulation Method for Multiple Bodies in Proximate Flight
NASA Technical Reports Server (NTRS)
Meakin, Robert L.
2003-01-01
Methods of unsteady aerodynamic simulation for an arbitrary number of independent bodies flying in close proximity are considered. A novel method to efficiently detect collision contact points is described. A method to compute body trajectories in response to aerodynamic loads, applied loads, and inter-body collisions is also given. The physical correctness of the methods are verified by comparison to a set of analytic solutions. The methods, combined with a Navier-Stokes solver, are used to demonstrate the possibility of predicting the unsteady aerodynamics and flight trajectories of moving bodies that involve rigid-body collisions.
Mutlu, Ilven; Oktay, Enver
2013-04-01
Highly porous 17-4 PH stainless steel foam for biomedical applications was produced by space holder technique. Metal release and weight loss from 17-4 PH stainless steel foams was investigated in simulated body fluid and artificial saliva environments by static immersion tests. Inductively coupled plasma-mass spectrometer was employed to measure the concentrations of various metal ions released from the 17-4 PH stainless steel foams into simulated body fluids and artificial saliva. Effect of immersion time and pH value on metal release and weight loss in simulated body fluid and artificial saliva were determined. Pore morphology, pore size and mechanical properties of the 17-4 PH stainless steel foams were close to human cancellous bone. Copyright © 2012 Elsevier B.V. All rights reserved.
Pressurized storm sewer simulation : model enhancement.
DOT National Transportation Integrated Search
1991-01-01
A modified Pressurized Flow Simulation Model, PFSM, was developed and attached to the Federal Highway Administration, FHWA, Pool Funded PFP-HYDRA Package. Four hydrograph options are available for simulating inflow to a sewer system under surcharge o...
Four-body extension of the continuum-discretized coupled-channels method
NASA Astrophysics Data System (ADS)
Descouvemont, P.
2018-06-01
I develop an extension of the continuum-discretized coupled-channels (CDCC) method to reactions where both nuclei present a low breakup threshold. This leads to a four-body model, where the only inputs are the interactions describing the colliding nuclei, and the four optical potentials between the fragments. Once these potentials are chosen, the model does not contain any additional parameter. First I briefly discuss the general formalism, and emphasize the need for dealing with large coupled-channel systems. The method is tested with existing benchmarks on 4 α bound states with the Ali-Bodmer potential. Then I apply the four-body CDCC to the 11Be+d system, where I consider the 10Be(0+,2+)+n configuration for 11Be. I show that breakup channels are crucial to reproduce the elastic cross section, but that core excitation plays a weak role. The 7Li+d system is investigated with an α +t cluster model for 7Li. I show that breakup channels significantly improve the agreement with the experimental cross section, but an additional imaginary term, simulating missing transfer channels, is necessary. The full CDCC results can be interpreted by equivalent potentials. For both systems, the real part is weakly affected by breakup channels, but the imaginary part is strongly modified. I suggest that the present wave functions could be used in future DWBA calculations.
ERIC Educational Resources Information Center
Andrew, Rachel; Tiggemann, Marika; Clark, Levina
2016-01-01
This study aimed to investigate prospective predictors and health-related outcomes of positive body image in adolescent girls. In so doing, the modified acceptance model of intuitive eating was also examined longitudinally. A sample of 298 girls aged 12 to 16 years completed a questionnaire containing measures of body appreciation, potential…
Anticipation of Body-Scaled Action Is Modified in Anorexia Nervosa
ERIC Educational Resources Information Center
Guardia, Dewi; Lafargue, Gilles; Thomas, Pierre; Dodin, Vincent; Cottencin, Olivier; Luyat, Marion
2010-01-01
Patients with anorexia nervosa frequently believe they are larger than they really are. The precise nature of this bias is not known: is it a false belief related to the patient's aesthetic and emotional attitudes towards her body? Or could it also reflect abnormal processing of the representation of the body in action? We tested this latter…
Users manual for linear Time-Varying Helicopter Simulation (Program TVHIS)
NASA Technical Reports Server (NTRS)
Burns, M. R.
1979-01-01
A linear time-varying helicopter simulation program (TVHIS) is described. The program is designed as a realistic yet efficient helicopter simulation. It is based on a linear time-varying helicopter model which includes rotor, actuator, and sensor models, as well as a simulation of flight computer logic. The TVHIS can generate a mean trajectory simulation along a nominal trajectory, or propagate covariance of helicopter states, including rigid-body, turbulence, control command, controller states, and rigid-body state estimates.
Libiger, Ondrej; Schork, Nicholas J.
2015-01-01
It is now feasible to examine the composition and diversity of microbial communities (i.e., “microbiomes”) that populate different human organs and orifices using DNA sequencing and related technologies. To explore the potential links between changes in microbial communities and various diseases in the human body, it is essential to test associations involving different species within and across microbiomes, environmental settings and disease states. Although a number of statistical techniques exist for carrying out relevant analyses, it is unclear which of these techniques exhibit the greatest statistical power to detect associations given the complexity of most microbiome datasets. We compared the statistical power of principal component regression, partial least squares regression, regularized regression, distance-based regression, Hill's diversity measures, and a modified test implemented in the popular and widely used microbiome analysis methodology “Metastats” across a wide range of simulated scenarios involving changes in feature abundance between two sets of metagenomic samples. For this purpose, simulation studies were used to change the abundance of microbial species in a real dataset from a published study examining human hands. Each technique was applied to the same data, and its ability to detect the simulated change in abundance was assessed. We hypothesized that a small subset of methods would outperform the rest in terms of the statistical power. Indeed, we found that the Metastats technique modified to accommodate multivariate analysis and partial least squares regression yielded high power under the models and data sets we studied. The statistical power of diversity measure-based tests, distance-based regression and regularized regression was significantly lower. Our results provide insight into powerful analysis strategies that utilize information on species counts from large microbiome data sets exhibiting skewed frequency distributions obtained on a small to moderate number of samples. PMID:26734061
Hydrodynamics of Fishlike Swimming: Effects of swimming kinematics and Reynolds number
NASA Astrophysics Data System (ADS)
Gilmanov, Anvar; Posada, Nicolas; Sotiropoulos, Fotis
2003-11-01
We carry out a series of numerical simulations to investigate the effects of swimming kinematics and Reynolds number on the flow past a three-dimensional fishlike body undergoing undulatory motion. The simulated body shape is that of a real mackerel fish. The mackerel was frozen and subsequently sliced in several thin fillets whose dimensions were carefully measured and used to construct the fishlike body shape used in the simulations. The flow induced by the undulating body is simulated by solving the 3D, unsteady, incompressible Navier-Stokes equations with the second-order accurate, hybrid Cartesian/Immersed Boundary formulation of Gilmanov and Sotiropoulos (J. Comp. Physics, under review, 2003). We consider in-line swimming at constant speed and carry out simulations for various types of swimming kinematics, varying the tailbeat amplitude, frequency, and Reynolds number (300
Handgrip strength and associated factors in hospitalized patients.
Guerra, Rita S; Fonseca, Isabel; Pichel, Fernando; Restivo, Maria T; Amaral, Teresa F
2015-03-01
Handgrip strength (HGS) is a marker of nutrition status. Many factors are associated with HGS. Age, height, body mass index, number of diagnoses, and number and type of drugs have been shown to modify the association between undernutrition and HGS. Nevertheless, other patient characteristics that could modify this association and its joint modifier effect have not been studied yet. To evaluate the association of inpatients' HGS and undernutrition considering the potential modifier effect of cognitive status, functional activity, disease severity, anthropometrics, and other patient characteristics on HGS. A cross-sectional study was conducted in a university hospital. Sex, age, abbreviated mental test score, functional activity score, Charlson index, number of drugs, Patient-Generated Subjective Global Assessment (PG-SGA) score, body weight, mid-arm muscle circumference, adductor pollicis muscle thickness, body height, wrist circumference, hand length, and palm width were included in a linear regression model to identify independent factors associated with HGS (dependent variable). The study sample was composed of 688 inpatients (18-91 years old). All variables included in the model were associated with HGS (β, -0.16 to 0.38; P ≤ .049) and explained 68.5% of HGS. Age, functional activity decline, Charlson index, number of drugs, PG-SGA score, body weight, and wrist circumference had a negative association with HGS. All other studied variables were positively associated with HGS. Nutrition status evaluated by PG-SGA was still associated with HGS after considering the joint effect of other patient characteristics, which reinforces the value of HGS as an indicator of undernutrition. © 2013 American Society for Parenteral and Enteral Nutrition.
Upper body push and pull strength ratio in recreationally active adults.
Negrete, Rodney J; Hanney, William J; Pabian, Patrick; Kolber, Morey J
2013-04-01
Agonist to antagonist strength data is commonly analyzed due to its association with injury and performance. The purpose of this study was to examine the agonist to antagonist ratio of upper body strength using two simple field tests (timed push up/timed modified pull up) in recreationally active adults and to establish the basis for reference standards. One hundred eighty (180) healthy recreationally active adults (111 females and 69 males, aged 18-45 years) performed two tests of upper body strength in random order: 1. Push-ups completed during 3 sets of 15 seconds with a 45 second rest period between each set and 2. Modified pull-ups completed during 3 sets of 15 seconds with a 45 second rest period between each set. The push-up to modified pull-up ratio for the males was 1.57:1, whereas females demonstrated a ratio of 2.72:1. The results suggest that for our group of healthy recreationally active subjects, the upper body "pushing" musculature is approximately 1.5-2.7 times stronger than the musculature involved for pulling. In this study, these recreationally active adults displayed greater strength during the timed push-ups than the modified pull-ups. The relationship of these imbalances to one's performance and or injury risk requires further investigation. The reference values, however, may serve the basis for future comparison and prospective investigations. The field tests in this study can be easily implemented by clinicians and an agonist/antagonist ratio can be determined and compared to our findings. 2b.
UPPER BODY PUSH AND PULL STRENGTH RATIO IN RECREATIONALLY ACTIVE ADULTS
Hanney, William J.; Pabian, Patrick; Kolber, Morey J.
2013-01-01
Introduction: Agonist to antagonist strength data is commonly analyzed due to its association with injury and performance. The purpose of this study was to examine the agonist to antagonist ratio of upper body strength using two simple field tests (timed push up/timed modified pull up) in recreationally active adults and to establish the basis for reference standards. Methods: One hundred eighty (180) healthy recreationally active adults (111 females and 69 males, aged 18‐45 years) performed two tests of upper body strength in random order: 1. Push‐ups completed during 3 sets of 15 seconds with a 45 second rest period between each set and 2. Modified pull‐ups completed during 3 sets of 15 seconds with a 45 second rest period between each set. Results: The push‐up to modified pull‐up ratio for the males was 1.57:1, whereas females demonstrated a ratio of 2.72:1. The results suggest that for our group of healthy recreationally active subjects, the upper body “pushing” musculature is approximately 1.5–2.7 times stronger than the musculature involved for pulling. Conclusions: In this study, these recreationally active adults displayed greater strength during the timed push‐ups than the modified pull‐ups. The relationship of these imbalances to one's performance and or injury risk requires further investigation. The reference values, however, may serve the basis for future comparison and prospective investigations. The field tests in this study can be easily implemented by clinicians and an agonist/antagonist ratio can be determined and compared to our findings. Level of Evidence: 2b PMID:23593552
Rings of non-spherical, axisymmetric bodies
NASA Astrophysics Data System (ADS)
Gupta, Akash; Nadkarni-Ghosh, Sharvari; Sharma, Ishan
2018-01-01
We investigate the dynamical behavior of rings around bodies whose shapes depart considerably from that of a sphere. To this end, we have developed a new self-gravitating discrete element N-body code, and employed a local simulation method to simulate a patch of the ring. The central body is modeled as a symmetric (oblate or prolate) ellipsoid, or defined through the characteristic frequencies (circular, vertical, epicyclic) that represent its gravitational field. Through our simulations we explore how a ring's behavior - characterized by dynamical properties like impact frequency, granular temperature, number density, vertical thickness and radial width - varies with the changing gravitational potential of the central body. We also contrast properties of rings about large central bodies (e.g. Saturn) with those of smaller ones (e.g. Chariklo). Finally, we investigate how the characteristic frequencies of a central body, restricted to being a solid of revolution with an equatorial plane of symmetry, affect the ring dynamics. The latter process may be employed to qualitatively understand the dynamics of rings about any symmetric solid of revolution.
Modeling the liquid filling in capillary well microplates for analyte preconcentration.
Yu, Yang; Wang, Xuewei; Ng, Tuck Wah
2012-06-15
An attractive advantage of the capillary well microplate approach is the ability to conduct evaporative analyte preconcentration. We advance the use of hydrophobic materials for the wells which apart from reducing material loss through wetting also affords self entry into the well when the droplet size reduces below a critical value. Using Surface Evolver simulation without gravity, we find the critical diameters D(c) fitting very well with theoretical results. When simulating the critical diameters D(c)(G) with gravity included, the gravitational effect could only be ignored when the liquid volumes were small (difference of 5.7% with 5 μL of liquid), but not when the liquid volumes were large (differences of more than 22% with 50 μL of liquid). From this, we developed a modifying equation from a series of simulation results made to describe the gravitational effect. This modifying equation fitted the simulation results well in our simulation range (100°≤θ≤135° and 1 μL≤V≤200 μL). In simulating the condition of multiple wells underneath each droplet, we found that having more holes did not alter the critical diameters significantly. Consequently, the modifying relation should also generally express the critical diameter for multiple wells under a droplet. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cruz, Marcos Antônio E.; Ruiz, Gilia C. M.; Faria, Amanda N.; Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro; Ramos, Ana P.
2016-05-01
CaCO3 particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO3 deposited as thin films for this propose is unknown. Here, we report the growth of CaCO3 continuous films on Langmuir-Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca2+, exposed to CO2 (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO3 film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γs) were accessed. The presence of HAp increased the wettability and γs of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO3 thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.
Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oostrom, Martinus; Mehmani, Yashar; Romero Gomez, Pedro DJ
Four sets of micromodel nonreactive solute transport experiments were conducted with flow velocity, grain diameter, pore-aspect ratio, and flow focusing heterogeneity as the variables. The data sets were offered to pore-scale modeling groups to test their simulators. Each set consisted of two learning experiments, for which all results was made available, and a challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing, and considerably enhanced mixing due to flow focusing.more » Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice-Boltzmann (LB) approach, and one employed a computational fluid dynamics (CFD) technique. The learning experiments were used by the PN models to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used these experiments to appropriately discretize the grid representations. The continuum model use published non-linear relations between transverse dispersion coefficients and Peclet numbers to compute the required dispersivity input values. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values and, resulting in less dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models needed up to several days on supercomputers to resolve the more complex problems.« less
Electrolytes in a nanometer slab-confinement: Ion-specific structure and solvation forces
NASA Astrophysics Data System (ADS)
Kalcher, Immanuel; Schulz, Julius C. F.; Dzubiella, Joachim
2010-10-01
We study the liquid structure and solvation forces of dense monovalent electrolytes (LiCl, NaCl, CsCl, and NaI) in a nanometer slab-confinement by explicit-water molecular dynamics (MD) simulations, implicit-water Monte Carlo (MC) simulations, and modified Poisson-Boltzmann (PB) theories. In order to consistently coarse-grain and to account for specific hydration effects in the implicit methods, realistic ion-ion and ion-surface pair potentials have been derived from infinite-dilution MD simulations. The electrolyte structure calculated from MC simulations is in good agreement with the corresponding MD simulations, thereby validating the coarse-graining approach. The agreement improves if a realistic, MD-derived dielectric constant is employed, which partially corrects for (water-mediated) many-body effects. Further analysis of the ionic structure and solvation pressure demonstrates that nonlocal extensions to PB (NPB) perform well for a wide parameter range when compared to MC simulations, whereas all local extensions mostly fail. A Barker-Henderson mapping of the ions onto a charged, asymmetric, and nonadditive binary hard-sphere mixture shows that the strength of structural correlations is strongly related to the magnitude and sign of the salt-specific nonadditivity. Furthermore, a grand canonical NPB analysis shows that the Donnan effect is dominated by steric correlations, whereas solvation forces and overcharging effects are mainly governed by ion-surface interactions. However, steric corrections to solvation forces are strongly repulsive for high concentrations and low surface charges, while overcharging can also be triggered by steric interactions in strongly correlated systems. Generally, we find that ion-surface and ion-ion correlations are strongly coupled and that coarse-grained methods should include both, the latter nonlocally and nonadditive (as given by our specific ionic diameters), when studying electrolytes in highly inhomogeneous situations.
Prytkova, Vera; Heyden, Matthias; Khago, Domarin; Freites, J Alfredo; Butts, Carter T; Martin, Rachel W; Tobias, Douglas J
2016-08-25
We present a novel multi-conformation Monte Carlo simulation method that enables the modeling of protein-protein interactions and aggregation in crowded protein solutions. This approach is relevant to a molecular-scale description of realistic biological environments, including the cytoplasm and the extracellular matrix, which are characterized by high concentrations of biomolecular solutes (e.g., 300-400 mg/mL for proteins and nucleic acids in the cytoplasm of Escherichia coli). Simulation of such environments necessitates the inclusion of a large number of protein molecules. Therefore, computationally inexpensive methods, such as rigid-body Brownian dynamics (BD) or Monte Carlo simulations, can be particularly useful. However, as we demonstrate herein, the rigid-body representation typically employed in simulations of many-protein systems gives rise to certain artifacts in protein-protein interactions. Our approach allows us to incorporate molecular flexibility in Monte Carlo simulations at low computational cost, thereby eliminating ambiguities arising from structure selection in rigid-body simulations. We benchmark and validate the methodology using simulations of hen egg white lysozyme in solution, a well-studied system for which extensive experimental data, including osmotic second virial coefficients, small-angle scattering structure factors, and multiple structures determined by X-ray and neutron crystallography and solution NMR, as well as rigid-body BD simulation results, are available for comparison.
NASA Astrophysics Data System (ADS)
Fukushige, Toshiyuki; Taiji, Makoto; Makino, Junichiro; Ebisuzaki, Toshikazu; Sugimoto, Daiichiro
1996-09-01
We have developed a parallel, pipelined special-purpose computer for N-body simulations, MD-GRAPE (for "GRAvity PipE"). In gravitational N- body simulations, almost all computing time is spent on the calculation of interactions between particles. GRAPE is specialized hardware to calculate these interactions. It is used with a general-purpose front-end computer that performs all calculations other than the force calculation. MD-GRAPE is the first parallel GRAPE that can calculate an arbitrary central force. A force different from a pure 1/r potential is necessary for N-body simulations with periodic boundary conditions using the Ewald or particle-particle/particle-mesh (P^3^M) method. MD-GRAPE accelerates the calculation of particle-particle force for these algorithms. An MD- GRAPE board has four MD chips and its peak performance is 4.2 GFLOPS. On an MD-GRAPE board, a cosmological N-body simulation takes 6O0(N/10^6^)^3/2^ s per step for the Ewald method, where N is the number of particles, and would take 24O(N/10^6^) s per step for the P^3^M method, in a uniform distribution of particles.
Galactic Cosmic Ray Simulation at the NASA Space Radiation Laboratory
NASA Technical Reports Server (NTRS)
Norbury, John W.; Slaba, Tony C.; Rusek, Adam
2015-01-01
The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The results of these workshops will be discussed in this paper.
Hamaekers, A E W; Götz, T; Borg, P A J; Enk, D
2010-03-01
Needle cricothyrotomy and subsequent transtracheal jet ventilation (TTJV) is one of the last options to restore oxygenation while managing an airway emergency. However, in cases of complete upper airway obstruction, conventional TTJV is ineffective and dangerous. We transformed a small, industrial ejector into a simple, manual ventilator providing expiratory ventilation assistance (EVA). An ejector pump was modified to allow both insufflation of oxygen and jet-assisted expiration through an attached 75 mm long transtracheal catheter (TTC) with an inner diameter (ID) of 2 mm by alternately occluding and releasing the gas outlet of the ejector pump. In a lung simulator, the modified ejector pump was tested at different compliances and resistances. Inspiration and expiration times were measured and achievable minute volumes (MVs) were calculated to determine the effect of EVA. The modified ejector pump shortened the expiration time and an MV up to 6.6 litre min(-1) could be achieved through a 2 mm ID TTC in a simulated obstructed airway. The principle of ejector-based EVA seems promising and deserves further evaluation.
Stooped postures are modified by pretask walking in a simulated weed-pulling task.
Hudson, D S; Copeland, J L; Hepburn, C G; Doan, J B
2014-01-01
Seasonal agricultural workers are hired in some sectors for intermittent manual weed removal, a stoop and grasp harvesting task likely similar to those associated with the high prevalence of musculoskeletal disorders in agriculture. Evaluation of this task in an experimental situation would be useful for identifying and controlling musculoskeletal injury risks, presuming a valid experimental model of the task can be created. The purpose of the present study was to examine how a relevant work-related task, namely prolonged walking, altered the biomechanics of manual weed removal in a laboratory setting. Preliminary field assessments informed the development and analysis of a simulated manual weed removal with two separate conditions: not primed, where 11 participants (4 female, mean age 21.6 years) manually removed a simulated weed six times, and primed, where 23 participants (13 female, mean age 22.1 years) walked 1600 m prior to manually removing the same simulated weed six successive times. Segment end point markers and experimental motion capture were used to determine hip, knee, and ankle angles, as well as toe-target proximity, during weed removal. Significant differences between primed and not primed participants were found for angular displacement at the ankle (t(32) = 5.08, P < .001) and toe-target proximity (t(32) = 2.78, P = .008), where primed participants had increased ankle flexion and a greater distance to the weed, leading to decreased trunk flexion during the harvesting task. These findings suggest that priming can positively influence whole-body postures for manual weed removal.
The mass dependence of dark matter halo alignments with large-scale structure
NASA Astrophysics Data System (ADS)
Piras, Davide; Joachimi, Benjamin; Schäfer, Björn Malte; Bonamigo, Mario; Hilbert, Stefan; van Uitert, Edo
2018-02-01
Tidal gravitational forces can modify the shape of galaxies and clusters of galaxies, thus correlating their orientation with the surrounding matter density field. We study the dependence of this phenomenon, known as intrinsic alignment (IA), on the mass of the dark matter haloes that host these bright structures, analysing the Millennium and Millennium-XXL N-body simulations. We closely follow the observational approach, measuring the halo position-halo shape alignment and subsequently dividing out the dependence on halo bias. We derive a theoretical scaling of the IA amplitude with mass in a dark matter universe, and predict a power law with slope βM in the range 1/3 to 1/2, depending on mass scale. We find that the simulation data agree with each other and with the theoretical prediction remarkably well over three orders of magnitude in mass, with the joint analysis yielding an estimate of β M = 0.36^{+0.01}_{-0.01}. This result does not depend on redshift or on the details of the halo shape measurement. The analysis is repeated on observational data, obtaining a significantly higher value, β M = 0.56^{+0.05}_{-0.05}. There are also small but significant deviations from our simple model in the simulation signals at both the high- and low-mass end. We discuss possible reasons for these discrepancies, and argue that they can be attributed to physical processes not captured in the model or in the dark matter-only simulations.
Pérez-Andújar, Angélica; Newhauser, Wayne D; DeLuca, Paul M
2014-01-01
In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903
Mendoza-Vazquez, Manuel; Davidsson, Johan; Brolin, Karin
2015-12-01
There is a need to improve the protection to the thorax of occupants in frontal car crashes. Finite element human body models are a more detailed representation of humans than anthropomorphic test devices (ATDs). On the other hand, there is no clear consensus on the injury criteria and the thresholds to use with finite element human body models to predict rib fractures. The objective of this study was to establish a set of injury risk curves to predict rib fractures using a modified Total HUman Model for Safety (THUMS). Injury criteria at the global, structural and material levels were computed with a modified THUMS in matched Post Mortem Human Subjects (PMHSs) tests. Finally, the quality of each injury risk curve was determined. For the included PMHS tests and the modified THUMS, DcTHOR and shear stress were the criteria at the global and material levels that reached an acceptable quality. The injury risk curves at the structural level did not reach an acceptable quality. Copyright © 2015 Elsevier Ltd. All rights reserved.
Proton irradiation of [18O]O2: production of [18F]F2 and [18F]F2 + [18F] OF2.
Bishop, A; Satyamurthy, N; Bida, G; Hendry, G; Phelps, M; Barrio, J R
1996-04-01
The production of 18F electrophilic reagents via the 18O(p,n)18F reaction has been investigated in small-volume target bodies made of aluminum, copper, gold-plated copper and nickel, having straight or conical bore shapes. Three irradiation protocols-single-step, two-step and modified two-step-were used for the recovery of the 18F activity. The single-step irradiation protocol was tested in all the target bodies. Based on the single-step performance, aluminum targets were utilized extensively in the investigation of the two-step and modified two-step irradiation protocols. With an 11-MeV cyclotron and using the two-step irradiation protocol, > 1Ci [18F]F2 was recovered reproducibly from an aluminum target body. Probable radical mechanisms for the formation of OF2 and FONO2 (fluorine nitrate) in the single-step and modified two-step targets are proposed based on the amount of ozone generated and the nitrogen impurity present in the target gases, respectively.
Simulation and Analyses of Multi-Body Separation in Launch Vehicle Staging Environment
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Hotchko, Nathaniel J.; Samareh, Jamshid; Covell, Peter F.; Tartabini, Paul V.
2006-01-01
The development of methodologies, techniques, and tools for analysis and simulation of multi-body separation is critically needed for successful design and operation of next generation launch vehicles. As a part of this activity, ConSep simulation tool is being developed. ConSep is a generic MATLAB-based front-and-back-end to the commercially available ADAMS. solver, an industry standard package for solving multi-body dynamic problems. This paper discusses the 3-body separation capability in ConSep and its application to the separation of the Shuttle Solid Rocket Boosters (SRBs) from the External Tank (ET) and the Orbiter. The results are compared with STS-1 flight data.
Jeong, Joo Yeon; Lee, Dong Hoon; Kang, Sang Soo
2013-12-01
Stress affects body weight and food intake, but the underlying mechanisms are not well understood. We evaluated the changes in body weight and food intake of ICR male mice subjected to daily 2 hours restraint stress for 15 days. Hypothalamic gene expression profiling was analyzed by cDNA microarray. Daily body weight and food intake measurements revealed that both parameters decreased rapidly after initiating daily restraint stress. Body weights of stressed mice then remained significantly lower than the control body weights, even though food intake slowly recovered to 90% of the control intake at the end of the experiment. cDNA microarray analysis revealed that chronic restraint stress affects the expression of hypothalamic genes possibly related to body weight control. Since decreases of daily food intake and body weight were remarkable in days 1 to 4 of restraint, we examined the expression of food intake-related genes in the hypothalamus. During these periods, the expressions of ghrelin and pro-opiomelanocortin mRNA were significantly changed in mice undergoing restraint stress. Moreover, daily serum corticosterone levels gradually increased, while leptin levels significantly decreased. The present study demonstrates that restraint stress affects body weight and food intake by initially modifying canonical food intake-related genes and then later modifying other genes involved in energy metabolism. These genetic changes appear to be mediated, at least in part, by corticosterone.
Kim, Koh-Woon; Song, Mi-Yeon; Chung, Seok-Hee; Chung, Won-Seok
2016-02-01
The aim of this study was to investigate the effects and safety of modified fasting therapy using fermented medicinal herbs and exercise on body weight, fat and muscle mass, and blood chemistry in obese subjects. Twenty-six patients participated in a 14-day fast, during which they ingested a supplement made from fermented medicinal herbs and carbohydrates (intake: 400-600 kcal/d). The schedule included 7 prefasting relief days and 14 days of stepwise reintroduction of food. The patients also took part in an exercise program that incorporated Qigong, weight training, and walking exercises. The efficacy of treatments was observed by assessing body fat mass and muscle mass, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholesterol, and triglycerides in each study period. Specific symptoms or side effects were reported. Body weight and body fat mass both decreased significantly by (5.16 ± 0.95) and (3.89 ± 0.79) kg (both P < 0.05), while muscle mass decreased by an average of (0.26 ± 0.22) kg, without statistical significance. ALT levels were significantly decreased (P < 0.05), while AST levels decreased without statistical significance (P = 0.052). The levels of total cholesterol and triglycerides were also significantly decreased (both P < 0.05). There were few adverse events except for mild dizziness, which did not affect everyday living. These results suggest that modified fasting therapy using fermented medicinal herbs and exercise could be effective and safe on obese patients.
Fast Generation of Ensembles of Cosmological N-Body Simulations via Mode-Resampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, M D; Cole, S; Frenk, C S
2011-02-14
We present an algorithm for quickly generating multiple realizations of N-body simulations to be used, for example, for cosmological parameter estimation from surveys of large-scale structure. Our algorithm uses a new method to resample the large-scale (Gaussian-distributed) Fourier modes in a periodic N-body simulation box in a manner that properly accounts for the nonlinear mode-coupling between large and small scales. We find that our method for adding new large-scale mode realizations recovers the nonlinear power spectrum to sub-percent accuracy on scales larger than about half the Nyquist frequency of the simulation box. Using 20 N-body simulations, we obtain a powermore » spectrum covariance matrix estimate that matches the estimator from Takahashi et al. (from 5000 simulations) with < 20% errors in all matrix elements. Comparing the rates of convergence, we determine that our algorithm requires {approx}8 times fewer simulations to achieve a given error tolerance in estimates of the power spectrum covariance matrix. The degree of success of our algorithm indicates that we understand the main physical processes that give rise to the correlations in the matter power spectrum. Namely, the large-scale Fourier modes modulate both the degree of structure growth through the variation in the effective local matter density and also the spatial frequency of small-scale perturbations through large-scale displacements. We expect our algorithm to be useful for noise modeling when constraining cosmological parameters from weak lensing (cosmic shear) and galaxy surveys, rescaling summary statistics of N-body simulations for new cosmological parameter values, and any applications where the influence of Fourier modes larger than the simulation size must be accounted for.« less
Constraining the noise-free distribution of halo spin parameters
NASA Astrophysics Data System (ADS)
Benson, Andrew J.
2017-11-01
Any measurement made using an N-body simulation is subject to noise due to the finite number of particles used to sample the dark matter distribution function, and the lack of structure below the simulation resolution. This noise can be particularly significant when attempting to measure intrinsically small quantities, such as halo spin. In this work, we develop a model to describe the effects of particle noise on halo spin parameters. This model is calibrated using N-body simulations in which the particle noise can be treated as a Poisson process on the underlying dark matter distribution function, and we demonstrate that this calibrated model reproduces measurements of halo spin parameter error distributions previously measured in N-body convergence studies. Utilizing this model, along with previous measurements of the distribution of halo spin parameters in N-body simulations, we place constraints on the noise-free distribution of halo spins. We find that the noise-free median spin is 3 per cent lower than that measured directly from the N-body simulation, corresponding to a shift of approximately 40 times the statistical uncertainty in this measurement arising purely from halo counting statistics. We also show that measurement of the spin of an individual halo to 10 per cent precision requires at least 4 × 104 particles in the halo - for haloes containing 200 particles, the fractional error on spins measured for individual haloes is of order unity. N-body simulations should be viewed as the results of a statistical experiment applied to a model of dark matter structure formation. When viewed in this way, it is clear that determination of any quantity from such a simulation should be made through forward modelling of the effects of particle noise.
Impact of indoor environment on path loss in body area networks.
Hausman, Sławomir; Januszkiewicz, Łukasz
2014-10-20
In this paper the influence of an example indoor environment on narrowband radio channel path loss for body area networks operating around 2.4 GHz is investigated using computer simulations and on-site measurements. In contrast to other similar studies, the simulation model included both a numerical human body phantom and its environment-room walls, floor and ceiling. As an example, radio signal attenuation between two different configurations of transceivers with dipole antennas placed in a direct vicinity of a human body (on-body scenario) is analyzed by computer simulations for several types of reflecting environments. In the analyzed case the propagation environments comprised a human body and office room walls. As a reference environment for comparison, free space with only a conducting ground plane, modelling a steel mesh reinforced concrete floor, was chosen. The transmitting and receiving antennas were placed in two on-body configurations chest-back and chest-arm. Path loss vs. frequency simulation results obtained using Finite Difference Time Domain (FDTD) method and a multi-tissue anthropomorphic phantom were compared to results of measurements taken with a vector network analyzer with a human subject located in an average-size empty cuboidal office room. A comparison of path loss values in different environments variants gives some qualitative and quantitative insight into the adequacy of simplified indoor environment model for the indoor body area network channel representation.
Impact of Indoor Environment on Path Loss in Body Area Networks
Hausman, Sławomir; Januszkiewicz, Łukasz
2014-01-01
In this paper the influence of an example indoor environment on narrowband radio channel path loss for body area networks operating around 2.4 GHz is investigated using computer simulations and on-site measurements. In contrast to other similar studies, the simulation model included both a numerical human body phantom and its environment—room walls, floor and ceiling. As an example, radio signal attenuation between two different configurations of transceivers with dipole antennas placed in a direct vicinity of a human body (on-body scenario) is analyzed by computer simulations for several types of reflecting environments. In the analyzed case the propagation environments comprised a human body and office room walls. As a reference environment for comparison, free space with only a conducting ground plane, modelling a steel mesh reinforced concrete floor, was chosen. The transmitting and receiving antennas were placed in two on-body configurations chest–back and chest–arm. Path loss vs. frequency simulation results obtained using Finite Difference Time Domain (FDTD) method and a multi-tissue anthropomorphic phantom were compared to results of measurements taken with a vector network analyzer with a human subject located in an average-size empty cuboidal office room. A comparison of path loss values in different environments variants gives some qualitative and quantitative insight into the adequacy of simplified indoor environment model for the indoor body area network channel representation. PMID:25333289
Transfer, loss and physical processing of water in hit-and-run collisions of planetary embryos
NASA Astrophysics Data System (ADS)
Burger, C.; Maindl, T. I.; Schäfer, C. M.
2018-01-01
Collisions between large, similar-sized bodies are believed to shape the final characteristics and composition of terrestrial planets. Their inventories of volatiles such as water are either delivered or at least significantly modified by such events. Besides the transition from accretion to erosion with increasing impact velocity, similar-sized collisions can also result in hit-and-run outcomes for sufficiently oblique impact angles and large enough projectile-to-target mass ratios. We study volatile transfer and loss focusing on hit-and-run encounters by means of smooth particle hydrodynamics simulations, including all main parameters: impact velocity, impact angle, mass ratio and also the total colliding mass. We find a broad range of overall water losses, up to 75% in the most energetic hit-and-run events, and confirm the much more severe consequences for the smaller body also for stripping of volatile layers. Transfer of water between projectile and target inventories is found to be mostly rather inefficient, and final water contents are dominated by pre-collision inventories reduced by impact losses, for similar pre-collision water mass fractions. Comparison with our numerical results shows that current collision outcome models are not accurate enough to reliably predict these composition changes in hit-and-run events. To also account for non-mechanical losses, we estimate the amount of collisionally vaporized water over a broad range of masses and find that these contributions are particularly important in collisions of ˜ Mars-sized bodies, with sufficiently high impact energies, but still relatively low gravity. Our results clearly indicate that the cumulative effect of several (hit-and-run) collisions can efficiently strip protoplanets of their volatile layers, especially the smaller body, as it might be common, e.g., for Earth-mass planets in systems with Super-Earths. An accurate model for stripping of volatiles that can be included in future planet formation simulations has to account for the peculiarities of hit-and-run events and track compositional changes in both large post-collision fragments.
Hamiltonian quantum simulation with bounded-strength controls
NASA Astrophysics Data System (ADS)
Bookatz, Adam D.; Wocjan, Pawel; Viola, Lorenza
2014-04-01
We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an ‘Eulerian decoupling cycle,’ that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed.
Multibody Modeling and Simulation for the Mars Phoenix Lander Entry, Descent and Landing
NASA Technical Reports Server (NTRS)
Queen, Eric M.; Prince, Jill L.; Desai, Prasun N.
2008-01-01
A multi-body flight simulation for the Phoenix Mars Lander has been developed that includes high fidelity six degree-of-freedom rigid-body models for the parachute and lander system. The simulation provides attitude and rate history predictions of all bodies throughout the flight, as well as loads on each of the connecting lines. In so doing, a realistic behavior of the descending parachute/lander system dynamics can be simulated that allows assessment of the Phoenix descent performance and identification of potential sensitivities for landing. This simulation provides a complete end-to-end capability of modeling the entire entry, descent, and landing sequence for the mission. Time histories of the parachute and lander aerodynamic angles are presented. The response of the lander system to various wind models and wind shears is shown to be acceptable. Monte Carlo simulation results are also presented.
Three-dimensional, ten-moment multifluid simulation of the solar wind interaction with Mercury
NASA Astrophysics Data System (ADS)
Dong, C.; Hakim, A.; Wang, L.; Bhattacharjee, A.; Germaschewski, K.; DiBraccio, G. A.
2017-12-01
We investigate Mercury's magnetosphere by using Gkeyll ten-moment multifluid code that solves the continuity, momentum and pressure tensor equations of both protons and electrons, as well as the full Maxwell equations. Non-ideal effects like the Hall effect, inertia, and tensorial pressures are self-consistently embedded without the need to explicitly solve a generalized Ohm's law. Previously, we have benchmarked this approach in classical test problems like the Orszag-Tang vortex and GEM reconnection challenge problem. We first validate the model by using MESSENGER magnetic field data through data-model comparisons. Both day- and night-side magnetic reconnection are studied in detail. In addition, we include a mantle layer (with a resistivity profile) and a perfect conducting core inside the planet body to accurately represent Mercury's interior. The intrinsic dipole magnetic fields may be modified inside the planetary body due to the weak magnetic moment of Mercury. By including the planetary interior, we can capture the correct plasma boundary locations (e.g., bow shock and magnetopause), especially during a space weather event. This study has the potential to enhance the science returns of both the MESSENGER mission and the upcoming BepiColombo mission (to be launched to Mercury in 2018).
McCafferty, D J; Pandraud, G; Gilles, J; Fabra-Puchol, M; Henry, P-Y
2017-12-28
Birds and mammals have evolved many thermal adaptations that are relevant to the bioinspired design of temperature control systems and energy management in buildings. Similar to many buildings, endothermic animals generate internal metabolic heat, are well insulated, regulate their temperature within set limits, modify microclimate and adjust thermal exchange with their environment. We review the major components of animal thermoregulation in endothermic birds and mammals that are pertinent to building engineering, in a world where climate is changing and reduction in energy use is needed. In animals, adjustment of insulation together with physiological and behavioural responses to changing environmental conditions fine-tune spatial and temporal regulation of body temperature, while also minimizing energy expenditure. These biological adaptations are characteristically flexible, allowing animals to alter their body temperatures to hourly, daily, or annual demands for energy. They exemplify how buildings could become more thermally reactive to meteorological fluctuations, capitalising on dynamic thermal materials and system properties. Based on this synthesis, we suggest that heat transfer modelling could be used to simulate these flexible biomimetic features and assess their success in reducing energy costs while maintaining thermal comfort for given building types.
X-38 vehicle #131R during landing on first free flight
NASA Technical Reports Server (NTRS)
2000-01-01
The latest version of the X-38, V-131R, touches down on Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center at Edwards, California, at the end of its first free flight under a giant parafoil on Nov. 2, 2000. The X-38 prototypes are intended to perfect technology for a planned Crew Return Vehicle (CRV) 'lifeboat' to carry a crew to safety in the event of an emergency on the International Space Station. Free-flight tests of X-38 V-131R are evaluating upgraded avionics and control systems and the aerodynamics of the modified upper body, which is more representative of the final design of the CRV than the two earlier X-38 test craft, including a simulated hatch atop the body. The huge 7,500 square-foot parafoil will enable the CRV to land in the length of a football field after returning from space. The first three X-38's are air-launched from NASA's venerable NB-52B mother ship, while the last version, V-201, will be carried into space by a Space Shuttle and make a fully autonomous re-entry and landing.
Atomistic properties of γ uranium.
Beeler, Benjamin; Deo, Chaitanya; Baskes, Michael; Okuniewski, Maria
2012-02-22
The properties of the body-centered cubic γ phase of uranium (U) are calculated using atomistic simulations. First, a modified embedded-atom method interatomic potential is developed for the high temperature body-centered cubic (γ) phase of U. This phase is stable only at high temperatures and is thus relatively inaccessible to first principles calculations and room temperature experiments. Using this potential, equilibrium volume and elastic constants are calculated at 0 K and found to be in close agreement with previous first principles calculations. Further, the melting point, heat capacity, enthalpy of fusion, thermal expansion and volume change upon melting are calculated and found to be in reasonable agreement with experiment. The low temperature mechanical instability of γ U is correctly predicted and investigated as a function of pressure. The mechanical instability is suppressed at pressures greater than 17.2 GPa. The vacancy formation energy is analyzed as a function of pressure and shows a linear trend, allowing for the calculation of the extrapolated zero pressure vacancy formation energy. Finally, the self-defect formation energy is analyzed as a function of temperature. This is the first atomistic calculation of γ U properties above 0 K with interatomic potentials.
Atomistic properties of γ uranium
NASA Astrophysics Data System (ADS)
Beeler, Benjamin; Deo, Chaitanya; Baskes, Michael; Okuniewski, Maria
2012-02-01
The properties of the body-centered cubic γ phase of uranium (U) are calculated using atomistic simulations. First, a modified embedded-atom method interatomic potential is developed for the high temperature body-centered cubic (γ) phase of U. This phase is stable only at high temperatures and is thus relatively inaccessible to first principles calculations and room temperature experiments. Using this potential, equilibrium volume and elastic constants are calculated at 0 K and found to be in close agreement with previous first principles calculations. Further, the melting point, heat capacity, enthalpy of fusion, thermal expansion and volume change upon melting are calculated and found to be in reasonable agreement with experiment. The low temperature mechanical instability of γ U is correctly predicted and investigated as a function of pressure. The mechanical instability is suppressed at pressures greater than 17.2 GPa. The vacancy formation energy is analyzed as a function of pressure and shows a linear trend, allowing for the calculation of the extrapolated zero pressure vacancy formation energy. Finally, the self-defect formation energy is analyzed as a function of temperature. This is the first atomistic calculation of γ U properties above 0 K with interatomic potentials.
X-38 vehicle #131R in first free flight
2000-11-02
The third iteration of the X-38, V-131R, glides down under a giant parafoil towards a landing on Rogers Dry Lake near NASAÕs Dryden Flight Research Center during its first free flight Nov. 2, 2000. The X-38 prototypes are intended to perfect technology for a planned Crew Return Vehicle (CRV) ÒlifeboatÓ to carry a crew to safety in the event of an emergency on the International Space Station. Free-flight tests of X-38 V-131R are evaluating upgraded avionics and control systems and the aerodynamics of the modified upper body, which is more representative of the final design of the CRV than the two earlier X-38 test craft, including a simulated hatch atop the body. The huge 7,500 square-foot parafoil will enable the CRV to land in the length of a football field after returning from space. The first three X-38Õs are air-launched from NASAÕs venerable NB-52B mother ship, while the last version, V-201, will be carried into space by a Space Shuttle and make a fully autonomous re-entry and landing.
X-38 vehicle #131R during landing on first free flight
2000-11-02
The latest version of the X-38, V-131R, touches down on Rogers Dry Lake adjacent to NASAÕs Dryden Flight Research Center at Edwards, California, at the end of its first free flight under a giant parafoil on Nov. 2, 2000. The X-38 prototypes are intended to perfect technology for a planned Crew Return Vehicle (CRV) ÒlifeboatÓ to carry a crew to safety in the event of an emergency on the International Space Station. Free-flight tests of X-38 V-131R are evaluating upgraded avionics and control systems and the aerodynamics of the modified upper body, which is more representative of the final design of the CRV than the two earlier X-38 test craft, including a simulated hatch atop the body. The huge 7,500 square-foot parafoil will enable the CRV to land in the length of a football field after returning from space. The first three X-38Õs are air-launched from NASAÕs venerable NB-52B mother ship, while the last version, V-201, will be carried into space by a Space Shuttle and make a fully autonomous re-entry and landing.
Relativistic effects due to gravimagnetic moment of a rotating body
NASA Astrophysics Data System (ADS)
Ramírez, Walberto Guzmán; Deriglazov, Alexei A.
2017-12-01
We compute the exact Hamiltonian (and corresponding Dirac brackets) for a spinning particle with gravimagnetic moment κ in an arbitrary gravitational background. The case κ =0 corresponds to the Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations. κ =1 leads to modified MPTD equations with improved behavior in the ultrarelativistic limit. So we study the modified equations in the leading post-Newtonian approximation. The rotating body with unit gravimagnetic moment has qualitatively different behavior as compared with the MPTD body: (A) If a number of gyroscopes with various rotation axes are freely traveling together, the angles between the axes change with time. (B) For specific binary systems, gravimagnetic moment gives a contribution to the frame-dragging effect with the magnitude that turns out to be comparable with that of Schiff frame dragging.
Chu, Chenyu; Liu, Li; Wang, Yufei; Wei, Shimin; Wang, Yuanjing; Man, Yi; Qu, Yili
2018-04-28
Collagen has been widely used in guided bone regeneration, and the implantation of collagen membranes will elicit the foreign body reaction (FBR). The imbalance of FBR often leads to failure of dental implants. Therefore, modulation of the FBR after implantation of collagen membranes becomes increasingly important. Macrophages, pivotal in FBR, have been distinguished into pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Epigallocatechin-3-gallate (EGCG)-modified collagen membranes have been previously shown to regulate secretion of inflammatory factors. In this study, immunohistochemistry of CD31 showed that areas of blood vessels were significantly enlarged after implantation of EGCG-modified collagen membranes compared with those treated with pure collagen membranes. Besides, haematoxylin-eosin staining and immunofluorescence showed an increased number of M2 macrophages after implantation of EGCG-modified collagen membranes. In addition, quantitative real-time polymerase chain reaction showed that after implantation of EGCG-modified collagen membranes, expression of CXCL1 (predominant chemoattractants to neutrophils and inflammation promotors) was significantly downregulated, whereas expressions of STAB1, CCR2, CCR3, CCL2, and CCL3 (related to M2 macrophages) were significantly upregulated. From these findings, we conclude that EGCG-modified collagen membranes were able to regulate the recruitment and polarization of macrophages, so that ameliorate FBR. Copyright © 2018 John Wiley & Sons, Ltd.
Evaluation of anti-freeze viscosity modifier for potential external tank applications
NASA Technical Reports Server (NTRS)
Lynn, R. O. L.
1981-01-01
Viscosity modifiers and gelling agents were evaluated in combination with ethylene glycol and dimethyl sulfoxide water eutectics. Pectin and agarose are found to gel these eutectics effectively in low concentration, but the anti-freeze protection afforded by these compositions is found to be marginal in simulations of the intended applications. Oxygen vent shutters and vertical metallic surfaces were simulated, with water supplied as a spray, dropwise, and by condensation from the air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Chang Ho; Kim, Bohyoung; Gu, Bon Seung
2013-10-15
Purpose: To modify the preprocessing technique, which was previously proposed, improving compressibility of computed tomography (CT) images to cover the diversity of three dimensional configurations of different body parts and to evaluate the robustness of the technique in terms of segmentation correctness and increase in reversible compression ratio (CR) for various CT examinations.Methods: This study had institutional review board approval with waiver of informed patient consent. A preprocessing technique was previously proposed to improve the compressibility of CT images by replacing pixel values outside the body region with a constant value resulting in maximizing data redundancy. Since the technique wasmore » developed aiming at only chest CT images, the authors modified the segmentation method to cover the diversity of three dimensional configurations of different body parts. The modified version was evaluated as follows. In randomly selected 368 CT examinations (352 787 images), each image was preprocessed by using the modified preprocessing technique. Radiologists visually confirmed whether the segmented region covers the body region or not. The images with and without the preprocessing were reversibly compressed using Joint Photographic Experts Group (JPEG), JPEG2000 two-dimensional (2D), and JPEG2000 three-dimensional (3D) compressions. The percentage increase in CR per examination (CR{sub I}) was measured.Results: The rate of correct segmentation was 100.0% (95% CI: 99.9%, 100.0%) for all the examinations. The median of CR{sub I} were 26.1% (95% CI: 24.9%, 27.1%), 40.2% (38.5%, 41.1%), and 34.5% (32.7%, 36.2%) in JPEG, JPEG2000 2D, and JPEG2000 3D, respectively.Conclusions: In various CT examinations, the modified preprocessing technique can increase in the CR by 25% or more without concerning about degradation of diagnostic information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, William A., E-mail: wadawson@ucdavis.edu
2013-08-01
Merging galaxy clusters have become one of the most important probes of dark matter, providing evidence for dark matter over modified gravity and even constraints on the dark matter self-interaction cross-section. To properly constrain the dark matter cross-section it is necessary to understand the dynamics of the merger, as the inferred cross-section is a function of both the velocity of the collision and the observed time since collision. While the best understanding of merging system dynamics comes from N-body simulations, these are computationally intensive and often explore only a limited volume of the merger phase space allowed by observed parametermore » uncertainty. Simple analytic models exist but the assumptions of these methods invalidate their results near the collision time, plus error propagation of the highly correlated merger parameters is unfeasible. To address these weaknesses I develop a Monte Carlo method to discern the properties of dissociative mergers and propagate the uncertainty of the measured cluster parameters in an accurate and Bayesian manner. I introduce this method, verify it against an existing hydrodynamic N-body simulation, and apply it to two known dissociative mergers: 1ES 0657-558 (Bullet Cluster) and DLSCL J0916.2+2951 (Musket Ball Cluster). I find that this method surpasses existing analytic models-providing accurate (10% level) dynamic parameter and uncertainty estimates throughout the merger history. This, coupled with minimal required a priori information (subcluster mass, redshift, and projected separation) and relatively fast computation ({approx}6 CPU hours), makes this method ideal for large samples of dissociative merging clusters.« less
Collisional disruptions of rotating targets
NASA Astrophysics Data System (ADS)
Ševeček, Pavel; Broz, Miroslav
2017-10-01
Collisions are key processes in the evolution of the Main Asteroid Belt and impact events - i.e. target fragmentation and gravitational reaccumulation - are commonly studied by numerical simulations, namely by SPH and N-body methods. In our work, we extend the previous studies by assuming rotating targets and we study the dependence of resulting size-distributions on the pre-impact rotation of the target. To obtain stable initial conditions, it is also necessary to include the self-gravity already in the fragmentation phase which was previously neglected.To tackle this problem, we developed an SPH code, accelerated by SSE/AVX instruction sets and parallelized. The code solves the standard set of hydrodynamic equations, using the Tillotson equation of state, von Mises criterion for plastic yielding and scalar Grady-Kipp model for fragmentation. We further modified the velocity gradient by a correction tensor (Schäfer et al. 2007) to ensure a first-order conservation of the total angular momentum. As the intact target is a spherical body, its gravity can be approximated by a potential of a homogeneous sphere, making it easy to set up initial conditions. This is however infeasible for later stages of the disruption; to this point, we included the Barnes-Hut algorithm to compute the gravitational accelerations, using a multipole expansion of distant particles up to hexadecapole order.We tested the code carefully, comparing the results to our previous computations obtained with the SPH5 code (Benz and Asphaug 1994). Finally, we ran a set of simulations and we discuss the difference between the synthetic families created by rotating and static targets.
Simulation of salinity effects on past, present, and future soil organic carbon stocks.
Setia, Raj; Smith, Pete; Marschner, Petra; Gottschalk, Pia; Baldock, Jeff; Verma, Vipan; Setia, Deepika; Smith, Jo
2012-02-07
Soil organic carbon (SOC) models are used to predict changes in SOC stocks and carbon dioxide (CO(2)) emissions from soils, and have been successfully validated for non-saline soils. However, SOC models have not been developed to simulate SOC turnover in saline soils. Due to the large extent of salt-affected areas in the world, it is important to correctly predict SOC dynamics in salt-affected soils. To close this knowledge gap, we modified the Rothamsted Carbon Model (RothC) to simulate SOC turnover in salt-affected soils, using data from non-salt-affected and salt-affected soils in two agricultural regions in India (120 soils) and in Australia (160 soils). Recently we developed a decomposition rate modifier based on an incubation study of a subset of these soils. In the present study, we introduce a new method to estimate the past losses of SOC due to salinity and show how salinity affects future SOC stocks on a regional scale. Because salinity decreases decomposition rates, simulations using the decomposition rate modifier for salinity suggest an accumulation of SOC. However, if the plant inputs are also adjusted to reflect reduced plant growth under saline conditions, the simulations show a significant loss of soil carbon in the past due to salinization, with a higher average loss of SOC in Australian soils (55 t C ha(-1)) than in Indian soils (31 t C ha(-1)). There was a significant negative correlation (p < 0.05) between SOC loss and osmotic potential. Simulations of future SOC stocks with the decomposition rate modifier and the plant input modifier indicate a greater decrease in SOC in saline than in non-saline soils under future climate. The simulations of past losses of SOC due to salinity were repeated using either measured charcoal-C or the inert organic matter predicted by the Falloon et al. equation to determine how much deviation from the Falloon et al. equation affects the amount of plant inputs generated by the model for the soils used in this study. Both sets of results suggest that saline soils have lost carbon and will continue to lose carbon under future climate. This demonstrates the importance of both reduced decomposition and reduced plant input in simulations of future changes in SOC stocks in saline soils.
Modifying the Body: Canadian Men's Perspectives on Appearance and Cosmetic Surgery
ERIC Educational Resources Information Center
Ricciardelli, Rosemary; White, Philip
2011-01-01
In postmodern scholarship there has been a temporal shift to thinking of the body as malleable rather than fixed, which has opened space for the remaking of the self via the remaking of the body (Featherstone, 1991; Giddens, 1991). Among men, this process is thought to interact with shifting understandings of masculinity. In this study, 14…
Cook, Heather; Brennan, Kathleen; Azziz, Ricardo
2011-01-01
Objective To determine whether assessing the extent of terminal hair growth in a subset of the traditional 9 areas included in the modified Ferriman-Gallwey (mFG) score can serve as a simpler predictor of total body hirsutism when compared to the full scoring system, and to determine if this new model can accurately distinguish hirsute from non-hirsute women. Design Cross-sectional analysis Setting Two tertiary care academic referral centers. Patients 1951 patients presenting for symptoms of androgen excess. Interventions History and physical examination, including mFG score. Main Outcome Measures Total body hirsutism. Results A regression model using all nine body areas indicated that the combination of upper abdomen, lower abdomen and chin was the best predictor of the total full mFG score. Using this subset of three body areas is accurate in distinguishing true hirsute from non-hirsute women when defining true hirsutism as mFG>7. Conclusion Scoring terminal hair growth only on the chin and abdomen can serve as a simple, yet reliable predictor of total body hirsutism when compared to full body scoring using the traditional mFG system. PMID:21924716
On the Frozen Soil Scheme for High Latitude Regions
NASA Astrophysics Data System (ADS)
Ganji, A.; Sushama, L.
2014-12-01
Regional and global climate model simulated streamflows for high-latitude regions show systematic biases, particularly in the timing and magnitude of spring peak flows. Though these biases could be related to the snow water equivalent and spring temperature biases in models, a good part of these biases is due to the unaccounted effects of non-uniform infiltration capacity of the frozen ground and other related processes. In this paper, the frozen scheme in the Canadian Land Surface Scheme (CLASS), which is used in the Canadian regional and global climate models, is modified to include fractional permeable area, supercooled liquid water and a new formulation for hydraulic conductivity. Interflow is also included in these experiments presented in this study to better explain the steamflows after snow melt season. The impact of these modifications on the regional hydrology, particularly streamflow, is assessed by comparing three simulations, performed with the original and two modified versions of CLASS, driven by atmospheric forcing data from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data (ERA-Interim), for the 1990-2001 period, over a northeast Canadian domain. The two modified versions of CLASS differ in the soil hydraulic conductivity and matric potential formulations, with one version being based on formulations from a previous study and the other one is newly proposed. Results suggest statistically significant decreases in infiltration for the simulation with the new hydraulic conductivity and matric potential formulations and fractional permeable area concept, compared to the original version of CLASS, which is also reflected in the increased spring surface runoff and streamflows in this simulation with modified CLASS, over most of the study domain. The simulated spring peaks and their timing in this simulation is also in better agreement to those observed.
Yelland, Lisa N; Salter, Amy B; Ryan, Philip
2011-10-15
Modified Poisson regression, which combines a log Poisson regression model with robust variance estimation, is a useful alternative to log binomial regression for estimating relative risks. Previous studies have shown both analytically and by simulation that modified Poisson regression is appropriate for independent prospective data. This method is often applied to clustered prospective data, despite a lack of evidence to support its use in this setting. The purpose of this article is to evaluate the performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data, by using generalized estimating equations to account for clustering. A simulation study is conducted to compare log binomial regression and modified Poisson regression for analyzing clustered data from intervention and observational studies. Both methods generally perform well in terms of bias, type I error, and coverage. Unlike log binomial regression, modified Poisson regression is not prone to convergence problems. The methods are contrasted by using example data sets from 2 large studies. The results presented in this article support the use of modified Poisson regression as an alternative to log binomial regression for analyzing clustered prospective data when clustering is taken into account by using generalized estimating equations.
Parallel high-precision orbit propagation using the modified Picard-Chebyshev method
NASA Astrophysics Data System (ADS)
Koblick, Darin C.
2012-03-01
The modified Picard-Chebyshev method, when run in parallel, is thought to be more accurate and faster than the most efficient sequential numerical integration techniques when applied to orbit propagation problems. Previous experiments have shown that the modified Picard-Chebyshev method can have up to a one order magnitude speedup over the 12
Cosmological N-body Simulation of Galaxy and Large-Scale Structure Formation: The Gravity Frontier
NASA Astrophysics Data System (ADS)
Klypin, Anatoly
2015-04-01
One of the first N-body simulations done almost 50 years ago had only 200 self-gravitating particles. Even this first baby step made substantial impact on understanding how astronomical objects should form. Now powerful supercomputers and new algorithms allow astronomers produce N-body simulations that employ up to a trillion dark matter particles and produce vital theoretical predictions regarding formation, evolution, structure and statistics of objects ranging from dwarf galaxies to clusters and superclusters of galaxies. With only gravity involved in these theoretical models, one would naively expect that by now we should know everything we need about N-body dynamics of cosmological fluctuations. Not the case. It appears that the Universe was not cooperative and gave us divergencies in the initial conditions generated during the Inflation epoch and subsequent expansion of the Universe - the infinite phase-space density and divergent density fluctuations. Ever increasing observational demands on statistics and accuracy of theoretical predictions is another driving force for more realistic and larger N-body simulations. Large current and new planned observational projects such as BOSS, eBOSS, Euclid, LSST will bring information on spatial distribution, motion, and properties of millions of galaxies at different redshifts. Direct simulations of evolution of gas and formation of stars for millions of forming galaxies will not be available for years leaving astronomers with the only option - to develop methods to combine large N-body simulations with models of galaxy formation to produce accurate theoretical predictions. I will discuss the current status of the field and directions of its development.
Effectiveness of a passive-active vibration isolation system with actuator constraints
NASA Astrophysics Data System (ADS)
Sun, Lingling; Sun, Wei; Song, Kongjie; Hansen, Colin H.
2014-05-01
In the prediction of active vibration isolation performance, control force requirements were ignored in previous work. This may limit the realization of theoretically predicted isolation performance if control force of large magnitude cannot be supplied by actuators. The behavior of a feed-forward active isolation system subjected to actuator output constraints is investigated. Distributed parameter models are developed to analyze the system response, and to produce a transfer matrix for the design of an integrated passive-active isolation system. Cost functions comprising a combination of the vibration transmission energy and the sum of the squared control forces are proposed. The example system considered is a rigid body connected to a simply supported plate via two passive-active isolation mounts. Vertical and transverse forces as well as a rotational moment are applied at the rigid body, and resonances excited in elastic mounts and the supporting plate are analyzed. The overall isolation performance is evaluated by numerical simulation. The simulation results are then compared with those obtained using unconstrained control strategies. In addition, the effects of waves in elastic mounts are analyzed. It is shown that the control strategies which rely on unconstrained actuator outputs may give substantial power transmission reductions over a wide frequency range, but also require large control force amplitudes to control excited vibration modes of the system. Expected power transmission reductions for modified control strategies that incorporate constrained actuator outputs are considerably less than typical reductions with unconstrained actuator outputs. In the frequency range in which rigid body modes are present, the control strategies can only achieve 5-10 dB power transmission reduction, when control forces are constrained to be the same order of the magnitude as the primary vertical force. The resonances of the elastic mounts result in a notable increase of power transmission in high frequency range and cannot be attenuated by active control. The investigation provides a guideline for design and evaluation of active vibration isolation systems.
NASA Technical Reports Server (NTRS)
James, Carlton S.
1960-01-01
An aircraft configuration, previously conceived as a means to achieve favorable aerodynamic stability characteristics., high lift-drag ratio, and low heating rates at high supersonic speeds., was modified in an attempt to increase further the lift-drag ratio without adversely affecting the other desirable characteristics. The original configuration consisted of three identical triangular wing panels symmetrically disposed about an ogive-cylinder body equal in length to the root chord of the panels. This configuration was modified by altering the angular disposition of the wing panels, by reducing the area of the panel forming the vertical fin, and by reshaping the body to produce interference lift. Six-component force and moment tests of the modified configuration at combined angles of attack and sideslip were made at a Mach number of 3.3 and a Reynolds number of 5.46 million. A maximum lift-drag ratio of 6.65 (excluding base drag) was measured at a lift coefficient of 0.100 and an angle of attack of 3.60. The lift-drag ratio remained greater than 3 up to lift coefficient of 0.35. Performance estimates, which predicted a maximum lift-drag ratio for the modified configuration 27 percent greater than that of the original configuration, agreed well with experiment. The modified configuration exhibited favorable static stability characteristics within the test range. Longitudinal and directional centers of pressure were slightly aft of the respective centroids of projected plan-form and side area.
Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Edler, D.; Mishra, C.; Wächtler, F.; Nath, R.; Sinha, S.; Santos, L.
2017-08-01
Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.
Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates.
Edler, D; Mishra, C; Wächtler, F; Nath, R; Sinha, S; Santos, L
2017-08-04
Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.
NASA Technical Reports Server (NTRS)
Norbury, John W.; Slaba, Tony C.; Rusek, Adam; Durante, Marco; Reitz, Guenther
2015-01-01
An international collaboration on Galactic Cosmic Ray (GCR) simulation is being formed to make recommendations on how to best simulate the GCR spectrum at ground based accelerators. The external GCR spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The anticipated outcome of these and other studies may be a report or journal article, written by an international collaboration, making accelerator beam recommendations for GCR simulation. This poster describes the status of GCR simulation at the NASA Space Radiation Laboratory and encourages others to join the collaboration.
The Modified Values Auction: A Data Analytic Classroom Game
ERIC Educational Resources Information Center
Miller, Larry D.
1978-01-01
Describes a modified values auction simulation game, reports on three levels of analysis employing actual classroom data (group, subgroup, and individual), and offers suggestions for utilizing values data in social research. (CMV)
NASA Astrophysics Data System (ADS)
Liu, Yu; Qin, Shengwei; Hao, Qingguo; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua
2017-03-01
The study of internal stress in quenched AISI 4140 medium carbon steel is of importance in engineering. In this work, the finite element simulation (FES) was employed to predict the distribution of internal stress in quenched AISI 4140 cylinders with two sizes of diameter based on exponent-modified (Ex-Modified) normalized function. The results indicate that the FES based on Ex-Modified normalized function proposed is better consistent with X-ray diffraction measurements of the stress distribution than FES based on normalized function proposed by Abrassart, Desalos and Leblond, respectively, which is attributed that Ex-Modified normalized function better describes transformation plasticity. Effect of temperature distribution on the phase formation, the origin of residual stress distribution and effect of transformation plasticity function on the residual stress distribution were further discussed.
In vivo modulation of foreign body response on polyurethane by surface entrapment technique.
Khandwekar, Anand P; Patil, Deepak P; Hardikar, Anand A; Shouche, Yogesh S; Doble, Mukesh
2010-11-01
Implanted polymeric materials, such as medical devices, provoke the body to initiate an inflammatory reaction, known as the foreign body response (FBR), which causes several complications. In this study, polyurethane (Tecoflex®, PU) surface modified with the nonionic surfactant Tween80® (PU/T80) and the cell adhesive PLL-RGD peptide (PU/PLL-RGD) by a previously described entrapment technique were implanted in the peritoneal cavity of Wistar rats for 30 days. Implants were retrieved and examined for tissue reactivity and cellular adherence by various microscopic and analytical techniques. Surface-induced inflammatory response was assessed by real-time PCR based quantification of proinflammatory cytokine transcripts, namely, TNF-α and IL-1β, normalized to housekeeping gene GAPDH. Cellular adherence and their distribution profile were assessed by microscopic examination of H&E stained implant sections. It was observed that PU/PLL-RGD followed by the bare PU surface exhibited severe inflammatory and fibrotic response with an average mean thickness of 19 and 12 μm, respectively, in 30 days. In contrast, PU/T80 surface showed only a cellular monolayer of 2-3 μm in thickness, with a mild inflammatory response and no fibrotic encapsulation. The PU/PLL-RGD peptide-modified substrate promoted an enhanced rate of macrophage cell fusion to form foreign body giant cell (FBGCs), whereas FBGCs were rarely observed on Tween80®-modified substrate. The expression levels of proinflammatory cytokines (TNF-α and IL-1β) were upregulated on PU/PLL-RGD surface followed by bare PU, whereas the cytokine expressions were significantly suppressed on PU/T80 surface. Thus, our study highlights modulation of foreign body response on polyurethane surfaces through surface entrapment technique in the form of differential responses observed on PLL-RGD and Tween80® modified surfaces with the former effective in triggering tissue cell adhesion thereby fibrous encapsulation, while the later being mostly resistant to this phenomenon.
Collins, K H; Paul, H A; Reimer, R A; Seerattan, R A; Hart, D A; Herzog, W
2015-11-01
Osteoarthritis (OA) may result from intrinsic inflammation related to metabolic disturbance. Obesity-associated inflammation is triggered by lipopolysaccharide (LPS) derived from the gut microbiota. However, the relationship between gut microbiota, LPS, inflammation, and OA remain unclear. To evaluate the associations between gut microbiota, systemic LPS levels, serum and local inflammatory profiles, and joint damage in a high fat/high sucrose diet induced obese rat model. 32 rats were randomized to a high fat/high sucrose diet (diet-induced obese (DIO), 40% fat, 45% sucrose, n = 21) or chow diet group (12% fat, 3.7% sucrose n = 11) for 28 weeks. After a 12-week obesity induction period, DIO animals were stratified into Obesity Prone (DIO-P, top 33% by change in body mass, n = 7), and Obesity Resistant groups (DIO-R, bottom 33%, n = 7). At sacrifice, joints were scored using a Modified Mankin Criteria. Blood and synovial fluid analytes, serum LPS, and fecal gut microbiota were analyzed. DIO animals had greater Modified Mankin scores than chow animals (P = 0.002). There was a significant relationship (r = 0.604, p = 0.001) between body fat, but not body mass, and Modified Mankin score. Eighteen synovial fluid and four serum analytes were increased in DIO animals. DIO serum LPS levels were increased compared to chow (P = 0.031). Together, Lactobacillus species (spp.) and Methanobrevibacter spp. abundance had a strong predictive relationship with Modified Mankin Score (r(2) = 0.5, P < 0.001). Increased OA in DIO animals is associated with greater body fat, not body mass. The link between gut microbiota and adiposity-derived inflammation and metabolic OA warrants further investigation. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Collier, Terry Odell, III
Injury caused by biomedical device implantation initiates inflammatory and wound healing responses. Cells migrate to the site of injury to degrade bacteria and toxins, create new vasculature, and form new and repair injured tissue. Blood-proteins rapidly adsorb onto the implanted material surface and express adhesive ligands which mediate cell adhesion on the material surface. Monocyte-derived macrophages and multi-nucleated foreign body giant cells adhere to the surface and degrade the surface of the material. Due to the role of macrophage and foreign body giant cell on material biocompatibility and biostability, the effects of surface chemistry, surface topography and specific proteins on the maturation and survival of monocytes, macrophages and foreign body giant cells has been investigated. Novel molecularly designed materials were used to elucidate the dynamic interactions which occur between inflammatory cells, proteins and surfaces. The effect of protein and protein adhesion was investigated using adhesive protein depleted serum conditions on RGD-modified and silane modified surfaces. The effects of surface chemistry were investigated using temperature responsive surfaces of poly (N-isopropylacrylamide) and micropatterned surfaces of N-(2 aminoethyl)-3-aminopropyltrimethoxysilane regions on an interpenetrating polymer network of polyacrylamide and poly(ethylene glycol). The physical effects were investigated using polyimide scaffold materials and polyurethane materials with surface modifying end groups. The depletion of immunoglobulin G caused decreased levels of macrophage adhesion, foreign body giant cell formation and increased levels of apoptosis. The temporal nature of macrophage adhesion was observed with changing effectiveness of adherent cell detachment with time, which correlated to increased expression of beta1 integrin receptors on detached macrophages with time. The limited ability of the micropatterned surface, polyimide scaffold and surface modified polyurethane materials to control macrophage adhesion indicates the complexity of macrophage adhesion and protein adsorption onto a surface. These studies have indicated components and adhesive mechanisms which can be utilized to create materials with enhanced resistance to macrophage adhesion and/or degradative abilities.
Suto, Jun-ichi
2011-07-01
I have developed a congenic mouse strain for the A(y) allele at the agouti locus in an inbred DDD/Sgn strain, DDD.Cg-A(y). DDD.Cg-A(y) females are extremely obese and significantly heavier than B6.Cg-A(y) females. The objectives of this study were to determine the genetic basis of obesity in DDD.Cg-A(y) mice, and to determine whether or not their high body weight was due to the presence of DDD background-specific modifiers. I performed quantitative trait locus (QTL) analyses for body weight and body mass index in two types of F(2) mice [F2 A(y) (F(2) mice carrying the A(y) allele) and F(2) non-A(y) (F2 mice without the A(y) allele)] produced by crossing C57BL/6J females and DDD.Cg-A(y) males. The results of the QTL analysis of F(2) A(y) mice were very similar to those obtained for F(2) non-A(y) mice. It was unlikely that the high body weight of DDD.Cg-A(y) mice was due to the presence of specific modifiers. When both F(2) datasets were merged and analyzed, four significant body weight QTLs were identified on chromosomes 6, 9, and 17 (2 loci) and four significant obesity QTLs were identified on chromosomes 1, 6, 9, and 17. Although the presence of DDD background-specific modifiers was not confirmed, a multifactorial basis of obesity in DDD.Cg-A(y) females was thus revealed.
Increased benefit of alteplase in patients with ischemic stroke and a high body temperature.
de Ridder, Inger; den Hertog, Heleen; van Gemert, Maarten; Dippel, Diederik; van der Worp, Bart
2013-01-01
In observational studies, a high body temperature has been associated with unfavorable outcome. In in vitro studies, the fibrinolytic activity of alteplase decreased 5% per degree Celsius reduction in temperature. The modifying effect of body temperature on treatment with alteplase in patients with acute ischemic stroke is unclear. We assessed the influence of baseline body temperature on the effect of alteplase on functional outcome in patients with acute ischemic stroke, included in the Paracetamol (Acetaminophen) in Stroke (PAIS) trial. PAIS was a randomized, double-blind clinical trial to assess the effect of high-dose paracetamol on functional outcome in patients with acute stroke. For this study, we selected all patients with ischemic stroke and randomization within 6 h of symptom onset. We estimated the effect of treatment with alteplase on the modified Rankin Scale score at 3 months with ordinal logistic regression, stratified by baseline body temperature. We made adjustments for confounding factors and expressed associations as adjusted odds ratios (aOR) with 95% confidence intervals (CI). We also tested for interaction between treatment with alteplase and body temperature. We included 647 of the 1,400 patients in PAIS in our study. Treatment with alteplase was associated with improved functional outcome at 3 months (aOR 1.51, 95% CI 1.09-2.08). In the 286 patients (44%) with a baseline body temperature of 37.0°C or higher, alteplase was associated with a larger effect (aOR 2.13, 95% CI 1.28-3.45) than in patients with a temperature below 37.0°C (aOR 1.11, 95% CI 0.71-1.69). A test for interaction between body temperature and alteplase did not reach statistical significance (p = 0.18). Patients with ischemic stroke and a high body temperature may have a larger benefit of treatment with alteplase than patients with lower body temperatures. These findings are in line with those from in vitro studies, in which lowering temperature decreased the fibrinolytic activity of the enzyme alteplase. This interaction should be explored further in randomized clinical trials of thrombolytic therapy or modification of body temperature. Trials of therapeutic hypothermia should be controlled for treatment with thrombolytics, and trials of thrombolytic treatment should consider body temperature as a potential effect modifier. Copyright © 2013 S. Karger AG, Basel.
Pilger, Amrei; Tsilimparis, Nikolaos; Bockhorn, Maximilian; Trepel, Martin; Dreimann, Marc
2016-05-01
We report a case of a large three-level spinal osteosarcoma infiltrating the adjacent aorta. This is the first case in which a combined modified three-level en bloc corpectomy with resection and replacement of the adjacent aorta was successful as a part of interdisciplinary curative treatment. Case report. The surgical procedure was performed as a two-step treatment. A heart lung machine (HLM) was not used, in order to avoid cerebral and spinal ischemia and to decrease the risk of hematogenous tumor metastases. Instead, a bypass from the left subclavian artery the distal descending aorta was used. We modified the en bloc corpectomy procedure, leaving a dorsal segment of the vertebral bodies to enable rapid surgery. The procedure was successful and the en bloc resection of the vertebral body with aortal resection could be achieved. Except for pallhypesthesia in the left dermatomes Th7-Th10, the patient does not have any postoperative neurologic deficits. Combined corpectomy with aortic replacement should be considered as a reasonable option in the curative treatment of osteosarcoma with consideration of the immense surgical risks. The use of an HLM is not necessary, especially considering the inherent risk of hematogenous tumor metastases. Modified corpectomy leaving a dorsal vertebral body segment was considered a reasonable variation since tumor-free margins could still be expected.
ERIC Educational Resources Information Center
Ridgely, Charles T.
2011-01-01
When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…
Novel kinematic methods to trace Spiral Arms nature using Gaia data
NASA Astrophysics Data System (ADS)
Roca-Fàbrega, S.; Figueras, F.; Valenzuela, O.; Romero-Gómez, M.; Antoja, T.; Colín, P.; Pichardo, B.; Velázquez, H.
2014-07-01
In this work we shed new light in the nature of spiral arm structures in galaxies. We present a disk kinematic and dynamic study of MW like galaxies using complementary approaches: analytical models, test-particle simulations, pure N-body and cosmological N-body plus hydrodynamic simulations. Using collisionless N-body data we have found that models with strong bar present a flat rotation frequency, i.e. rigid body rotation, whereas in the opposite extreme case, i.e. in unbarred systems, spiral arms are disk corotant (Roca-Fàbrega et al. 2013). Complementary to this work, we discuss how the vertex deviation parameter is a good tracer of corotation (CR) and outer Lindblad resonance radius (OLR) (Roca-Fàbrega et al. 2014). We have succeeded to produce MW like models in fully cosmological N-body plus hydrodynamic simulations with a high resolution (Roca-Fàbrega et al., in preparation). First results concerning disk phase space properties in terms of spiral arm nature using these simulations are presented (http://www.am.ub.edu/ sroca/shared/PosterRocaFabrega.pdf).
Consistent Yokoya-Chen Approximation to Beamstrahlung(LCC-0010)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peskin, M
2004-04-22
I reconsider the Yokoya-Chen approximate evolution equation for beamstrahlung and modify it slightly to generate simple, consistent analytical approximations for the electron and photon energy spectra. I compare these approximations to previous ones, and to simulation data.I reconsider the Yokoya-Chen approximate evolution equation for beamstrahlung and modify it slightly to generate simple, consistent analytical approximations for the electron and photon energy spectra. I compare these approximations to previous ones, and to simulation data.
Permethrin Exposure Dosimetry: Biomarkers and Modifiable Factors
2016-08-01
the effect of body weight/ BMI and total energy expenditure on permethrin absorption and dose, as determined by measurement of urinary biomarkers...body weight/ BMI and total energy expenditure on permethrin absorption and dose, as determined by measurement of urinary biomarkers (3PBA and cis- and
Automotive body panel containing thermally exfoliated graphite oxide
NASA Technical Reports Server (NTRS)
Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor); Prud'Homme, Robert K. (Inventor); Adamson, Douglas (Inventor)
2011-01-01
An automotive body panel containing a polymer composite formed of at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.
Thickened boundary layer theory for air film drag reduction on a van body surface
NASA Astrophysics Data System (ADS)
Xie, Xiaopeng; Cao, Lifeng; Huang, Heng
2018-05-01
To elucidate drag reduction mechanism on a van body surface under air film condition, a thickened boundary layer theory was proposed and a frictional resistance calculation model of the van body surface was established. The frictional resistance on the van body surface was calculated with different parameters of air film thickness. In addition, the frictional resistance of the van body surface under the air film condition was analyzed by computational fluid dynamics (CFD) simulation and different air film states that influenced the friction resistance on the van body surface were discussed. As supported by the CFD simulation results, the thickened boundary layer theory may provide reference for practical application of air film drag reduction on a van body surface.
Effects of a Modified German Volume Training Program on Muscular Hypertrophy and Strength.
Amirthalingam, Theban; Mavros, Yorgi; Wilson, Guy C; Clarke, Jillian L; Mitchell, Lachlan; Hackett, Daniel A
2017-11-01
Amirthalingam, T, Mavros, Y, Wilson, GC, Clarke, JL, Mitchell, L, and Hackett, DA. Effects of a modified German volume training program on muscular hypertrophy and strength. J Strength Cond Res 31(11): 3109-3119, 2017-German Volume Training (GVT), or the 10 sets method, has been used for decades by weightlifters to increase muscle mass. To date, no study has directly examined the training adaptations after GVT. The purpose of this study was to investigate the effect of a modified GVT intervention on muscular hypertrophy and strength. Nineteen healthy men were randomly assign to 6 weeks of 10 or 5 sets of 10 repetitions for specific compound resistance exercises included in a split routine performed 3 times per week. Total and regional lean body mass, muscle thickness, and muscle strength were measured before and after the training program. Across groups, there were significant increases in lean body mass measures, however, greater increases in trunk (p = 0.043; effect size [ES] = -0.21) and arm (p = 0.083; ES = -0.25) lean body mass favored the 5-SET group. No significant increases were found for leg lean body mass or measures of muscle thickness across groups. Significant increases were found across groups for muscular strength, with greater increases in the 5-SET group for bench press (p = 0.014; ES = -0.43) and lat pull-down (p = 0.003; ES = -0.54). It seems that the modified GVT program is no more effective than performing 5 sets per exercise for increasing muscle hypertrophy and strength. To maximize hypertrophic training effects, it is recommended that 4-6 sets per exercise be performed, as it seems gains will plateau beyond this set range and may even regress due to overtraining.
Newgard, Craig D; McConnell, K John
2008-10-01
There is concern that small stature occupants (particularly women) involved in motor vehicle crashes (MVCs) may be at risk of injury or death from frontal air bags, though evidence to substantiate this concern is lacking. We sought to assess how occupant body size (measured through height and weight) affects air bag effectiveness in mitigating the risk of serious injury, after adjusting for important crash factors. This was a retrospective cohort study using a national population-based cohort of adult front-seat occupants involved in MVCs as included in the National Automotive Sampling System Crashworthiness Data System database (NASS CDS) from 1995 to 2006. Drivers and front-seat passengers 15 years and older involved in MVCs involving passenger vehicles and light trucks were included in the analysis. The primary outcome was serious injury, defined as an Abbreviated Injury Scale (AIS) score >or=3 in any body region. Multivariable logistic regression models were used to test interaction terms (effect modification) between air bags, body size, and injury. The predicted probability of injury across body sizes was plotted to further illustrate potential differences. Sixty-nine thousand three hundred eighty-seven adult front-seat occupants during the 12-year period were included in the analysis, of which 9333 (2.3%) were seriously injured. There was no evidence that height or weight modified air bag effectiveness among all crashes (p > .40). In primary frontal collisions, there was some evidence for effect modification by weight (p = .04) but not by height (p = .59). When assessed using air bag deployment, height was a strong effect modifier (p = .0078), but not weight (p = .43). Predicted probability figures confirmed that occupant height modifies the effect of air bag deployment, but there was no similar visual evidence for body weight. In this sample, we found no consistent evidence that body size modifies the overall effectiveness of frontal air bags. However, among crashes involving air bag deployment, the effect of deployment on injury differs by occupant height, with a relative increase in the odds of serious injury among smaller occupants. In such crashes, the probability of injury with (versus without) deployment began to increase with occupant heights less than 155 cm (5'), reaching a level of statistical difference below 138 cm (4' 6'').
Ceacareanu, Alice C.; Brown, Geoffrey W.; Moussa, Hoda A.; Wintrob, Zachary A. P.
2018-01-01
Objective: We aimed to estimate the metformin-associated lactic acidosis (MALA) risk by assessing retrospectively the renal clearance variability and applying a pharmacokinetic (PK) model of metformin clearance in a population diagnosed with acute myeloid leukemia (AML) and diabetes mellitus (DM). Methods: All adults with preexisting DM and newly diagnosed AML at Roswell Park Cancer Institute were reviewed (January 2003–December 2010, n = 78). Creatinine clearance (CrCl) and total body weight distributions were used in a two-compartment PK model adapted for multiple dosing and modified to account for actual intra- and inter-individual variability. Based on this renal function variability evidence, 1000 PK profiles were simulated for multiple metformin regimens with the resultant PK profiles being assessed for safe CrCl thresholds. Findings: Metformin 500 mg up to three times daily was safe for all simulated profiles with CrCl ≥25 mL/min. Furthermore, the estimated overall MALA risk was below 10%, remaining under 5% for 500 mg given once daily. CrCl ≥65.25 mL/min was safe for administration in any of the tested regimens (500 mg or 850 mg up to three times daily or 1000 mg up to twice daily). Conclusion: PK simulation-guided prescribing can maximize metformin's beneficial effects on cancer outcomes while minimizing MALA risk. PMID:29755998
Durguerian, Alexandre; Filaire, Edith; Drogou, Catherine; Bougard, Clément; Chennaoui, Mounir
2018-03-01
The aim of this investigation was to evaluate the effect of a 6-day food restriction period on the physiological responses and performance of 11 high-level weightlifters. After a period of weight maintenance (T 2 ), they were assigned into two groups depending on whether they lost (Diet group, n = 6) or maintained their body weight (Control group, n = 5) during the course of those 6 days. An evaluation of performance and the measurement of salivary cortisol concentrations and salivary α-amylase (sAA) activity were performed during a simulated weightlifting competition which took place at T 2 , after a 6-day period of food restriction (T 3 ). Dietary data were collected using a 6-day diet record. We noted a 41.8% decrease in mean energy intake during the dietary restriction period, leading to a 4.34% weight loss for the Diet group. Dietary restriction did not modify absolute performance levels, whilst a significant improvement was noted for the Control group. Furthermore, we noted a response of decreased salivary cortisol and increased sAA activity to the simulated competition stress at T 3 for the Diet group. These results may indicate that dietary reduction led to a dissociation of the hypothalamo-pituitary-adrenal axis and the sympatho-adreno-medullary system, which could impair training adaptations and absolute performance development.
Effect of Combat Stress in the Psychophysiological Response of Elite and Non-Elite Soldiers.
Tornero-Aguilera, José Francisco; Robles-Pérez, José Juan; Clemente-Suárez, Vicente Javier
2017-06-01
We aimed to analyse the effect of combat stress in the psychophysiological responses of elite and non-elite soldiers. We analysed heart rate, cortical arousal, skin temperature, blood lactate concentration and lower body muscular strength before and after a tactical combat simulation in 40 warfighters divided in two groups: elite (n: 20; 28.5 ± 6.38 years) and non-elite (n:20; 31.94 ± 6.24 years) group. Elite presented a significantly higher lactate concentration after combat than non elite soldiers (3.8 ± 1.5 vs 6.6 ± 1.3 mmol/L). Non-elite soldiers had a higher heart rate pre and post the simulation than elite (82.9 ± 12.3 vs 64.4 ± 11. pre non elite and elite respectively; 93.0 ± 12.8 vs 88 ± 13.8 bpm post non elite and elite respectively). Elite soldiers presented higher lower muscular strength than elite in all test and before and after the combat simulation. Cortical arousal was not modified significantly in both groups. We conclude elite soldiers presented in combat a higher anaerobic metabolism activation and muscular strength than non-elite soldiers, but cardiovascular, cortical, and muscular strength manifestation presented the same response in both elite and non-elite soldiers.
Biodurability of chrysotile and tremolite asbestos
NASA Astrophysics Data System (ADS)
Oze, C.; Solt, K.
2008-12-01
Chrysotile and tremolite asbestos represent two mineralogical categories of regulated asbestos commonly evaluated in epidemiological, toxicological, and pathological studies. Lung and digestive fluids are undersaturated with respect to chrysotile and tremolite asbestos (i.e. dissolution is thermodynamically favorable), where the dissolution kinetics control the durability of these minerals in respiratory and gastric systems. Here we examined the biodurability of chrysotile and tremolite asbestos in simulated body fluids (SBFs) as a function of mineral surface area over time. Batch experiments in simulated gastric fluid (SGF; HCl and NaCl solution at pH 1.2) and simulated lung fluid (SLF; a modified Gamble's solution at pH 7.4) were performed at 37°C over 720 hours. The rate-limiting step of Si release for both minerals was used to determine and compare dissolution rates. Chrysotile and tremolite asbestos are less biodurable in SGF compared to SLF. Based on equal suspension densities (surface area per volume of solution, m2 L- 1), chrysotile undergoes dissolution approximately 44 times faster than tremolite asbestos in SGF; however, amphibole asbestos dissolves approximately 6 times faster than chrysotile in SLF. Provided identical fiber dimensions, fiber dissolution models demonstrate that chrysotile is more biodurable in SLF and less biodurable in SGF compared to tremolite asbestos. Overall, the methodology employed here provides an alternative means to evaluate asbestos material fiber lifetimes based on mineral surface considerations.
NASA Astrophysics Data System (ADS)
Nangia, Nishant; Bhalla, Amneet P. S.; Griffith, Boyce E.; Patankar, Neelesh A.
2016-11-01
Flows over bodies of industrial importance often contain both an attached boundary layer region near the structure and a region of massively separated flow near its trailing edge. When simulating these flows with turbulence modeling, the Reynolds-averaged Navier-Stokes (RANS) approach is more efficient in the former, whereas large-eddy simulation (LES) is more accurate in the latter. Detached-eddy simulation (DES), based on the Spalart-Allmaras model, is a hybrid method that switches from RANS mode of solution in attached boundary layers to LES in detached flow regions. Simulations of turbulent flows over moving structures on a body-fitted mesh incur an enormous remeshing cost every time step. The constraint-based immersed boundary (cIB) method eliminates this operation by placing the structure on a Cartesian mesh and enforcing a rigidity constraint as an additional forcing in the Navier-Stokes momentum equation. We outline the formulation and development of a parallel DES-cIB method using adaptive mesh refinement. We show preliminary validation results for flows past stationary bodies with both attached and separated boundary layers along with results for turbulent flows past moving bodies. This work is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1324585.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winther, Hans A.; Koyama, Kazuya; Wright, Bill S.
We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f ( R ) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative tomore » ΛCDM even when using a fairly small number of COLA time steps.« less
Influences of chemical sympathectomy and simulated weightlessness on male and female rats
NASA Technical Reports Server (NTRS)
Woodman, Christopher R.; Stump, Craig S.; Stump, Jane A.; Sebastian, Lisa A.; Rahman, Z.; Tipton, Charles M.
1991-01-01
Consideration is given to a study aimed at determining whether the sympathetic nervous system is associated with the changes in maximum oxygen consumption (VO2max), run time, and mechanical efficiency observed during simulated weightlessness in male and female rats. Female and male rats were compared for food consumption, body mass, and body composition in conditions of simulated weightlessness to provide an insight into how these parameters may influence aerobic capacity and exercise performance. It is concluded that chemical sympathectomy and/or a weight-bearing stimulus will attenuate the loss in VO2max associated with simulated weightlessness in rats despite similar changes in body mass and composition. It is noted that the mechanisms remain unclear at this time.
Computer simulation of surface and film processes
NASA Technical Reports Server (NTRS)
Tiller, W. A.; Halicioglu, M. T.
1983-01-01
Adequate computer methods, based on interactions between discrete particles, provide information leading to an atomic level understanding of various physical processes. The success of these simulation methods, however, is related to the accuracy of the potential energy function representing the interactions among the particles. The development of a potential energy function for crystalline SiO2 forms that can be employed in lengthy computer modelling procedures was investigated. In many of the simulation methods which deal with discrete particles, semiempirical two body potentials were employed to analyze energy and structure related properties of the system. Many body interactions are required for a proper representation of the total energy for many systems. Many body interactions for simulations based on discrete particles are discussed.
NASA Astrophysics Data System (ADS)
Kopec, Wojciech; Khandelia, Himanshu
2014-02-01
Thioridazine is a well-known dopamine-antagonist drug with a wide range of pharmacological properties ranging from neuroleptic to antimicrobial and even anticancer activity. Thioridazine is a critical component of a promising multi-drug therapy against M. tuberculosis. Amongst the various proposed mechanisms of action, the cell membrane-mediated one is peculiarly tempting due to the distinctive feature of phenothiazine drug family to accumulate in selected body tissues. In this study, we employ long-scale molecular dynamics simulations to investigate the interactions of three different concentrations of thioridazine with zwitterionic and negatively charged model lipid membranes. Thioridazine partitions into the interfacial region of membranes and modifies their structural and dynamic properties, however dissimilarly so at the highest membrane-occurring concentration, that appears to be obtainable only for the negatively charged bilayer. We show that the origin of such changes is the drug induced decrease of the interfacial tension, which ultimately leads to the significant membrane expansion. Our findings support the hypothesis that the phenothiazines therapeutic activity may arise from the drug-membrane interactions, and reinforce the wider, emerging view of action of many small, bioactive compounds.
Relation between halo spin and cosmic-web filaments at z ≃ 3
NASA Astrophysics Data System (ADS)
González, Roberto E.; Prieto, Joaquin; Padilla, Nelson; Jimenez, Raul
2017-02-01
We investigate the spin evolution of dark matter haloes and their dependence on the number of connected filaments from the cosmic web at high redshift (spin-filament relation hereafter). To this purpose, we have simulated 5000 haloes in the mass range 5 × 109 h-1 M⊙ to 5 × 1011 h-1 M⊙ at z = 3 in cosmological N-body simulations. We confirm the relation found by Prieto et al. (2015) where haloes with fewer filaments have larger spin. We also found that this relation is more significant for higher halo masses, and for haloes with a passive (no major mergers) assembly history. Another finding is that haloes with larger spin or with fewer filaments have their filaments more perpendicularly aligned with the spin vector. Our results point to a picture in which the initial spin of haloes is well described by tidal torque theory and then gets subsequently modified in a predictable way because of the topology of the cosmic web, which in turn is given by the currently favoured Lambda cold dark matter (LCDM) model. Our spin-filament relation is a prediction from LCDM that could be tested with observations.
Comparison of dynamical approximation schemes for non-linear gravitational clustering
NASA Technical Reports Server (NTRS)
Melott, Adrian L.
1994-01-01
We have recently conducted a controlled comparison of a number of approximations for gravitational clustering against the same n-body simulations. These include ordinary linear perturbation theory (Eulerian), the adhesion approximation, the frozen-flow approximation, the Zel'dovich approximation (describable as first-order Lagrangian perturbation theory), and its second-order generalization. In the last two cases we also created new versions of approximation by truncation, i.e., smoothing the initial conditions by various smoothing window shapes and varying their sizes. The primary tool for comparing simulations to approximation schemes was crosscorrelation of the evolved mass density fields, testing the extent to which mass was moved to the right place. The Zel'dovich approximation, with initial convolution with a Gaussian e(exp -k(exp 2)/k(exp 2, sub G)) where k(sub G) is adjusted to be just into the nonlinear regime of the evolved model (details in text) worked extremely well. Its second-order generalization worked slightly better. All other schemes, including those proposed as generalizations of the Zel'dovich approximation created by adding forces, were in fact generally worse by this measure. By explicitly checking, we verified that the success of our best-choice was a result of the best treatment of the phases of nonlinear Fourier components. Of all schemes tested, the adhesion approximation produced the most accurate nonlinear power spectrum and density distribution, but its phase errors suggest mass condensations were moved to slightly the wrong location. Due to its better reproduction of the mass density distribution function and power spectrum, it might be preferred for some uses. We recommend either n-body simulations or our modified versions of the Zel'dovich approximation, depending upon the purpose. The theoretical implication is that pancaking is implicit in all cosmological gravitational clustering, at least from Gaussian initial conditions, even when subcondensations are present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damilakis, John; Tzedakis, Antonis; Perisinakis, Kostas
Purpose: Current methods for the estimation of conceptus dose from multidetector CT (MDCT) examinations performed on the mother provide dose data for typical protocols with a fixed scan length. However, modified low-dose imaging protocols are frequently used during pregnancy. The purpose of the current study was to develop a method for the estimation of conceptus dose from any MDCT examination of the trunk performed during all stages of gestation. Methods: The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study to model the Siemens Sensation 16 and Sensation 64 MDCT scanners. Four mathematical phantoms were used, simulatingmore » women at 0, 3, 6, and 9 months of gestation. The contribution to the conceptus dose from single simulated scans was obtained at various positions across the phantoms. To investigate the effect of maternal body size and conceptus depth on conceptus dose, phantoms of different sizes were produced by adding layers of adipose tissue around the trunk of the mathematical phantoms. To verify MCNP results, conceptus dose measurements were carried out by means of three physical anthropomorphic phantoms, simulating pregnancy at 0, 3, and 6 months of gestation and thermoluminescence dosimetry (TLD) crystals. Results: The results consist of Monte Carlo-generated normalized conceptus dose coefficients for single scans across the four mathematical phantoms. These coefficients were defined as the conceptus dose contribution from a single scan divided by the CTDI free-in-air measured with identical scanning parameters. Data have been produced to take into account the effect of maternal body size and conceptus position variations on conceptus dose. Conceptus doses measured with TLD crystals showed a difference of up to 19% compared to those estimated by mathematical simulations. Conclusions: Estimation of conceptus doses from MDCT examinations of the trunk performed on pregnant patients during all stages of gestation can be made using the method developed in the current study.« less
Lallemand-Breitenbach, Valérie; de Thé, Hugues
2010-01-01
PML nuclear bodies are matrix-associated domains that recruit an astonishing variety of seemingly unrelated proteins. Since their discovery in the early 1960s, PML bodies have fascinated cell biologists because of their beauty and their tight association with cellular disorders. The identification of PML, a gene involved in an oncogenic chromosomal translocation, as the key organizer of these domains drew instant interest onto them. The multiple levels of PML body regulation by a specific posttranslational modification, sumoylation, have raised several unsolved issues. Functionally, PML bodies may sequester, modify or degrade partner proteins, but in many ways, PML bodies still constitute an enigma. PMID:20452955
Lallemand-Breitenbach, Valérie; de Thé, Hugues
2010-05-01
PML nuclear bodies are matrix-associated domains that recruit an astonishing variety of seemingly unrelated proteins. Since their discovery in the early 1960s, PML bodies have fascinated cell biologists because of their beauty and their tight association with cellular disorders. The identification of PML, a gene involved in an oncogenic chromosomal translocation, as the key organizer of these domains drew instant interest onto them. The multiple levels of PML body regulation by a specific posttranslational modification, sumoylation, have raised several unsolved issues. Functionally, PML bodies may sequester, modify or degrade partner proteins, but in many ways, PML bodies still constitute an enigma.
Feasibility study for a numerical aerodynamic simulation facility. Volume 1
NASA Technical Reports Server (NTRS)
Lincoln, N. R.; Bergman, R. O.; Bonstrom, D. B.; Brinkman, T. W.; Chiu, S. H. J.; Green, S. S.; Hansen, S. D.; Klein, D. L.; Krohn, H. E.; Prow, R. P.
1979-01-01
A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation.
Spacecraft Guidance, Navigation, and Control Visualization Tool
NASA Technical Reports Server (NTRS)
Mandic, Milan; Acikmese, Behcet; Blackmore, Lars
2011-01-01
G-View is a 3D visualization tool for supporting spacecraft guidance, navigation, and control (GN&C) simulations relevant to small-body exploration and sampling (see figure). The tool is developed in MATLAB using Virtual Reality Toolbox and provides users with the ability to visualize the behavior of their simulations, regardless of which programming language (or machine) is used to generate simulation results. The only requirement is that multi-body simulation data is generated and placed in the proper format before applying G-View.
Possibility of modifying the growth trajectory in Raeini Cashmere goat.
Ghiasi, Heydar; Mokhtari, M S
2018-03-27
The objective of this study was to investigate the possibility of modifying the growth trajectory in Raeini Cashmere goat breed. In total, 13,193 records on live body weight collected from 4788 Raeini Cashmere goats were used. According to Akanke's information criterion (AIC), the sing-trait random regression model included fourth-order Legendre polynomial for direct and maternal genetic effect; maternal and individual permanent environmental effect was the best model for estimating (co)variance components. The matrices of eigenvectors for (co)variances between random regression coefficients of direct additive genetic were used to calculate eigenfunctions, and different eigenvector indices were also constructed. The obtained results showed that the first eigenvalue explained 79.90% of total genetic variance. Therefore, changing the body weights applying the first eigenfunction will be obtained rapidly. Selection based on the first eigenvector will cause favorable positive genetic gains for all body weight considered from birth to 12 months of age. For modifying the growth trajectory in Raeini Cashmere goat, the selection should be based on the second eigenfunction. The second eigenvalue accounted for 14.41% of total genetic variance for body weights that is low in comparison with genetic variance explained by the first eigenvalue. The complex patterns of genetic change in growth trajectory observed under the third and fourth eigenfunction and low amount of genetic variance explained by the third and fourth eigenvalues.
ERIC Educational Resources Information Center
Magosso, Elisa; Ursino, Mauro; di Pellegrino, Giuseppe; Ladavas, Elisabetta; Serino, Andrea
2010-01-01
Visual peripersonal space (i.e., the space immediately surrounding the body) is represented by multimodal neurons integrating tactile stimuli applied on a body part with visual stimuli delivered near the same body part, e.g., the hand. Tool use may modify the boundaries of the peri-hand area, where vision and touch are integrated. The neural…
Review-Research on the physical training model of human body based on HQ.
Junjie, Liu
2016-11-01
Health quotient (HQ) is the newest health culture and concept in the 21st century, and the analysis of the human body sports model is not enough mature at present, what's more, the purpose of this paper is to study the integration of the two subjects the health quotient and the sport model. This paper draws the conclusion that physical training and education in colleges and universities can improve the health quotient, and it will make students possess a more healthy body and mind. Then through a new rigid body model of sports to simulate the human physical exercise. After that this paper has an in-depth study on the dynamic model of the human body movement on the basis of establishing the matrix and equation. The simulation results of the human body bicycle riding and pole throwing show that the human body joint movement simulation can be realized and it has a certain operability as well. By means of such simulated calculation, we can come to a conclusion that the movement of the ankle joint, knee joint and hip joint's motion law and real motion are basically the same. So it further verify the accuracy of the motion model, which lay the foundation of other research movement model, also, the study of the movement model is an important method in the study of human health in the future.
NASA Astrophysics Data System (ADS)
Swan, James W.; Brady, John F.; Moore, Rachel S.; ChE 174
2011-07-01
We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies (e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations. The swimming body is composed of many spherical particles constrained to form an assembly that deforms via relative motion of its constituent particles. The resistance tensor describing the hydrodynamic interactions among the individual particles maps directly onto that for the assembly. Specifying a particular swimming gait and imposing the condition that the swimming body is force- and torque-free determine the propulsive speed. The body's translational and rotational velocities computed via this methodology are identical in form to that from the classical theory for the swimming of arbitrary bodies at low Reynolds number. We illustrate the generality of the method through simulations of a wide array of swimming bodies: pushers and pullers, spinners, the Taylor/Purcell swimming toroid, Taylor's helical swimmer, Purcell's three-link swimmer, and an amoeba-like body undergoing large-scale deformation. An open source code is a part of the supplementary material and can be used to simulate the swimming of a body with arbitrary geometry and swimming gait.
Karaman, Ozan; Kumar, Ankur; Moeinzadeh, Seyedsina; He, Xuezhong; Cui, Tong; Jabbari, Esmaiel
2016-02-01
Biomineralization is mediated by extracellular matrix (ECM) proteins with amino acid sequences rich in glutamic acid. The objective of this study was to investigate the effect of calcium phosphate deposition on aligned nanofibres surface-modified with a glutamic acid peptide on osteogenic differentiation of rat marrow stromal cells. Blend of EEGGC peptide (GLU) conjugated low molecular weight polylactide (PLA) and high molecular weight poly(lactide-co-glycolide) (PLGA) was electrospun to form aligned nanofibres (GLU-NF). The GLU-NF microsheets were incubated in a modified simulated body fluid for nucleation of calcium phosphate crystals on the fibre surface. To achieve a high calcium phosphate to fibre ratio, a layer-by-layer approach was used to improve diffusion of calcium and phosphate ions inside the microsheets. Based on dissipative particle dynamics simulation of PLGA/PLA-GLU fibres, > 80% of GLU peptide was localized to the fibre surface. Calcium phosphate to fibre ratios as high as 200%, between those of cancellous (160%) and cortical (310%) bone, was obtained with the layer-by-layer approach. The extent of osteogenic differentiation and mineralization of marrow stromal cells seeded on GLU-NF microsheets was directly related to the amount of calcium phosphate deposition on the fibres prior to cell seeding. Expression of osteogenic markers osteopontin, alkaline phosphatase (ALP), osteocalcin and type 1 collagen increased gradually with calcium phosphate deposition on GLU-NF microsheets. Results demonstrate that surface modification of aligned synthetic nanofibres with EEGGC peptide dramatically affects nucleation and growth of calcium phosphate crystals on the fibres leading to increased osteogenic differentiation of marrow stromal cells and mineralization. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Katz, Harley; Lelli, Federico; McGaugh, Stacy S.; Di Cintio, Arianna; Brook, Chris B.; Schombert, James M.
2017-04-01
Cosmological N-body simulations predict dark matter (DM) haloes with steep central cusps (e.g. NFW). This contradicts observations of gas kinematics in low-mass galaxies that imply the existence of shallow DM cores. Baryonic processes such as adiabatic contraction and gas outflows can, in principle, alter the initial DM density profile, yet their relative contributions to the halo transformation remain uncertain. Recent high-resolution, cosmological hydrodynamic simulations by Di Cintio et al. (DC14) predict that inner density profiles depend systematically on the ratio of stellar-to-DM mass (M*/Mhalo). Using a Markov Chain Monte Carlo approach, we test the NFW and the M*/Mhalo-dependent DC14 halo models against a sample of 147 galaxy rotation curves from the new Spitzer Photometry and Accurate Rotation Curves data set. These galaxies all have extended H I rotation curves from radio interferometry as well as accurate stellar-mass-density profiles from near-infrared photometry. The DC14 halo profile provides markedly better fits to the data compared to the NFW profile. Unlike NFW, the DC14 halo parameters found in our rotation-curve fits naturally fall within two standard deviations of the mass-concentration relation predicted by Λ cold dark matter (ΛCDM) and the stellar mass-halo mass relation inferred from abundance matching with few outliers. Halo profiles modified by baryonic processes are therefore more consistent with expectations from ΛCDM cosmology and provide better fits to galaxy rotation curves across a wide range of galaxy properties than do halo models that neglect baryonic physics. Our results offer a solution to the decade long cusp-core discrepancy.
Motor Control of Landing from a Jump in Simulated Hypergravity.
Gambelli, Clément N; Theisen, Daniel; Willems, Patrick A; Schepens, Bénédicte
2015-01-01
On Earth, when landing from a counter-movement jump, muscles contract before touchdown to anticipate imminent collision with the ground and place the limbs in a proper position. This study assesses how the control of landing is modified when gravity is increased above 1 g. Hypergravity was simulated in two different ways: (1) by generating centrifugal forces during turns of an aircraft (A300) and (2) by pulling the subject downwards in the laboratory with a Subject Loading System (SLS). Eight subjects were asked to perform counter-movement jumps at 1 g on Earth and at 3 hypergravity levels (1.2, 1.4 and 1.6 g) both in A300 and with SLS. External forces applied to the body, movements of the lower limb segments and muscular activity of 6 lower limb muscles were recorded. Our results show that both in A300 and with SLS, as in 1 g: (1) the anticipation phase is present; (2) during the loading phase (from touchdown until the peak of vertical ground reaction force), lower limb muscles act like a stiff spring, whereas during the second part (from the peak of vertical ground reaction force until the return to the standing position), they act like a compliant spring associated with a damper. (3) With increasing gravity, the preparatory adjustments and the loading phase are modified whereas the second part does not change drastically. (4) The modifications are similar in A300 and with SLS, however the effect of hypergravity is accentuated in A300, probably due to altered sensory inputs. This observation suggests that otolithic information plays an important role in the control of the landing from a jump.
Animation of multi-flexible body systems and its use in control system design
NASA Technical Reports Server (NTRS)
Juengst, Carl; Stahlberg, Ron
1993-01-01
Animation can greatly assist the structural dynamicist and control system analyst with better understanding of how multi-flexible body systems behave. For multi-flexible body systems, the structural characteristics (mode frequencies, mode shapes, and damping) change, sometimes dramatically with large angles of rotation between bodies. With computer animation, the analyst can visualize these changes and how the system responds to active control forces and torques. A characterization of the type of system we wish to animate is presented. The lack of clear understanding of the above effects was a key element leading to the development of a multi-flexible body animation software package. The resulting animation software is described in some detail here, followed by its application to the control system analyst. Other applications of this software can be determined on an individual need basis. A number of software products are currently available that make the high-speed rendering of rigid body mechanical system simulation possible. However, such options are not available for use in rendering flexible body mechanical system simulations. The desire for a high-speed flexible body visualization tool led to the development of the Flexible Or Rigid Mechanical System (FORMS) software. This software was developed at the Center for Simulation and Design Optimization of Mechanical Systems at the University of Iowa. FORMS provides interactive high-speed rendering of flexible and/or rigid body mechanical system simulations, and combines geometry and motion information to produce animated output. FORMS is designed to be both portable and flexible, and supports a number of different user interfaces and graphical display devices. Additional features have been added to FORMS that allow special visualization results related to the nature of the flexible body geometric representations.
NASA Astrophysics Data System (ADS)
Hazra, Anupam; Chaudhari, Hemantkumar S.; Saha, Subodh Kumar; Pokhrel, Samir; Goswami, B. N.
2017-10-01
Simulation of the spatial and temporal structure of the monsoon intraseasonal oscillations (MISOs), which have effects on the seasonal mean and annual cycle of Indian summer monsoon (ISM) rainfall, remains a grand challenge for the state-of-the-art global coupled models. Biases in simulation of the amplitude and northward propagation of MISOs and related dry rainfall bias over ISM region in climate models are limiting the current skill of monsoon prediction. Recent observations indicate that the convective microphysics of clouds may be critical in simulating the observed MISOs. The hypothesis is strongly supported by high fidelity in simulation of the amplitude and space-time spectra of MISO by a coupled climate model, when our physically based modified cloud microphysics scheme is implemented in conjunction with a modified new Simple Arakawa Schubert (nSAS) convective parameterization scheme. Improved simulation of MISOs appears to have been aided by much improved simulation of the observed high cloud fraction and convective to stratiform rain fractions and resulted into a much improved simulation of the ISM rainfall, monsoon onset, and the annual cycle.
The effect of thermal velocities on structure formation in N-body simulations of warm dark matter
NASA Astrophysics Data System (ADS)
Leo, Matteo; Baugh, Carlton M.; Li, Baojiu; Pascoli, Silvia
2017-11-01
We investigate the impact of thermal velocities in N-body simulations of structure formation in warm dark matter models. Adopting the commonly used approach of adding thermal velocities, randomly selected from a Fermi-Dirac distribution, to the gravitationally-induced velocities of the simulation particles, we compare the matter and velocity power spectra measured from CDM and WDM simulations, in the latter case with and without thermal velocities. This prescription for adding thermal velocities introduces numerical noise into the initial conditions, which influences structure formation. At early times, the noise affects dramatically the power spectra measured from simulations with thermal velocities, with deviations of the order of ~ Script O(10) (in the matter power spectra) and of the order of ~ Script O(102) (in the velocity power spectra) compared to those extracted from simulations without thermal velocities. At late times, these effects are less pronounced with deviations of less than a few percent. Increasing the resolution of the N-body simulation shifts these discrepancies to higher wavenumbers. We also find that spurious haloes start to appear in simulations which include thermal velocities at a mass that is ~3 times larger than in simulations without thermal velocities.
Nindrea, Ricvan Dana; Aryandono, Teguh; Lazuardi, Lutfan
2017-12-28
Objective: The aim of this study was to determine breast cancer risk from modifiable and non-modifiable factors among women in Southeast Asia. Methods: This meta-analysis was performed on research articles on breast cancer risk factors in PubMed, ProQuest and EBSCO databases published between 1997 and October 2017. Pooled odds ratios (OR) are calculated using fixed and random-effect models. Data were processed using Review Manager 5.3 (RevMan 5.3). Results: From a total of 1,211 articles, 15 studies (1 cohort and 14 case control studies) met the criteria for systematic review. Meta-analysis results showed that of the known modifiable risk factors for breast cancer, parity (nulipara) had the highest odd ratio (OR = 1.85 [95% CI 1.47-2.32]) followed by body mass index (overweight) (OR = 1.61 [95% CI 1.43-1.80]) and use of oral contraceptives (OR = 1.27 [95% CI 1.07-1.51]). Of non-modifiable risk factors, family history of breast cancer had the highest odd ratio (OR = 2.53 [95% CI 1.25-5.09]), followed by age (≥ 40 years) (OR = 1.53 [95% CI 1.34-1.76]) and menopausal status (OR = 1.44 [95% CI 1.26-1.65]). Conclusion: This analysis confirmed associations between both modifiable risk factors (parity, body mass index and use of oral contraceptives) and non-modifiable risk factors (family history of breast cancer, age and menopausal status) with breast cancer. Creative Commons Attribution License
Simulating cut-to-length harvesting operations in Appalachian hardwoods
Jingxin Wang; Chris B. LeDoux; Yaoxiang Li
2005-01-01
Cut-to-length (CTL) harvesting systems involving small and large harvesters and a forwarder were simulated using a modular computer simulation model. The two harvesters simulated were a modified John Deere 988 tracked excavator with a single grip sawhead and a Timbco T425 based excavator with a single grip sawhead. The forwarder used in the simulations was a Valmet 524...
Corrosion resistance tests on NiTi shape memory alloy.
Rondelli, G
1996-10-01
The corrosion performances of NiTi shape memory alloys (SMA) in human body simulating fluids were evaluated in comparison with other implant materials. As for the passivity current in potentiostatic conditions, taken as an index of ion release, the values are about three times higher for NiTi than for Ti6Al4V and austenitic stainless steels. Regarding the localized corrosion, while plain potentiodynamic scans indicated for NiTi alloy good resistance to pitting attack similar to Ti6Al4V, tests in which the passive film is abruptly damaged (i.e. potentiostatic scratch test and modified ASTM F746) pointed out that the characteristics of the passive film formed on NiTi alloy (whose strength can be related to the alloy's biocompatibility) are not as good as those on Ti6Al4V but are comparable or inferior to those on austenitic stainless steels.
NASA Astrophysics Data System (ADS)
Hu, Kai; Yang, Xianjin; Cai, Yanli; Cui, Zhenduo; Wei, Qiang
2007-07-01
A hydroxyapatite (HA)/collagen (COL) composite coating on NiTi shape memory alloy (SMA) was prepared by eletrochemical deposition (ELD) in modified simulated body fluid (MSBF). To draw comparisons of physical characteristics and bioactivity of the composite coating, the HA/COL composite coating was also prepared by chemically biomimetic growth (BG) and the ELD coating was re-soaked in MSBF again for further biomimetic growth (called EBG method in this paper). It was indicated that the c-axis of HA crystals was oriented parallel to the longitudinal direction of the COL fibril in BG and EBG coating, which could not found in ELD coating. The EBG method could induce a denser, thicker and better crystallized HA/COL coating. The cell culture test indicated that the BG coating presented better cell biocompatibility.
Heinl, Peter; Müller, Lenka; Körner, Carolin; Singer, Robert F; Müller, Frank A
2008-09-01
Selective electron beam melting (SEBM) was successfully used to fabricate novel cellular Ti-6Al-4V structures for orthopaedic applications. Micro computer tomography (microCT) analysis demonstrated the capability to fabricate three-dimensional structures with an interconnected porosity and pore sizes suitable for tissue ingrowth and vascularization. Mechanical properties, such as compressive strength and elastic modulus, of the tested structures were similar to those of human bone. Thus, stress-shielding effects after implantation might be avoided due to a reduced stiffness mismatch between implant and bone. A chemical surface modification using HCl and NaOH induced apatite formation during in vitro bioactivity tests in simulated body fluid under dynamic conditions. The modified bioactive surface is expected to enhance the fixation of the implant in the surrounding bone as well as to improve its long-term stability.
LCP method for a planar passive dynamic walker based on an event-driven scheme
NASA Astrophysics Data System (ADS)
Zheng, Xu-Dong; Wang, Qi
2018-06-01
The main purpose of this paper is to present a linear complementarity problem (LCP) method for a planar passive dynamic walker with round feet based on an event-driven scheme. The passive dynamic walker is treated as a planar multi-rigid-body system. The dynamic equations of the passive dynamic walker are obtained by using Lagrange's equations of the second kind. The normal forces and frictional forces acting on the feet of the passive walker are described based on a modified Hertz contact model and Coulomb's law of dry friction. The state transition problem of stick-slip between feet and floor is formulated as an LCP, which is solved with an event-driven scheme. Finally, to validate the methodology, four gaits of the walker are simulated: the stance leg neither slips nor bounces; the stance leg slips without bouncing; the stance leg bounces without slipping; the walker stands after walking several steps.
Liu, Wenying; Yeh, Yi-Chun; Lipner, Justin; Xie, Jingwei; Sung, Hsing-Wen; Thomopoulos, Stavros; Xia, Younan
2011-01-01
A new method was developed to coat hydroxyapatite (HAp) onto electrospun poly(lactic-co-glycolic acid) (PLGA) nanofibers for tendon-to-bone insertion site repair applications. Prior to mineralization, chitosan and heparin were covalently immobilized onto the surface of the fibers to accelerate the nucleation of bone-like HAp crystals. Uniform coatings of HAp were obtained by immersing the nanofiber scaffolds into a modified 10 times concentrated simulated body fluid (m10SBF) for different periods of time. The new method resulted in thicker and denser coatings of mineral on the fibers compared to previously reported methods. Scanning electron microscopy measurements confirmed the formation of nanoscale HAp particles on the fibers. Mechanical property assessment demonstrated higher stiffness with respect to previous coating methods. A combination of the nanoscale fibrous structure and bone-like mineral coating could mimic the structure, composition, and function of mineralized tissues. PMID:21710996
LCP method for a planar passive dynamic walker based on an event-driven scheme
NASA Astrophysics Data System (ADS)
Zheng, Xu-Dong; Wang, Qi
2018-02-01
The main purpose of this paper is to present a linear complementarity problem (LCP) method for a planar passive dynamic walker with round feet based on an event-driven scheme. The passive dynamic walker is treated as a planar multi-rigid-body system. The dynamic equations of the passive dynamic walker are obtained by using Lagrange's equations of the second kind. The normal forces and frictional forces acting on the feet of the passive walker are described based on a modified Hertz contact model and Coulomb's law of dry friction. The state transition problem of stick-slip between feet and floor is formulated as an LCP, which is solved with an event-driven scheme. Finally, to validate the methodology, four gaits of the walker are simulated: the stance leg neither slips nor bounces; the stance leg slips without bouncing; the stance leg bounces without slipping; the walker stands after walking several steps.
Correlation of Wissler Human Thermal Model Blood Flow and Shiver Algorithms
NASA Technical Reports Server (NTRS)
Bue, Grant; Makinen, Janice; Cognata, Thomas
2010-01-01
The Wissler Human Thermal Model (WHTM) is a thermal math model of the human body that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. The model has been shown to predict core temperature and skin temperatures higher and lower, respectively, than in tests of subjects in crew escape suit working in a controlled hot environments. Conversely the model predicts core temperature and skin temperatures lower and higher, respectively, than in tests of lightly clad subjects immersed in cold water conditions. The blood flow algorithms of the model has been investigated to allow for more and less flow, respectively, for the cold and hot case. These changes in the model have yielded better correlation of skin and core temperatures in the cold and hot cases. The algorithm for onset of shiver did not need to be modified to achieve good agreement in cold immersion simulations
Hydrodynamical Aspects of the Formation of Spiral-Vortical Structures in Rotating Gaseous Disks
NASA Astrophysics Data System (ADS)
Elizarova, T. G.; Zlotnik, A. A.; Istomina, M. A.
2018-01-01
This paper is dedicated to numerical simulations of spiral-vortical structures in rotating gaseous disks using a simple model based on two-dimensional, non-stationary, barotropic Euler equations with a body force. The results suggest the possibility of a purely hydrodynamical basis for the formation and evolution of such structures. New, axially symmetric, stationary solutions of these equations are derived that modify known approximate solutions. These solutions with added small perturbations are used as initial data in the non-stationary problem, whose solution demonstrates the formation of density arms with bifurcation. The associated redistribution of angular momentum is analyzed. The correctness of laboratory experiments using shallow water to describe the formation of large-scale vortical structures in thin gaseous disks is confirmed. The computations are based on a special quasi-gas-dynamical regularization of the Euler equations in polar coordinates.
Imitation-tumor targeting based on continuous-wave near-infrared tomography.
Liu, Dan; Liu, Xin; Zhang, Yan; Wang, Qisong; Lu, Jingyang; Sun, Jinwei
2017-12-01
Continuous-wave Near-Infrared (NIR) optical spectroscopy has shown great diagnostic capability in the early tumor detection with advantages of low-cost, portable, non-invasive, and non-radiative. In this paper, Modified Lambert-Beer Theory is deployed to address the low-resolution issues of the NIR technique and to design the tumor detecting and imaging system. Considering that tumor tissues have features such as high blood flow and hypoxia, the proposed technique can detect the location, size, and other information of the tumor tissues by comparing the absorbance between pathological and normal tissues. Finally, the tumor tissues can be imaged through tomographic method. The simulation experiments prove that the proposed technique and designed system can efficiently detect the tumor tissues, achieving imaging precision within 1 mm. The work of the paper has shown great potential in the diagnosis of tumor close to body surface.
Biomimetic whisker-shaped apatite coating of titanium powder.
Sim, Young Uk; Kim, Jong Hee; Yang, Tae Young; Yoon, Seog Young; Park, Hong Chae
2010-05-01
Biomimetic apatite coatings on chemically modified titanium powder have been processed and the resulting coating layers evaluated in terms of morphology, composition and structure, using TF-XRD, XPS, SEM, TEM and FTIR analysis. After 7 days immersion in a simulated body fluid (SBF), nanometer-sized fine precipitates with an amorphous whisker-like phase and a Ca/P atomic ratio of 1.94 were obtained on the external surface of the titanium particles. When the immersion time in SBF was extended to 16 days, the coating layer consisted of the whisker-like nanostructured crystals of carbonated hydroxyapatite with a atomic ratio of 3; in such a case, a double coating layer was developed. The double layer could be divided into two regions and could be clearly distinguished: an inner dense region (approximately 200 nm in thickness) which may include hard agglomerated crystals and an outer less dense region (> 500 nm in thickness) in which crystals are loosely distributed.
Aerodynamics of powered missile separation from F/A-18 aircraft
NASA Technical Reports Server (NTRS)
Ahmad, J. U.; Shanks, S. P.; Buning, P. G.
1993-01-01
A 3D dynamic 'chimera' algorithm that solves the thin-layer Navier-Stokes equations over multiple moving bodies was modified to numerically simulate the aerodynamics, missile dynamics, and missile plume interactions of a missile separating from a generic wing and from an F/A-18 aircraft in transonic flow. The missile is mounted below the wing for missile separation from the wing and on the F/A-18 fuselage at the engine inlet side for missile separation from aircraft. Static and powered missile separation cases are considered to examine the influence of the missile and plume on the wing and F/A-18 fuselage and engine inlet. The aircraft and missile are at two degrees angle of attack, Reynolds number of 10 million, freestream Mach number of 1.05 and plume Mach number of 3.0. The computational results show the details of the flow field.
NASA Technical Reports Server (NTRS)
Charnley, Steven
2009-01-01
Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.
Calculated secondary yields for proton broadband using DECAY TURTLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sondgeroth, A.
1995-02-01
The calculations for the yields were done by Al Sondgeroth and Anthony Malensek. The authors used the DECAY deck called PBSEC{_}E.DAT from the CMS DECKS library. After obtaining the run modes and calibration modes from the liaison physicist, they made individual decay runs, using DECAY TURTLE from the CMS libraries and a production spectrum subroutine which was modified by Anthony, for each particle and decay mode for all particle types coming out of the target box. Results were weighted according to branching ratios for particles with more than one decay mode. The production spectra were produced assuming beryllium as themore » target. The optional deuterium target available to broadband will produce slightly higher yields. It should be noted that they did not include pion yields from klong decays because they could not simulate three body decays. Pions from klongs would add a very small fraction to the total yield.« less
2dFLenS and KiDS: determining source redshift distributions with cross-correlations
NASA Astrophysics Data System (ADS)
Johnson, Andrew; Blake, Chris; Amon, Alexandra; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; McFarland, John; Morrison, Christopher B.; Parkinson, David; Poole, Gregory B.; Radovich, Mario; Wolf, Christian
2017-03-01
We develop a statistical estimator to infer the redshift probability distribution of a photometric sample of galaxies from its angular cross-correlation in redshift bins with an overlapping spectroscopic sample. This estimator is a minimum-variance weighted quadratic function of the data: a quadratic estimator. This extends and modifies the methodology presented by McQuinn & White. The derived source redshift distribution is degenerate with the source galaxy bias, which must be constrained via additional assumptions. We apply this estimator to constrain source galaxy redshift distributions in the Kilo-Degree imaging survey through cross-correlation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a binned step-wise distribution in the range z < 0.8, and then building a continuous distribution using a Gaussian process model. We demonstrate the robustness of our methodology using mock catalogues constructed from N-body simulations, and comparisons with other techniques for inferring the redshift distribution.
Deployment and testing of a second prototype expandable surgical chamber in microgravity
NASA Technical Reports Server (NTRS)
Markham, Sanford M.; Rock, John A.
1991-01-01
During microgravity exposure, two separate expandable surgical chambers were tested. Both chambers had been modified to fit the microgravity work station without extending over the sides of the table. Both chambers were attached to a portable laminar flow generator which served two purposes: to keep the chambers expanded during use; and to provide an operative area environment free of contamination. During the tests, the chambers were placed on various parts of a total body moulage to simulate management of several types of trauma. The tests consisted of cleansing contusions, debridement of burns, and suturing of lacerations. Also, indigo carmine dye was deliberately injected into the chamber during the tests to determine the ease of cleansing the chamber walls after contamination by escaping fluids. Upon completion of the tests, the expandable surgical chambers were deflated, folded, and placed in a flattened state back into their original containers for storage and later disposal. Results are briefly discussed.
Quantifying driver's field-of-view in tractors: methodology and case study.
Gilad, Issachar; Byran, Eyal
2015-01-01
When driving a car, the visual awareness is important for operating and controlling the vehicle. When operating a tractor, it is even more complex. This is because the driving is always accompanied with another task (e.g., plough) that demands constant changes of body postures, to achieve the needed Field-of-View (FoV). Therefore, the cockpit must be well designed to provide best FoV. Today, the driver's FoV is analyzed mostly by computer simulations of a cockpit model and a Digital Human Model (DHM) positioned inside. The outcome is an 'Eye view' that displays what the DHM 'sees'. This paper suggests a new approach that adds quantitative information to the current display; presented on three tractor models as case studies. Based on the results, the design can be modified. This may assist the engineer, to analyze, compare and improve the design, for better addressing the driver needs.
Improving the corrosion resistance of Mg-4.0Zn-0.2Ca alloy by micro-arc oxidation.
Xia, Y H; Zhang, B P; Lu, C X; Geng, L
2013-12-01
In this paper, corrosion resistance of the Mg-4.0Zn-0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg-4.0Zn-0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF2 was formed on the surface of Mg-4.0Zn-0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. © 2013.
Formation and Corrosion Resistance of Mg-Al Hydrotalcite Film on Mg-Gd-Zn Alloy
NASA Astrophysics Data System (ADS)
Ba, Z. X.; Dong, Q. S.; Kong, S. X.; Zhang, X. B.; Xue, Y. J.; Chen, Y. J.
2017-06-01
An environment-friendly technique for depositing a Mg-Al hydrotalcite (HT) (Mg6Al2(OH)16-CO3ṡ4H2O) conversion film was developed to protect the Mg-Gd-Zn alloy from corrosion. The morphology and chemical compositions of the film were analyzed by scanning electronic microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Raman spectroscopy (RS), respectively. The electrochemical test and hydrogen evolution test were employed to evaluate the biocorrosion behavior of Mg-Gd-Zn alloy coated with the Mg-Al HT film in the simulated body fluid (SBF). It was found that the formation of Mg-Al HT film was a transition from amorphous precursor to a crystalline HT structure. The HT film can effectively improve the corrosion resistance of magnesium alloy. It indicates that the process provides a promising approach to modify Mg-Gd-Zn alloy.
Producing coherent excitations in pumped Mott antiferromagnetic insulators
NASA Astrophysics Data System (ADS)
Wang, Yao; Claassen, Martin; Moritz, B.; Devereaux, T. P.
2017-12-01
Nonequilibrium dynamics in correlated materials has attracted attention due to the possibility of characterizing, tuning, and creating complex ordered states. To understand the photoinduced microscopic dynamics, especially the linkage under realistic pump conditions between transient states and remnant elementary excitations, we performed nonperturbative simulations of various time-resolved spectroscopies. We used the Mott antiferromagnetic insulator as a model platform. The transient dynamics of multiparticle excitations can be attributed to the interplay between Floquet virtual states and a modification of the density of states, in which interactions induce a spectral weight transfer. Using an autocorrelation of the time-dependent spectral function, we show that resonance of the virtual states with the upper Hubbard band in the Mott insulator provides the route towards manipulating the electronic distribution and modifying charge and spin excitations. Our results link transient dynamics to the nature of many-body excitations and provide an opportunity to design nonequilibrium states of matter via tuned laser pulses.
The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellier, J.M., E-mail: jeanmichel.sellier@parallel.bas.bg; Dimov, I.
2014-09-15
The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practicallymore » unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.« less
Brenière, Y
2001-04-01
A double-inverted pendulum model of body oscillations in the frontal plane during stepping [Brenière and Ribreau (1998) Biol Cybern 79: 337-345] proposed an equivalent model for studying the body oscillating behavior induced by step frequency in the form of: (1) a kinetic body parameter, the natural body frequency (NBF), which contains gravity and which is invariable for humans, (2) a parametric function of frequency, whose parameter is the NBF, which explicates the amplitude ratio of center of mass to center of foot pressure oscillation, and (3) a function of frequency which simulates the equivalent torque necessary for the control of the head-arms-trunk segment oscillations. Here, this equivalent model is used to simulate the duration of gait initiation, i.e., the duration necessary to initiate and execute the first step of gait in subgravity, as well as to calculate the step frequencies that would impose the same minimum and maximum amplitudes of the oscillating responses of the body center of mass, whatever the gravity value. In particular, this simulation is tested under the subgravity conditions of the Moon, Mars, and Phobos, where gravity is 1/6, 3/8, and 1/1600 times that on the Earth, respectively. More generally, the simulation allows us to establish and discuss the conditions for gait adaptability that result from the biomechanical constraints particular to each gravity system.
CUBE: Information-optimized parallel cosmological N-body simulation code
NASA Astrophysics Data System (ADS)
Yu, Hao-Ran; Pen, Ue-Li; Wang, Xin
2018-05-01
CUBE, written in Coarray Fortran, is a particle-mesh based parallel cosmological N-body simulation code. The memory usage of CUBE can approach as low as 6 bytes per particle. Particle pairwise (PP) force, cosmological neutrinos, spherical overdensity (SO) halofinder are included.
NASA Astrophysics Data System (ADS)
Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek
2017-07-01
Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron-electron (e-e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e-e interactions. This required adapting the treatment of e-e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.
Genetically modified haloes: towards controlled experiments in ΛCDM galaxy formation
NASA Astrophysics Data System (ADS)
Roth, Nina; Pontzen, Andrew; Peiris, Hiranya V.
2016-01-01
We propose a method to generate `genetically modified' (GM) initial conditions for high-resolution simulations of galaxy formation in a cosmological context. Building on the Hoffman-Ribak algorithm, we start from a reference simulation with fully random initial conditions, then make controlled changes to specific properties of a single halo (such as its mass and merger history). The algorithm demonstrably makes minimal changes to other properties of the halo and its environment, allowing us to isolate the impact of a given modification. As a significant improvement over previous work, we are able to calculate the abundance of the resulting objects relative to the reference simulation. Our approach can be applied to a wide range of cosmic structures and epochs; here we study two problems as a proof of concept. First, we investigate the change in density profile and concentration as the collapse times of three individual haloes are varied at fixed final mass, showing good agreement with previous statistical studies using large simulation suites. Secondly, we modify the z = 0 mass of haloes to show that our theoretical abundance calculations correctly recover the halo mass function. The results demonstrate that the technique is robust, opening the way to controlled experiments in galaxy formation using hydrodynamic zoom simulations.
Mechanical properties of elytra from Tribolium castaneum wild-type and body color mutant strains
USDA-ARS?s Scientific Manuscript database
Cuticle tanning in insects involves simultaneous cuticular hardening and pigmentation. The dynamic mechanical properties of the highly modified and cuticle-rich forewings (elytra) from Tribolium castaneum (red flour beetle) body color mutant strains were investigated to determine the relationship b...
Tamaki, S; Kawazoe, K; Yagihara, T; Abe, T
1992-02-01
The effect of pulsatile pulmonary flow after the modified Fontan procedure was examined in a model that simulated the right heart. An inlet overflow tank (preload), axial pulsatile pump, Wind-Kessel model (afterload), and an outlet overflow tank were connected in series. The standard conditions were flow 2.00 l/min with 12 mm Hg preload pressure, 3.0 Wood units resistance, and an outlet overflow tank pressure at 6 mm Hg. The pump rate was set at 80 beats/min. The simulated pulmonary arterial pressure and pulmonary flow waves produced by this model closely resembled those obtained from patients who had undergone the modified Fontan procedure. All variables except the preload were fixed and changes in pulmonary flow were examined at preload pressures of 8, 12, 15, and 17 mm Hg. As the peak pulmonary arterial pressure increased so did pulmonary flow, until it was greater than during the non-pulsatile state. Because the afterload of this model was fixed, this result suggests that there was a concomitant decrease in resistance. This model indicates that pulsatile pulmonary blood flow is likely to have a beneficial effect on the pulmonary circulation after the modified Fontan procedure.
MCC level C formulation requirements. Shuttle TAEM guidance and flight control, STS-1 baseline
NASA Technical Reports Server (NTRS)
Carman, G. L.; Montez, M. N.
1980-01-01
The TAEM guidance and body rotational dynamics models required for the MCC simulation of the TAEM mission phase are defined. This simulation begins at the end of the entry phase and terminates at TAEM autoland interface. The logic presented is the required configuration for the first shuttle orbital flight (STS-1). The TAEM guidance is simulated in detail. The rotational dynamics simulation is a simplified model that assumes that the commanded rotational rates can be achieved in the integration interval. Thus, the rotational dynamics simulation is essentially a simulation of the autopilot commanded rates and integration of these rates to determine orbiter attitude. The rotational dynamics simulation also includes a simulation of the speedbrake deflection. The body flap and elevon deflections are computed in the orbiter aerodynamic simulation.
Miyata, Noboru; Fuke, Ken-ichi; Chen, Qi; Kawashita, Masakazu; Kokubo, Tadashi; Nakamura, Takashi
2004-01-01
Hydrolysis and polycondensation of triethoxysilane end-capped Poly (tetramethylene oxide) (Si-PTMO), tetraethoxysilane (TEOS), tetraisopropyltitanate (TiPT) and calcium nitrate (Ca(NO(3))(2)) gave transparent monolithics of PTMO-modified CaO-SiO(2)-TiO(2) hybrids. The samples with (TiPT)/(TEOS+TiPT) molar ratios from 0 to 0.20 under constant ratio of (Si-PTMO)/(TEOS+TiPT) of 2/3 in weight were prepared. It was found that the incorporation of TiO(2) component into a PTMO-CaO-SiO(2) hybrid results in an increase in the apatite-forming ability in a simulated body fluid: the hybrids with (TiPT)/(TEOS+TiPT) of 0.10 and 0.20 in mol formed an apatite on their surfaces within only 0.5 day. It seemed that, within the range of compositions studied, the TiO(2) content little affects the overall mechanical properties: Young's modulus were 52-55MPa, tensile strength, 7-9MPa, and strain at failure, about 30%. Thus, the organic-inorganic hybrids exhibiting both fairly high apatite-forming ability and high capability for deformation were obtained. These hybrid materials may be useful as new kind of bioactive bone-repairing materials.
NASA Astrophysics Data System (ADS)
Mitchell, Myles A.; He, Jian-hua; Arnold, Christian; Li, Baojiu
2018-06-01
We propose a new framework for testing gravity using cluster observations, which aims to provide an unbiased constraint on modified gravity models from Sunyaev-Zel'dovich (SZ) and X-ray cluster counts and the cluster gas fraction, among other possible observables. Focusing on a popular f(R) model of gravity, we propose a novel procedure to recalibrate mass scaling relations from Λ cold dark matter (ΛCDM) to f(R) gravity for SZ and X-ray cluster observables. We find that the complicated modified gravity effects can be simply modelled as a dependence on a combination of the background scalar field and redshift, fR(z)/(1 + z), regardless of the f(R) model parameter. By employing a large suite of N-body simulations, we demonstrate that a theoretically derived tanh fitting formula is in excellent agreement with the dynamical mass enhancement of dark matter haloes for a large range of background field parameters and redshifts. Our framework is sufficiently flexible to allow for tests of other models and inclusion of further observables, and the one-parameter description of the dynamical mass enhancement can have important implications on the theoretical modelling of observables and on practical tests of gravity.
In vitro bioactivity investigations of Ti-15Mo alloy after electrochemical surface modification.
Kazek-Kęsik, Alicja; Kuna, Karolina; Dec, Weronika; Widziołek, Magdalena; Tylko, Grzegorz; Osyczka, Anna M; Simka, Wojciech
2016-07-01
Titanium and its aluminum and vanadium-free alloys have especially great potential for medical applications. Electrochemical surface modification improves their surface bioactivity and stimulates osseointegration process. In this work, the effect of plasma electrolytic oxidation of the β-type alloy Ti-15Mo surface on its bioactivity is presented. Bioactivity of the modified alloy was investigated by immersion in simulated body fluid (SBF). Biocompatibility of the modified alloys were tested using human bone marrow stromal cells (hBMSC) and wild intestinal strains (DV/A, DV/B, DV/I/1) of Desulfovibrio desulfuricans bacteria. The particles of apatite were formed on the anodized samples. Human BMSC cells adhered well on all the examined surfaces and expressed ALP, collagen, and produced mineralized matrix as determined after 10 and 21 days of culture. When the samples were inoculated with D. desulfuricans bacteria, only single bacteria were visible on selected samples. There were no obvious changes in surface morphology among samples. Colonization and bacterial biofilm formation was observed on as-ground sample. In conclusion, the surface modification improved the Ti-15Mo alloy bioactivity and biocompatibility and protected surface against colonization of the bacteria. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 903-913, 2016. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yeo, L. H.; Han, J.; Wang, X.; Werner, G.; Deca, J.; Munsat, T.; Horanyi, M.
2017-12-01
Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection/reflection of thecharged particles. Consequently, surface charging in these regions will be modified. Using the Colorado Solar Wind Experiment facility, this interaction is investigated with high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole (0.13 T) embedded under various insulating surfaces. The dipole moment is perpendicular to the surface. Using an emissive probe, 2D plasma potential profiles are obtained above the surface. In the dipole lobe regions, the surfaces are charged to significantly positive potentials due to the impingement of the unmagnetized ions while the electrons are magnetically shielded. At low ion beam energies, the results agree with the theoretical predictions, i.e., the surface potential follows the energy of the beam ions in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of investigations have been conducted and indicate that the surface properties (e.g., modified surface conductance, ion induced secondary electrons and electron-neutral collision at the surface) are likely to play a role in determining the surface potential.
NASA Astrophysics Data System (ADS)
Lee, Choonik
A series of realistic voxel computational phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic images of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms and then extended into whole body phantoms by utilizing computed tomographic images of a healthy adult volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the international commission on radiological protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having reference organ masses and total heights. As part of the dosimetry study, the investigation on skeletal tissue dosimetry methods was performed for better understanding of the radiation dose to the active bone marrow and bone endosteum. All of the currently available methodologies were inter-compared and benchmarked with the paired-image radiation transport model. The dosimetric characteristics of the phantoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pediatric phantoms of Oak Ridge National Laboratory. The multi-slice helical computed tomography exams were simulated using Monte Carlo simulation code for various exams protocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pediatric radiology. The results were very crucial in understanding the radiation risks of the patients undergoing computed tomography. Finally, nuclear medicine simulations were performed by calculating specific absorbed fractions for multiple target-source organ pairs via Monte Carlo simulations. Specific absorbed fractions were calculated for both photon and electron so that they can be used to calculated radionuclide S-values. All of the results were tabulated for future uses and example dose assessment was performed for selected nuclides administered in nuclear medicine.
Development of an Implantable WBAN Path-Loss Model for Capsule Endoscopy
NASA Astrophysics Data System (ADS)
Aoyagi, Takahiro; Takizawa, Kenichi; Kobayashi, Takehiko; Takada, Jun-Ichi; Hamaguchi, Kiyoshi; Kohno, Ryuji
An implantable WBAN path-loss model for a capsule endoscopy which is used for examining digestive organs, is developed by conducting simulations and experiments. First, we performed FDTD simulations on implant WBAN propagation by using a numerical human model. Second, we performed FDTD simulations on a vessel that represents the human body. Third, we performed experiments using a vessel of the same dimensions as that used in the simulations. On the basis of the results of these simulations and experiments, we proposed the gradient and intercept parameters of the simple path-loss in-body propagation model.
Ijichi, Shinji; Ijichi, Naomi; Ijichi, Yukina; Imamura, Chikako; Sameshima, Hisami; Kawaike, Yoichi; Morioka, Hirofumi
2018-01-01
The continuing prevalence of a highly heritable and hypo-reproductive extreme tail of a human neurobehavioral quantitative diversity suggests the possibility that the reproductive majority retains the genetic mechanism for the extremes. From the perspective of stochastic epistasis, the effect of an epistatic modifier variant can randomly vary in both phenotypic value and effect direction among the careers depending on the genetic individuality, and the modifier careers are ubiquitous in the population distribution. The neutrality of the mean genetic effect in the careers warrants the survival of the variant under selection pressures. Functionally or metabolically related modifier variants make an epistatic network module and dozens of modules may be involved in the phenotype. To assess the significance of stochastic epistasis, a simplified module-based model was employed. The individual repertoire of the modifier variants in a module also participates in the genetic individuality which determines the genetic contribution of each modifier in the career. Because the entire contribution of a module to the phenotypic outcome is consequently unpredictable in the model, the module effect represents the total contribution of the related modifiers as a stochastic unit in the simulations. As a result, the intrinsic compatibility between distributional robustness and quantitative changeability could mathematically be simulated using the model. The artificial normal distribution shape in large-sized simulations was preserved in each generation even if the lowest fitness tail was un-reproductive. The robustness of normality beyond generations is analogous to the real situations of human complex diversity including neurodevelopmental conditions. The repeated regeneration of the un-reproductive extreme tail may be inevitable for the reproductive majority's competence to survive and change, suggesting implications of the extremes for others. Further model-simulations to illustrate how the fitness of extreme individuals can be low through generations may be warranted to increase the credibility of this stochastic epistasis model.
Modified titanium implant as a gateway to the human body: the implant mediated drug delivery system.
Park, Young-Seok; Cho, Joo-Youn; Lee, Shin-Jae; Hwang, Chee Il
2014-01-01
The aim of this study was to investigate the efficacy of a proposed new implant mediated drug delivery system (IMDDS) in rabbits. The drug delivery system is applied through a modified titanium implant that is configured to be implanted into bone. The implant is hollow and has multiple microholes that can continuously deliver therapeutic agents into the systematic body. To examine the efficacy and feasibility of the IMDDS, we investigated the pharmacokinetic behavior of dexamethasone in plasma after a single dose was delivered via the modified implant placed in the rabbit tibia. After measuring the plasma concentration, the areas under the curve showed that the IMDDS provided a sustained release for a relatively long period. The result suggests that the IMDDS can deliver a sustained release of certain drug components with a high bioavailability. Accordingly, the IMDDS may provide the basis for a novel approach to treating patients with chronic diseases.
Study on the frame body structure of micro-electric vehicle based on frontal crash safety
NASA Astrophysics Data System (ADS)
Lu, Yaoquan; Zhang, Sanchuan
2017-08-01
In order to research the safety of skeleton type body of micro-electric vehicles in the frontal collision, the method of finite element modeling and simulation are used to analyze frame body that is fitted with the energy absorption structure, the simulation results show that On the basis of absorbing the most energy and the least of body acceleration, the absorbent structure parameters can be optimized, the optimized parameters are length 180 mm, wall thickness 3 mm and materials Q460.
Leahy, P.P.
1982-01-01
The Trescott computer program for modeling groundwater flow in three dimensions has been modified to (1) treat aquifer and confining bed pinchouts more realistically and (2) reduce the computer memory requirements needed for the input data. Using the original program, simulation of aquifer systems with nonrectangular external boundaries may result in a large number of nodes that are not involved in the numerical solution of the problem, but require computer storage. (USGS)
Identification of Associations Between Genetic Factors and Asthma that are Modified by Obesity
2016-06-01
AFRL-SA-WP-TR-2016-0010 Identification of Associations Between Genetic Factors and Asthma That Are Modified by Obesity Andrew T...Between Genetic Factors and Asthma That Are Modified by Obesity 5a. CONTRACT NUMBER FA8650-13-2-6371 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...among African American women in the Women’s Health Initiative study. 15. SUBJECT TERMS Body mass index, SNP, asthma, obesity , genome, genes 16
Evaluation of a novel basic life support method in simulated microgravity.
Rehnberg, Lucas; Russomano, Thaws; Falcão, Felipe; Campos, Fabio; Everts, Simon N
2011-02-01
If a cardiac arrest occurs in microgravity, current emergency protocols aim to treat patients via a medical restraint system within 2-4 min. It is vital that crewmembers have the ability to perform single-person cardiopulmonary resuscitation (CPR) during this period, allowing time for advanced life support to be deployed. The efficacy of the Evetts-Russomano (ER) method has been tested in 22 s of microgravity in a parabolic flight and has shown that external chest compressions (ECC) and mouth-to-mouth ventilation are possible. There were 21 male subjects who performed both the ER method in simulated microgravity via full body suspension and at +1 Gz. The CPR mannequin was modified to provide accurate readings for ECC depth and a metronome to set the rate at 100 bpm. Heart rate, rate of perceived exertion, and angle of arm flexion were measured with an ECG, elbow electrogoniometers, and Borg scale, respectively. The mean (+/- SD) depth of ECC in simulated microgravity was lower in each of the 3 min compared to +1 G2. The ECC depth (45.7 +/- 2.7 mm, 42.3 +/- 5.5 mm, and 41.4 +/- 5.9 mm) and rate (104.5 +/- 5.2, 105.2 +/- 4.5, and 102.4 +/- 6.6 compressions/min), however, remained within CPR guidelines during simulated microgravity over the 3-min period. Heart rate, perceived exertion, and elbow flexion of both arms increased using the ER method. The ER method can provide adequate depth and rate of ECC in simulated microgravity for 3 min to allow time to deploy a medical restraint system. There is, however, a physiological cost associated with it and a need to use the flexion of the arms to compensate for the lack of weight.
The variance of the locally measured Hubble parameter explained with different estimators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odderskov, Io; Hannestad, Steen; Brandbyge, Jacob, E-mail: isho07@phys.au.dk, E-mail: sth@phys.au.dk, E-mail: jacobb@phys.au.dk
We study the expected variance of measurements of the Hubble constant, H {sub 0}, as calculated in either linear perturbation theory or using non-linear velocity power spectra derived from N -body simulations. We compare the variance with that obtained by carrying out mock observations in the N-body simulations, and show that the estimator typically used for the local Hubble constant in studies based on perturbation theory is different from the one used in studies based on N-body simulations. The latter gives larger weight to distant sources, which explains why studies based on N-body simulations tend to obtain a smaller variancemore » than that found from studies based on the power spectrum. Although both approaches result in a variance too small to explain the discrepancy between the value of H {sub 0} from CMB measurements and the value measured in the local universe, these considerations are important in light of the percent determination of the Hubble constant in the local universe.« less
NASA Astrophysics Data System (ADS)
Palanisamy, Duraivelan; den Otter, Wouter K.
2018-05-01
We present an efficient general method to simulate in the Stokesian limit the coupled translational and rotational dynamics of arbitrarily shaped colloids subject to external potential forces and torques, linear flow fields, and Brownian motion. The colloid's surface is represented by a collection of spherical primary particles. The hydrodynamic interactions between these particles, here approximated at the Rotne-Prager-Yamakawa level, are evaluated only once to generate the body's (11 × 11) grand mobility matrix. The constancy of this matrix in the body frame, combined with the convenient properties of quaternions in rotational Brownian Dynamics, enables an efficient simulation of the body's motion. Simulations in quiescent fluids yield correct translational and rotational diffusion behaviour and sample Boltzmann's equilibrium distribution. Simulations of ellipsoids and spherical caps under shear, in the absence of thermal fluctuations, yield periodic orbits in excellent agreement with the theories by Jeffery and Dorrepaal. The time-varying stress tensors provide the Einstein coefficient and viscosity of dilute suspensions of these bodies.
Computational Fluid Dynamics Demonstration of Rigid Bodies in Motion
NASA Technical Reports Server (NTRS)
Camarena, Ernesto; Vu, Bruce T.
2011-01-01
The Design Analysis Branch (NE-Ml) at the Kennedy Space Center has not had the ability to accurately couple Rigid Body Dynamics (RBD) and Computational Fluid Dynamics (CFD). OVERFLOW-D is a flow solver that has been developed by NASA to have the capability to analyze and simulate dynamic motions with up to six Degrees of Freedom (6-DOF). Two simulations were prepared over the course of the internship to demonstrate 6DOF motion of rigid bodies under aerodynamic loading. The geometries in the simulations were based on a conceptual Space Launch System (SLS). The first simulation that was prepared and computed was the motion of a Solid Rocket Booster (SRB) as it separates from its core stage. To reduce computational time during the development of the simulation, only half of the physical domain with respect to the symmetry plane was simulated. Then a full solution was prepared and computed. The second simulation was a model of the SLS as it departs from a launch pad under a 20 knot crosswind. This simulation was reduced to Two Dimensions (2D) to reduce both preparation and computation time. By allowing 2-DOF for translations and 1-DOF for rotation, the simulation predicted unrealistic rotation. The simulation was then constrained to only allow translations.
NASA Astrophysics Data System (ADS)
Ševecek, Pavel; Broz, Miroslav; Nesvorny, David; Durda, Daniel D.; Asphaug, Erik; Walsh, Kevin J.; Richardson, Derek C.
2016-10-01
Detailed models of asteroid collisions can yield important constrains for the evolution of the Main Asteroid Belt, but the respective parameter space is large and often unexplored. We thus performed a new set of simulations of asteroidal breakups, i.e. fragmentations of intact targets, subsequent gravitational reaccumulation and formation of small asteroid families, focusing on parent bodies with diameters D = 10 km.Simulations were performed with a smoothed-particle hydrodynamics (SPH) code (Benz & Asphaug 1994), combined with an efficient N-body integrator (Richardson et al. 2000). We assumed a number of projectile sizes, impact velocities and impact angles. The rheology used in the physical model does not include friction nor crushing; this allows for a direct comparison to results of Durda et al. (2007). Resulting size-frequency distributions are significantly different from scaled-down simulations with D = 100 km monolithic targets, although they may be even more different for pre-shattered targets.We derive new parametric relations describing fragment distributions, suitable for Monte-Carlo collisional models. We also characterize velocity fields and angular distributions of fragments, which can be used as initial conditions in N-body simulations of small asteroid families. Finally, we discuss various uncertainties related to SPH simulations.
Numerical simulation of an electrothermal deicer pad. M.S. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Marano, J. J.
1983-01-01
A numerical simulation is developed to investigate the removal of ice from composite aircraft blades by means of electrothermal deicing. The model considers one dimensional, unsteady state heat transfer in the composite blade-ice body. The heat conduction equations are approximated by using the Crank-Nicolson finite difference scheme, and the phase change in the ice layer is handled using the Enthalpy method. To solve the system of equations which result, Gauss-Seidel iteration is used. The simulation computes the temperature profile in the composite blade-ice body, as well as the movement of the ice-water interface, as a function of time. This information can be used to evaluate deicer performance. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.
Aerodynamic interactions between a 1/6 scale helicopter rotor and a body of revolution
NASA Technical Reports Server (NTRS)
Betzina, M. D.; Shinoda, P.
1982-01-01
A wind-tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24-m-diam, two bladed helicopter rotor and a body of revolution. The objective was to determine the interaction of the body on the rotor performance and the effect of the rotor on the body aerodynamics for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body nose geometry. Results show that a body of revolution near the rotor can produce significant favorable or unfavorable effects on rotor performance, depending on the operating condition. Body longitudinal aerodynamic characteristics are significantly modified by the presence of an operating rotor and hub.
USDA-ARS?s Scientific Manuscript database
Cardiovascular disease (CVD) is a major health risk in the United States. Major indicators of CVD risk include obesity, blood lipids, and blood pressure. Modifiable risk factors associated with CVD include body composition (body mass index and waist circumference), serum lipids, and blood pressure. ...
Validated simulator for space debris removal with nets and other flexible tethers applications
NASA Astrophysics Data System (ADS)
Gołębiowski, Wojciech; Michalczyk, Rafał; Dyrek, Michał; Battista, Umberto; Wormnes, Kjetil
2016-12-01
In the context of active debris removal technologies and preparation activities for the e.Deorbit mission, a simulator for net-shaped elastic bodies dynamics and their interactions with rigid bodies, has been developed. Its main application is to aid net design and test scenarios for space debris deorbitation. The simulator can model all the phases of the debris capturing process: net launch, flight and wrapping around the target. It handles coupled simulation of rigid and flexible bodies dynamics. Flexible bodies were implemented using Cosserat rods model. It allows to simulate flexible threads or wires with elasticity and damping for stretching, bending and torsion. Threads may be combined into structures of any topology, so the software is able to simulate nets, pure tethers, tether bundles, cages, trusses, etc. Full contact dynamics was implemented. Programmatic interaction with simulation is possible - i.e. for control implementation. The underlying model has been experimentally validated and due to significant gravity influence, experiment had to be performed in microgravity conditions. Validation experiment for parabolic flight was a downscaled process of Envisat capturing. The prepacked net was launched towards the satellite model, it expanded, hit the model and wrapped around it. The whole process was recorded with 2 fast stereographic camera sets for full 3D trajectory reconstruction. The trajectories were used to compare net dynamics to respective simulations and then to validate the simulation tool. The experiments were performed on board of a Falcon-20 aircraft, operated by National Research Council in Ottawa, Canada. Validation results show that model reflects phenomenon physics accurately enough, so it may be used for scenario evaluation and mission design purposes. The functionalities of the simulator are described in detail in the paper, as well as its underlying model, sample cases and methodology behind validation. Results are presented and typical use cases are discussed showing that the software may be used to design throw nets for space debris capturing, but also to simulate deorbitation process, chaser control system or general interactions between rigid and elastic bodies - all in convenient and efficient way. The presented work was led by SKA Polska under the ESA contract, within the CleanSpace initiative.
Numerical Simulation of the Flow over a Segment-Conical Body on the Basis of Reynolds Equations
NASA Astrophysics Data System (ADS)
Egorov, I. V.; Novikov, A. V.; Palchekovskaya, N. V.
2018-01-01
Numerical simulation was used to study the 3D supersonic flow over a segment-conical body similar in shape to the ExoMars space vehicle. The nonmonotone behavior of the normal force acting on the body placed in a supersonic gas flow was analyzed depending on the angle of attack. The simulation was based on the numerical solution of the unsteady Reynolds-averaged Navier-Stokes equations with a two-parameter differential turbulence model. The solution of the problem was obtained using the in-house solver HSFlow with an efficient parallel algorithm intended for multiprocessor super computers.