Computer program for supersonic Kernel-function flutter analysis of thin lifting surfaces
NASA Technical Reports Server (NTRS)
Cunningham, H. J.
1974-01-01
This report describes a computer program (program D2180) that has been prepared to implement the analysis described in (N71-10866) for calculating the aerodynamic forces on a class of harmonically oscillating planar lifting surfaces in supersonic potential flow. The planforms treated are the delta and modified-delta (arrowhead) planforms with subsonic leading and supersonic trailing edges, and (essentially) pointed tips. The resulting aerodynamic forces are applied in a Galerkin modal flutter analysis. The required input data are the flow and planform parameters including deflection-mode data, modal frequencies, and generalized masses.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-07
...). Allozyme studies have demonstrated that wakasagi and delta smelt are genetically distinct and presumably..., survey methods have been modified to minimize potential impacts to delta smelt (K. Souza 2009, pers. comm.). Based on the low number of delta smelt collected in sampling surveys and the modified methods employed...
NASA Technical Reports Server (NTRS)
Ericsson, L. E.; Reding, J. P.
1973-01-01
An analysis of the steady and unsteady aerodynamics of sharp-edged slender wings has been performed. The results show that slender wing theory can be modified to give the potential flow static and dynamic characteristics in incompressible flow. A semiempirical approximation is developed for the vortex-induced loads, and it is shown that the analytic approximation for sharp-edged slender wings gives good prediction of experimentally determined steady and unsteady aerodynamics at M = 0 and M = 1. The predictions are good not only for delta wings but also for so-called arrow and diamond wings. The results indicate that the effects of delta planform lifting surfaces can be included in a simple manner when determining elastic launch vehicle dynamic characteristics. For Part 1 see (N73-32763).
Battistuzzi, G; Borsari, M; Sola, M; Francia, F
1997-12-23
The reduction potentials of beef heart cytochrome c and cytochromes c2 from Rhodopseudomonas palustris, Rhodobacter sphaeroides, and Rhodobacter capsulatus were measured through direct electrochemistry at a surface-modified gold electrode as a function of temperature in nonisothermal experiments carried out at neutral and alkaline pH values. The thermodynamic parameters for protein reduction (DeltaS degrees rc and DeltaH degrees rc) were determined for the native and alkaline conformers. Enthalpy and entropy terms underlying species-dependent differences in E degrees and pH- and temperature-induced E degrees changes for a given cytochrome were analyzed. The difference of about +0.1 V in E degrees between cytochromes c2 and the eukaryotic species can be separated into an enthalpic term (-DeltaDeltaH degrees rc/F) of +0.130 V and an entropic term (TDeltaDeltaS degrees rc/F) of -0.040 V. Hence, the higher potential of the bacterial species appears to be determined entirely by a greater enthalpic stabilization of the reduced state. Analogously, the much lower potential of the alkaline conformer(s) as compared to the native species is by far enthalpic in origin for both protein families, and is largely determined by the substitution of Met for Lys in axial heme ligation. Instead, the biphasic E degrees /temperature profile for the native cytochromes is due to a difference in reduction entropy between the conformers at low and high temperatures. Temperature-dependent 1H NMR experiments suggest that the temperature-induced transition also involves a change in orientation of the axial methionine ligand with respect to the heme plane.
Wellhauser, Leigh; Kim Chiaw, Patrick; Pasyk, Stan; Li, Canhui; Ramjeesingh, Mohabir; Bear, Christine E
2009-06-01
The deletion of Phe-508 (DeltaPhe508) constitutes the most prevalent of a number of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) that cause cystic fibrosis (CF). This mutation leads to CFTR misfolding and retention in the endoplasmic reticulum, as well as impaired channel activity. The biosynthetic defect can be partially overcome by small-molecule "correctors"; once at the cell surface, small-molecule "potentiators" enhance the channel activity of DeltaPhe508-CFTR. Certain compounds, such as VRT-532, exhibit both corrector and potentiator functions. In the current studies, we confirmed that the inherent chloride channel activity of DeltaPhe508-CFTR (after biosynthetic rescue) is potentiated in studies of intact cells and membrane vesicles. It is noteworthy that we showed that the ATPase activity of the purified and reconstituted mutant protein is directly modulated by binding of VRT-532 [4-methyl-2-(5-phenyl-1H-pyrazol-3-yl)-phenol] ATP turnover by reconstituted DeltaPhe508-CFTR is decreased by VRT-532 treatment, an effect that may account for the increase in channel open time induced by this compound. To determine whether the modification of DeltaPhe508-CFTR function caused by direct VRT-532 binding is associated with structural changes, we evaluated the effect of VRT-532 binding on the protease susceptibility of the major mutant. We found that binding of VRT-532 to DeltaPhe508-CFTR led to a minor but significant decrease in the trypsin susceptibility of the full-length mutant protein and a fragment encompassing the second half of the protein. These findings suggest that direct binding of this small molecule induces and/or stabilizes a structure that promotes the channel open state and may underlie its efficacy as a corrector of DeltaPhe508-CFTR.
Nesbeth, Darren; Williams, Sharon L; Chan, Lucas; Brain, Tony; Slater, Nigel K H; Farzaneh, Farzin; Darling, David
2006-04-01
Nonviral, host-derived proteins on lentiviral vector surfaces can have a profound effect on the vector's biology as they can both promote infection and provide resistance to complement inactivation. We have exploited this to engineer a specific posttranslational modification of a "nonenvelope," virally associated protein. The bacterial biotin ligase (BirA) and a modified human DeltaLNGFR have been introduced into HEK293T cells and their protein products directed to the lumen of the endoplasmic reticulum. The BirA then couples biotin to an acceptor peptide that has been fused to the DeltaLNGFR. This results in the covalent linkage of biotin to the extracellular domain of the DeltaLNGFR expressed on the cell surface. Lentiviral vectors from these cells are metabolically labeled with biotin in the presence of free biotin. These biotinylated lentiviral vectors have a high affinity for streptavidin paramagnetic particles and, once captured, are easily manipulated in vitro. This is illustrated by the concentration of lentiviral vectors pseudotyped with either the VSV-G or an amphotropic envelope in excess of 4500-fold. This new cell line has the potential for widespread application to envelope pseudotypes compatible with lentiviral vector production.
Rouse, William A.; Houseknecht, David W.
2016-02-11
In 2012, the U.S. Geological Survey completed an assessment of undiscovered, technically recoverable oil and gas resources in three source rocks of the Alaska North Slope, including the lower part of the Jurassic to Lower Cretaceous Kingak Shale. In order to identify organic shale potential in the absence of a robust geochemical dataset from the lower Kingak Shale, we introduce two quantitative parameters, $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$, estimated from wireline logs from exploration wells and based in part on the commonly used delta-log resistivity ($\\Delta \\text{ }log\\text{ }R$) technique. Calculation of $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ is intended to produce objective parameters that may be proportional to the quality and volume, respectively, of potential source rocks penetrated by a well and can be used as mapping parameters to convey the spatial distribution of source-rock potential. Both the $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ mapping parameters show increased source-rock potential from north to south across the North Slope, with the largest values at the toe of clinoforms in the lower Kingak Shale. Because thermal maturity is not considered in the calculation of $\\Delta DT_\\bar{x}$ or $\\Delta DT_z$, total organic carbon values for individual wells cannot be calculated on the basis of $\\Delta DT_\\bar{x}$ or $\\Delta DT_z$ alone. Therefore, the $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ mapping parameters should be viewed as first-step reconnaissance tools for identifying source-rock potential.
NASA Astrophysics Data System (ADS)
Ning, Jicai; Gao, Zhiqiang; Meng, Ran; Xu, Fuxiang; Gao, Meng
2018-06-01
This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.
The Potential of Time Series Based Earth Observation for the Monitoring of Large River Deltas
NASA Astrophysics Data System (ADS)
Kuenzer, C.; Leinenkugel, P.; Huth, J.; Ottinger, M.; Renaud, F.; Foufoula-Georgiou, E.; Vo Khac, T.; Trinh Thi, L.; Dech, S.; Koch, P.; Le Tissier, M.
2015-12-01
Although river deltas only contribute 5% to the overall land surface, nearly six hundred million people live in these complex social-ecological environments, which combine a variety of appealing locational advantages. In many countries deltas provide the major national contribution to agricultural and industrial production. At the same time these already very dynamic environments are exposed to a variety of threats, including the disturbance and replacement of valuable ecosystems, increasing water, soil, and air pollution, human induced land subsidence, sea level rise, as well upstream developments impacting water and sediment supplies. A constant monitoring of delta systems is thus of utmost relevance for understanding past and current land surface change and anticipating possible future developments. We present the potential of Earth Observation based analyses and derived novel information products that can play a key role in this context. Along with the current trend of opening up numerous satellite data archives go increasing capabilities to explore big data. Whereas in past decades remote sensing data were analysed based on the spectral-reflectance-defined 'finger print' of individual surfaces, we mainly exploit the 'temporal fingerprints' of our land surface in novel pathways of data analyses at differing spatial-, and temporally-dense scales. Following our results on an Earth Observation based characterization of large deltas globally, we present in depth results from the Mekong Delta in Vietnam, the Yellow River Delta in China, the Niger Delta in Nigeria, as well as additional deltas, focussing on the assessment of river delta flood and inundation dynamics, river delta coastline dynamics, delta morphology dynamics including the quantification of erosion and accretion processes, river delta land use change and trends, as well as the monitoring of compliance to environmental regulations.
Growth of delta-doped layers on silicon CCD/S for enhanced ultraviolet response
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor); Terhune, Robert W. (Inventor); Hecht, Michael H. (Inventor)
1994-01-01
The backside surface potential well of a backside-illuminated CCD is confined to within about half a nanometer of the surface by using molecular beam epitaxy (MBE) to grow a delta-doped silicon layer on the back surface. Delta-doping in an MBE process is achieved by temporarily interrupting the evaporated silicon source during MBE growth without interrupting the evaporated p+ dopant source (e.g., boron). This produces an extremely sharp dopant profile in which the dopant is confined to only a few atomic layers, creating an electric field high enough to confine the backside surface potential well to within half a nanometer of the surface. Because the probability of UV-generated electrons being trapped by such a narrow potential well is low, the internal quantum efficiency of the CCD is nearly 100% throughout the UV wavelength range. Furthermore, the quantum efficiency is quite stable.
Martin, F; Cayot, N; Marin, A; Journaux, L; Cayot, P; Gervais, P; Cachon, R
2009-12-01
Milk oxidoreduction potential was modified using gases during the production of a model dairy product and its effect on gel setting was studied. Acidification by glucono-delta-lactone was used to examine the physicochemistry of gelation and to avoid variations due to microorganisms sensitive to oxidoreduction potential. Four conditions of oxidoreduction potential were applied to milk: milk was gassed with air, nongassed, gassed with N(2), or gassed with N(2)H(2). The rheological properties and microstructure of these gels were determined using viscoelasticimetry, measurement of whey separation, and confocal laser scanning microscopy. It appeared that a reducing environment led to less-aggregated proteins within the matrix and consequently decreased whey separation significantly. The use of gas to modify oxidoreduction potential is a possible way to improve the quality of dairy products.
NASA Astrophysics Data System (ADS)
Sargolzaeipor, S.; Hassanabadi, H.; Chung, W. S.
2018-04-01
The Klein-Gordon equation is extended in the presence of an Aharonov-Bohm magnetic field for the Cornell potential and the corresponding wave functions as well as the spectra are obtained. After introducing the superstatistics in the statistical mechanics, we first derived the effective Boltzmann factor in the deformed formalism with modified Dirac delta distribution. We then use the concepts of the superstatistics to calculate the thermodynamics properties of the system. The well-known results are recovered by the vanishing of deformation parameter and some graphs are plotted for the clarity of our results.
Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries.
Park, Kyu-Sung; Benayad, Anass; Kang, Dae-Joon; Doo, Seok-Gwang
2008-11-12
To modify oxide structure and introduce a thin conductive film on Li4Ti5O12, thermal nitridation was adopted for the first time. NH3 decomposes surface Li4Ti5O12 to conductive TiN at high temperature, and surprisingly, it also modifies the surface structure in a way to accommodate the single phase Li insertion and extraction. The electrochemically induced Li4+deltaTi5O12 with a TiN coating layer shows great electrochemical properties at high current densities.
Modeling of thin-film GaAs growth
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.
1981-01-01
A solid Monte Carlo model is constructed for the simulation of crystal growth. The model assumes thermally accommodated adatoms impinge upon the surface during a delta time interval. The surface adatoms are assigned a random energy from a Boltzmann distribution, and this energy determines whether the adatoms evaporate, migrate, or remain stationary during the delta time interval. For each addition or migration of an adatom, potential wells are adjusted to reflect the absorption, migration, or desorption potential changes.
Kim, Eunae; Jang, Soonmin; Pak, Youngshang
2007-10-14
We have attempted to improve the PARAM99 force field in conjunction with the generalized Born (GB) solvation model with a surface area correction for more consistent protein folding simulations. For this purpose, using an extended alphabeta training set of five well-studied molecules with various folds (alpha, beta, and betabetaalpha), a previously modified version of PARAM99/GBSA is further refined, such that all native states of the five training species correspond to their lowest free energy minimum states. The resulting modified force field (PARAM99MOD5/GBSA) clearly produces reasonably acceptable conformational free energy surfaces of the training set with correct identifications of their native states in the free energy minimum states. Moreover, due to its well-balanced nature, this new force field is expected to describe secondary structure propensities of diverse folds in a more consistent manner. Remarkably, temperature dependent behaviors simulated with the current force field are in good agreement with the experiment. This agreement is a significant improvement over the existing standard all-atom force fields. In addition, fundamentally important thermodynamic quantities, such as folding enthalpy (DeltaH) and entropy (DeltaS), agree reasonably well with the experimental data.
Water Dimers in the Atmosphere II: Results from the VRT(ASP-W)III Potential Surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, N; Saykally, R J; Leforestier, C
We report refined results for the equilibrium constant for water dimerization (K{sub P}), computed as a function of temperature via fully-coupled 6-D calculation of the canonical (H{sub 2}O){sub 2} partition function on VRT(ASP-W)III, the most accurate water dimer potential energy surface currently available. Partial pressure isotherms calculated for a range of temperatures and relative humidities indicate that water dimers can exist in sufficient concentrations (e.g., 10{sup 18}m{sup -3} at 30 C and 100% relative humidity) to affect physical and chemical processes in the atmosphere. The determinations of additional thermodynamic properties ({Delta}G, {Delta}H, {Delta}S, C{sub P}, C{sub V}) for (H{sub 2}O){submore » 2} are presented, and the role of quasi-bound states in the calculation of K{sub P} is discussed at length.« less
Romanenko, Konstantin V; Py, Xavier; d'Espinose de Lacaillerie, Jean-Baptiste; Lapina, Olga B; Fraissard, Jacques
2006-02-23
(129)Xe NMR has been used to study a series of homologous activated carbons obtained from a KOH-activated pitch-based carbon molecular sieve modified by air oxidation/pyrolysis cycles. A clear correlation between the pore size of microporous carbons and the (129)Xe NMR of adsorbed xenon is proposed for the first time. The virial coefficient delta(Xe)(-)(Xe) arising from binary xenon collisions varied linearly with the micropore size and appeared to be a better probe of the microporosity than the chemical shift extrapolated to zero pressure. This correlation was explained by the fact that the xenon collision frequency increases with increasing micropore size. The chemical shift has been shown to vary very little with temperature (less than 9 ppm) for xenon trapped inside narrow and wide micropores. This is indicative of a smooth xenon-surface interaction potential.
Chao, Tze-Fan; Lip, Gregory Y H; Lin, Yenn-Jiang; Chang, Shih-Lin; Lo, Li-Wei; Hu, Yu-Feng; Tuan, Ta-Chuan; Liao, Jo-Nan; Chung, Fa-Po; Chen, Tzeng-Ji; Chen, Shih-Ann
2018-04-01
When assessing bleeding risk in patients with atrial fibrillation (AF), risk stratification is often based on the baseline risks. We aimed to investigate changes in bleeding risk factors and alterations in the HAS-BLED score in AF patients. We hypothesized that a follow-up HAS-BLED score and the 'delta HAS-BLED score' (reflecting the change in score between baseline and follow-up) would be more predictive of major bleeding, when compared with baseline HAS-BLED score. A total of 19,566 AF patients receiving warfarin and baseline HAS-BLED score ≤2 were studied. After a follow-up of 93,783 person-years, 3,032 major bleeds were observed. The accuracies of baseline, follow-up, and delta HAS-BLED scores as well as cumulative numbers of baseline modifiable bleeding risk factors, in predicting subsequent major bleeding, were analysed and compared. The mean baseline HAS-BLED score was 1.43 which increased to 2.45 with a mean 'delta HAS-BLED score' of 1.03. The HAS-BLED score remained unchanged in 38.2% of patients. Of those patients experiencing major bleeding, 76.6% had a 'delta HAS-BLED' score ≥1, compared with only 59.0% in patients without major bleeding ( p < 0.001). For prediction of major bleeding, AUC was significantly higher for the follow-up HAS-BLED (0.63) or delta HAS-BLED (0.62) scores, compared with baseline HAS-BLED score (0.54). The number of baseline modifiable risk factors was non-significantly predictive of major bleeding (AUC = 0.49). In this 'real-world' nationwide AF cohort, follow-up HAS-BLED or 'delta HAS-BLED score' was more predictive of major bleeding compared with baseline HAS-BLED or the simple determination of 'modifiable bleeding risk factors'. Bleeding risk in AF is a dynamic process and use of the HAS-BLED score should be to 'flag up' patients potentially at risk for more regular review and follow-up, and to address the modifiable bleeding risk factors during follow-up visits. Schattauer GmbH Stuttgart.
Time and tide: examining the potential for sediment delivery to a heavily modified tidal delta plain
NASA Astrophysics Data System (ADS)
Hale, R. P.; Goodbred, S. L., Jr.; Bain, R. L.; Wilson, C.
2016-02-01
In SW Bangladesh, man-made barriers ("polders") built since the 1960s to protect agricultural resources from seasonal flooding have drastically altered delta-plain dynamics. With the link between tidal channels and the delta plain destroyed and no pathway for the delivery of new sediment, compaction, tectonic subsidence, and global sea-level rise have resulted in a scenario where much of the land surface behind the barriers sits 1.5 m below mean sea level. In the adjacent the Sundarbans National Forest (SNF), the lack of polders has allowed for sediment deposition during spring high tides, and sedimentation rates on the delta plain have kept pace with local sea level rise. Recent research has demonstrated the potential for rapid sedimentation in the inhabited areas following polder damage or destruction (Auerbach et al., 2015). These authors observed 40 cm/yr accumulation rates inside the poldered area following bank failures associated with a typhoon, and no obvious seasonality associated with the deposits. Preliminary research from within SNF, however, suggests that the accumulation rates are slightly faster during then monsoon (1.0-2.0 cm/yr) than the dry season (0.2-1.4 cm/yr). In this study, we address seasonal differences through a comparison of tidal elevations and suspended sediment concentrations (SSC) across tidal ranges and seasons, in both the SNF, and the tidal channels adjacent to the poldered region (PR). Water velocity appears to be the primary control on SSC, and there is no obvious seasonal variability in maximum observed SSC (PR: 0.1-0.8 g/l; SNF: 0.01-0.35 g/l). Peak tidal elevations remain unchanged across seasons, however the time of delta plain inundation time increases during the monsoon, which might control seasonal accumulation rates. Understanding more about this seasonal variability will be critical for future engineering and policy decisions surrounding how to best mitigate and manage land loss in the PR going forward.
NASA Astrophysics Data System (ADS)
Normandin, Cassandra; Frappart, Frédéric; Lubac, Bertrand; Bélanger, Simon; Marieu, Vincent; Blarel, Fabien; Robinet, Arthur; Guiastrennec-Faugas, Léa
2018-02-01
Quantification of surface water storage in extensive floodplains and their dynamics are crucial for a better understanding of global hydrological and biogeochemical cycles. In this study, we present estimates of both surface water extent and storage combining multi-mission remotely sensed observations and their temporal evolution over more than 15 years in the Mackenzie Delta. The Mackenzie Delta is located in the northwest of Canada and is the second largest delta in the Arctic Ocean. The delta is frozen from October to May and the recurrent ice break-up provokes an increase in the river's flows. Thus, this phenomenon causes intensive floods along the delta every year, with dramatic environmental impacts. In this study, the dynamics of surface water extent and volume are analysed from 2000 to 2015 by combining multi-satellite information from MODIS multispectral images at 500 m spatial resolution and river stages derived from ERS-2 (1995-2003), ENVISAT (2002-2010) and SARAL (since 2013) altimetry data. The surface water extent (permanent water and flooded area) peaked in June with an area of 9600 km2 (±200 km2) on average, representing approximately 70 % of the delta's total surface. Altimetry-based water levels exhibit annual amplitudes ranging from 4 m in the downstream part to more than 10 m in the upstream part of the Mackenzie Delta. A high overall correlation between the satellite-derived and in situ water heights (R > 0.84) is found for the three altimetry missions. Finally, using altimetry-based water levels and MODIS-derived surface water extents, maps of interpolated water heights over the surface water extents are produced. Results indicate a high variability of the water height magnitude that can reach 10 m compared to the lowest water height in the upstream part of the delta during the flood peak in June. Furthermore, the total surface water volume is estimated and shows an annual variation of approximately 8.5 km3 during the whole study period, with a maximum of 14.4 km3 observed in 2006. The good agreement between the total surface water volume retrievals and in situ river discharges (R = 0.66) allows for validation of this innovative multi-mission approach and highlights the high potential to study the surface water extent dynamics.
What's on the Surface? Physics and Chemistry of Delta-Doped Surfaces
NASA Technical Reports Server (NTRS)
Hoenk, Michael
2011-01-01
Outline of presentation: 1. Detector surfaces and the problem of stability 2. Delta-doped detectors 3. Physics of Delta-doped Silicon 4. Chemistry of the Si-SiO2 Interface 5. Physics and Chemistry of Delta-doped Surfaces a. Compensation b. Inversion c. Quantum exclusion. Conclusions: 1. Quantum confinement of electrons and holes dominates the behavior of delta-doped surfaces. 2. Stability of delta-doped detectors: Delta-layer creates an approx 1 eV tunnel barrier between bulk and surface. 3. At high surface charge densities, Tamm-Shockley states form at the surface. 4. Surface passivation by quantum exclusion: Near-surface delta-layer suppresses T-S trapping of minority carriers. 5. The Si-SiO2 interface compensates the surface 6. For delta-layers at intermediate depth, surface inversion layer forms 7. Density of Si-SiO2 interface charge can be extremely high (>10(exp 14)/sq cm)
Connection Zones, Surface Water - Groundwater: Aquifers Associated To Niger Central Delta, In Mali.
NASA Astrophysics Data System (ADS)
Kone, S.
2016-12-01
Surface water infiltration recharging Mali aquifers occurs through, underlying perched hydrogeological networks, lacustrine zones of the Central Delta or inundation valleys. The mapping of both the Surface water and the Groundwater, their types and availabilities, are briefly presented, and the focus of the study is on the types of hydraulic connections between these water bodies. The aquifers hydraulically connected to the Niger Central Delta flows systems are Continental Terminal/Quaternary, and they concern some areas where either inundation or perennial surface water flow occurs. These aquifers belong to the hydrogeological Unit of Central Delta where the recharge by surface water is estimated to be five percent of the flow loss between the entry and the outlet of this hydrological system. Some attempts of simulation along with a review based on the first studies synthetized in "Synthese Hydrogeologique du Mali" would permit to pave the way to other studies on these hydraulically connected zones in Mali. A previews simulation study, about mapping the potential rate of pumping capacity, corroborates some observed structural characteristics and leads to subdivide the area in two hydrogeological sectors, and the present simulation studies focus on the sector "Macina -Diaka" where surface water are in hydraulic relation with groundwater.
Development of sea level rise scenarios for climate change assessments of the Mekong Delta, Vietnam
Doyle, Thomas W.; Day, Richard H.; Michot, Thomas C.
2010-01-01
Rising sea level poses critical ecological and economical consequences for the low-lying megadeltas of the world where dependent populations and agriculture are at risk. The Mekong Delta of Vietnam is one of many deltas that are especially vulnerable because much of the land surface is below mean sea level and because there is a lack of coastal barrier protection. Food security related to rice and shrimp farming in the Mekong Delta is currently under threat from saltwater intrusion, relative sea level rise, and storm surge potential. Understanding the degree of potential change in sea level under climate change is needed to undertake regional assessments of potential impacts and to formulate adaptation strategies. This report provides constructed time series of potential sea level rise scenarios for the Mekong Delta region by incorporating (1) aspects of observed intra- and inter-annual sea level variability from tide records and (2) projected estimates for different rates of regional subsidence and accelerated eustacy through the year 2100 corresponding with the Intergovernmental Panel on Climate Change (IPCC) climate models and emission scenarios.
Cheng, Qingli; Lou, Guangyan; Huang, Wenhai; Li, Xudong
2017-07-01
The Yellow River Delta is the most intact estuary wetland in China and suffers from great pressure of metals. Seventy-seven surface sediment samples were collected in the delta, and contents of Cu, Pb, Cd, Cr, Zn, Ni, and Mn were analyzed by inductively coupled plasma spectrometry and those of Hg and As by atomic fluorescence spectrometry. The results showed that means of metal contents (ppm, dry weight) were as follows: Hg, 0.04; Cr, 61.72; Cu, 20.97; Zn, 60.73; As, 9.47; Pb, 21.91; Cd, 0.12; Ni, 27.24; and Mn, 540.48. 43.8% of Hg and 14.3% of Cd were from the allogenic source while others from the authigenic source. The results of the geoaccumulation indexes appeared that 6.5% of sites from the estuarine and the Gudao areas were moderately polluted by Hg. All ecological risk index values of Hg and 37.7% of Cd were more than 40, which were the main factors of strongly and moderately potential ecological risks of 37.7% of sites in the delta. High Cd contents may be due to the alkaline conditions of the delta and the unreasonable management of the farmland, while the abnormal distribution of Hg to the wet or dry deposition and the erosion of the seawater. It was suggested to monitor Hg content in the atmosphere of the Yellow River Delta. The results were expected to update the pollution status of metals in the delta and created awareness of preserving the sound condition of the Yellow River Delta.
N-Type delta Doping of High-Purity Silicon Imaging Arrays
NASA Technical Reports Server (NTRS)
Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh
2005-01-01
A process for n-type (electron-donor) delta doping has shown promise as a means of modifying back-illuminated image detectors made from n-doped high-purity silicon to enable them to detect high-energy photons (ultraviolet and x-rays) and low-energy charged particles (electrons and ions). This process is applicable to imaging detectors of several types, including charge-coupled devices, hybrid devices, and complementary metal oxide/semiconductor detector arrays. Delta doping is so named because its density-vs.-depth characteristic is reminiscent of the Dirac delta function (impulse function): the dopant is highly concentrated in a very thin layer. Preferably, the dopant is concentrated in one or at most two atomic layers in a crystal plane and, therefore, delta doping is also known as atomic-plane doping. The use of doping to enable detection of high-energy photons and low-energy particles was reported in several prior NASA Tech Briefs articles. As described in more detail in those articles, the main benefit afforded by delta doping of a back-illuminated silicon detector is to eliminate a "dead" layer at the back surface of the silicon wherein high-energy photons and low-energy particles are absorbed without detection. An additional benefit is that the delta-doped layer can serve as a back-side electrical contact. Delta doping of p-type silicon detectors is well established. The development of the present process addresses concerns specific to the delta doping of high-purity silicon detectors, which are typically n-type. The present process involves relatively low temperatures, is fully compatible with other processes used to fabricate the detectors, and does not entail interruption of those processes. Indeed, this process can be the last stage in the fabrication of an imaging detector that has, in all other respects, already been fully processed, including metallized. This process includes molecular-beam epitaxy (MBE) for deposition of three layers, including metallization. The success of the process depends on accurate temperature control, surface treatment, growth of high-quality crystalline silicon, and precise control of thicknesses of layers. MBE affords the necessary nanometer- scale control of the placement of atoms for delta doping. More specifically, the process consists of MBE deposition of a thin silicon buffer layer, the n-type delta doping layer, and a thin silicon cap layer. The n dopant selected for initial experiments was antimony, but other n dopants as (phosphorus or arsenic) could be used. All n-type dopants in silicon tend to surface-segregate during growth, leading to a broadened dopant-concentration- versus-depth profile. In order to keep the profile as narrow as possible, the substrate temperature is held below 300 C during deposition of the silicon cap layer onto the antimony delta layer. The deposition of silicon includes a silicon- surface-preparation step, involving H-termination, that enables the growth of high-quality crystalline silicon at the relatively low temperature with close to full electrical activation of donors in the surface layer.
NASA Technical Reports Server (NTRS)
Jernell, L. S.
1974-01-01
An investigation has been conducted to explore the potential for optimizing airfoil shape at high supersonic speeds by utilizing the two-dimensional shock-expansion method. Theoretical and experimental force and moment coefficients are compared for four delta-planform semispan wings having a leading-edge sweep angle of 65 deg and incorporating modified diamond airfoils with a thickness-chord ratio of 0.06. The wings differ only in airfoil maximum-thickness position and camber. The experimental data are obtained at Mach numbers of 3.95 and 4.63 and at a Reynolds number of 9.84 million per meter. A relatively simple method is developed for predicting, in terms of lift-drag ratio, the optimum modified diamond airfoil at high supersonic and hypersonic speeds.
Intrinsic fatigue crack propagation in aluminum-lithium alloys - The effect of gaseous environments
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Gangloff, Richard P.
1989-01-01
Gaseous environmental effects on intrinsic fatigue crack growth are significant for the Al-Li-Cu alloy 2090, peak aged. For both moderate Delta K-low R and low Delta K-high R regimes, crack growth rates decrease according to the environment order: purified water vapor, moist air, helium and oxygen. Gaseous environmental effects are pronounced near threshold and are not closure dominated. Here, embrittlement by low levels of H2O (ppm) supports hydrogen embrittlement and suggests that molecular transport controlled cracking, established for high Delta K-low R, is modified near threshold. Localized crack tip reaction sites or high R crack opening shape may enable the strong, environmental effect at low levels of Delta K. Similar crack growth in He and O2 eliminates the contribution of surface films to fatigue damage in alloy 2090. While 2090 and 7075 exhibit similar environmental trends, the Al-Li-Cu alloy is more resistant to intrinsic corrosion fatigue crack growth.
Assessing Niger-Delta Wetland Resources: A Case-Study of Mangrove Ecosystem
NASA Astrophysics Data System (ADS)
Anwan, R. H.; Ndimele, P. E.; Whenu, O. O.; Anetekhai, M. A.; Essien-Ibok, M. A.; Erondu, E. S.
2016-02-01
The Niger Delta is located in the Atlantic coast of Southern Nigeria and is the world's second largest delta with a coastline of about 450km. The Niger Delta region occupies a surface area of about 112,110km2, representing about 12% of Nigeria's total surface area. The Delta's environment can be broken down into four ecological zones: coastal barrier islands, mangrove swamp forests, freshwater swamps, and lowland rainforests. The mangrove swamps of Niger Delta, which is the largest delta in Africa constitute the dominant wetland ecosystem in the Niger Delta region and covers an area of about 1,900km2. Mangroves constitute important nurseries for fishes, crustaceans, sponges, algae and other invertebrates, and also acts as a sink, retaining pollutants from contaminated tidal water. The Niger Delta mangrove together with the creeks and rivers are a major source of food and livelihood for about 30 million people, which represents more than 17% of Nigeria's population. Other ecosystem services provided by this unique environment are flood control, ground water re-fill, reservoir of biodiversity, fuel wood, cultural values etc. This ecosystem also plays important role in climate change mitigation because of its high blue carbon sequestration potential. This is particularly important because of continuous gas flaring in Niger Delta from petroleum operations, which releases carbon dioxide among other gases into the atmosphere. This wetland is potentially a good site for ecotourism and also qualifies to be a world heritage site and Ramsar site if proper steps are taken. The benefits derivable from this fragile ecosystem are under severe threat by anthropogenic stressors. These include the installation of pipelines and seismic exploration by oil companies, crude oil pollution, deforestation, urbanization etc. This paper discusses the extent of depletion and loss of mangrove ecosystem in the Niger Delta region and the value of its goods and services.
Barz, W P; Walter, P
1999-04-01
Many eukaryotic cell surface proteins are anchored in the lipid bilayer through glycosylphosphatidylinositol (GPI). GPI anchors are covalently attached in the endoplasmic reticulum (ER). The modified proteins are then transported through the secretory pathway to the cell surface. We have identified two genes in Saccharomyces cerevisiae, LAG1 and a novel gene termed DGT1 (for "delayed GPI-anchored protein transport"), encoding structurally related proteins with multiple membrane-spanning domains. Both proteins are localized to the ER, as demonstrated by immunofluorescence microscopy. Deletion of either gene caused no detectable phenotype, whereas lag1Delta dgt1Delta cells displayed growth defects and a significant delay in ER-to-Golgi transport of GPI-anchored proteins, suggesting that LAG1 and DGT1 encode functionally redundant or overlapping proteins. The rate of GPI anchor attachment was not affected, nor was the transport rate of several non-GPI-anchored proteins. Consistent with a role of Lag1p and Dgt1p in GPI-anchored protein transport, lag1Delta dgt1Delta cells deposit abnormal, multilayered cell walls. Both proteins have significant sequence similarity to TRAM, a mammalian membrane protein thought to be involved in protein translocation across the ER membrane. In vivo translocation studies, however, did not detect any defects in protein translocation in lag1Delta dgt1Delta cells, suggesting that neither yeast gene plays a role in this process. Instead, we propose that Lag1p and Dgt1p facilitate efficient ER-to-Golgi transport of GPI-anchored proteins.
Separation of crack extension modes in orthotropic delamination models
NASA Technical Reports Server (NTRS)
Beuth, Jack L.
1995-01-01
In the analysis of an interface crack between dissimilar elastic materials, the mode of crack extension is typically not unique, due to oscillatory behavior of near-tip stresses and displacements. This behavior currently limits the applicability of interfacial fracture mechanics as a means to predict composite delamination. The Virtual Crack Closure Technique (VCCT) is a method used to extract mode 1 and mode 2 energy release rates from numerical fracture solutions. The mode of crack extension extracted from an oscillatory solution using the VCCT is not unique due to the dependence of mode on the virtual crack extension length, Delta. In this work, a method is presented for using the VCCT to extract Delta-independent crack extension modes for the case of an interface crack between two in-plane orthotropic materials. The method does not involve altering the analysis to eliminate its oscillatory behavior. Instead, it is argued that physically reasonable, Delta-independent modes of crack extension can be extracted from oscillatory solutions. Knowledge of near-tip fields is used to determine the explicit Delta dependence of energy release rate parameters. Energy release rates are then defined that are separated from the oscillatory dependence on Delta. A modified VCCT using these energy release rate definitions is applied to results from finite element analyses, showing that Delta-independent modes of crack extension result. The modified technique has potential as a consistent method for extracting crack extension modes from numerical solutions. The Delta-independent modes extracted using this technique can also serve as guides for testing the convergence of finite element models. Direct applications of this work include the analysis of planar composite delamination problems, where plies or debonded laminates are modeled as in-plane orthotropic materials.
234 nm and 246 nm AlN-Delta-GaN quantum well deep ultraviolet light-emitting diodes
NASA Astrophysics Data System (ADS)
Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing
2018-01-01
Deep ultraviolet (DUV) AlN-delta-GaN quantum well (QW) light-emitting diodes (LEDs) with emission wavelengths of 234 nm and 246 nm are proposed and demonstrated in this work. Our results reveal that the use of AlN-delta-GaN QW with ˜1-3 monolayer GaN delta-layer can achieve a large transverse electric (TE)-polarized spontaneous emission rate instead of transverse magnetic-polarized emission, contrary to what is observed in conventional AlGaN QW in the 230-250 nm wavelength regime. The switching of light polarization in the proposed AlN-delta-GaN QW active region is attributed to the rearrangement of the valence subbands near the Γ-point. The light radiation patterns obtained from angle-dependent electroluminescence measurements for the Molecular Beam Epitaxy (MBE)-grown 234 nm and 246 nm AlN-delta-GaN QW LEDs show that the photons are mainly emitted towards the surface rather than the edge, consistent with the simulated patterns achieved by the finite-difference time-domain modeling. The results demonstrate that the proposed AlN-delta-GaN QWs would potentially lead to high-efficiency TE-polarized surface-emitting DUV LEDs.
Modified coulomb law in a strongly magnetized vacuum.
Shabad, Anatoly E; Usov, Vladimir V
2007-05-04
We study the electric potential of a charge placed in a strong magnetic field B>B(0) approximately 4.4x10(13) G, as modified by the vacuum polarization. In such a field the electron Larmour radius is much less than its Compton length. At the Larmour distances a scaling law occurs, with the potential determined by a magnetic-field-independent function. The scaling regime implies short-range interaction, expressed by the Yukawa law. The electromagnetic interaction regains its long-range character at distances larger than the Compton length, the potential decreasing across B faster than along. Correction to the nonrelativistic ground-state energy of a hydrogenlike atom is found. In the limit B = infinity, the modified potential becomes the Dirac delta function plus a regular background. With this potential the ground-state energy is finite--the best pronounced effect of the vacuum polarization.
NASA Astrophysics Data System (ADS)
Podgorski, Joel E.; Kinzelbach, Wolfgang K. H.; Kgotlhang, Lesego
2017-09-01
The Okavango Delta is a vast wetland wilderness in the middle of the Kalahari Desert of Botswana. It is a largely closed hydrological system with most water leaving the delta by evapotranspiration. In spite of this, the channels and swamps of the delta remain surprisingly low in salinity. To help understand the hydrological processes at work, we reanalyzed a previous inversion of data collected from a helicopter transient electromagnetic (HTEM) survey of the entire delta and performed an inversion of a high resolution dataset recorded during the same survey. Our results show widespread infiltration of fresh water to as much as ∼200 m depth into the regional saline aquifer. Beneath the western delta, freshwater infiltration extends to only about 80 m depth. Hydrological modeling with SEAWAT confirms that this may be due to rebound of the regional saltwater-freshwater interface following the cessation of surface flooding over this part of the delta in the 1880s. Our resistivity models also provide evidence for active and inactive saltwater fingers to as much as ∼100 m beneath islands. These results demonstrate the great extent of freshwater infiltration across the delta and also show that all vegetated areas along the delta's channels and swamps are potential locations for transferring solutes from surface water to an aquifer at depth.
Refinement of Promising Coating Compositions for Directionally Cast Eutectics
NASA Technical Reports Server (NTRS)
Strangman, T. E.; Felten, E. J.; Benden, R. S.
1976-01-01
The successful application of high creep strength, directionally solidified gamma/gamma prime-delta (Ni-19.7Cb-6Cr-2.5Al) eutectic superalloy turbine blades requires the development of suitable coatings for airfoil, root and internal blade surfaces. In order to improve coatings for the gamma/gamma prime-delta alloy, the current investigation had the goals of (1) refining promising coating compositions for directionally solidified eutectics, (2) evaluating the effects of coating/ substrate interactions on the mechanical properties of the alloy, and (3) evaluating diffusion aluminide coatings for internal surfaces. Burner rig cyclic oxidation, furnace cyclic hot corrosion, ductility, and thermal fatigue tests indicated that NiCrAlY+Pt(63 to 127 micron Ni-18Cr-12Al-0.3Y + 6 micron Pt) and NiCrAlY(63 to 127 micron Ni-18Cr-12Al-0.3Y) coatings are capable of protecting high temperature gas path surfaces of eutectic alloy airfoils. Burner rig (Mach 0.37) testing indicated that the useful coating life of the 127 micron thick coatings exceeded 1000 hours at 1366 K (2000 deg F). Isothermal fatigue and furnance hot corrosion tests indicated that 63 micron NiCrAlY, NiCrAlY + Pt and platinum modified diffusion aluminide (Pt + Al) coating systems are capable of protecting the relatively cooler surfaces of the blade root. Finally, a gas phase coating process was evaluated for diffusion aluminizing internal surfaces and cooling holes of air-cooled gamma/gamma prime-delta turbine blades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamo, N.; Racanelli, T.; Packer, L.
1982-01-01
Bacteriorhodopsin and Halorhodopsin present in Halobacterium halobium strains have been investigated in relation to Na/sup +//H/sup +/ exchange in isolated cell envelope vesicles. Upon illumination, these retinal proteins result in extrusion of sodium ions by either an electrogenic Na/sup +//Ha/sup +/ antiporter and/or a direct sodium pump. Since a molecular characterization of these mechanism(s) of sodium extrusion has not yet been realized, it was of interest to measure directly the light- and sodium-dependent changes in delta pH and membrane potential under nearly identical conditions in S9 and R1mR cell membrane vesicles to gain information on the relation of these retinalmore » proteins to sodium extrusion. These activities were evaluated in terms of their dependence on light intensity, and on the inhibitory effect of chemical modifiers of carboxyl groups (carbodiimides); electroneutral exchanges (monensin and triphenyltin); digitoxin and some analogues; and phloretin. Under most of the conditions and treatments employed, light- and sodium-dependent delta pH led to similar effects in both membrane vesicle types. Hence, it is concluded that the delta pH and delta psi which arise from sodium transport occur by either a single mechanism or by one which shares common features.« less
Restricting detergent protease action to surface of protein fibres by chemical modification.
Schroeder, M; Lenting, H B M; Kandelbauer, A; Silva, C J S M; Cavaco-Paulo, A; Gübitz, G M
2006-10-01
Due to their excellent properties, such as thermostability, activity over a broad range of pH and efficient stain removal, proteases from Bacillus sp. are commonly used in the textile industry including industrial processes and laundry and represent one of the most important groups of enzymes. However, due to the action of proteases, severe damage on natural protein fibres such as silk and wool result after washing with detergents containing proteases. To include the benefits of proteases in a wool fibre friendly detergent formulation, the soluble polymer polyethylene glycol (PEG) was covalently attached to a protease from Bacillus licheniformis. In contrast to activation of PEG with cyanuric chloride (50%) activation with 1,1'-carbonyldiimidazole (CDI) lead to activity recovery above 90%. With these modified enzymes, hydrolytic attack on wool fibres could be successfully prevented up to 95% compared to the native enzymes. Colour difference (DeltaE) measured in the three dimensional colour space showed good stain removal properties for the modified enzymes. Furthermore, half-life of the modified enzymes in buffers and commercial detergents solutions was nearly twice as high as those of the non-modified enzymes with values of up to 63 min. Out of the different modified proteases especially the B. licheniformis protease with the 2.0-kDa polymer attached both retained stain removal properties and did not hydrolyse/damage wool fibres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Yasmin; Kim, Leonard; Martinez, Alvaro
Purpose: To compare localization of the lumpectomy cavity by using breast surface matching vs. clips for image-guided external beam accelerated partial breast irradiation. Methods and Materials: Twenty-seven patients with breast cancer with two computed tomography (CT) scans each had three CT registrations performed: (1) to bony anatomy, (2) to the center of mass (COM) of surgical clips, and (3) to the breast surface. The cavity COM was defined in both the initial and second CT scans after each type of registration, and distances between COMs ({delta}COM{sub Bone}, {delta}COM{sub Clips}, and {delta}COM{sub Surface}) were determined. Smaller {delta}COMs were interpreted as bettermore » localizations. Correlation coefficients were calculated for {delta}COM vs. several variables. Results: The {delta}COM{sub Bone} (mean, 7 {+-} 2 [SD] mm) increased with breast volume (r = 0.4; p = 0.02) and distance from the chest wall (r = 0.5; p = 0.003). Relative to bony registration, clip registration provided better localization ({delta}COM{sub Clips} < {delta}COM{sub Bone}) in 25 of 27 cases. Breast surface matching improved cavity localization ({delta}COM{sub Surface} < {delta}COM{sub Bone}) in 19 of 27 cases. Mean improvements ({delta}COM{sub Bone} - {delta}COM{sub ClipsorSurface}) were 4 {+-} 3 and 2 {+-} 4 mm, respectively. In terms of percentage of improvement ([{delta}COM{sub Bone} - {delta}COM{sub ClipsorSurface}]/{delta}COM{sub Bone}), only surface matching showed a correlation with breast volume. Clip localization outperformed surface registration for cavities located superior to the breast COM. Conclusions: Use of either breast surface or surgical clips as surrogates for the cavity results in improved localization in most patients compared with bony registration and may allow smaller planning target volume margins for external beam accelerated partial breast irradiation. Compared with surface registration, clip registration may be less sensitive to anatomic characteristics and therefore more broadly applicable.« less
Rotational Energy Transfer of N2 Determined Using a New Ab Initio Potential Energy Surface
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
A new N2-N2 rigid-rotor surface has been determined using extensive Ab Initio quantum chemistry calculations together with recent experimental data for the second virial coefficient. Rotational energy transfer is studied using the new potential energy surface (PES) employing the close coupling method below 200 cm(exp -1) and coupled state approximation above that. Comparing with a previous calculation based on the PES of van der Avoird et al.,3 it is found that the new PES generally gives larger cross sections for large (delta)J transitions, but for small (delta)J transitions the cross sections are either comparable or smaller. Correlation between the differences in the cross sections and the two PES will be attempted. The computed cross sections will also be compared with available experimental data.
Robertson, Danielle M; Ho, Su-Inn; Cavanagh, H Dwight
2010-08-01
In the central human corneal epithelium, loss of DeltaNp63 occurs in all surface epithelial cells preparing to undergo desquamation, suggesting a potential role for DeltaNp63 isoforms in mediating surface cell apoptotic shedding. In this study, the authors investigated a role for DeltaNp63 isoforms in caspase-mediated apoptosis in a telomerase-immortalized corneal epithelial cell line. For in vitro studies, hTCEpi cells were cultured in KGM-2 serum-free culture media containing 0.15 mM calcium. To assess dynamic protein interactions among individual DeltaNp63 isoforms, DeltaNp63-EGFP expression plasmids were transiently expressed in hTCEpi cells and evaluated by FRAP. Trichostatin-A (TSA; 3.31 muM) was used to induce cell death as measured by caspase activity. Cleavage and loss of endogenous DeltaNp63alpha, DeltaNp63-EGFP expression plasmids, and p53 were assessed after treatment with TSA and siRNA. Transient expression of DeltaNp63-EGFP alpha and beta isoforms resulted in the formation of a smaller isoform similar in size to DeltaNp63gamma-EGFP. FRAP demonstrated that DeltaNp63alpha-EGFP has greater immobile fraction than beta or gamma. TSA induced caspase-mediated apoptotic pathways; caspase induction was accompanied by a decrease in endogenous DeltaNp63alpha and p53. TSA upregulated DeltaNp63-EGFP plasmid expression; this was accompanied by a selective increase in cleavage of DeltaNp63alpha-EGFP. siRNA knockdown of DeltaNp63alpha correlated with a reduction in p53 independently of TSA. DeltaNp63alpha is the dominant active isoform in corneal epithelial cell nuclei. Loss of DeltaNp63alpha occurs during apoptotic signaling by cleavage at the C terminus. The corresponding loss of p53 suggests that a significant relationship appears to exist between these two regulatory proteins.
Using a delta-doped CCD to determine the energy of a low-energy particle
NASA Technical Reports Server (NTRS)
Nikzad, Shouleh (Inventor); Croley, Donald R. (Inventor); Murphy, Gerald B. (Inventor)
2001-01-01
The back surface of a thinned charged-coupled device (CCD) is treated to eliminate the backside potential well that appears in a conventional thinned CCD during backside illumination. The backside of the CCD includes a delta layer of high-concentration dopant confined to less than one monolayer of the crystal semiconductor. The thinned, delta-doped CCD is used to determine the energy of a very low-energy particle that penetrates less than 1.0 nm into the CCD, such as a proton having energy less than 10 keV.
Delta-doped CCD's as low-energy particle detectors and imagers
NASA Technical Reports Server (NTRS)
Nikzad, Shouleh (Inventor); Hoenk, Michael E. (Inventor); Hecht, Michael H. (Inventor)
2002-01-01
The back surface of a thinned charged-coupled device (CCD) is treated to eliminate the backside potential well that appears in a conventional thinned CCD during backside illumination. The backside of the CCD includes a delta layer of high-concentration dopant confined to less than one monolayer of the crystal semiconductor. The thinned, delta-doped CCD is used to detect very low-energy particles that penetrate less than 1.0 nm into the CCD, including electrons having energies less than 1000 eV and protons having energies less than 10 keV.
Kayser, Jürgen; Tenke, Craig E.
2015-01-01
Surface Laplacian methodology has been used to reduce the impact of volume conduction and arbitrary choice of EEG recording reference for the analysis of surface potentials. However, the empirical implications of employing these different transformations to the same EEG data remain obscure. This study directly compared the statistical effects of four commonly-used (nose, linked mastoids, average) or recommended (reference electrode standardization technique [REST]) references and their spherical spline current source density (CSD) transformation for a large data set stemming from a well-understood experimental manipulation. ERPs (72 sites) recorded from 130 individuals during a visual half-field paradigm with highly-controlled emotional stimuli were characterized by mid-parietooccipital N1 (125 ms peak latency) and event-related synchronization (ERS) of theta/delta (160 ms), which were most robust over the contralateral hemisphere. All five data transformations were rescaled to the same covariance and submitted to a single temporal or time-frequency PCA (Varimax) to yield simplified estimates of N1 or theta/delta ERS. Unbiased nonparametric permutation tests revealed that these hemifield-dependent asymmetries were by far most focal and prominent for CSD data, despite all transformations showing maximum effects at mid-parietooccipital sites. Employing smaller subsamples (signal-to-noise) or window-based ERP/ERS amplitudes did not affect these comparisons. Furthermore, correlations between N1 and theta/delta ERS at these sites were strongest for CSD and weakest for nose-referenced data. Contrary to the common notion that the spatial high pass filter properties of a surface Laplacian reduce important contributions of neuronal generators to the EEG signal, the present findings demonstrate that instead volume conduction inherent in surface potentials weakens the representation of neuronal activation patterns at scalp that directly reflect regional brain activity. PMID:25562833
NASA Astrophysics Data System (ADS)
Goodbred, S. L.; Wallace Auerbach, L.; Wilson, C.; Gilligan, J. M.; Roy, K.; Ahmed, K.; Steckler, M. S.; Seeber, L.; Akhter, S. H.; Hossain, S.
2013-12-01
Effective risk analysis and the management of complex coastal systems require that the scale of interest be well defined. Here we present recent research from the Ganges-Brahmaputra river delta (GBD) that highlights different, if not divergent, perspectives on the current status of this system and its potential response to future environmental change. The contrasts emerge from viewing the GBD at different temporal and spatial scales, raising the question of how scientists, stakeholders, and decision makers might most effectively develop a shared understanding of large, at-risk delta systems. Among the world's deltas, the GBD is often cited as being highly vulnerable to future sea-level rise and environmental change, owing to its vast low-lying landscape and large human population. Taking a broad perspective, however, it is not coincident that the GBD, the world's largest delta system, is fed by immense water and sediment discharge from the Asian monsoon and Himalayan orogen - simply, the size of the GBD reflects the robust processes that have constructed and maintained it. At the regional scale, the deltaplain itself is interconnected by a labyrinth of fluvial and tidal channels that effectively convey sediment to most areas of the landscape, through overbank flooding, distributaries, and tidal transport. Together, the sediment supply, water discharge, and dense channel network bless the GBD with potential basinwide accretion rates >5 mm/yr. More locally, modern sedimentation rates >10 mm/yr are observed in many areas of the tidal delta plain, which are sufficient to maintain land-surface elevations under a variety of sea-level rise scenarios, or at least to mitigate whatever effects do occur. The long-term stratigraphic record of the GBD also reflects a system in dynamic equilibrium, with major landforms persisting through changes in sea level, sediment loading, river avulsion, and delta lobe switching - together providing an encouraging outlook in the face of ongoing global environmental changes. Nevertheless, evidence of an inherently robust natural GBD contrasts with areas that have been strongly impacted by human modifications of the environment. For example, in the last five decades 15,000 km^2 of coastal islands have been embanked ('poldered') for flood protection and agricultural development, resulting in sediment starvation and a loss of elevation relative to natural tidal landscapes. Elevation losses >1 m have occurred in many of these embanked areas, yielding a rate of relative sea-level rise equivalent to 20 mm/yr, which is more than 4× that observed in the GBD's natural mangrove forest. Furthermore, the reorganization of tidal channels in response to poldering has led to local bank erosion and undercutting or weakening of embankments, exemplified by the occurrence of multiple failures during Cyclone Aila (2009). These findings demonstrate that recent and ongoing anthropogenic modifications of the land surface are cause for concern within specific regions of the GBD, and their impact on a significant portion of the delta could well be comparable to or larger than increasing rates of sea-level rise. Looking ahead, human alterations of the physical environment cannot be avoided, but we can more reliably avoid negative consequences with a more realistic and precise understanding of human-landscape interactions.
Analysis of the QTL for sleep homeostasis in mice: Homer1a is a likely candidate.
Mackiewicz, M; Paigen, B; Naidoo, N; Pack, A I
2008-03-14
Electroencephalographic oscillations in the frequency range of 0.5-4 Hz, characteristic of slow-wave sleep (SWS), are often referred to as the delta oscillation or delta power. Delta power reflects sleep intensity and correlates with the homeostatic response to sleep loss. A published survey of inbred strains of mice demonstrated that the time course of accumulation of delta power varied among inbred strains, and the segregation of the rebound of delta power in BxD recombinant inbred strains identified a genomic region on chromosome 13 referred to as the delta power in SWS (or Dps1). The quantitative trait locus (QTL) contains genes that modify the accumulation of delta power after sleep deprivation. Here, we narrow the QTL using interval-specific haplotype analysis and present a comprehensive annotation of the remaining genes in the Dps1 region with sequence comparisons to identify polymorphisms within the coding and regulatory regions. We established the expression pattern of selected genes located in the Dps1 interval in sleep and wakefulness in B6 and D2 parental strains. Taken together, these steps reduced the number of potential candidate genes that may underlie the accumulation of delta power after sleep deprivation and explain the Dps1 QTL. The strongest candidate gene is Homer1a, which is supported by expression differences between sleep and wakefulness and the SNP polymorphism in the upstream regulatory regions.
Delta-Doped Back-Illuminated CMOS Imaging Arrays: Progress and Prospects
NASA Technical Reports Server (NTRS)
Hoenk, Michael E.; Jones, Todd J.; Dickie, Matthew R.; Greer, Frank; Cunningham, Thomas J.; Blazejewski, Edward; Nikzad, Shouleh
2009-01-01
In this paper, we report the latest results on our development of delta-doped, thinned, back-illuminated CMOS imaging arrays. As with charge-coupled devices, thinning and back-illumination are essential to the development of high performance CMOS imaging arrays. Problems with back surface passivation have emerged as critical to the prospects for incorporating CMOS imaging arrays into high performance scientific instruments, just as they did for CCDs over twenty years ago. In the early 1990's, JPL developed delta-doped CCDs, in which low temperature molecular beam epitaxy was used to form an ideal passivation layer on the silicon back surface. Comprising only a few nanometers of highly-doped epitaxial silicon, delta-doping achieves the stability and uniformity that are essential for high performance imaging and spectroscopy. Delta-doped CCDs were shown to have high, stable, and uniform quantum efficiency across the entire spectral range from the extreme ultraviolet through the near infrared. JPL has recently bump-bonded thinned, delta-doped CMOS imaging arrays to a CMOS readout, and demonstrated imaging. Delta-doped CMOS devices exhibit the high quantum efficiency that has become the standard for scientific-grade CCDs. Together with new circuit designs for low-noise readout currently under development, delta-doping expands the potential scientific applications of CMOS imaging arrays, and brings within reach important new capabilities, such as fast, high-sensitivity imaging with parallel readout and real-time signal processing. It remains to demonstrate manufacturability of delta-doped CMOS imaging arrays. To that end, JPL has acquired a new silicon MBE and ancillary equipment for delta-doping wafers up to 200mm in diameter, and is now developing processes for high-throughput, high yield delta-doping of fully-processed wafers with CCD and CMOS imaging devices.
Hydrological and Climatic Significance of Martian Deltas
NASA Astrophysics Data System (ADS)
Di Achille, G.; Vaz, D. A.
2017-10-01
We a) review the geomorphology, sedimentology, and mineralogy of the martian deltas record and b) present the results of a quantitative study of the hydrology and sedimentology of martian deltas using modified version of terrestrial model Sedflux.
Changing Course - the Baird Team Solution: a Delta for All
NASA Astrophysics Data System (ADS)
Nairn, R. B.
2016-02-01
The Changing Course Design competition was initiated to evaluate options for re-positioning the mouth of the Mississippi River and modifying the management of the Lower Mississippi River to support the 2017 Master Plan for the Louisiana coast. This paper will present the findings of one of the selected competitors: the Baird Team and their "Delta for All" approach. A key to success in the future management of the lower Mississippi River is the development of an integrated, holistic approach to management that recognizes the need to harness the full land/wetland building and restorative potential of the river at the same time as improving flood protection and navigation. Fundamentally the Baird solution recognized the underlying geomorphic challenges of the Delta: it receives three to four times less sediment from the Mississippi River than it did historically and sea level is rising two to three times faster than it did historically and is predicted to rise much faster in the future. The result will be a smaller delta in the future. Our approach seeks to harness as close to 100% of the land building potential of the river to make the smaller future delta as large as possible. This compares to the 2012 State Master Plan which would harness approximately 50% of the land-building potential. Our approach also recognizes that the further inland new distributary mouths and associated sub-deltas are located, the greater the delta building potential. Our approach builds with the river by creating and managing new river distributaries that are opened and closed every 50 years or so to build new sub-deltas within a defined sustainable delta footprint. By placing the last outlet somewhere in the vicinity of English Turn the lower Mississippi River would become a tidal channel. These two simple concepts of harnessing 100% of the river and placing the last outlet near English Turn result in immediate and significant benefits for flood protection and navigation. Through the elements of our approach the level of flood protection for New Orleans and surrounding areas would be increased from a 1/100 year to approximately 1/1000 year level. By making the lower river a tidal channel, costly future maintenance dredging costs for a 50 ft navigation channel would be mostly eliminated and expansion of navigation and shipping facilities would be possible.
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1991-01-01
A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.
Modifiable Risk Factors for Increased Arterial Stiffness in Outpatient Nephrology
Elewa, Usama; Fernandez-Fernandez, Beatriz; Alegre, Raquel; Sanchez-Niño, Maria D.; Mahillo-Fernández, Ignacio; Perez-Gomez, Maria Vanessa; El-Fishawy, Hussein; Belal, Dawlat; Ortiz, Alberto
2015-01-01
Arterial stiffness, as measured by pulse wave velocity (PWV), is an independent predictor of cardiovascular events and mortality. Arterial stiffness increases with age. However, modifiable risk factors such as smoking, BP and salt intake also impact on PWV. The finding of modifiable risk factors may lead to the identification of treatable factors, and, thus, is of interest to practicing nephrologist. We have now studied the prevalence and correlates of arterial stiffness, assessed by PWV, in 191 patients from nephrology outpatient clinics in order to identify modifiable risk factors for arterial stiffness that may in the future guide therapeutic decision-making. PWV was above normal levels for age in 85/191 (44.5%) patients. Multivariate analysis showed that advanced age, systolic BP, diabetes mellitus, serum uric acid and calcium polystyrene sulfonate therapy or calcium-containing medication were independent predictors of PWV. A new parameter, Delta above upper limit of normal PWV (Delta PWV) was defined to decrease the weight of age on PWV values. Delta PWV was calculated as (measured PWV) - (upper limit of the age-adjusted PWV values for the general population). Mean±SD Delta PWV was 0.76±1.60 m/sec. In multivariate analysis, systolic blood pressure, active smoking and calcium polystyrene sulfonate therapy remained independent predictors of higher delta PWV, while age, urinary potassium and beta blocker therapy were independent predictors of lower delta PWV. In conclusion, arterial stiffness was frequent in nephrology outpatients. Systolic blood pressure, smoking, serum uric acid, calcium-containing medications, potassium metabolism and non-use of beta blockers are modifiable factors associated with increased arterial stiffness in Nephrology outpatients. PMID:25880081
A review of the Delta Po evolution (Italy) related to climatic changes and human impacts
NASA Astrophysics Data System (ADS)
Simeoni, Umberto; Corbau, Corinne
2009-06-01
Climate changes and sea-level rise are important issues, especially for deltas such as the Po Delta, Italy. The evolution of the Po Delta shows a succession in space and a superposition in time of complex environmental natural processes. During the last few centuries, anthropogenic action has played a major role. The formation of the Po Delta began about 2000 years ago and has undergone many phases of development. Between 1500 AD and 1600 AD, the Venetian technicians diverted the Po river course. With these interventions, the "Renaissance delta" was cut off from the hydraulic network and the "modern delta" began to form. Until the middle of the 20th century, progradation of the delta was noticeable due to the abundant sediment supply. In the following decades coastal erosion occurred, this was caused by the reduction of the solid supply of the Po, due to dam and barrier construction and to river bed excavation. These and other interventions (e.g. reclamation, methane extractions from superficial ground water table) have deeply modified the physical and ecological characteristics of the Po Delta. The morphological characteristics of the Po Delta make the largest Italian wetland particularly unstable and very fragile when subjected to human pressure. Furthermore, the delta evidences multiple threats that will probably be exacerbated in the following decades by the effects of expected climatic changes. Only the application of careful policies concerning coastal defence, flood mitigation, anthropogenic subsidence reduction and salt wedge intrusion control will allow reduction of the present or predicted negative effects. This paper reviews how natural and human factors have controlled the Po Delta through time and discusses management strategies taking into account the importance of the human factor and the potential effects of climatic changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K., S C; M., T C
Plastic bonded explosives (PBX) generally consist of 85 - 95 % by weight energetic material, such as HMX, and 5 - 15 % polymeric binder. Understanding of the structure and morphology at elevated temperatures and pressures is important for predicting of PBX behavior in accident scenarios. The crystallographic behavior of pure HMX has been measured as functions of temperature and grain size. The investigation is extended to the high temperature behavior of PBX 9501 (95% HMX, 2.5 % Estane, 2.5 % BDNPA/F). The results show that the HMX {beta}-phase to {delta}-phase transition in PBX 9501 is similar to that inmore » neat HMX. However, in the presence of the PBX 9501 binder, {delta}-phase HMX readily converts back to {beta}-phase during cooling. Using the same temperature profile, the conversion rate decreases for each subsequent heating and cooling cycle. As observed in earlier experiments, no reverse conversion is observed without the polymer binder. It is proposed that the reversion of {delta}-phase to {beta}-phase is due to changes in the surface molecular potential caused by the influence of the polymer binder on the surface molecules of the {delta}-phase. Upon thermal cycling, the polymer binder segregates from the HMX particles and thus reduces the influence of the binder on the surface molecules. This segregation increases the resistance for the {delta}-phase to {beta}-phase transition, as demonstrated in an aged PBX 9501 material for which the reversion is not observed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilderson, T.P.; Schrag, D.P.; Kashgarian, M.
1998-10-01
We have generated a high resolution coral {Delta}{sup 14}C record spanning the last 50 years to document the seasonal and interannual redistribution of surface waters in the western tropical Pacific. Prebomb (1947{endash}1956) {Delta}{sup 14}C values average {minus}63{per_thousand} and have a total range of 30{per_thousand}. Values begin to increase in 1957, reaching a maximum of 137{per_thousand} in mid-1983. Large interannual variability of up to 80{per_thousand} closely follows the El Ni{tilde n}o-Southern Oscillation (ENSO). During each ENSO warm phase, {Delta}{sup 14}C values begin to increase, reflecting the reduction of low-{sup 14}C water upwelling in the east and the invasion of subtropical watermore » into the western equatorial tropical Pacific. Maximum {Delta}{sup 14}C values are in phase or lag the corresponding sea surface temperature maxima in the eastern tropical Pacific, whereas the rapid return to more negative {Delta}{sup 14}C is in phase with eastern Pacific ENSO indices. The highest-amplitude excursions occur during the 1965/1966 and 1972/1973 events, when the {sup 14}C contrast is highest between the eastern Pacific and subtropics. The 1982/1983 El Ni{tilde n}o, although a larger ENSO event, has a lower {Delta}{sup 14}C amplitude, reflecting the penetration of bomb radiocarbon into the equatorial undercurrent and the reduced contrast in {Delta}{sup 14}C between thermocline and subtropical surface waters at that time. This coral record demonstrates the potential for using similar radiocarbon time series for documenting variability in Pacific shallow circulation over interannual and decadal timescales. {copyright} 1998 American Geophysical Union« less
Super-delta: a new differential gene expression analysis procedure with robust data normalization.
Liu, Yuhang; Zhang, Jinfeng; Qiu, Xing
2017-12-21
Normalization is an important data preparation step in gene expression analyses, designed to remove various systematic noise. Sample variance is greatly reduced after normalization, hence the power of subsequent statistical analyses is likely to increase. On the other hand, variance reduction is made possible by borrowing information across all genes, including differentially expressed genes (DEGs) and outliers, which will inevitably introduce some bias. This bias typically inflates type I error; and can reduce statistical power in certain situations. In this study we propose a new differential expression analysis pipeline, dubbed as super-delta, that consists of a multivariate extension of the global normalization and a modified t-test. A robust procedure is designed to minimize the bias introduced by DEGs in the normalization step. The modified t-test is derived based on asymptotic theory for hypothesis testing that suitably pairs with the proposed robust normalization. We first compared super-delta with four commonly used normalization methods: global, median-IQR, quantile, and cyclic loess normalization in simulation studies. Super-delta was shown to have better statistical power with tighter control of type I error rate than its competitors. In many cases, the performance of super-delta is close to that of an oracle test in which datasets without technical noise were used. We then applied all methods to a collection of gene expression datasets on breast cancer patients who received neoadjuvant chemotherapy. While there is a substantial overlap of the DEGs identified by all of them, super-delta were able to identify comparatively more DEGs than its competitors. Downstream gene set enrichment analysis confirmed that all these methods selected largely consistent pathways. Detailed investigations on the relatively small differences showed that pathways identified by super-delta have better connections to breast cancer than other methods. As a new pipeline, super-delta provides new insights to the area of differential gene expression analysis. Solid theoretical foundation supports its asymptotic unbiasedness and technical noise-free properties. Implementation on real and simulated datasets demonstrates its decent performance compared with state-of-art procedures. It also has the potential of expansion to be incorporated with other data type and/or more general between-group comparison problems.
Guerra, Denis L; Leidens, Victor L; Viana, Rúbia R; Airoldi, Claudio
2010-08-15
The compound N-[3-(trimethoxysilyl)propyl]diethylenetriamine (MPDET) was anchored onto Amazon kaolinite surface (KLT) by heterogeneous route. The modified and natural kaolinite clay samples were characterized by transmission electron microscopy (TEM), scanning electron microscopic (SEM), N(2) adsorption, powder X-ray diffraction, thermal analysis, ion exchange capacities, and nuclear magnetic nuclei of (29)Si and (13)C. The well-defined peaks obtained in the (13)C NMR spectrum in the 5.0-62.1 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The adsorption of uranyl on natural (KLT) and modified (KLT(MPDET)) kaolinite clays was investigated as a function of the solution pH, metal concentration, temperature, and ionic strength. The ability of these materials to remove U(VI) from aqueous solution was followed by a series of adsorption isotherms adjusted to a Sips equation at room temperature and pH 4.0. The maximum number of moles adsorbed was determined to be 8.37 x 10(-3) and 13.87 x 10(-3) mmol g(-1) for KLT and KLT(MPDET) at 298 K, respectively. The energetic effects (Delta(int)H, Delta(int)G, and Delta(int)S) caused by metal cations adsorption were determined through calorimetric titrations. Copyright 2010. Published by Elsevier B.V.
Ellings, Christopher S.; Davis, Melanie; Grossman, Eric E.; Hodgson, Sayre; Turner, Kelley L.; Woo PR, Isa; Nakai, Glynnis; Takekawa, Jean E.; Takekawa, John Y.
2016-01-01
The restoration of the Nisqually River Delta (Washington, U.S.A.) represents one of the largest efforts toward reestablishing the ecosystem function and resilience of modified habitat in the Puget Sound, particularly for anadromous salmonid species. The opportunity for outmigrating salmon to access and benefit from the expansion of available tidal habitat can be quantified by several physical attributes, which are related to the ecological and physiological responses of juvenile salmon. We monitored a variety of physical parameters to measure changes in opportunity potential from historic, pre-restoration, and post-restoration habitat conditions at several sites across the delta. These parameters included channel morphology, water quality, tidal elevation, and landscape connectivity. We conducted fish catch surveys across the delta to determine if salmon was utilizing restored estuary habitat. Overall major channel area increased 42% and major channel length increased 131% from pre- to post-restoration conditions. Furthermore, the results of our tidal inundation model indicated that major channels were accessible up to 75% of the time, as opposed to 30% pre-restoration. Outmigrating salmon utilized this newly accessible habitat as quickly as 1 year post-restoration. The presence of salmon in restored tidal channels confirmed rapid post-restoration increases in opportunity potential on the delta despite habitat quality differences between restored and reference sites.
Medicinal cannabis: is delta9-tetrahydrocannabinol necessary for all its effects?
Wilkinson, J D; Whalley, B J; Baker, D; Pryce, G; Constanti, A; Gibbons, S; Williamson, E M
2003-12-01
Cannabis is under clinical investigation to assess its potential for medicinal use, but the question arises as to whether there is any advantage in using cannabis extracts compared with isolated Delta9-trans-tetrahydrocannabinol (Delta9THC), the major psychoactive component. We have compared the effect of a standardized cannabis extract (SCE) with pure Delta9THC, at matched concentrations of Delta9THC, and also with a Delta9THC-free extract (Delta9THC-free SCE), using two cannabinoid-sensitive models, a mouse model of multiple sclerosis (MS), and an in-vitro rat brain slice model of epilepsy. Whilst SCE inhibited spasticity in the mouse model of MS to a comparable level, it caused a more rapid onset of muscle relaxation, and a reduction in the time to maximum effect compared with Delta9THC alone. The Delta9THC-free extract or cannabidiol (CBD) caused no inhibition of spasticity. However, in the in-vitro epilepsy model, in which sustained epileptiform seizures were induced by the muscarinic receptor agonist oxotremorine-M in immature rat piriform cortical brain slices, SCE was a more potent and again more rapidly-acting anticonvulsant than isolated Delta9THC, but in this model, the Delta9THC-free extract also exhibited anticonvulsant activity. Cannabidiol did not inhibit seizures, nor did it modulate the activity of Delta9THC in this model. Therefore, as far as some actions of cannabis were concerned (e.g. antispasticity), Delta9THC was the active constituent, which might be modified by the presence of other components. However, for other effects (e.g. anticonvulsant properties) Delta9THC, although active, might not be necessary for the observed effect. Above all, these results demonstrated that not all of the therapeutic actions of cannabis herb might be due to the Delta9THC content.
Terrill, Kasia; Nesbitt, David J
2010-08-01
Ab initio anharmonic transition frequencies are calculated for strongly coupled (i) asymmetric and (ii) symmetric proton stretching modes in the X-H(+)-X linear ionic hydrogen bonded complexes for OCHCO(+) and N(2)HN(2)(+). The optimized potential surface is calculated in these two coordinates for each molecular ion at CCSD(T)/aug-cc-pVnZ (n = 2-4) levels and extrapolated to the complete-basis-set limit (CBS). Slices through both 2D surfaces reveal a relatively soft potential in the asymmetric proton stretching coordinate at near equilibrium geometries, which rapidly becomes a double minimum potential with increasing symmetric proton acceptor center of mass separation. Eigenvalues are obtained by solution of the 2D Schrödinger equation with potential/kinetic energy coupling explicity taken into account, converged in a distributed Gaussian basis set as a function of grid density. The asymmetric proton stretch fundamental frequency for N(2)HN(2)(+) is predicted at 848 cm(-1), with strong negative anharmonicity in the progression characteristic of a shallow "particle in a box" potential. The corresponding proton stretch fundamental for OCHCO(+) is anomalously low at 386 cm(-1), but with a strong alternation in the vibrational spacing due to the presence of a shallow D(infinityh) transition state barrier (Delta = 398 cm(-1)) between the two equivalent minimum geometries. Calculation of a 2D dipole moment surface and transition matrix elements reveals surprisingly strong combination and difference bands with appreciable intensity throughout the 300-1500 cm(-1) region. Corrected for zero point (DeltaZPE) and thermal vibrational excitation (DeltaE(vib)) at 300 K, the single and double dissociation energies in these complexes are in excellent agreement with thermochemical gas phase ion data.
NASA Technical Reports Server (NTRS)
Lemkey, F. D.; Mccarthy, G. P.
1975-01-01
By means of a compositional and heat treatment optimization program based on the quaternary gamma/gamma prime-delta, a tantalum modified gamma/gamma prime-delta alloy with improved shear and creep strength combined with better cyclic oxidation resistance was identified. Quinary additions, quaternary adjustments, and heat treatment were investigated. The tantalum modified gamma/gamma prime-delta alloy possessed a slightly higher liquidus temperature and exhibited rupture strength exceeding NASA VIA by approximately three and one-half Larson-Miller parameters (C = 20) above 1000 C. Although improvements in longitudinal mechanical properties were achieved, the shear and transverse strength property goals of the program were not met and present a continuing challenge to the alloy metallurgist.
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.
1976-01-01
A lamellar nickel-base directionally-solidified eutectic gamma/gamma prime-delta alloy has potential as an advanced gas turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 750 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability may not be a serious problem in the use of this alloy.
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.
1975-01-01
The lamellar directionally solidified nickel-base eutectic alloy gamma/gamma prime-delta has potential as an advanced turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 705 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and the appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability is not a serious problem in the use of this alloy.
Sheng, Guodong; Hu, Jun; Wang, Xiangke
2008-10-01
Diatomite has a number of unique physicochemical properties and has diversified industrial uses. Natural diatomite has been tested as a potential sorbent for the removal of Th(IV) from aqueous solutions. The results indicate that sorption of Th(IV) is strongly dependent on ionic strength at pH<3, and is independent of ionic strength at pH>3. Outer-sphere complexation or ion exchange may be the main sorption mechanism of Th(IV) to diatomite at low pH values, whereas the sorption of Th(IV) at pH>3 is mainly dominated by inner-sphere complexation or precipitation. The competition for Th(IV) between aqueous or surface adsorbed anions (e.g., herein ClO(4)(-), NO(3)(-) and Cl(-)) and surface functional groups of diatomite is important for Th(IV) sorption. The thermodynamic data (DeltaH(0), DeltaS(0), DeltaG(0)) are calculated from the temperature-dependent sorption isotherms. The results suggest that sorption process of Th(IV) on diatomite is spontaneous and endothermic.
Hydrologic budget of the Beaverdam Creek basin, Maryland
Rasmussen, W.C.; Andreasen, Gordon E.
1959-01-01
A hydrologic budget is a statement accounting for the water gains and losses for selected periods in an area. Weekly measurements of precipitation streamflow, surface-water storage, ground-water stage, and soil resistivity were made during a 2year period, April 1, 1950, to March 28, 1952, in the Beaverdam Creek basin, Wicomico County, Md. The hydrologic measurements are summarized in two budgets, a total budget and a ground-water budget, and in supporting tables and graphs. The results of the investigation have some potentially significant applications because they describe a method for determining the annual replenishment of the water supply of a basin and the ways of water disposal under natural conditions. The information helps to determine the 'safe' yield of water in diversion from natural to artificial discharge. The drainage basin of Beaverdam Creek was selected because it appeared to have fewer hydrologic variables than are generally found. However, the methods may prove applicable in many places under a variety of conditions. The measurements are expressed in inches of water over the area of the basin. The equation of the hydrologic cycle is the budget balance: P= R+E+ASW+ delta SW + delta SM + delta GW where P is precipitation; R is runoff; ET is evapotranspiration; delta SW is change in surface-water storage; delta SM is change in soil moisture; and delta GW is change in ground-water storage. In this report 'change' is the final quantity minus the initial quantity and thus is synonymous with 'increase.' Further, ,delta GW= delta H .x Yg, in which delta H is the change in ground-water stage and Yg is the gravity yield, or the specific yield of the sediments as measured during the short periods of declining ground-water levels characteristic of the area. The complex sum of the revised equation P ? R - delta SW ? ET - delta SM, which is equal to delta H. x Yg, has been named the 'infiltration residual'; it is equivalent to ground-water recharge. Two unmeasured, but not entirely unknown, quantities, evapotranspiration, (ET) and gravity yield, (Yg), are included in the equation. They are derived statistically by a method of convergent approximations, one of the contributions of this investigation. On the basis of laboratory analysis, well-field tests, and general information on rates of drainage from saturated sediments, a gravity yield of 14 percent was assumed as a first approximation. The equation was then solved, by weeks, for evapotranspiration, ET. The evapotranspiration losses were plotted against the calendar week. Using the time of year as a control, a smooth curve was fitted to the evapotranspiration data, and modified values of ET were read from the curve. These were used to compute weekly values of the infiltration residual which were plotted against ground-water stage. The slope of the line of best fit gave a closer approximation of gravity yield, Yg. The process was repeated. The approximations converged, so that a fourth and final approximation resulted in a close grouping of all the points along a line whose slope indicated a Yg of 11.0 percent, and a slightly asymmetric bell-shaped curve of total evapotranspiration by weeks was obtained that is considered representative of this area. Check calculations of gravity yield were made during periods of low evapotranspiration and high infiltration, which substantiate the computed average of 11.0 percent. Refinements in the method of deriving the ground-water budget were introduced to supplement the techniques developed by Meinzer and Stearns in the study of the Pomperaug River basin in Connecticut in 1913 and 1916. The hydrologic equation for the ground-water cycle may be written Gr=D + delta H. x Yg + ETg, in which Gr is ground-water recharge (infiltration); D is ground-water drainage; delta H is the change in mean ground-water stage (final stage minus initial stage); Yg is gravity yield (taken as 11.0 percent in computations here); an
Tale of Two Deltas: Permafrost Dynamics on the Colville and Yukon-Kuskokwim Deltas
NASA Astrophysics Data System (ADS)
Jorgenson, T.; Shur, Y.
2016-12-01
Arctic deltas are the predominant coastline in the Arctic and are greatly modified by permafrost aggradation and degradation. In comparing the Colville Delta (CD) along the Beaufort Sea (MAAT -11 °C) with the Yukon-Kuskokwim Delta (YKD) along the Bering Sea (MAAT -1 °C), permafrost characteristics respond to differences in climate, flooding, salinization, and vegetation-soil development. Both deltas have an inner zone dominated by fluvial processes and nonsaline ecosystems, and an outer zone affected by both tidal and fluvial processes and has salt-affected ecosystems. In the CD, closed taliks develop under the deeper channels and surface permafrost starts to form on channel bars where water is <2 m deep. During early floodplain development with active sedimentation, syngenetic permafrost is climate driven, ice-poor, and dominated by pore and lenticular cryostructures. On inactive floodplains, where flooding is infrequent and fine-grained sedimentation is greatly diminished, climate-driven, ecosystem-modified permafrost aggrades upward in response to thickening organics and thinning active layer. Here a 2-m-thick intermediate layer develops that is ice-rich and dominated by reticulate and ataxitic cryostructures. On the oldest abandoned floodplains, permafrost becomes sufficiently ice rich from segregated and wedge ice that thermokarst lakes develop. Large storm surges up to 3 m amsl, such as those in 1963 and 1970, have caused extensive salt killed and ice-wedge degradation. Thus, thermokarst is abundant even at low temperatures. In the YKD, permafrost develops only during late floodplain stages in response to sphagnum accumulation and creates extensive permafrost plateaus that rise 1 m above the floodplain. This ecosystem-driven permafrost is epigenetic, ice-poor, and dominated by pore and lenticular cryostructures. Permafrost develops around existing water bodies, but thermokarst lakes are uncommon. Large storm surges up to 3.5 m amsl, such those in 1974 and 2005, damaged vegetation along the plateaus margins and created shallow thermokarst moats. In response to expected climate warming of 4-6 °C over the next century, permafrost dynamics in the CD should remain similar to current conditions, while in the YKD permafrost likely will be eliminated in the next 30-50 years.
Decomposing delta, theta, and alpha time–frequency ERP activity from a visual oddball task using PCA
Bernat, Edward M.; Malone, Stephen M.; Williams, William J.; Patrick, Christopher J.; Iacono, William G.
2008-01-01
Objective Time–frequency (TF) analysis has become an important tool for assessing electrical and magnetic brain activity from event-related paradigms. In electrical potential data, theta and delta activities have been shown to underlie P300 activity, and alpha has been shown to be inhibited during P300 activity. Measures of delta, theta, and alpha activity are commonly taken from TF surfaces. However, methods for extracting relevant activity do not commonly go beyond taking means of windows on the surface, analogous to measuring activity within a defined P300 window in time-only signal representations. The current objective was to use a data driven method to derive relevant TF components from event-related potential data from a large number of participants in an oddball paradigm. Methods A recently developed PCA approach was employed to extract TF components [Bernat, E. M., Williams, W. J., and Gehring, W. J. (2005). Decomposing ERP time-frequency energy using PCA. Clin Neurophysiol, 116(6), 1314–1334] from an ERP dataset of 2068 17 year olds (979 males). TF activity was taken from both individual trials and condition averages. Activity including frequencies ranging from 0 to 14 Hz and time ranging from stimulus onset to 1312.5 ms were decomposed. Results A coordinated set of time–frequency events was apparent across the decompositions. Similar TF components representing earlier theta followed by delta were extracted from both individual trials and averaged data. Alpha activity, as predicted, was apparent only when time–frequency surfaces were generated from trial level data, and was characterized by a reduction during the P300. Conclusions Theta, delta, and alpha activities were extracted with predictable time-courses. Notably, this approach was effective at characterizing data from a single-electrode. Finally, decomposition of TF data generated from individual trials and condition averages produced similar results, but with predictable differences. Specifically, trial level data evidenced more and more varied theta measures, and accounted for less overall variance. PMID:17027110
Riessland, Markus; Kaczmarek, Anna; Schneider, Svenja; Swoboda, Kathryn J; Löhr, Heiko; Bradler, Cathleen; Grysko, Vanessa; Dimitriadi, Maria; Hosseinibarkooie, Seyyedmohsen; Torres-Benito, Laura; Peters, Miriam; Upadhyay, Aaradhita; Biglari, Nasim; Kröber, Sandra; Hölker, Irmgard; Garbes, Lutz; Gilissen, Christian; Hoischen, Alexander; Nürnberg, Gudrun; Nürnberg, Peter; Walter, Michael; Rigo, Frank; Bennett, C Frank; Kye, Min Jeong; Hart, Anne C; Hammerschmidt, Matthias; Kloppenburg, Peter; Wirth, Brunhilde
2017-02-02
Homozygous SMN1 loss causes spinal muscular atrophy (SMA), the most common lethal genetic childhood motor neuron disease. SMN1 encodes SMN, a ubiquitous housekeeping protein, which makes the primarily motor neuron-specific phenotype rather unexpected. SMA-affected individuals harbor low SMN expression from one to six SMN2 copies, which is insufficient to functionally compensate for SMN1 loss. However, rarely individuals with homozygous absence of SMN1 and only three to four SMN2 copies are fully asymptomatic, suggesting protection through genetic modifier(s). Previously, we identified plastin 3 (PLS3) overexpression as an SMA protective modifier in humans and showed that SMN deficit impairs endocytosis, which is rescued by elevated PLS3 levels. Here, we identify reduction of the neuronal calcium sensor Neurocalcin delta (NCALD) as a protective SMA modifier in five asymptomatic SMN1-deleted individuals carrying only four SMN2 copies. We demonstrate that NCALD is a Ca 2+ -dependent negative regulator of endocytosis, as NCALD knockdown improves endocytosis in SMA models and ameliorates pharmacologically induced endocytosis defects in zebrafish. Importantly, NCALD knockdown effectively ameliorates SMA-associated pathological defects across species, including worm, zebrafish, and mouse. In conclusion, our study identifies a previously unknown protective SMA modifier in humans, demonstrates modifier impact in three different SMA animal models, and suggests a potential combinatorial therapeutic strategy to efficiently treat SMA. Since both protective modifiers restore endocytosis, our results confirm that endocytosis is a major cellular mechanism perturbed in SMA and emphasize the power of protective modifiers for understanding disease mechanism and developing therapies. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Technology for Elevated Temperature Tests of Structural Panels
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1999-01-01
A technique for full-field measurement of surface temperature and in-plane strain using a single grid imaging technique was demonstrated on a sample subjected to thermally-induced strain. The technique is based on digital imaging of a sample marked by an alternating line array of La2O2S:Eu(+3) thermographic phosphor and chromium illuminated by a UV lamp. Digital images of this array in unstrained and strained states were processed using a modified spin filter. Normal strain distribution was determined by combining unstrained and strained grid images using a single grid digital moire technique. Temperature distribution was determined by ratioing images of phosphor intensity at two wavelengths. Combined strain and temperature measurements demonstrated on the thermally heated sample were DELTA-epsilon = +/- 250 microepsilon and DELTA-T = +/- 5 K respectively with a spatial resolution of 0.8 mm.
77 FR 12444 - Airworthiness Directives; General Electric Company (GE) Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
... support the NPRM as written. Request To Correct Part Number Commenters GE and Delta Airlines (Delta... packing configuration either on-wing or in the shop and to determine if further actions are necessary. We.... Request To Modify Compliance Time Commenters GE and Delta requested that we change the compliance time of...
Onal, Yunus
2006-10-11
Adsorbent (WA11Zn5) has been prepared from waste apricot by chemical activation with ZnCl(2). Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N(2) adsorption and DFT plus software. Adsorption of three dyes, namely, Methylene Blue (MB), Malachite Green (MG), Crystal Violet (CV), onto activated carbon in aqueous solution was studied in a batch system with respect to contact time, temperature. The kinetics of adsorption of MB, MG and CV have been discussed using six kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the Elovich equation, the intraparticle diffusion model, the Bangham equation, the modified Freundlich equation. Kinetic parameters and correlation coefficients were determined. It was shown that the second-order kinetic equation could describe the adsorption kinetics for three dyes. The dyes uptake process was found to be controlled by external mass transfer at earlier stages (before 5 min) and by intraparticle diffusion at later stages (after 5 min). Thermodynamic parameters, such as DeltaG, DeltaH and DeltaS, have been calculated by using the thermodynamic equilibrium coefficient obtained at different temperatures and concentrations. The thermodynamics of dyes-WA11Zn5 system indicates endothermic process.
Chang, Xiu-Bao; Mengos, April; Hou, Yue-Xian; Cui, Liying; Jensen, Timothy J; Aleksandrov, Andrei; Riordan, John R; Gentzsch, Martina
2008-09-01
The epithelial chloride channel CFTR is a glycoprotein that is modified by two N-linked oligosaccharides. The most common mutant CFTR protein in patients with cystic fibrosis, DeltaF508, is misfolded and retained by ER quality control. As oligosaccharide moieties of glycoproteins are known to mediate interactions with ER lectin chaperones, we investigated the role of N-linked glycosylation in the processing of wild-type and DeltaF508 CFTR. We found that N-glycosylation and ER lectin interactions are not major determinants of trafficking of wild-type and DeltaF508 from the ER to the plasma membrane. Unglycosylated CFTR, generated by removal of glycosylation sites or treatment of cells with the N-glycosylation inhibitor tunicamycin, did not bind calnexin, but did traffic to the cell surface and exhibited chloride channel activity. Most importantly, unglycosylated DeltaF508 CFTR still could not escape quality control in the early secretory pathway and remained associated with the ER. However, the absence of N-linked oligosaccharides did reduce the stability of wild-type CFTR, causing significantly more-rapid turnover in post-ER compartments. Surprisingly, the individual N-linked carbohydrates do not play equivalent roles and modulate the fate of the wild-type protein in different ways in its early biosynthetic pathway.
Henriques, D. A.; Ladbury, J. E.; Jackson, R. M.
2000-01-01
The prediction of binding energies from the three-dimensional (3D) structure of a protein-ligand complex is an important goal of biophysics and structural biology. Here, we critically assess the use of empirical, solvent-accessible surface area-based calculations for the prediction of the binding of Src-SH2 domain with a series of tyrosyl phosphopeptides based on the high-affinity ligand from the hamster middle T antigen (hmT), where the residue in the pY+ 3 position has been changed. Two other peptides based on the C-terminal regulatory site of the Src protein and the platelet-derived growth factor receptor (PDGFR) are also investigated. Here, we take into account the effects of proton linkage on binding, and test five different surface area-based models that include different treatments for the contributions to conformational change and protein solvation. These differences relate to the treatment of conformational flexibility in the peptide ligand and the inclusion of proximal ordered solvent molecules in the surface area calculations. This allowed the calculation of a range of thermodynamic state functions (deltaCp, deltaS, deltaH, and deltaG) directly from structure. Comparison with the experimentally derived data shows little agreement for the interaction of SrcSH2 domain and the range of tyrosyl phosphopeptides. Furthermore, the adoption of the different models to treat conformational change and solvation has a dramatic effect on the calculated thermodynamic functions, making the predicted binding energies highly model dependent. While empirical, solvent-accessible surface area based calculations are becoming widely adopted to interpret thermodynamic data, this study highlights potential problems with application and interpretation of this type of approach. There is undoubtedly some agreement between predicted and experimentally determined thermodynamic parameters: however, the tolerance of this approach is not sufficient to make it ubiquitously applicable. PMID:11106171
[Hydrogeochemical characteristics of a typical karst groundwater system in Chongqing].
Yang, Ping-Heng; Lu, Bing-Qing; He, Qiu-Fang; Chen, Xue-Bin
2014-04-01
The two-year hydrologic process, hydrochemistry, and a portion of deltaD, delta18O of both the surface water at the inlet and the groundwater at the outlet, were investigated to identify the spatial and temporal variations of hydrogeochemistry in the Qingmuguan karst groundwater system. Research results show that there are wet and dry periods in the groundwater system owing to the striking influence of seasonal rainfall. The evolution of the chemical compositions in the groundwater is significantly influenced by the water and rock interaction, anthropogenic activities and rainwater dilution. The variations of the chemical compositions in the groundwater exhibit obvious spatiality and temporality. The deltaD and delta18O of the surface water beneath the local Meteoric Water Line of Chonqing indicate that the surface water is strongly evaporated. Furthermore, the deltaD and delta18O of the surface water are more positive in the dry period than in the wet period, showing a distinct seasonal effect. The deltaD and delta18O of the groundwater are quite stable and much negative compared with those of the surface water, which suggests that the rainwater recharge the groundwater via two pathways, one directly through sinkholes and the other via the vadose zone.
Bachhawat, K; Kapoor, M; Dam, T K; Surolia, A
2001-06-19
Allium sativum agglutinin (ASAI) is a heterodimeric mannose-specific bulb lectin possessing two polypeptide chains of molecular mass 11.5 and 12.5 kDa. The thermal unfolding of ASAI, characterized by differential scanning calorimetry and circular dichroism, shows it to be highly reversible and can be defined as a two-state process in which the folded dimer is converted directly to the unfolded monomers (A2 if 2U). Its conformational stability has been determined as a function of temperature, GdnCl concentration, and pH using a combination of thermal and isothermal GdnCl-induced unfolding monitored by DSC, far-UV CD, and fluorescence, respectively. Analyses of these data yielded the heat capacity change upon unfolding (DeltaC(p) and also the temperature dependence of the thermodynamic parameters, namely, DeltaG, DeltaH, and DeltaS. The fit of the stability curve to the modified Gibbs-Helmholtz equation provides an estimate of the thermodynamic parameters DeltaH(g), DeltaS(g), and DeltaC(p) as 174.1 kcal x mol(-1), 0.512 kcal x mol(-1) x K(-1), and 3.41 kcal x mol(-1) x K(-1), respectively, at T(g) = 339.4 K. Also, the free energy of unfolding, DeltaG(s), at its temperature of maximum stability (T(s) = 293 K) is 13.13 kcal x mol(-1). Unlike most oligomeric proteins studied so far, the lectin shows excellent agreement between the experimentally determined DeltaC(p) (3.2 +/- 0.28 kcal x mol(-1) x K(-1)) and those evaluated from a calculation of its accessible surface area. This in turn suggests that the protein attains a completely unfolded state irrespective of the method of denaturation. The absence of any folding intermediates suggests the quaternary interactions to be the major contributor to the conformational stability of the protein, which correlates well with its X-ray structure. The small DeltaC(p) for the unfolding of ASAI reflects a relatively small, buried hydrophobic core in the folded dimeric protein.
NASA Astrophysics Data System (ADS)
Pahlavani, M. R.; Firoozi, B.
2016-09-01
γ-ray transitions from excited states of {}16{{N}} and {}16{{O}} isomers that appear in the γ spectrum of the {}616{{{C}}}10\\to {}716{{{N}}}9\\to {}816{{{O}}}8 beta decay chain are investigated. The theoretical approach used in this research starts with a mean-field potential consisting of a phenomenological Woods-Saxon potential including spin-orbit and Coulomb terms (for protons) in order to obtain single-particle energies and wave functions for nucleons in a nucleus. A schematic residual surface delta interaction is then employed on the top of the mean field and is treated within the proton-neutron Tamm-Dancoff approximation (pnTDA) and the proton-neutron random phase approximation. The goal is to use an optimized surface delta interaction interaction, as a residual interaction, to improve the results. We have used artificial intelligence algorithms to establish a good agreement between theoretical and experimental energy spectra. The final results of the ‘optimized’ calculations are reasonable via this approach.
NASA Astrophysics Data System (ADS)
Hiatt, M. R.; Castaneda, E.; Twilley, R.; Hodges, B. R.; Passalacqua, P.
2015-12-01
River deltas have the potential to mitigate increased nutrient loading to coastal waters by acting as biofilters that reduce the impact of nutrient enrichment on downstream ecosystems. Hydraulic residence time (HRT) is known to be a major control on biogeochemical processes and deltaic floodplains are hypothesized to have relatively long HRTs. Hydrological connectivity and delta floodplain inundation induced by riverine forces, tides, and winds likely alter surface water flow patterns and HRTs. Since deltaic floodplains are important elements of delta networks and receive significant fluxes of water, sediment, and nutrients from distributary channels, biogeochemical transformations occurring within these zones could significantly reduce nutrient loading to coastal receiving waters. However, network-scale estimates of HRT in river deltas are lacking and little is known about the effects of tides, wind, and the riverine input on the HRT distribution. Subsequently, there lacks a benchmark for evaluating the impact of engineered river diversions on coastal nutrient ecology. In this study, we estimate the HRT of a coastal river delta by using hydrodynamic modeling supported by field data and relate the HRT to spatial and temporal patterns in nitrate levels measured at discrete stations inside a delta island at Wax Lake Delta. We highlight the control of the degree of hydrological connectivity between distributary channels and interdistributary islands on the network HRT distribution and address the roles of tides and wind on altering the shape of the distribution. We compare the observed nitrate concentrations to patterns of channel-floodplain hydrological connectivity and find this connectivity to play a significant role in the nutrient removal. Our results provide insight into the potential role of deltaic wetlands in reducing the nutrient loading to near-shore waters in response to large-scale river diversions.
An exploratory study of apex fence flaps on a 74 deg delta wing
NASA Technical Reports Server (NTRS)
Wahls, R. A.; Vess, R. J.
1985-01-01
An exploratory wind tunnel investigation was performed to observe the flow field effects produced by vertically deployed apex fences on a planar 74 degree delta wing. The delta shaped fences, each comprising approximately 3.375 percent of the wing area, were affixed along the first 25 percent of the wing leading edge in symmetric as well as asymmetric (i.e., fence on one side only) arrangements. The vortex flow field was visualized at angles of attack from 0 to 20 degrees using helium bubble and oil flow techniques; upper surface pressures were also measured along spanwise rows. The results were used to construct a preliminary description of the vortex patterns and induced pressures associated with vertical apex fence deployment. The objective was to obtain an initial evaluation of the potential of apex fences as vortex devices for subsonic lift modulation as well as lateral directional control of delta wing aircraft.
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Niles, Paul B.; Blake, Weston; Leveille, Richard
2009-01-01
This work seeks to use the chemical, isotopic, and mineralogical characteristics of secondary carbonate minerals produced during brief aqueous events to identify the conditions of the aqueous environment in which they formed. Liquid water near the surface of Mars is subject to either rapid freezing and/or evaporation. These processes are also active on Earth, and produce secondary minerals that have complex chemical, mineralogical, and isotopic textures and compositions that can include covariant relationships between Delta C-13 (sub VPDB) and delta O-18 (sub VSMOW). The extremely well studied four billion year old carbonates preserved in martian meteorite ALH 84001 also show covariant delta C-13 and delta O-18 compositions, but these variations are manifested on a micro-scale in a single thin section while the variation observed so far in terrestrial carbonates is seen between different hand samples.
NASA Technical Reports Server (NTRS)
Agrawal, Bal K.; Agrawal, Savitri
1995-01-01
The electronic structure and the hole concentrations in the high Tc superconductor HgBa2CuO(4+delta) (delta = O, 1) has been investigated by employing a first principles full potential self-consistent LMTO method with the local density functional theory. The scalar relativistic effects have been considered. The hole concentrations of the Cu-d and O-p(x,y) orbitals are seen to be larger for the HgBaCuO5 system than those of the HgBaCuO4 solid. However, the van Hove singularity (vHs) induced Cu-d and O-p peak which is seen to lie comparatively away and above the Fermi level in the delta = 1 system shifts towards the Fermi level in the delta = 0 system. Thus, the superconducting behavior appears to originate from the occurrence of the vHs peak at the Fermi level. The Fermi surface nesting area in the delta = 0 compound is seen to be larger than in the delta = 1 compound. The calculation reveals that the increase in pressure on the crystal enhances the hole concentrations but without showing any optimum value, On the other hand, the vHs peak approaches to-wards the Fermi level with pressure and crosses the Fermi surface near V/Vo approximately equals 0.625 (V and Vo are the crystal volumes at high and normal pressures, respectively). Our calculated value of the bulk modulus equal to 0.626 Mbar predicts the occurrence of this crossover at about 24 GPa which is in complete agreement with the experimental value. At this pressure the compound has maximum nesting area and self-doped behavior.
Florea, Lee J; McGee, Dorien K
2010-06-01
Data from a 10-month monitoring study during 2007 in the Everglades ecosystem provide insight into the variation of delta(18)O, deltaD, and ion chemistry in surface water and shallow groundwater. Surface waters are sensitive to dilution from rainfall and input from external sources. Shallow groundwater, on the other hand, remains geochemically stable during the year. Surface water input from canals derived from draining agricultural areas to the north and east of the Everglades is evident in the ion data. delta(18)O and deltaD values in shallow groundwater remain near the mean of-2.4 and-12 per thousand, respectively. (18)O and D values are enriched in surface water compared with shallow groundwater and fluctuate in sync with those measured in rainfall. The local meteoric water line (LMWL) for precipitation is in close agreement with the global meteoric water line; however, the local evaporation line (LEL) for surface water and shallow groundwater is delta D=5.6 delta(18)O+1.5, a sign that these waters have experienced evaporation. The intercept of the LMWL and LEL indicates that the primary recharge to the Everglades is tropical cyclones or fronts. delta deuterium to delta(18)O excess (D(ex) values) generally reveal two moisture sources for precipitation, a maritime source during the fall and winter (D (ex)>10 per thousand) and a continental-influenced source (D (ex)<10 per thousand) in the spring and summer.
NASA Astrophysics Data System (ADS)
Hemes, K. S.; Eichelmann, E.; Chamberlain, S.; Knox, S. H.; Oikawa, P.; Sturtevant, C.; Verfaillie, J. G.; Baldocchi, D. D.
2017-12-01
Globally, delta ecosystems are critical for human livelihoods, but are at increasingly greater risk of degradation. The Sacramento-San Joaquin River Delta (`Delta') has been subsiding dramatically, losing close to 100 Tg of carbon since the mid 19th century due in large part to agriculture-induced oxidation of the peat soils through drainage and cultivation. Efforts to re-wet the peat soils through wetland restoration are attractive as climate mitigation activities. While flooded wetland systems have the potential to sequester significant amounts of carbon as photosynthesis outpaces aerobic respiration, the highly-reduced conditions can result in significant methane emissions. This study will utilize three years (2014-2016) of continuous, gap-filled, CO2 and CH4 flux data from a mesonetwork of seven eddy covariance towers in the Delta to compute GHG budgets for the restored wetlands and agricultural baseline sites measured. Along with biogeochemical impacts of wetland restoration, biophysical impacts such as changes in reflectance, energy partitioning, and surface roughness, can have significant local to regional impacts on air temperature and heat fluxes. We hypothesize that despite flooded wetlands reducing albedo, wetland land cover will cool the near-surface air temperature due to increased net radiation being preferentially partitioned into latent heat flux and rougher canopy conditions allowing for more turbulent mixing with the atmosphere. This study will investigate the seasonal and diurnal patterns of turbulent energy fluxes and the surface properties that drive them. With nascent policy mechanisms set to compensate landowners and farmers for low emission land use practices beyond reforestation, it is essential that policy mechanisms take into consideration how the biophysical impacts of land use change could drive local to regional-scale climatic perturbations, enhancing or attenuating the biogeochemical impacts.
Amare, Meareg; Abicho, Samuel; Admassie, Shimelis
2014-01-01
A glassy carbon electrode (GCE) modified with poly(4-amino-3-hydroxynaphthalene sulfonic acid) (poly-AHNSA) was used for the selective and sensitive determination of fenitrothion (FT) organophosphorus pesticide in water. The electrochemical behavior of FT at the bare GCE and the poly-AHNSA/GCE were compared using cyclic voltammetry. Enhanced peak current response and shift to a lower potential at the polymer-modified electrode indicated the electrocatalytic activity of the polymer film towards FT. Under optimized solution and method parameters, the adsorptive stripping square wave voltammetric reductive peak current of FT was linear to FT concentration in the range of 0.001 to 6.6 x 10(-6) M, and the LOD obtained (3delta/m) was 7.95 x 10(-10) M. Recoveries in the range 96-98% of spiked FT in tap water and reproducible results with RSD of 2.6% (n = 5) were obtained, indicating the potential applicability of the method for the determination of trace levels of FT in environmental samples.
Sangiuolo, Federica; Scaldaferri, Maria Lucia; Filareto, Antonio; Spitalieri, Paola; Guerra, Lorenzo; Favia, Maria; Caroppo, Rosa; Mango, Ruggiero; Bruscia, Emanuela; Gruenert, Dieter C; Casavola, Valeria; De Felici, Massimo; Novelli, Giuseppe
2008-01-01
Different gene targeting approaches have been developed to modify endogenous genomic DNA in both human and mouse cells. Briefly, the process involves the targeting of a specific mutation in situ leading to the gene correction and the restoration of a normal gene function. Most of these protocols with therapeutic potential are oligonucleotide based, and rely on endogenous enzymatic pathways. One gene targeting approach, "Small Fragment Homologous Replacement (SFHR)", has been found to be effective in modifying genomic DNA. This approach uses small DNA fragments (SDF) to target specific genomic loci and induce sequence and subsequent phenotypic alterations. This study shows that SFHR can stably introduce a 3-bp deletion (deltaF508, the most frequent cystic fibrosis (CF) mutation) into the Cftr (CF Transmembrane Conductance Regulator) locus in the mouse embryonic stem (ES) cell genome. After transfection of deltaF508-SDF into murine ES cells, SFHR-mediated modification was evaluated at the molecular levels on DNA and mRNA obtained from transfected ES cells. About 12% of transcript corresponding to deleted allele was detected, while 60% of the electroporated cells completely lost any measurable CFTR-dependent chloride efflux. The data indicate that the SFHR technique can be used to effectively target and modify genomic sequences in ES cells. Once the SFHR-modified ES cells differentiate into different cell lineages they can be useful for elucidating tissue-specific gene function and for the development of transplantation-based cellular and therapeutic protocols.
NASA Astrophysics Data System (ADS)
Moffett, K. B.; Smith, B. C.; O'Connor, M.; Mohrig, D. C.
2014-12-01
Coastal fluvial delta morphodynamics are prominently controlled by external fluvial sediment and water supplies; however, internal sediment-water-vegetation feedbacks are now being proposed as potentially equally significant in organizing and maintaining the progradation and aggradation of such systems. The time scales of fluvial and climate influences on these feedbacks, and of their responses, are also open questions. Historical remote sensing study of the Wax Lake Delta model system (Louisiana, USA) revealed trends in the evolution of the subaerial island surfaces from a non-systematic arrangement of elevations to a discrete set of levees and intra-island platforms with distinct vegetation types, designated as high marsh, low marsh, and mudflat habitat. We propose that this elevation zonation is consistent with multiple stable state theory, e.g. as applied to tidal salt marsh systems but not previously to deltas. According to zonally-distributed sediment core analyses, differentiation of island elevations was not due to organic matter accumulation as in salt marshes, but rather by differential mineral sediment accumulation with some organic contributions. Mineral sediment accumulation rates suggested that elevation growth was accelerating or holding steady over time, at least to date in this young delta, in contrast to theory suggesting rates should slow as elevation increases above mean water level. Hydrological analysis of island flooding suggested a prominent role of stochastic local storm events in raising island water levels and supplying mineral sediment to the subaerial island surfaces at short time scales; over longer time scales, the relative influences of local storms and inland/regional floods on the coupled sediment-water-vegetation system of the subaerial delta island surfaces remain the subject of ongoing study. These results help provide an empirical foundation for the next generation of coupled sediment-water-vegetation modeling and theory.
Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology.
Galneder, R; Kahl, V; Arbuzova, A; Rebecchi, M; Rädler, J O; McLaughlin, S
2001-05-01
We describe an apparatus that combines microelectrophoresis and laser trap technologies to monitor the activity of phosphoinositide-specific phospholipase C-delta1 (PLC-delta) on a single bilayer-coated silica bead with a time resolution of approximately 1 s. A 1-microm-diameter bead was coated with a phospholipid bilayer composed of electrically neutral phosphatidylcholine (PC) and negatively charged phosphatidylinositol 4,5-bisphosphate (2% PIP2) and captured in a laser trap. When an AC field was applied (160 Hz, 20 V/cm), the electrophoretic force produced a displacement of the bead, Delta(x), from its equilibrium position in the trap; Delta(x), which was measured using a fast quadrant diode detector, is proportional to the zeta potential and thus to the number of PIP2 molecules on the outer leaflet (initially, approximately 10(5)). When a solution containing PLC-delta flows past the bead, the enzyme adsorbs to the surface and hydrolyzes PIP2 to form the neutral lipid diacylglycerol. We observed a nonexponential decay of PIP2 on the bead with time that is consistent with a model based on the known structural properties of PLC-delta.
NASA Astrophysics Data System (ADS)
Jiang, Haihong
2005-11-01
The copper ethanolamine (CuEA) complex was used as a wood surface modifier and a coupling agent for wood-PVC composites. Mechanical properties of composites, such as unnotched impact strength, flexural strength and flexural toughness, were significantly increased, and fungal decay weight loss was dramatically decreased by wood surface copper amine treatments. It is evident that copper amine was a very effective coupling agent and decay inhibitor for PVC/wood flour composites, especially in high wood flour loading level. A DSC study showed that the heat capacity differences (DeltaCp) of composites before and after PVC glass transition were reduced by adding wood particles. A DMA study revealed that the movements of PVC chain segments during glass transition were limited and obstructed by the presence of wood molecule chains. This restriction effect became stronger by increasing wood flour content and by using Cu-treated wood flour. Wood flour particles acted as "physical cross-linking points" inside the PVC matrix, resulting in the absence of the rubbery plateau of PVC and higher E', E'' above Tg, and smaller tan delta peaks. Enhanced mechanical performances were attributed to the improved wetting condition between PVC melts and wood surfaces, and the formation of a stronger interphase strengthened by chemical interactions between Cu-treated wood flour and the PVC matrix. Contact angles of PVC solution drops on Cu-treated wood surfaces were decreased dramatically compared to those on the untreated surfaces. Acid-base (polar), gammaAB, electron-acceptor (acid) (gamma +), electron-donor (base) (gamma-) surface energy components and the total surface energies increased after wood surface Cu-treatments, indicating a strong tendency toward acid-base or polar interactions. Improved interphase and interfacial adhesion were further confirmed by measuring interfacial shear strength between wood and the PVC matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balzarotti, A.; De Crescenzi, M.; Motta, N.
1988-10-01
From x-ray photoemission and Auger measurements of the Cu 2p and O 1s core levels of YBa/sub 2/Cu/sub 3/O/sub 7-//sub delta/ as a function of the oxygen concentration delta, the average copper charge is determined. Evidence is found of dynamic charge fluctuations on the oxygen sublattice giving rise to a greater concentration of trivalent copper at the Cu(1) sites with respect to that determined by the analysis of neutron-diffraction data. On the basis of our experimental results, we introduce a molecular cluster description for the Cu states. The lowest final-states configurations of Cu/sup 2+/ and Cu/sup 3+/ are c3d/sup 10/Lmore » and c3d/sup 10/L/sup 2/, respectively, where c and L denote core holes on copper and oxygen atoms. Oxygen holes have high mobility and a Hubbard correlation energy less than 2 eV, a signature of their delocalization. The effect of temperature on the spectra is minor. Surface degradation modifies the relative intensity of the structures, particularly those of the O spectrum.« less
Delta Doping High Purity CCDs and CMOS for LSST
NASA Technical Reports Server (NTRS)
Blacksberg, Jordana; Nikzad, Shouleh; Hoenk, Michael; Elliott, S. Tom; Bebek, Chris; Holland, Steve; Kolbe, Bill
2006-01-01
A viewgraph presentation describing delta doping high purity CCD's and CMOS for LSST is shown. The topics include: 1) Overview of JPL s versatile back-surface process for CCDs and CMOS; 2) Application to SNAP and ORION missions; 3) Delta doping as a back-surface electrode for fully depleted LBNL CCDs; 4) Delta doping high purity CCDs for SNAP and ORION; 5) JPL CMP thinning process development; and 6) Antireflection coating process development.
The leading-edge vortex of swift-wing shaped delta wings
NASA Astrophysics Data System (ADS)
Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria
2017-11-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).
Phosphorus Losses from Agricultural Watersheds in the Mississippi Delta
High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss, rainfall, surface runoff, sediment, ortho-P and total P (TP) were measured (1996 to 2...
Cooper-pair-condensate fluctuations and plasmons in layered superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cote, R.; Griffin, A.
1993-10-01
Starting from a given attractive potential, we give a systematic analysis of the spin-singlet [ital s]-wave Cooper-pair-condensate fluctuations in a two-dimensional (2D) superconductor. These results are applied to a superlattice of superconducting sheets in which the 2D charge fluctuations are coupled via the Coulomb interaction. Our main interest is how the low-energy Anderson-Bogoliubov (AB) phonon mode in the pair-breaking gap [omega][lt]2[Delta] is modified by the Coulomb interaction. Our formal analysis is valid at arbitrary temperatures. It describes the weakly bound, large-Cooper-pair limit as well as the strongly bound, small-Cooper-pair limit and thus includes both the BCS and Bose-Einstein scenarios (asmore » discussed by Nozieres and Schmitt-Rink as well as Randeira [ital et] [ital al].). A comlete normal-mode analysis is given for a charged BCS superconductor, showing how the repulsive (Coulomb) interaction modifies the collective modes of a neutral superconductor. This complements the recent numerical study carried out by Fertig and Das Sarma. We show that the pair-response function shares the same spectrum as the charge-response function, given by the zero of the longitudinal dielectric function [epsilon]([bold q],[omega]). In 2D and layered superconductors, there is a low-frequency and high-frequency plasmon branch, separated by a relatively narrow particle-hole continuum at around 2[Delta]. The low-frequency ([omega][lt]2[Delta]) plasmon branch is a renormalized version of the AB phonon mode.« less
East Louisiana continental shelf sediments: a product of delta reworking
Brooks, Gregg R.; Kingdinger, Jack L.; Penland, Shea; Williams, S. Jeffress
1995-01-01
Data from 77 vibracores were integrated with 6,700 line-km of high- resolution seismic reflection profiles collected off the eastern Louisiana coast in the region of the St. Bernard Delta, the first of the Holocene highstand deltas of the Mississippi River. Seismic fades and sediment facies were integrated in order to establish the stratigraphic details within this relict delta. Results provide a regional geologic framework from which comparisons can be made with other areas. Holocene deposits in the study area overlie a heavily dissected surface interpreted to represent a lowstand erosional surface. Resting on this surface is a thin unit of relatively clean, quartz sand interpreted to have been deposited during early transgression. This unit is overlain by sediments of the St. Bernard Delta, a seaward-prograding, coarsening-upward wedge of sands and muds that contain vertically-stacked units of deltaic succession. Two or more prograding units separated by an unconformity, delineated from regional seismic profiles, may represent laterally shifting subdelta lobes. Surficial sediments consist of a thin unit of sands and muds derived from and reflecting the individual subenvirons of the underlying delta. Holocene inner-shelf development off eastern Louisiana has been controlled by relative sea-level rise and sediment supply. Sediment supply and deposition are a product of delta progradation and delta-lobe switching. The modern shelf configuration and surficial sediment distribution patterns reflect reworking of underlying deltaic deposits. The lack of modern sediment input helps to maintain the imprint of this ancient delta on the modern shelf surface.
Martian stepped-delta formation by rapid water release.
Kraal, Erin R; van Dijk, Maurits; Postma, George; Kleinhans, Maarten G
2008-02-21
Deltas and alluvial fans preserved on the surface of Mars provide an important record of surface water flow. Understanding how surface water flow could have produced the observed morphology is fundamental to understanding the history of water on Mars. To date, morphological studies have provided only minimum time estimates for the longevity of martian hydrologic events, which range from decades to millions of years. Here we use sand flume studies to show that the distinct morphology of martian stepped (terraced) deltas could only have originated from a single basin-filling event on a timescale of tens of years. Stepped deltas therefore provide a minimum and maximum constraint on the duration and magnitude of some surface flows on Mars. We estimate that the amount of water required to fill the basin and deposit the delta is comparable to the amount of water discharged by large terrestrial rivers, such as the Mississippi. The massive discharge, short timescale, and the associated short canyon lengths favour the hypothesis that stepped fans are terraced delta deposits draped over an alluvial fan and formed by water released suddenly from subsurface storage.
NASA Astrophysics Data System (ADS)
Chandran, Maneesh; Michaelson, Shaul; Saguy, Cecile; Hoffman, Alon
2016-11-01
In this letter, we report on the proof of a concept of an innovative delta doping technique to fabricate an ensemble of nitrogen vacancy centers at shallow depths in (100) diamond. A nitrogen delta doped layer with a concentration of ˜1.8 × 1020 cm-3 and a thickness of a few nanometers was produced using this method. Nitrogen delta doping was realized by producing a stable nitrogen terminated (N-terminated) diamond surface using the RF nitridation process and subsequently depositing a thin layer of diamond on the N-terminated diamond surface. The concentration of nitrogen on the N-terminated diamond surface and its stability upon exposure to chemical vapor deposition conditions are determined by x-ray photoelectron spectroscopy analysis. The SIMS profile exhibits a positive concentration gradient of 1.9 nm/decade and a negative gradient of 4.2 nm/decade. The proposed method offers a finer control on the thickness of the delta doped layer than the currently used ion implantation and delta doping techniques.
New Treatment of Strongly Anisotropic Scattering Phase Functions: The Delta-M+ Method
NASA Astrophysics Data System (ADS)
Stamnes, K. H.; Lin, Z.; Chen, N.; Fan, Y.; Li, W.; Stamnes, S.
2017-12-01
The treatment of strongly anisotropic scattering phase functions is still a challenge for accurate radiance computations. The new Delta-M+ method resolves this problem by introducing a reliable, fast, accurate, and easy-to-use Legendre expansion of the scattering phase function with modified moments. Delta-M+ is an upgrade of the widely-used Delta-M method that truncates the forward scattering cone into a Dirac-delta-function (a direct beam), where the + symbol indicates that it essentially matches moments above the first 2M terms. Compared with the original Delta-M method, Delta-M+ has the same computational efficiency, but the accuracy has been increased dramatically. Tests show that the errors for strongly forward-peaked scattering phase functions are greatly reduced. Furthermore, the accuracy and stability of radiance computations are also significantly improved by applying the new Delta-M+ method.
NASA Astrophysics Data System (ADS)
Benito, Xavier; Trobajo, Rosa; Cearreta, Alejandro; Ibáñez, Carles
2016-10-01
The ecology and modern distribution of benthic foraminiferal assemblages were analysed in the Ebro Delta (NW Mediterranean Sea). Foraminiferal distributions were from 191 sediment surface samples covering a wide range of deltaic habitats and adjacent open sea areas. According to similarity in species composition, cluster analysis identified four habitat types: (1) offshore habitat, (2) nearshore and outer bays, (3) salt and brackish marshes and (4) coastal lagoons and inner bays. Canonical Correspondence Analysis identified water depth, salinity and sand content as the main environmental factors structuring living foraminiferal assemblages. Partial Canonical Correspondence Analysis revealed water depth as the most statistically significant associated with the distribution of modern foraminifera in the Ebro Delta. Thus, a transfer function for water depth using Weighted Average Partial Least Squares regression was successfully developed. Although depth per se is unlikely to affect the foraminifera directly but will exert its effects via various environmental variables that co-vary with depth in the deltaic habitats (e.g. hydrodynamics, oxygen, food availability, etc), the resulting model (r2 = 0.89; RMSEP = 0.32 log10 m) suggested a strong correlation between observed and foraminifera-predicted water depths, and therefore provided a potentially useful tool for water-depth reconstructions in the Ebro Delta. This work indicated the potential role of modern foraminifera as quantitative indicators of water depth and habitat types in the Ebro Delta. This complementary approach (transfer function and indicator species) will allow reconstruction of the palaeoenvironmental changes that have occurred in the Ebro Delta based on the benthic foraminiferal record.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, T.A. Jr.
The primary objective of this report is to compare the results of delta surface interpolation with kriging on four large sets of radiological data sampled in the Frenchman Lake region at the Nevada Test Site. The results of kriging, described in Barnes, Giacomini, Reiman, and Elliott, are very similar to those using the delta surface interpolant. The other topic studied is in reducing the number of sample points and obtaining results similar to those using all of the data. The positive results here suggest that great savings of time and money can be made. Furthermore, the delta surface interpolant ismore » viewed as a contour map and as a three dimensional surface. These graphical representations help in the analysis of the large sets of radiological data.« less
NASA Technical Reports Server (NTRS)
Langel, R. A.
1973-01-01
Variations in the scalar magnetic field (delta B) from the polar orbiting OGO 2, 4, and 6 spacecraft are examined as a function of altitude for times when the interplanetary magnetic field is toward the sun and for times when the interplanetary magnetic field away from the sun. This morphology is basically the same as that found when all data, irrespective of interplanetary magnetic sector, are averaged together. Differences in delta B occur, both between sectors and between seasons, which are similar in nature to variations in the surface delta Z found by Langel (1973c). The altitude variation of delta B at sunlit local times, together with delta Z at the earth's surface, demonstrates that the delta Z and delta B which varies with sector has an ionospheric source. Langel (1973b) showed that the positive delta B region in the dark portion of the hemisphere is due to at least two sources, the westward electrojet and an unidentified non-ionospheric source(s). Comparison of magnetic variations between season/sector at the surface and at the satellite, in the dark portion of the hemisphere, indicates that these variations are caused by variations in the latitudinally narrow electrojet currents and not by variations in the non-ionospheric source of delta B.
Incorporation of transmembrane hydroxide transport into the chemiosmotic theory.
de Grey, A D
1999-10-01
A cornerstone of textbook bioenergetics is that oxidative ATP synthesis in mitochondria requires, in normal conditions of internal and external pH, a potential difference (delta psi) of well over 100 mV between the aqueous compartments that the energy-transducing membrane separates. Measurements of delta psi inferred from diffusion of membrane-permeant ions confirm this, but those using microelectrodes consistently find no such delta psi--a result ostensibly irreconcilable with the chemiosmotic theory. Transmembrane hydroxide transport necessarily accompanies mitochondrial ATP synthesis, due to the action of several carrier proteins; this nullifies some of the proton transport by the respiratory chain. Here, it is proposed that these carriers' structure causes the path of this "lost" proton flow to include a component perpendicular to the membrane but within the aqueous phases, so maintaining a steady-state proton-motive force between the water at each membrane surface and in the adjacent bulk medium. The conflicting measurements of delta psi are shown to be consistent with the response of this system to its chemical environment.
Barbosa, Inês C R; Kley, Maximiliane; Schäufele, Rudi; Auerswald, Karl; Schröder, Wolf; Filli, Flurin; Hertwig, Stefan; Schnyder, Hans
2009-08-01
The horn of ungulate grazers offers a valuable isotopic record of their diet and environment. However, there have been no reports of the spatio-temporal variation of the isotopic composition of horns. We investigated patterns of carbon (delta(13)C) and nitrogen (delta(15)N) isotopic composition along and perpendicular to the horn axis in Capra ibex and Rupicapra rupicapra rupicapra to assess the effects of animal age, within-year (seasonal) and inter-annual variation, natural contamination and sampling position on horn isotope composition. Horns of male C. ibex (n = 23) and R. r. rupicapra (n = 1) were sampled longitudinally on the front (only R. r. rupicapra) and back side and on the surface and sub-surface. The sides of the R. r. rupicapra horn did not differ in delta(13)C. In both species, the horn surface had a 0.15 per thousand lower delta(13)C and a higher carbon-to-nitrogen (C/N) ratio than the sub-surface. Washing the horn with water and organic solvents removed material that caused these differences. With age, the delta(15)N of C. ibex horns increased (+0.1 per thousand year(-1)), C/N ratio increased, and (13)C discrimination relative to atmospheric CO(2) ((13)Delta) increased slightly (+0.03 per thousand year(-1)). Geostatistical analysis of one C. ibex horn revealed systematic patterns of inter-annual and seasonal (13)C changes, but (15)N changed only seasonally. The work demonstrates that isotopic signals in horns are influenced by natural contamination (delta(13)C), age effects ((13)Delta and delta(15)N), and seasonal (delta(13)C and delta(15)N) and inter-annual variation (delta(13)C). The methods presented allow us to distinguish between these effects and thus allow the use of horns as isotopic archives of the ecology of these species and their habitat. Copyright (c) 2009 John Wiley & Sons, Ltd.
David, Robert; Groebner, Michael; Franz, Wolfgang-Michael
2005-04-01
Embryonic stem (ES) cells offer great potential in regenerative medicine and tissue engineering. Clinical applications are still hampered by the lack of protocols for gentle, high-yield isolation of specific cell types for transplantation expressing no immunogenic markers. We describe labeling of stably transfected ES cells expressing a human CD4 molecule lacking its intracellular domain (DeltaCD4) under control of the phosphoglycerate kinase promoter for magnetic cell sorting (MACS). To track the labeled ES cells, we fused DeltaCD4 to an intracellular enhanced green fluorescent protein domain (DeltaCD4EGFP). We showed functionality of the membrane-bound fluorescent fusion protein and its suitability for MACS leading to purities greater than 97%. Likewise, expression of DeltaCD4 yielded up to 98.5% positive cells independently of their differentiation state. Purities were not limited by the initial percentage of DeltaCD4(+) cells, ranging from 0.6%-16%. The viability of MACS-selected cells was demonstrated by reaggregation and de novo formation of embryoid bodies developing all three germ layers. Thus, expression of DeltaCD4 in differentiated ES cells may enable rapid, high-yield purification of a desired cell type for tissue engineering and transplantation studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherwood, O A; Heikoop, J M; Scott, D B
2005-02-03
The deep-sea gorgonian coral Primnoa spp. lives in the Atlantic and Pacific Oceans at depths of 65-3200 m. This coral has an arborescent growth form with a skeletal axis composed of annual rings made from calcite and gorgonin. It has a lifespan of at least several hundred years. It has been suggested that isotopic profiles from the gorgonin fraction of the skeleton could be used to reconstruct long-term, annual-scale variations in surface productivity. We tested assumptions about the trophic level, intra-colony isotopic reproducibility, and preservation of isotopic signatures in a suite of modern and fossil specimens. Measurements of gorgonin {Delta}{supmore » 14}C and {delta}{sup 15}N indicate that Primnoa spp. feed mainly on zooplankton and/or sinking particulate organic matter (POM{sub SINK}), and not on suspended POM (POM{sub SUSP}) or dissolved organic carbon (DOC). Gorgonin {delta}{sup 13}C and {delta}{sup 15}N in specimens from NE Pacific shelf waters, NW Atlantic slope waters, the Sea of Japan, and a South Pacific (Southern Ocean sector) seamount were strongly correlated with Levitus 1994 surface apparent oxygen utilization (AOU; the best available measure of surface productivity), demonstrating coupling between skeletal isotopic ratios and biophysical processes in surface water. Time-series isotopic profiles from different sections along the same colony were identical for {delta}{sup 13}C, while {delta}{sup 15}N profiles became more dissimilar with increasing separation along the colony axis. Similarity in C:N, {delta}{sup 13}C and {delta}{sup 15}N between modern and fossil specimens suggest that isotopic signatures are preserved over millennial timescales. Finally, the utility of this new archive was demonstrated by reconstruction of 20th century bomb radiocarbon.« less
Templin, William E.; Cherry, Daniel E.
1997-01-01
Partial data on drainage returns and surface-water withdrawals are presented for areas of the Sacramento-San Joaquin Delta, California, for March 1994 through February 1996. These areas cover most of the delta. Data are also presented for all drainage returns and some surface-water withdrawals for Twitchell Island, which is in the western part of the delta. Changes in land use between 1968 and 1991 are also presented for the delta. Measurements of monthly drainage returns and surface-water withdrawals were made using flowmeters installed in siphons and drain pipes on Twitchell Island. Estimates of monthly returns throughout the delta were made using electric power-consumption data with pump-efficiency-test data. For Twitchell Island, monthly measured drainage returns for the 1995 calendar year totaled about 11,200 acre-feet, whereas drainage returns estimated from power-consumption data totaled 5 percent less at about 10,600 acre-feet. Monthly surface-water withdrawals onto Twitchell Island through 12 of the 21 siphons totaled about 2,400 acre-feet for 1995. For most of the delta, the monthly estimated drainage returns for 1995 totaled about 430,000 acre-feet. The area consisting of Bouldin, Brannan, Staten, Tyler, and Venice Islands had the largest estimated drainage returns for calendar year 1995. Between 1968 and 1991, native vegetation in the delta decreased by 25 percent (about 40,000 acres), and grain and hay crops increased by 340 percent (about 71,000 acres). For Twitchell Island, native vegetation decreased about 77 percent (about 850 acres), while field crop acreage increased by about 44 percent (about 780 acres).
NASA Astrophysics Data System (ADS)
Matiatos, Ioannis; Paraskevopoulou, Vasiliki; Lazogiannis, Konstantinos; Botsou, Fotini; Dassenakis, Manos; Ghionis, George; Alexopoulos, John D.; Poulos, Serafim E.
2018-06-01
River deltas sustain important ecosystems with rich biodiversity and large biomass, as well as human populations via the availability of water and food sources. Anthropogenic activities, such as urbanization, tourism and agriculture, may pose threats to river deltas. The knowledge of the factors controlling the regional water quality regime in these areas is important for planning sustainable use and management of the water resources. Here, hydrochemical methods and multivariate statistical techniques were combined to investigate the shallow aquifer of the Pinios River (Thessaly) deltaic plain with respect to water quality, hydrogeochemical evolution and interactions between groundwater and surface water bodies. Water quality assessment indicated that most of the river and groundwater samples fully comply with the criteria set by the Drinking Water Directive (98/83/EC). The river is recharged mainly from springs of the Tempi valley and the shallow aquifer, and to a lesser degree from precipitation, throughout the year. The hydrogeochemical characteristics indicated a cation (Ca, Mg, and Na) bicarbonate water type, which evolves to calcium-chloride, sodium-bicarbonate and sodium-chloride water type, in the northern part of the delta. Calcite and dolomite dissolution determined the major ion chemistry, but other processes, such as silicate weathering and cation exchange reactions, also contributed. In the northern part of the plain, the interaction with the deeper aquifer enriched the shallow aquifer with Na and Cl ions. Principal Component Analysis showed that five components (PCs) explain 77% of the total variance of water quality parameters; these are: (1) salinity; (2) water-silicate rocks interaction; (3) hardness due to calcite dissolution, and cation exchange processes; (4) nitrogen pollution; and (5) non-N-related artificial fertilizers. This study demonstrated that the variation of water hydrochemistry in the deltaic plain could be attributed to natural and anthropogenic processes. The interpretation of the PCA results dictated the parameters used for the development of a modified Water Quality Index (WQI), to provide a more comprehensive spatial representation of the water quality of the river delta.
Inhibition of Delta-induced Notch signaling using fucose analogs
Schneider, Michael; Kumar, Vivek; Nordstrøm, Lars Ulrik; Feng, Lei; Takeuchi, Hideyuki; Hao, Huilin; Luca, Vincent C.; Garcia, K. Christopher; Stanley, Pamela; Wu, Peng; Haltiwanger, Robert S.
2017-01-01
Notch is a cell-surface receptor that controls cell fate decisions and is regulated by O-glycans attached to epidermal growth factor-like (EGF) repeats in its extracellular domain. Protein O-fucosyltransferase 1 (Pofut1) modifies EGF repeats with O-fucose and is essential for Notch signaling. Constitutive activation of Notch signaling has been associated with a variety of human malignancies. Therefore, tools for inhibiting Notch activity are being developed as cancer therapeutics. Towards this end, we screened L-fucose analogs for their effects on Notch signaling. Two analogs, 6-alkynyl and 6-alkenyl fucose, were substrates of Pofut1 and were incorporated directly into Notch EGF repeats in cells. Both analogs were potent inhibitors of binding to and activation of Notch1 by Notch ligands Dll1 and Dll4, but not by Jag1. Mutagenesis and modeling studies suggest that incorporation of the analogs into EGF8 of Notch1 markedly reduces the ability of Delta ligands to bind and activate Notch1. PMID:29176671
Han, L; Tanweer, A; Szaran, J; Halas, S
2002-09-01
A modified technique for the conversion of sulphates and sulphides to SO2 with the mixture of V2O5-SiO2 for sulphur isotopic analyses is described. This technique is more suitable for routine analysis of large number of samples. Modification of the reaction vessel and using manifold inlet system allows to analyse up to 24 samples every day. The modified technique assures the complete yield of SO2, consistent oxygen isotope composition of the SO2 gas and reproducibility of delta34S measurements being within 0.10 per thousand. It is observed, however, oxygen in SO2 produced from sulphides differs in delta18O with respect to that produced from sulphates.
Effect of Thickness-to-Chord Ratio on Flow Structure of Low Swept Delta Wing
NASA Astrophysics Data System (ADS)
Gulsacan, Burak; Sencan, Gizem; Yavuz, Mehmet Metin
2017-11-01
The effect of thickness-to-chord (t/C) ratio on flow structure of a delta wing with sweep angle of 35 degree is characterized in a low speed wind tunnel using laser illuminated smoke visualization, particle image velocimetry, and surface pressure measurements. Four different t/C ratio varying from 4.75% to 19% are tested at angles of attack 4, 6, 8, and 10 degrees for Reynolds numbers Re =10,000 and 35,000. The results indicate that the effect of thickness-to-chord ratio on flow structure is quite substantial, such that, as the wing thickness increases, the flow structure transforms from leading edge vortex to three-dimensional separated flow regime. The wing with low t/C ratio of 4.75% experiences pronounced surface separation at significantly higher angle of attack compared to the wing with high t/C ratio. The results might explain some of the discrepancies reported in previously conducted studies related to delta wings. In addition, it is observed that the thickness of the shear layer separated from windward side of the wing is directly correlated with the thickness of the wing. To conclude, the flow structure on low swept delta wing is highly affected by t/C ratio, which in turn might indicate the potential usage of wing thickness as an effective flow control parameter.
NASA Astrophysics Data System (ADS)
Adrover, Alessandra; Giona, Massimiliano; Pagnanelli, Francesca; Toro, Luigi
2007-04-01
We analyze the influence of surface heterogeneity, inducing a random ζ-potential at the walls in electroosmotic incompressible flows. Specifically, we focus on how surface heterogeneity modifies the physico-chemical processes (transport, chemical reaction, mixing) occurring in microchannel and microreactors. While the macroscopic short-time features associated with solute transport (e.g. chromatographic patterns) do not depend significantly on ζ-potential heterogeneity, spatial randomness in the surface ζ-potential modifies the spectral properties of the advection-diffusion operator, determining different long-term properties of transport/reaction phenomena compared to the homogeneous case. Examples of physical relevance (chromatography, infinitely fast reactions) are addressed.
NASA Astrophysics Data System (ADS)
Ikeuchi, Hiroaki; Hirabayashi, Yukiko; Yamazaki, Dai; Muis, Sanne; Ward, Philip J.; Winsemius, Hessel C.; Verlaan, Martin; Kanae, Shinjiro
2017-08-01
Water-related disasters, such as fluvial floods and cyclonic storm surges, are a major concern in the world's mega-delta regions. Furthermore, the simultaneous occurrence of extreme discharges from rivers and storm surges could exacerbate flood risk, compared to when they occur separately. Hence, it is of great importance to assess the compound risks of fluvial and coastal floods at a large scale, including mega-deltas. However, most studies on compound fluvial and coastal flooding have been limited to relatively small scales, and global-scale or large-scale studies have not yet addressed both of them. The objectives of this study are twofold: to develop a global coupled river-coast flood model; and to conduct a simulation of compound fluvial flooding and storm surges in Asian mega-delta regions. A state-of-the-art global river routing model was modified to represent the influence of dynamic sea surface levels on river discharges and water levels. We conducted the experiments by coupling a river model with a global tide and surge reanalysis data set. Results show that water levels in deltas and estuaries are greatly affected by the interaction between river discharge, ocean tides and storm surges. The effects of storm surges on fluvial flooding are further examined from a regional perspective, focusing on the case of Cyclone Sidr in the Ganges-Brahmaputra-Meghna Delta in 2007. Modeled results demonstrate that a >3 m storm surge propagated more than 200 km inland along rivers. We show that the performance of global river routing models can be improved by including sea level dynamics.
Li, Shuzhao; Donner, Elizabeth; Xiao, Huining; Thompson, Michael; Zhang, Yachuan; Rempel, Curtis; Liu, Qiang
2016-12-01
A water resistant surface was first obtained by immobilizing hydrophobic copolymers, poly (styrene-co-glycidyl methacrylate) (PSG), with functional groups on soy protein isolate (SPI) films. XPS and AFM results showed that PSG copolymers were immobilized on the film by chemical bonding, and formed a rough surface with some bumps because of the segregation of two different phases on PSG copolymers. Water resistance of the modified films could be adjusted dramatically by further immobilizing different amounts of guanidine-based antimicrobial polymers, poly (hexamethylene guanidine hydrochloride) (PHMG) on the resulting hydrophobic surface. The introduction of hydrophilic PHMG on the resulting surface generated many micropores, which potentially increased the water uptake of the modified films. Furthermore, the modified SPI films showed higher thermostability compared to native SPI film and broad-spectrum antimicrobial activity by contact killing, attributed to the presence of PHMG on the surface. The modified SPI film with a multi-functional surface showed potential for applications in the packaging and medical fields. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guy,J.; Whittle, E.; Kumaran, D.
2007-01-01
The multifunctional acyl-acyl carrier protein (ACP) desaturase from Hedera helix (English ivy) catalyzes the {Delta}{sup 4} desaturation of 16:0-ACP and the{Delta}{sup 9} desaturation of 18:0-ACP and further desaturates{Delta}{sup 9}-16:1 or {Delta}{sup 9}-18:1 to the corresponding {Delta}{sup 4,9} dienes. The crystal structure of the enzyme has been solved to 1.95{angstrom} resolution, and both the iron-iron distance of 3.2{angstrom} and the presence of a {mu}-oxo bridge reveal this to be the only reported structure of a desaturase in the oxidized FeIII-FeIII form. Significant differences are seen between the oxidized active site and the reduced active site of the Ricinus communis (castor) desaturase;more » His{sup 227} coordination to Fe2 is lost, and the side chain of Glu{sup 224}, which bridges the two iron ions in the reduced structure, does not interact with either iron. Although carboxylate shifts have been observed on oxidation of other diiron proteins, this is the first example of the residue moving beyond the coordination range of both iron ions. Comparison of the ivy and castor structures reveal surface amino acids close to the annulus of the substrate-binding cavity and others lining the lower portion of the cavity that are potential determinants of their distinct substrate specificities. We propose a hypothesis that differences in side chain packing explains the apparent paradox that several residues lining the lower portion of the cavity in the ivy desaturase are bulkier than their equivalents in the castor enzyme despite the necessity for the ivy enzyme to accommodate three more carbons beyond the diiron site.« less
NASA Technical Reports Server (NTRS)
Rao, D. M.; Tingas, S. A.
1981-01-01
The drag reduction potential of leading edge devices on a 60 degree delta wing at high lift was examined. Geometric variations of fences, chordwise slots, pylon type vortex generators, leading edge vortex flaps, and sharp leading edge extensions were tested individually and in specific combinations to improve high-alpha drag performance with a minimum of low-alpha drag penalty. The force, moment, and surface static pressure data for angles of attack up to 23 degrees, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter are documented.
Identification of Acetaminophen Adducts of Rat Liver Microsomal Proteins using 2D-LC-MS/MS.
Golizeh, Makan; LeBlanc, André; Sleno, Lekha
2015-11-16
Xenobiotic metabolism in the liver can give rise to reactive metabolites that covalently bind to proteins, and determining which proteins are targeted is important in drug discovery and molecular toxicology. However, there are difficulties in the analysis of these modified proteins in complex biological matrices due to their low abundance. In this study, an analytical approach was developed to systematically identify target proteins of acetaminophen (APAP) in rat liver microsomes (RLM) using two-dimensional chromatography and high-resolution tandem mass spectrometry. In vitro microsomal incubations, with and without APAP, were digested and subjected to strong cation exchange (SCX) fractionation prior to reverse-phase UHPLC-MS/MS. Four data processing strategies were combined into an efficient label-free workflow meant to eliminate potential false positives, using peptide spectral matching, statistical differential analysis, product ion screening, and a custom-built delta-mass filtering tool to pinpoint potential modified peptides. This study revealed four proteins, involved in important cellular processes, to be covalently modified by APAP. Data are available via ProteomeXchange with identifier PXD002590.
Lim, Jongil; Whitcomb, John; Boyd, James; Varghese, Julian
2007-01-01
A finite element implementation of the transient nonlinear Nernst-Planck-Poisson (NPP) and Nernst-Planck-Poisson-modified Stern (NPPMS) models is presented. The NPPMS model uses multipoint constraints to account for finite ion size, resulting in realistic ion concentrations even at high surface potential. The Poisson-Boltzmann equation is used to provide a limited check of the transient models for low surface potential and dilute bulk solutions. The effects of the surface potential and bulk molarity on the electric potential and ion concentrations as functions of space and time are studied. The ability of the models to predict realistic energy storage capacity is investigated. The predicted energy is much more sensitive to surface potential than to bulk solution molarity.
NASA Astrophysics Data System (ADS)
Yavuz, Mehmet Metin; Celik, Alper; Cetin, Cenk
2016-11-01
In the present study, different flow control approaches including bio-inspired edge modifications, passive bleeding, and pulsed blowing are introduced and applied for the flow over non-slender delta wing. Experiments are conducted in a low speed wind tunnel for a 45 degree swept delta wing using qualitative and quantitative measurement techniques including laser illuminated smoke visualization, particle image velocimety (PIV), and surface pressure measurements. For the bio-inspired edge modifications, the edges of the wing are modified to dolphin fluke geometry. In addition, the concept of flexion ratio, a ratio depending on the flexible length of animal propulsors such as wings, is introduced. For passive bleeding, directing the free stream air from the pressure side of the planform to the suction side of the wing is applied. For pulsed blowing, periodic air injection through the leading edge of the wing is performed in a square waveform with 25% duty cycle at different excitation frequencies and compared with the steady and no blowing cases. The results indicate that each control approach is quite effective in terms of altering the overall flow structure on the planform. However, the success level, considering the elimination of stall or delaying the vortex breakdown, depends on the parameters in each method.
Yang, Tingting; Qian, Shi; Qiao, Yuqing; Liu, Xuanyong
2016-09-01
TiO2 nanotubes prepared by electrochemical anodization have received considerable attention in the biomedical field. In this work, different amounts of gold nanoparticles were immobilized onto TiO2 nanotubes using 3-aminopropyltrimethoxysilane as coupling agent. Field emission scanning electron microscopy and X-ray photoelectron spectroscopy were used to investigate the surface morphology and composition. Photoluminescence spectra and surface zeta potential were also measured. The obtained results indicate that the surface modified gold nanoparticles can significantly enhance the electron storage capability and reduce the surface zeta potential compared to pristine TiO2 nanotubes. Moreover, the surface modified gold nanoparticles can stimulate initial adhesion and spreading of rat bone mesenchymal stem cells as well as proliferation, while the osteogenous performance of TiO2 nanotubes will not be reduced. The gold-modified surface presents moderate antibacterial effect on both Staphylococcus aureus and Escherichia coli. It should be noted that the surface modified fewer gold nanoparticles has better antibacterial effect compared to the surface of substantial modification of gold nanoparticles. Our study illustrates a composite surface with favorable cytocompatibility and antibacterial effect and provides a promising candidate for orthopedic and dental implant. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Schutt, R. L.
1991-01-01
Four new Delta Scuti stars are reported. Power, modified into amplitude, spectra, and light curves are used to determine periodicities. A complete frequency analysis is not performed due to the lack of a sufficient time base in the data. These new variables help verify the many predictions that Delta Scuti stars probably exist in prolific numbers as small amplitude variables. Two of these stars, HR 4344 and HD 107513, are possibly Am stars. If so, they are among the minority of variable stars which are also Am stars.
Investigating the Stability of Four Methods for Estimating Item Bias.
ERIC Educational Resources Information Center
Perlman, Carole L.; And Others
The reliability of item bias estimates was studied for four methods: (1) the transformed delta method; (2) Shepard's modified delta method; (3) Rasch's one-parameter residual analysis; and (4) the Mantel-Haenszel procedure. Bias statistics were computed for each sample using all methods. Data were from administration of multiple-choice items from…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, B.G.; Davis, J.H.; Coplen, T.B.
1997-11-01
In the mantled karst terrane of northern Florida, the water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface. Chemical and isotopic analyses [{sup 18}O/{sup 16}O ({delta}{sup 18}O), {sup 2}H/{sup 1}H ({delta}D), {sup 13}C/{sup 12}C ({delta}{sup 13}C), tritium ({sup 3}H), and strontium-87/strontium-86 ({sup 87}Sr/{sup 86}Sr)] along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of ground water as it evolves downgradient in two systems. In one system, surface water enters the Upper Florida aquifer through a sinkhole located in the Northern Highlandsmore » physiographic unit. In the other system, surface water enters the aquifer through a sinkhole lake (Lake Bradford) in the Woodville Karst Plain. Differences in the composition of water isotopes ({delta}{sup 18}O and {delta}D) in rainfall, ground water, and surface water were used to develop mixing models of surface water (leakage of water to the Upper Floridan aquifer from a sinkhole lake and a sinkhole) and ground water. Using mass-balance calculations, based on differences in {delta}{sup 18}O and {delta}D, the proportion of lake water that mixed with meteoric water ranged from 7 to 86% in water from wells located in close proximity to lake Bradford. In deeper parts of the Upper Floridan aquifer, water enriched in {sup 18}O and D from five of 12 samples municipal wells indicated that recharge from a sinkhole (1 to 24%) and surface water with an evaporated isotopic signature (2 to 32%) was mixing with ground water. The solute isotopes, {delta}{sup 13}C and {sup 87}Sr/{sup 86}Sr, were used to test the sensitivity of binary and ternary mixing models, and to estimate the amount of mass transfer of carbon and other dissolved species in geochemical reactions.« less
Proposed algorithm for determining the delta intercept of a thermocouple psychrometer curve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurzmack, M.A.
1993-07-01
The USGS Hydrologic Investigations Program is currently developing instrumentation to study the unsaturated zone at Yucca Mountain in Nevada. Surface-based boreholes up to 2,500 feet in depth will be drilled, and then instrumented in order to define the water potential field within the unsaturated zone. Thermocouple psychrometers will be used to monitor the in-situ water potential. An algorithm is proposed for simply and efficiently reducing a six wire thermocouple psychrometer voltage output curve to a single value, the delta intercept. The algorithm identifies a plateau region in the psychrometer curve and extrapolates a linear regression back to the initial startmore » of relaxation. When properly conditioned for the measurements being made, the algorithm results in reasonable results even with incomplete or noisy psychrometer curves over a 1 to 60 bar range.« less
Orlando, James L.
2013-01-01
Beginning around 2000, abundance indices of four pelagic fishes (delta smelt, striped bass, longfin smelt, and threadfin shad) within the San Francisco Bay and Sacramento–San Joaquin Delta began to decline sharply (Sommer and others, 2007). These declines collectively became known as the pelagic organism decline (POD). No single cause has been linked to this decline, and current theories suggest that combinations of multiple stressors are likely to blame. Contaminants (including current-use pesticides) are one potential stressor being investigated for its role in the POD (Anderson, 2007). Pesticide concentration data collected by the U.S. Geological Survey (USGS) at multiple sites in the delta region over the past two decades are critical to understanding the potential effects of current-use pesticides on species of concern as well as the overall health of the delta ecosystem. In April 2010, a compilation of contaminant data for the delta region was published by the State Water Resources Control Board (Johnson and others, 2010). Pesticide occurrence was the major focus of this report, which concluded that “there was insufficient high quality data available to make conclusions about the potential role of specific contaminants in the POD.” The report cited multiple sources; however, data collected by the USGS were not included in the publication even though these data met all criteria listed for inclusion in the report. What follows is a summary of publicly available USGS data for pesticide concentrations in surface water and sediments within the Sacramento–San Joaquin Delta region from the years 1990 through 2010. Data were retrieved though the USGS National Water Information System (NWIS) database, a publicly available online-data repository (U.S. Geological Survey, 1998), and from published USGS reports (also available online at http://pubs.er.usgs.gov/). The majority of the data were collected in support of two long term USGS monitoring programs—National Water Quality Assessment Program (NAWQA; http://water.usgs.gov/ nawqa/) and National Stream Quality Accounting Network (NASQAN; http://water.usgs.gov/nasqan/)—and through projects associated with the USGS Toxics Substances Hydrology Program (http://toxics.usgs.gov/). In addition, data were collected during multiple research projects that were supported by various federal, state, and local agencies. Although these data have been previously published in some form, it is hoped that by focusing on samples collected within the delta region and presenting these data in a concise format, they will be a valuable resource for scientists, resource managers, and members of the public working to understand the role of pesticides in the POD and their potential effects on the overall health of the delta ecosystem.
Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming
2016-10-26
Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM 2.5 ) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO 2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m 3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM 2.5 pollution.
NASA Astrophysics Data System (ADS)
Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming
2016-10-01
Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM2.5) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM2.5 pollution.
Fu, Xiao; Wang, Shuxiao; Chang, Xing; Cai, Siyi; Xing, Jia; Hao, Jiming
2016-01-01
Secondary inorganic aerosols (SIA) are the predominant components of fine particulate matter (PM2.5) and have significant impacts on air quality, human health, and climate change. In this study, the Community Multiscale Air Quality modeling system (CMAQ) was modified to incorporate SO2 heterogeneous reactions on the surface of dust particles. The revised model was then used to simulate the spatiotemporal characteristics of SIA over China and analyze the impacts of meteorological factors and dust on SIA formation. Including the effects of dust improved model performance for the simulation of SIA concentrations, particularly for sulfate. The simulated annual SIA concentration in China was approximately 10.1 μg/m3 on domain average, with strong seasonal variation: highest in winter and lowest in summer. High SIA concentrations were concentrated in developed regions with high precursor emissions, such as the North China Plain, Yangtze River Delta, Sichuan Basin, and Pearl River Delta. Strong correlations between meteorological factors and SIA pollution levels suggested that heterogeneous reactions under high humidity played an important role on SIA formation, particularly during severe haze pollution periods. Acting as surfaces for heterogeneous reactions, dust particles significantly affected sulfate formation, suggesting the importance of reducing dust emissions for controlling SIA and PM2.5 pollution. PMID:27782166
Napa Earthquake impact on water systems
NASA Astrophysics Data System (ADS)
Wang, J.
2014-12-01
South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.
Ecosystem and physiological controls over methane production in northern wetlands
NASA Technical Reports Server (NTRS)
Valentine, David W.; Holland, Elisabeth A.; Schimel, David S.
1994-01-01
Peat chemistry appears to exert primary control over methane production rates in the Canadian Northern Wetlands Study (NOWES) area. We determined laboratory methane production rate potentials in anaerobic slurries of samples collected from a transect of sites through the NOWES study area. We related methane production rates to indicators of resistance to microbial decay (peat C: N and lignin: N ratios) and experimentally manipulated substrate availability for methanogenesis using ethanol (EtOH) and plant litter. We also determined responses of methane production to pH and temperature. Methane production potentials declined along the gradient of sites from high rates in the coastal fens to low rates in the interior bogs and were generally highest in surface layers. Strong relationships between CH4 production potentials and peat chemistry suggested that methanogenesis was limited by fermentation rates. Methane production at ambient pH responded strongly to substrate additions in the circumneutral fens with narrow lignin: N and C: N ratios (delta CH4/delta EtOH = 0.9-2.3 mg/g) and weakly in the acidic bogs with wide C: N and lignin: N ratios (delta CH4/delta EtOH = -0.04-0.02 mg/g). Observed Q(sub 10) values ranged from 1.7 to 4.7 and generally increased with increasing substrate availability, suggesting that fermentation rates were limiting. Titration experiments generally demonstrated inhibition of methanogenesis by low pH. Our results suggest that the low rates of methane emission observed in interior bogs during NOWES likely resulted from pH and substrate quality limitation of the fermentation step in methane production and thus reflect intrinsically low methane production potentials. Low methane emission rates observed during NOWES will likely be observed in other northern wetland regions with similar vegetation chemistry.
Chen, Xingyu; Yang, Ming; Liu, Botao; Li, Zhiqiang; Tan, Hong; Li, Jianshu
2017-08-22
Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP-PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (dimethylamino)ethyl methacrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering.
Cholic acid accumulation and its diminution by short-chain fatty acids in bifidobacteria.
Kurdi, Peter; Tanaka, Hiroshi; Van Veen, Hendrik W; Asano, Kozo; Tomita, Fusao; Yokota, Atsushi
2003-08-01
Cholic acid (CA) transport was investigated in nine intestinal Bifidobacterium strains. Upon energization with glucose, all of the bifidobacteria accumulated CA. The driving force behind CA accumulation was found to be the transmembrane proton gradient (Delta pH, alkaline interior). The levels of accumulated CA generally coincided with the theoretical values, which were calculated by the Henderson-Hasselbalch equation using the measured internal pH values of the bifidobacteria, and a pK(a) value of 6.4 for CA. These results suggest that the mechanism of CA accumulation is based on the diffusion of a hydrophobic weak acid across the bacterial cell membrane, and its dissociation according to the Delta pH value. A mixture of short-chain fatty acids (acetate, propionate and butyrate) at the appropriate colonic concentration (117 mM in total) reduced CA accumulation in Bifidobacterium breve JCM 1192(T). These short-chain fatty acids, which are weak acids, reduced the Delta pH, thereby decreasing CA accumulation in a dose-dependent manner. The bifidobacteria did not alter or modify the CA molecule. The probiotic potential of CA accumulation in vivo is discussed in relation to human bile acid metabolism.
NASA Technical Reports Server (NTRS)
Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu
1992-01-01
Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.
Sheng-Jiun Wu; Noah C. Koller; Deborah L. Miller; Leah S. Bauer; Donald H. Dean
2000-01-01
We used site-directed mutagenesis to modify the Bacillus cry3A gene in amino acid residues 350-354. Two mutant toxins, A1 (R345A, Y350F, Y351F) and A2 (R345A,DeltaY350, DeltaY351, showed significantly improved...
Shi, Fenghui; Dai, Zhishuang; Zhang, Baoyan
2010-07-01
Inverse gas chromatography (IGC) was used to measure the surface tension and solubility parameter of E51 epoxy resin in this work. By using the Schultz method, decane, nonane, octane and heptane were chosen as the neutral probes to calculate the dispersive surface tensions (gamma(D)). Based on the Good-van Oss equation, the specific surface tension (gamma(SP)) of E51 epoxy resin was calculated with the acidic probe of dichloromethane and the basic probe of toluene. The results showed that the gamma(D) and gamma(SP) of the E51 resin decreased linearly with the increase of temperature. According to the Flory-Huggins parameters (chi) between the resin and a series of probes, the solubility parameters (delta) of E51 resin at different temperatures were estimated using the method developed by DiPaola-Baranyi and Guillet. It was found that the values of delta of the E51 resin were 11.78, 11.57, 11.48 and 11.14 MPa1/2 at 30, 40, 50 and 60 degrees C, respectively. The dispersive component (delta(D)) and the specific component (delta(SP)) of solubility parameter at different temperatures of the E51 resin were investigated according to the relationships between surface tension, cohesion energy and solubility parameter. The results showed that the values of delta(D) were higher than those of delta(SP) for the epoxy resin, and both of them decreased with the increase of temperature.
Environmental and eelgrass response to dike removal: Nisqually River Delta (2010–14)
Takesue, Renee K.
2016-10-03
Restoration of tidal flows to formerly diked marshland can alter land-to-sea fluxes and patterns of accumulation of terrestrial sediment and organic matter, and these tidal flows can also affect existing nearshore habitats. Dikes were removed from 308 hectares (ha) of the Nisqually National Wildlife Refuge on the Nisqually River Delta in south Puget Sound, Washington, in fall 2009 to improve habitat for wildlife, such as juvenile salmon. Ecologically important intertidal and subtidal eelgrass (Zostera marina) beds grow on the north and west margins of the delta. The goal of this study was to understand long-term changes in eelgrass habitat and their relation to dike removal. Sediment and eelgrass properties were monitored annually in May from 2010 to 2014 at two sites on the west side of the Nisqually River Delta along McAllister Creek, a spring-fed creek near two restored tidal channels. In May 2014, the mean canopy height of eelgrass was the same as in previous years in an 8-ha bed extending to the Nisqually River Delta front, but mean canopy height was 20 percent lower in a 0.3-ha eelgrass bed closer to the restored marsh when compared to mean canopy height of eelgrass in May 2010, 6 months after dike removal was completed. Over 5 years, the amount of eelgrass leaf area per square meter (m2) in the 8-ha bed increased slightly, and surface-sediment grain size became finer. In contrast, in the 0.3-ha bed, eelgrass leaf area per m2 decreased by 45 percent, and surface sediment coarsened. Other potential stressors, including sediment pore water reduction-oxidation potential (redox) and hydrogen sulfide (H2S) concentration in the eelgrass rhizosphere, or root zone, were below levels that negatively affect eelgrass growth and therefore did not appear to be environmental stressors on plants. Eelgrass biomass partitioning, though less favorable in the 8-ha eelgrass bed compared to the 0.3-ha one, was well above the critical above-ground to below-ground biomass ratio of 2:1 for Z. marina, an indication that these plants were not at risk of a carbon deficit during low-light conditions. After 5 years, nearshore changes associated with the restoration of tidal flows to formerly diked marshes of the Nisqually River Delta appeared to have little impact on the large eelgrass bed extending from Luhr Beach to the Nisqually River Delta front; however, restoration appears to be contributing to the decline of a small eelgrass bed closer to the restoration area.
Tong, Henry H Y; Shekunov, Boris Yu; York, Peter; Chow, Albert H L
2002-05-01
To characterize the surface thermodynamic properties of two polymorphic forms (I and II) of salmeterol xinafoate (SX) prepared from supercritical fluids and a commercial micronized SX (form 1) sample (MSX). Inverse gas chromatographic analysis was conducted on the SX samples at 30, 40, 50, and 60 degrees C using the following probes at infinite dilution: nonpolar probes (NPs; alkane C5-C9 series); and polar probes (PPs; i.e., dichloromethane, chloroform, acetone, ethyl acetate, diethyl ether, and tetrahydrofuran). Surface thermodynamic parameters of adsorption and Hansen solubility parameters were calculated from the retention times of the probes. The free energies of adsorption (- deltaG(A)) of the three samples obtained at various temperatures follow this order: SX-II > MSX approximately/= SX-I for the NPs; and SX-II > MSX > SX-I for the PPs. For both NPs and PPs, SX-II exhibits a less negative enthalpy of adsorption (deltaH(A)) and a much less negative entropy of adsorption (ASA) than MSX and SX-I, suggesting that the high -AGA of SX-II is contributed by a considerably reduced entropy loss. The dispersive component of surface free energy (gammas(D)) is the highest for MSX but the lowest for SX-II at all temperatures studied, whereas the specific component of surface free energy of adsorption (-deltaG(A)SP) is higher for SX-II than for SX-I. That SX-II displays the highest -deltaG(A) for the NP but the lowest gammasD of all the SX samples may be explained by the additional -AGA change associated with an increased mobility of the probe molecules on the less stable and more disordered SX-II surface. The acid and base parameters, K(A) and K(D) that were derived from deltaH(A)SP reveal significant differences in the relative acid and base properties among the samples. The calculated Hansen solubility parameters (deltaD, deltap, and deltaH) indicate that the surface of SX-II is the most polar and most energetic of all the three samples in terms of specific interactions (mostly hydrogen bonding). The metastable SX-II polymorph possesses a higher surface free energy, higher surface entropy, and a more polar surface than the stable SX-I polymorph.
Hydrology and subsidence potential of proposed coal-lease tracts in Delta County, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, T.
Potential subsidence from underground coal mining and associated hydrologic impacts were investigated at two potential coal-lease tracts in Delta County, Colorado. Alteration of existing flow systems could affect water users in the surrounding area. An inventory was made of 20 wells (18 in the Paonia study area and 2 in the Cedaredge study area) and 16 springs in the Paonia study area. Wells completed in the Mesaverde Formation yielded a sodium bicarbonate type water. Water levels in wells ranged from 149 to 2209 feet below the land surface in the Paonia study area and were 25 and 217 feet belowmore » the land surface in the Cedaredge study area. Spring discharges in the Paonia study area ranged from 0.02 to 8.41 gallons per minute. The waters were of the calcium sodium bicarbonate type. Tests conducted in October 1982 indicated that Terror Creek in the Paonia study area lost 0.59 cubic foot per second along about 1.5 miles of thin alluvium overlying the lower Mesaverde Formation. Measurements in the same week indicated that Oak Creek in the Cedaredge study area gained 0.92 cubic foot per second along about 1.5 miles of thick alluvium overlying the Mesaverde Formation. The stream waters were a calcium bicarbonate type. Mining beneath Stevens Gulch and East Roatcap Creek could produce surface expressions of subsidence. Subsidence could partly drain alluvial valley aquifers or streamflow in these drainages. 21 refs.« less
Propulsion Trade Studies for Spacecraft Swarm Mission Design
NASA Technical Reports Server (NTRS)
Dono, Andres; Plice, Laura; Mueting, Joel; Conn, Tracie; Ho, Michael
2018-01-01
Spacecraft swarms constitute a challenge from an orbital mechanics standpoint. Traditional mission design involves the application of methodical processes where predefined maneuvers for an individual spacecraft are planned in advance. This approach does not scale to spacecraft swarms consisting of many satellites orbiting in close proximity; non-deterministic maneuvers cannot be preplanned due to the large number of units and the uncertainties associated with their differential deployment and orbital motion. For autonomous small sat swarms in LEO, we investigate two approaches for controlling the relative motion of a swarm. The first method involves modified miniature phasing maneuvers, where maneuvers are prescribed that cancel the differential delta V of each CubeSat's deployment vector. The second method relies on artificial potential functions (APFs) to contain the spacecraft within a volumetric boundary and avoid collisions. Performance results and required delta V budgets are summarized, indicating that each method has advantages and drawbacks for particular applications. The mini phasing maneuvers are more predictable and sustainable. The APF approach provides a more responsive and distributed performance, but at considerable propellant cost. After considering current state of the art CubeSat propulsion systems, we conclude that the first approach is feasible, but the modified APF method of requires too much control authority to be enabled by current propulsion systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima Guerra, Denis; Azevedo Pinto, Alane; Airoldi, Claudio
2008-12-15
Synthetic Na-magadiite sample was used for organofunctionalization process with N-propyldiethylenetrimethoxysilane and bis[3-(triethoxysilyl)propyl]tetrasulfide, after expanding the interlayer distance with polar organic solvents such as dimethylsulfoxide (DMSO). The resulted materials were submitted to process of adsorption with arsenic solution at pH 2.0 and 298{+-}1 K. The adsorption isotherms were adjusted using a modified Langmuir equation with regression nonlinear; the net thermal effects obtained from calorimetric titration measurements were adjusted to a modified Langmuir equation. The adsorption process was exothermic ({delta}{sub int}H=-4.15-5.98 kJ mol{sup -1}) accompanied by increase in entropy ({delta}{sub int}S=41.32-62.20 J k{sup -1} mol{sup -1}) and Gibbs energy ({delta}{sub int}G=-22.44-24.56 kJmore » mol{sup -1}). The favorable values corroborate with the arsenic (III)/basic reactive centers interaction at the solid-liquid interface in the spontaneous process. - Grapical Abstract: The results suggest that the adsorption capacities increased with an increase of reactive basic centers in the pendant organic chains of the intercalated agent.« less
Farooq, S H; Chandrasekharam, D; Berner, Z; Norra, S; Stüben, D
2010-11-01
In the wake of the idea that surface derived dissolved organic carbon (DOC) plays an important role in the mobilization of arsenic (As) from sediments to groundwater and may provide a vital tool in understanding the mechanism of As contamination (mobilization/fixation) in Bengal delta; a study has been carried out. Agricultural fields that mainly cultivate rice (paddy fields) leave significantly large quantities of organic matter/organic carbon on the surface of Bengal delta which during monsoon starts decomposing and produces DOC. The DOC thus produced percolates down with rain water and mobilizes As from the sediments. Investigations on sediment samples collected from a paddy field clearly indicate that As coming on to the surface along with the irrigation water accumulates itself in the top few meters of sediment profile. The column experiments carried out on a 9 m deep sediment profile demonstrates that DOC has a strong potential to mobilize As from the paddy fields and the water recharging the aquifer through such agricultural fields contain As well above the WHO limit thus contaminating the shallow groundwater. Experiment also demonstrates that decay of organic matter induces reducing condition in the sediments. Progressively increasing reducing conditions not only prevent the adsorption of As on mineral surfaces but also cause mobilization of previously sorbed arsenic. There seems to be a cyclic pattern where As from deeper levels comes to the surface with irrigational water, accumulates itself in the sediments, and ultimately moves down to the shallow groundwater. The extensive and continual exploitation of intermediate/deep groundwater accelerates this cyclic process and helps in the movement of shallow contaminated groundwater to the deeper levels. Copyright © 2010 Elsevier Ltd. All rights reserved.
Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks.
Shelley, M J; Tao, L
2001-01-01
To avoid the numerical errors associated with resetting the potential following a spike in simulations of integrate-and-fire neuronal networks, Hansel et al. and Shelley independently developed a modified time-stepping method. Their particular scheme consists of second-order Runge-Kutta time-stepping, a linear interpolant to find spike times, and a recalibration of postspike potential using the spike times. Here we show analytically that such a scheme is second order, discuss the conditions under which efficient, higher-order algorithms can be constructed to treat resets, and develop a modified fourth-order scheme. To support our analysis, we simulate a system of integrate-and-fire conductance-based point neurons with all-to-all coupling. For six-digit accuracy, our modified Runge-Kutta fourth-order scheme needs a time-step of Delta(t) = 0.5 x 10(-3) seconds, whereas to achieve comparable accuracy using a recalibrated second-order or a first-order algorithm requires time-steps of 10(-5) seconds or 10(-9) seconds, respectively. Furthermore, since the cortico-cortical conductances in standard integrate-and-fire neuronal networks do not depend on the value of the membrane potential, we can attain fourth-order accuracy with computational costs normally associated with second-order schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iu, Kaikong; Thomas, J.K.
Direct time-resolved studies of singlet molecular oxygen ({sup 1}{Delta}{sub g}O{sub 2}) phosphorescence ({sup 3}{Sigma}{sub g} {sup {minus}}O{sub 2} ({nu} = 0) {l arrow} {sup 1}{Delta}{sub g}O{sub 2} ({nu} = 0); 1,270 nm) in heterogeneous silica gel/cyclohexane systems are presented. Singlet molecular oxygen ({sup 1}{Delta}{sub g}O{sub 2}) is created through a photosensitization process on silica gel surfaces. The experimental results show that the lifetimes of singlet molecular oxygen ({sup 1}{Delta}{sub g}O{sub 2}) in both porous and compressed fumed silica/gel cyclohexane systems are significantly less than that in liquid cyclohexane. The shortened singlet molecular oxygen lifetime is due mainly to quenching bymore » adsorbed water and silanol groups on the silica gel surface. In addition, monoamines coadsorbed on the silica gel surface do not quench singlet molecular oxygen ({sup 1}{Delta}{sub g}O{sub 2}); however, diamines such as DABCO or piperazine maintain their quenching activity, but the quenching kinetics are not of the Stern-Volmer type. The singlet molecular oxygen lifetime increases on loading the porous silica gel/cyclohexane system with monoamine. Coadsorption of piperazine increases quenching of {sup 1}{Delta}{sub g} O{sub 2} by DABCO.« less
Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows
NASA Technical Reports Server (NTRS)
Wood, R. M.; Miller, D. S.
1985-01-01
An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.
Holocene evolution of a wave-dominated fan-delta: Godavari delta, India
NASA Astrophysics Data System (ADS)
Saito, Y.; Nageswara Rao, K.; Nagakumar, K.; Demudu, G.; Rajawat, A.; Kubo, S.; Li, Z.
2013-12-01
The Godavari delta is one of the world's largest wave-dominated deltas. The Godavari River arises in the Western Ghats near the west coast of India and drains an area of about 3.1x10^5 km^2, flowing about 1465 km southeast across the Indian peninsula to the Bay of Bengal. The Godavari delta consists of a gentle seaward slope from its apex (12 m elevation) at Rajahmundry and a coastal beach-ridge plain over a distance of about 75 km and covers ~5200 km^2 as a delta plain. The river splits into two major distributary channels, the Gautami and the Vasishta, at a barrage constructed in the mid-1800s. The coastal environment of the deltaic coast is microtidal (~1 m mean tidal range) and wave-dominated (~1.5 m mean wave height in the June-September SW monsoon season, ~0.8 m in the NE monsoon season). Models of the Holocene evolution of the Godavari delta have changed from a zonal progradation model (e.g. Nageswara Rao & Sadakata, 1993) to a truncated cuspate delta model (Nageswara Rao et al., 2005, 2012). Twelve borehole cores (340 m total length), taken in the coastal delta plain during 2010-2013, yielded more than 100 C-14 dates. Sediment facies and C-14 dates from these and previous cores and remote-sensing data support a new delta evolution model. The Holocene coastal delta plain is divided into two parts by a set of linear beach ridges 12-14 km landward from the present shoreline in the central part of the delta. The location of the main depocenter (lobe) has shifted during the Holocene from 1) the center to 2) the west, 3) east, 4) center, 5) west, and 6) east. The linear beach ridges separate the first three from the last three stages. These lobe shifts are controlled by river channel shifts near the apex. Just as the current linear shoreline of the central part of the delta and the concave-up nearshore topography are the result of coastal erosion of a cuspate delta, the linear beach ridges indicate a former eroded shoreline. An unconformity within the deltaic sediments also indicates erosional environments during the formation of the linear shoreline. We interpret this unconformity as a wave-ravinement surface in a regressive delta succession reflecting the decrease of sediment supply due to lobe shifts (or avulsion), and not as a marine erosion surface due to forced regression. Similar erosion surface is recognized in the Yellow River delta (Saito et al., 2000). Discrimination of either surface for ancient sediments and rocks in a wave-dominated setting will be important in sequence-stratigraphic interpretation. Coastal erosion and deposition have occurred in wave-dominated deltas naturally on centennial to millenneial time scales, resulting in delta progradation during the Holocene. However recent decrease of sediment discharge due to dam construction and irrigation on decadal time scales has been exacerbating coastal erosion significantly, resulting in delta shrinking in the Godavari delta. Nageswara Rao, K., Sadakata, N.: In Kay, R. (Ed.), Deltas of the World. American Society of Civil Engineers, New York, 1-15, 1993. Nageswara Rao, K. et al.: In Bhattacharya, J.P., Gioson, L. (Eds.), River Deltas--Concepts, Models and Examples: SEPM Special Publication 83, 435-451, 2005. Nageswara Rao, K. et al.: Geomorphology 175-176, 163¬-175, 2012. Saito, Y. et al.: J Asian Earth Sci. 18, 489-497, 2000.
Analog hardware for delta-backpropagation neural networks
NASA Technical Reports Server (NTRS)
Eberhardt, Silvio P. (Inventor)
1992-01-01
This is a fully parallel analog backpropagation learning processor which comprises a plurality of programmable resistive memory elements serving as synapse connections whose values can be weighted during learning with buffer amplifiers, summing circuits, and sample-and-hold circuits arranged in a plurality of neuron layers in accordance with delta-backpropagation algorithms modified so as to control weight changes due to circuit drift.
NASA Astrophysics Data System (ADS)
Yeo, L. H.; Han, J.; Wang, X.; Werner, G.; Deca, J.; Munsat, T.; Horanyi, M.
2017-12-01
Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection/reflection of thecharged particles. Consequently, surface charging in these regions will be modified. Using the Colorado Solar Wind Experiment facility, this interaction is investigated with high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole (0.13 T) embedded under various insulating surfaces. The dipole moment is perpendicular to the surface. Using an emissive probe, 2D plasma potential profiles are obtained above the surface. In the dipole lobe regions, the surfaces are charged to significantly positive potentials due to the impingement of the unmagnetized ions while the electrons are magnetically shielded. At low ion beam energies, the results agree with the theoretical predictions, i.e., the surface potential follows the energy of the beam ions in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of investigations have been conducted and indicate that the surface properties (e.g., modified surface conductance, ion induced secondary electrons and electron-neutral collision at the surface) are likely to play a role in determining the surface potential.
The Orinoco megadelta as a conservation target in the face of the ongoing and future sea level rise.
Vegas-Vilarrúbia, T; Hernández, E; Rull, Valentí; Rull Vegas, Elisa
2015-05-15
Currently, risk assessments related to rising sea levels and the adoption of defensive or adaptive measures to counter these sea level increases are underway for densely populated deltas where economic losses might be important, especially in the developed world. However, many underpopulated deltas harbouring high biological and cultural diversity are also at risk but will most likely continue to be ignored as conservation targets. In this study, we explore the potential effects of erosion, inundation and salinisation on one of the world's comparatively underpopulated megadeltas, the Orinoco Delta. With a 1 m sea level rise expected to occur by 2100, several models predict a moderate erosion of the delta's shorelines, migration or loss of mangroves, general inundation of the delta with an accompanying submersion of wetlands, and an increase in the distance to which sea water intrudes into streams, resulting in harm to the freshwater biota and resources. The Warao people are the indigenous inhabitants of the Orinoco Delta and currently are subject to various socioeconomic stressors. Changes due to sea level rise will occur extremely rapidly and cause abrupt shifts in the Warao's traditional environments and resources, resulting in migrations and abandonment of their ancestral territories. However, evidence indicates that deltaic aggradation/accretion processes at the Orinoco delta due to allochthonous sediment input and vegetation growth could be elevating the surface of the land, keeping pace with the local sea level rise. Other underpopulated and large deltas of the world also may risk immeasurable biodiversity and cultural losses and should not be forgotten as important conservation targets. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, S.J.; Matter, A.
1995-01-02
Early diagenetic carbonate cements are a common feature of Quaternary alluvial conglomerates in Oman. Cements are formed in the vadose and, more commonly, phreatic zones from near-surface groundwaters. In drainage areas underlain by the Semail Ophiolite, groundwaters have Mg{sup 2+}/Ca{sup 2+} ratios greater than two, and cements are often dolomite or high-magnesium calcite in addition to low-magnesium calcite. In drainage areas underlain by limestone, groundwaters have Mg{sup 2+}/Ca{sup 2+} ratios of around one or less and cement mineralogy is nearly always low-magnesium calcite. The oxygen and carbon stable isotopic ratios of the cements vary widely, from {minus}10.6{per_thousand} to +3.0{per_thousand} PDBmore » and from {minus}10.0{per_thousand} to +0.7{per_thousand} PDB, respectively. Cement {delta}{sup 18}O values principally reflect variation in rainfall {delta}{sup 18}O over a time scale of several thousand years. Rainfall and cement {delta}{sup 18}O values probably are inversely correlated with the amount of rainfall, which is related to the frequency and intensity of the Indian Ocean monsoon. Thus, cement {delta}{sup 18}O is potentially a proxy indicator of relative rainfall and monsoon activity. For each of three sampling areas, {delta}{sup 13}C is positively correlated to {delta}{sup 18}O. Cement {delta}{sup 13}C values are also related to rainfall amount because rainfall controls the plant population. Greater plant respiration of isotopically depleted CO{sub 2} to shallow groundwaters and burial of organic material in conglomerate deposits results in lower cement {delta}{sup 13}C values compared to periods of lesser plant activity.« less
Neuberger, M S; Rajewsky, K
1981-01-01
From a hybrid mouse cell line (B1-8) that secreted an IgM, lambda 1 anti-(4-hydroxy-3-nitrophenyl)acetyl antibody but that had no detectable surface IgM, selection for a variant with lambda 1 chains on the surface resulted in the isolation of a line that had switched from mu to delta expression. The surface and secreted Igs of this line were typed as IgD with two monoclonal antibodies, and the parental IgM and variant IgD molecules carried the same variable regions as judged by hapten-binding and idiotypic analysis. The surface and secreted delta chains of the IgD variant have apparent molecular weights of 64,000 and 61,000, respectively. However, the unglycosylated secreted delta polypeptide chain has a molecular weight of only 44,000. The secreted IgD exists predominantly in the delta 2 lambda A2 form, does not contain J protein, is relatively stable in serum, and does not fix complement. Images PMID:6940132
Wei, Mengshi; Zhou, Chao; Tang, Jinyao; Wang, Wei
2018-01-24
Synthetic microswimmers, or micromotors, are finding potential uses in a wide range of applications, most of which involve boundaries. However, subtle yet important effects beyond physical confinement on the motor dynamics remain less understood. In this letter, glass substrates were functionalized with positively and negatively charged polyelectrolytes, and the dynamics of micromotors moving close to the modified surfaces was examined. Using acoustic levitation and numerical simulation, we reveal how the speed of a chemically propelled micromotor slows down significantly near a polyelectrolyte-modified surface by the combined effects of surface charges, surface morphology, and ions released from the films.
Liu, Cong-Qiang; Lang, Yun-Chao; Satake, Hiroshi; Wu, Jiahong; Li, Si-Liang
2008-08-01
Because of active exchange between surface and groundwater of a karstic hydrological system, the groundwater of Guiyang, the capital city of Guizhou Province, southwest China, has been seriously polluted by anthropogenic inputs of NO3-, SO4(2-), Cl-, and Na+. In this work, delta37Cl of chloride and delta34S variations of sulfate in the karstic surface/groundwater system were studied, with a main focus to identify contaminant sources, including their origins. The surface, ground, rain, and sewage water studied showed variable delta37Cl and delta34S values, in the range of -4.1 to +2.0 per thousand, and -20.4 to +20.9 per thousand for delta37Cl and delta34S (SO4(2-)), respectively. The rainwater samples yielded the lowest delta37Cl values among those observed to date for aerosols and rainwater. Chloride in the Guiyang area rain waters emanated from anthropogenic sources rather than being of marine origin, probably derived from HCl (g) emitted by coal combustion. By plotting 1/SO4(2-) vs delta34S and 1/Cl- vs delta37Cl, respectively, we were able to identify some clusters of data, which were assigned as atmospheric deposition (acid rain component), discharge from municipal sewage, paleo-brine components in clastic sedimentary rocks, dissolution of gypsum mainly in dolomite, oxidation of sulfide minerals in coal-containing clastic rocks, and possibly degradation of chlorine-containing organic matter. We conclude that human activities give a significant input of sulfate and chloride ions, as well as other contaminants, into the studied groundwater system through enhanced atmospheric deposition and municipal sewage, and that multiple isotopic tracers constitute a powerful tool to ascertain geochemical characteristics and origin of complex contaminants in groundwater.
Córdoba, Alba; Satué, María; Gómez-Florit, Manuel; Hierro-Oliva, Margarita; Petzold, Christiane; Lyngstadaas, Staale P; González-Martín, María Luisa; Monjo, Marta; Ramis, Joana M
2015-03-11
Flavonoids are small polyphenolic molecules of natural origin with antioxidant, anti-inflammatory, and antibacterial properties. Here, a bioactive surface based on the covalent immobilization of flavonoids taxifolin and quercitrin on titanium substrates is presented, using (3-aminopropyl)triethoxysilane (APTES) as coupling agent. FTIR and XPS measurements confirm the grafting of the flavonoids to the surfaces. Using 2-aminoethyl diphenylborinate (DPBA, a flavonoid-specific dye), the modified surfaces are imaged by fluorescence microscopy. The bioactivity of the flavonoid-modified surfaces is evaluated in vitro with human umbilical cord derived mesenchymal stem cells (hUC-MSCs) and human gingival fibroblasts (HGFs) and compared to that of simple flavonoid coatings prepared by drop casting. Flavonoid-modified surfaces show anti-inflammatory and anti-fibrotic potential on HGF. In addition, Ti surfaces covalently functionalized with flavonoids promote the differentiation of hUC-MSCs to osteoblasts--enhancing the expression of osteogenic markers, increasing alkaline phosphatase activity and calcium deposition; while drop-casted surfaces do not. These findings could have a high impact in the development of advanced implantable medical devices like bone implants. Given the broad range of bioactivities of flavonoid compounds, these surfaces are ready to be explored for other biomedical applications, e.g., as stent surface or tumor-targeted functionalized nanoparticles for cardiovascular or cancer therapies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermally determining flow and/or heat load distribution in parallel paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.
A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.
Thermally determining flow and/or heat load distribution in parallel paths
Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.
2016-12-13
A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.
NASA Astrophysics Data System (ADS)
Mullane, M.; Kumpf, L. L.; Kineke, G. C.
2017-12-01
The Huanghe (Yellow River), once known for extremely high suspended-sediment concentrations (SSCs) that could produce hyperpycnal plumes (10s of g/l), has experienced a dramatic reduction in sediment load following the construction of several reservoirs, namely the Xiaolangdi reservoir completed in 1999. Except for managed flushing events, SSC in the lower river is now on the order of 1 g/l or less. Adaptations of the Chezy equation for gravity-driven transport show that dominant parameters driving hyperpycnal underflows include concentration (and therefore density), thickness of a sediment-laden layer and bed slope. The objectives of this research were to assess the potential for gravity-driven underflows given modern conditions at the active river mouth. Multiple shore-normal transects were conducted during research cruises in mid-July of 2016 and 2017 using a Knudsen dual-frequency echosounder to collect bathymetric data and to document the potential presence of fluid mud layers. An instrumented profiling tripod equipped with a CTD, optical backscatterance sensor and in-situ pump system were used to sample water column parameters. SSCs were determined from near-bottom and surface water samples. Echosounder data were analyzed for bed slopes at the delta-front and differences in depth of return for the two frequencies (50 and 200 kHz), which could indicate fluid muds. Bathymetric data analysis yielded bed slope measurements near or above threshold values to produce gravity-driven underflows (0.46°). The maximum observed thickness of a potential fluid mud layer was 0.7 m, and the highest sampled near-bed SSCs were nearly 14 g/l for both field campaigns. These results indicate that the modern delta maintains potential for sediment gravity-driven underflows, even during ambient conditions prior to maximum summer discharge. These results will inform future work quantitatively comparing the contributions of all sediment dispersal mechanisms near the active Huanghe delta environment, including advection of the buoyant river plume and wave resuspension and transport by tidal currents.
76 FR 57630 - Airworthiness Directives; Airbus Model A318, A319, A320, and A321 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
... surface. Request To Change Compliance Time Delta Air Lines (Delta) recommended that paragraph (g) of the... Mandatory Service Bulletin A320-27A1186, Revision 05, dated March 10, 2010. Delta stated that the current... the service bulletin wording. Delta also stated that the FAA AD wording does not give acceptance to...
Selective in situ potential-assisted SAM formation on multi electrode arrays
NASA Astrophysics Data System (ADS)
Haag, Ann-Lauriene; Toader, Violeta; Lennox, R. Bruce; Grutter, Peter
2016-11-01
The selective modification of individual components in a biosensor array is challenging. To address this challenge, we present a generalizable approach to selectively modify and characterize individual gold surfaces in an array, in an in situ manner. This is achieved by taking advantage of the potential dependent adsorption/desorption of surface-modified organic molecules. Control of the applied potential of the individual sensors in an array where each acts as a working electrode provides differential derivatization of the sensor surfaces. To demonstrate this concept, two different self-assembled monolayer (SAM)-forming electrochemically addressable ω-ferrocenyl alkanethiols (C11) are chemisorbed onto independent but spatially adjacent gold electrodes. The ferrocene alkanethiol does not chemisorb onto the surface when the applied potential is cathodic relative to the adsorption potential and the electrode remains underivatized. However, applying potentials that are modestly positive relative to the adsorption potential leads to extensive coverage within 10 min. The resulting SAM remains in a stable state while held at potentials <200 mV above the adsorption potential. In this state, the chemisorbed SAM does not significantly desorb nor do new ferrocenylalkythiols adsorb. Using three set applied potentials provides for controlled submonolayer alkylthiol marker coverage of each independent gold electrode. These three applied potentials are dependent upon the specifics of the respective adsorbate. Characterization of the ferrocene-modified electrodes via cyclic voltammetry demonstrates that each specific ferrocene marker is exclusively adsorbed to the desired target electrode.
Nearshore Circulation and Storm Surge Along the Mackenzie Delta Coast
NASA Astrophysics Data System (ADS)
Perrie, W.; Mulligan, R. P.; Solomon, S. M.; Hoque, A.; Zhang, L.
2008-12-01
The Mackenzie Delta is a 150 km long section of coastline characterized by muddy sediments where the Mackenzie River outflow, dispersed over 20 distributary channels, discharges into the southern Beaufort Sea. The marine environment in this region is an important and integral part of the lives of Canadian Northerners. The area is also undergoing hydrocarbon exploration with potential development within the next decade. Changes to Arctic climate, such as increasing ice-free western Arctic Ocean and intensifying storm activity, may endanger the coastal settlements and marine environment in the Mackenzie Delta region. The low gradient of the delta and the adjacent inner shelf makes it very susceptible to flooding during storms. Field observations in the nearshore zone collected in August of 2007 and 2008 indicate strong gradients in temperature and salinity in shallow water of 2-6 m. The fluctuations are associated with the movements of warm and fresh river plumes and wind-driven upwelling of cold and saline water below the thermocline. The observations are in agreement with 3D model simulations of the nearshore delta region using Delft3D, which includes wind, tidal, storm surge, buoyancy and river forcing. The results validate the model and indicate that it can be used to hindcast the nearshore oceanographic conditions during severe Arctic storms. As a case study we present preliminary model results for an Arctic storm from late 1999 that caused extensive vegetation die-off in the outer delta. This cyclone was a mesoscale Arctic storm that developed over the NE Pacific and western Bering Sea, intensified explosively in the Gulf of Alaska and developed into a meteorological bomb. The storm made landfall at Cape Newenham, Alaska, crossed the Rocky Mountains to the Yukon and Northwest Territories and re-intensified over a zone of high sea surface temperature gradients in the southern Beaufort Sea. Using the Canadian Mesoscale Compressible Community (MC2) atmospheric model, simulations of the storm pattern, track and intensity are in very good agreement with the NCEP re-analysis. This is model coupled to the Princeton Ocean Model (POM) and Hibler Ice Model, which are used to provide basin-scale driver fields and define the boundary conditions of the nearshore Delft3D model for the Mackenzie Delta region. Coastal damage was predominately caused by storm surge, and the high salinity flood waters that flowed over the surface of the outer delta.
Poncin-Epaillard, F; Mille, C; Debarnot, D; Zorzi, W; El Moualij, B; Coudreuse, A; Legeay, G; Quadrio, I; Perret-Liaudet, A
2012-01-01
The inner polymeric surface of an ELISA titration well is plasma-modified and coated with different surfactant molecules. The titration of neurodegenerative proteins markers (prion, Tau and β-synuclein), previously demonstrated as more efficient with such modified tubes, is related to the adhesion behaviour of these proteins and their corresponding capture antibodies. The adhesion process is studied in terms of anchoring and specific mechanisms. The proteins and antibodies binding onto such modified surfaces is related to the substrate hydrophilic character calculated from the angle contact measure, to the polymer surface charge measured through the streaming potential determination at different pH and the inner surface roughness determined from AFM images. Furthermore, the influence of the blocking agent used during the ELISA titration is also studied.
Chen, Ru; Yin, Pinghe; Zhao, Ling; Yu, Qiming; Hong, Aihua; Duan, Shunshan
2014-11-01
The aquatic environments of the Pearl River Delta in Southern China are subjected to contamination with various industrial chemicals from local industries. In this paper, the occurrence, seasonal variation and spatial distribution of alkylphenol octylphenol (OP) and nonylphenol (NP) in river surface water and sediments in the runoff outlets of the Pearl River Delta were investigated. NP and OP were detected in all water and sediment samples and their mean concentrations in surface water during the dry season ranged from 810 to 3366 ng/L and 85.5 to 581 ng/L, respectively, and those in sediments ranged from 14.2 to 95.2 ng/g dw and 0.4 to 3.0 ng/g dw, respectively. In surface water, much higher concentrations were detected in the dry season than those in the wet season. In sediments, the concentrations in the dry season were also mostly higher. High concentrations of NP and OP were found in Humen outlet, likely due to high levels of domestic and industrial wastewater discharges. An ecological risk assessment with the use of hazard quotient (HQ) was also carried out and the HQ values ranged from 3.6×10(-5) to 35 and 64% of samples gave a HQ>1, indicating that the current levels of NP and OP pose a significant risk to the relevant aquatic organisms in the region. Copyright © 2014. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flakes, L.G.; Fillon, R.H.
1996-12-31
A strongly negative seismic amplitude discovered in our 3-D data set at 450 ms has been tied to the interface marking the top of a thick sand section ca. -1300 ft sub-sea. Sequence stratigraphic and stacking pattern analysis of SP and GR logs point to a Late Pleistocene low-stand delta bar origin for the thick, blocky sands in the lower part of the section. Resistivity data shows the delta bar sands are wet with salt water while an uppermost, thin sand member, capped by shale constituting a notable flooding surface, and potential vertical seal, exhibited a high resistivity signature. Withmore » other evidence, this is considered to reflect the presence of free gas in the sand`s pore spaces. An amplitude extraction made to evaluate the reservoir potential of the gas-charged sand member revealed a pattern consistent with three, deltaic lobes aligned along a former drainage axis. The mapped features are considered the result of retrograde delta migration and geomorphic evolution in response to rising sea levels late in the low stand. The upper, gas-charged sand member was interpreted, based on modern analogs, as a transgressive sand sheet containing a combination of facies related to the sub-environments of delta lobe destruction and flooding during rapid marine transgression, e.g.: re-worked barrier island; marine sand shoal; and, inner neuritic shelf sands. The Chandeleur Islands and Ship Shoal are modern examples of these features. Because of the relatively thin but widespread character and good sand quality expected for a transgressive sand sheet, this prospect was selected as a low-risk, low-cost candidate for horizontal drilling and completion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flakes, L.G.; Fillon, R.H.
1996-01-01
A strongly negative seismic amplitude discovered in our 3-D data set at 450 ms has been tied to the interface marking the top of a thick sand section ca. -1300 ft sub-sea. Sequence stratigraphic and stacking pattern analysis of SP and GR logs point to a Late Pleistocene low-stand delta bar origin for the thick, blocky sands in the lower part of the section. Resistivity data shows the delta bar sands are wet with salt water while an uppermost, thin sand member, capped by shale constituting a notable flooding surface, and potential vertical seal, exhibited a high resistivity signature. Withmore » other evidence, this is considered to reflect the presence of free gas in the sand's pore spaces. An amplitude extraction made to evaluate the reservoir potential of the gas-charged sand member revealed a pattern consistent with three, deltaic lobes aligned along a former drainage axis. The mapped features are considered the result of retrograde delta migration and geomorphic evolution in response to rising sea levels late in the low stand. The upper, gas-charged sand member was interpreted, based on modern analogs, as a transgressive sand sheet containing a combination of facies related to the sub-environments of delta lobe destruction and flooding during rapid marine transgression, e.g.: re-worked barrier island; marine sand shoal; and, inner neuritic shelf sands. The Chandeleur Islands and Ship Shoal are modern examples of these features. Because of the relatively thin but widespread character and good sand quality expected for a transgressive sand sheet, this prospect was selected as a low-risk, low-cost candidate for horizontal drilling and completion.« less
Monitoring Direct Effects of Delta, Atlas, and Titan Launches from Cape Canaveral Air Station
NASA Technical Reports Server (NTRS)
Schmalzer, Paul A.; Boyle, Shannon R.; Hall, Patrice; Oddy, Donna M.; Hensley, Melissa A.; Stolen, Eric D.; Duncan, Brean W.
1998-01-01
Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects that could arise from direct impacts of the launch exhaust (e.g., blast, heat), deposition of exhaust products of the solid rocket motors (hydrogen chloride, aluminum oxide), or other effects such as noise. Here we: 1) review previous reports, environmental assessments, and environmental impact statements for Delta, Atlas, and Titan vehicles and pad areas to clarity the magnitude of potential impacts; 2) summarize observed effects of 15 Delta, 22 Atlas, and 8 Titan launches; and 3) develop a spatial database of the distribution of effects from individual launches and cumulative effects of launches. The review of previous studies indicated that impacts from these launches can occur from the launch exhaust heat, deposition of exhaust products from the solid rocket motors, and noise. The principal effluents from solid rocket motors are hydrogen chloride (HCl), aluminum oxide (Al2O3), water (H2O), hydrogen (H2), carbon monoxide (CO), and carbon dioxide (CO2). The exhaust plume interacts with the launch complex structure and water deluge system to generate a launch cloud. Fall out or rain out of material from this cloud can produce localized effects from acid or particulate deposition. Delta, Atlas, and Titan launch vehicles differ in the number and size of solid rocket boosters and in the amount of deluge water used. All are smaller and use less water than the Space Shuttle. Acid deposition can cause damage to plants and animals exposed to it, acidify surface water and soil, and cause long-term changes to community composition and structure from repeated exposure. The magnitude of these effects depends on the intensity and frequency of acid deposition.
Kuivila, K.M.; Moon, G.E.
2004-01-01
The San Francisco Estuary is critical habitat for delta smelt Hypomesus transpacificus, a fish whose abundance has declined greatly since 1983 and is now listed as threatened. In addition, the estuary receives drainage from the Central Valley, an urban and agricultural region with intense and diverse pesticide usage. One possible factor of the delta smelt population decline is pesticide toxicity during vulnerable larval and juvenile stages, but pesticide concentrations are not well characterized in delta smelt spawning and nursery habitat. The objective of this study was to estimate the potential exposure of delta smelt during their early life stages to dissolved pesticides. For 3 years (1998-2000), water samples from the Sacramento-San Joaquin Delta were collected during April-June in coordination with the California Department of Fish and Game's delta smelt early life stage monitoring program. Samples were analyzed for pesticides using solid-phase extraction and gas chromatography/mass spectrometry. Water samples contained multiple pesticides, ranging from 2 to 14 pesticides in each sample. In both 1999 and 2000, elevated concentrations of pesticides overlapped in time and space with peak densities of larval and juvenile delta smelt. In contrast, high spring outflows in 1998 transported delta smelt away from the pesticide sampling sites so that exposure could not be estimated. During 2 years, larval and juvenile delta smelt were potentially exposed to a complex mixture of pesticides for a minimum of 2-3 weeks. Although the measured concentrations were well below short-term (96-h) LC50 values for individual pesticides, the combination of multiple pesticides and lengthy exposure duration could potentially have lethal or sublethal effects on delta smelt, especially during early larval development.
Vaikousi, Hariklia; Biliaderis, Costas G; Koutsoumanis, Konstantinos P
2009-08-15
The applicability of a microbial Time Temperature Indicator (TTI) prototype, based on the growth and metabolic activity of a Lactobacillus sakei strain developed in a previous study, in monitoring quality of modified atmosphere packed (MAP) minced beef was evaluated at conditions simulating the chill chain. At all storage temperatures examined (0, 5, 10, 15 degrees C), the results showed that lactic acid bacteria (LAB) were the dominant bacteria and can be used as a good spoilage index of MAP minced beef. The end of product's shelf life as revealed by the sensory evaluation coincided with a LAB population level of 7 log(10) CFU/g. For all temperatures tested, the growth of L. sakei in the TTI resembled closely the growth of LAB in the meat product, with similar temperature dependence of the micro(max) and thus similar activation energy values calculated as 111.90 and 106.90 kJ/mol, for the two systems, respectively. In addition, the end point of TTI colour change coincided with the time of sensory rejection point of the beef product during its storage under isothermal chilled temperature conditions. The estimated activation energy, E(alpha), values obtained for parameters related to the response of DeltaE (total colour change of the TTI) describing the kinetics of colour change of the TTI during isothermal storage (i.e. the maximum specific rate of DeltaEpsilon evolution curve, micro(DeltaEpsilon), and also the reciprocal of t(i), time at which half of the maximum DeltaEpsilon is reached), were 112.77 and 127.28 kJ/mol, respectively. Finally, the application of the microbial TTI in monitoring the quality deterioration of MAP minced beef due to spoilage was further evaluated under dynamic conditions of storage, using two separate low temperature periodic changing scenarios, resembling the actual conditions occurring in the distribution chill chain. The results showed that the end point of TTI, after storage at those fluctuating temperature conditions, was noted very close to the end of product's sensorial shelf life. This finding points to the applicability of the developed microbial TTI as a valuable tool for monitoring the quality status during distribution and storage of chilled meat products, which are spoiled by lactic acid bacteria or other bacteria exhibiting similar kinetic responses and spoilage potential.
NASA Astrophysics Data System (ADS)
Scarelli, Frederico M.; Cantelli, Luigi; Barboza, Eduardo G.; Gabbianelli, Giovanni
2017-05-01
This paper focuses on the Ural Delta in the northern zone of the Caspian Sea, an area with particular characteristics, where intense influence from anthropogenic and natural factors exists, which acts on the fragile delta system. We built a database to integrate the data from the published sources, bathymetric survey, and recent images in the geographical information system (GIS) environment. The results were linked to the Caspian Sea level (CSL) curve, which had many variations, changing the Ural Delta system's dynamics and in its architecture. In addition, the anthropogenic changes contribute to shaping the actual Ural Delta architecture. Through the link between the results and CSL, we reconstructed an evolution model for the Ural Delta system for the last century and identified three different architectures for the Ural Delta, determined by the energy that acted on the system in the last century and by the anthropogenic changes. This work identifies six different delta phases, which are shaped by CSL changes during the last 70 years and by anthropogenic changes. The delta phases recognized are: i) a Lobate Delta phase, shaped during high CSL before 1935; ii) Natural Elongate Delta 1935-1950 formed during rapid CSL fall; iii) Anthropogenic Elongate Delta 1950-1966, formed during rapid CSL fall and after the Ural-Caspian Sea canal construction, which modified the sedimentary deposition on the delta; iv) Anthropogenic Elongate Delta 1966-1982 shaped during low CSL phase; v) Anthropogenic Elongate Delta 1982-1996 formed during a rapid CSL rise phase; and vi) Anthropogenic Elongate Delta 1996-2009 shaped during high CSL that represent the last phase and actual Ural Delta architecture.
NASA Astrophysics Data System (ADS)
Gu, Yuan; Ying, Kang; Shen, Dongsheng; Huang, Lijie; Ying, Xianbin; Huang, Haoqian; Cheng, Kun; Chen, Jiazheng; Zhou, Yuyang; Chen, Ting; Feng, Huajun
2017-12-01
Titanium is under consideration as a potential stable bio-anode because of its high conductivity, suitable mechanical properties, and electrochemical inertness in the operating potential window of bio-electrochemical systems; however, its application is limited by its poor electron-transfer capacity with electroactive bacteria and weak ability to form biofilms on its hydrophobic surface. This study reports an effective and low-cost way to convert a hydrophobic titanium alloy surface into a hydrophilic surface that can be used as a bio-electrode with higher electron-transfer rates. Pyrolytic gas of sewage sludge is used to modify the titanium alloy. The current generation, anodic biofilm formation surface, and hydrophobicity are systematically investigated by comparing bare electrodes with three modified electrodes. Maximum current density (15.80 A/m2), achieved using a modified electrode, is 316-fold higher than that of the bare titanium alloy electrode (0.05 A/m2) and that achieved by titanium alloy electrodes modified by other methods (12.70 A/m2). The pyrolytic gas-modified titanium alloy electrode can be used as a high-performance and scalable bio-anode for bio-electrochemical systems because of its high electron-transfer rates, hydrophilic nature, and ability to achieve high current density.
NASA Astrophysics Data System (ADS)
Nguyen, T. T.; Stattegger, K.; Nittrouer, C.; Phung, P. V.; Liu, P.; DeMaster, D. J.; Bui, D. V.; Le, A. D.; Nguyen, T. N.
2016-02-01
Collected surface-sediment samples in coastal water around Mekong Delta (from distributary channels to Ca Mau Peninsula) were analyzed to determine surface-sediment grain-size distribution and sediment-transport trend in the subaqueous Mekong Delta. The grain-size data set of 238 samples was obtained by using the laser instrument Mastersizer 2000 and LS Particle Size Analyzer. Fourteen samples were selected for geochemical analysis (total-organic and carbonate content). These geochemical results were used to assist in interpreting variations of granulometricparamenters along the cross-shore transects. Nine transects were examined from CungHau river mouth to Ca Mau Peninsula and six thematic maps on the whole study area were made. The research results indicate that: (1) generally, the sediment becomes finer from the delta front downwards to prodelta and becomes coarser again and poorer sorted on the adjacent inner shelf due to different sources of sediment; (2) sediment-granulometry parameters vary among sedimentary sub-environments of the underwater part of Mekong Delta, the distance from sediment source and hydrodynamic regime controlling each region; (3) the net sediment transport is southwest toward the Ca Mau Peninsula.
Cai, Jiannan; Cao, Yingzi; Tan, Haijian; Wang, Yanman; Luo, Jiaqi
2011-09-01
Surface sediments collected from nine urban rivers located in Zhongshan City, Pearl River Delta, were analyzed for total concentration of metals with digestion and chemical fractionation adopting the modified European Community Bureau of Reference (BCR) sequential extraction procedure. The results showed that concentration and fractionation of metals varied significantly among the rivers. The total concentration of eight metals in most rivers did not exceed the China Environmental Quality Standard for Soil, Grade III. The potential ecological risk of metals to rivers were related to the land use patterns, in the order of manufacturing areas > residential areas > agriculture areas. The concentration of Pb in the reducible fraction was relatively high (60.0-84.3%). The dominant proportions of Cd, Zn and Cu were primary in the non-residual fraction (67.0%, 71.8% and 81.4% on average respectively), while the percentages of the residual fractions of Cr and Ni varied over a wide range (43-85% and 24-71% respectively). The approaches of the Håkanson ecological risk index and Secondary Phase Enrichment Factor were applied for ecological risk assessment and metal enrichment calculation. The results indicated Hg and Cd had posed high potential ecological risk to urban rivers in this region. Meanwhile, there was widespread pollution and high enrichment of Cu in river sediments in this region. Multiple regression analysis showed that five water quality parameters (pH, DO, COD(Mn), NH(4)(+)-N, TP) had little influence on the distribution of metal fractionation. This result revealed that the ecological risk of metals was not eliminated along with the improvement in water quality. Correlation studies showed that among the metals, Group A (Cd, As, Pb, Zn Hg, r = 0.730-0.924) and Group B (Cr, Cu, Ni, r = 0.815-0.948) were obtained, and the metal contaminations were from industrial activities rather than residential.
The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts
NASA Technical Reports Server (NTRS)
Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Bock, J.;
2011-01-01
We investigate the potential of submm-mm and submm-mm-radio photometric red-shifts using a sample of mm-selected sources as seen at 250, 350 and 500 micrometers by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm-sources with reliable radio identifications in the GOODS-N and Lockman Hole North fields 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm colour evolution with redshift, finding that the colours of mm-sources are adequately described by a modified blackbody with constant optical depth Tau = (nu/nu(0))beta where beta = +1.8 and nu(0) = c/100 micrometers. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation we derive photometric redshift estimates for the 46 SPIRE detected mm-sources. Testing against the 22 sources with known spectroscopic, or good quality optical/near-IR photometric, redshifts we find submm/mm photometric redshifts offer a redshift accuracy of |delta z|/(1+z) = 0.16 (less than |delta z| greater than = 0.51). Including constraints from the radio-far IR correlation the accuracy is improved to |delta z|/(1 + z) = 0.15 (less than |delta z| greater than = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at z greater than 3 when compared to 850 micrometer selected samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Shiyang; Nakajima, Anri; Ohashi, Takuo
2005-12-01
The interface trap generation ({delta}N{sub it}) and fixed oxide charge buildup ({delta}N{sub ot}) under negative bias temperature instability (NBTI) of p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) with ultrathin (2 nm) plasma-nitrided SiON gate dielectrics were studied using a modified direct-current-current-voltage method and a conventional subthreshold characteristic measurement. Different stress time dependences were shown for {delta}N{sub it} and {delta}N{sub ot}. At the earlier stress times, {delta}N{sub it} dominates the threshold voltage shift ({delta}V{sub th}) and {delta}N{sub ot} is negligible. With increasing stress time, the rate of increase of {delta}N{sub it} decreases continuously, showing a saturating trend for longer stress times, while {delta}N{submore » ot} still has a power-law dependence on stress time so that the relative contribution of {delta}N{sub ot} increases. The thermal activation energy of {delta}N{sub it} and the NBTI lifetime of pMOSFETs, compared at a given stress voltage, are independent of the peak nitrogen concentration of the SiON film. This indicates that plasma nitridation is a more reliable method for incorporating nitrogen in the gate oxide.« less
Atomic diffusion in laser surface modified AISI H13 steel
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Brabazon, D.; Naher, S.
2013-07-01
This paper presents a laser surface modification process of AISI H13 steel using 0.09 and 0.4 mm of laser spot sizes with an aim to increase surface hardness and investigate elements diffusion in laser modified surface. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, pulse repetition frequency (PRF), and overlap percentage. The hardness properties were tested at 981 mN force. Metallographic study and energy dispersive X-ray spectroscopy (EDXS) were performed to observe presence of elements and their distribution in the sample surface. Maximum hardness achieved in the modified surface was 1017 HV0.1. Change of elements composition in the modified layer region was detected in the laser modified samples. Diffusion possibly occurred for C, Cr, Cu, Ni, and S elements. The potential found for increase in surface hardness represents an important method to sustain tooling life. The EDXS findings signify understanding of processing parameters effect on the modified surface composition.
Pairing matrix elements and pairing gaps with bare, effective, and induced interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barranco, F.; Bortignon, P.F.; Colo, G.
2005-11-01
The dependence on the single-particle states of the pairing matrix elements of the Gogny force and of the bare low-momentum nucleon-nucleon potential v{sub low-k}--designed so as to reproduce the low-energy observables avoiding the use of a repulsive core--is studied for a typical finite, superfluid nucleus ({sup 120}Sn). It is found that the matrix elements of v{sub low-k} follow closely those of v{sub Gogny} on a wide range of energy values around the Fermi energy e{sub F}, those associated with v{sub low-k} being less attractive. This result explains the fact that around e{sub F} the pairing gap {delta}{sub Gogny} associated withmore » the Gogny interaction (and with a density of single-particle levels corresponding to an effective k mass m{sub k}{approx_equal}0.7 m) is a factor of about 2 larger than {delta}{sub low-k}, being in agreement with {delta}{sub exp}=1.4 MeV. The exchange of low-lying collective surface vibrations among pairs of nucleons moving in time-reversal states gives rise to an induced pairing interaction v{sub ind} peaked at e{sub F}. The interaction (v{sub low-k}+v{sub ind}) Z{sub {omega}} arising from the renormalization of the bare nucleon-nucleon potential and of the single-particle motion ({omega}-mass and quasiparticle strength Z{sub {omega}}) associated with the particle-vibration coupling mechanism, leads to a value of the pairing gap at the Fermi energy {delta}{sub ren} that accounts for the experimental value. An important question that remains to be studied quantitatively is to what extent {delta}{sub Gogny}, which depends on average parameters, and {delta}{sub ren}, which explicitly depends on the parameters describing the (low-energy) nuclear structure, display or not a similar isotopic dependence and whether this dependence is borne out by the data.« less
Whalley, Benjamin J; Wilkinson, Jonathan D; Williamson, Elizabeth M; Constanti, Andrew
2004-07-15
Cannabis is a potential treatment for epilepsy, although the few human studies supporting this use have proved inconclusive. Previously, we showed that a standardized cannabis extract (SCE), isolated Delta9-tetrahydrocannabinol (Delta9-THC), and even Delta9-THC-free SCE inhibited muscarinic agonist-induced epileptiform bursting in rat olfactory cortical brain slices, acting via CB1 receptors. The present work demonstrates that although Delta9-THC (1 microM) significantly depressed evoked depolarizing postsynaptic potentials (PSPs) in rat olfactory cortex neurones, both SCE and Delta9-THC-free SCE significantly potentiated evoked PSPs (all results were fully reversed by the CB1 receptor antagonist SR141716A, 1 microM); interestingly, the potentiation by Delta9-THC-free SCE was greater than that produced by SCE. On comparing the effects of Delta9-THC-free SCE upon evoked PSPs and artificial PSPs (aPSPs; evoked electrotonically following brief intracellular current injection), PSPs were enhanced, whereas aPSPs were unaffected, suggesting that the effect was not due to changes in background input resistance. Similar recordings made using CB1 receptor-deficient knockout mice (CB1-/-) and wild-type littermate controls revealed cannabinoid or extract-induced changes in membrane resistance, cell excitability and synaptic transmission in wild-type mice that were similar to those seen in rat neurones, but no effect on these properties were seen in CB1-/- cells. It appears that the unknown extract constituent(s) effects over-rode the suppressive effects of Delta9-THC on excitatory neurotransmitter release, which may explain some patients' preference for herbal cannabis rather than isolated Delta9-THC (due to attenuation of some of the central Delta9-THC side effects) and possibly account for the rare incidence of seizures in some individuals taking cannabis recreationally.
Rise and Fall of one of World's largest deltas; the Mekong delta in Vietnam
NASA Astrophysics Data System (ADS)
Minderhoud, P. S. J.; Eslami Arab, S.; Pham, H. V.; Erkens, G.; van der Vegt, M.; Oude Essink, G.; Stouthamer, E.; Hoekstra, P.
2017-12-01
The Mekong delta is the third's largest delta in the world. It is home to almost 20 million people and an important region for the food security in South East Asia. As most deltas, the Mekong delta is the dynamic result of a balance of sediment supply, sea level rise and subsidence, hosting a system of fresh and salt water dynamics. Ongoing urbanization, industrialization and intensification of agricultural practices in the delta, during the past decades, resulted in growing domestic, agricultural and industrial demands, and have led to a dramatic increase of fresh water use. Since the year 2000, the amount of fresh groundwater extracted from the subsurface increased by 500%. This accelerated delta subsidence as the groundwater system compacts, with current sinking rates exceeding global sea level rise up to an order of magnitude. These high sinking rates have greatly altered the sediment budget of the delta and, with over 50% of the Mekong delta surface elevated less than 1 meter above sea level, greatly increase vulnerability to flooding and storm surges and ultimately, permanent inundation. Furthermore, as the increasingly larger extractions rapidly reduce the fresh groundwater reserves, groundwater salinization subsequently increases. On top of that, dry season low-flows by the Mekong river cause record salt water intrusion in the delta's estuarine system, creating major problems for rice irrigation. We present the work of three years research by the Dutch-Vietnamese `Rise and Fall' project on land subsidence and salinization in both groundwater and surface water in the Vietnamese Mekong delta.
NASA Astrophysics Data System (ADS)
Dai, Yanfeng; Xu, Min; Wei, Junchao; Zhang, Haobin; Chen, Yiwang
2012-01-01
The surface of hydroxyapatite nanoparticles was modified by poly(L-phenylalanine) via the ring opening polymerization (ROP) of L-phenylalanine N-carboxyanhydride. The preparation procedure was monitored by Fourier transform infrared spectroscopy (FTIR), and the modified hydroxyapatite was characterized by thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that the surface grafting amounts of poly(L-phenylalanine) on HA ranging from 20.26% to 38.92% can be achieved by tuning the reaction condition. The XRD patterns demonstrated that the crystalline structure of the modified hydroxyapatite was nearly the same with that of HA, implying that the ROP was an efficient surface modification method. The MTT assay proved that the biocompatibility of modified HA was very good, which showed the potential application of modified HA in bone tissue engineering.
Liu, Dylan Zhe; Jindal, Shivali; Amamcharla, Jayendra; Anand, Sanjeev; Metzger, Lloyd
2017-04-01
Milk fouling and biofilms are common problems in the dairy industry across many types of processing equipment. One way to reduce milk fouling and biofilms is to modify the characteristics of milk contact surfaces. This study examines the viability of using Thermolon (Porcelain Industries Inc., Dickson, TN), a sol-gel-based surface modification of stainless steel, during thermal processing of milk. We used stainless steel 316L (control) and sol-gel-modified coupons in this study to evaluate fouling behavior and bacterial adhesion. The surface roughness as measured by an optical profiler indicated that the control coupons had a slightly smoother finish. Contact angle measurements showed that the modified surface led to a higher water contact angle, suggesting a more hydrophobic surface. The modified surface also had a lower surface energy (32.4 ± 1.4 mN/m) than the control surface (41.36 ± 2.7 mN/m). We evaluated the susceptibility of control and modified stainless steel coupons to fouling in a benchtop plate heat exchanger. We observed a significant reduction in the amount of fouled layer on modified surfaces. We found an average fouling weight of 19.21 mg/cm 2 and 0.37 mg/cm 2 on the control and modified stainless steel coupons, respectively. We also examined the adhesion of Bacillus and biofilm formation, and observed that the modified stainless steel surface offered greater resistance to biofilm formation. Overall, the Thermolon-modified surface showed potential in the thermal processing of milk, offering significantly lower fouling and bacterial attachment than the control surface. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Novel materials to enhance corneal epithelial cell migration on keratoprosthesis.
Karkhaneh, Akbar; Mirzadeh, Hamid; Ghaffariyeh, Alireza; Ebrahimi, Abdolali; Honarpisheh, Nazafarin; Hosseinzadeh, Masud; Heidari, Mohammad Hossein
2011-03-01
To introduce a new modification for silicone optical core Keratoprosthesis. Using mixtures of 2-hydroxyethyl methacrylate and acrylic acid polydimethylsiloxane (PDMS) films were modified with two-step oxygen plasma treatment, and then type I collagen was immobilised onto this modified surfaces. Both the biocompatibility of the modified films and cell behaviour on the surface of these films were investigated by in vitro tests, and formation of epithelial cell layer was evaluated by implantation of the modified films in the corneas of 10 rabbits. In vitro studies indicated that the number of attached and proliferated cells onto modified PDMS in comparison with the unmodified PDMS significantly increased. Histological studies showed that corneal epithelial cells migrated on the anterior surface of the modified films after 1week. The corneal epithelial cell formed an incomplete monolayer cellular sheet after 10days. A complete epithelialisation on the modified surface was formed after 21days. The epithelial layer persisted on the anterior surface of implant after 1-month and 3-month follow-up. This method may have potential use in silicone optical core Keratoprosthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, W. A.
The thermal resource off the Ivory Coast is quite good for OTEC purposes. There are consistently large ..delta..T (surface temperature--temperature at depth) values throughout the year. The mean ..delta..T at 1000 meters is approximately 22/sup 0/C. A mean annual ..delta..T of 20/sup 0/C can be reached at a depth of only 600 meters. The thermal resource for the coldest month of the year is also adequate at 600 meters. Water 1000 meters deep is available within 35 kilometers from the shore. The waters south of the Ivory Coast do not have a particularly good mixed layer depth. Strong winds andmore » tropical storms are a rare occurrence. Similarly, the sea and swell conditions do not present a problem for OTEC development in this area. Currents are generally moderate, although occasional periods of weak currents less than 1/4 knot can be expected. The consistently large thermal resource without major environmental problems recommends this location as a potential OTEC site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farshori, M.Z.; Jantan, A.
1994-07-01
A detailed study of the Pahang River Delta was undertaken in order to understand the development, architecture, geometrical characteristics, and structural sequential organization of the sand bodies on the east coast of the Malay Peninsula. The present delta indicates that although marine wave regimes are dominant, as exhibited by the cuspate-shaped delta, fluvial and tidal influences are substantial, as evident from the bedforms and sand bars morphology. The Pahang Delta system provides a unique case study for a tropical fluvio-marine windwave-dominated delta, which was profoundly influenced by seasonal storms. The deltaic sand is coarse and moderately sorted, and contains abundantmore » clay clasts. The southern coastline of the Pahang Delta is continuously modified by the erosive attack of the storm waves. The delta is subjected to extremely high-energy storm waves and fluvially formed sand bodies, such as channel mouth bars, dominant in other types of deltas that have been replaced by strand plains, sand bars and sand flats. The combination of high wave energy and strong littoral drift along the east coast of the Malay Peninsula results in changing the orientation of the sand bodies in the Pahang Delta. No modern wind-dominated delta is comparable to the Pahang Delta system. However, some modern deltas show many similarities in general morphology and sand distribution. The authors have developed a comprehensive sedimentological model of fluvio-marine sand-body variability in tropical wind-dominated deltas. The results of the studies will enlarge the applicability of geometrical studies to subsurface exploration of hydrocarbons.« less
Hansen-Hagge, T E; Yokota, S; Reuter, H J; Schwarz, K; Bartram, C R
1992-11-01
Rearrangements of the T-cell receptor (TCR) delta locus are observed in the majority of human B-cell precursor acute lymphoblastic leukemias (ALL) with a striking predominance of V delta 2(D)D delta 3 recombinations in common ALL (cALL) patients. Recently, we and others showed that almost 20% of cALL cases are characterized by further recombination of V delta 2(D)D delta 3 segments to J alpha elements, thereby deleting the TCR delta locus in analogy to the delta Rec/psi J alpha pathway in differentiating alpha/beta-positive T cells. We report here that two human cALL-derived cell lines, REH and Nalm-6, are competent to recombine the TCR delta/alpha locus under standard tissue culture conditions. Analysis of different REH subclones obtained by limiting dilution of the initial culture showed a biased recombination of V delta 2D delta 3 to distinct J alpha elements. During prolonged tissue culture, a subclone acquired growth advantage and displaced parental cells as well as other subclones. Frequently, the DJ junctions of REH subclones contained extended stretches of palindromic sequences derived from modified D delta 3 coding elements. The other cell line, Nalm-6, started the TCR delta/alpha recombination with an unusual signal joint of a cryptic recombinase signal sequence (RSS) upstream of D delta 3 to the 3' RSS of D delta 3. The RSS dimer was subsequently rearranged in all investigated subclones to an identical J alpha element. Both cell lines might become valuable tools to unravel the complex regulation of TCR delta/alpha recombination pathways in malignant and normal lymphopoiesis.
Cabrera-Bosquet, Llorenç; Molero, Gemma; Nogués, Salvador; Araus, José Luis
2009-01-01
Whereas the effects of water and nitrogen (N) on plant Delta(13)C have been reported previously, these factors have scarcely been studied for Delta(18)O. Here the combined effect of different water and N regimes on Delta(13)C, Delta(18)O, gas exchange, water-use efficiency (WUE), and growth of four genotypes of durum wheat [Triticum turgidum L. ssp. durum (Desf.) Husn.] cultured in pots was studied. Water and N supply significantly increased plant growth. However, a reduction in water supply did not lead to a significant decrease in gas exchange parameters, and consequently Delta(13)C was only slightly modified by water input. Conversely, N fertilizer significantly decreased Delta(13)C. On the other hand, water supply decreased Delta(18)O values, whereas N did not affect this parameter. Delta(18)O variation was mainly determined by the amount of transpired water throughout plant growth (T(cum)), whereas Delta(13)C variation was explained in part by a combination of leaf N and stomatal conductance (g(s)). Even though the four genotypes showed significant differences in cumulative transpiration rates and biomass, this was not translated into significant differences in Delta(18)O(s). However, genotypic differences in Delta(13)C were observed. Moreover, approximately 80% of the variation in biomass across growing conditions and genotypes was explained by a combination of both isotopes, with Delta(18)O alone accounting for approximately 50%. This illustrates the usefulness of combining Delta(18)O and Delta(13)C in order to assess differences in plant growth and total transpiration, and also to provide a time-integrated record of the photosynthetic and evaporative performance of the plant during the course of crop growth.
USDA-ARS?s Scientific Manuscript database
The frictional behaviors of soybean oil and heat modified soybean oils with different Gardner scale viscosities as additives in hexadecane have been examined in a boundary lubrication test regime (steel contacts) using Langmuir adsorption model. The free energy of adsorption (delta-Gads) of various...
Vegetation community response to tidal marsh restoration of a large river estuary
Belleveau, Lisa J.; Takekawa, John Y.; Woo, Isa; Turner, Kelley L.; Barham, Jesse B.; Takekawa, Jean E.; Ellings, Christopher S.; Chin-Leo, Gerardo
2015-01-01
Estuaries are biologically productive and diverse ecosystems that provide ecosystem services including protection of inland areas from flooding, filtering freshwater outflows, and providing habitats for fish and wildlife. Alteration of historic habitats, including diking for agriculture, has decreased the function of many estuarine systems, and recent conservation efforts have been directed at restoring these degraded areas to reestablish their natural resource function. The Nisqually Delta in southern Puget Sound is an estuary that has been highly modified by restricting tidal flow, and recent restoration of the delta contributed to one of the largest tidal salt marsh restorations in the Pacific Northwest. We correlated the response of nine major tidal marsh species to salinities at different elevation zones. Our results indicated that wetland species richness was not related to soil pore-water salinity (R2 = 0.03), but were stratified into different elevation zones (R2 = 0.47). Thus, restoration that fosters a wide range of elevations will provide the most diverse plant habitat, and potentially, the greatest resilience to environmental change.
Bernoulli potential in type-I and weak type-II superconductors: II. Surface dipole
NASA Astrophysics Data System (ADS)
Lipavský, P.; Morawetz, K.; Koláček, J.; Mareš, J. J.; Brandt, E. H.; Schreiber, M.
2004-09-01
The Budd-Vannimenus theorem is modified to apply to superconductors in the Meissner state. The obtained identity links the surface value of the electrostatic potential to the density of free energy at the surface which allows one to evaluate the electrostatic potential observed via the capacitive pickup without the explicit solution of the charge profile.
Basnet, Mohan; Di Tommaso, Caroline; Ghoshal, Subhasis; Tufenkji, Nathalie
2015-01-01
Direct in situ injection of palladium-doped nanosized zero valent iron (Pd-NZVI) particles can contribute to remediation of various environmental contaminants. A major challenge encountered is rapid aggregation of Pd-NZVI and hence very limited mobility. To reduce aggregation and concurrently improve particle mobility, the surface of bare Pd-NZVI can be modified with stabilizing surface modifiers. Selected surface-modified Pd-NZVI has shown dramatically improved stability and transport. However, little is known regarding the effects of aquifer grain geochemical heterogeneity on the transport and deposition behavior of surface-modified Pd-NZVI. Herein, the mobility of surface stabilized Pd-NZVI in two granular matrices representative of model ground water environments (quartz sand and loamy sand) was assessed over a wide range of environmentally relevant ionic strengths (IS). Carboxymethyl cellulose (CMC), soybean flour and rhamnolipid biosurfactant were used as Pd-NZVI surface modifiers. Our results show that, both in quartz sand and loamy sand, an increase in solution IS results in reduced Pd-NZVI transport. Moreover, at a given water chemistry, Pd-NZVI transport is notably attenuated in loamy sand implying that geochemical heterogeneity associated with loamy sand is a key factor influencing Pd-NZVI transport potential. Experiments conducted at a higher Pd-NZVI particle concentration, to be more representative of field conditions, show that rhamnolipid and CMC are effective stabilizing agents even when 1 g/L Pd-NZVI is injected into quartz sand. Overall, this study emphasizes the extent to which variation in groundwater chemistry, coupled with changes in aquifer geochemistry, could dramatically alter the transport potential of Pd-NZVI in the subsurface environment.
Engineering filamentous phage carriers to improve focusing of antibody responses against peptides.
van Houten, Nienke E; Henry, Kevin A; Smith, George P; Scott, Jamie K
2010-03-02
The filamentous bacteriophage are highly immunogenic particles that can be used as carrier proteins for peptides and presumably other haptens and antigens. Our previous work demonstrated that the antibody response was better focused against a synthetic peptide if it was conjugated to phage as compared to the classical carrier, ovalbumin. We speculated that this was due, in part, to the relatively low surface complexity of the phage. Here, we further investigate the phage as an immunogenic carrier, and the effect reducing its surface complexity has on the antibody response against peptides that are either displayed as recombinant fusions to the phage coat or are chemically conjugated to it. Immunodominant regions of the minor coat protein, pIII, were removed from the phage surface by excising its N1 and N2 domains (Delta3 phage variant), whereas immunodominant epitopes of the major coat protein, pVIII, were altered by reducing the charge of its surface-exposed N-terminal residues (Delta8 phage variant). Immunization of mice revealed that the Delta3 variant was less immunogenic than wild-type (WT) phage, whereas the Delta8 variant was more immunogenic. The immunogenicity of two different peptides was tested in the context of the WT and Delta3 phage in two different forms: (i) as recombinant peptides fused to pVIII, and (ii) as synthetic peptides conjugated to the phage surface. One peptide (MD10) in its recombinant form produced a stronger anti-peptide antibody response fused to the WT carrier compared to the Delta3 phage carrier, and did not elicit a detectable anti-peptide response in its synthetic form conjugated to either phage carrier. This trend was reversed for a different peptide (4E10(L)), which did not produce a detectable anti-peptide antibody response as a recombinant fusion; yet, as a chemical conjugate to Delta3 phage, but not WT phage, it elicited a highly focused anti-peptide antibody response that exceeded the anti-carrier response by approximately 65-fold. The results suggest that focusing of the antibody response against synthetic peptides can be improved by decreasing the antigenic complexity of the phage surface. Copyright 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCulloch, M.T.; Gagan, M.K.; Mortimer, G.E.
A high-resolution (near weekly) Sr/Ca and oxygen isotopic record is presented for a coral from the Pandora Reef in the Great Barrier Reef (GBR) of Australia during the period of 1978 to 1984. The records are well correlated except for periods of high rainfall when river runoff has significantly modified the [delta][sup 18]O value of seawater. Using the Sr/Ca temperature calibration of De Villiers et al., the Sr/Ca records exhibit seasonally controlled cyclical SST (sea surface temperature) variations of from [approximately] 21 to [approximately] 28[degrees]C. During the very strong El Nino of 1982-1983, the Sr/CA systematics indicate a sharp dropmore » in the winter SST to [approximately] 18.5[degrees]C. This represents a temperature anomaly of -3[degrees]C which is approximately twice that given by the [delta][sup 18]O variations, suggesting an [approximately] x2 amplification of the anomaly by the Sr/Ca system, possibly due to the increasing dominance of inorganically controlled aragonite-seawater fractionation. The oxygen isotope systematics show the combined effects of both temperature and changing seawater [delta][sup 18]O values, the latter reflecting the influx of [sup 18]O-depleted runoff during periods of high rainfall. Due to the extremely low ([approximately] 10[sup [minus]3]) Sr and Ca contents of river runoff relative to seawater, it is possible to use the Sr/Ca thermometer to calculate temperatures independent of major floods and hence deconvolve the combined effects in the oxygen isotopic record of variable temperature and the [delta][sup 18]O value of seawater. Using this approach it is possible to quantitatively reproduce the volume of runoff from the Burdekin River during the periods of major flooding that occurred in early 1979 and 1981. The results of this study demonstrate that the combined use of high-resolution Sr/Ca and [delta][sup 18]O systematics in scleractinian corals is a powerful tool for providing quantitative constraints on past climate.« less
Investigating the spatial distribution of water levels in the Mackenzie Delta using airborne LiDAR
Hopkinson, C.; Crasto, N.; Marsh, P.; Forbes, D.; Lesack, L.
2011-01-01
Airborne light detection and ranging (LiDAR) data were used to map water level (WL) and hydraulic gradients (??H/??x) in the Mackenzie Delta. The LiDAR WL data were validated against eight independent hydrometric gauge measurements and demonstrated mean offsets from - 0??22 to + 0??04 m (??< 0??11). LiDAR-based WL gradients could be estimated with confidence over channel lengths exceeding 5-10 km where the WL change exceeded local noise levels in the LiDAR data. For the entire Delta, the LiDAR sample coverage indicated a rate of change in longitudinal gradient (??2H/??x) of 5??5 ?? 10-10 m m-2; therefore offering a potential means to estimate average flood stage hydraulic gradient for areas of the Delta not sampled or monitored. In the Outer Delta, within-channel and terrain gradient measurements all returned a consistent estimate of - 1 ?? 10-5 m m-1, suggesting that this is a typical hydraulic gradient for the downstream end of the Delta. For short reaches (<10 km) of the Peel and Middle Channels in the middle of the Delta, significant and consistent hydraulic gradient estimates of - 5 ?? 10-5 m m-1 were observed. Evidence that hydraulic gradients can vary over short distances, however, was observed in the Peel Channel immediately upstream of Aklavik. A positive elevation anomaly (bulge) of > 0??1 m was observed at a channel constriction entering a meander bend, suggesting a localized modification of the channel hydraulics. Furthermore, water levels in the anabranch channels of the Peel River were almost 1 m higher than in Middle Channel of the Mackenzie River. This suggests: (i) the channels are elevated and have shallower bank heights in this part of the delta, leading to increased cross-delta and along-channel hydraulic gradients; and/or (ii) a proportion of the Peel River flow is lost to Middle Channel due to drainage across the delta through anastamosing channels. This study has demonstrated that airborne LiDAR data contain valuable information describing Arctic river delta water surface and hydraulic attributes that would be challenging to acquire by other means. ?? 2011 John Wiley & Sons, Ltd.
Which Triggers Produce the Most Erosive, Frequent, and Longest Runout Turbidity Currents on Deltas?
NASA Astrophysics Data System (ADS)
Hizzett, J. L.; Hughes Clarke, J. E.; Sumner, E. J.; Cartigny, M. J. B.; Talling, P. J.; Clare, M. A.
2018-01-01
Subaerial rivers and turbidity currents are the two most voluminous sediment transport processes on our planet, and it is important to understand how they are linked offshore from river mouths. Previously, it was thought that slope failures or direct plunging of river floodwater (hyperpycnal flow) dominated the triggering of turbidity currents on delta fronts. Here we reanalyze the most detailed time-lapse monitoring yet of a submerged delta; comprising 93 surveys of the Squamish Delta in British Columbia, Canada. We show that most turbidity currents are triggered by settling of sediment from dilute surface river plumes, rather than landslides or hyperpycnal flows. Turbidity currents triggered by settling plumes occur frequently, run out as far as landslide-triggered events, and cause the greatest changes to delta and lobe morphology. For the first time, we show that settling from surface plumes can dominate the triggering of hazardous submarine flows and offshore sediment fluxes.
Sheng, Tian; Lin, Xiao; Chen, Zhao-Yang; Hu, P; Sun, Shi-Gang; Chu, You-Qun; Ma, Chun-An; Lin, Wen-Feng
2015-10-14
In exploration of low-cost electrocatalysts for direct methanol fuel cells (DMFCs), Pt modified tungsten carbide (WC) materials are found to be great potential candidates for decreasing Pt usage whilst exhibiting satisfactory reactivity. In this work, the mechanisms, onset potentials and activity for electrooxidation of methanol were studied on a series of Pt-modified WC catalysts where the bare W-terminated WC(0001) substrate was employed. In the surface energy calculations of a series of Pt-modified WC models, we found that the feasible structures are mono- and bi-layer Pt-modified WCs. The tri-layer Pt-modified WC model is not thermodynamically stable where the top layer Pt atoms tend to accumulate and form particles or clusters rather than being dispersed as a layer. We further calculated the mechanisms of methanol oxidation on the feasible models via methanol dehydrogenation to CO involving C-H and O-H bonds dissociating subsequently, and further CO oxidation with the C-O bond association. The onset potentials for the oxidation reactions over the Pt-modified WC catalysts were determined thermodynamically by water dissociation to surface OH* species. The activities of these Pt-modified WC catalysts were estimated from the calculated kinetic data. It has been found that the bi-layer Pt-modified WC catalysts may provide a good reactivity and an onset oxidation potential comparable to pure Pt and serve as promising electrocatalysts for DMFCs with a significant decrease in Pt usage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
T Colussi; D Parsonage; W Boles
The FAD-dependent {alpha}-glycerophosphate oxidase (GlpO) from Enterococcus casseliflavus and Streptococcus sp. was originally studied as a soluble flavoprotein oxidase; surprisingly, the GlpO sequence is 30-43% identical to those of the {alpha}-glycerophosphate dehydrogenases (GlpDs) from mitochondrial and bacterial sources. The structure of a deletion mutant of Streptococcus sp. GlpO (GlpO{Delta}, lacking a 50-residue insert that includes a flexible surface region) has been determined using multiwavelength anomalous dispersion data and refined at 2.3 {angstrom} resolution. Using the GlpO{Delta} structure as a search model, we have also determined the intact GlpO structure, as refined at 2.4 {angstrom} resolution. The first two domains ofmore » the GlpO fold are most closely related to those of the flavoprotein glycine oxidase, where they function in FAD binding and substrate binding, respectively; the GlpO C-terminal domain consists of two helix bundles and is not closely related to any known structure. The flexible surface region in intact GlpO corresponds to a segment of missing electron density that links the substrate-binding domain to a {beta}{beta}{alpha} element of the FAD-binding domain. In accordance with earlier biochemical studies (stabilizations of the covalent FAD-N5-sulfite adduct and p-quinonoid form of 8-mercapto-FAD), Ile430-N, Thr431-N, and Thr431-OG are hydrogen bonded to FAD-O2{alpha} in GlpO{Delta}, stabilizing the negative charge in these two modified flavins and facilitating transfer of a hydride to FAD-N5 (from Glp) as well. Active-site overlays with the glycine oxidase-N-acetylglycine and d-amino acid oxidase-d-alanine complexes demonstrate that Arg346 of GlpO{Delta} is structurally equivalent to Arg302 and Arg285, respectively; in both cases, these residues interact directly with the amino acid substrate or inhibitor carboxylate. The structural and functional divergence between GlpO and the bacterial and mitochondrial GlpDs is also discussed.« less
Lunar Ascent and Rendezvous Trajectory Design
NASA Technical Reports Server (NTRS)
Sostaric, Ronald R.; Merriam, Robert S.
2008-01-01
The Lunar Lander Ascent Module (LLAM) will leave the lunar surface and actively rendezvous in lunar orbit with the Crew Exploration Vehicle (CEV). For initial LLAM vehicle sizing efforts, a nominal trajectory, along with required delta-V and a few key sensitivities, is very useful. A nominal lunar ascent and rendezvous trajectory is shown, along with rationale and discussion of the trajectory shaping. Also included are ascent delta-V sensitivities to changes in target orbit and design thrust-to-weight of the vehicle. A sample launch window for a particular launch site has been completed and is included. The launch window shows that budgeting enough delta-V for two missed launch opportunities may be reasonable. A comparison between yaw steering and on-orbit plane change maneuvers is included. The comparison shows that for large plane changes, which are potentially necessary for an anytime return from mid-latitude locations, an on-orbit maneuver is much more efficient than ascent yaw steering. For a planned return, small amounts of yaw steering may be necessary during ascent and must be accounted for in the ascent delta-V budget. The delta-V cost of ascent yaw steering is shown, along with sensitivity to launch site latitude. Some discussion of off-nominal scenarios is also included. In particular, in the case of a failed Powered Descent Initiation burn, the requirements for subsequent rendezvous with the Orion vehicle are outlined.
Label-free impedimetric immunosensor for sensitive detection of ochratoxin A.
Radi, Abd-Elgawad; Muñoz-Berbel, Xavier; Lates, Vasilica; Marty, Jean-Louis
2009-03-15
A novel label-free electrochemical impedimetric immunosensor for sensitive detection of ochratoxin A (OTA) was reported. A two-step reaction protocol was elaborated to modify the gold electrode. The electrode was first derivatized by electrochemical reduction of in situ generated 4-carboxyphenyl diazonium salt (4-CPDS) in acidic aqueous solution yielded stable 4-carboxyphenyl (4-CP) monolayer. The ochratoxin A antibody was then immobilized making use of the carbodiimide chemistry. The steps of the immunosensor elaboration and the immunochemical reaction between ochratoxin A and the surface-bound antibody were interrogated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The impedance change, due to the specific immuno-interaction at the immunosensor surface was utilized to detect ochratoxin A. The increase in electron-transfer resistance (DeltaR(et)) values was linearly proportional to the concentration of OTA in the range of 1-20ngmL(-1), with a detection limit of 0.5ngmL(-1).
Adsorption losses from urine-based cannabinoid calibrators during routine use.
Blanc, J A; Manneh, V A; Ernst, R; Berger, D E; de Keczer, S A; Chase, C; Centofanti, J M; DeLizza, A J
1993-08-01
The major metabolite of cannabis found in urine, 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid (delta 9-THC), is the compound most often used to calibrate cannabinoid immunoassays. The hydrophobic delta 9-THC molecule is known to adsorb to solid surfaces. This loss of analyte from calibrator solutions can lead to inaccuracy in the analytical system. Because the calibrators remain stable when not used, analyte loss is most probably caused by handling techniques. In an effort to develop an effective means of overcoming adsorption losses, we quantified cannabinoid loss from calibrators during the testing process. In studying handling of these solutions, we found noticeable, significant losses attributable to both the kind of pipette used for transfer and the contact surface-to-volume ratio of calibrator solution in the analyzer cup. Losses were quantified by immunoassay and by radioactive tracer. We suggest handling techniques that can minimize adsorption of delta 9-THC to surfaces. Using the appropriate pipette and maintaining a minimum surface-to-volume ratio in the analyzer cup effectively reduces analyte loss.
Chen, Ri-Zhao; Li, Lian-Bing; Klein, Michael G; Li, Qi-Yun; Li, Peng-Pei; Sheng, Cheng-Fa
2016-02-01
Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae), commonly referred to as the Asian corn borer, is the most important corn pest in Asia. Although capturing males with pheromone traps has recently been the main monitoring tool and suppression technique, the best trap designs remain unclear. Commercially available Delta and funnel traps, along with laboratory-made basin and water traps, and modified Delta traps, were evaluated in corn and soybean fields during 2013-2014 in NE China. The water trap was superior for capturing first-generation O. furnacalis (1.37 times the Delta trap). However, the basin (8.3 ± 3.2 moths/trap/3 d), Delta (7.9 ± 2.5), and funnel traps (7.0 ± 2.3) were more effective than water traps (1.4 ± 0.4) during the second generation. Delta traps gave optimal captures when deployed at ca. 1.57 × the highest corn plants, 1.36× that of average soybean plants, and at the field borders. In Delta traps modified by covering 1/3 of their ends, captures increased by ca. 15.7 and 8.1% in the first and second generations, respectively. After 35 d in the field, pheromone lures were still ca. 50% as attractive as fresh lures, and retained this level of attraction for ca. 25 more days. Increased captures (first and second generation: 90.9 ± 9.5%; 78.3 ± 9.3%) were obtained by adding a lure exposed for 5 d to funnel traps baited with a 35-d lure. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Klaessens, John H. G. M.; Hopman, Jeroen C. W.; Liem, K. Djien; de Roode, Rowland; Verdaasdonk, Rudolf M.; Thijssen, Johan M.
2008-02-01
Continuous wave Near Infrared Spectroscopy is a well known non invasive technique for measuring changes in tissue oxygenation. Absorption changes (ΔO2Hb and ΔHHb) are calculated from the light attenuations using the modified Lambert Beer equation. Generally, the concentration changes are calculated relative to the concentration at a starting point in time (delta time method). It is also possible, under certain assumptions, to calculate the concentrations by subtracting the equations at different wavelengths (delta wavelength method). We derived a new algorithm and will show the possibilities and limitations. In the delta wavelength method, the assumption is that the oxygen independent attenuation term will be eliminated from the formula even if its value changes in time, we verified the results with the classical delta time method using extinction coefficients from different literature sources for the wavelengths 767nm, 850nm and 905nm. The different methods of calculating concentration changes were applied to the data collected from animal experiments. The animals (lambs) were in a stable normoxic condition; stepwise they were made hypoxic and thereafter they returned to normoxic condition. The two algorithms were also applied for measuring two dimensional blood oxygen saturation changes in human skin tissue. The different oxygen saturation levels were induced by alterations in the respiration and by temporary arm clamping. The new delta wavelength method yielded in a steady state measurement the same changes in oxy and deoxy hemoglobin as the classical delta time method. The advantage of the new method is the independence of eventual variation of the oxygen independent attenuations in time.
Method of nitriding niobium to form a superconducting surface
Kelley, Michael J.; Klopf, John Michael; Singaravelu, Senthilaraja
2014-08-19
A method of forming a delta niobium nitride .delta.-NbN layer on the surface of a niobium object including cleaning the surface of the niobium object; providing a treatment chamber; placing the niobium object in the treatment chamber; evacuating the chamber; passing pure nitrogen into the treatment chamber; focusing a laser spot on the niobium object; delivering laser fluences at the laser spot until the surface of the niobium object reaches above its boiling temperature; and rastering the laser spot over the surface of the niobium object.
Saltiel, J; Dmitrenko, O; Pillai, Z S; Klima, R; Wang, S; Wharton, T; Huang, Z-N; van de Burgt, L J; Arranz, J
2008-05-01
Relative energies of the ground state isomers of 1,4-diphenyl-1,3-butadiene (DPB) are determined from the temperature dependence of equilibrium isomer compositions obtained with the use of diphenyl diselenide as catalyst. Temperature and concentration effects on photostationary states and isomerization quantum yields with biacetyl or fluorenone as triplet sensitizers with or without the presence of O(2), lead to significant modification of the proposed DPB triplet potential energy surface. Quantum yields for ct-DPB formation from tt-DPB increase with [tt-DPB] revealing a quantum chain process in the tt --> ct direction, as had been observed for the ct --> tt direction, and suggesting an energy minimum at the (3)ct* geometry. They confirm the presence of planar and twisted isomeric triplets in equilibrium (K), with energy transfer from planar or quasi-planar geometries (quantum chain events from tt and ct triplets) and unimolecular decay (k(d)) from twisted geometries. Starting from cc-DPB, varphi(cc-->tt) increases with increasing [cc-DPB] whereas varphi(cc-->ct) is relatively insensitive to concentration changes. The concentration and temperature dependencies of the decay rate constants of DPB triplets in cyclohexane are consistent with the mechanism deduced from the photoisomerization quantum yields. The experimental DeltaH between (3)tt-DPB* and (3)tp-DPB*, 2.7 kcal mol(-1), is compared with the calculated energy difference [DFT with B3LYP/6-31+G(d,p) basis set]. Use of the calculated DeltaS = 4.04 eu between the two triplets gives k(d) = (2.4-6.4) x 10(7) s(-1), close to 1.70 x 10(7) s(-1), the value for twisted stilbene triplet decay. Experimental and calculated relative energies of DPB isomers on the ground and triplet state surfaces agree and theory is relied upon to deduce structural characteristics of the equilibrated conformers in the DPB triplet state.
Role of Growth Faulting in the Quaternary Development of Mississippi-River Delta
NASA Astrophysics Data System (ADS)
Mohrig, D.; George, T. J.; Straub, K. M.
2008-12-01
We use an industry grade seismic volume and observations of present-day surface topography to resolve the influence of growth faulting on evolution of Mississippi delta in southeastern Louisiana from the Pleistocene to Recent. The volume of seismic data covers an area roughly 1400 square kilometers in size and it resolves many normal faults with displacements that can be tied to movement of Jurassic Louann Salt in the subsurface. We have defined the Quaternary activity associated with 6 of these normal faults by measuring the progressive offset of strata deposited on the delta surface over time. These measurements of fault displacement were restricted to the sedimentary section positioned 150 to 1500 m beneath the delta surface. Total vertical offsets measured within this Quaternary section range from 60 to 150 m. These fault displacements represent abrupt spatial variations in subsidence rate that are between 4 and 8 percent of the regional, long-term deposition rate. Our best estimates for the Quaternary rates of fault displacement vary between 0.1 and 1 mm/yr. Five faults can be connected to deformation of the modern delta surface. Wetland on the footwall is replaced by open water on the hanging wall of these structures. In spite of this evidence for modern surface deformation, the orientations of buried, seismically resolved channel bodies do not appear to be affected by the positions of active growth faults. We will evaluate the competition between subsidence and sedimentation patterns that leads to this style of channelized stratigraphy.
NASA Astrophysics Data System (ADS)
Dong, T. Y.; Nittrouer, J.; McElroy, B. J.; Czapiga, M. J.; Il'icheva, E.; Pavolv, M.; Parker, G.
2014-12-01
The Selenga River delta, Lake Baikal, Russia, is approximately 700 km2 in size and contains three active lobes that receive varying amounts of water and sediment discharge. This delta represents a unique end-member in so far that the system is positioned along the deep-water (~1500 m) margin of Lake Baikal and therefore exists as a shelf-edge delta. In order to evaluate the morphological dynamics of the Selenga delta, field expeditions were undertaken during July 2013 and 2014, to investigate the morphologic, sedimentologic, and hydraulic nature of this delta system. Single-beam bathymetry data, sidescan sonar data, sediment samples, and aerial survey data were collected and analyzed to constrain: 1) channel geometries within the delta, 2) bedform sizes and spatial distributions, 3) grain size composition of channel bed sediment as well as bank sediment, collected from both major and minor distributary channels, and 4) elevation range of the subaerial portion of the delta. Our data indicate that the delta possesses downstream sediment fining, ranging from predominantly gravel and sand near the delta apex to silt and sand at the delta-lake interface. Field surveys also indicate that the Selenga delta has both eroding and aggrading banks, and that the delta is actively incising into some banks that consist of terraces, which are defined as regions that are not inundated by typical 2- to 4-year flood discharge events. Therefore the terraces are distinct from the actively accreting regions of the delta that receive sedimentation via water inundation during regular river floods. We spatially constrain the regions of the Selenga delta that are inundated during floods versus terraced using a 1-D water-surface hydrodynamic model that produces estimates of stage for flood water discharges, whereby local water surface elevations produced with the model are compared to the measured terrestrial elevations. Our analyses show that terrace elevations steadily decrease downstream for all lobes, and that the delta is undergoing an active phase of erosion, characterized by channel incision and extensive lateral erosion of terraces; this process of delta 'self-cannibalization' contributes to the downstream sediment flux and morphological evolution of the delta.
Price, Donald M; Jin, Zhigang; Rabinovitch, Simon; Campbell, Shelagh D
2002-01-01
Wee1 kinases catalyze inhibitory phosphorylation of the mitotic regulator Cdk1, preventing mitosis during S phase and delaying it in response to DNA damage or developmental signals during G2. Unlike yeast, metazoans have two distinct Wee1-like kinases, a nuclear protein (Wee1) and a cytoplasmic protein (Myt1). We have isolated the genes encoding Drosophila Wee1 and Myt1 and are using genetic approaches to dissect their functions during normal development. Overexpression of Dwee1 or Dmyt1 during eye development generates a rough adult eye phenotype. The phenotype can be modified by altering the gene dosage of known regulators of the G2/M transition, suggesting that we could use these transgenic strains in modifier screens to identify potential regulators of Wee1 and Myt1. To confirm this idea, we tested a collection of deletions for loci that can modify the eye overexpression phenotypes and identified several loci as dominant modifiers. Mutations affecting the Delta/Notch signaling pathway strongly enhance a GMR-Dmyt1 eye phenotype but do not affect a GMR-Dwee1 eye phenotype, suggesting that Myt1 is potentially a downstream target for Notch activity during eye development. We also observed interactions with p53, which suggest that Wee1 and Myt1 activity can block apoptosis. PMID:12072468
NASA Astrophysics Data System (ADS)
Olliver, E. A.; Edmonds, D. A.; Shaw, J.
2017-12-01
The coastal deltas of the world are vital ecosystems that disproportionately support the world's population and biological productivity. Recent studies indicate vegetation may have significant influence on the development and structure of the deltaic islands composing these deltas. However, there is little convincing data drawn from natural systems. Here we present a 2D numerical modeling study of the interaction of surface water flow and vegetation on Wax lake Delta, LA, USA. We use a seamless digital elevation model (DEM) of the Wax Lake Delta (WLD) as the initial topographic condition. The deltaic island elevation data for the DEM is derived from LiDAR data, while the channel and delta front bathymetry is derived from single and multi-beam data. The upstream boundary conditions are set by discharge data from the USGS gauge located in the Wax Lake Outlet at Calumet, LA and the downstream water level boundary condition comes from tidal data from the NOAA gauge located in the Atchafalaya Delta at Amerada Pass, LA. The deltaic islands in our seamless DEM are populated by two general vegetation communities of different canopy density and height: a subaerial-intermediate community and a subaqueous community. In our study we explore how variations in discharge coming into the delta and extent of the general vegetation communities at different times of the year influence the transport pathways and residence time of surface water on the levees and within the interdistributary wetlands of the deltaic islands. A better understanding of vegetation's influence on these elements of deltaic island development and organization could prove valuable for informing design of wetland restoration projects.
St-Pierre, Gabrielle; Pal, Sudip; Østergaard, Michael E; Zhou, Tianyuan; Yu, Jinghua; Tanowitz, Michael; Seth, Punit P; Hanessian, Stephen
2016-06-01
Antisense oligonucleotides (ASOs) modified with ligands which target cell surface receptors have the potential to significantly improve potency in the target tissue. This has recently been demonstrated using triantennary N-acetyl d-galactosamine conjugated ASOs. CD22 is a cell surface receptor expressed exclusively on B cells thus presenting an attractive target for B cell specific delivery of drugs. Herein, we reported the synthesis of monovalent and trivalent ASO conjugates with biphenylcarbonyl (BPC) modified sialic acids and their study as ASO delivery agents into B cells. CD22 positive cells exhibited reduced potency when treated with ligand modified ASOs and mechanistic examination suggested reduced uptake into cells potentially as a result of sequestration of ASO by other cell-surface proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cahoon, E B; Ripp, K G; Hall, S E; Kinney, A J
2001-01-26
Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.
The herpes simplex virus 1 U{sub S}3 regulates phospholipid synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wild, Peter, E-mail: pewild@access.uzh.ch; Institute of Virology, University of Zuerich; Oliveira, Anna Paula de
2012-10-25
Herpes simplex virus type 1 capsids bud at nuclear and Golgi membranes for envelopment by phospholipid bilayers. In the absence of U{sub S}3, nuclear membranes form multiple folds harboring virions that suggests disturbance in membrane turnover. Therefore, we investigated phospholipid metabolism in cells infected with the U{sub S}3 deletion mutant R7041({Delta}U{sub S}3), and quantified membranes involved in viral envelopment. We report that (i) [{sup 3}H]-choline incorporation into nuclear membranes and cytoplasmic membranes was enhanced peaking at 12 or 20 h post inoculation with wild type HSV-1 and R7041({Delta}U{sub S}3), respectively, (ii) the surface area of nuclear membranes increased until 24more » h of R7041({Delta}U{sub S}3) infection forming folds that equaled {approx}45% of the nuclear surface, (iii) the surface area of viral envelopes between nuclear membranes equaled {approx}2400 R7041({Delta}U{sub S}3) virions per cell, and (iv) during R7041({Delta}U{sub S}3) infection, the Golgi complex expanded dramatically. The data indicate that U{sub S}3 plays a significant role in regulation of membrane biosynthesis.« less
Du, Xue-Lian; Wang, Shi-Jie; Rong, Li
2011-12-01
By measuring the foliar delta13C values of 5 common shrub species (Rhamnus davurica, Pyracantha fortuneana, Rubus biflorus, Zanthoxylum planispinum, and Viburnum utile) growing in various microhabitats in Wangjiazhai catchment, a typical karst desertification area in Guizhou Province, this paper studied the spatial heterogeneity of plant water use at niche scale and the response of the heterogeneity to different karst rocky desertification degrees. The foliar delta13C values of the shrub species in the microhabitats followed the order of stony surface > stony gully > stony crevice > soil surface, and those of the majority of the species were more negative in the microhabitat soil surface than in the others. The foliar delta13C values decreased in the sequence of V. utile > R. biflorus > Z. planispinum > P. fortuneana > R. davurica, and the mean foliar delta13C value of the shrubs and that of typical species in various microhabitats all increased with increasing karst rocky desertification degree, differed significantly among different microhabitats. It was suggested that with the increasing degree of karst rocky desertification, the structure and functions of karst habitats were impaired, microhabitats differentiated gradually, and drought degree increased.
Zhang, Lifei; Dong, Liang; Ren, Lijun; Shi, Shuangxin; Zhou, Li; Zhang, Ting; Huang, Yeru
2012-01-01
The pollution from polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in the surface water of the rapidly urbanized Yangtze River Delta region was investigated. Fourteen surface water samples were collected in June 2010. Water samples were liquid-liquid extracted using methylene chloride and analyzed by gas chromatography-mass spectrometry. Concentrations of PAHs and PAEs ranged 12.9-638.1 ng/L and 61-28550 ng/L, respectively. Fluoranthene, naphthalene, pyrene, phenanthrene, di-2-ethylhexyl phthalate, and di-n-butyl phthalate were the most abundant compounds in the samples. The water samples were moderately polluted with benzo[a]pyrene according to China's environmental quality standard for surface water. The two highest concentrations of PAHs and PAEs occurred in samples from Taihu Lake, Wuxi City and the western section of Yangchenghu Lake. Potential sources of pollution at S7 were petroleum combustion and the plastics industry, and at Yangchenghu Lake were petroleum combustion and domestic waste. Pollution in samples from the Beijing-Hangzhou Grand Canal originated from diesel engines. There were no obvious sources of pollution for the other water samples. These results can be used as reference levels for future monitoring programs of pollution from PAHs and PAEs.
NASA Astrophysics Data System (ADS)
Fanget, Anne-Sophie; Berné, Serge; Jouet, Gwénaël; Bassetti, Maria-Angela; Dennielou, Bernard; Maillet, Grégoire M.; Tondut, Mathieu
2014-05-01
The modern Rhone delta in the Gulf of Lions (NW Mediterranean) is a typical wave-dominated delta that developed after the stabilization of relative sea level following the last deglacial sea-level rise. Similar to most other deltas worldwide, it displays several stacked parasequences and lobes that reflect the complex interaction between accommodation, sediment supply and autogenic processes on the architecture of a wave-dominated delta. The interpretation of a large set of newly acquired very high-resolution seismic and sedimentological data, well constrained by 14C dates, provides a refined three-dimensional image of the detailed architecture (seismic bounding surfaces, sedimentary facies) of the Rhone subaqueous delta, and allows us to propose a scenario for delta evolution during the last deglaciation and Holocene. The subaqueous delta consists of “parasequence-like” depositional wedges, a few metres to 20-30 m in thickness. These wedges first back-stepped inland toward the NW in response to combined global sea-level rise and overall westward oceanic circulation, at a time when sediment supply could not keep pace with rapid absolute (eustatic) sea-level rise. At the Younger Dryas-Preboreal transition, more rapid sea-level rise led to the formation of a major flooding surface (equivalent to a wave ravinement surface). After stabilization of global sea level in the mid-Holocene, accommodation became the leading factor in controlling delta architecture. An eastward shift of depocentres occurred, probably favoured by higher subsidence rate within the thick Messinian Rhone valley fill. The transition between transgressive (backstepping geometry) and regressive (prograding geometry) (para)sequences resulted in creation of a Maximum Flooding Surface (MFS) that differs from a “classical” MFS described in the literature. It consists of a coarse-grained interval incorporating reworked shoreface material within a silty clay matrix. This distinct lithofacies results from condensation/erosion, which appears as an important process even within supply-dominated deltaic systems, due to avulsion of distributaries. The age of the MFS varies along-strike between ca. 7.8 and 5.6 kyr cal. BP in relation to the position of depocentres and climatically-controlled sediment supply. The last rapid climate change of the Holocene, the Little Ice Age (1250-1850 AD), had a distinct stratigraphic influence on the architecture and lithofacies of the Rhone subaqueous delta through the progradation of two deltaic lobes. In response to changes in sediment supply linked to rapid climate changes (and to anthropic factors), the Rhone delta evolved from wave-dominated to fluvial dominated, and then wave dominated again.
Late Holocene Radiocarbon Variability in Northwest Atlantic Slope Waters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherwood, O; Edinger, E; Guilderson, T P
2008-08-15
Deep-sea gorgonian corals secrete a 2-part skeleton of calcite, derived from dissolved inorganic carbon at depth, and gorgonin, derived from recently fixed and exported particulate organic matter. Radiocarbon contents of the calcite and gorgonin provide direct measures of seawater radiocarbon at depth and in the overlying surface waters, respectively. Using specimens collected from Northwest Atlantic slope waters, we generated radiocarbon records for surface and upper intermediate water layers spanning the pre- and post bomb-{sup 14}C eras. In Labrador Slope Water (LSW), convective mixing homogenizes the pre-bomb {Delta}{sup 14}C signature (-67 {+-} 4{per_thousand}) to at least 1000 m depth. Surface watermore » bomb-{sup 14}C signals were lagged and damped (peaking at {approx} +45{per_thousand} in the early 1980s) relative to other regions of the northwest Atlantic, and intermediate water signals were damped further. Off southwest Nova Scotia, the vertical gradient in {Delta}{sup 14}C is much stronger. In surface water, pre-bomb {Delta}{sup 14}C averaged -75 {+-} 5{per_thousand}. At 250-475 m depth, prebomb {Delta}{sup 14}C oscillated quasi-decadally between -80 and -100{per_thousand}, likely reflecting interannual variability in the presence of Labrador Slope Water vs. Warm Slope Water (WSW). Finally, subfossil corals reveal no systematic changes in vertical {Delta}{sup 14}C gradients over the last 1200 years.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding frames of stationary high-voltage..., SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding § 77.703 Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems. The frames of all stationary...
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Byrd, James E.; Wesselmann, Gary F.
1992-01-01
An assessment of the influence of airfoil geometry on delta wing leading edge vortex flow and vortex induced aerodynamics at supersonic speeds is discussed. A series of delta wing wind tunnel models were tested over a Mach number range from 1.7 to 2.0. The model geometric variables included leading edge sweep and airfoil shape. Surface pressure data, vapor screen, and oil flow photograph data were taken to evaluate the complex structure of the vortices and shocks on the family of wings tested. The data show that airfoil shape has a significant impact on the wing upper surface flow structure and pressure distribution, but has a minimal impact on the integrated upper surface pressure increments.
InSAR-based detection of McKenzie River Delta Permafrost loss
NASA Astrophysics Data System (ADS)
Oliver-Cabrera, T.; Wdowinski, S.
2017-12-01
Permafrost underlies most of the McKenzie River, North America's largest delta. The in the delta is catalogued as discontinuous permafrost due to the influence of shifting river channels on near-surface ground temperatures. The area is affected by climate change, studies show that ground temperature has increased by 1.5°C since 1970, due to rising annual mean air temperature. Flooding regimes within the delta are also affected by the changing climate due to melting of near surface ground ice together with sea-level rise increasing the potential of land subsidence. Observed consequences of changes occurring in the region are vegetation growth and northward migration of the tree line. The growing vegetation can affect physical properties of the accumulated snow, including depth, density and thermal conductivity. Thogether these variations affect permafrost stability. Permafrost changes can be measured throughout the impacts on river runoffs, ground water, drainages, carbon release, land subsidence and even infrastructure damages. Degradation of permafrost can also be measured by observing ecological changes in the area. In this study, we use InSAR observations to detect permafrost changes and their transition to wetland or vegetated land cover. Our data consist of four ALOS-PALSAR frames covering the entire McKenzie River Delta with temporal coverage spanning from January 2007 to March of 2011. Each frame has 20 to 24 acquisitions, in which half of the data acquired with HH polarization and the other half with HH+HV. We process the data using ROI_PAC and PYSAR software packages. Preliminary results have detected the following spatial patterns: (1) An overall good coherence of summer interferograms with 46-92 day interferograms, (2) Low coherence of winter interferograms (November to February), probably to the increase in snow coverage, (3) Phase jumps along the border of the river reflecting morphological differences between the region near to the river and other land covers, (4) Additional phase jump located near areas undergoing road construction, and (5) Small scale phase changes located in different section of the delta, which occur most likely due to water level changes of small wetland bodies, possibly reflecting permafrost thawing processes.
Ancient deltas on Mars: outstanding targets for martian habitability?
NASA Astrophysics Data System (ADS)
Gupta, S.; Fawdon, P.; Grindrod, P. M.; Balme, M. R.; Hauber, E.; Warner, N. H.; Muller, J. P.
2014-12-01
The identification of putative ancient deltaic sedimentary systems on Mars has been both exciting and controversial. Our excitement is elicted by the potential provided by deltas as evidence for standing bodies of water associated with the deltas, and the resulting implications for both the ancient climate of Mars and ancient habitability. The controversy stems from how confident can we be in the identification of ancient deltaic systems from orbital data, and how robust are our assertions about the habitability potential of such settings. Delta systems in particular are key astrobiological targets because at their distal toes fine-grained sediment (ie., clays) settle from suspension in a lower energy setting and they are commonly characterised by high rates of sedimentation. This leads to high preservation potential of biosignatures. Targeting of future Mars rovers to investigate deltaic landing sites requires better understanding of these issues to reduce exploration risk. In this presentation, we describe the key criteria that enable us to make robust interpretations of deltaic stratigraphy and constrain delta evolution for martian systems. In particular, the past 10 years has seen in a revolution in our process understanding of terrestrial delta systems through a combination of field, experimental and numerical modelling studies. Analysis of martian deltas has much to gain from these results. We go on to consider why deltaic systems offer potential as astrobiological target paleoenvironments. We use the exhumed delta system (Hypanis delta system) at the termination of Hypanis Vallis, 11.8°N, 314.96°E as a case example. This system, situated in Xanthe Terra, comprises layered sedimentary rocks with an overall multi-lobate geometry and associated inverted channel networks. The Hypanis 'delta' is a proposed landing site for the ExoMars rover and also for the NASA 2020 mission.
Investigation of leading-edge flap performance on delta and double-delta wings at supersonic speeds
NASA Technical Reports Server (NTRS)
Covell, Peter F.; Wood, Richard M.; Miller, David S.
1987-01-01
An investigation of the aerodynamic performance of leading-edge flaps on three clipped delta and three clipped double-delta wing planforms with aspect ratios of 1.75, 2.11, and 2.50 was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.90, and 2.16. A primary set of fullspan leading-edge flaps with similar root and tip chords were investigated on each wing, and several alternate flap planforms were investigated on the aspect-ratio-1.75 wings. All leading-edge flap geometries were effective in reducing the drag at lifting conditions over the range of wing aspect ratios and Mach numbers tested. Application of a primary flap resulted in better flap performance with the double-delta planform than with the delta planform. The primary flap geometry generally yielded better performance than the alternate flap geometries tested. Trim drag due to flap-induced pitching moments was found to reduce the leading-edge flap performance more for the delta planform than for the double-delta planform. Flow-visualization techniques showed that leading-edge flap deflection reduces crossflow shock-induced separation effects. Finally, it was found that modified linear theory consistently predicts only the effects of leading-edge flap deflection as related to pitching moment and lift trends.
Hydrology and subsidence potential of proposed coal-lease tracts in Delta County, Colorado
Brooks, Tom
1983-01-01
Potential subsidence from underground coal mining and associated hydrologic impacts were investigated at two coal-lease tracts in Delta County, Colorado. Alteration of existing flow systems could affect water users in the surrounding area. The Mesaverde Formation transmits little ground water because of the neglibile transmissivity of the 1,300 feet of fine-grained sandstone, coal , and shale comprising the formation. The transmissivities of coal beds within the lower Mesaverde Formation ranged from 1.5 to 16.7 feet squared per day, and the transmissivity of the upper Mesaverde Formation, based on a single test, was 0.33 foot squared per day. Transmissivities of the alluvium ranged from 108 to 230 feet squared per day. The transmissivity of unconsolidated Quaternary deposits, determined from an aquifer test, was about 1,900 feet squared per day. Mining beneath Stevens Gulch and East Roatcap Creek could produce surface expressions of subsidence. Subsidence fractures could partly drain alluvial valley aquifers or streamflow in these mines. (USGS)
1998-09-17
A solid rocket booster (left) is raised for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. Delta's origins go back to the Thor intermediate-range ballistic missile, which was developed in the mid-1950s for the U.S. Air Force. The Thor a single-stage, liquid-fueled rocket later was modified to become the Delta launch vehicle. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Final assembly takes place at the Boeing facility in Pueblo, Colo. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-09-17
A solid rocket booster is maneuvered into place for installation on the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. Delta's origins go back to the Thor intermediate-range ballistic missile, which was developed in the mid-1950s for the U.S. Air Force. The Thor a single-stage, liquid-fueled rocket later was modified to become the Delta launch vehicle. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Final assembly takes place at the Boeing facility in Pueblo, Colo. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-09-17
A Boeing Delta 7326 rocket with two solid rocket boosters attached sits on Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. Delta's origins go back to the Thor intermediate-range ballistic missile, which was developed in the mid-1950s for the U.S. Air Force. The Thor a single-stage, liquid-fueled rocket later was modified to become the Delta launch vehicle. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Final assembly takes place at the Boeing facility in Pueblo, Colo. The Delta 7236, which has three solid rocket boosters and a Star 37 upper stage, will launch Deep Space 1, the first flight in NASA's New Millennium Program. It is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-09-17
(Left) A solid rocket booster is lifted for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. Delta's origins go back to the Thor intermediate-range ballistic missile, which was developed in the mid-1950s for the U.S. Air Force. The Thor a single-stage, liquid-fueled rocket later was modified to become the Delta launch vehicle. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Final assembly takes place at the Boeing facility in Pueblo, Colo. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
NASA Astrophysics Data System (ADS)
Rogers, K. G.; Overeem, I.
2017-12-01
The Bengal Delta in Bangladesh is regularly described as a "delta in peril" of catastrophic coastal flooding. In order to maintain a positive surface elevation, sediment aggradation on the delta must be equal to or greater than that of local sea level rise. Paradoxically, widespread armoring of the delta by coastal embankments meant to protect crops from tidal flooding has limited fluvial floodplain deposition, leading to rapid compaction and lowered land surface levels. This renders the floodplains of the delta susceptible to devastating flooding by sea level rise and storm surges capable of breaching the poorly maintained embankments. The government of Bangladesh is currently considering a one-size-fits-all approach to renovating the embankments under the assumption that sediment dynamics in the delta are everywhere the same. However, natural physical processes are spatially variable across the delta front and therefore the impact of dikes on sediment dispersal and morphology should reflect these variations. Direct sedimentation measurements, short-lived radionuclides, and a simplified sediment routing model are used to show that transport processes and sedimentation rates are highly variable across the lower delta. Aggradation is more than double the rate of local sea level rise in some areas, and dominant modes of transport are reflected in the patterns of sediment routing and flux across the lower deltaplain, though embankments are major controls on sediment dynamics throughout the coastal delta. This challenges the assumption that the Bengal Delta is doomed to drown; rather it signifies that effective preparation for 21st century climate change requires consideration of spatially variable physical dynamics and local feedbacks with large-scale infrastructure.
Li, Y Q; Varandas, A J C
2010-09-16
An accurate single-sheeted double many-body expansion potential energy surface is reported for the title system which is suitable for dynamics and kinetics studies of the reactions of N(2D) + H2(X1Sigmag+) NH(a1Delta) + H(2S) and their isotopomeric variants. It is obtained by fitting ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set, after slightly correcting semiempirically the dynamical correlation using the double many-body expansion-scaled external correlation method. The function so obtained is compared in detail with a potential energy surface of the same family obtained by extrapolating the calculated raw energies to the complete basis set limit. The topographical features of the novel global potential energy surface are examined in detail and found to be in general good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. The novel function has been built so as to become degenerate at linear geometries with the ground-state potential energy surface of A'' symmetry reported by our group, where both form a Renner-Teller pair.
Porcelain surface alterations and refinishing after use of two orthodontic bonding methods.
Herion, Drew T; Ferracane, Jack L; Covell, David A
2010-01-01
To compare porcelain surfaces at debonding after use of two surface preparation methods and to evaluate a method for restoring the surface. Lava Ceram feldspathic porcelain discs (n = 40) underwent one of two surface treatments prior to bonding orthodontic brackets. Half the discs had sandblasting, hydrofluoric acid, and silane (SB + HF + S), and the other half, phosphoric acid and silane (PA + S). Brackets were debonded using bracket removing pliers, and resin was removed with a 12-fluted carbide bur. The surface was refinished using a porcelain polishing kit, followed by diamond polishing paste. Measurements for surface roughness (Ra), gloss, and color were made before bonding (baseline), after debonding, and after each step of refinishing. Surfaces were also examined by scanning electron microscopy (SEM). Data was analyzed with 2-way ANOVA followed by Tukey HSD tests (alpha = 0.05). The SB + HF + S bonding method increased Ra (0.160 to 1.121 microm), decreased gloss (41.3 to 3.7) and altered color (DeltaE = 4.37; P < .001). The PA + S method increased Ra (0.173 to 0.341 microm; P < .001), but the increase in Ra was significantly less than that caused by the SB + HF + S bonding method (P < . 001). The PA + S method caused insignificant changes in gloss (41.7 to 38.0) and color (DeltaE = 0.50). The measurements and SEM observations showed that changes were fully restored to baseline with refinishing. The PA + S method caused significantly less damage to porcelain than the SB + HF + S method. The refinishing protocol fully restored the porcelain surfaces.
The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts
NASA Technical Reports Server (NTRS)
Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Block, J.;
2012-01-01
We investigate the potential of submm-mm and submm-mm-radio photometric redshifts using a sample of mm-selected sources as seen at 250, 350 and 500 micron by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm sources with reliable radio identifications in the Great Observatories Origins Deep Survey North and Lockman Hole North fields, 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm color evolution with redshift, finding that the colors of mm sources are adequately described by a modified blackbody with constant optical depth Tau = (Nu/nu(sub 0))(exp Beta), where Beta = +1.8 and nu(sub 0) = c/100 micron. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation, we derive photometric redshift estimates for the 46 SPIRE-detected mm sources. Testing against the 22 sources with known spectroscopic or good quality optical/near-IR photometric redshifts, we find submm/mm photometric redshifts offer a redshift accuracy of (absolute value of Delta sub (z))/(1 + z) = 0.16 (absolute value of Delta sub (z)) = 0.51). Including constraints from the radio-far-IR correlation, the accuracy is improved to (absolute value of Delta sub (z))/(1 + z) = 0.14 (((absolute value of Delta sub (z))) = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at Z > 3 when compared to approx 8S0 micron selected samples.
NASA Astrophysics Data System (ADS)
He, Jiayi; Shang, Pengjian; Xiong, Hui
2018-06-01
Stocks, as the concrete manifestation of financial time series with plenty of potential information, are often used in the study of financial time series. In this paper, we utilize the stock data to recognize their patterns through out the dissimilarity matrix based on modified cross-sample entropy, then three-dimensional perceptual maps of the results are provided through multidimensional scaling method. Two modified multidimensional scaling methods are proposed in this paper, that is, multidimensional scaling based on Kronecker-delta cross-sample entropy (MDS-KCSE) and multidimensional scaling based on permutation cross-sample entropy (MDS-PCSE). These two methods use Kronecker-delta based cross-sample entropy and permutation based cross-sample entropy to replace the distance or dissimilarity measurement in classical multidimensional scaling (MDS). Multidimensional scaling based on Chebyshev distance (MDSC) is employed to provide a reference for comparisons. Our analysis reveals a clear clustering both in synthetic data and 18 indices from diverse stock markets. It implies that time series generated by the same model are easier to have similar irregularity than others, and the difference in the stock index, which is caused by the country or region and the different financial policies, can reflect the irregularity in the data. In the synthetic data experiments, not only the time series generated by different models can be distinguished, the one generated under different parameters of the same model can also be detected. In the financial data experiment, the stock indices are clearly divided into five groups. Through analysis, we find that they correspond to five regions, respectively, that is, Europe, North America, South America, Asian-Pacific (with the exception of mainland China), mainland China and Russia. The results also demonstrate that MDS-KCSE and MDS-PCSE provide more effective divisions in experiments than MDSC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilderson, T; Cole, J; Southon, J
2004-10-28
The {Delta}{sup 14}C content of surface waters in and around the Cariaco Basin were reconstructed from {sup 14}C measurements on sub-annually sampled coral skeletal material. During the late 1930s - early 1940s surface waters within and outside of the Cariaco Basin are similar. Within the Cariaco Basin at Islas Tortugas coral {Delta}{sup 14}C averages -51.9 {+-}3.3 {per_thousand}. Corals collected outside of the basin at Boca de Medio and Los Testigos have {Delta}{sup 14}C values of -53.4 {+-} 3.3 {per_thousand} and -54.3 {+-} 2.6 respectively. Additional {sup 14}C analyses on the Isla Tortugas coral document an {approx} 11 {per_thousand} decrease betweenmore » {approx}1905 (-40.9 {+-}4.5 {per_thousand}) and {approx}1940. The implied Suess Effect trend (-3 {per_thousand}/decade) is nearly as large as that observed in the atmosphere over the same time period. If we assume that there is little to no fossil fuel {sup 14}CO{sub 2} signature in Cariaco surface waters in {approx}1905, the waters have an equivalent reservoir age of {approx}312 years.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linsley, B.K.; Dunbar, R.B.; Mucciarone, D.A.
1994-05-15
Seasonal movements of the Intertropical Convergence Zone (ITCZ) control precipitation patterns and cloud cover throughout the tropics. In this study the authors have reconstructed seasonal and interannual variability of the eastern Pacific ITCZ from 1984 to 1707 using subseasonal {delta}{sup 18}O analyses on a massive coral from Secas Island (7{degrees}59{prime}N, 82{degrees}3{prime}W) in the Gulf of Chiriqui, Panama. The land area that drains into the Gulf of Chiriqui has served to amplify the rainfall effect on nearshore surface waters and coral {delta}{sup 18}O{sub ppt} composition. During the protracted wet season in Panama, the {delta}{sup 18}O of precipitation ({delta}{sup 18}O{sub ppt}) ismore » reduced on average by 10{per_thousand} and sea surface salinity (SSS) along the western coast is reduced up to 11{per_thousand}. Calibration of the coral {delta}{sup 18}O{sub ppt} from Secas Island against instrumental sea surface temperature (SST), SSS, precipitation and {delta}{sup 18}O{sub ppt} data indicate that seasonal rainfall induced variations in seawater {delta}{sup 18}O are responsible for {approximately}80% of the annual {delta}{sup 18}O variance. The regularity of the reconstructed seasonal ITCZ cycle indicates that over the length of the record the zone of maximum rainfall in the eastern Pacific has always expanded north to at least Panama in every northern hemisphere summer. Significant interannual and interdecadal {delta}{sup 18}O oscillations occur at average periods near 9, 3-7 (ENSO band), 17 and 33 years (listed in order of decreasing variance). As the Gulf of Chiriqui coral {delta}{sup 18}O time series is the first paleoclimatic record of past variations in the ITCZ, other seasonal-resolution reconstructions of the past behavior of the ITCZ are required to test whether the interannual and long-term variability observed in the eastern Pacific ITCZ is more than regional in scale. 79 refs., 13 figs., 2 tabs.« less
A method for determining average damage depth of sawn crystalline silicon wafers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sopori, B.; Devayajanam, S.; Basnyat, P.
2016-04-01
The depth of surface damage (or simply, damage) in crystalline silicon wafers, caused by wire sawing of ingots, is determined by performing a series of minority carrier lifetime (MCLT) measurements. Samples are sequentially etched to remove thin layers from each surface and MCLT is measured after each etch step. The thickness-removed (..delta..t) at which the lifetime reaches a peak value corresponds to the damage depth. This technique also allows the damage to be quantified in terms of effective surface recombination velocity (Seff). To accomplish this, the MCLT data are converted into an Seff vs ..delta..t plot, which represents a quantitativemore » distribution of the degree of damage within the surface layer. We describe a wafer preparation procedure to attain reproducible etching and MCLT measurement results. We also describe important characteristics of an etchant used for controllably removing thin layers from the wafer surfaces. Some typical results showing changes in the MCLT vs ..delta..t plots for different cutting parameters are given.« less
Exploration gaps exist in Nigeria`s prolific delta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D.
The Niger delta region of the Republic of Nigeria is Africa`s largest oil producing area. It is clear that Nigeria will continue to contribute significantly to world petroleum production well into the 21st century: with increases in recoverable oil reserves in the Niger delta onshore and offshore; the promising potential of the Niger delta deepwater region; and a lesser but not insignificant contribution from the unexplored onshore Benue trough, part of the mid-African rift system, which has already proved to hold substantial oil reserves in the Doba basin of neighboring Chad. This is the first of five parts on Nigeria`smore » oil and gas potential. The later articles deal with Niger delta oil reserves and production, Niger delta gas reserves, the delta`s deepwater region, and the Benue trough and onshore cretaceous rift basins. This article deals with the geologic setting of the Niger delta-Benue trough region, the synrift deposits, marine sedimentation, margin evolution, geologic strata and reservoirs, reservoir character, structure and traps, hydrocarbon types, geotemperatures, and source rock quality.« less
Three-dimensional aerodynamic shape optimization of supersonic delta wings
NASA Technical Reports Server (NTRS)
Burgreen, Greg W.; Baysal, Oktay
1994-01-01
A recently developed three-dimensional aerodynamic shape optimization procedure AeSOP(sub 3D) is described. This procedure incorporates some of the most promising concepts from the area of computational aerodynamic analysis and design, specifically, discrete sensitivity analysis, a fully implicit 3D Computational Fluid Dynamics (CFD) methodology, and 3D Bezier-Bernstein surface parameterizations. The new procedure is demonstrated in the preliminary design of supersonic delta wings. Starting from a symmetric clipped delta wing geometry, a Mach 1.62 asymmetric delta wing and two Mach 1. 5 cranked delta wings were designed subject to various aerodynamic and geometric constraints.
Oxygen Reduction Kinetics of La2-xSrxNiO 4+delta Electrodes for Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Guan, Bo
In the development of intermediate temperature solid oxide fuel cell (IT-SOFC), mixed ionic-electronic conductors (MIEC) have drawn big interests due to their both ionic and electronic species transport which can enlarge the 3-dimension of the cathode network. This thesis presents an investigation of MIEC of Ruddlesden-popper (RP) phases like K2NiF4 type La2NiO4+delta (LNO)-based oxides which have interesting transport, catalytic properties and suitable thermal expansion coefficients. The motivation of this present work is to further understand the fundamental of the effect of Sr doing on the oxygen reduction reaction (ORR) kinetics of LNO cathode. Porous symmetrical cells of La2-xSrxNiO4+delta (0≤x≤0.4) were fabricated and characterized by electrochemical impedance spectroscopy (EIS) in different PO2 from temperature range of 600˜800°C. The spectra were analyzed based on the impedance model introduced by Adler et al. The rate determining steps (RDS) for ORR were proposed and the responsible reasons were discussed. The overall polarization resistances of doped samples increase with Sr level. Surface oxygen exchange and bulk ionic diffusion co-control the ORR kinetics. With high Sr content (x=0.3, 0.4), oxygen ion transfer resistance between nickelate/electrolyte is observed. However for porous symmetrical cells it is hard to associate the resistance from EIS directly to each ORR elementary processes because of the difficulty in describing the microstructure of the porous electrode. The dense electrode configuration was adopted in this thesis. By using the dense electrode, the surface area, the thickness of electrode, the interface between electrode and electrolyte and lastly the 3PB are theoretically well-defined. Through this method, there is a good chance to distinguish the contribution of surface exchange from other processes. Dense and thin electrode layers in thickness of ˜40 mum are fabricated by using a novel spray modified pressing method. Negligible bulk diffusion resistance is confirmed by parallel experiment and EIS analysis, resulting in exclusive focus on the surface process. It is ambiguously proved that Sr doping impairs the surface kinetics of lanthanum nickelates. The interstitial oxygen is suggested to be the key role when the oxygen incorporation is rat determining. For the first time, a physical model is proposed to illustrate how those interstitial species work to regulate the exchange rate of the incorporation reaction. To achieve better surface exchange ability on LNO, Mn is chosen as the doping element substituted for Ni with different levels to improve the surface kinetics because Mn is much active both for adsorption process and for incorporation process due to the high state of Mn leading to the high amount of the interstitial oxygen. Mn is found to substantially promote the surface kinetics, showing highest surface exchange coefficient (k) of 1.57x10-6cm/s at 700°C on composition of La1.8Sr0.2Ni0.9 Mn0.1O4+delta. Such value is ˜80% larger than that of the undoped sample, and is one of the highest k among the currently available R-P phase intermediate temperature (IT) cathode.
Kim, Hyung Hwan; Park, Jong Bo; Kang, Min Ji; Park, Young Hwan
2014-09-01
Silk fibroin/hydroxyapatite (SF/HAp) composite hydrogels were fabricated in this study, having different HAp contents (0-33 wt%) in SF matrix hydrogel. Surface modification of HAp nanoparticle with hyaluronic acid (HA)-dopamine (DA) conjugate improved a dispersibility of HAp in aqueous SF solution due to its negatively charged surface and therefore, fabrication of the SF composite hydrogel having HAp nanoparticles inside could be possible. Zeta potential of surface-modified HAP was examined by ELS. It demonstrates that surface of HAp was well modified to a negative charge with HA-DA. Morphological structure of SF hydrogel containing surface-modified HAp was examined by FE-SEM for analyzing pore structure of hydrogel and deposition of HAp nanoparticle in SF hydrogel. It was found that HAp nanoparticles were uniformly deposited on the pore wall of SF hydrogel. Structural characteristics of SF/HAp composite hydrogel was performed using X-ray diffraction and FT-IR analysis. It was found that β-sheet crystal conformation of SF was significantly influenced by the HAp content during gelation of a mixture of SF and HAp. As a result of MTT assay, the SF/HAp composite hydrogel showed excellent cell proliferation ability. Therefore, it is expected that SF hydrogel containing HAp nanoparticles has a high potential as bone regeneration scaffold. Copyright © 2014 Elsevier B.V. All rights reserved.
Lava delta deformation as a proxy for submarine slope instability
NASA Astrophysics Data System (ADS)
Di Traglia, Federico; Nolesini, Teresa; Solari, Lorenzo; Ciampalini, Andrea; Frodella, William; Steri, Damiano; Allotta, Benedetto; Rindi, Andrea; Marini, Lorenzo; Monni, Niccolò; Galardi, Emanuele; Casagli, Nicola
2018-04-01
The instability of lava deltas is a recurrent phenomenon affecting volcanic islands, which can potentially cause secondary events such as littoral explosions (due to interactions between hot lava and seawater) and tsunamis. It has been shown that Interferometric Synthetic Aperture Radar (InSAR) is a powerful technique to forecast the collapse of newly emplaced lava deltas. This work goes further, demonstrating that the monitoring of lava deltas is a successful strategy by which to observe the long-term deformation of subaerial-submarine landslide systems on unstable volcanic flanks. In this paper, displacement measurements derived from Synthetic Aperture Radar (SAR) imagery were used to detect lava delta instability at Stromboli volcano (Italy). Recent flank eruptions (2002-2003, 2007 and 2014) affected the Sciara del Fuoco (SdF) depression, created a "stacked" lava delta, which overlies a pre-existing scar produced by a submarine-subaerial tsunamigenic landslide that occurred on 30 December 2002. Space-borne X-band COSMO-SkyMED (CSK) and C-band SENTINEL-1A (SNT) SAR data collected between February 2010 and October 2016 were processed using the SqueeSAR algorithm. The obtained ground displacement maps revealed the differential ground motion of the lava delta in both CSK and SNT datasets, identifying a stable area (characterized by less than 2 mm/y in both datasets) within the northern sector of the SdF and an unstable area (characterized by velocity fields on the order of 30 mm/y and 160 mm/y in the CSK and SNT datasets, respectively) in the central sector of the SdF. The slope stability of the offshore part of the SdF, as reconstructed based on a recently performed multibeam bathymetric survey, was evaluated using a 3D Limit Equilibrium Method (LEM). In all the simulations, Factor of Safety (F) values between 0.9 and 1.1 always characterized the submarine slope between the coastline and -250 m a.s.l. The critical surfaces for all the search volumes corresponded to the 30 December 2002 landslide, which involved the lava delta and its surrounding areas. InSAR data provided the post-effusive deformation field after the 2007 and 2014 flank eruptions, whereas LEM results highlighted that the accumulation of lava flows on the prone-to-failure SdF submarine slope is the main cause of the detected lava delta deformation. Lava delta instability, measured also at Pico Island (Azores) and Kilauea volcano (Hawaii), is evidence of the broader spectrum of instability phenomena that take place in the coastal or submarine area of the flanks of the volcanoes. At Kilauea, past lava deltas have moved faster than the surrounding slope and the recorded movements relate only to the collapses of the deltas themselves, producing rapid mass wasting near the coasts. In contrast, at Stromboli and Pico, lava deltas move at the same velocity as the surrounding slope. In these cases, the displacement at lava deltas can be considered as a proxy for the deformation of submarine slides. There are very few studies dealing with lava delta deformation, thus, the analysis presented in this work will benefit the monitoring of submarine slopes in other prone-to-failure coastal or island volcanic systems which have the potential to generate tsunamis.
Lim, Seung Joo; Fox, Peter
2014-02-01
The effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds were investigated using a modified half life equation. The potential future pharmaceutical compounds investigated were approximately 2000 pharmaceutical drugs currently undergoing the United States Food and Drug Administration (US FDA) testing. EPI Suite (BIOWIN) model estimates the fates of compounds based on the biodegradability under aerobic conditions. While BIOWIN considered the biodegradability of a compound only, the half life equation used in this study was modified by biodegradability, sorption and cometabolic oxidation. It was possible that the potential future pharmaceutical compounds were more accurately estimated using the modified half life equation. The modified half life equation considered sorption and cometabolic oxidation of halogenated aromatic/aliphatics and nitrogen(N)-heterocyclic aromatics in the sub-surface, while EPI Suite (BIOWIN) did not. Halogenated aliphatics in chemicals were more persistent than halogenated aromatics in the sub-surface. In addition, in the sub-surface environment, the fates of organic chemicals were much more affected by halogenation in chemicals than by nitrogen(N)-heterocyclic aromatics. © 2013.
Schinke, Reinhard; Fleurat-Lessard, Paul
2005-03-01
The effect of zero-point energy differences (DeltaZPE) between the possible fragmentation channels of highly excited O(3) complexes on the isotope dependence of the formation of ozone is investigated by means of classical trajectory calculations and a strong-collision model. DeltaZPE is incorporated in the calculations in a phenomenological way by adjusting the potential energy surface in the product channels so that the correct exothermicities and endothermicities are matched. The model contains two parameters, the frequency of stabilizing collisions omega and an energy dependent parameter Delta(damp), which favors the lower energies in the Maxwell-Boltzmann distribution. The stabilization frequency is used to adjust the pressure dependence of the absolute formation rate while Delta(damp) is utilized to control its isotope dependence. The calculations for several isotope combinations of oxygen atoms show a clear dependence of relative formation rates on DeltaZPE. The results are similar to those of Gao and Marcus [J. Chem. Phys. 116, 137 (2002)] obtained within a statistical model. In particular, like in the statistical approach an ad hoc parameter eta approximately 1.14, which effectively reduces the formation rates of the symmetric ABA ozone molecules, has to be introduced in order to obtain good agreement with the measured relative rates of Janssen et al. [Phys. Chem. Chem. Phys. 3, 4718 (2001)]. The temperature dependence of the recombination rate is also addressed.
Evaluating the performance of the two-phase flow solver interFoam
NASA Astrophysics Data System (ADS)
Deshpande, Suraj S.; Anumolu, Lakshman; Trujillo, Mario F.
2012-01-01
The performance of the open source multiphase flow solver, interFoam, is evaluated in this work. The solver is based on a modified volume of fluid (VoF) approach, which incorporates an interfacial compression flux term to mitigate the effects of numerical smearing of the interface. It forms a part of the C + + libraries and utilities of OpenFOAM and is gaining popularity in the multiphase flow research community. However, to the best of our knowledge, the evaluation of this solver is confined to the validation tests of specific interest to the users of the code and the extent of its applicability to a wide range of multiphase flow situations remains to be explored. In this work, we have performed a thorough investigation of the solver performance using a variety of verification and validation test cases, which include (i) verification tests for pure advection (kinematics), (ii) dynamics in the high Weber number limit and (iii) dynamics of surface tension-dominated flows. With respect to (i), the kinematics tests show that the performance of interFoam is generally comparable with the recent algebraic VoF algorithms; however, it is noticeably worse than the geometric reconstruction schemes. For (ii), the simulations of inertia-dominated flows with large density ratios {\\sim }\\mathscr {O}(10^3) yielded excellent agreement with analytical and experimental results. In regime (iii), where surface tension is important, consistency of pressure-surface tension formulation and accuracy of curvature are important, as established by Francois et al (2006 J. Comput. Phys. 213 141-73). Several verification tests were performed along these lines and the main findings are: (a) the algorithm of interFoam ensures a consistent formulation of pressure and surface tension; (b) the curvatures computed by the solver converge to a value slightly (10%) different from the analytical value and a scope for improvement exists in this respect. To reduce the disruptive effects of spurious currents, we followed the analysis of Galusinski and Vigneaux (2008 J. Comput. Phys. 227 6140-64) and arrived at the following criterion for stable capillary simulations for interFoam: \\Delta t\\leqslant \\max (10\\tau _\\mu , 0.1\\tau _\\rho) where \\tau _\\mu =\\mu \\Delta x/\\sigma ,~ {and}~\\tau _\\rho =\\sqrt {\\rho \\Delta x^3/\\sigma } . Finally, some capillary flows relevant to atomization were simulated, resulting in good agreement with the results from the literature.
Tremblay, Patrice; Paquin, Réal
2007-01-24
Stable carbon isotope ratio mass spectrometry (delta13C IRMS) was used to detect maple syrup adulteration by exogenous sugar addition (beet and cane sugar). Malic acid present in maple syrup is proposed as an isotopic internal standard to improve actual adulteration detection levels. A lead precipitation method has been modified to isolate quantitatively malic acid from maple syrup using preparative reversed-phase liquid chromatography. The stable carbon isotopic ratio of malic acid isolated from this procedure shows an excellent accuracy and repeatability of 0.01 and 0.1 per thousand respectively, confirming that the modified lead precipitation method is an isotopic fractionation-free process. A new approach is proposed to detect adulteration based on the correlation existing between the delta13Cmalic acid and the delta13Csugars-delta13Cmalic acid (r = 0.704). This technique has been tested on a set of 56 authentic maple syrup samples. Additionally, authentic samples were spiked with exogeneous sugars. The mean theoretical detection level was statistically lowered using this technique in comparison with the usual two-standard deviation approach, especially when maple syrup is adulterated with beet sugar : 24 +/- 12% of adulteration detection versus 48 +/- 20% (t-test, p = 7.3 x 10-15). The method was also applied to published data for pineapple juices and honey with the same improvement.
Fernández, B; Alberti, I; Kitchen, I; Paz Viveros, M
1999-01-29
To address the existence of possible functional interactions between delta- and mu- receptors in relation to the affective component of pain, we have studied the effects of functional blockade of delta-receptors by a chronic treatment with naltrindole (1 mg/kg, 8 consecutive days) on antinociceptive responses to morphine (2 and 5 mg/kg) in the tail electric stimulation test, in adult male rats. The thresholds for the motor response (tail withdrawal), vocalization during stimulus and vocalization afterdischarge were assessed. These responses are considered to be integrated at spinal, medulla oblongata and diencephalon-rhinencephalon levels, respectively. The results show that the vocalization during stimulus and the vocalization afterdischarge were significantly affected by morphine in a dose dependent manner, the latter response being the most sensitive to the effects of the mu-opioid agonist. However, no significant effect was observed on motor responses at the doses used in this study. Chronic naltrindole treatment did not modify the inhibitory effect of morphine on the vocalization responses. Since the vocalization afterdischarge is related to the affective component of pain, the data suggest that the delta-opioid receptor is not involved in the supraspinal mechanisms at which these responses are organized and that there is not a mu-delta interaction in the modulation of the affective responses to noxious electrical stimulation.
Bernstein, Roy; Belfer, Sofia; Freger, Viatcheslav
2011-07-15
Concentration polarization-enhanced radical graft polymerization, a facile surface modification technique, was examined as an approach to reduce bacterial deposition onto RO membranes and thus contribute to mitigation of biofouling. For this purpose an RO membrane ESPA-1 was surface-grafted with a zwitterionic and negatively and positively charged monomers. The low monomer concentrations and low degrees of grafting employed in modifications moderately reduced flux (by 20-40%) and did not affect salt rejection, yet produced substantial changes in surface chemistry, charge and hydrophilicity. The propensity to bacterial attachment of original and modified membranes was assessed using bacterial deposition tests carried out in a parallel plate flow setup using a fluorescent strain of Pseudomonas fluorescens. Compared to unmodified ESPA-1 the deposition (mass transfer) coefficient was significantly increased for modification with the positively charged monomer. On the other hand, a substantial reduction in bacterial deposition rates was observed for membranes modified with zwitterionic monomer and, still more, with very hydrophilic negatively charged monomers. This trend is well explained by the effects of surface charge (as measured by ζ-potential) and hydrophilicity (contact angle). It also well correlated with force distance measurements by AFM using surrogate spherical probes with a negative surface charge mimicking the bacterial surface. The positively charged surface showed a strong hysteresis with a large adhesion force, which was weaker for unmodified ESPA-1 and still weaker for zwitterionic surface, while negatively charged surface showed a long-range repulsion and negligible hysteresis. These results demonstrate the potential of using the proposed surface- modification approach for varying surface characteristics, charge and hydrophilicity, and thus minimizing bacterial deposition and potentially reducing propensity biofouling.
Liu, Cong-Qiang; Li, Si-Liang; Lang, Yun-Chao; Xiao, Hua-Yun
2006-11-15
Nitrate pollution of the karstic groundwater is an increasingly serious problem with the development of Guiyang, the capital city of Guizhou Province, southwest China. The higher content of NO3- in groundwater compared to surface water during both summer and winter seasons indicates that the karstic groundwater system cannot easily recover once contaminated with nitrate. In order to assess the sources and conversion of nitrate in the groundwater of Guiyang, we analyzed the major ions, delta(15)N-NH4+, delta(15)N-NO3-, and delta(18)O-NO3- in surface and groundwater samples collected during both summer and winter seasons. The results show that nitrate is the major dominant species of nitrogen in most water samples and there is a big variation of nitrate sources in groundwater between winter and summer season, due to fast response of groundwater to rain or surface water in the karst area. Combined with information on NO3- /Cl-, the variations of the isotope values of nitrate in the groundwater show a mixing process of multiple sources of nitrate, especially in the summer season. Chemical fertilizer and nitrification of nitrogen-containing organic materials contribute nitrate to suburban groundwater, while the sewage effluents and denitrification mainly control the nitrate distribution in urban groundwater.
[Electronic spectra of triphenodioxazines dyes by modified PPP-MO method].
Wang, Xue-jie
2002-02-01
The triphenodioxazines dyes have good colour and luster, excellent colour fastness to light, and strong painted. They are used as the dyes and pigment extensively, and also be used as the photoelectronic transformation, laser dyes and far-infrared anti-radiation material. The colour and constitution of triphenodioxazines dyes were evaluated by means of the modified PPP-SCF-MO method with variable R, beta approximation. The calculated wavelengths of maximum absorption are in good agreement with experimental results. It was found that there exists a good correlated relationship between the wavenumber of fluorescence maximum nu fl and the calculated fluorescence emission energy delta Efl, as nu fl = 11.6837 delta Efl + 3.3485(k.cm-1), r = 0.9547. The relationship between structure of molecular and properties of electronic spectra has been discussed.
Mechanisms and chemistry of dye adsorption on manganese oxides-modified diatomite.
Al-Ghouti, Mohammad A; Al-Degs, Yehya S; Khraisheh, Majeda A M; Ahmad, Mohammad N; Allen, Stephen J
2009-08-01
The investigations into structural changes which occur during adsorbent modification and the adsorption mechanisms are essential for an effective design of adsorption systems. Manganese oxides were impregnated onto diatomite to form the type known as delta-birnessite. Initial investigations established the effectiveness of manganese oxides-modified diatomite (MOMD) to remove basic and reactive dyes from aqueous solution. The adsorption capacity of MOMD for methylene blue (MB), hydrolysed reactive black (RB) and hydrolysed reactive yellow (RY) was 320, 419, and 204mg/g, respectively. Various analytical techniques were used to characterise the structure and the mechanisms of the dye adsorption process onto MOMD such as Fourier transform infrared (FTIR), X-ray diffraction (XRD) and atomic absorption spectrometry (A.A.). A small shift to higher values of the d-spacing of dye/MOMD was observed indicating that a small amount of the dye molecules were intercalated in the MOMD structure and other molecules were adsorbed on the external surface of MOMD. Two mechanisms of dye adsorption onto MOMD were proposed; intercalation of the dye in the octahedral layers and adsorption of the dye on the MOMD external surface. Moreover, the results demonstrated that the MOMD structure was changed upon insertion of MB and RY with an obvious decrease in the intensity of the second main peak of the MOMD X-ray pattern.
2011-01-01
One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm−2 at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning. PMID:21417322
Tasca, Federico; Harreither, Wolfgang; Ludwig, Roland; Gooding, John Justin; Gorton, Lo
2011-04-15
One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm(-2) at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning. © 2011 American Chemical Society
Sources of suspended sediment in the Lower Roanoke River, NC
NASA Astrophysics Data System (ADS)
Jalowska, A. M.; McKee, B. A.; Rodriguez, A. B.; Laceby, J. P.
2015-12-01
The Lower Roanoke River, NC, extends 220 km from the fall line to the bayhead delta front in the Albemarle Sound. The Lower Roanoke is almost completely disconnected from the upper reaches by a series of dams, with the furthest downstream dam located at the fall line. The dams effectively restrict the suspended sediment delivery from headwaters, making soils and sediments from the Lower Roanoke River basin, the sole source of suspended sediment. In flow-regulated rivers, bank erosion, especially mass wasting, is the major contributor to the suspended matter. Additional sources of the suspended sediment considered in this study are river channel, surface soils, floodplain surface sediments, and erosion of the delta front and prodelta. Here, we examine spatial and temporal variations in those sources. This study combined the use of flow and grain size data with a sediment fingerprinting method, to examine the contribution of surface and subsurface sediments to the observed suspended sediment load along the Lower Roanoke River. The fingerprinting method utilized radionuclide tracers 210Pb (natural atmospheric fallout), and 137Cs (produced by thermonuclear bomb testing). The contributions of surface and subsurface sources to the suspended sediment were calculated with 95% confidence intervals using a Monte-Carlo numerical mixing model. Our results show that with decreasing river slope and changing hydrography along the river, the contribution of surface sediments increases and becomes a main source of sediments in the Roanoke bayhead delta. At the river mouth, the surface sediment contribution decreases and is replaced by sediments eroded from the delta front and prodelta. The area of high surface sediment contribution is within the middle and upper parts of the delta, which are considered net depositional. Our study demonstrates that floodplains, often regarded to be a sediment sink, are also a sediment source, and they should be factored into sediment, carbon and nutrient budgets.
Global land-surface primary productivity based upon Nimbus-7 37 GHz data
NASA Technical Reports Server (NTRS)
Choudhury, B. J.
1988-01-01
Accumulation and renewal of organic matter as quantified through net primary productivity (NPP) is considered a very major function of the biosphere, and its estimation is crucial in understanding the carbon cycle. A physically-based model relating NPP to the difference of vertically and horizontally polarized brightness temperatures (Delta T) observed at 37 GHz frequency of the scanning multichannel microwave radiometer on board the Nimbus-7 satellite is used for fitting areally averaged values of NPP and Delta T for five biomes. The land-surface NPP within 80 deg N to 55 deg S is then calculated using the Delta T data and compared with other estimates.
Isotopic analysis for degradation diagnosis of calcite matrix in mortar.
Dotsika, E; Psomiadis, D; Poutoukis, D; Raco, B; Gamaletsos, P
2009-12-01
Mortar that was used in building as well as in conservation and restoration works of wall paintings have been analysed isotopically (delta(13)C and delta(18)O) in order to evaluate the setting environments and secondary processes, to distinguish the structural components used and to determine the exact causes that incurred the degradation phenomena. The material undergoes weathering and decay on a large proportion of its surface and in depth, due to the infiltration of water through the structural blocks. Mineralogical analysis indicated signs of sulphation and dissolution/recrystallisation processes taking place on the material, whereas stable isotopes provided information relative to the origin of the CO(2) and water during calcite formation and degradation processes. Isotopic change of the initial delta(13)C and delta(18)O in carbonate matrix was caused by alteration of the primary source of CO(2) and H(2)O in mortar over time, particularly by recrystallisation of calcite with porewater, evaporated or re-condensed water, and CO(2) from various sources of atmospheric and biogenic origin. Human influence (surface treatment) and biological growth (e.g. fungus) are major exogenic processes which may alter delta(18)O and delta(13)C in lime mortar.
McCulloch, David S.
1966-01-01
The March 27, 1964, earthquake dislodged slides from nine deltas in Kenai Lake, south-central Alaska. Sliding removed protruding parts of deltas-often the youngest parts-and steepened delta fronts, increasing the chances of further sliding. Fathograms show that debris from large slides spread widely over the lake floor, some reaching the toe of the opposite shore; at one place debris traveled 5,000 feet over the horizontal lake floor. Slides generated two kinds of local waves: a backfill and far-shore wave. Backfill waves were formed by water that rushed toward the delta to fill the void left by the sinking slide mass, overtopped the slide scrap, and came ashore over the delta. Some backfill waves had runup heights of 30 feet and ran inland more than 300 feet, uprooting and breaking off large trees. Far-shore waves hit the shore opposite the slides. They were formed by slide debris that crossed the lake floor and forced water ahead of it, which then ran up the opposite slope, burst above the lake surface, and struck the shore. One far-shore wave had a runup height of 72 feet. Kenai Lake was tilted and seiched; a power spectrum analysis of a limnogram shows a wave having the period of the calculated uninodal seiche (36 minutes) and several shorter period waves. In constricted and shallow reaches, waves caused by seiching had 20- and 30-foot runup heights. Deep lateral spreading of sediments toward delta margins displaced deeply driven railroad-bridge piles, and set up stress fields in the surface sediments which resulted in the formation of many shear and some tension fractures on the surface of two deltas.
Controlled mechnical modification of manganite surface with nanoscale resolution
Kelly, Simon J.; Kim, Yunseok; Eliseev, Eugene; ...
2014-11-07
We investigated the surfaces of magnetoresistive manganites, La1-xCaxMnO3 and La2-2xSr1+2xMn2O7, using a combination of ultrahigh vacuum conductive, electrostatic and magnetic force microscopy methods. Scanning as-grown film with a metal tip, even with zero applied bias, was found to modify the surface electronic properties such that in subsequent scans, the conductivity is reduced below the noise level of conductive probe microscopy. Scanned areas also reveal a reduced contact potential difference relative to the pristine surface by ~0.3 eV. We propose that contact-pressure of the tip modifies the electrochemical potential of oxygen vacancies via the Vegard effect, causing vacancy motion and concomitantmore » changes of the electronic properties.« less
Modification of porous silicon rugate filters through thiol-yne photochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soeriyadi, Alexander H., E-mail: alexander.soeriyadi@unsw.edu.au; Zhu, Ying, E-mail: alexander.soeriyadi@unsw.edu.au; Gooding, J. Justin, E-mail: justin.gooding@unsw.edu.au
2014-02-24
Porous silicon (PSi) has a considerable potential as biosensor platform. In particular, the ability to modify the surface chemistry of porous silicon is of interest. Here we present a generic method to modify the surface of porous silicon through thiol-yne photochemistry initiated by a radical initiator. Firstly, a freshly etched porous silicon substrate is modified through thermal hydrosilylation with 1,8-nonadiyne to passivate the surface and introduce alkyne functionalities. The alkyne functional surface could then be further reacted with thiol species in the presence of a radical initiator and UV light. Functionalization of the PSi rugate filter is followed with opticalmore » reflectivity measurements as well as high resolution X-ray photoelectron spectroscopy (XPS)« less
Tomography of a Probe Potential Using Atomic Sensors on Graphene.
Wyrick, Jonathan; Natterer, Fabian D; Zhao, Yue; Watanabe, Kenji; Taniguchi, Takashi; Cullen, William G; Zhitenev, Nikolai B; Stroscio, Joseph A
2016-12-27
Our ability to access and explore the quantum world has been greatly advanced by the power of atomic manipulation and local spectroscopy with scanning tunneling and atomic force microscopes, where the key technique is the use of atomically sharp probe tips to interact with an underlying substrate. Here we employ atomic manipulation to modify and quantify the interaction between the probe and the system under study that can strongly affect any measurement in low charge density systems, such as graphene. We transfer Co atoms from a graphene surface onto a probe tip to change and control the probe's physical structure, enabling us to modify the induced potential at a graphene surface. We utilize single Co atoms on a graphene field-effect device as atomic scale sensors to quantitatively map the modified potential exerted by the scanning probe over the whole relevant spatial and energy range.
Sorption of nonpolar aromatic contaminants by chlorosilane surface modified natural minerals.
Huttenloch, P; Roehl, K E; Czurda, K
2001-11-01
The efficacy of the surface modification of natural diatomite and zeolite material by chlorosilanes is demonstrated. Chlorosilanes used were trimethylchlorosilane (TMSCI), tert-butyldimethylchlorosilane (TBDMSCI), dimethyloctadecylchlorosilane (DMODSCI), and diphenyldichlorosilane (DPDSCI) possessing different headgroups and chemical properties. Silanol groups of the diatomite and zeolite were modified by chemical reaction with the chlorosilanes resulting in a stable covalent attachment of the organosilanes to the mineral surface. The alteration of surface properties of the modified material was proved by measurements of water adsorption capacity, total organic carbon (TOC) content, and thermoanalytical data. The surface modified material showed great stability even when exposed to extremes in ionic strength, pH, and to pure organic solvents. Sorption of toluene, o-xylene, and naphthalene from water was greatly enhanced by the surface modification compared to the untreated materials which showed no measurable sorption of these compounds. The enhanced sorption was dependent on the organic carbon content as well as on chemical characteristics of the chlorosilanes used. Batch sorption experiments showed that the phenyl headgroups of DPDSCI have the best affinity for aromatic compounds. Removal from an aqueous solution of 10 mg/L of naphthalene, o-xylene, and toluene was 71%, 60%, and 30% for surface modified diatomite and 51%, 30%, and 16% for modified clinoptilolite, respectively. Sorption data were well described by the Freundlich isotherm equation, which indicated physical adsorption onto the lipophilic surface rather than partitioning into the surface organic phase. The chlorosilane modified materials have an apparent potential for application in environmental technologies such as permeable reactive barriers (PRB) or wastewater treatment.
Dunn, Frances E; Nicholls, Robert J; Darby, Stephen E; Cohen, Sagy; Zarfl, Christiane; Fekete, Balázs M
2018-06-09
Regular sediment inputs are required for deltas to maintain their surface elevation relative to sea level, which is important for avoiding salinization, erosion, and flooding. However, fluvial sediment inputs to deltas are being threatened by changes in upstream catchments due to climate and land use change and, particularly, reservoir construction. In this research, the global hydrogeomorphic model WBMsed is used to project and contrast 'pristine' (no anthropogenic impacts) and 'recent' historical fluvial sediment delivery to the Ganges-Brahmaputra-Meghna, Mahanadi, and Volta deltas. Additionally, 12 potential future scenarios of environmental change comprising combinations of four climate and three socioeconomic pathways, combined with a single construction timeline for future reservoirs, were simulated and analysed. The simulations of the Ganges-Brahmaputra-Meghna delta showed a large decrease in sediment flux over time, regardless of future scenario, from 669 Mt/a in a 'pristine' world, through 566 Mt/a in the 'recent' past, to 79-92 Mt/a by the end of the 21st century across the scenarios (total average decline of 88%). In contrast, for the Mahanadi delta the simulated sediment delivery increased between the 'pristine' and 'recent' past from 23 Mt/a to 40 Mt/a (+77%), and then decreased to 7-25 Mt/a by the end of the 21st century. The Volta delta shows a large decrease in sediment delivery historically, from 8 to 0.3 Mt/a (96%) between the 'pristine' and 'recent' past, however over the 21st century the sediment flux changes little and is predicted to vary between 0.2 and 0.4 Mt/a dependent on scenario. For the Volta delta, catchment management short of removing or re-engineering the Volta dam would have little effect, however without careful management of the upstream catchments these deltas may be unable to maintain their current elevation relative to sea level, suggesting increasing salinization, erosion, flood hazards, and adaptation demands. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Breaux, A.; Kolker, A.; Telfeyan, K.; Kim, J.; Johannesson, K. H.; Cable, J. E.
2014-12-01
Many studies have focused on hydrological and geochemical fluxes to the ocean from land to the ocean via submarine groundwater discharge (SGD), however few have assessed these contributions of SGD in deltaic settings. The Mississippi River delta is the largest delta in North America, and the magnitude of groundwater that discharges from the river into its delta is relatively unknown. Hydrological budgets indicate that there is a large magnitude of surface water lost in the Mississippi's delta as the river flows into the Gulf of Mexico. Recent evidence in our study indicates that paleochannels, or semi-permeable buried sandy bodies that were former distributaries of the river, allow for water to discharge out of the Mississippi's main channel and into its delta driven by a difference in hydraulic head between the river and the lower lying coastal embayments. Our study uses geophysical data, including sonar and resistivity methods, to detect the location of these paleochannels in Barataria Bay, a coastal bay located in the Mississippi Delta. High resolution CHIRP sonar data shows that these paleochannel features are ubiquitous in the Mississippi Delta, whereas resistivity data indicates that lower salinity water is found during high river flow in bays proximate to the river. Sediment core analysis is also used to characterize the area of study, as well as further understand the regional geology of the Mississippi Delta and estimate values of permeability and hydraulic conductivity of sediments taken from two locations in Barataria Bay. The geophysical and sediment core data will likewise be used to contextualize geochemical data collected in the field, which includes an assessment of major cations and anions, as well as in situ Rn-222 activities, a method that has been proven to be useful as a tracer of groundwater movement. The results may be useful in understanding the potential global magnitude of hydrological and geochemical fluxes of other large rivers with abandoned distributaries and can have implications for urban planning and planning of coastal restoration projects, as many large global deltas sustain significant populations.
Schmitz, M; Graf, C; Gut, T; Sirena, D; Peter, I; Dummer, R; Greber, U F; Hemmi, S
2006-06-01
Replicating adenovirus (Ad) vectors with tumour tissue specificity hold great promise for treatment of cancer. We have recently constructed a conditionally replicating Ad5 AdDeltaEP-TETP inducing tumour regression in a xenograft mouse model. For further improvement of this vector, we introduced four genetic modifications and analysed the viral cytotoxicity in a large panel of melanoma cell lines and patient-derived melanoma cells. (1) The antiapoptotic gene E1B-19 kDa (Delta19 mutant) was deleted increasing the cytolytic activity in 18 of 21 melanoma cells. (2) Introduction of the E1A 122-129 deletion (Delta24 mutant), suggested to attenuate viral replication in cell cycle-arrested cells, did not abrogate this activity and increased the cytolytic activity in two of 21 melanoma cells. (3) We inserted an RGD sequence into the fiber to extend viral tropism to alphav integrin-expressing cells, and (4) swapped the fiber with the Ad35 fiber (F35) enhancing the tropism to malignant melanoma cells expressing CD46. The RGD-fiber modification strongly increased cytolysis in all of the 11 CAR-low melanoma cells. The F35 fiber-chimeric vector boosted the cytotoxicity in nine of 11 cells. Our results show that rational engineering additively enhances the cytolytic potential of Ad vectors, a prerequisite for the development of patient-customized viral therapies.
Ma, Qianli; Mei, Shenglin; Ji, Kun; Zhang, Yumei; Chu, Paul K
2011-08-01
The objective of this study was to form a rapid and firm soft tissue sealing around dental implants that resists bacterial invasion. We present a novel approach to modify Ti surface by immobilizing Ag nanoparticles/FGF-2 compound bioactive factors onto a titania nanotubular surface. The titanium samples were anodized to form vertically organized TiO(2) nanotube arrays and Ag nanoparticles were electrodeposited onto the nanotubular surface, on which FGF-2 was immobilized with repeated lyophilization. A uniform distribution of Ag nanoparticles/FGF-2 was observed on the TiO(2) nanotubular surface. The L929 cell line was used for cytotoxicity assessment. Human gingival fibroblasts (HGFs) were cultured on the modified surface for cytocompatibility determination. The Ag/FGF-2 immobilized samples displayed excellent cytocompatibility, negligible cytotoxicity, and enhanced HGF functions such as cell attachment, proliferation, and ECM-related gene expression. The Ag nanoparticles also exhibit some bioactivity. In conclusion, this modified TiO(2) nanotubular surface has a large potential for use in dental implant abutment. Copyright © 2011 Wiley Periodicals, Inc.
Adsorption of dyes using different types of clay: a review
NASA Astrophysics Data System (ADS)
Adeyemo, Aderonke Ajibola; Adeoye, Idowu Olatunbosun; Bello, Olugbenga Solomon
2017-05-01
Increasing amount of dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost adsorbents. The effective use of the sorption properties (high surface area and surface chemistry, lack of toxicity and potential for ion exchange) of different clays as adsorbents for the removal of different type of dyes (basic, acidic, reactive) from water and wastewater as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. Insights into the efficiencies of raw and modified/activated clay adsorbents and ways of improving their efficiencies to obtain better results are discussed. Acid-modified clay resulted in higher rate of dye adsorption and an increased surface area and porosity (49.05 mm2 and 53.4 %). Base-modified clay has lower adsorption capacities, while ZnCl2-modified clay had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4 %. This review also explores the grey areas of the adsorption properties of the raw clays and the improved performance of activated/modified clay materials with particular reference to the effects of pH, temperature, initial dye concentration and adsorbent dosage on the adsorption capacities of the clays. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.
Torok, Kathryn S; Baker, Nancy A; Lucas, Mary; Domsic, Robyn T; Boudreau, Robert; Medsger, Thomas A
2010-01-01
To determine the reliability and validity of a new measure of finger motion in patients with systemic sclerosis (SSc), the 'delta finger-topalm' (delta FTP) and compare its psychometric properties to the traditional measure of finger motion, the finger-topalm (FTP). Phase 1: The reliability of the delta FTP and FTP were examined in 39 patients with SSc. Phase 2: Criterion and convergent construct validity of both measures were examined in 17 patients with SSc by comparing them to other clinical measures: Total Active Range of Motion (TAROM), Hand Mobility in Scleroderma (HAMIS), the Duruoz Hand Index (DHI), Health Assessment Questionnaire (HAQ), and modified Rodnan skin score (mRSS). Phase 3: Sensitivity to change of the delta FTP was investigated in 24 patients with early diffuse cutaneous SSc. Both measures had excellent intra-rater and inter-rater reliability (ICC 0.92 to 0.99). Fair to strong correlations (rs=0.49-0.94) were observed between the delta FTP and TAROM, HAMIS, and DHI. Fair to moderate correlations were observed between delta FTP and HAQ components related to hand function and upper extremity mRSS. Correlations of the traditional FTP with these measures were fair to strong, but most often the delta FTP outperformed the FTP. The effect size and standardised response mean for the mean delta FTP were 0.50 and 1.10 respectively, over a 2-8 month period. The delta FTP is a valid and reliable measure of finger motion in patients with SSc which outperforms the FTP.
Shepherd, Andrew; Wesley, Uma; Wesley, Cedric
2010-01-01
Notch and Delta proteins generate Notch signaling that specifies cell fates during animal development. There is an intriguing phenomenon in Drosophila embryogenesis that has not received much attention and whose significance to embryogenesis is unknown. Notch and Delta mRNAs expressed in early-stage embryos are shorter than their counterparts in mid-stage embryos. We show here that the difference in sizes is due to mRNA 3′ processing at alternate polyadenylation sites. While the early-stage Notch mRNA has a lower protein-producing potential than the mid-stage Notch mRNA, the early-stage Delta mRNA has a higher protein-producing potential than the mid-stage Delta mRNA. Our data can explain the complementary patterns of Notch and Delta protein levels in early-stage and mid-stage embryos. Our data also raise the possibility that the manner and regulation of Notch signaling change in the course of embryogenesis and that this change is effected by 3′ UTR and mRNA 3′ processing factors. PMID:20201103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malacek, S.J.; Reaves, C.M.; Atmadja, W.S.
1994-07-01
A sequence stratigraphic study was conducted to help evaluate the exploration potential of the Makassar PSC, offshore East Kalimantan, Indonesia. The PSC is on the present-day slope in water depths of 500-3000 ft and borders the large oil and gas fields of the Mahakam delta. The study provided important insights on reservoir distribution, trapping style, and seismic hydrocarbon indicators. Lowstand deposition on a slope modified by growth faulting and shale diapirism controlled reservoir distribution within the prospective late Miocene section. Three major lowstand intervals can be seismically defined and tied to deep-water sands in nearby wells where log character andmore » biostratigraphic data support the seismic system tract interpretation. The three intervals appear to correlate with third-order global lowstand events and are consistent with existing sequence stratigraphic schemes for the shelf and upper slope in the Makassar area. Seismic mapping delineated lowstand features, including incised valleys and intraslope to basin-floor thicks. Regional information on positions of middle-late Miocene delta lobes and shelf edges, helped complete the picture for sand sources, transport routes, and depocenters.« less
Homeostasis of the protonmotive force in phosphorylating mitochondria.
Duszyński, J; Bogucka, K; Wojtczak, L
1984-12-18
The relationship between the respiration rate and the magnitude of the electrochemical proton potential (delta mu H+) in rat liver mitochondria was investigated. (1) Under the active-state conditions, the action of inhibitors of either phosphorylation (oligomycin) or respiration (rotenone, malonate) on the respiration and delta mu H+ was measured. Both inhibitors diminished the respiration, whereas rotenone resulted in a decrease of delta mu H+, and oligomycin produced an increase of this potential. The effect of the inhibitors was much more pronounced on the respiration rate than on delta mu H+; for example, the excess of oligomycin produced a 90% inhibition of the respiration while delta mu H+ was changed only by 9%. (2) Under the resting-state conditions, small concentrations of the uncoupler stimulated the respiration while changing delta mu H+ to a relatively small extent. The uncoupler concentrations which doubled and tripled the respiration rate produced only 5 and 9% decrease of delta mu H+, respectively. (3) The present results enabled us to propose a model describing the interrelationship between respiration and delta mu H+.
NASA Astrophysics Data System (ADS)
MicicBatka, Vesna; Schmid, Doris; Marko, Florian; Velimirovic, Milica; Wagner, Stephan; von der Kammer, Frank; Hofmann, Thilo
2015-04-01
Successful emplacement of nanoscale zero-valent iron (nZVI) within the contaminated source zone is a prerequisite for the use of nZVI technology in groundwater remediation. Emplacement of nZVI is influenced i.e., by the injection technique and the injection velocity applied, as well as by the mobility of nZVI in the subsurface. Whereas processes linked to the injection can be controlled by the remediation practitioners, the mobility of nZVI in the subsurface remains limited. Even though mobility of nZVI is somewhat improved by surface coating with polyelectrolytes, it is still greatly affected by the groundwater composition and physical and chemical heterogeneities of aquifer grains. In order to promote mobility of nZVI it is needed to alter the surface charge heterogeneities of aquifer grains. Modifying the aquifer grain's surfaces by means of polyelectrolyte coating is an approach proposed to increase the overall negative surface charge of the aquifer grain surfaces, hinder deposition of nZVI onto aquifer grains, and finally promote nZVI mobility. In this study the effect of different polyelectrolytes on the nZVI mobility is tested in natural sands deriving from real brownfield sites that are proposed to be remediated using the nZVI technology. Sands collected from brownfield sites were characterized in terms of grain size distribution, mineralogical and chemical composition, and organic carbon content. Furthermore, surface charge of these sands was determined in both, low- and high ionic strength background solutions. Finally, changes of the sand's surface charges were examined after addition of the proposed aquifer modifiers, lignin sulfonate and humic acid. Surface charge of brownfield sands in low ionic strength background solution is more negative compared to that in high ionic strength background solution. An increase in negative surface potential of brownfield sand was recorded when aquifer modifiers were applied in a background solution with low ionic strength, indicating their potential to improve nZVI mobility under comparable environmental conditions. In contrast, no significant change of the surface potential of brownfield sand was observed when aquifer modifiers were applied in a background solution with high ionic strength. The potential of the aquifer modifiers to promote the mobility of nZVI was furthermore tested in flow-through columns, starting with the one filled with natural quartz sand with rough surface, low ionic strength background solutions and pre-injecting lignin sulfonate in concentration of 50 mg/L. The preliminary results showed that the pre-injection of lignin sulfonate does increase mobility of nZVI under this experimental condition. Further mobility tests will be carried out in order to elucidate the potential of the aquifer modifiers to promote the mobility of nZVI in sands with a complex mineralogy and in the background solutions with varying ionic strength, in order to account for the condition that resemble those at polluted sites. This research receives funding from the European Union's Seventh Framework Programme FP7/2007-2013 under grant agreement n°309517.
Werner, R A; Rothe, M; Brand, W A
2001-01-01
The determination of delta18O values in CO2 at a precision level of +/-0.02 per thousand (delta-notation) has always been a challenging, if not impossible, analytical task. Here, we demonstrate that beyond the usually assumed major cause of uncertainty - water contamination - there are other, hitherto underestimated sources of contamination and processes which can alter the oxygen isotope composition of CO2. Active surfaces in the preparation line with which CO2 comes into contact, as well as traces of air in the sample, can alter the apparent delta18O value both temporarily and permanently. We investigated the effects of different surface materials including electropolished stainless steel, Duran glass, gold and quartz, the latter both untreated and silanized. CO2 frozen with liquid nitrogen showed a transient alteration of the 18O/16O ratio on all surfaces tested. The time to recover from the alteration as well as the size of the alteration varied with surface type. Quartz that had been ultrasonically cleaned for several hours with high purity water (0.05 microS) exhibited the smallest effect on the measured oxygen isotopic composition of CO2 before and after freezing. However, quartz proved to be mechanically unstable with time when subjected to repeated large temperature changes during operation. After several days of operation the gas released from the freezing step contained progressively increasing trace amounts of O2 probably originating from inclusions within the quartz, which precludes the use of quartz for cryogenically trapping CO2. Stainless steel or gold proved to be suitable materials after proper pre-treatment. To ensure a high trapping efficiency of CO2 from a flow of gas, a cold trap design was chosen comprising a thin wall 1/4" outer tube and a 1/8" inner tube, made respectively from electropolished stainless steel and gold. Due to a considerable 18O specific isotope effect during the release of CO2 from the cold surface, the thawing time had to be as long as 20 min for high precision delta18O measurements. The presence of traces of air in almost all CO2 gases that we analyzed was another major source of error. Nitrogen and oxygen in the ion source of our mass spectrometer (MAT 252, Finnigan MAT, Bremen, Germany) give rise to the production of NO2 at the hot tungsten filament. NO2+ is isobaric with C16O18O+ (m/z 46) and interferes with the delta18O measurement. Trace amounts of air are present in CO2 extracted cryogenically from air at -196 degrees C. This air, trapped at the cold surface, cannot be pumped away quantitatively. The amount of air present depends on the surface structure and, hence, the alteration of the measured delta18O value varies with the surface conditions. For automated high precision measurement of the isotopic composition of CO2 of air samples stored in glass flasks an extraction interface ('BGC-AirTrap') was developed which allows 18 analyses (including standards) per day to be made. For our reference CO2-in-air, stored in high pressure cylinders, the long term (>9 months) single sample precision was 0.012 per thousand for delta13C and 0.019 per thousand for delta18O. Copyright 2001 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu
2015-04-01
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01439e
NASA Technical Reports Server (NTRS)
Rao, Dhanvada M.; Bhat, M. K.
1992-01-01
A proposed concept to alleviate high alpha asymmetry and lateral/directional instability by decoupling of forebody and wing vortices was studied on a generic chine forebody/ 60 deg. delta configuration in the NASA Langley 7 by 10 foot High Speed Tunnel. The decoupling technique involved inboard leading edge flaps of varying span and deflection angle. Six component force/moment characteristics, surface pressure distributions and vapor-screen flow visualizations were acquired, on the basic wing-body configuration and with both single and twin vertical tails at M sub infinity = 0.1 and 0.4, and in the range alpha = 0 to 50 deg and beta = -10 to +10 degs. Results are presented which highlight the potential of vortex decoupling via leading edge flaps for enhanced high alpha lateral/directional characteristics.
Hurd, Todd M; Jesic, Slaven; Jerin, Jessica L; Fuller, Nathan W; Miller, David
2008-11-01
Limestone springs support productive ecosystems and fisheries, yet aquaculture may modify or impair these ecosystems. We determined trout hatchery organic contribution to spring creek sediments and foodwebs with natural abundance stable isotope methods. Hatchery feed, waste, and trout were significantly enriched in delta(13)C relative to autotrophs and wild fish. Spring creek sediments were enriched in delta(13)C toward the hatchery endmember relative to reference streams without hatcheries and relative to a larger larger-order, spring-influenced stream. Contribution of hatchery C to spring creek sediments was greatest during March and associated with greatest sediment %C. Contribution of hatchery C to pollution-tolerant isopod diet was 39-51% in a stream receiving limestone spring water via hatchery effluent. Isopods of one spring creek also relied on hatchery-derived C within one month of hatchery closure. Four years later, less pollution pollution-tolerant amphipods dominated and consumed non-vascular over vascular autotrophs (86%). Isopods of a second spring creek with an active hatchery did not appear to be using hatchery matter directly, but were enriched in delta(34)S relative to a spring creek tributary with no hatchery influence. Isopods in both of these streams were relatively enriched in delta(15)N, indicating general nutrient enrichment from surrounding agricultural land use. The contribution of hatchery vs. wild fish in diet of herons and egrets was traced with delta(13)C of guano. These birds were strongly dependent on stocked trout in a spring creek with a recently closed state trout hatchery, and also near another large, state-run hatchery. Heron dependence on hatchery fish in the spring creek decreased with time since hatchery closure. Use of stable isotope natural abundance techniques in karst spring creeks can reveal stream impairment due to aquaculture, specific C sources to bio-indicating consumers, losses of farmed fish to predation, and potential exposure of higher order consumers to contaminants associated with aquaculture.
Atmospheric effects on SMMR and SSM/I 37 GHz polarization difference over the Sahel
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Major, E. R.; Smith, E. A.; Becker, F.
1992-01-01
The atmospheric effects on the difference of vertically and horizontally polarized brightness temperatures, Delta(T) observed at 37 GHz frequency of the SMMR on board the Nimbus-7 satellite and SSM/I on board the DMSP-F8 satellite are studied over two 2.5 by 2.5 deg regions within the Sahel and Sudan zones of Africa from January 1985 to December 1986 through radiative transfer analysis using surface temperature, atmospheric water vapor, and cloud optical thickness. It is found that atmospheric effects alone cannot explain the observed temporal variation of Delta(T), although the atmosphere introduces important modulations on the observed seasonal variations of Delta(T) due to rather significant seasonal variation of precipitable water vapor. These Delta(T) data should be corrected for atmospheric effects before any quantitative analysis of land surface change over the Sahel and Sudan zones.
The quantum-field renormalization group in the problem of a growing phase boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, N.V.; Vasil`ev, A.N.
1995-09-01
Within the quantum-field renormalization-group approach we examine the stochastic equation discussed by S.I. Pavlik in describing a randomly growing phase boundary. We show that, in contrast to Pavlik`s assertion, the model is not multiplicatively renormalizable and that its consistent renormalization-group analysis requires introducing an infinite number of counterterms and the respective coupling constants ({open_quotes}charge{close_quotes}). An explicit calculation in the one-loop approximation shows that a two-dimensional surface of renormalization-group points exits in the infinite-dimensional charge space. If the surface contains an infrared stability region, the problem allows for scaling with the nonuniversal critical dimensionalities of the height of the phase boundarymore » and time, {delta}{sub h} and {delta}{sub t}, which satisfy the exact relationship 2 {delta}{sub h}= {delta}{sub t} + d, where d is the dimensionality of the phase boundary. 23 refs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Li, Yujiao; Shi, Shaoyuan; Cao, Hongbin; Zhao, Zhijuan; Wen, Hao
2018-06-01
The heterogeneous anion exchange membranes (AEMs) were modified by electrodeposition of graphene oxide (GO) under different conditions. The physicochemical properties of GO-modified membranes were characterized systemically to obtain the optimized conditions for the electrodeposition of GO on the surface of AEMs. The results indicated that the contact angle and zeta potential of the modified AEMs decreased when increasing the concentration of GO from 0.05 g/L to 0.1 g/L. The higher concentration of NaCl, as the supporting electrolyte, could hinder the electrodeposition of GO on the AEMs for the competitive migration between the GO and Cl- ions. The increase of current density had a positive effect on properties of GO-modified membranes in the range of 1-5 mA/cm2. Compared with the pristine AEM, all the GO-modified AEMs exhibited smoother surface, higher hydrophilicity and negative zeta potential. It was also found that the GO modifying layer did not increase electrical resistance and had only a negligible effect on the desalination performance of AEMs. In the fouling experiments with sodium dodecyl benzene sulfonate (SDBS) as the model foulant, the GO-modified AEMs exhibited improved fouling resistance to SDBS.
Structure prediction and activity analysis of human heme oxygenase-1 and its mutant.
Xia, Zhen-Wei; Zhou, Wen-Pu; Cui, Wen-Jun; Zhang, Xue-Hong; Shen, Qing-Xiang; Li, Yun-Zhu; Yu, Shan-Chang
2004-08-15
To predict wild human heme oxygenase-1 (whHO-1) and hHO-1 His25Ala mutant (delta hHO-1) structures, to clone and express them and analyze their activities. Swiss-PdbViewer and Antheprot 5.0 were used for the prediction of structure diversity and physical-chemical changes between wild and mutant hHO-1. hHO-1 His25Ala mutant cDNA was constructed by site-directed mutagenesis in two plasmids of E. coli DH5alpha. Expression products were purified by ammonium sulphate precipitation and Q-Sepharose Fast Flow column chromatography, and their activities were measured. rHO-1 had the structure of a helical fold with the heme sandwiched between heme-heme oxygenase-1 helices. Bond angle, dihedral angle and chemical bond in the active pocket changed after Ala25 was replaced by His25, but Ala25 was still contacting the surface and the electrostatic potential of the active pocket was negative. The mutated enzyme kept binding activity to heme. Two vectors pBHO-1 and pBHO-1(M) were constructed and expressed. Ammonium sulphate precipitation and column chromatography yielded 3.6-fold and 30-fold higher purities of whHO-1, respectively. The activity of delta hHO-1 was reduced 91.21% after mutation compared with whHO-1. Proximal His25 ligand is crucial for normal hHO-1 catalytic activity. delta hHO-1 is deactivated by mutation but keeps the same binding site as whHO-1. delta hHO-1 might be a potential inhibitor of whHO-1 for preventing neonatal hyperbilirubinemia.
Perioperative thermal insulation.
Bräuer, Anselm; Perl, Thorsten; English, Michael J M; Quintel, Michael
2007-01-01
Perioperative hypothermia remains a common problem during anesthesia and surgery. Unfortunately, the implementation of new minimally invasive surgical procedures has not lead to a reduction of this problem. Heat losses from the skin can be reduced by thermal insulation to avoid perioperative hypothermia. However, only a small amount of information is available regarding the physical properties of insulating materials used in the Operating Room (OR). Therefore, several materials using validated manikins were tested. Heat loss from the surface of the manikin can be described as:"Q = h . DeltaT . A" where Q = heat flux, h = heat exchange coefficient, DeltaT = temperature gradient between the environment and surface, and A = covered area. Heat flux per unit area and surface temperature were measured with calibrated heat flux transducers. Environmental temperature was measured using a thermoanemometer. The temperature gradient between the surface and environment (DeltaT) was varied and "h" was determined by linear regression analysis as the slope of "DeltaT" versus heat flux per unit area. The reciprocal of the heat exchange coefficient defines the insulation. The insulation values of the materials varied between 0.01 Clo (plastic bag) to 2.79 Clo (2 layers of a hospital duvet). Given the range of insulating materials available for outdoor activities, significant improvement in insulation of patients in the OR is both possible and desirable.
Tian, J L; Ke, X; Chen, Z; Wang, C J; Zhang, Y; Zhong, T C
2011-05-01
Melittin liposomes surface modified with poloxamer 188 were developed, and the effect of poloxamer 188 was investigated with regard to anti-cancer effect and vascular stimulation. Melittin liposomes surface modified with poloxamer 188 at different concentrations (0%, 2%, and 5%) were prepared using the adsorption method, followed by in vitro characterization, including entrapment efficiency, zeta potential, particle size, and morphology. Subsequently, the influence of repeated freeze-thawing on the liposomes was investigated, and the effect of poloxamer 188 on the repeated freeze-thawing process was explored. Vascular stimulation effects of MLT, and MLT liposome that surface coated with or without poloxamer were all studied. Pharmacokinetics of the different MLT preparations were determined and the anticancer activity of the MLT formulations was investigated. The particle size of the liposomes gradually increased with increasing poloxamer 188 content, while the entrapment efficiency did not change significantly. After the first freeze-thaw cycle, size and PDI were both markedly reduced, entrapment efficiency rose, and there was no significant change of zeta potential. The vascular irritation caused by MLT could be reduced to an extent by encapsulation in liposome, but not completely eliminated, while liposomes coated with poloxamer 188 can effectively abolish the phenomenon. Melittin liposomes with surface modified by poloxamer exhibit enhanced bioavailability, effective anticancer activity, and reduced side effects compared with melittin solution. Poloxamer plays an important role in melittin liposomes.
Boyd, E S; Boyd, E H; Brown, L E
1976-05-05
A surface-negative wave, evoked by tone cues, appeared in monkey post-arcuate cortex as the monkey learned that the cue signaled the availability of reward. This evoked activity was depressed, concomitantly with changes in the animal's behavioral responding, by doses of delta9-tetrahydrocannabinol (delta9-THC) as low as 0.032 mg/kg and of pentobarbital as low as 4 mg/kg. Pentobarbital tended to increase the latency of the evoked wave, an effect not seen with delta9-THC.
NASA Astrophysics Data System (ADS)
Hendriks, D.; Ball, S. M.; Van der Wegen, M.; Verkaik, J.; van Dam, A.
2016-12-01
We present a coupled groundwater-surface water model for the San Francisco Bay and Sacramento Valley that consists of a combination of a spatially-distributed groundwater model (Modflow) based on the USGS Central Valley model(1) and the Flexible Mesh (FM) surface water model of the Bay Area(2). With this coupled groundwater-surface water model, we assessed effects of climate, surface water abstractions and groundwater pumping on surface water and groundwater levels, groundwater-surface water interaction and infiltration/seepage fluxes. Results show that the effect of climate (high flow and low flow) on surface water and groundwater is significant and most prominent in upstream areas. The surface water abstractions cause significant local surface water levels decrease (over 2 m), which may cause inflow of bay water during low flow periods, resulting in salinization of surface water in more upstream areas. Groundwater level drawdown due to surface water withdrawal is moderate and limited to the area of the withdrawals. The groundwater pumping causes large groundwater level drawdowns (up to 0.8 m) and significant changes in seepage/infiltration fluxes in the model. However, the effect on groundwater-surface water exchange is relatively small. The presented model instrument gives a sound first impression of the effects of climate and water abstraction on both surface water and groundwater. The combination of Modflow and Flexible Mesh has potential for modelling of groundwater-surface water exchange in deltaic areas, also in other parts of the world. However, various improvements need to be made in order to make the simulation results useful in practice. In addition, a water quality aspect could be added to assess salinization processes as well as groundwater-surface water aspects of water and soil pollution. (1) http://ca.water.usgs.gov/projects/central-valley/central-valley-hydrologic-model.html (2) www.d3d-baydelta.org
Barnhardt, W.A.; Sherrod, B.L.
2006-01-01
Episodic, large-volume pulses of volcaniclastic sediment and coseismic subsidence of the coast have influenced the development of a late Holocene delta at southern Puget Sound. Multibeam bathymetry, ground-penetrating radar (GPR) and vibracores were used to investigate the morphologic and stratigraphic evolution of the Nisqually River delta. Two fluvial–deltaic facies are recognized on the basis of GPR data and sedimentary characteristics in cores, which suggest partial emplacement from sediment-rich floods that originated on Mount Rainier. Facies S consists of stacked, sheet-like deposits of andesitic sand up to 4 m thick that are continuous across the entire width of the delta. Flat-lying, highly reflective surfaces separate the sand sheets and comprise important facies boundaries. Beds of massive, pumice- and charcoal-rich sand overlie one of the buried surfaces. Organic-rich material from that surface, beneath the massive sand, yielded a radiocarbon age that is time-correlative with a series of known eruptive events that generated lahars in the upper Nisqually River valley. Facies CF consists of linear sandbodies or palaeochannels incised into facies S on the lower delta plain. Radiocarbon ages of wood fragments in the sandy channel-fill deposits also correlate in time to lahar deposits in upstream areas. Intrusive, sand-filled dikes and sills indicate liquefaction caused by post-depositional ground shaking related to earthquakes. Continued progradation of the delta into Puget Sound is currently balanced by tidal-current reworking, which redistributes sediment into large fields of ebb- and flood-oriented bedforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrad, Mark; Bill, Markus
2008-08-01
The nitrogen ({delta}{sup 15}N) and oxygen ({delta}{sup 18}O) isotopic compositions of nitrate in the environment are primarily a function of the source of the nitrate. The ranges of isotopic compositions for nitrate resulting from common sources are outlined in Figure 1 from Kendall (1998). As noted on Figure 1, processes such as microbial metabolism can modify the isotopic compositions of the nitrate, but the effects of these processes are generally predictable. At Hanford, nitrate and other nitrogenous compounds were significant components of most of the chemical processes used at the site. Most of the oxygen in nitrate chemicals (e.g., nitricmore » acid) is derived from atmospheric oxygen, giving it a significantly higher {delta}{sup 18}O value (+23.5{per_thousand}) than naturally occurring nitrate that obtains most of its oxygen from water (the {delta}{sup 18}O of Hanford groundwater ranges from -14{per_thousand} to -18{per_thousand}). This makes it possible to differentiate nitrate from Hanford site activities from background nitrate at the site (including most fertilizers that might have been used prior to the Department of Energy plutonium production activities at the site). In addition, the extreme thermal and chemical conditions that occurred during some of the waste processing procedures and subsequent waste storage in select single-shell tanks resulted in unique nitrate isotopic compositions that can be used to identify those waste streams in soil and groundwater at the site (Singleton et al., 2005; Christensen et al., 2007). This report presents nitrate isotope data for soil and groundwater samples from the Hanford 200 Areas and discusses the implications of that data for potential sources of groundwater contamination.« less
A modified Poisson-Boltzmann equation applied to protein adsorption.
Gama, Marlon de Souza; Santos, Mirella Simões; Lima, Eduardo Rocha de Almeida; Tavares, Frederico Wanderley; Barreto, Amaro Gomes Barreto
2018-01-05
Ion-exchange chromatography has been widely used as a standard process in purification and analysis of protein, based on the electrostatic interaction between the protein and the stationary phase. Through the years, several approaches are used to improve the thermodynamic description of colloidal particle-surface interaction systems, however there are still a lot of gaps specifically when describing the behavior of protein adsorption. Here, we present an improved methodology for predicting the adsorption equilibrium constant by solving the modified Poisson-Boltzmann (PB) equation in bispherical coordinates. By including dispersion interactions between ions and protein, and between ions and surface, the modified PB equation used can describe the Hofmeister effects. We solve the modified Poisson-Boltzmann equation to calculate the protein-surface potential of mean force, treated as spherical colloid-plate system, as a function of process variables. From the potential of mean force, the Henry constants of adsorption, for different proteins and surfaces, are calculated as a function of pH, salt concentration, salt type, and temperature. The obtained Henry constants are compared with experimental data for several isotherms showing excellent agreement. We have also performed a sensitivity analysis to verify the behavior of different kind of salts and the Hofmeister effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Erosion potential of the Yangtze Delta under sediment starvation and climate change.
Yang, H F; Yang, S L; Xu, K H; Wu, H; Shi, B W; Zhu, Q; Zhang, W X; Yang, Z
2017-09-05
Deltas are widely threatened by sediment starvation and climate change. Erosion potential is an important indicator of delta vulnerability. Here, we investigate the erosion potential of the Yangtze Delta. We found that over the past half century the Yangtze's sediment discharge has decreased by 80% due to the construction of >50,000 dams and soil conservation, whereas the wind speed and wave height in the delta region have increased by 5-7%, and the sea level has risen at a rate of 3 mm/yr. According to hydrodynamic measurements and analyses of seabed sediments, the period when bed shear stress due to combined current-wave action under normal weather conditions exceeds the critical bed shear stress for erosion (τ cr ) accounts for 63% of the total observed period on average and can reach 100% during peak storms. This explains why net erosion has occurred in some areas of the subaqueous delta. We also found that the increase with depth of τ cr is very gradual in the uppermost several metres of the depositional sequence. We therefore expect that the Yangtze subaqueous delta will experience continuous erosion under sediment starvation and climate change in the next decades of this century or even a few centuries.
NASA Technical Reports Server (NTRS)
Cihlar, J. (Principal Investigator)
1980-01-01
Progress in the compilation and analysis of airborne and ground data to determine the relationship between the maximum surface minus maximum air temperature differential (delta Tsa) and available water (PAW) is reported. Also, results of an analysis of HCMM images to determine the effect of cloud cover on the availability of HCMM-type data are presented. An inverse relationship between delta Tsa and PAW is indicated along with stable delta Tsa vs. PAW distributions for fully developed canopies. Large variations, both geographical and diurnal, in the cloud cover images are reported. The average monthly daytime cloud cover fluctuated between 40 and 60 percent.
NASA Astrophysics Data System (ADS)
Goodbred, S. L.
2009-12-01
The densely populated country of Bangladesh is often cited as being severely threatened by predicted changes in climate and accelerated sea-level rise. Justification for this grave assessment is founded in part on the low-lying nation's frequent inundation by river floods and storm surges, which affect millions of people annually. Indeed, nearly 50% of the delta system lies <3 m above sea level, and the 2001 IPCC report suggested that a 1.5 m rise could inundate 22,000 km2 of coastal lowland and displace 17 million people. However, these signs of pending trouble contrast in many ways with patterns of delta behavior observed in the geological record. Sedimentary deposits from the early Holocene demonstrate that the Bengal delta remained largely stable in the face of very rapid sea-level rise, owing to a strengthened Asian monsoon, enhanced fluvial sediment fluxes, and an effective dispersal system. So how can we assess this system's likely response to environmental change based on such seemingly contradictory patterns from the modern and Holocene delta? A first step would be to acknowledge that flooding and land loss are very different processes, and often negatively correlated. For the Bengal delta in particular, coastal and upland flooding is the very process that maintains the system's stability in the facing of rising seas. While such flooding is a strain on humans, for the natural environment it speaks more to a healthful future than decline. Here I present field-based observations of sediment dispersal in the modern Bengal delta, which demonstrate how the system may remain relatively stable over the next century. However, this potentially acceptable outcome becomes increasingly unlikely if human interferences are considered. For example, short-term strategies to mitigate flooding would likely involve artificial leveeing of the river and the diking of coastal lowlands, both of which would limit sedimentation and diminish relative elevation of the delta surface. Threats upstream of the delta also include river damming to address demands for hydroelectric power and water resources in India, with a resulting decline in sediment discharge to the coast. Ultimately, it may be the impacts of such direct human-modification to the Bengal delta and river systems that outpace - in time and severity - those resulting from climate and sea-level changes alone.
Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China
NASA Astrophysics Data System (ADS)
Hori, Kazuaki; Saito, Yoshiki; Zhao, Quanhong; Cheng, Xinrong; Wang, Pinxian; Sato, Yoshio; Li, Congxian
2001-11-01
The Changjiang (Yangtze) River, one of the largest rivers in the world, has formed a broad tide-dominated delta at its mouth during the Holocene sea-level highstand. Three boreholes (CM97, JS98, and HQ98) were obtained from the Changjiang delta plain in 1997-1998 to clarify the characteristics of tide-dominated delta sediments and architecture. Based on sediment composition and texture, and faunal content, core sediments were divided into six depositional units. In ascending order, they were interpreted as tidal sand ridge, prodelta, delta-front, subtidal to lower intertidal flat, upper intertidal flat, and surface soil deposits. The deltaic sequence from the prodelta deposits to the delta front deposits showed an upward-coarsening succession, overlain by an upward-fining succession from the uppermost part of the delta front deposits to the surface soil. Thinly interlaminated to thinly interbedded sand and mud (sand-mud couplets), and bidirectional cross laminations in these deposits show that tide is the key factor affecting the formation of Changjiang deltaic facies. Sediment facies and their succession combined with AMS 14C dating revealed that isochron lines cross unit boundaries clearly, and delta progradation has occurred since about 6000 to 7000 years BP, when the rising sea level neared or reached its present position. The average progradation rate of the delta front was approximately 50 km/kyear over the last 5000 years. The progradation rate, however, increased abruptly ca. 2000 years BP, going from 38 to 80 km/kyear. The possible causes for this active progradation could have been an increase in sediment production in the drainage basin due to widespread human interference and/or decrease in deposition in the middle reaches related to the channel stability caused by human activity and climatic cooling after the mid-Holocene.
Path planning for assembly of strut-based structures. Thesis
NASA Technical Reports Server (NTRS)
Muenger, Rolf
1991-01-01
A path planning method with collision avoidance for a general single chain nonredundant or redundant robot is proposed. Joint range boundary overruns are also avoided. The result is a sequence of joint vectors which are passed to a trajectory planner. A potential field algorithm in joint space computes incremental joint vectors delta-q = delta-q(sub a) + delta-q(sub c) + delta-q(sub r). Adding delta-q to the robot's current joint vector leads to the next step in the path. Delta-q(sub a) is obtained by computing the minimum norm solution of the underdetermined linear system J delta-q(sub a) = x(sub a) where x(sub a) is a translational and rotational force vector that attracts the robot to its goal position and orientation. J is the manipulator Jacobian. Delta-q(sub c) is a collision avoidance term encompassing collisions between the robot (links and payload) and obstacles in the environment as well as collisions among links and payload of the robot themselves. It is obtained in joint space directly. Delta-q(sub r) is a function of the current joint vector and avoids joint range overruns. A higher level discrete search over candidate safe positions is used to provide alternatives in case the potential field algorithm encounters a local minimum and thus fails to reach the goal. The best first search algorithm A* is used for graph search. Symmetry properties of the payload and equivalent rotations are exploited to further enlarge the number of alternatives passed to the potential field algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beste, Ariana; Vazquez-Mayagoitia, Alvaro; Ortiz, J. Vincent
2013-01-01
A direct method (D-Delta-MBPT(2)) to calculate second-order ionization potentials (IPs), electron affinities (EAs), and excitation energies is developed. The Delta-MBPT(2) method is defined as the correlated extension of the Delta-HF method. Energy differences are obtained by integrating the energy derivative with respect to occupation numbers over the appropriate parameter range. This is made possible by writing the second-order energy as a function of the occupation numbers. Relaxation effects are fully included at the SCF level. This is in contrast to linear response theory, which makes the D-Delta-MBPT(2) applicable not only to single excited but also higher excited states. We showmore » the relationship of the D-Delta-MBPT(2) method for IPs and EAs to a second-order approximation of the effective Fock-space coupled-cluster Hamiltonian and a second-order electron propagator method. We also discuss the connection between the D-Delta-MBPT(2) method for excitation energies and the CIS-MP2 method. Finally, as a proof of principle, we apply our method to calculate ionization potentials and excitation energies of some small molecules. For IPs, the Delta-MBPT(2) results compare well to the second-order solution of the Dyson equation. For excitation energies, the deviation from EOM-CCSD increases when correlation becomes more important. When using the numerical integration technique, we encounter difficulties that prevented us from reaching the Delta-MBPT(2) values. Most importantly, relaxation beyond the Hartree Fock level is significant and needs to be included in future research.« less
Surface fitting three-dimensional bodies
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1974-01-01
The geometry of general three-dimensional bodies is generated from coordinates of points in several cross sections. Since these points may not be smooth, they are divided into segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction by fitting parametric cubic-spline curves through coordinate points which define the conic sections in the cross-sectional planes. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines and slopes at selected points. Slopes may be continuous or discontinuous and finite or infinite. After a satisfactory surface fit has been obtained, cards may be punched with the data necessary to form a geometry subroutine package for use in other computer programs. At any position on the body, coordinates, slopes and second partial derivatives are calculated. The method is applied to a blunted 70 deg delta wing, and it was found to generate the geometry very well.
F-16XL ship #1 - CAWAP boundary layer hot film, left wing
NASA Technical Reports Server (NTRS)
1996-01-01
This photo shows the boundary layer hot film on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. Hot film is used to measure temperature changes on a surface. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.
Quadrupolar, Triple [Delta]-Function Potential in One Dimension
ERIC Educational Resources Information Center
Patil, S. H.
2009-01-01
The energy and parity eigenstates for quadrupolar, triple [delta]-function potential are analysed. Using the analytical solutions in specific domains, simple expressions are obtained for even- and odd-parity bound-state energies. The Heisenberg uncertainty product is observed to have a minimum for a specific strength of the potential. The…
High-affinity cannabinoid binding site in brain: A possible marijuana receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nye, J.S.
The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one classmore » of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.« less
Punnoose, Alex; Dodge, Kelsey; Rasmussen, John W; Chess, Jordan; Wingett, Denise; Anders, Catherine
2014-07-07
ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor using a forced hydrolysis process, and their surface chemical structures were modified by using different reaction solvents. X-ray diffraction and optical studies showed that the lattice parameters, optical properties, and band gap (3.44 eV) of the two ZnO NP samples were similar. However, FTIR spectroscopy showed significant differences in the surface structures and surface-bound chemical groups. This led to major differences in the zeta potential, hydrodynamic size, photocatalytic rate constant, and more importantly, their cytotoxic effects on Hut-78 cancer cells. The ZnO NP sample with the higher zeta potential and catalytic activity displayed a 1.5-fold stronger cytotoxic effect on cancer cells. These results suggest that by modifying the synthesis parameters/conditions and the surface chemical structures of the nanocrystals, their surface charge density, catalytic activity, and cytotoxicity can be tailored. This provides a green chemistry approach to produce safer ZnO NP.
Andreev, I M
2011-01-01
The data presented in the article by Breigina et al. (2009) "Changes in the membrane potential during pollen grain germination and pollen tube growth" (Tsitologiya. 51 (10): 815-823) and concerning the measurement of electric membrane potential (Delta Psi) on the plasma membrane of growing pollen tube of germinating pollen grain with the use of fluorescent potential-sensitive dye, di-4-ANEPPS, were critically analyzed in order to clarify whether a lateral gradient of Delta Psi on this membrane indeed exists. This analysis showed that the main conclusion of the authors of the above article on the existence of polar distribution of Delta Psi along the pollen tube plasma membrane is not in accordance with a number of known peculiarities of di-4-ANEPPS behavior in biological membranes and requires a significant revision. The findings in question reported by the authors, in my opinion, might be interpreted as evidence for the presence on the plasma membrane of growing pollen tube not only the membrane potential Delta Psi but also lateral gradient of so called intra-membrane dipole potential. Based on the comments made, another interpretation of the experimental results described by Breigina et al. has been offered. In addition, some drawbacks in the methodology used by the authors for measurement of Delta Psi with other fluorescent potential-sensitive dye, DiBAC3(3), are also shortly considered.
Moisture induced polymorphic transition of mannitol and its morphological transformation.
Yoshinari, Tomohiro; Forbes, Robert T; York, Peter; Kawashima, Yoshiaki
2002-10-24
The effects of moisture on the polymorphic transition of crystalline mannitol were investigated. Mannitol has three polymorphic forms, and was classified as alpha, beta, and delta form, respectively, by Walter-Lévy (C.R. Acad. Sc. Paris Ser. C (1968) 267, 1779). The water uptake of delta form crystalline was greater than that of the beta form when each crystalline form was stored at 97%RH (25 degrees C). The different powder X-ray diffraction patterns obtained before and after humidification confirmed that a moisture induced polymorphic transition from the delta to beta form had occurred. Morphological changes were also observed with an increase in the specific surface area of the delta sample from 0.4 to 2.3 m(2)/g being found on exposure to humidity. Thus it was suggested that the observed higher hygroscopicity of the newly formed beta form arose from the gradual increase in the surface area with the polymorphic transition from the delta to beta form. When considering the mechanism of this polymorphic transition, the results from molecular modelling, cross-polarisation/magic angle spinning (CP/MAS) solid-state NMR spectra and scanning electron-micrographs suggest that water molecules act as a molecular loosener to facilitate conversion from delta to the beta form as a result of multi-nucleation. Copyright 2002 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Sun, Shoutian; Ramu Ramachandran, Bala; Wick, Collin D.
2018-02-01
New interatomic potentials for pure Ti and Al, and binary TiAl were developed utilizing the second nearest neighbour modified embedded-atom method (MEAM) formalism. The potentials were parameterized to reproduce multiple properties spanning bulk solids, solid surfaces, solid/liquid phase changes, and liquid interfacial properties. This was carried out using a newly developed optimization procedure that combined the simple minimization of a fitness function with a genetic algorithm to efficiently span the parameter space. The resulting MEAM potentials gave good agreement with experimental and DFT solid and liquid properties, and reproduced the melting points for Ti, Al, and TiAl. However, the surface tensions from the model consistently underestimated experimental values. Liquid TiAl’s surface was found to be mostly covered with Al atoms, showing that Al has a significant propensity for the liquid/air interface.
Sun, Shoutian; Ramachandran, Bala Ramu; Wick, Collin D
2018-02-21
New interatomic potentials for pure Ti and Al, and binary TiAl were developed utilizing the second nearest neighbour modified embedded-atom method (MEAM) formalism. The potentials were parameterized to reproduce multiple properties spanning bulk solids, solid surfaces, solid/liquid phase changes, and liquid interfacial properties. This was carried out using a newly developed optimization procedure that combined the simple minimization of a fitness function with a genetic algorithm to efficiently span the parameter space. The resulting MEAM potentials gave good agreement with experimental and DFT solid and liquid properties, and reproduced the melting points for Ti, Al, and TiAl. However, the surface tensions from the model consistently underestimated experimental values. Liquid TiAl's surface was found to be mostly covered with Al atoms, showing that Al has a significant propensity for the liquid/air interface.
NASA Astrophysics Data System (ADS)
Liu, Jin-Song; Hao, Zhong-Hua
2003-10-01
The self-deflection of a bright solitary beam can be controlled by a dark solitary beam via a parametric coupling effect between the bright and dark solitary beams in a separate bright-dark spatial soliton pair supported by an unbiased series photorefractive crystal circuit. The spatial shift of the bright solitary beam centre as a function of the input intensity of the dark solitary beam (hat rho) is investigated by taking into account the higher-order space charge field in the dynamics of the bright solitary beam via both numerical and perturbation methods under steady-state conditions. The deflection amount (Deltas0), defined as the value of the spatial shift at the output surface of the crystal, is a monotonic and nonlinear function of hat rho. When hat rho is weak or strong enough, Deltas0 is, in fact, unchanged with hat rho, whereas Deltas0 increases or decreases monotonically with hat rho in a middle range of hat rho. The corresponding variation range (deltas) depends strongly on the value of the input intensity of the bright solitary beam (r). There are some peak and valley values in the curve of deltas versus r under some conditions. When hat rho increases, the bright solitary beam can scan toward both the direction same as and opposite to the crystal's c-axis. Whether the direction is the same as or opposite to the c-axis depends on the parameter values and configuration of the crystal circuit, as well as the value of r. Some potential applications are discussed.
Zhao, Yafei; Zhang, Bing; Zhang, Xiang; Wang, Jinhua; Liu, Jindun; Chen, Rongfeng
2010-06-15
Well-ordered cubic NaA zeolite was first synthesized using natural halloysite mineral with nanotubular structure as source material by hydro-thermal method. SEM and HRTEM images indicate that the synthesized NaA zeolite is cubic-shaped crystal with planar surface, well-defined edges and symmetrical and uniform pore channels. The adsorption behavior of ammonium ions (NH(4)(+)) from aqueous solution onto NaA zeolite was investigated as a function of parameters such as equilibrium time, pH, initial NH(4)(+) concentration, temperature and competitive cations. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 44.3 mg g(-1) of NH(4)(+) was achieved. The regeneration and reusable ability of this adsorbent was evaluated, and the results indicated that the recovered adsorbent could be used again for NH(4)(+) removal with nearly constant adsorption capacity. Thermodynamic parameters such as change in free energy (DeltaG(0)), enthalpy (DeltaH(0)) and entropy (DeltaS(0)) were also determined, which indicated that the adsorption was a spontaneous and exothermic process at ambient conditions. Compared with other adsorbents, the as-synthesized NaA zeolite displays a faster adsorption rate and higher adsorption capacity, which implies potential application for removing NH(4)(+) pollutants from wastewaters. Copyright 2010 Elsevier B.V. All rights reserved.
Uncooled IR imager with 5-mK NEDT
NASA Astrophysics Data System (ADS)
Amantea, Robert; Knoedler, C. M.; Pantuso, Francis P.; Patel, Vipulkumar; Sauer, Donald J.; Tower, John R.
1997-08-01
The bi-material concept for room-temperature infrared imaging has the potential of reaching an NE(Delta) T approaching the theoretical limit because of its high responsivity and low noise. The approach, which is 100% compatible with silicon IC foundry processing, utilizes a novel combination of surface micromachining and conventional integrated circuits to produce a bimaterial thermally sensitive element that controls the position of a capacitive plate coupled to the input of a low noise MOS amplifier. This approach can achieve the high sensitivity, the low weight, and the low cost necessary for equipment such as helmet mounted IR viewers and IR rifle sights. The pixel design has the following benefits: (1) an order of magnitude improvement in NE(Delta) T due to extremely high sensitivity and low noise, (2) low cost due to 100% silicon IC compatibility, (3) high image quality and increased yield due to ability to do offset and sensitivity corrections on the imager, pixel-by-pixel; (4) no cryogenic cooler and no high vacuum processing; and (5) commercial applications such as law enforcement, home security, and transportation safety. Two designs are presented. One is a 50 micrometer pixel using silicon nitride as the thermal isolation element that can achieve 5 mK NE(Delta) T; the other is a 29 micrometer pixel using silicon carbide that provides much higher thermal isolation and can achieve 10 mK NE(Delta) T.
Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film
NASA Astrophysics Data System (ADS)
Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I.; Qamaruddin, Muhammad; Yamani, Zain H.
2015-02-01
Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Parris; Michael Solis; Kathryn Takacs
2009-12-31
Using soil gas chemistry to detect leakage from underground reservoirs (i.e. microseepage) requires that the natural range of soil gas flux and chemistry be fully characterized. To meet this need, soil gas flux (CO{sub 2}, CH{sub 4}) and the bulk (CO{sub 2}, CH{sub 4}) and isotopic chemistry ({delta}{sup 13}C-CO2) of shallow soil gases (<1 m, 3.3 ft) were measured at 25 locations distributed among two active oil and gas fields, an active strip mine, and a relatively undisturbed research forest in eastern Kentucky. The measurements apportion the biologic, atmospheric, and geologic influences on soil gas composition under varying degrees ofmore » human surface disturbance. The measurements also highlight potential challenges in using soil gas chemistry as a monitoring tool where the surface cover consists of reclaimed mine land or is underlain by shallow coals. For example, enrichment of ({delta}{sup 13}C-CO2) and high CH{sub 4} concentrations in soils have been historically used as indicators of microseepage, but in the reclaimed mine lands similar soil chemistry characteristics likely result from dissolution of carbonate cement in siliciclastic clasts having {delta}{sup 13}C values close to 0{per_thousand} and degassing of coal fragments. The gases accumulate in the reclaimed mine land soils because intense compaction reduces soil permeability, thereby impeding equilibration with the atmosphere. Consequently, the reclaimed mine lands provide a false microseepage anomaly. Further potential challenges arise from low permeability zones associated with compacted soils in reclaimed mine lands and shallow coals in undisturbed areas that might impede upward gas migration. To investigate the effect of these materials on gas migration and composition, four 10 m (33 ft) deep monitoring wells were drilled in reclaimed mine material and in undisturbed soils with and without coals. The wells, configured with sampling zones at discrete intervals, show the persistence of some of the aforementioned anomalies at depth. Moreover, high CO{sub 2} concentrations associated with coals in the vadose zone suggest a strong affinity for adsorbing CO{sub 2}. Overall, the low permeability of reclaimed mine lands and coals and CO2 adsorption by the latter is likely to reduce the ability of surface geochemistry tools to detect a microseepage signal.« less
2008-06-12
VANDENBERG AIR FORCE BASE, Calif. – The Ocean Surface Topography Mission, or OSTM/Jason-2, spacecraft is getting final checkouts after mating to the Delta II rocket on the Space Launch Complex 2 at Vandenberg Air Force Base in California. The launch of the OSTM/Jason 2 aboard the Delta II rocket is scheduled for June 20. The launch window extends from 12:46 a.m. to 12:55 a.m. PDT. The satellite will be placed in an 830-mile-high orbit at an inclination of 66 degrees after separating from the Delta II 55 minutes after liftoff. The five primary science instruments of the Ocean Surface Topography Mission aboard the Jason 2 spacecraft are dedicated to measuring ocean surface height. These measurements will be used to evaluate and forecast climate changes and improve weather forecasting. The results also are expected to help forecasters better predict hurricane intensity.
NASA Technical Reports Server (NTRS)
Macleod, N. H. (Principal Investigator)
1973-01-01
The author has identified the following significant results. A large potential irrigation area with water delivery system in place was identified from ERTS-1 imagery. The site is in the Sahara Desert. Color additive change detection imagery was used to assess ground water potentials in the Savannah in conjunction with a major US AID-Mali livestock sector initiative. The potential capacity to map laterite deposits in the Inland Delta from space was established with the help of aerial and ground surveys. A color composite of the Inland Delta could have saved French biogeographers 3 5/6 man-years of professional field work had it been available, according to the man who prepared a plant community map of part of the southern Inland Delta.
Analytic algorithms for determining radiative transfer optical properties of ocean waters.
Kaskas, Ayse; Güleçyüz, Mustafa C; Tezcan, Cevdet; McCormick, Norman J
2006-10-10
A synthetic model for the scattering phase function is used to develop simple algebraic equations, valid for any water type, for evaluating the ratio of the backscattering to absorption coefficients of spatially uniform, very deep waters with data from upward and downward planar irradiances and the remotely sensed reflectance. The phase function is a variable combination of a forward-directed Dirac delta function plus isotropic scattering, which is an elementary model for strongly forward scattering such as that encountered in oceanic optics applications. The incident illumination at the surface is taken to be diffuse plus a collimated beam. The algorithms are compared with other analytic correlations that were previously derived from extensive numerical simulations, and they are also numerically tested with forward problem results computed with a modified FN method.
NASA Technical Reports Server (NTRS)
1996-01-01
The single-seat F-16XL (ship #1) makes another run during the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.
Smal, Caroline; Vertommen, Didier; Amsailale, Rachid; Arts, Angélique; Degand, Hervé; Morsomme, Pierre; Rider, Mark H; Neste, Eric Van Den; Bontemps, Françoise
2010-10-01
Deoxycytidine kinase (dCK) is a key enzyme in the salvage of deoxynucleosides and in the activation of several anticancer and antiviral nucleoside analogues. We recently showed that dCK was activated in vivo by phosphorylation of Ser-74. However, the protein kinase responsible was not identified. Ser-74 is located downstream a Glu-rich region, presenting similarity with the consensus phosphorylation motif of casein kinase 1 (CKI), and particularly of CKI delta. We showed that recombinant CKI delta phosphorylated several residues of bacterially overexpressed dCK: Ser-74, but also Ser-11, Ser-15, and Thr-72. Phosphorylation of dCK by CKI delta correlated with increased activity reaching at least 4-fold. Site-directed mutagenesis demonstrated that only Ser-74 phosphorylation was involved in dCK activation by CKI delta, strengthening the key role of this residue in the control of dCK activity. However, neither CKI delta inhibitors nor CKI delta siRNA-mediated knock-down modified Ser-74 phosphorylation or dCK activity in cultured cells. Moreover, these approaches did not prevent dCK activation induced by treatments enhancing Ser-74 phosphorylation. Taken together, the data preclude a role of CKI delta in the regulation of dCK activity in vivo. Nevertheless, phosphorylation of dCK by CKI delta could be a useful tool for elucidating the influence of Ser-74 phosphorylation on the structure-activity relationships in the enzyme. Copyright 2010 Elsevier Inc. All rights reserved.
EAARL topography-Three Mile Creek and Mobile-Tensaw Delta, Alabama, 2010
Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Clark, A.P.; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Fredericks, Xan
2011-01-01
This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Mobile-Tensaw Delta region and Three Mile Creek in Alabama. These datasets were acquired on March 6, 2010.
Composition and physical properties of starch in microgravity-grown plants.
Kuznetsov, O A; Brown, C S; Levine, H G; Piastuch, W C; Sanwo-Lewandowski, M M; Hasenstein, K H
2001-01-01
The effect of spaceflight on starch development in soybean (Glycine max L., BRIC-03) and potato (Solanum tuberosum, Astroculture-05) was compared with ground controls by biophysical and biochemical measurements. Starch grains from plants from both flights were on average 20-50% smaller in diameter than ground controls. The ratio delta X/delta rho (delta X --difference of magnetic susceptibilities, delta rho--difference of densities between starch and water) of starch grains was ca. 15% and 4% higher for space-grown soybean cotyledons and potato tubers, respectively, than in corresponding ground controls. Since the densities of particles were similar for all samples (1.36 to 1.38 g/cm3), the observed difference in delta X/delta rho was due to different magnetic susceptibilities and indicates modified composition of starch grains. In starch preparations from soybean cotyledons (BRIC-03) subjected to controlled enzymatic degradation with alpha-amylase for 24 hours, 77 +/- 6% of the starch from the flight cotyledons was degraded compared to 58 +/- 12% in ground controls. The amylose content in starch was also higher in space-grown tissues. The good correlation between the amylose content and delta X/delta rho suggests, that the magnetic susceptibility of starch grains is related to their amylose content. Since the seedlings from the BRIC-03 experiment showed elevated post-flight ethylene levels, material from another flight experiment (GENEX) which had normal levels of ethylene was examined and showed no difference to ground controls in size distribution, density, delta X/delta rho and amylose content. Therefore the role of ethylene appears to be more important for changes in starch metabolism than microgravity. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Composition and physical properties of starch in microgravity-grown plants
NASA Technical Reports Server (NTRS)
Kuznetsov, O. A.; Brown, C. S.; Levine, H. G.; Piastuch, W. C.; Sanwo-Lewandowski, M. M.; Hasenstein, K. H.; Sager, J. C. (Principal Investigator)
2001-01-01
The effect of spaceflight on starch development in soybean (Glycine max L., BRIC-03) and potato (Solanum tuberosum, Astroculture-05) was compared with ground controls by biophysical and biochemical measurements. Starch grains from plants from both flights were on average 20-50% smaller in diameter than ground controls. The ratio delta X/delta rho (delta X --difference of magnetic susceptibilities, delta rho--difference of densities between starch and water) of starch grains was ca. 15% and 4% higher for space-grown soybean cotyledons and potato tubers, respectively, than in corresponding ground controls. Since the densities of particles were similar for all samples (1.36 to 1.38 g/cm3), the observed difference in delta X/delta rho was due to different magnetic susceptibilities and indicates modified composition of starch grains. In starch preparations from soybean cotyledons (BRIC-03) subjected to controlled enzymatic degradation with alpha-amylase for 24 hours, 77 +/- 6% of the starch from the flight cotyledons was degraded compared to 58 +/- 12% in ground controls. The amylose content in starch was also higher in space-grown tissues. The good correlation between the amylose content and delta X/delta rho suggests, that the magnetic susceptibility of starch grains is related to their amylose content. Since the seedlings from the BRIC-03 experiment showed elevated post-flight ethylene levels, material from another flight experiment (GENEX) which had normal levels of ethylene was examined and showed no difference to ground controls in size distribution, density, delta X/delta rho and amylose content. Therefore the role of ethylene appears to be more important for changes in starch metabolism than microgravity. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Adaptive Management Methods to Protect the California Sacramento-San Joaquin Delta Water Resource
NASA Technical Reports Server (NTRS)
Bubenheim, David
2016-01-01
The California Sacramento-San Joaquin River Delta is the hub for California's water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.
Torok, Kathryn S.; Baker, Nancy A.; Lucas, Mary; Domsic, Robyn T.; Boudreau, Robert; Medsger, Thomas A.
2010-01-01
Objectives To determine the reliability and validity of a new measure of finger motion in patients with systemic sclerosis (SSc), the ‘delta finger-to-palm’ (delta FTP) and compare its psychometric properties to the traditional measure of finger motion, the finger-to-palm (FTP). Methods Phase 1: The reliability of the delta FTP and FTP were examined in 39 patients with SSc. Phase 2: Criterion and convergent construct validity of both measures were examined in 17 patients with SSc by comparing them to other clinical measures: Total Active Range of Motion (TAROM), Hand Mobility in Scleroderma (HAMIS), the Duruoz Hand Index (DHI), Health Assessment Questionnaire (HAQ), and modified Rodnan skin score (mRSS). Phase 3: Sensitivity to change of the delta FTP was investigated in 24 patients with early diffuse cutaneous SSc. Results Both measures had excellent intra-rater and inter-rater reliability (ICC 0.92 to 0.99). Fair to strong correlations (rs=0.49–0.94) were observed between the delta FTP and TAROM, HAMIS, and DHI. Fair to moderate correlations were observed between delta FTP and HAQ components related to hand function and upper extremity mRSS. Correlations of the traditional FTP with these measures were fair to strong, but most often the delta FTP outperformed the FTP. The effect size and standardised response mean for the mean delta FTP were 0.50 and 1.10 respectively, over a 2–8 month period. Conclusion The delta FTP is a valid and reliable measure of finger motion in patients with SSc which outperforms the FTP. PMID:20576211
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilderson, T P; Grumet, N S; Abram, N J
Radiocarbon ({sup 14}C) in the skeletal aragonite of annually banded corals track radiocarbon concentrations in dissolved inorganic carbon (DIC) in surface seawater. As a result of nuclear weapons testing in the 1950s, oceanic uptake of excess {sup 14}C in the atmosphere has increased the contrast between surface and deep ocean {sup 14}C concentrations. We present accelerator mass spectrometric (AMS) measurements of radiocarbon isotope ({Delta}{sup 14}C) in Porites corals from the Mentawai Islands, Sumatra (0 S, 98 E) and Watamu, Kenya (3 S, 39 E) to document the temporal and spatial evolution of the {sup 14}C gradient in the tropical Indianmore » Ocean. The rise in {Delta}{sup 14}C in the Sumatra coral, in response to the maximum in nuclear weapons testing, is delayed by 2-3 years relative to the rise in coral {Delta}{sup 14}C from the coast of Kenya. Kenya coral {Delta}{sup 14}C values rise quickly because surface waters are in prolonged contact with the atmosphere. In contrast, wind-induced upwelling and rapid mixing along the coast of Sumatra entrains {sup 14}C-depleted water from the subsurface, which dilutes the effect of the uptake of bomb-laden {sup 14}C by the surface-ocean. Bimonthly AMS {Delta}{sup 14}C measurements on the Mentawai coral reveal mainly interannual variability with minor seasonal variability. The interannual signal may be a response to changes in the Walker circulation, the development of easterly wind anomalies, shoaling of the eastern thermocline, and upwelling of {sup 14}C-depleted water along the coast of Sumatra. Singular spectrum analysis of the Sumatra coral {Delta}{sup 14}C record reveals a significant 3-year periodicity. The results lend support to the concept that ocean atmosphere interactions between the Pacific and Indian Oceans operate in concert with the El Ni{tilde n}o-Southern Oscillation (ENSO).« less
Garvie, Laurence A J; Knauth, L Paul; Bungartz, Frank; Klonowski, Stan; Nash, Thomas H
2008-08-01
Verrucaria rubrocincta Breuss is an endolithic lichen that inhabits caliche plates exposed on the surface of the Sonoran Desert. Caliche surface temperatures are regularly in excess of 60 degrees C during the summer and approach 0 degrees C in the winter. Incident light intensities are high, with photosynthetically active radiation levels typically to 2,600 micromol/m(2) s(-1) during the summer. A cross-section of rock inhabited by V. rubrocincta shows an anatomical zonation comprising an upper micrite layer, a photobiont layer containing clusters of algal cells, and a pseudomedulla embedded in the caliche. Hyphae of the pseudomedulla become less numerous with depth below the rock surface. Stable carbon and oxygen isotopic data for the caliche and micrite fall into two sloping, well-separated arrays on a delta(13)C-delta(18)O plot. The delta(13)C(PDB) of the micrite ranges from 2.1 to 8.1 and delta(18)O(SMOW) from 25.4 to 28.9, whereas delta(13)C(PDB) of the caliche ranges from -4.7 to 0.7 and delta(18)O(SMOW) from 23.7 to 29.2. The isotopic data of the micrite can be explained by preferential fixing of (12)C into the alga, leaving local (13)C enrichment and evaporative enrichment of (18)O in the water. The (14)C dates of the micrite range from recent to 884 years b.p., indicating that "dead" carbon from the caliche is not a significant source for the lichen-precipitated micrite. The endolithic growth is an adaptation to the environmental extremes of exposed rock surfaces in the hot desert. The micrite layer is highly reflective and reduces light intensity to the algae below and acts as an efficient sunscreen that blocks harmful UV radiation. The micrite also acts as a cap to the lichen and helps trap moisture. The lichen survives by the combined effects of biodeterioration and biomineralization. Biodeterioration of the caliche concomitant with biomineralization of a protective surface coating of micrite results in the distinctive anatomy of V. rubrocincta.
NASA Astrophysics Data System (ADS)
Toommee, S.; Pratumpong, P.
2018-06-01
Zeolite was successfully modified by conventional synthetic route. Polyethylene glycol was employed for surface modification of zeolite. The surface of zeolite exhibited therefore hydrophobic properties. Less than 5 wt% of modified zeolites with uniform size and shape were integrated into polypropylene matrix. Mechanical properties of composite exhibited the similar trend compare to neat polypropylene. Oxygen transmission rate and water vapor transmission rate were evaluated and it exhibited the strong potential to be a good candidate material in active packaging.
Separate whitening effects on enamel and dentin after fourteen days.
Kugel, Gerard; Petkevis, Jason; Gurgan, Sevil; Doherty, Eileen
2007-01-01
The purpose of this study was to investigate the mechanism of action of a bleaching agent, as it relates to enamel and dentin. Twenty-six extracted human molar teeth were sectioned at the cemento-enamel junction and were randomly assigned to two groups. L*a*b* readings were taken with a spectrophotometer: on buccal surfaces of the crown, at enamel and dentin. The teeth were exposed to carbamide peroxide or placebo gel and L*a*b* scores were again recorded to determine color changes. Treatments were compared using ancova test with baseline color as the covariate. Relative to placebo, buccal surfaces exhibited the greatest Deltab* and DeltaL* color change. On buccal surfaces, the adjusted mean (SE) treatment differences were -7.8 (1.00) for Deltab* and 5.7 (0.97) for DeltaL, with groups differing significantly (p < 0.0001). On enamel surfaces, treatment differences were -3.6 (0.61) for Deltab* and 4.6 (0.80) for DeltaL* (p < 0.0001). Dentin exhibited the least color improvement. Adjusted mean (SE) treatment differences were -1.9 (0.87) for Deltab* and 2.4 (1.10) for DeltaL*, with groups differing significantly (p < 0.02) on dentin color change. The majority of color change seen on the buccal surface of tooth crowns exposed to carbamide peroxide 15% was because of the color change in enamel. As compared to enamel, dentin was less affected after 14 days.
Hydrogeologic reconnaissance of the Mekong Delta in South Vietnam and Cambodia
Anderson, Henry R.
1978-01-01
The present report describes the results of a hydrogeologic reconnaissance in the Mekong Delta region by the writer, a hydrogeologist of the U.S. Geological Survey, while on assignment as an adviser to the Vietnamese Directorate of Water Supply from October 1968 to April 1970 under the auspices of the U.s. Agency for International Development. The delta of the Mekong River, comprising an area of about 70,000 square kilometres in South Vietnam and Cambodia, is an almost featureless plain rising gradually from sea level to about 5 metres above sea level at its apex 300 kilometres inland. Most of the shallow ground water in the Holocene Alluvium of the delta in Vietnam is brackish or saline down to depths of 50 to 100 metres. Moreover, in the Dong Thap Mu?oi (Plain of Reeds) the shallow ground water is alum-bearing. Locally, however, perched bodies of fresh ground water occur in ancient beach and dune ridges and are tapped by shallow dug wells or pits for village and domestic water supply. The Old Alluvium beneath the lower delta contains freshwater in some areas, notably in the Ca Mau Peninsula and adjacent areas, in the viciniy of Bau Xau near Saigon, and in the Tinh Long An area. Elsewhere in the lower delta both the Holocene and Old Alluvium may contain brackish or saline water from the land surface to depths of as much as 568 metres, as for example in Tinh Vinh Binh. Ground water in the outcrop area of Old Alluvium northwest of Saigon is generally fresh and potable, but high iron and low pH are locally troublesome. Although considerable exploratory drilling for ground water down to depths of as much as 568 metres has already been completed, large areas of the delta remain yet to be explored before full development of the ground-water potential can be realized. With careful development and controlled management to avoid saltwater contamination, however, it is estimated that freshwater aquifers could provide approximately 80 percent of existing needs for village and small municipal supplies in the delta.
Parker, Linda A; Burton, Page; Sorge, Robert E; Yakiwchuk, Christine; Mechoulam, Raphael
2004-09-01
Using the place-preference conditioning paradigm, we evaluated the potential of the two most prominent cannabinoids found in marijuana, the psychoactive component delta9-tetrahydrocannabinol (delta9-THC) and the nonpsychoactive component cannabidiol (CBD), to potentiate extinction of a cocaine-induced and an amphetamine-induced conditioned place preference in rats. To determine the effects of pretreatment with delta9-THC or CBD on extinction, a cocaine-induced and amphetamine-induced place preference was first established. Rats were then given an extinction trial, during which they were confined to the treatment-paired floor for 15 min. Thirty minutes prior to the extinction trial, they were injected with a low dose of delta9-THC (0.5 mg/kg), CBD (5 mg/kg) or vehicle. The potential of the CB1 receptor antagonist, SR141716, to reverse the effects of delta9-THC or CBD was also evaluated. To determine the hedonic effects of CBD, one distinctive floor was paired with CBD (5 mg/kg) and another with saline. Finally, to determine the effect of delta9-THC.or CBD on the establishment and/or the expression of a place preference during four cycles of conditioning trials, rats were injected with delta9-THC (0.25-1 mg/kg), CBD (5 mg/kg) or vehicle 25 min prior to receiving an injection of amphetamine followed by placement on the treatment floor; on alternate days, they received injections of vehicle followed by saline and placement on the nontreatment floor. The rats then received two test trials; on one trial they were pretreated with the cannabinoid and on the other trial with vehicle. delta9-THC and CBD potentiated the extinction of both cocaine-induced and amphetamine-induced conditioned place preference learning, and this effect was not reversed by SR141716. The cannabinoids did not affect learning or retrieval, and CBD was not hedonic on its own. These results are the first to show that both delta9-THC, which acts on both CB 1 and CB2 receptors, and CBD, which does not bind to CB1 or CB2 receptors, potentiate the extinction of conditioned incentive learning.
The Southern Ocean as a driver of centennial to millenial timescale radiocarbon variations
NASA Astrophysics Data System (ADS)
Rodgers, K. B.; Bianchi, D.; Galbraith, E.; Gnanadesikan, A.; Iudicone, D.; Mikaloff Fletcher, S.; Sarmiento, J. L.; Slater, R. D.
2009-04-01
Paleo-proxy records reveal large delta-c14 variations for both the atmosphere and the ocean on centennial to millenial timescales. One of the most pronounced examples is the onset phase of the Younger Dryas, when atmospheric delta-c14 rose by 70 per mil in only 200 years. Another is the most recent deglaciation (and the associated "Mystery Interval"). Many of the significant centennial to millenial transients in atmospheric delta-c14 are reflected in ocean interior delta-c14 at intermediate depths in the Pacific over the last 50kyrs. An ocean model has been used to test the idea that only modest perturbations to Southern Ocean winds provides a means to link the oceanic and atmospheric delta-c14 variations. Perturbations to the winds over the Southern Ocean are able to drive sizable decoupling of the fluxes of 14CO2 and 12CO2 over the Southern Ocean, thus modifying atmospheric delta-c14. These same perturbations are able to perturb rapidly the depth of intermediate water horizons in the North Pacific through the passage of baroclinic planetary (Rossby) waves. This sensitivity is significantly stronger than what previous studies have found for perturbations to the Meridional Overturning Circulation (MOC) in the North Atlantic. It is suggested that delta-c14 may provide a powerful tracer for understanding past variations in the climate system.
Effects of climate change on evapotranspiration over the Okavango Delta water resources
NASA Astrophysics Data System (ADS)
Moses, Oliver; Hambira, Wame L.
2018-06-01
In semi-arid developing countries, most poor people depend on contaminated surface or groundwater resources since they do not have access to safe and centrally supplied water. These water resources are threatened by several factors that include high evapotranspiration rates. In the Okavango Delta region in the north-western Botswana, communities facing insufficient centrally supplied water rely mainly on the surface water resources of the Delta. The Delta loses about 98% of its water through evapotranspiration. However, the 2% remaining water rescues the communities facing insufficient water from the main stream water supply. To understand the effects of climate change on evapotranspiration over the Okavango Delta water resources, this study analysed trends in the main climatic parameters needed as input variables in evapotranspiration models. The Mann Kendall test was used in the analysis. Trend analysis is crucial since it reveals the direction of trends in the climatic parameters, which is helpful in determining the effects of climate change on evapotranspiration. The main climatic parameters required as input variables in evapotranspiration models that were of interest in this study were wind speeds, solar radiation and relative humidity. Very little research has been conducted on these climatic parameters in the Okavango Delta region. The conducted trend analysis was more on wind speeds, which had relatively longer data records than the other two climatic parameters of interest. Generally, statistically significant increasing trends have been found, which suggests that climate change is likely to further increase evapotranspiration over the Okavango Delta water resources.
Characterization of polylactic co-glycolic acid nanospheres modified with PVA and DDAB
NASA Astrophysics Data System (ADS)
Mulia, Kamarza; Satyapertiwi, Dwiantari; Devina, Ranee; Krisanti, Elsa
2017-02-01
The common treatment for diabetic retinopathy is corticosteroids intravitreal injection that sometimes lead to complications. Dexamethasone-loaded polylactic co-glycolic acid (PLGA) nanospheres, modified with dioctadecyldimethylammonium bromide (DDAB) as the cationic surfactant, is expected to prolong drug retention time. Zeta potential of the PLGA nanospheres prepared using non-ionic surfactant PVA and DDAB confirmed the cationic surfactant increase the surface charge of the PLGA nanospheres. The optimal formulation based on the particle size and high positive surface charge was the PLGA-DDAB nanospheres. SEM analysis showed spherical morphology of the nanospheres having diameter 626.9 ± 98.01 nm positive zeta potential of +22.5 mV.
Heavy metal pollution in surface soils of Pearl River Delta, China.
Jinmei, Bai; Xueping, Liu
2014-12-01
Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd > Cu > Ni > Zn > As > Cr > Hg > Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP) > urban land (UL) > manufacturing industries (MI) > agricultural land (AL) > woodland (WL) > water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL > MI > AL > WP > WL > WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased.
Ventilatory response to carbon dioxide in young athletes: a family study.
Saunders, N A; Leeder, S R; Rebuck, A S
1976-04-01
Ventilatory response to carbon dioxide (deltaVE/deltaPCO2) was measured in 23 teenage swimmers chosen by their coach for their potential for future athletic success. Siblings and parents of these swimmers were also studied. We found a strong relation between siblings' de;taVE/DELTAPCO2, whether or not they were swimmers (r=0.71, P less than 0.01). A weaker relationship was found between mother's and children's deltaVE/DELTAPCO2 (r==0.39, P less than 0.01). No association was found between swimming training and deltaVE/deltaPCO2. One swimmer 12 years of age had an extremely low deltaVE/PCO2 (0.42 liter per min per mm Hg) She was the only swimmer among these 23 potential champions to achieve international success in endurance events in the 2 years after the study. We concluded that family factors are important determinants of a subject's deltaVE/PCO2 and suggest that measurement of this aspect of chemical drive to breathing in young athletes may help identify those most likely to succeed in endurance events.
Modified local diatomite as potential functional drug carrier--A model study for diclofenac sodium.
Janićijević, Jelena; Krajišnik, Danina; Čalija, Bojan; Vasiljević, Bojana Nedić; Dobričić, Vladimir; Daković, Aleksandra; Antonijević, Milan D; Milić, Jela
2015-12-30
Diatomite makes a promising candidate for a drug carrier because of its high porosity, large surface area, modifiable surface chemistry and biocompatibility. Herein, refined diatomite from Kolubara coal basin, which complied with the pharmacopoeial requirements for heavy metals content and microbiological quality, was used as a starting material. Inorganic modification of the starting material was performed through a simple, one-step procedure. Significant increase in adsorbent loading with diclofenac sodium (DS) was achieved after the modification process (∼373mg/g) which enabled the preparation of comprimates containing therapeutic dose of the adsorbed drug. Adsorption of DS onto modified diatomite resulted in the alteration of the drug's XRD pattern and FTIR spectrum. In vitro drug release studies in phosphate buffer pH 7.5 demonstrated prolonged DS release over 8h from comprimates containing DS adsorbed on modified diatomite (up to 37% after 8h) and those containing physical mixture of the same composition (up to 45% after 8h). The results of in vivo toxicity testing on mice pointed on potential safety of both unmodified (starting) and modified diatomite. All these findings favor the application of diatomite as a potential functional drug carrier. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Townsend, D. P.; Zaretsky, E. V.
1980-01-01
Gear endurance tests and rolling-element fatigue tests were conducted to compare the performance of spur gears made from AISI 9310, CBS 600 and modified Vasco X-2 and to compare the pitting fatigue lives of these three materials. Gears manufactured from CBS 600 exhibited lives longer than those manufactured from AISI 9310. However, rolling-element fatigue tests resulted in statistically equivalent lives. Modified Vasco X-2 exhibited statistically equivalent lives to AISI 9310. CBS 600 and modified Vasco X-2 gears exhibited the potential of tooth fracture occurring at a tooth surface fatigue pit. Case carburization of all gear surfaces for the modified Vasco X-2 gears results in fracture at the tips of the gears.
Effect of Polishing Systems on Surface Roughness and Topography of Monolithic Zirconia.
Goo, C L; Yap, Auj; Tan, Kbc; Fawzy, A S
2016-01-01
This study evaluated the effect of different chairside polishing systems on the surface roughness and topography of monolithic zirconia. Thirty-five monolithic zirconia specimens (Lava PLUS, 3M ESPE) were fabricated and divided into five groups of seven and polished with the following: Group 1 (WZ)-Dura white stone followed by Shofu zirconia polishing kit; Group 2 (SZ)-Shofu zirconia polishing kit; Group 3 (CE)-Ceramiste porcelain polishers; Group 4 (CM)-Ceramaster porcelain polishers; and Group 5 (KZ)-Komet ZR zirconia polishers. All specimens were ground with a fine-grit diamond bur prior to polishing procedures to simulate clinical finishing. Baseline and post-polishing profilometric readings were recorded and delta Ra values (difference in mean surface roughness before and after polishing) were computed and analyzed using one-way analysis of variance and Scheffe post hoc test (p<0.05). Representative scanning electron microscopy (SEM) images of the ground but unpolished and polished specimens were acquired. Delta Ra values ranged from 0.146 for CE to 0.400 for KZ. Delta Ra values for KZ, WZ, and SZ were significantly greater than for CE. Significant differences in delta Ra values were also observed between KZ and CM. The SEM images obtained were consistent with the profilometric findings. Diamond-impregnated polishing systems were more effective than silica carbide-impregnated ones in reducing the surface roughness of ground monolithic zirconia.
Are Tide Gauges Useful Recorders of Relative Sea-Level Rise in Large Deltaic Settings?
NASA Astrophysics Data System (ADS)
Tornqvist, T. E.; Keogh, M.; Jankowski, K. L.; Fernandes, A. M.
2016-12-01
It has long been recognized that the world's largest deltas that often host major population centers are particularly vulnerable to accelerating rates of relative sea-level rise (RSLR). Traditionally, tide-gauge records are used to obtain quantitative data on rates of RSLR, given that they are perceived to capture the rise of the sea surface as well as land subsidence which is often substantial in deltaic settings. We argue here that tide gauges in such settings often provide ambiguous data because they ultimately measure RSLR with respect to a benchmark that is typically anchored tens of meters below the land surface. This is problematic because the prime target of interest is usually the rate of RSLR with respect to the delta top. We illustrate this problem with newly obtained rod surface elevation table - marker horizon (RSET-MH) data from the Mississippi Delta (n=185) that show that total subsidence is dominated by shallow subsidence in the uppermost 5-10 m. Since benchmarks in this region are anchored at 20 m depth on average, tide-gauge records by definition do not capture this important (and often even dominant) component of total subsidence, and thus underestimate RSLR by a considerable amount. We show how RSET-MH data, combined with GPS and satellite altimetry data, enable us to bypass this problem. Present-day rates of RSLR in the Mississippi Delta are 13±9 mm/yr, considerably higher than numbers reported in recent studies based on tide-gauge analysis. It seems unlikely that this problem is unique to the Mississippi Delta, so we argue that the approach to RSLR measurements in large deltas across the planet needs rethinking.
Multifaceted re-analysis of the enigmatic Kitimat slide complex, Canada
NASA Astrophysics Data System (ADS)
Stacey, Cooper D.; Lintern, D. Gwyn; Enkin, Randolph J.
2018-07-01
Repeat submarine landslides are challenging to study due to the tendency of subsequent slides to destroy previous deposits. Repeat slides are common in fjord head deltas where high amounts of sediment are focused in narrow valleys. This study examines a well-known slide deposit associated with the Kitimat Delta on Canada's west coast that has been linked to tsunamigenic landslides in 1974 and 1975. For the first time we incorporate multibeam bathymetry to a multifaceted dataset including new high resolution acoustic data and sediment cores to examine the history of submarine slides at the Kitimat Delta. Based on morphological analysis and age modelling using 210Pb and 14C data, we determine that the complex surface morphology of the slide lobe consists of at least two large slide deposits that reach 5 km from the delta: the known event that occurred in 1975 and an older event that occurred at 623 ± 83 cal BP (95% confidence interval). We demonstrate that slide deposits can be differentiated based on surface morphology and acoustic character. This is confirmed by age modelling. The 1975 slide resulted in a flow that ploughed through the seabed creating compression and translation along a basal shear plane, resulting in deep deformation and a surface characterized by pressure ridges. The 623 ± 83 cal BP event resulted in a large amount of blocky slide material that overran the former seafloor and was transported >5 km from the delta front. Several buried events are observed at depth, one of which occurred at 2592 ± 84 cal BP and appears to be on the same order of magnitude as the 1975 event and showing very similar acoustic characteristics. As for hazard implications, we show submarine landslides of varying sizes have naturally occurred on this delta throughout the past several thousand years.
Age Determination of the Remaining Peat in the Sacramento-San Joaquin Delta, California, USA
Drexler, Judith Z.; de Fontaine, Christian S.; Knifong, Donna L.
2007-01-01
Introduction The Sacramento-San Joaquin Delta of California was once a 1,400 square kilometer (km2) tidal marsh, which contained a vast layer of peat ranging up to 15 meters (m) thick (Atwater and Belknap, 1980). Because of its favorable climate and highly fertile peat soils, the majority of the Delta was drained and reclaimed for agriculture during the late 1800s and early 1900s. Drainage of the peat soils changed the conditions in the surface layers of peat from anaerobic (having no free oxygen present) to aerobic (exposed to the atmosphere). This change in conditions greatly increased the decomposition rate of the peat, which consists largely of organic (plant) matter. Thus began the process of land-surface subsidence, which initially was a result of peat shrinkage and compaction, and later largely was a result of oxidation by which organic carbon in the peat essentially vaporized to carbon dioxide (Deverel and others, 1998; Ingebritsen and Ikehara, 1999). Because of subsidence, the land-surface elevation on farmed islands in the Delta has decreased from a few meters to as much as 8 m below local mean sea level (California Department of Water Resources, 1995; Steve Deverel, Hydrofocus, Inc., written commun., 2007). The USGS, in collaboration with the University of California at Davis, and Hydrofocus Inc. of Davis, California, has been studying the formation of the Delta and the impact of wetland reclamation on the peat column as part of a project called Rates and Evolution of Peat Accretion through Time (REPEAT). The purpose of this report is to provide results on the age of the remaining peat soils on four farmed islands in the Delta.
NASA Technical Reports Server (NTRS)
Brock, T. G.; Cleland, R. E.
1990-01-01
Rapid cell enlargement in primary leaves of bean is induced by bright white light (WL), gibberellic acid (GA3) or the cytokinin N6-benzyladenine (BA). In previous studies it has been show that all three agents cause an increase in wall extensibility, although by different mechanisms. Here we examine the effects of the three growth promoters on the osmotic potential difference (delta Psi), the accumulation of solutes (delta TSC), the wall yield threshold (Y) and the growth potential (delta Psi -Y). With GA3 and BA, but not WL, there was a rapid decline in delta Psi as measured by the osmotic concentration of expressed sap. Unlike WL, neither GA3 nor BA promoted the accumulation of osmotic solutes. The decline in delta Psi, however, was apparently counteracted by a decline in Y since the growth potential, as measured by the external-osmoticum method, remained unchanged. It is concluded that WL, GA3 and BA all promote cell enlargement of bean leaves by increasing one cellular growth parameter, wall extensibility. Only WL, however, promotes osmotic adjustment during growth.
Uklejewski, Ryszard; Rogala, Piotr; Winiecki, Mariusz; Tokłowicz, Renata; Ruszkowski, Piotr; Wołuń-Cholewa, Maria
2016-06-29
We present here-designed, manufactured, and tested by our research team-the Ti-alloy prototype of the multispiked connecting scaffold (MSC-Scaffold) interfacing the components of resurfacing arthroplasty (RA) endoprostheses with bone. The spikes of the MSC-Scaffold prototype mimic the interdigitations of the articular subchondral bone, which is the natural biostructure interfacing the articular cartilage with the periarticular trabecular bone. To enhance the osteoinduction/osteointegration potential of the MSC-Scaffold, the attempts to modify its bone contacting surfaces by the process of electrochemical cathodic deposition of Ca-P was performed with further immersion of the MSC-Scaffold prototypes in SBF in order to transform the amorphous calcium-phosphate coating in hydroxyapatite-like (HA-like) coating. The pilot experimental study of biointegration of unmodified and Ca-P surface-modified MSC-Scaffold prototypes was conducted in an animal model (swine) and in osteoblast cell culture. On the basis of a microscope-histological method the biointegration was proven by the presence of trabeculae in the interspike spaces of the MSC-Scaffold prototype on longitudinal and cross-sections of bone-implant specimens. The percentage of trabeculae in the area between the spikes of specimen containing Ca-P surface modified scaffold prototype observed in microCT reconstructions of the explanted joints was visibly higher than in the case of unmodified MSC-Scaffold prototypes. Significantly higher Alkaline Phosphatase (ALP) activity and the cellular proliferation in the case of Ca-P-modified MSC-Scaffold pre-prototypes, in comparison with unmodified pre-prototypes, was found in osteoblast cell cultures. The obtained results of experimental implantation in an animal model and osteoblast cell culture evaluations of Ca-P surface-modified and non-modified biomimetic MSC-Scaffold prototypes for biomimetic entirely-cementless RA endoprostheses indicate the enhancement of the osteoinduction/osteointegration potential by the Ca-P surface modification of the Ti-alloy MSC-Scaffold prototype. Planned further research on the prototype of this biomimetic MSC-Scaffold for a new generation of RA endoprostheses is also given.
Uklejewski, Ryszard; Rogala, Piotr; Winiecki, Mariusz; Tokłowicz, Renata; Ruszkowski, Piotr; Wołuń-Cholewa, Maria
2016-01-01
We present here—designed, manufactured, and tested by our research team—the Ti-alloy prototype of the multispiked connecting scaffold (MSC-Scaffold) interfacing the components of resurfacing arthroplasty (RA) endoprostheses with bone. The spikes of the MSC-Scaffold prototype mimic the interdigitations of the articular subchondral bone, which is the natural biostructure interfacing the articular cartilage with the periarticular trabecular bone. To enhance the osteoinduction/osteointegration potential of the MSC-Scaffold, the attempts to modify its bone contacting surfaces by the process of electrochemical cathodic deposition of Ca-P was performed with further immersion of the MSC-Scaffold prototypes in SBF in order to transform the amorphous calcium-phosphate coating in hydroxyapatite-like (HA-like) coating. The pilot experimental study of biointegration of unmodified and Ca-P surface-modified MSC-Scaffold prototypes was conducted in an animal model (swine) and in osteoblast cell culture. On the basis of a microscope-histological method the biointegration was proven by the presence of trabeculae in the interspike spaces of the MSC-Scaffold prototype on longitudinal and cross-sections of bone-implant specimens. The percentage of trabeculae in the area between the spikes of specimen containing Ca-P surface modified scaffold prototype observed in microCT reconstructions of the explanted joints was visibly higher than in the case of unmodified MSC-Scaffold prototypes. Significantly higher Alkaline Phosphatase (ALP) activity and the cellular proliferation in the case of Ca-P-modified MSC-Scaffold pre-prototypes, in comparison with unmodified pre-prototypes, was found in osteoblast cell cultures. The obtained results of experimental implantation in an animal model and osteoblast cell culture evaluations of Ca-P surface-modified and non-modified biomimetic MSC-Scaffold prototypes for biomimetic entirely-cementless RA endoprostheses indicate the enhancement of the osteoinduction/osteointegration potential by the Ca-P surface modification of the Ti-alloy MSC-Scaffold prototype. Planned further research on the prototype of this biomimetic MSC-Scaffold for a new generation of RA endoprostheses is also given. PMID:28773652
Kanakubo, Yurie; Ito, Fuminori; Murakami, Yoshihiko
2010-06-15
In this paper, we describe the novel facile technique for preparing surface-modified nanoparticles via newly developed amphiphilic block polymer-assisted emulsification/evaporation process. The effects of both organic solvents (the dispersed phase) and stabilizer in the external continuous phase on the stability of o/w emulsion was firstly investigated to clarify the optimal conditions for stable emulsification/evaporation processes. We found that the organic solvent mixture having a density adjusted to be 1.00 g/cm(3) gave the highly stable o/w emulsion. Under the optimal conditions, the relatively monodisperse poly(ethylene glycol) (PEG)-modified poly(lactide-co-glycolide) (PLGA) nanoparticle was obtained and characterized. The introduction of PEG to the particle surface was suggested by the fact that the diameter and zeta potential of the particle increased as the amount of added block polymer increased. The facile method presented in this paper can be a universal tool for modifying the surface of nanoparticles, even though reactive groups are not present on the surface. Copyright 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogwu, A. A.; Okpalugo, T. I. T.; Nanotechnology Institute, School of Electrical and Mechanical Engineering, University of Ulster, Northern Ireland
We have carried out investigations aimed at understanding the mechanism responsible for a water contact angle increase of up to ten degrees and a decrease in dielectric constant in silicon modified hydrogenated amorphous carbon films compared to unmodified hydrogenated amorphous carbon films. Our investigations based on surface chemical constituent analysis using Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), SIMS, FTIR, contact angle / surface energy measurements and spectroscopic ellipsometry suggests the presence of hydrophobic chemical entities on the surface of the films. This observation is consistent with earlier theoretical plasma chemistry predictions and observed Raman peak shifts in the films. Thesemore » surface hydrophobic entities also have a lower polarizability than the bonds in the un-modified films thereby reducing the dielectric constant of the silicon modified films measured by spectroscopic ellipsometry. Ellipsometric dielectric constant measurement is directly related to the surface energy through Hamaker's constant. Our current finding is expected to be of benefit to understanding stiction, friction and lubrication in areas that range from nano-tribology to microfluidics.« less
NASA Astrophysics Data System (ADS)
Ogwu, A. A.; Okpalugo, T. I. T.; McLaughlin, J. A. D.
2012-09-01
We have carried out investigations aimed at understanding the mechanism responsible for a water contact angle increase of up to ten degrees and a decrease in dielectric constant in silicon modified hydrogenated amorphous carbon films compared to unmodified hydrogenated amorphous carbon films. Our investigations based on surface chemical constituent analysis using Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), SIMS, FTIR, contact angle / surface energy measurements and spectroscopic ellipsometry suggests the presence of hydrophobic chemical entities on the surface of the films. This observation is consistent with earlier theoretical plasma chemistry predictions and observed Raman peak shifts in the films. These surface hydrophobic entities also have a lower polarizability than the bonds in the un-modified films thereby reducing the dielectric constant of the silicon modified films measured by spectroscopic ellipsometry. Ellipsometric dielectric constant measurement is directly related to the surface energy through Hamaker's constant. Our current finding is expected to be of benefit to understanding stiction, friction and lubrication in areas that range from nano-tribology to microfluidics.
Zhang; Deltour; Zhao
2000-10-16
The electrical transport properties of epitaxial superconducting Bi(2+y)Sr(2-x-y)La(x)CuO(6+delta) thin films have been studied in magnetic fields. Using a modified Coulomb-gas scaling law, we can fit all the magnetic field dependent low resistance data with a universal scaling curve, which allows us to determine a relation between the activation energy of the thermally activated flux flow resistance and the characteristic temperature scaling parameters.
Method of determining glass durability
Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.
1998-12-08
A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.
Method of determining glass durability
Jantzen, Carol Maryanne; Pickett, John Butler; Brown, Kevin George; Edwards, Thomas Barry
1998-01-01
A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.
Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes
NASA Astrophysics Data System (ADS)
Yu, Anthony S.
Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two approaches to increase surface reaction kinetics and decrease Rs that were examined in this thesis involved modifying the surface microstructure, as well as adding both metallic (e.g. Pt) and oxide (e.g. CeO2, La0.8Sr0.2FeO3) catalysts to both membrane surfaces. These two approaches were investigated for single-phase MIEC membrane reactors (La0.9Ca0.1FeO3-delta ), as well as composite membrane reactors composed of an electronic conductor (La0.8Sr-0.2CrO3-delta) and an ionic conductor (YSZ). The use of catalysts and microstructure modifications to decrease interfacial losses is equally important for SOFCs. In this thesis, the electrochemical activity and microstructure of metallic catalysts formed by "ex-solving" metals from an oxide lattice, and oxide catalysts deposited by Atomic Layer Deposition (ALD) were investigated. It is shown that these methods for depositing catalysts resulted in very different effects on electrode performance when compared to the same catalysts deposited by wet impregnation. For example, when transition metals, such as Ni and Co, were "ex-solved" from a La0.8Sr0.2CrO3-delta anode lattice, these "ex-solved" metal particles not only exhibited great catalytic activity, they were also less prone to coking compared to their wet impregnated counterparts. On the cathode side, thin layers of various oxides (e.g. Al 2O3, CeOx, SrO) that were deposited using ALD also exhibited drastically different electrochemical activity compared to their wet impregnated counterparts. It was determined that differences in electrochemical activity could be attributed to a difference in the oxide morphology, showing that a catalyst's microstructure and morphology are very important in dictating its overall activity in SOFC electrodes.
Ganju, N.K.; Bergamaschi, B.; Schoellhamer, D.H.
2003-01-01
Carbon and sediment fluxes from tidal wetlands are of increasing concern in the Sacramento-San Joaquin River Delta (Delta), because of drinking water issues and habitat restoration efforts. Certain forms of dissolved organic carbon (DOC) react with disinfecting chemicals used to treat drinking water, to form disinfection byproducts (DBPs), some of which are potential carcinogens. The contribution of DBP precursors by tidal wetlands is unknown. Sediment transport to and from tidal wetlands determines the potential for marsh accretion, thereby affecting habitat formation.Water, carbon, and sediment flux were measured in the main channel of Browns Island, a tidal wetland located at the confluence of Suisun Bay and the Delta. In-situ instrumentation were deployed between May 3 and May 21, 2002. Water flux was measured using acoustic Doppler current profilers and the index-velocity method. DOC concentrations were measured using calibrated ultraviolet absorbance and fluorescence instruments. Suspended-sediment concentrations were measured using a calibrated nephelometric turbidity sensor. Tidally averaged water flux through the channel was dependent on water surface elevations in Suisun Bay. Strong westerly winds resulted in higher water surface elevations in the area east of Browns Island, causing seaward flow, while subsiding winds reversed this effect. Peak ebb flow transported 36% more water than peak flood flow, indicating an ebb-dominant system. DOC concentrations were affected strongly by porewater drainage from the banks of the channel. Peak DOC concentrations were observed during slack after ebb, when the most porewater drained into the channel. Suspended-sediment concentrations were controlled by tidal currents that mobilized sediment from the channel bed, and stronger tides mobilized more sediment than the weaker tides. Sediment was transported mainly to the island during the 2-week monitoring period, though short periods of export occurred during the spring tide. Future deployments will characterize the seasonal variability of these fluxes.
A simple method to synthesize modified Fe3O4 for the removal of organic pollutants on water surface
NASA Astrophysics Data System (ADS)
Zhu, Ling; Li, Chuanhao; Wang, Juan; Zhang, Hui; Zhang, Jian; Shen, Yuhua; Li, Cun; Wang, Cuiping; Xie, Anjian
2012-06-01
In this article, a simple, economic and environment-friendly approach is explored to prepare Fe3O4 nanoparticles by using air oxidation at room temperature. Furthermore, the Fe3O4 magnetic nanoparticles (MNPs) have been modified with sodium oleate successfully to form super-hydrophobic surfaces. The alkali source played an important role in controlling the morphologies of Fe3O4 MNPs. Either Fe3O4 MNPs or sodium oleate modified Fe3O4 MNPs possessed good magnetic property, and the as-prepared modified Fe3O4 nanoparticles are both hydrophobic and lipophilic. Therefore, Fe3O4/sodium oleate could be dispersed stable in the oil medium and have been applied in the cleanup engine oil from the water surface. It will open up a potential and broad application in wastewater treatment.
Unraveling the mineralogy of delta deposits on Mars
NASA Astrophysics Data System (ADS)
Osterloo, Mikki; Kierein-Young, Kathryn
2017-04-01
Detailed geologic characterizations of three of 50+ fan deltas on Mars have yielded important information on their mineralogy as well as formation processes. Data returned from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) have been used to identify spectroscopic signatures consistent with phyllosilicates in fans or deltas within paleolake basins (i.e., Eberswalde, Holden, and Jezero) that indicate sustained subaqueous sediment deposition. Based on these results, two periods of martian history have been identified when the surface or near surface may have been habitable: (1) during the formation of the iron-magnesium smectite clays, likely in the Early Noachian and (2) during the Late Noachian to Early Hesperian fluvial surface activity that led to the formation of Jezero lake. On Earth, rapid deposition of deltaic sediments can preserve organic materials; hence Martian fan deltas may be ideal environments to investigate the past habitability of the planet. Rapid burial coupled with the identification of phyllosilicates within at least some of the martian deltas makes an even more intriguing argument for further investigation of the remainder of deltas. This is because phyllosilicates, and specifically smectite clays, have the ability to trap organic matter in the interlayer sites of their mineral structures and in terrestrial settings are commonly associated with the most organic rich units. Organic materials that were transported into paleolakes would likely have been buried relatively quickly. Hence, the organics would have been protected within the clay-rich deltaic and lacustrine deposits from oxidation and photochemical dissociation. We will present the initial results of a comprehensive study designed to investigate the compositional and mineralogical variability of the remainder of dust-free, previously un-characterized deltas on Mars (of which, there are 33). Our study aims to provide key information regarding differences in formation and preservation processes between the fan delta deposits. Our initial survey of the deltas indicates that almost all sites contain minor phyllosilicate detections, however only nine sites have significant abundances (i.e., spatially cohesive mapped deposits). Most of the phyllosilicate deposits consist of Fe/Mg clays such as nontronite and saponite, with a few sites showing detections of minor amounts of Al clays. Geologic observations indicate that most of the clays outcrop along the bottom edge of the deltas with a few sites showing a larger band of clays located just beyond the base of the delta. HiRISE images provide additional small-scale geologic context and indicate that most of the clay deposits are exposed as thin erosional layers. When clay deposits are located beyond the base of the delta they are typically more massive in outcrop. Our ongoing morphological, watershed, and catchment basin investigations will provide additional constraints on the style and extent of hydrologic activity. Coupling our detailed spectroscopic characterization with our ongoing work will provide key information on the geologic processes that produced the mineralogical diversity of martian deltas and will likely provide important clues regarding the past habitability of these environments.
Langmuir Probe Spacecraft Potential End Item Specification Document
NASA Technical Reports Server (NTRS)
Gilchrist, Brian; Curtis, Leslie (Technical Monitor)
2001-01-01
This document describes the Langmuir Probe Spacecraft Potential (LPSP) investigation of the plasma environment in the vicinity of the ProSEDS Delta II spacecraft. This investigation will employ a group of three (3) Langmuir Probe Assemblies, LPAs, mounted on the Delta II second stage to measure the electron density and temperature (n(sub e) and T(sub e)), the ion density (n(sub i)), and the spacecraft potential (V(sub s)) relative to the surrounding ionospheric plasma. This document is also intended to define the technical requirements and flight-vehicle installation interfaces for the design, development, assembly, testing, qualification, and operation of the LPSP subsystem for the Propulsive Small Expendable Deployer System (ProSEDS) and its associated Ground Support Equipment (GSE). This document also defines the interfaces between the LPSP instrument and the ProSEDS Delta II spacecraft, as well as the design, fabrication, operation, and other requirements established to meet the mission objectives. The LPSP is the primary measurement instrument designed to characterize the background plasma environment and is a supporting instrument for measuring spacecraft potential of the Delta II vehicle used for the ProSEDS mission. Specifically, the LPSP will use the three LPAs equally spaced around the Delta II body to make measurements of the ambient ionospheric plasma during passive operations to aid in validating existing models of electrodynamic-tether propulsion. These same probes will also be used to measure Delta II spacecraft potential when active operations occur. When the electron emitting plasma contractor is on, dense neutral plasma is emitted. Effective operation of the plasma contactor (PC) will mean a low potential difference between the Delta II second stage and the surrounding plasma and represents one of the voltage parameters needed to fully characterize the electrodynamic-tether closed circuit. Given that the LP already needs to be well away from any near-field disturbances around the Delta II, it is possible to use the same probe with a simple reconfiguration of the electronics to measure potential with respect to the ambient plasma. The LP measurement techniques are outlined in the following text and discussed in detail in the Appendix. The scientific goals of the investigation, the physical and electrical characteristics of the instrument, and the on-orbit measurement requirements are also discussed in this document.
Liu, Jia-Ming; Gao, Fei; Huang, Hong-Hua; Zeng, Li-Qing; Huang, Xiao-Mei; Zhu, Guo-Hui; Li, Zhi-Ming
2008-04-01
Fullerenol (F) shows a strong and stable room-temperature phosphorescence (RTP) signal on the surface of nitrocellulose membrane (NCM) at lambda ex max/ lambda em max =542.0/709.4 nm. When modified by dodecylbenzenesulfonic acid sodium salt (DBS), fullerenol emits a stronger signal. It was also found that quantitative specific affinity-adsorption reaction can be carried out between Triticum vulgare lectin (WGA) labeled with DBS-F and alkaline phosphatase (ALP) on the surface of NCM, and the product obtained (WGA-ALP-WGA-F-DBS) emits a strong and stable RTP signal. Furthermore, the content of ALP was proportional to the DeltaI(p) value. Based on the facts above, a new method for the determination of trace amounts of ALP by affinity-adsorption solid-substrate room-temperature phosphorimetry (AA-SS-RTP) was established, using fullerenol modified with DBS to label WGA. The detection limit was 0.011 fg spot(-1) (corresponding concentration: 2.8x10(-14) g ml(-1), namely 2.8x10(-16) mol l(-1)). This method with high sensitivity, accuracy, and precision has been successfully applied to the determination of the content of ALP in human serum survey and forecast human disease, and the results are tallied with those using alkaline phosphatase kits. The mechanism for the determination of ALP using AA-SS-RTP was also discussed.
Electrodeposition of gold nanoparticles on aryl diazonium monolayer functionalized HOPG surfaces.
González, M C R; Orive, A G; Salvarezza, R C; Creus, A H
2016-01-21
Gold nanoparticle electrodeposition on a modified HOPG surface with a monolayer organic film based on aryl diazonium chemistry has been studied. This organic monolayer is electrochemically grown with the use of 2,2-diphenyl-1-picrylhydrazyl (DPPH), a radical scavenger. The electrodeposition of gold on this modified surface is highly favored resulting in an AuNP surface density comparable to that found on glassy carbon. AuNPs grow only in the areas covered by the organic monolayer leaving free clean HOPG zones. A progressive mechanism for the nucleation and growth is followed giving hemispherical AuNPs, homogeneously distributed on the surface and their sizes can be well controlled by the applied electrodeposition potential. By using AFM, C-AFM and electrochemical measurements with the aid of two redox probes, namely Fe(CN)6(4-)/Fe(CN)6(3-) and dopamine, relevant results about the electrochemical modified surface as well as the gold nanoparticles electrodeposited on them are obtained.
Leading edge vortex control on a delta wing with dielectric barrier discharge plasma actuators
NASA Astrophysics Data System (ADS)
Shen, Lu; Wen, Chih-yung
2017-06-01
This paper presents an experimental investigation of the application of dielectric barrier discharge (DBD) plasma actuators on a slender delta wing to control the leading edge vortices (LEVs). The experiments are conducted in a wind tunnel with a Reynolds number of 50 000 based on the chord length. The smoke flow visualization reveals that the DBD plasma actuators at the leading edges significantly modify the vortical flow structure over the delta wing. It is noted that symmetric control at both semi-spans and asymmetric control at a single semi-span leads to opposite effects on the local LEVs. Particle image velocimetry (PIV) indicates that the shear layer is deformed by the actuators. Therefore, both the strength and the shape of the LEV cores are deeply affected. The six-component force measurement shows that the DBD plasma actuators have a limited effect on lift and drag while inducing relatively large moments. This suggests that the DBD plasma actuator is a promising technique for delta wing maneuvering.
NASA Technical Reports Server (NTRS)
Roberts, Christopher D.; LeGrande, Allegra N.; Tripati, Aradhna K.
2011-01-01
An isotope-enabled ocean-atmosphere general circulation model (GISS ModelE -R) is used to estimate the spatial gradients of the oxygen isotopic composition of seawater (delta O-18(sub sw), where delta is the deviation from a known reference material in per mil) during the early Paleogene (45.65 Ma). Understanding the response of delta O-18(sub sw) to changes in climatic and tectonic boundary conditions is important because records of carbonate delta O-18 document changes in hydrology, as well as changes in temperature and global ice -volume. We present results from an early Paleogene configuration of ModelE -R which indicate that spatial gradients of surface ocean delta O-18(sub sw) during this period could have been significantly different to those in the modern ocean. The differences inferred from ModelE -R are sufficient to change early Paleogene sea surface temperature estimates derived from primary carbonate delta O-18 signatures by more than +/-2 C in large areas of the ocean. In the North Atlantic, Indian, and Southern Oceans, the differences in d18Osw inferred from our simulation with ModelE -R are in direct contrast with those from another d18O ]tracing model study which used different, but equally plausible, early Paleogene boundary conditions. The large differences in delta O-18(sub sw) between preindustrial and early Paleogene simulations, and between models, emphasizes the sensitivity of d18Osw to climatic and tectonic boundary conditions. For this reason, absolute estimates of Eocene/ Paleocene temperature derived from carbonate delta O-18 alone are likely to have larger uncertainties than are usually assumed.
Stratigraphy and paleohydrology of delta channel deposits, Jezero crater, Mars
NASA Astrophysics Data System (ADS)
Goudge, Timothy A.; Mohrig, David; Cardenas, Benjamin T.; Hughes, Cory M.; Fassett, Caleb I.
2018-02-01
The Jezero crater open-basin lake contains two well-exposed fluvial sedimentary deposits formed early in martian history. Here, we examine the geometry and architecture of the Jezero western delta fluvial stratigraphy using high-resolution orbital images and digital elevation models (DEMs). The goal of this analysis is to reconstruct the evolution of the delta and associated shoreline position. The delta outcrop contains three distinct classes of fluvial stratigraphy that we interpret, from oldest to youngest, as: (1) point bar strata deposited by repeated flood events in meandering channels; (2) inverted channel-filling deposits formed by avulsive distributary channels; and (3) a valley that incises the deposit. We use DEMs to quantify the geometry of the channel deposits and estimate flow depths of ∼7 m for the meandering channels and ∼2 m for the avulsive distributary channels. Using these estimates, we employ a novel approach for assessing paleohydrology of the formative channels in relative terms. This analysis indicates that the shift from meandering to avulsive distributary channels was associated with an approximately four-fold decrease in the water to sediment discharge ratio. We use observations of the fluvial stratigraphy and channel paleohydrology to propose a model for the evolution of the Jezero western delta. The delta stratigraphy records lake level rise and shoreline transgression associated with approximately continuous filling of the basin, followed by outlet breaching, and eventual erosion of the delta. Our results imply a martian surface environment during the period of delta formation that supplied sufficient surface runoff to fill the Jezero basin without major drops in lake level, but also with discrete flooding events at non-orbital (e.g., annual to decadal) timescales.
Interesting features of transmission across locally periodic delta potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dharani, M., E-mail: m-dharani@blr.amrita.edu, E-mail: mdharu@yahoo.co.in; Shastry, C. S.
2016-05-23
We study the theory of transmission of electrons through N delta potential barriers as well as wells. Some of the interesting features like the correlation between resonance peak positions and box states, number of peaks in transmission band and bound states are analyzed for locally periodic attractive, repulsive and pair of attractive and repulsive potentials.
2015-01-01
ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor using a forced hydrolysis process, and their surface chemical structures were modified by using different reaction solvents. X-ray diffraction and optical studies showed that the lattice parameters, optical properties, and band gap (3.44 eV) of the two ZnO NP samples were similar. However, FTIR spectroscopy showed significant differences in the surface structures and surface-bound chemical groups. This led to major differences in the zeta potential, hydrodynamic size, photocatalytic rate constant, and more importantly, their cytotoxic effects on Hut-78 cancer cells. The ZnO NP sample with the higher zeta potential and catalytic activity displayed a 1.5-fold stronger cytotoxic effect on cancer cells. These results suggest that by modifying the synthesis parameters/conditions and the surface chemical structures of the nanocrystals, their surface charge density, catalytic activity, and cytotoxicity can be tailored. This provides a green chemistry approach to produce safer ZnO NP. PMID:25068096
On the theory of electric double layer with explicit account of a polarizable co-solvent.
Budkov, Yu A; Kolesnikov, A L; Kiselev, M G
2016-05-14
We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On the contrary, a sufficiently large additive of co-solvent shifts the saturation potential to lower surface potentials. We obtain that an increase in the co-solvent polarizability makes the electrostatic potential profile longer-ranged. However, increase in the co-solvent concentration in the bulk leads to non-monotonic behavior of the electrostatic potential profile. An increase in the co-solvent concentration in the bulk at its sufficiently small values makes the electrostatic potential profile longer-ranged. Oppositely, when the co-solvent concentration in the bulk exceeds some threshold value, its further increase leads to decrease in electrostatic potential at all distances from the electrode.
Darnaude, Audrey M; Salen-Picard, Chantal; Polunin, Nicholas V C; Harmelin-Vivien, Mireille L
2004-02-01
The link between climate-driven river runoff and sole fishery yields observed in the Gulf of Lions (NW Mediterranean) was analysed using carbon- and nitrogen stable isotopes along the flatfish food webs. Off the Rhone River, the main terrestrial (river POM) and marine (seawater POM) sources of carbon differed in delta(13)C (-26.11 per thousand and -22.36 per thousand, respectively). Surface sediment and suspended POM in plume water exhibited low delta(13)C (-24.38 per thousand and -24.70 per thousand, respectively) that differed more from the seawater POM than from river POM, demonstrating the dominance of terrestrial material in those carbon pools. Benthic invertebrates showed a wide range in delta(15)N (mean 4.30 per thousand to 9.77 per thousand ) and delta(13)C (mean -23.81 per thousand to -18.47 per thousand ), suggesting different trophic levels, diets and organic sources. Among the macroinvertebrates, the surface (mean delta(13)C -23.71 per thousand ) and subsurface (mean delta(13)C -23.81 per thousand ) deposit-feeding polychaetes were particularly (13)C depleted, indicating that their carbon was mainly derived from terrestrial material. In flatfish, delta(15)N (mean 9.42 to 10.93 per thousand ) and delta(13)C (mean -19.95 per thousand to -17.69 per thousand ) varied among species, indicating differences in food source and terrestrial POM use. A significant negative correlation was observed between the percentage by weight of polychaetes in the diet and the delta(13)C of flatfish white muscle. Solea solea (the main polychaete feeder) had the lowest mean delta(13)C, Arnoglossus laterna and Buglossidium luteum (crustacean, mollusc and polychaete feeders) had intermediate values, and Solea impar (mollusc feeder) and Citharus linguatula (crustacean and fish feeder) exhibited the highest delta(13)C. Two different benthic food webs were thus identified off the Rhone River, one based on marine planktonic carbon and the other on the terrestrial POM carried by the river. Deposit-feeding polychaetes were responsible for the main transfer of terrestrial POM to upper trophic levels, linking sole population dynamics to river runoff fluctuations.
Surface modification of malachite with ethanediamine and its effect on sulfidization flotation
NASA Astrophysics Data System (ADS)
Feng, Qicheng; Zhao, Wenjuan; Wen, Shuming
2018-04-01
Ethanediamine was used to modify the mineral surface of malachite to improve its sulfidization and flotation behavior. The activation mechanism was investigated by adsorption experiments, X-ray photoelectron spectroscopy (XPS) analysis, and zeta potential measurements. Microflotation experiments showed that the flotation recovery of malachite was enhanced after the pretreatment of the mineral particles with ethanediamine prior to the addition of Na2S. Adsorption tests revealed that numerous sulfide ion species in the pulp solution were transferred onto the mineral surface through the formation of more copper sulfide species. This finding was confirmed by the results of the XPS measurements. Ethanediamine modification not only increased the contents of copper sulfide species on the malachite surface but also enhanced the reactivity of the sulfidization products. During sulfidization, Cu(II) species on the mineral surface were reduced into Cu(I) species, and the percentages of S22- and Sn2- relative to the total S increased after modification, resulting in increased surface hydrophobicity. The results of zeta potential measurements showed that the ethanediamine-modified mineral surface adsorbed with more sulfide ion species was advantageous to the attachment of xanthate species, thereby improving malachite floatability. The proposed ethanediamine modification followed by sulfidization xanthate flotation exhibits potential for industrial application.
Zhang, Ting; Yang, Wen-Long; Chen, She-Jun; Shi, Dian-Long; Zhao, Hu; Ding, Yi; Huang, Ye-Ru; Li, Nan; Ren, Yue; Mai, Bi-Xian
2014-08-01
Polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) in 25 surface sediments in three cities (Nantong, Wuxi, and Suzhou) in the Yangtze River Delta, eastern China were measured. The mean concentrations were 378, 45.8, 1.98, 4,002 ng/g for PBDEs, OCPs, PCBs, and PAHs, respectively. Their levels in the sediments in the three cities were generally consistent with the city industrialization. PBDEs and OCPs were markedly dominated by deca-BDE (>90 %) and DDTs (>70 %). A principle component analysis of the analytes identified three major factors suggesting different sources of the contaminants in the sediments. PBDEs and the organic carbon in the sediments have common sources from industrial activities; whereas OCPs and PCBs, correlated with the second factor, were mainly from historical sources. The third factor with loadings of PAHs is indicative of various combustion sources. Ecological risk assessment indicated that the potential highest risk is from DDTs, for which 22 sites exceed the effects range low (ERL) values and three sites exceed the effects range median (ERM) value.
Remote Sensing and Modeling for Improving Operational Aquatic Plant Management
NASA Technical Reports Server (NTRS)
Bubenheim, Dave
2016-01-01
The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Xiaofeng; Luo Qiong; GlobalFoundries Singapore Pte Ltd, 60 Woodlands Industrial Park D Street 2, Singapore 738406
2012-05-15
A series of nanostructure Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} (STFx, x=0.4, 0.6, 0.8) solid-solution powders were synthesized by mechanochemical approach milling from the mixture of SrO, Fe{sub 2}O{sub 3} and TiO{sub 2} metal oxides at room temperature. The XRD results revealed that the perovskite STFx nanoparticles were finally formed with few residual {alpha}-Fe{sub 2}O{sub 3} detected dependent on the milling conditions. The structure evolution suggested that the mechanochemical synthesis underwent via a solid-state reaction route to initially form Ti-rich perovskite and then incorporate with the residual {alpha}-Fe{sub 2}O{sub 3} to achieve the estimated composition. The synthesized STF08 powders exhibited the significantmore » Surface Photovoltage (SPV) spectrum response both in UV and in visible-light region with p-type semiconductor behavior. This finding suggested that the synthesized STF nanopowders could potentially utilize more solar spectrum energy effectively for photo-oxidation and photo-catalysis applications. - Graphical abstract: It is demonstrated that Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} perovskite nanopowders were successfully synthesized by mechanochemical reaction approach at room temerpature, and the synthesized STF08 powders showed the significant SPV response in UV-VIS region with p-type semiconductor behaviors. Highlights: Black-Right-Pointing-Pointer Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} nanopowders synthesized by mechanochemical reaction approach. Black-Right-Pointing-Pointer The reaction process was shorten by introduce high impact energy. Black-Right-Pointing-Pointer Synthesized STF08 powders show the significant SPV response in UV-VIS region. Black-Right-Pointing-Pointer Synthesized STFx powders show p-type semiconductor behaviors.« less
NASA Astrophysics Data System (ADS)
Bristol, E. M.; Dabrowski, J. S.; Jimmie, J. A.; Peter, D. L.; Holmes, R. M.; Mann, P. J.; Natali, S.; Schade, J. D.
2017-12-01
The Yukon-Kuskokwim Delta in southwest, Alaska is characterized by discontinuous permafrost, which is vulnerable to thaw induced by climate change. Recent fires in the delta have caused dramatic changes in the landscape, likely changing carbon dynamics, and potentially altering dissolved organic carbon (DOC) composition and DOC concentrations in aquatic ecosystems. These changes, in turn, likely affect microbial respiration and hydrologic C export from watersheds in the delta. In this study, we investigated how landscape position and fire history drive changes in DOC composition and reactivity in aquatic ecosystems. We surveyed soil pore waters, ponds, fens, and streams at varying landscape positions in burned and unburned landscapes. We also conducted a laboratory experiment to compare the role of photooxidation, photodegradation, and microbial respiration in altering DOC composition and concentration. Surface waters in burned regions were higher in temperature and inorganic nitrogen concentrations. Higher conductivity in burned areas suggests that fire is deepening the water table, causing water to flow through a more mineral soil horizon. While DOC concentrations did not vary significantly by landscape position or fire history, optical properties of DOC suggest that DOC molecular weight is lower in burned regions and decreases along flow paths. Similarly, our incubation experiment indicated that changes in DOC composition are driven by exposure to light more than bacterial respiration, and that photochemical reactivity declines along flow paths. Percent DOC loss was greatest in waters exposed to both light and bacterial, and percent DOC loss from burned watershed waters was correlated with optical properties. Based on our findings, we predict that the combination of increased surface water temperatures, increased inorganic nitrogen concentrations, and lower molecular weight DOC will increase bacterial respiration of DOC in watersheds burned by wildfire. Further research is needed to better understand the changing hydrology in burned tundra, and the relationship between photooxidation and biological mineralization of DOC.
Ordinioha, Best; Brisibe, Seiyefa
2013-01-01
Background: The health hazards created by oil exploration and exploitation are covert and slow in action. They are not given the deserved attention in official documents in Nigeria, even as they can be major contributors to the disease burden in oil-bearing communities. This study is an interpretation of the data reported in several published studies on crude oil spills in the Niger delta region, Nigeria. Materials and Methods: A manual and Internet search was conducted to extract quantitative data on the quantity of crude oil spilled; the concentrations of the pollutants in surface water, ground water, ambient air and plant and animal tissue; and the direct impact on human health and household food security. Results: An average of 240,000 barrels of crude oil are spilled in the Niger delta every year, mainly due to unknown causes (31.85%), third party activity (20.74%), and mechanical failure (17.04%). The spills contaminated the surface water, ground water, ambient air, and crops with hydrocarbons, including known carcinogens like polycyclic aromatic hydrocarbon and benxo (a) pyrene, naturally occurring radioactive materials, and trace metals that were further bioaccumulated in some food crops. The oil spills could lead to a 60% reduction in household food security and were capable of reducing the ascorbic acid content of vegetables by as much as 36% and the crude protein content of cassava by 40%. These could result in a 24% increase in the prevalence of childhood malnutrition. Animal studies indicate that contact with Nigerian crude oil could be hemotoxic and hepatotoxic, and could cause infertility and cancer. Conclusions: The oil spills in the Niger delta region have acute and long-term effects on human health. Material relief and immediate and long-term medical care are recommended, irrespective of the cause of the spill, to ensure that the potential health effects of exposures to the spills are properly addressed. PMID:23661893
Ordinioha, Best; Brisibe, Seiyefa
2013-01-01
The health hazards created by oil exploration and exploitation are covert and slow in action. They are not given the deserved attention in official documents in Nigeria, even as they can be major contributors to the disease burden in oil-bearing communities. This study is an interpretation of the data reported in several published studies on crude oil spills in the Niger delta region, Nigeria. A manual and Internet search was conducted to extract quantitative data on the quantity of crude oil spilled; the concentrations of the pollutants in surface water, ground water, ambient air and plant and animal tissue; and the direct impact on human health and household food security. An average of 240,000 barrels of crude oil are spilled in the Niger delta every year, mainly due to unknown causes (31.85%), third party activity (20.74%), and mechanical failure (17.04%). The spills contaminated the surface water, ground water, ambient air, and crops with hydrocarbons, including known carcinogens like polycyclic aromatic hydrocarbon and benxo (a) pyrene, naturally occurring radioactive materials, and trace metals that were further bioaccumulated in some food crops. The oil spills could lead to a 60% reduction in household food security and were capable of reducing the ascorbic acid content of vegetables by as much as 36% and the crude protein content of cassava by 40%. These could result in a 24% increase in the prevalence of childhood malnutrition. Animal studies indicate that contact with Nigerian crude oil could be hemotoxic and hepatotoxic, and could cause infertility and cancer. The oil spills in the Niger delta region have acute and long-term effects on human health. Material relief and immediate and long-term medical care are recommended, irrespective of the cause of the spill, to ensure that the potential health effects of exposures to the spills are properly addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Na; Chen Shuo; Wang Hongtao
2008-10-15
A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO{sub 2} nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum andmore » increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO{sub 2} nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO{sub 2} nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated. - Graphical abstract: A tetracycline hydrochloride molecularly imprinted polymer modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. It showed improved response to simulated solar light and higher adsorption capability for tetracycline hydrochloride, thereby exhibiting increased PEC activity under simulated solar light irradiation. The apparent first-order rate constant was 1.2-fold of that on TiO{sub 2} nanotube array electrode.« less
Rimola, Albert; Ugliengo, Piero
2009-04-14
The reaction of glycine (Gly) with a strained (SiO)(2) four-membered ring defect (D2) at the surface of an interstellar silica grain dust has been studied at ONIOM2[B3LYP/6-31+G(d,p):MNDO] level within a cluster approach in the context of hypothetical reactions occurring in the interstellar medium. The D2 opens up exothermically for reaction with Gly (Delta(r)U(0)=-26.3 kcal mol(-1)) to give a surface mixed anhydride S(surf)-O-C([double bond, length as m-dash]O)-CH(2)NH(2) as a product. The reaction barriers, DeltaU( not equal)(0), are 0.1 and 10.4 kcal mol(-1) for reactive channels involving COOH and NH(2) as attacking groups, respectively. Calculations show the surface mixed anhydride to be rather stable under the action of interstellar processes, such as reactions with isolated H(2)O and NH(3) molecules or the exposure to cosmic rays and UV radiation. The hydrolysis of the surface mixed anhydride to release again Gly was modelled by microsolvation (from 1 to 4 H(2)O molecules) mimicking what could have happened to the interstellar dust after seeding the primordial ocean in the early Earth. Results for these calculations show that the reaction is exergonic and activated, the Delta(r)G(298) becoming more negative and the DeltaG( not equal)(298) being dramatically reduced as a function of increasing number of H(2)O molecules. The present results are relevant because they show that defects present at interstellar dust surfaces could have played a significant role in capturing, protecting and delivering essential prebiotic compounds on the early Earth.
Tsukaguchi, H; Matsubara, H; Taketani, S; Mori, Y; Seido, T; Inada, M
1995-01-01
Nephrogenic diabetes insipidus (NDI) is most often an X-linked disorder in which urine is not concentrated due to renal resistance to arginine vasopressin. We recently identified four vasopressin type 2 receptor gene mutations in unrelated X-linked NDI families, including R143P, delta V278, R202C, and 804insG. All these mutations reduced ligand binding activity to < 10% of the normal without affecting mRNA accumulation. To elucidate whether the receptors are expressed on the cell surface, we analyzed biosynthesis and localization of tagged or untagged receptors stably expressed in Chinese hamster ovary (CHO) cells, using two antibodies directed against distinct termini. Whole-cell and surface labeling studies revealed that the R202C clone had both surface-localized (50-55 kD) and intracellular proteins (40 and 75 kD), similar to the wild-type AVPR2 clone, whereas the R143P and delta V278 clones lacked the surface receptors, despite relatively increased intracellular components. The 804insG mutant cell produced no proteins despite an adequate mRNA level. Immunofluorescence staining confirmed that the R202C mutant reaches the cell surface, whereas the R143P and delta V278 mutants are retained within the cytoplasmic compartment. Thus, R202C, R143P/delta V278, and 804insG result in three distinct phenotypes, that is, a simple binding impairment at the cell surface, blocked intracellular transport, and ineffective biosynthesis or/and accelerated degradation of the receptor, respectively, and therefore are responsible for NDI. This phenotypic classification will help understanding of molecular pathophysiology of this disorder. Images PMID:7560098
Gentamicin modified chitosan film with improved antibacterial property and cell biocompatibility.
Liu, Yang; Ji, Peihong; Lv, Huilin; Qin, Yong; Deng, Linhong
2017-05-01
Gentamicin modified chitosan film (CS-GT) was produced using a three-step procedure comprising: (i) the chitosan solution was air-dried to form a chitosan (CS) film, (ii) using citric acid to generate the amide and carboxyl groups on the surface of CS, (iii) the CS with surface carboxyl groups was modified by grafting of gentamicin. After modification, this CS-GT film has excellent hydrophilicity and biocompatibility. It is very evident that the gentamicin grafting treatment significantly improves the antibacterial properties of the CS film. Our preliminary results suggest that this novel gentamicin modified chitosan film, which can be prepared in large quantities and at low cost, should have potential application in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Theoretical characterization of the potential energy surface for NH + NO
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1992-01-01
The potential energy surface (PES) for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculations to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction (CCI) calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics. Addition of NH to NO on a (2)A' surface, which correlated with N2 + OH or H + N2O products, involves barriers of 3.2 kcal/mol (trans) and 6.3 kcal/mol (cis). Experimental evidence for these barriers is found in earlier works. The (2)A' surface has no barrier to addition, but does not correlate with products. Surface crossings between the barrierless (2)A' surface and the (2)A' surface may be important. Production of N2 + OH products is predicted to occur via a planar saddle point of (2)A' symmetry. This is in accord with the preferential formation of II(A') lambda doublet levels of OH in earlier experiments. Addition of NH (1)delta to NO is found to occur on an excited state surface and is predicted to lead to N2O product as observed in earlier works.
Delta-Doping at Wafer Level for High Throughput, High Yield Fabrication of Silicon Imaging Arrays
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor); Nikzad, Shoulch (Inventor); Jones, Todd J. (Inventor); Greer, Frank (Inventor); Carver, Alexander G. (Inventor)
2014-01-01
Systems and methods for producing high quantum efficiency silicon devices. A silicon MBE has a preparation chamber that provides for cleaning silicon surfaces using an oxygen plasma to remove impurities and a gaseous (dry) NH3 + NF3 room temperature oxide removal process that leaves the silicon surface hydrogen terminated. Silicon wafers up to 8 inches in diameter have devices that can be fabricated using the cleaning procedures and MBE processing, including delta doping.
Coastline change and marine geo-hazards in the Yellow River Delta (China)
NASA Astrophysics Data System (ADS)
Zhou, L.; Liu, J.; Liu, X.
2003-04-01
COASTLINE CHANGE AND MARINE GEO-HAZARDS IN THE YELLOW RIVER DELTA (CHINA) Zhou Liangyong(1,2), Liu Jian(1,3), Liu Xiqing(1) (1)Qingdao Institute of Marine Geology,(2)Ocean University of China,(3)Research Centre for Coastal Geology, CGS qdzliangyong@cgs.gov.cn/Fax: +86-532-5720553 Satellite remote sensing, bathymetry and high-resolution seismic data have been used to examine the coastline change during the period from 1976 to 2001 and the offshore marine geo-hazards in the modern Yellow River Delta. Trends in the temporal sequence of the eight coastlines derived from Landsat images were used in the definition of erosional classes of the coastline. Four classes were distinguished, including rapid erosion (>100 m/yr), moderate erosion (20-100 m/yr), no detectable erosion (-1 - 20 m/yr), and accretion (-200--1 m/yr). We revealed the subtle variations in sea floor morphology and sediment geometries using high-resolution acoustic survey. Many kinds of geo-hazards were identified in the active subaqueous delta lobe and abandoned delta lobes, such as seabed erosions, gas-charged sediments, listric faults, synsedimentary rises, incised palaeo-valleys, infilled gullies, diapirs, active slope failures and sediment collapses. The resultant map of geo-envrionment and geo-hazards presents the coastline change and distribution of geo-hazards mentioned above in the Yellow River Delta. The gas-charged sediment distributes mainly in the abandoned delta lobes. The synsedimentary rise outside of the modern river mouth is a new evidence for the seabed mass-movement which modifies the progradational subaquaeous slopes of modern Yellow River Delta.
NASA Astrophysics Data System (ADS)
Hurlbut, K.; Estep, J. D.; Shaw, J.; Edmonds, D. A.
2016-12-01
Estimating river delta growth is essential for determining coastal sustainability. We use a new method to quantify the recent accretion and composition of the Wax Lake Delta, a rapidly prograding delta in Louisiana. The method identifies the area of significant (subaqueous) delta aggradation from delta flow patterns, which are visible in aerial imagery through biogenic streaklines that naturally occur on the water surface. Comparison of bathymetric maps and streaklines shows that channel tips and the associated seaward extent of significant delta deposition occur where the divergence of flow direction equals 0 (+/- 400 m). Delta volumes calculated using this method, the 1974 pre-delta shoreline, and a measured average delta thickness of 1.6 m provide an estimate of the delta volume which we found to increase by 2.0*106 m3/yr between 1992 and 2014. We then compared this rate to the total volume of silt and sand discharged to the WLD using USGS measurements. Over the same period, the WLD received 1.4*106 m3/yr of sand and 9.0*106 m3/yr of silt and clay. Assuming all sand supplied to the delta is sequestered, volume comparisons show that the sand fraction of the WLD is between 18-38%, lower than previous estimates. Further, between 44-69% of the total suspended silt and clay bypasses the delta. These composition estimates can be used to predict land growth from engineered diversions, and the method can be used to monitor the resulting delta growth.
NASA Technical Reports Server (NTRS)
Rau, G. H.; Takahashi, T.; Des Marais, D. J.; Repeta, D. J.; Martin, J. H.
1992-01-01
Consistent with the hypothesis that plankton delta C-14 and (CO2(aq)) are inversely related, increases in both sinking and suspended particulate organic matter (POM) delta C-13 detected by the Joint Global Ocean Flux Study (JGOFS) were highly negatively correlated with mixed-layer (CO2(aq)). A model of plant delta C-13 by Farquhar et al. (1982) is adapted to show that under a constant phytoplankton demand for CO2 an inverse nonlinear suspended POM delta C-13 response to ambient (CO2(aq)) is expected. Differences between predicted and observed suspended POM delta C-13 vs. (CO2(aq)) trends and among observed relationships can be reconciled if biological CO2 demand is allowed to vary.
Liquefaction potential of Nile delta, Egypt
NASA Astrophysics Data System (ADS)
Fergany, Elsayed; Omar, Khaled
2017-06-01
Understanding how sedimentary basins respond to seismic-wave energy generated by earthquake events is a significant concern for seismic-hazard estimation and risk analysis. The main goal of this study is assessing the vulnerability index, Kg, as an indicator for liquefaction potential sites in the Nile delta basin based on the microtremor measurements. Horizontal to Vertical spectral ratio analyses (HVSR) of ambient noise data, which was conducted in 2006 at 120 sites covering the Nile delta from south to north were reprocessed using Geopsy software. HVSR factors of amplification, A, and fundamental frequency, F, were calculated and Kg was estimated for each measurement. The Kg value varies widely from south toward north delta and the potential liquefaction places were estimated. The higher vulnerability indices are associated with sites located in southern part of the Nile delta and close to the branches of Nile River. The HVSR factors were correlated with geologic setting of the Nile delta and show good correlations with the sediment thickness and subsurface stratigraphic boundaries. However, we note that sites located in areas that have greatest percentage of sand also yielded relatively high Kg values with respect to sites in areas where clay is abundant. We concluded that any earthquake with ground acceleration more than 50 gal at hard rock can cause a perceived deformation of sandy sediments and liquefaction can take place in the weak zones of Kg ≥ 20. The worst potential liquefaction zones (Kg > 30) are frequently joined to the Damietta and Rosetta Nile River branches and south Delta where relatively coarser sand exists. The HVSR technique is a very sensitive tool for lithological stratigraphy variations in two dimensions and varying liquefaction susceptibility.
Migration in Deltas: An Integrated Analysis
NASA Astrophysics Data System (ADS)
Nicholls, Robert J.; Hutton, Craig W.; Lazar, Attila; Adger, W. Neil; Allan, Andrew; Arto, Inaki; Vincent, Katharine; Rahman, Munsur; Salehin, Mashfiqus; Sugata, Hazra; Ghosh, Tuhin; Codjoe, Sam; Appeaning-Addo, Kwasi
2017-04-01
Deltas and low-lying coastal regions have long been perceived as vulnerable to global sea-level rise, with the potential for mass displacement of exposed populations. The assumption of mass displacement of populations in deltas requires a comprehensive reassessment in the light of present and future migration in deltas, including the potential role of adaptation to influence these decisions. At present, deltas are subject to multiple drivers of environmental change and often have high population densities as they are accessible and productive ecosystems. Climate change, catchment management, subsidence and land cover change drive environmental change across all deltas. Populations in deltas are also highly mobile, with significant urbanization trends and the growth of large cities and mega-cities within or adjacent to deltas across Asia and Africa. Such migration is driven primarily by economic opportunity, yet environmental change in general, and climate change in particular, are likely to play an increasing direct and indirect role in future migration trends. The policy challenges centre on the role of migration within regional adaptation strategies to climate change; the protection of vulnerable populations; and the future of urban settlements within deltas. This paper reviews current knowledge on migration and adaptation to environmental change to discern specific issues pertinent to delta regions. It develops a new integrated methodology to assess present and future migration in deltas using the Volta delta in Ghana, Mahanadi delta in India and Ganges-Brahmaputra-Meghna delta across India and Bangladesh. The integrated method focuses on: biophysical changes and spatial distribution of vulnerability; demographic changes and migration decision-making using multiple methods and data; macro-economic trends and scenarios in the deltas; and the policies and governance structures that constrain and enable adaptation. The analysis is facilitated by a range of consistent scenarios from global to delta scales, developed in consultation with major stakeholders. Initial results suggest that migration decision-making strongly interacts with diverse measures for adaptation of land, water and agricultural management. A key normative challenge is to identify the parameters of successful migration and adaptation across delta regions, to inform policy analysis and formulation. Key words: Deltas, sea-level rise, migration and adaptation Acknowledgement: DECCMA (Deltas, Vulnerability & Climate Change: Migration & Adaptation) project is part of the Collaborative ADAPTATION Research Initiative in Africa and Asia (CARIAA), with financial support from the UK Government's Department for International Development (DFID) and the International Development Research Centre (IDRC), Canada.
Thermodynamic Approach to Boron Nitride Nanotube Solubility and Dispersion
NASA Technical Reports Server (NTRS)
Tiano, A. L.; Gibbons, L.; Tsui, M.; Applin, S. I.; Silva, R.; Park, C.; Fay, C. C.
2016-01-01
Inadequate dispersion of nanomaterials is a critical issue that significantly limits the potential properties of nanocomposites and when overcome, will enable further enhancement of material properties. The most common methods used to improve dispersion include surface functionalization, surfactants, polymer wrapping, and sonication. Although these approaches have proven effective, they often achieve dispersion by altering the surface or structure of the nanomaterial and ultimately, their intrinsic properties. Co-solvents are commonly utilized in the polymer, paint, and art conservation industries to selectively dissolve materials. These co-solvents are utilized based on thermodynamic interaction parameters and are chosen so that the original materials are not affected. The same concept was applied to enhance the dispersion of boron nitride nanotubes (BNNTs) to facilitate the fabrication of BNNT nanocomposites. Of the solvents tested, dimethylacetamide (DMAc) exhibited the most stable, uniform dispersion of BNNTs, followed by N,N-dimethylformamide (DMF), acetone, and N-methyl-2-pyrrolidone (NMP). Utilizing the known Hansen solubility parameters of these solvents in comparison to the BNNT dispersion state, a region of good solubility was proposed. This solubility region was used to identify co-solvent systems that led to improved BNNT dispersion in poor solvents such as toluene, hexane, and ethanol. Incorporating the data from the co-solvent studies further refined the proposed solubility region. From this region, the Hansen solubility parameters for BNNTs are thought to lie at the midpoint of the solubility sphere: 16.8, 10.7, and 9.0 MPa(exp 1/2) for delta d, delta p, and delta h, respectively, with a calculated Hildebrand parameter of 21.8 MPa)exp 1/2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Imran; Olimov, Kh. K., E-mail: olimov@comsats.edu.pk
The reconstructed experimental transverse momentum (p{sub t}) distributions of {Delta}{sup 0}(1232) resonances produced in p{sup 12}C and d{sup 12}C collisions at 4.2 A GeV/c and the corresponding spectra calculated using Modified FRITIOF model were analyzed in the framework of Hagedorn Thermodynamic Model. The spectral temperatures of {Delta}{sup 0}(1232) resonances were extracted from fitting their p{sub t} spectra with one-temperature Hagedorn function. The extracted spectral temperatures of {Delta}{sup 0}(1232) were compared with the corresponding temperatures of {pi}{sup -} mesons in p{sup 12}C and d{sup 12}C collisions at 4.2 A GeV/c obtained similarly from fitting the p{sub t} spectra of {pi}{sup -}more » by one-temperature Hagedorn function. The spectral temperatures of {Delta}{sup 0}(1232) resonances agreed within uncertainties with the corresponding temperatures of {pi}{sup -} mesons produced in p{sup 12}C and d{sup 12}C collisions at 4.2 A GeV/c.« less
NASA Technical Reports Server (NTRS)
Zirin, Harold; Liggett, Margaret A.
1987-01-01
The development of delta spots and the great flares they produce are reviewed based on 18 years of observations. Delta groups are found to develop in three ways: (1) by the eruption of a single complex active region formed below the surface; (2) by the eruption of large satellite spots near a large older spot; and (3) by the collision of spots of opposite polarity from different dipoles. It is shown that the present sample of 21 delta spots never separate once they lock together, and that the driving force for the shear is spot motion. Indicators for the prediction of the occurrence of great flares are identified.
NASA Technical Reports Server (NTRS)
Weber, L. A.
1977-01-01
The results of an experimental program are presented in the form of PVT data in the temperature range 58 to 300 K at pressures up to 800 bar. Tables of the derived thermodynamic properties on isobars to 1000 bar are given, including density, internal energy, enthalpy, entropy, specific heats at constant volume and constant pressure, velocity of sound, and the surface derivatives (delta P/delta T) sub rho and (delta P/delta Rho) sub T. Auxiliary tables in engineering units are also given. The accuracy of the data is discussed and comparisons are made with previous data.
Size and XAD fractionations of trihalomethane precursors from soils.
Chow, Alex T; Guo, Fengmao; Gao, Suduan; Breuer, Richard S
2006-03-01
Soil organic matter is an important source of allochthonous dissolved organic matter inputs to the Sacramento-San Joaquin Delta waterways, which is a drinking water source for 22 million people in California, USA. Knowledge of trihalomethane (THM) formation potential of soil-derived organic carbon is important for developing effective strategies for organic carbon removal in drinking water treatment. In this study, soil organic carbon was extracted with electrolytes (deionized H2O and Na- or Ca-based electrolytes) of electrical conductivity bracketing those found in Delta leaching and runoff conditions. The extracts were physically and chemically separated into different fractions: colloidal organic carbon (0.45-0.1 microm), fine colloidal organic carbon (0.1-0.025 microm), and dissolved organic carbon (DOC) (<0.025 microm); hydrophobic acid (HPOA), transphilic acid, and hydrophilic acid. Two representative Delta soils, Rindge Muck (a peat soil) and Scribner Clay Loam (a mineral soil) were examined. Results showed that less than 2% of soil organic carbon was electrolyte-extractable and heterogeneous organic fractions with distinct THM reactivity existed. Regardless of soil and electrolytes, DOC and HPOA fractions were dominant in terms of total concentration and THMFP. The amounts of extractable organic carbon and THMFP were dependent on the cation and to a lesser extent on electrical conductivity of electrolytes. Along with our previous study on temperature and moisture effects on DOC production, we propose a conceptual model to describe the impacts of agricultural practices on DOC production in the Delta. DOC is mainly produced in the surface peat soils during the summer and is immobilized by accumulated salt in the soils. DOC is leached from soils to drainage ditches and finally to the Delta channels during winter salt leaching practices.
A global deltas typology of environmental stress and its relation to terrestrial hydrology
NASA Astrophysics Data System (ADS)
Tessler, Z. D.; Vorosmarty, C. J.; McDonald, K. C.; Schroeder, R.; Grossberg, M.; Gladkova, I.; Aizenman, H.
2013-12-01
River delta systems around the world are under varying degrees of environmental stress stemming from a variety of human impacts, both from upstream basin based activities and local impacts on the deltas themselves, as well as sea level rise. These stresses are known to affect rates of relative sea level rise by disrupting the delivery or deposition of sediment on the delta. We present a global database of several of these stresses, and investigate patterns of stress across delta systems. Several methods of aggregating the environmental stressors into an index score are also investigated. A statistical clustering analysis, which we refer to as a "global delta fingerprinting system", across the environmental stresses identifies systems under similar states of threat. Several deltas, including the Nile, are in unique clusters, while regional patterns are evident among deltas in Southeast Asia. These patterns are compared with observed surface inundation derived from SAR, NDVI from MODIS, river discharge estimates from the WBMplus numerical model, and ocean wave activity from WAVEWATCH III. Delta inundation sensitivity to river and coastal forcings are observed to vary with environmental stress and social indicators including population density and GDP.
Improved sensitivity of a graphene FET biosensor using porphyrin linkers
NASA Astrophysics Data System (ADS)
Kawata, Takuya; Ono, Takao; Kanai, Yasushi; Ohno, Yasuhide; Maehashi, Kenzo; Inoue, Koichi; Matsumoto, Kazuhiko
2018-06-01
Graphene FET (G-FET) biosensors have considerable potential due to the superior characteristics of graphene. Realizing this potential requires judicious choice of the linker molecule connecting the target-specific receptor molecule to the graphene surface, yet there are few reports comparing linker molecules for G-FET biosensors. In this study, tetrakis(4-carboxyphenyl)porphyrin (TCPP) was used as a linker for surface modification of a G-FET and the properties of the device were compared to those of a G-FET device modified with the conventional linker 1-pyrenebutanoic acid succinimidyl ester (PBASE). TCPP modification resulted in a higher density of receptor immunoglobulin E (IgE) aptamer molecules on the G-FET. The detection limit of the target IgE was enhanced from 13 nM for the PBASE-modified G-FET to 2.2 nM for the TCPP-modified G-FET, suggesting that the TCPP linker is a powerful candidate for G-FET modification.
NASA Astrophysics Data System (ADS)
Zhang, X.; Bianchi, T. S.; Cui, X.; Rosenheim, B. E.; Ping, C. L.; Kanevskiy, M. Z.; Hanna, A. M.; Allison, M. A.
2016-12-01
As temperatures in the Arctic rise abnormally fast, permafrost in the region is vulnerable to extensive thawing. This could release previously frozen organic carbon (OC) into the contemporary carbon cycle, giving a positive feedback on global warming. Recent research has found the presence of particulate permafrost in rivers, deltas, and continental shelves in the Arctic, but little direct evidence exists on the mechanism of transportation of previously frozen soils from watershed to the coast. The Colville River in northern Alaska is the largest North American Arctic River with a continuous permafrost within its watershed. Previous work has found evidence for the deposition of previously frozen soils in the Colville River delta (Schreiner et al., 2014). Here, we compared the bulk organic carbon thermal properties, ages of soils and river and delta sediments from the Colville River drainage system using 14C Ramped Pyrolysis and chemical biomarkers. Our data show that deep permafrost soils as well as river and delta sediments had similar pyrograms and biomarker signatures, reflecting transport of soils from watershed to the delta. Surface soil had pyrograms indicative of less stable (more biodegradable) OC than deeper soil horizons. Similarity in pyrograms of deep soils and river sediment indicated the limited contribution of surface soils to riverine particulate OC inputs. Sediments in the delta showed inputs of yedoma (ice-rich syngenetic permafrost with large ice wedges) from the watershed sources (e.g., river bank erosion) in addition to peat inputs, that were largely from coastal erosion.
Butterworth, Michael B; Edinger, Robert S; Johnson, John P; Frizzell, Raymond A
2005-01-01
Acute hormonal regulation of the epithelial sodium channel (ENaC) in tight epithelia increases transcellular Na(+) transport via trafficking of intracellular channels to the apical surface. The fate of the channels removed from the apical surface following agonist washout is less clear. By repetitively stimulating polarized mouse cortical collecting duct (mCCD, (MPK)CCD(14)) epithelia, we evaluated the hypothesis that ENaC recycles through an intracellular pool to be available for reinsertion into the apical membrane. Short circuit current (I(SC)), membrane capacitance (C(T)), and conductance (G(T)) were recorded from mCCD epithelia mounted in modified Ussing chambers. Surface biotinylation of ENaC demonstrated an increase in channel number in the apical membrane following cAMP stimulation. This increase was accompanied by a 83 +/- 6% (n = 31) increase in I(SC) and a 15.3 +/- 1.5% (n = 15) increase in C(T). Selective membrane permeabilization demonstrated that the C(T) increase was due to an increase in apical membrane capacitance. I(SC) and C(T) declined to basal levels on stimulus washout. Repetitive cAMP stimulation and washout (approximately 1 h each cycle) resulted in response fatigue; DeltaI(SC) decreased approximately 10% per stimulation-recovery cycle. When channel production was blocked by cycloheximide, DeltaI(SC) decreased approximately 15% per stimulation cycle, indicating that newly synthesized ENaC contributed a relatively small fraction of the channels mobilized to the apical membrane. Selective block of surface ENaC by benzamil demonstrated that channels inserted from a subapical pool made up >90% of the stimulated I(SC), and that on restimulation a large proportion of channels retrieved from the apical surface were reinserted into the apical membrane. Channel recycling was disrupted by brefeldin A, which inhibited ENaC exocytosis, by chloroquine, which inhibited ENaC endocytosis and recycling, and by latrunculin A, which blocked ENaC exocytosis. A compartment model featuring channel populations in the apical membrane and intracellular recycling pool provided an adequate kinetic description of the I(SC) responses to repetitive stimulation. The model supports the concept of ENaC recycling in response to repetitive cAMP stimulation.
Dose properties of a laser accelerated electron beam and prospects for clinical application.
Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D; Chiu, C; Fomytskyi, M; Raischel, F; Downer, M; Tajima, T
2004-07-01
Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to document the necessary improvements to make radiotherapy application for LWFA viable. This paper first qualitatively reviews the fundamental principles of LWFA and describes a potential design for a 30 cm accelerator chamber containing a gas target. Electron beam energy spectra, upon which our dose calculations are based, were obtained from a uniform energy distribution and from two-dimensional particle-in-cell (2D PIC) simulations. The 2D PIC simulation parameters are consistent with those reported by a previous LWFA experiment. According to the 2D PIC simulations, only approximately 0.3% of the LWFA electrons are emitted with an energy greater than 1 MeV. We studied only the high-energy electrons to determine their potential for clinical electron beams of central energy from 9 to 21 MeV. Each electron beam was broadened and flattened by designing a dual scattering foil system to produce a uniform beam (103%>off-axis ratio>95%) over a 25 x 25 cm2 field. An energy window (deltaE) ranging from 0.5 to 6.5 MeV was selected to study central-axis depth dose, beam flatness, and dose rate. Dose was calculated in water at a 100 cm source-to-surface distance using the EGS/BEAM Monte Carlo algorithm. Calculations showed that the beam flatness was fairly insensitive to deltaE. However, since the falloff of the depth-dose curve (R10-R90) and the dose rate both increase with deltaE, a tradeoff between minimizing (R10-R90) and maximizing dose rate is implied. If deltaE is constrained so that R10-R90 is within 0.5 cm of its value for a monoenergetic beam, the maximum practical dose rate based on 2D PIC is approximately 0.1 Gy min(-1) for a 9 MeV beam and 0.03 Gy min(-1) for a 15 MeV beam. It was concluded that current LWFA technology should allow a table-top terawatt (T3) laser to produce therapeutic electron beams that have acceptable flatness, penetration, and falloff of depth dose; however, the dose rate is still 1%-3% of that which would be acceptable, especially for higher-energy electron beams. Further progress in laser technology, e.g., increasing the pulse repetition rate or number of high energy electrons generated per pulse, is necessary to give dose rates acceptable for electron beams. Future measurements confirming dosimetric calculations are required to substantiate our results. In addition to achieving adequate dose rate, significant engineering developments are needed for this technology to compete with current electron acceleration technology. Also, the functional benefits of LWFA electron beams require further study and evaluation.
Borland, Michael G; Foreman, Jennifer E; Girroir, Elizabeth E; Zolfaghari, Reza; Sharma, Arun K; Amin, Shantu; Gonzalez, Frank J; Ross, A Catharine; Peters, Jeffrey M
2008-11-01
Although there is strong evidence that ligand activation of peroxisome proliferator-activated receptor (PPAR)-beta/delta induces terminal differentiation and attenuates cell growth, some studies suggest that PPARbeta/delta actually enhances cell proliferation. For example, it was suggested recently that retinoic acid (RA) is a ligand for PPARbeta/delta and potentiates cell proliferation by activating PPARbeta/delta. The present study examined the effect of ligand activation of PPARbeta/delta on cell proliferation, cell cycle kinetics, and target gene expression in human HaCaT keratinocytes using two highly specific PPARbeta/delta ligands [4-[[[2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methylphenoxy acetic acid (GW0742) and 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-thiazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (GW501516)] and RA. Both PPARbeta/delta ligands and RA inhibited cell proliferation of HaCaT keratinocytes. GW0742 and GW501516 increased expression of known PPARbeta/delta target genes, whereas RA did not; RA increased the expression of known retinoic acid receptor/retinoid X receptor target genes, whereas GW0742 did not affect these genes. GW0742, GW501516, and RA did not modulate the expression of 3-phosphoinositide-dependent protein kinase or alter protein kinase B phosphorylation. GW0742 and RA increased annexin V staining as quantitatively determined by flow cytometry. The effects of GW0742 and RA were also examined in wild-type and PPARbeta/delta-null primary mouse keratinocytes to determine the specific role of PPARbeta/delta in modulating cell growth. Although inhibition of keratinocyte proliferation by GW0742 was PPARbeta/delta-dependent, inhibition of cell proliferation by RA occurred in both genotypes. Results from these studies demonstrate that ligand activation of PPARbeta/delta inhibits keratinocyte proliferation through PPARbeta/delta-dependent mechanisms. In contrast, the observed inhibition of cell proliferation in mouse and human keratinocytes by RA is mediated by PPARbeta/delta-independent mechanisms and is inconsistent with the notion that RA potentiates cell proliferation by activating PPARbeta/delta.
NASA Astrophysics Data System (ADS)
Nehyba, Slavomír
2018-02-01
Two coarse-grained Gilbert-type deltas in the Lower Badenian deposits along the southern margin of the Western Carpathian Foredeep (peripheral foreland basin) were newly interpreted. Facies characterizing a range of depositional processes are assigned to four facies associations — topset, foreset, bottomset and offshore marine pelagic deposits. The evidence of Gilbert deltas within open marine deposits reflects the formation of a basin with relatively steep margins connected with a relative sea level fall, erosion and incision. Formation, progradation and aggradation of the thick coarse-grained Gilbert delta piles generally indicate a dramatic increase of sediment supply from the hinterland, followed by both relatively continuous sediment delivery and an increase in accommodation space. Deltaic deposition is terminated by relatively rapid and extended drowning and is explained as a transgressive event. The lower Gilbert delta was significantly larger, more areally extended and reveals a more complicated stratigraphic architecture than the upper one. Its basal surface represents a sequence boundary and occurs around the Karpatian/Badenian stratigraphic limit. Two coeval deltaic branches were recognized in the lower delta with partly different stratigraphic arrangements. This different stratigraphic architecture is mostly explained by variations in the sediment delivery and /or predisposed paleotopography and paleobathymetry of the basin floor. The upper delta was recognized only in a restricted area. Its basal surface represents a sequence boundary probably reflecting a higher order cycle of a relative sea level rise and fall within the Lower Badenian. Evidence of two laterally and stratigraphically separated coarse-grained Gilbert deltas indicates two regional/basin wide transgressive/regressive cycles, but not necessarily of the same order. Provenance analysis reveals similar sources of both deltas. Several partial source areas were identified (Mesozoic carbonates of the Northern Calcareous Alps and the Western Carpathians, crystalline rocks of the eastern margin of the Bohemian Massif, older sedimentary infill of the Carpathian Foredeep and/or the North Alpine Foreland Basin, sedimentary rocks of the Western Carpathian/Alpine Flysch Zone).
NASA Astrophysics Data System (ADS)
Spampinato, Valentina; Parracino, Mariaantonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo
2016-02-01
In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.
Spampinato, Valentina; Parracino, Maria Antonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo
2016-01-01
In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behavior of the glucose-modified particles in the presence of the maltose binding protein. PMID:26973830
The leading-edge vortex of swift wing-shaped delta wings
NASA Astrophysics Data System (ADS)
Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria
2017-08-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.
The leading-edge vortex of swift wing-shaped delta wings
Muir, Rowan Eveline; Arredondo-Galeana, Abel
2017-01-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing. PMID:28878968
The leading-edge vortex of swift wing-shaped delta wings.
Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria
2017-08-01
Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.
OSL dating of fine-grained quartz from Holocene Yangtze delta sediments
NASA Astrophysics Data System (ADS)
Sugisaki, S.; Buylaert, J. P.; Murray, A. S.; Tada, R.; Zheng, H.; Ke, W.; Saito, K.; Irino, T.; Chao, L.; Shiyi, L.; Uchida, M.
2014-12-01
Flood events in the Yangtze River are associated with variation in East Asian Summer Monsoon (EASM) precipitation. Understanding the frequency and scale of the EASM precipitation during the Holocene is a key to understanding the mechanism and cyclicity of floods and droughts. Because about 70% of the annual discharge occurs during the flood season, the Yangtze delta sediments provide a good archive of EASM precipitation. In this study, we investigate the possibility of applying OSL dating to establishing high-resolution chronologies for the Yangtze delta sediment cores YD13-1H and G3. The objectives of this study are: (1) test whether fine grained quartz in present day suspended particle matter (SPM) is fully bleached or reset before deposition, (2) where possible, test quartz fine- and coarse-grain OSL dating against radiocarbon shell ages, (3) interpret the sediment transport processes through the differential bleaching of quartz and feldspar OSL signals. We show that the SPM collected from the surface water column of the Yangtze River during the flood season is well-bleached (offset ~60 years). Fine-grained pro-delta sediments are thus potentially a good dosimeter for OSL dating. OSL ages sediment cores indicate a pronounced change in sedimentation rate at ~6 ka and ~2ka. These events are consistent with what is known of the evolution of the Yangtze catchment and delta. The delta began to build at ~6 ka (Zhao et al., 1979), and human activities increased significantly in the catchment at ~2ka (Chen et al., 1985). It is however surprising that the entire top 9 m of sediment only records these two events. The question of whether significant deposition was limited to 2 ka and 6 ka, or whether the record has been disturbed by erosion/reworking remains. These issues are discussed in terms of the reliability of the quartz OSL ages, the degree of bleaching by comparison with polymineral OSL signals, and the relationship of the OSL ages to the sedimentary record.
A solar dynamo surface wave at the interface between convection and nonuniform rotation
NASA Technical Reports Server (NTRS)
Parker, E. N.
1993-01-01
A simple dynamo surface wave is presented to illustrate the basic principles of a dynamo operating in the thin layer of shear and suppressed eddy diffusion beneath the cyclonic convection in the convection zone of the sun. It is shown that the restriction of the shear delta(Omega)/delta(r) to a region below the convective zone provides the basic mode with a greatly reduced turbulent diffusion coefficient in the region of strong azimuthal field. The dynamo takes on the character of a surface wave tied to the lower surface z = 0 of the convective zone. There is a substantial body of evidence suggesting a fibril state for the principal flux bundles beneath the surface of the sun, with fundamental implications for the solar dynamo.
Laser Surface Modification of H13 Die Steel using Different Laser Spot Sizes
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Naher, S.; Brabazon, D.
2011-05-01
This paper presents a laser surface modification process of AISI H13 tool steel using three sizes of laser spot with an aim to achieve reduced grain size and surface roughness. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). Metallographic study and image analysis were done to measure the grain size and the modified surface roughness was measured using two-dimensional surface profilometer. From metallographic study, the smallest grain sizes measured by laser modified surface were between 0.51 μm and 2.54 μm. The minimum surface roughness, Ra, recorded was 3.0 μm. This surface roughness of the modified die steel is similar to the surface quality of cast products. The grain size correlation with hardness followed the findings correlate with Hall-Petch relationship. The potential found for increase in surface hardness represents an important method to sustain tooling life.
AmeriFlux US-Bn3 Bonanza Creek, 1999 Burn site near Delta Junction
Randerson, James [University of California, Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Bn3 Bonanza Creek, 1999 Burn site near Delta Junction. Site Description - The Delta Junction 1999 Burn site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. The Donnelly Flats fire burned ~7,600 ha of black spruce (Picea mariana) during June 1999. The boles of the black spruce remained standing 3 years after the fire. 70% of the surface was not covered by vascular plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McParland, L.C.; Collinson, M.E.; Scott, A.C.
We report the effects of charring on the ferns Osmunda, Pteridium, and Matteucia with coniferous wood (Sequoia) for comparison. Like charred wood, charred ferns shrink, become black and brittle with a silky sheen, and retain three-dimensional cellular structure. Ferns yield recognizable charcoal (up to 800{sup o}C) that could potentially survive in the fossil record enabling reconstruction of ancient fire-prone vegetation containing ferns. Charred fossils of herbaceous ferns would indicate surface fires. Like charred wood, cell-wall layers of charred ferns homogenize, and their reflectance values increase with rising temperature. Charcoalified fragments of thick-walled cells from conifer wood or fern tissues aremore » indistinguishable and so cannot be used to infer the nature of source vegetation. Charred conifer wood and charred fern tissues show a relationship between mean random reflectance and temperature of formation and can be used to determine minimum ancient fire temperatures. Charred fern tissues consistently have significantly more depleted {delta}{sup 13}C values ({le} 4 parts per thousand) than charred wood. Therefore, if an analysis of {delta} {sup 13}C through time included fern charcoal among a succession of wood charcoals, any related shifts in {delta} {sup 13}C could be misinterpreted as atmospheric changes or misused as isotope stratigraphic markers. Thus, charcoals of comparable botanical origin and temperatures of formation should be used in order to avoid misinterpretations of shifts in {delta}{sup 13}C values.« less
Millimeter-wave surface resistance of laser-ablated YBa2Cu3O(7-delta) superconducting films
NASA Technical Reports Server (NTRS)
Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Warner, J. D.
1990-01-01
The millimeter-wave surface resistance of YBa2Cu3O(7-delta) superconducting films was measured in a gold-plated copper host cavity at 58.6 GHz between 25 and 300 K. High-quality laser-ablated films of 1.2-micron thickness were deposited on SrTiO3 and LaGaO3 substrates. Their transition temperatures were 90.0 and 88.9 K, with a surface resistance at 70 K of 82 and 116 milliohms, respectively. These values are better than the values for the gold-plated cavity at the same temperature and frequency.
The Influence of Alumina Properties on its Dissolution in Smelting Electrolyte
NASA Astrophysics Data System (ADS)
Bagshaw, A. N.; Welch, B. J.
The dissolution of a wide range of commercially produced aluminas in modified cryolite bath was studied on a laboratory scale. Most of the aluminas were products of conventional refineries and smelter dry scrubbing systems; a few were produced in laboratory and pilot calciners, enabling greater flexibility in the calcination process and the final properties. The mode of alumina feeding and the size of addition approximated to the point feeder situation. Alpha-alumina content, B.E.T. surface area and median particle size had little impact on dissolution behaviour. The volatiles content, expressed as L.O.I., the morphology of the original hydrate and the mode of calcination had the most influence. Discrete intermediate oxide phases were identified in all samples; delta-alumina content impacted most on dissolution. The flow properties of an alumina affected its overall dissolution.
F-16XL ship #1 outboard rake #7
NASA Technical Reports Server (NTRS)
1996-01-01
This photo shows the #7 outboard rake on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.
Valenzuela-Calahorro, C; Cuerda-Correa, E; Navarrete-Guijosa, A; Gonzalez-Pradas, E
2002-06-01
The knowledge of sorption processes of nonelectrolytes in solution by solid adsorbents implies the study of kinetics, equilibrium, and thermodynamic functions. However, quite frequently the equilibrium isotherms are studied by comparing them with those corresponding to the Giles et al. classification (1); these isotherms are also analyzed by fitting them to equations based on thermodynamic or kinetic criteria, and even to empirical equations. Nevertheless, information obtained is more coherent and satisfactory if the adsorption isotherms are fitted by using an equation describing the equilibrium isotherms according to the kinetic laws. These mentioned laws would determine each one of the unitary processes (one or more) which condition the global process. In this paper, an adsorption process of prednisolone in solution by six carbonaceous materials is explained according to a previously proposed single model, which allows to establish a kinetic law which fits satisfactorily most of C vs t isotherms (2). According to the above-mentioned kinetic law, equations describing sorption equilibrium processes have been deducted, and experimental data points have been fitted to these equations; such a fitting yields to different values of adsorption capacity and kinetic equilibrium constants for the different processes at several temperatures. However, in spite of their practical interest, these constants have no thermodynamic signification. Thus, the thermodynamic equilibrium constant (K) has been calculated by using a modified expression of the Gaines et al. equation (3). Global average values of the thermodynamic functions have also been calculated from the K values. Information related to variations of DeltaH and DeltaS with the surface coverage fraction was obtained by using the corresponding Clausius-Clapeyron equations.
Kwiatkowska, Magdalena; Parker, Linda A; Burton, Page; Mechoulam, Raphael
2004-07-01
The 5-HT3 antagonist, ondansetron (OND), and the cannabinoid, delta9-tetrahydrocannabinol (delta9-THC), have been shown to interfere with emesis; however, their relative and/or combined effectiveness in suppressing vomiting produced by the chemotherapeutic agent, cisplatin, is unknown. To evaluate the potential of: 1) a broad range of doses of delta9-THC and OND to prevent cisplatin-induced vomiting and retching in the Suncus murinus (house musk shrew), 2) combined treatment with ineffective individual doses of delta9-THC and OND to prevent cisplatin-induced vomiting and retching, 3) the CB1 receptor antagonist, SR141716, to reverse the antiemetic effects of OND, and 4) cannabidiol (CBD), the principal non-psychoactive component of marijuana, to reverse cisplatin-induced vomiting in the shrew. Shrews were injected with various doses of OND (0.02-6.0 mg/kg), delta9-THC (1.25-10 mg/kg) and a combination of ineffective doses of each (0.02 mg/kg OND+1.25 mg/kg delta9-THC) prior to being injected with cisplatin (20 mg/kg) which induces vomiting. Shrews were also injected with CBD (5 mg/kg and 40 mg/kg) prior to an injection of cisplatin. OND and delta9-THC both dose-dependently suppressed cisplatin-induced vomiting and retching. Furthermore, a combined pretreatment of doses of the two drugs that were ineffective alone completely suppressed vomiting and retching. CBD produced a biphasic effect, suppressing vomiting at 5 mg/kg and potentiating it at 40 mg/kg. A low dose of the non-intoxicating cannabinoid CBD may be an effective anti-emetic treatment and combined doses of OND and delta9-THC that are ineffective alone suppresses cisplatin-induced emetic reactions in shrews.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, M.; Schaefer, H.F. III
1999-07-21
Various possible reaction pathways between ethene and butadiene radical cation (cis- and trans-), have been investigated at different levels of theory up to UCCSD(T)/DZP/UMP2(fc)/DZP and with density functional theory at B3LYP/DZP. A stepwise addition involving open chain intermediates and leading to the Diels-Alder product, the cyclohexene radical cation, was found to have a total activation barrier {Delta}G{sup 298{ne}} = 6.3 kcal mol{sup {minus}1} and a change in free Gibbs energy, {Delta}G{sup 298}, of {minus}33.5 kcal mol{sup {minus}1}. On the E{degree} potential energy surface, all transition states are lower in energy than separated ethene and butadiene, the exothermicity {Delta}E = -45.6more » kcal mol{sup {minus}1}. A more direct path could be characterized as stepwise with one intermediate only at the SCF level but not at electron-correlated levels and hence might actually be a concerted strongly asynchronous addition with a very small or no activation barrier (UCCSD(T)/DZP/UHF/6-31G* gives a {Delta}G{sup 298{ne}} of 0.8 kcal mol{sup {minus}1}). The critical step for another alternative, the cyclobutanation-vinylcyclobutane/cyclohexene rearrangement, is a 1,3-alkyl shift which involves a barrier ({Delta}G{sup 298{ne}}) only 1.7 kcal mol{sup {minus}1} higher than that of stop use addition for both cis-, and trans-butadiene radical cation. However, from the (ethene and trans-butadiene) reactions, ring expansion of the vinylcyclobutane radical cation intermediate, to a methylene cyclopentane radical cation, requires an activation only 1.3 kcal mol{sup {minus}1} larger than for (trans-butadiene radical). While cis/trans isomerization of free butadiene radical cation requires a high activation (24.9 kcal mol{sup {minus}1}), a reaction sequence involving addition of ethene (to stepwise give an open chain intermediate and vinyl cyclobutane radical cation) has a barrier of only 3.5 kcal mol{sup {minus}1} ({Delta}G{sup 298{ne}}). This sequence also makes ethene and butadiene radical cations to exchange terminal methylene groups.« less
Cherepanov, Dmitry A.; Feniouk, Boris A.; Junge, Wolfgang; Mulkidjanian, Armen Y.
2003-01-01
Protonmotive force (the transmembrane difference in electrochemical potential of protons, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\Delta}{\\tilde {{\\mu}}}_{{\\mathrm{H}}^{+}}\\end{equation*}\\end{document}) drives ATP synthesis in bacteria, mitochondria, and chloroplasts. It has remained unsettled whether the entropic (chemical) component of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\Delta}{\\tilde {{\\mu}}}_{{\\mathrm{H}}^{+}}\\end{equation*}\\end{document} relates to the difference in the proton activity between two bulk water phases (ΔpHB) or between two membrane surfaces (ΔpHS). To scrutinize whether ΔpHS can deviate from ΔpHB, we modeled the behavior of protons at the membrane/water interface. We made use of the surprisingly low dielectric permittivity of interfacial water as determined by O. Teschke, G. Ceotto, and E. F. de Souza (O. Teschke, G. Ceotto, and E. F. de Sousa, 2001, Phys. Rev. E. 64:011605). Electrostatic calculations revealed a potential barrier in the water phase some 0.5–1 nm away from the membrane surface. The barrier was higher for monovalent anions moving toward the surface (0.2–0.3 eV) than for monovalent cations (0.1–0.15 eV). By solving the Smoluchowski equation for protons spreading away from proton “pumps” at the surface, we found that the barrier could cause an elevation of the proton concentration at the interface. Taking typical values for the density of proton pumps and for their turnover rate, we calculated that a potential barrier of 0.12 eV yielded a steady-state pHS of ∼6.0; the value of pHS was independent of pH in the bulk water phase under neutral and alkaline conditions. These results provide a rationale to solve the long-lasting problem of the seemingly insufficient protonmotive force in mesophilic and alkaliphilic bacteria. PMID:12885673
A Delta-V map of the known Main Belt Asteroids
NASA Astrophysics Data System (ADS)
Taylor, Anthony; McDowell, Jonathan C.; Elvis, Martin
2018-05-01
With the lowered costs of rocket technology and the commercialization of the space industry, asteroid mining is becoming both feasible and potentially profitable. Although the first targets for mining will be the most accessible near Earth objects (NEOs), the Main Belt contains 106 times more material by mass. The large scale expansion of this new asteroid mining industry is contingent on being able to rendezvous with Main Belt asteroids (MBAs), and so on the velocity change required of mining spacecraft (delta-v). This paper develops two different flight burn schemes, both starting from Low Earth Orbit (LEO) and ending with a successful MBA rendezvous. These methods are then applied to the ∼700,000 asteroids in the Minor Planet Center (MPC) database with well-determined orbits to find low delta-v mining targets among the MBAs. There are 3986 potential MBA targets with a delta-v < 8 km s-1 , but the distribution is steep and reduces to just 4 with delta-v < 7 km s-1. The two burn methods are compared and the orbital parameters of low delta-v MBAs are explored.
Classification of Martian deltas
NASA Technical Reports Server (NTRS)
Dehon, R. A.
1993-01-01
Water-borne sediments in streams are deposited, upon eventual cessation of flow, either as deltas or as alluvial fans or plains. Deltas and alluvial fans share a common characteristic; both may be described as deposition Al plains at the mouth of a river or stream. A delta is formed where a stream or river deposits its sedimentary load into a standing body of water such as an ocean or lake. An alluvial fan is produced where a stream loses capacity by a greatly decreased gradient. A delta has subaerial and subaqueous components, but an alluvial fan is entirely subaerial. In terrestrial conditions, deltas and alluvial fans are reasonably distinct landforms. The juxtaposition of concomitant features composition and internal structure are sufficiently explicit as to avoid any confusion regarding their proper identification on Mars, the recognition of deltas and their distinction from alluvial fans is made difficult by low resolution imaging. Further, although it may be demonstrated that standing bodies of water existed on the surface of Mars, many of these bodies may have existed for extremely short periods of time (a few days to months); hence, distinctive shoreline features were not developed. Thus, in an attempt to derive a Martian classification of deltas, the inclusion of wholly subaerial deposits may be unavoidable. A simple, broad, morphological classification of Martian deltas, primarily on planimetric shape, includes digitate deltas, fan-shaped deltas, and re-entrant deltas. A fourth, somewhat problematical class includes featureless plains at the end of many valley systems.
Ye, Xinxin; Kang, Shenghong; Wang, Huimin; Li, Hongying; Zhang, Yunxia; Wang, Guozhong; Zhao, Huijun
2015-05-30
Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm(3) g(-1) and 76.9 m(2) g(-1), respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl2 extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (P<0.05) in 5.0% modified diatomite-amended soils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Viana-Gomes, J.; Peres, N. M. R.
2011-01-01
We derive the energy levels associated with the even-parity wavefunctions of the harmonic oscillator with an additional delta-function potential at the origin. Our results bring to the attention of students a non-trivial and analytical example of a modification of the usual harmonic oscillator potential, with emphasis on the modification of the…
NASA Technical Reports Server (NTRS)
Lancaster, J. W.
1975-01-01
Various types of lighter-than-air vehicles from fully buoyant to semibuoyant hybrids were examined. Geometries were optimized for gross lifting capabilities for ellipsoidal airships, modified delta planform lifting bodies, and a short-haul, heavy-lift vehicle concept. It is indicated that: (1) neutrally buoyant airships employing a conservative update of materials and propulsion technology provide significant improvements in productivity; (2) propulsive lift for VTOL and aerodynamic lift for cruise significantly improve the productivity of low to medium gross weight ellipsoidal airships; and (3) the short-haul, heavy-lift vehicle, consisting of a simple combination of an ellipsoidal airship hull and existing helicopter componentry, provides significant potential for low-cost, near-term applications for ultra-heavy lift missions.
Fermionic edge states and new physics
NASA Astrophysics Data System (ADS)
Govindarajan, T. R.; Tibrewala, Rakesh
2015-08-01
We investigate the properties of the Dirac operator on manifolds with boundaries in the presence of the Atiyah-Patodi-Singer boundary condition. An exact counting of the number of edge states for boundaries with isometry of a sphere is given. We show that the problem with the above boundary condition can be mapped to one where the manifold is extended beyond the boundary and the boundary condition is replaced by a delta function potential of suitable strength. We also briefly highlight how the problem of the self-adjointness of the operators in the presence of moving boundaries can be simplified by suitable transformations which render the boundary fixed and modify the Hamiltonian and the boundary condition to reflect the effect of moving boundary.
Characteristics of surface modified Ti-6Al-4V alloy by a series of YAG laser irradiation
NASA Astrophysics Data System (ADS)
Zeng, Xian; Wang, Wenqin; Yamaguchi, Tomiko; Nishio, Kazumasa
2018-01-01
In this study, a double-layer Ti (C, N) film was successfully prepared on Ti-6Al-4V alloy by a series of YAG laser irradiation in nitrogen atmosphere, aiming at improving the wear resistance. The effects of laser irradiation pass upon surface chemical composition, microstructures and hardness were investigated. The results showed that the surface chemicals were independent from laser irradiation pass, which the up layer of film was a mixture of TiN and TiC0.3N0.7, and the down layer was nitrogen-rich α-Ti. Both the surface roughness and hardness increased as raising the irradiation passes. However, surface deformation and cracks happened in the case above 3 passes' irradiation. The wear resistance of laser modified sample by 3 passes was improved approximately by 37 times compared to the as received substrate. Moreover, the cytotoxic V ion released from laser modified sample was less than that of as received Ti-6Al-4V alloy in SBF, suggesting the potentiality of a new try to modify the sliding part of Ti-based hard tissue implants in future biomedical application.
Dong, Yingbo; Lin, Hai; He, Yinhai
2017-03-01
The physicochemical properties of the 24 modified clinoptilolite samples and their ammonia-nitrogen removal rates were measured to investigate the correlation between them. The modified clinoptilolites obtained by acid modification, alkali modification, salt modification, and thermal modification were used to adsorb ammonia-nitrogen. The surface area, average pore width, macropore volume, mecropore volume, micropore volume, cation exchange capacity (CEC), zeta potential, silicon-aluminum ratios, and ammonia-nitrogen removal rate of the 24 modified clinoptilolite samples were measured. Subsequently, the linear regression analysis method was used to research the correlation between the physicochemical property of the different modified clinoptilolite samples and the ammonia-nitrogen removal rate. Results showed that the CEC was the major physicochemical property affecting the ammonia-nitrogen removal performance. According to the impacts from strong to weak, the order was CEC > silicon-aluminum ratios > mesopore volume > micropore volume > surface area. On the contrary, the macropore volume, average pore width, and zeta potential had a negligible effect on the ammonia-nitrogen removal rate. The relational model of physicochemical property and ammonia-nitrogen removal rate of the modified clinoptilolite was established, which was ammonia-nitrogen removal rate = 1.415[CEC] + 173.533 [macropore volume] + 0.683 [surface area] + 4.789[Si/Al] - 201.248. The correlation coefficient of this model was 0.982, which passed the validation of regression equation and regression coefficients. The results of the significance test showed a good fit to the correlation model.
NASA Astrophysics Data System (ADS)
Arcos, Maria Elizabeth Martin
2012-12-01
At the Skokomish River delta in Washington State's Puget Lowland, coseismic uplift and tilting trapped the river against a valley wall, resulting in little to no channel migration for the last 1000 years. The most recent earthquake occurred before AD 780-990, based on stratigraphic evidence such as sand blows and abrupt facies changes. Since the hypothesized tilting a 5-km-long section of the river has not migrated laterally or avulsed, resulting in reduced migration and a muddy intertidal flat that is 2 km wider in the east than on the west side of Annas Bay. A ridge running perpendicular to the river may also have restricted channel mobility. The ridge may be either the surface expression of a blind thrust fault or a relict, uplifted and tilted shoreline. The uplift and tilting of the delta can be ascribed to any of three nearby active fault zones, of which the most likely, based on the orientation of deformation, is the Saddle Mountain fault zone, which produced a surface rupture 1000-1300 years ago. The delta has experienced submergence since the earthquake. A forest that colonized an uplifted part of the delta about 800-1200 years ago was later submerged by at least 1.6 m and is now a brackish-water marsh.
Kaiser, A L; Montville, T J
1996-12-01
Bavaricin MN was purified from Lactobacillus sake culture supernatant 135-fold with a final yield of 11%. Sequence analysis revealed bavaricin MN to be a 42-amino-acid peptide having a molecular weight of 4,769 and a calculated pI of 10.0. Computer analysis indicated that the C-terminal region may form an alpha-helical structure with an amphipathic nature deemed important in the interaction of bacteriocins with biological membranes. Bavaricin MN rapidly depleted the membrane potential (delta p) of energized Listeria monocytogenes cells in a concentration-dependent fashion. At a bavaricin MN concentration of 9.0 micrograms/ml, the delta p decreased by 85%. Both the electrical potential (delta psi) and Z delta pH components of the delta p were depleted, and this depletion was not dependent on a threshold level of proton motive force. In addition to studying the effect of bavaricin MN on the delta p of vegetative cells, bavaricin MN-induced carboxyfluorescein (CF) efflux from L. monocytogenes-derived lipid vesicles was also characterized. Bavaricin MN-induced CF leakage was also concentration dependent with an optimum of pH 6.0. The rate of CF efflux was 63% greater in lipid vesicles in which a delta psi was generated compared with that in lipid vesicles in the absence of a delta psi.
Li, Yuan; Jalil, Mansoor B. A.; Tan, S. G.; Zhao, W.; Bai, R.; Zhou, G. H.
2014-01-01
Time-periodic perturbation can be used to modify the transport properties of the surface states of topological insulators, specifically their chiral tunneling property. Using the scattering matrix method, we study the tunneling transmission of the surface states of a topological insulator under the influence of a time-dependent potential and finite gate bias voltage. It is found that perfect transmission is obtained for electrons which are injected normally into the time-periodic potential region in the absence of any bias voltage. However, this signature of Klein tunneling is destroyed when a bias voltage is applied, with the transmission probability of normally incident electrons decreasing with increasing gate bias voltage. Likewise, the overall conductance of the system decreases significantly when a gate bias voltage is applied. The characteristic left-handed helicity of the transmitted spin polarization is also broken by the finite gate bias voltage. In addition, the time-dependent potential modifies the large-angle transmission profile, which exhibits an oscillatory or resonance-like behavior. Finally, time-dependent transport modes (with oscillating potential in the THz frequency) can result in enhanced overall conductance, irrespective of the presence or absence of the gate bias voltage. PMID:24713634
Mississippi River Delta, Louisiana as seen from STS-62
1994-03-05
STS062-85-021 (4-18 March 1994) --- The Mississippi River is the largest river system in North America. Its delta is a typical example of the bird's foot class of river deltas. It drains nearly 3 1/2 million square kilometers of real estate and is estimated to carry 2.4 billion kilograms (more than 500 million tons) of sand, silt, and clay to the Gulf of Mexico annually. Most of this sediment is deposited as a delta at the mouth of the river where the velocity of the river water is slowed and its ability to transport sediment is accordingly diminished. Continued deposition at such a site progrades the delta or extends it seaward into the Gulf as much as 150 meters each year until such time as a flooding episode finds a shorter more efficient channel to deliver sediment-laden river waters to the Gulf. At that time the old delta is abandoned and the river begins to build a new delta. In time, compaction of the sediment in the old delta causes it to subside forming first marshes, then bays. This and the modifying effects of coastal waves eventually allow the sea to reclaim much of the temporary land area of the delta. This sequence has repeated itself over and over again at the Mississippi Delta. In this photograph, the present day active Balize delta is shown. According to NASA scientists it is the youngest of the recent delta lobes having begun its seaward pro-gradation only some 600 - 800 years ago. The main channel of the river is 2 kilometers wide and 30 - 40 meters deep. Natural levees here are almost 1 kilometer wide and 3 to 4 meters above sea level. Along the active distributaries of the lower delta, natural levees are less than 100 meters wide and generally less than 0.5 meters above sea level. The bird's foot appearance of deltas such as this is characteristic of low coastal energy conditions - that is, low levels of tidal fluctuation and generally low wave energy. The interdistributary bays are extremely shallow, usually less than a few meters, and contain brackish to normal marine waters except during times of flooding, when fresh water fills the bays. Sedimentation within the bays is very slow, occurring only during flood periods. Along the west side of the river, a highway has been built southeastward to Venice.
Measurement of the potential drop across the earth's collisionless bow shock
NASA Technical Reports Server (NTRS)
Formisano, V.
1982-01-01
The normal component of the dc electric field measured on ISEE-1 ordinarily exhibits an enhancement of a few mV/m over both upstream and downstream values at the earth's bow shock. Using the measured relative velocity between the shock and the spacecraft (from the ISEE-1/2 time delay in the magnetometer data), it is possible to transform the observed E enhancement to a potential drop (delta phi). For a subcritical shock the potential drop is found to be very close to the measured change of particle kinetic energy (delta phi, approximately 280 V on day 330, 1977), whereas for a supercritical shock the potential drop is only a fraction of the measured change of kinetic energy (delta phi, approximately 140 V on day 324, 1977).
Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong
2014-07-01
In this study, anthraquinone-2-sulfonic acid (AQS), an electron transfer mediator, was immobilized onto graphite felt surface via spontaneous reduction of the in situ generated AQS diazonium cations. Cyclic voltammetry (CV) and energy dispersive spectrometry (EDS) characterizations of AQS modified graphite demonstrated that AQS was covalently grafted onto the graphite surface. The modified graphite, with a surface AQS concentration of 5.37 ± 1.15 × 10(-9)mol/cm(2), exhibited good electrochemical activity and high stability. The midpoint potential of the modified graphite was about -0.248 V (vs. normal hydrogen electrode, NHE), indicating that electrons could be easily transferred from NADH in bacteria to the electrode. AQS modified anode in MFCs increased the maximum power density from 967 ± 33 mW/m(2) to 1872 ± 42 mW/m(2). These results demonstrated that covalently modified AQS functioned as an electron transfer mediator to facilitate extracellular electron transfer from bacteria to electrode and significantly enhanced the power production in MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jiang, Yuchen; Su, Yuling; Zhao, Lili; Meng, Fancui; Wang, Quanxin; Ding, Chunmei; Luo, Jianbin; Li, Jianshu
2017-08-01
Choline phosphate (CP) containing polymers modified surfaces have been shown good resist to the adhesion of proteins while prompt the attaching of mammalian cells due to the dipole pairing between the CP groups of the polymer and the phosphorylcholine (PC) groups on the cell membrane. However, the antifouling activities of CP modified surface against microbes have not been investigated at present. In addition, CP containing polymers modified surface with different molecular architectures has not been prepared and studied. To this end, glass slides surface modified with two different 2-(meth-acryloyloxy)ethyl cholinephosphate (MCP) containing polymer (PMCP) structures, i.e. brush-like (Glass-PMCP) and bottle brush-like (Glass-PHEMA-g-PMCP) architectures, were prepared in this work by surface-initiated atom transfer radical polymerization (SI-ATRP). The surface physichemical and antifouling properties of the prepared surfaces were characterized and studied. The Glass-PMCP shows improved antifouling properties against proteins and bacteria as compared to pristine glass slides (Glass-OH) and glass slides grafted with poly(2-hydroxyethyl methacrylate) (Glass-PHEMA). Notably, a synergetic fouling resistant properties of PHEMA and PMCP is presented for Glass-PHEMA-g-PMCP, which shows superior antifouling activities over Glass-PHEMA and Glass-PMCP. Furthermore, glass slides containing PMCP, i.e. Glass-PMCP and Glas-PHEMA-g-PMCP, decrease platelet adhesion and prevent their activation significantly. Therefore, the combination of antifouling PHEMA and PMCP into one system holds potential for prevention of bacterial fouling and biomaterial-centered infections. Copyright © 2017 Elsevier B.V. All rights reserved.
Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta
2016-08-01
The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.
Godavari River Delta Panorama, Bay of Bengal, India
1993-01-19
STS054-80-024 (13-19 Jan 1993) --- As the Shuttle was passing southeast over the coast of India, approaching the Bay of Bengal, Endeavour's crew took this picture of the Godavari River Delta. The sun glint pattern was centered directly over the delta and highlighted well the intricate drainage pattern. Offshore, water features associated with current boundaries and river plumes are readily visible. The line of clouds along the coast south of the delta suggest that surface winds are blowing onshore from the Bay of Bengal. As the air passes over the warmer coastal water and land, it is warmed and begins to rise. The moisture in the air condenses, forming a line of low-level clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike
2009-01-20
We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/{delta}F-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/{delta}F-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface,more » the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/{delta}F-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV.« less
Self-Excited Roll Oscillations of Non-Slender Wings
2010-03-01
on low sweep delta wings ( Yavuz et al. 2004; Taylor and Gursul 2004). Seeding was provided by a smoke machine placed in the low- speed section of...NV. Yavuz , M.M., Elkhoury, M., Rockwell, D., 2004, “Near-surface topology and flow structure on a delta wing”, AIAA Journal, vol. 42, no. 2, pp
NASA Technical Reports Server (NTRS)
Garn, Michelle; Qu, Min; Chrone, Jonathan; Su, Philip; Karlgaard, Chris
2008-01-01
Lunar orbit insertion LOI is a critical maneuver for any mission going to the Moon. Optimizing the geometry of this maneuver is crucial to the success of the architecture designed to return humans to the Moon. LOI burns necessary to meet current NASA Exploration Constellation architecture requirements for the lunar sortie missions are driven mainly by the requirement for global access and "anytime" return from the lunar surface. This paper begins by describing the Earth-Moon geometry which creates the worst case (delta)V for both the LOI and the translunar injection (TLI) maneuvers over the full metonic cycle. The trajectory which optimizes the overall (delta)V performance of the mission is identified, trade studies results covering the entire lunar globe are mapped onto the contour plots, and the effects of loitering in low lunar orbit as a means of reducing the insertion (delta)V are described. Finally, the lighting conditions on the lunar surface are combined with the LOI and TLI analyses to identify geometries with ideal lighting conditions at sites of interest which minimize the mission (delta)V.
Composite oxygen transport membrane
Lu, Zigui; Plonczak, Pawel J.; Lane, Jonathan A.
2016-11-08
A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. Preferred materials are (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.7Fe.sub.0.3O.sub.3-.delta. for the porous fuel oxidation layer, (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer, and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.3Fe.sub.0.7O.sub.3-.delta. for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.
Xu, Yan; Liu, Cong; Clark, Jean C; Whitsett, Jeffrey A
2006-04-21
Cystic fibrosis (CF), a common lethal pulmonary disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) that disturbs fluid homeostasis and host defense in target organs. The effects of CFTR and delta508-CFTR were assessed in transgenic mice that 1) lack CFTR expression (Cftr-/-); 2) express the human delta508 CFTR (CFTR(delta508)); 3) overexpress the normal human CFTR (CFTR(tg)) in respiratory epithelial cells. Genes were selected from Affymetrix Murine Gene-Chips analysis and subjected to functional classification, k-means clustering, promoter cis-elements/modules searching, literature mining, and pathway exploring. Genomic responses to Cftr-/- were not corrected by expression of CFTR(delta508). Genes regulating host defense, inflammation, fluid and electrolyte transport were similarly altered in Cftr-/- and CFTR(delta508) mice. CFTR(delta508) induced a primary disturbance in expression of genes regulating redox and antioxidant systems. Genomic responses to CFTR(tg) were modest and were not associated with lung pathology. CFTR(tg) and CFTR(delta508) induced genes encoding heat shock proteins and other chaperones but did not activate the endoplasmic reticulum-associated degradation pathway. RNAs encoding proteins that directly interact with CFTR were identified in each of the CFTR mouse models, supporting the hypothesis that CFTR functions within a multiprotein complex whose members interact at the level of protein-protein interactions and gene expression. Promoters of genes influenced by CFTR shared common regulatory elements, suggesting that their co-expression may be mediated by shared regulatory mechanisms. Genes and pathways involved in the response to CFTR may be of interest as modifiers of CF.
Ahmad, Aftab; Wei, Yun; Syed, Fatima; Tahir, Kamran; Rehman, Aziz Ur; Khan, Arifullah; Ullah, Sadeeq; Yuan, Qipeng
2017-01-01
Neutralization of bacterial cell surface potential using nanoscale materials is an effective strategy to alter membrane permeability, cytoplasmic leakage, and ultimate cell death. In the present study, an attempt was made to prepare biogenic silver nanoparticles using biomolecules from the aqueous rhizome extract of Coptis Chinensis. The biosynthesized silver nanoparticles were surface modified with chitosan biopolymer. The prepared silver nanoparticles and chitosan modified silver nanoparticles were cubic crystalline structures (XRD) with an average particle size of 15 and 20 nm respectively (TEM, DLS). The biosynthesized silver nanoparticles were surface stabilized by polyphenolic compounds (FTIR). Coptis Chinensis mediated silver nanoparticles displayed significant activity against E. coli and Bacillus subtilus with a zone of inhibition 12 ± 1.2 (MIC = 25 μg/mL) and 18 ± 1.6 mm (MIC = 12.50 μg/mL) respectively. The bactericidal efficacy of these nanoparticles was considerably increased upon surface modification with chitosan biopolymer. The chitosan modified biogenic silver nanoparticles exhibited promising activity against E. coli (MIC = 6.25 μg/mL) and Bacillus subtilus (MIC = 12.50 μg/mL). Our results indicated that the chitosan modified silver nanoparticles were promising agents in damaging bacterial membrane potential and induction of high level of intracellular reactive oxygen species (ROS). In addition, these nanoparticles were observed to induce the release of the high level of cytoplasmic materials especially protein and nucleic acids into the media. All these findings suggest that the chitosan functionalized silver nanoparticles are efficient agents in disrupting bacterial membrane and induction of ROS leading to cytoplasmic leakage and cell death. These findings further conclude that the bacterial-nanoparticles surface potential modulation is an effective strategy in enhancing the antibacterial potency of silver nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lv, Junwei; Wang, Bin; Ma, Qi; Wang, Wenjing; Xiang, Dong; Li, Mengyao; Zeng, Lan; Li, Hui; Li, Yuntao; Zhao, Chunxia
2018-06-01
Melamine and multi-walled carbon nanotubes (MWCNTs) were grafted onto Poly-p-phenylene benzobisoxazole (PBO) fiber surface effectively via layer-by-layer method. Both of them have been chemically bonded as fourier transform infrared spectroscopy (FTIR) confirmed. Grafting melamine overcame the inertness of PBO surface. Ammoniation was processed on PBO surface through grafting melamine so that the MWCNTs could be grafted onto PBO surface. Scanning electron microscopy (SEM) images indicated that melamine used as molecular bridge could increase MWCNTs’ quantity on PBO surface. X-ray photoelectron spectroscopy (XPS) results revealed the variation of chemical composition of PBO surface. Test of interfacial shear strength (IFSS) and tensile strength indicated the great mechanical properties of modified PBO fibers when combining with epoxy resin. Furthermore, whole reaction was processed under a simple condition. Results in this research also promised a potential method to modify PBO surface.
Preparation of modified semi-coke by microwave heating and adsorption kinetics of methylene blue.
Wang, Xin; Peng, Jin-Hui; Duan, Xin-Hui; Srinivasakannan, Chandrasekar
2013-01-01
Preparation of modified semi-coke has been achieved, using phosphoric acid as the modifying agent, by microwave heating from virgin semi-coke. Process optimization using a Central Composite Design (CCD) design of Response Surface Methodology (RSM) technique for the preparation of modifies semi-coke is presented in this paper. The optimum conditions for producing modified semi-coke were: concentration of phosphoric acid 2.04, heating time 20 minutes and temperature 587 degrees C, with the optimum iodine of 862 mg/g and yield of 47.48%. The textural characteristics of modified semi-coke were analyzed using scanning electron microscopy (SEM) and nitrogen adsorption isotherm. The BET surface area of modified semi-coke was estimated to be 989.60 m2/g, with the pore volume of 0.74 cm3/g and a pore diameter of 3.009 nm, with micro-pore volume contributing to 62.44%. The Methylene Blue monolayer adsorption capacity was found to be mg/g at K. The adsorption capacity of the modified semi-coke highlights its suitability for liquid phase adsorption application with a potential usage in waste water treatment.
Earth Observations taken by the Expedition 27 Crew
2011-04-25
ISS027-E-016922 (25 April 2011) --- River deltas and Lake Ayakum in China (Tibet) are featured in this image photographed by an Expedition 27 crew member on the International Space Station. The Tibetan Plateau contains numerous lakes that dot an otherwise arid landscape. Lake Ayakum is located near the northern boundary of the Plateau to the southeast of the Kunlun Mountains. While many of the small glacier- and snowmelt-fed streams that cross the Tibetan Plateau eventually give rise to major Southeast Asian rivers including the Mekong and Yangtze, some empty into saline lakes such as Lake Ayakum. This detailed photograph highlights two river deltas (upper left and lower right) formed along the southwestern shoreline of the lake. When sediments build up to the point that a river can no longer flow over them, it will jump to a new channel position and begin the process anew. Scientists have noted that, over geologic time, the channels tend to sweep back and forth ? similar to the motion of an automobile windshield wiper ? to form the typical semi-circular or fan shape of the delta. Gray to tan surfaces of both deltas indicate prior positions of their respective river channels; the uniform coloration and smooth texture suggest that they are relatively old and are now inactive. In contrast, the younger and currently active delta surfaces can be recognized by reddish-brown sediment and clearly visible river channels. Lateral channel migration is particularly evident in the approximately eight-kilometer-wide active delta area at upper left. The reddish coloration of the actively depositing sediment may indicate a change from the sources that formed the older parts of the deltas (or indicate weathering and soil formation on the older deposits), or an episodic input of dust or other material to the river catchments.
Flocks, James
2006-01-01
Scientific knowledge from the past century is commonly represented by two-dimensional figures and graphs, as presented in manuscripts and maps. Using today's computer technology, this information can be extracted and projected into three- and four-dimensional perspectives. Computer models can be applied to datasets to provide additional insight into complex spatial and temporal systems. This process can be demonstrated by applying digitizing and modeling techniques to valuable information within widely used publications. The seminal paper by D. Frazier, published in 1967, identified 16 separate delta lobes formed by the Mississippi River during the past 6,000 yrs. The paper includes stratigraphic descriptions through geologic cross-sections, and provides distribution and chronologies of the delta lobes. The data from Frazier's publication are extensively referenced in the literature. Additional information can be extracted from the data through computer modeling. Digitizing and geo-rectifying Frazier's geologic cross-sections produce a three-dimensional perspective of the delta lobes. Adding the chronological data included in the report provides the fourth-dimension of the delta cycles, which can be visualized through computer-generated animation. Supplemental information can be added to the model, such as post-abandonment subsidence of the delta-lobe surface. Analyzing the regional, net surface-elevation balance between delta progradations and land subsidence is computationally intensive. By visualizing this process during the past 4,500 yrs through multi-dimensional animation, the importance of sediment compaction in influencing both the shape and direction of subsequent delta progradations becomes apparent. Visualization enhances a classic dataset, and can be further refined using additional data, as well as provide a guide for identifying future areas of study.
Flow patterns and bathymetric signatures on the delta front of a prograding river delta
NASA Astrophysics Data System (ADS)
Shaw, J.; Mohrig, D. C.; Wagner, R. W.
2016-02-01
The transition of water between laterally confined channels and the unchannelized delta front controls the growth pattern of river deltas, but is difficult to measure on field-scale deltas. We quantify flow patterns, bathymetry and bathymetric evolution for the subaqueous delta front on the Wax Lake Delta (WLD), a rapidly prograding delta in coastal Louisiana. The flow direction field, mapped using streaklines composed of biogenic slicks on the water surface, shows that a significant portion of flow ( 59%) departs subaqueous channels laterally over the subaqueous margins of the channel seaward of the shoreline. Synoptic datasets of bathymetry and flow direction allow spatial changes in flow velocity to be quantified. Most lateral flow divergence and deceleration occurs within 3-8 channel widths outboard of subaqueous channel margins, rather than downstream of channel tips. In interdistributary bays, deposit elevation decreases with a basinward slope of 2.4 x 10-4 with distance from a channel margin along any flow path. Flow patterns and this slope produce constructional features called interdistributary troughs - topographic lows in the center of interdistributary bays. These data show that flow patterns and bathymetry on the delta front are coupled both at the transition from channelized to unchannelized flow and in the depositional regions outside the distributary network.
Enhancing antimicrobial activity of TiO2/Ti by torularhodin bioinspired surface modification.
Ungureanu, Camelia; Dumitriu, Cristina; Popescu, Simona; Enculescu, Monica; Tofan, Vlad; Popescu, Marian; Pirvu, Cristian
2016-02-01
Implant-associated infections are a major cause of morbidity and mortality. This study was performed using titanium samples coated by anodization with a titanium dioxide (TiO2) shielded nanotube layer. TiO2/Ti surface was modified by simple immersion in torularhodin solution and by using a mussel-inspired method based on polydopamine as bio adhesive for torularhodin immobilization. SEM analysis revealed tubular microstructures of torularhodin and the PDA ability to function as a catchy anchor between torularhodin and TiO2 surface. Corrosion resistance was associated with TiO2 barrier oxide layer and nano-organized oxide layer and the torularhodin surface modification does not bring significant changes in resistance of the oxide layer. Our results demonstrated that the torularhodin modified TiO2/Ti surface could effectively prevent adhesion and proliferation of Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and Pseudomonas aeruginosa. The new modified titanium surface showed good biocompatibility and well-behaved haemocompatibility. This biomaterial with enhanced antimicrobial activity holds great potential for future biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Murakami, Asuka; Arimoto, Takafumi; Suzuki, Dai; Iwai-Yoshida, Misato; Otsuka, Fukunaga; Shibata, Yo; Igarashi, Takeshi; Kamijo, Ryutaro; Miyazaki, Takashi
2012-04-01
Hydroxyapatite (HA)-coated titanium (Ti) is commonly used for implantable medical devices. This study examined in vitro osteoblast gene expression and antimicrobial activity against early and late colonizers of supra-gingival plaque on nanoscale HA-coated Ti prepared by discharge in a physiological buffered solution. The HA-coated Ti surface showed super-hydrophilicity, whereas the densely sintered HA and Ti surfaces alone showed lower hydrophilicity. The sintered HA and HA-coated Ti surfaces enhanced osteoblast phenotypes in comparison with the bare Ti surface. The HA-coated Ti enabled antimicrobial activity against early colonizers of supra-gingival plaques, namely Streptococcus mitis and Streptococcus gordonii. Such antimicrobial activity may be caused by the surface hydrophilicity, thereby leading to a repulsion force between the HA-coated Ti surface and the bacterial cell membranes. On the contrary, the sintered HA sample was susceptible to infection of microorganisms. Thus, hydrophilic-modified HA-coated Ti may have potential for use in implantable medical devices. From the Clinical Editor: This study establishes that Hydroxyapatite (HA)-coated titanium (Ti) surface of implanted devices may result in an optimal microenvironment to control and prevent infections and may have potential future clinical applications. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kynett, K.; Azimi-Gaylon, S.; Doidic, C.
2014-12-01
The Sacramento-San Joaquin Delta and Suisun Marsh (Delta) is the largest estuary on the West Coast of the Americas and is a resource of local, State, and national significance. The Delta is simultaneously the most critical component of California's water supply, a primary focus of the state's ecological conservation measures, and a vital resource deeply imperiled by degraded water quality. Delta waterbodies are identified as impaired by salinity, excess nutrients, low dissolved oxygen, pathogens, pesticides, heavy metals, and other contaminants. Climate change is expected to exacerbate the impacts of existing stressors in the Delta and magnify the challenges of managing this natural resource. A clear understanding of the current state of the watershed is needed to better inform scientists, decision makers, and the public about potential impacts from climate change. The Delta Watershed Initiative Network (Delta WIN) leverages the ecological benefits of healthy watersheds, and enhances, expands and creates opportunities for greater watershed health by coordinating with agencies, established programs, and local organizations. At this critical junction, Delta WIN is coordinating data integration and analysis to develop better understanding of the existing and emerging water quality concerns. As first steps, Delta WIN is integrating existing water quality data, analyzing trends, and monitoring to fill data gaps and to evaluate indicators of climate change impacts. Available data will be used for trend analysis; Delta WIN will continue to monitor where data is incomplete and new questions arise. Understanding how climate change conditions may affect water quality will be used to inform efforts to build resilience and maintain water quality levels which sustain aquatic life and human needs. Assessments of historical and new data will aid in recognition of potential climate change impacts and in initiating implementation of best management practices in collaboration with State and local agencies. Ultimately, Delta WIN can inform responsive science and adaptive management in other estuaries and critical natural resource areas facing times of change.
Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu
2015-05-07
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.
Delta ribozyme has the ability to cleave in transan mRNA.
Roy, G; Ananvoranich, S; Perreault, J P
1999-01-01
We report here the first demonstration of the cleavage of an mRNA in trans by delta ribozyme derived from the antigenomic version of the human hepatitis delta virus (HDV). We characterized potential delta ribozyme cleavage sites within HDV mRNA sequence (i.e. C/UGN6), using oligonucleotide binding shift assays and ribonuclease H hydrolysis. Ribozymes were synthesized based on the structural data and then tested for their ability to cleave the mRNA. Of the nine ribozymes examined, three specifically cleaved a derivative HDV mRNA. All three active ribozymes gave consistent indications that they cleaved single-stranded regions. Kinetic characterization of the ability of ribozymes to cleave both the full-length mRNA and either wild-type or mutant small model substrate suggests: (i) delta ribozyme has turnovers, that is to say, several mRNA molecules can be successively cleaved by one ribozyme molecule; and (ii) the substrate specificity of delta ribozyme cleavage is not restricted to C/UGN6. Specifically, substrates with a higher guanosine residue content upstream of the cleavage site (i.e. positions -4 to -2) were always cleaved more efficiently than wild-type substrate. This work shows that delta ribozyme constitutes a potential catalytic RNA for further gene-inactivation therapy. PMID:9927724
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... added a 10 mile (16 km) exclusion zone around the Susitna Delta (which includes the Beluga River) to the... Delta and alert the vessels accordingly of necessary actions to avoid or minimize potential disturbance... reproduction areas, and to ensure that any displacement from the Susitna Delta region is temporary and would...
Evaluating the Rheological Properties of Waste Natural Rubber Latex Modified Binder
NASA Astrophysics Data System (ADS)
Khatijah Abu Bakar, Siti; Ezree Abdulah, Mohd; Mustafa Kamal, Mazlina; Rahman, Raha Abd; Arifin Hadithon, Kamarul; Buhari, Rosnawati; Tajudin, Saiful Azhar Ahmad
2018-03-01
Road surface is designed to be the durable surface material to sustain the traffic loading. However, due to physical and mechanical stress, pavement deterioration is accelerated. Thus, modifying conventional bitumen by improving its properties is seen as the best method to prolong pavement in-service life. The purpose of this paper is to study the effect of waste natural rubber (NR) latex on rheological properties of bitumen. Conventional bitumen PEN 80/100 was modified with different content of waste NR latex using a high shear mixer at temperature of 150°C. The modified binder properties were characterized by conducting physical test (i.e. softening point, penetration and penetration index) and rheological test (i.e. dynamic shear rheometer, DSR). Results showed that, the addition of waste NR latex improved the rheology properties, which indicates by improving of rutting factor (G*/sin δ). This properties improvement has also shows a potential to resist deformation on road surface despite of high traffic loading.
F-16XL Ship #2 wing glove close-up, laser cut holes, with dime for scale
NASA Technical Reports Server (NTRS)
1995-01-01
This June 1995 photograph of a test panel similiar to the one attached to the surface of an F-16XL research aircraft's left wing at NASA's Dryden Flight Research Center, Edwards, California, shows the size of the more than 10 million laser-cut holes in the panel, called a glove, as compared with a dime. Below the titanium panel into which holes are cut is a suction system linked to a compressor. During research flights with the modified, delta-winged F-16XL, the suction system pulled a small part of the boundary layer of air through the glove's porous surface to expand the extent of smooth (laminar) flow. Researchers believe that laminar flow conditions can reduce aerodynamic drag (friction) and contribute to reduced operating costs by improving fuel consumption and lowering aircraft weight. This Supersonic Laminar Flow Control (SLFC) experiment represents a collaborative effort between NASA and aerospace industry (specifically Boeing, Rockwell, and McDonnell Douglas), with Boeing assembling the panel and McDonnell Douglas designing the suction system.
Seed islands driven by turbulence and NTM dynamics
NASA Astrophysics Data System (ADS)
Muraglia, M.; Agullo, O.; Poye, A.; Benkadda, S.; Horton, W.; Dubuit, N.; Garbet, X.; Sen, A.
2014-10-01
Magnetic reconnection is an issue for tokamak plasmas. Growing magnetic islands expel energetic particles from the plasma core leading to high energy fluxes in the SOL and may cause damage to the plasma facing components. The islands grow from seeds from the bootstrap current effects that oppose the negative delta-prime producing nonlinear island growth. Experimentally, the onset of NTM is quantified in terms of the beta parameter and the sawtooth period. Indeed, in experiments, (3;2) NTM magnetic islands are often triggered by sawtooth precursors. However (2;1) magnetic islands can appear without noticeable MHD event and the seed islands origin for the NTM growth is still an open question. Macroscale MHD instabilities (magnetic islands) coexist with micro-scale turbulent fluctuations and zonal flows which impact island dynamics. Nonlinear simulations show that the nonlinear beating of the fastest growing small-scale ballooning interchange modes on a low order rational surface drive a magnetic islands located on the same surface. The island size is found to be controlled by the turbulence level and modifies the NTM threshold and dynamics.
Hanes, Daniel M.; Barnard, Patrick L.; Dallas, Kate; Elias, Edwin; Erikson, Li H.; Eshleman, Jodi; Hansen, Jeff; Hsu, Tian Jian; Shi, Fengyan
2011-01-01
Recent research in the San Francisco, California, U.S.A., coastal region has identified the importance of the ebb tidal delta to coastal processes. A process-based numerical model is found to qualitatively reproduce the equilibrium size and shape of the delta. The ebb tidal delta itself has been contracting over the past century, and the numerical model is applied to investigate the sensitivity of the delta to changes in forcing conditions. The large ebb tidal delta has a strong influence upon regional coastal processes. The prominent bathymetry of the ebb tidal delta protects some of the coast from extreme storm waves, but the delta also focuses wave energy toward the central and southern portions of Ocean Beach. Wave focusing likely contributes to a chronic erosion problem at the southern end of Ocean Beach. The ebb tidal delta in combination with non-linear waves provides a potential cross-shore sediment transport pathway that probably supplies sediment to Ocean Beach.
Chau, N D G; Sebesvari, Z; Amelung, W; Renaud, F G
2015-06-01
Pollution of drinking water sources with agrochemicals is often a major threat to human and ecosystem health in some river deltas, where agricultural production must meet the requirements of national food security or export aspirations. This study was performed to survey the use of different drinking water sources and their pollution with pesticides in order to inform on potential exposure sources to pesticides in rural areas of the Mekong River delta, Vietnam. The field work comprised both household surveys and monitoring of 15 frequently used pesticide active ingredients in different water sources used for drinking (surface water, groundwater, water at public pumping stations, surface water chemically treated at household level, harvested rainwater, and bottled water). Our research also considered the surrounding land use systems as well as the cropping seasons. Improper pesticide storage and waste disposal as well as inadequate personal protection during pesticide handling and application were widespread amongst the interviewed households, with little overall risk awareness for human and environmental health. The results show that despite the local differences in the amount and frequency of pesticides applied, pesticide pollution was ubiquitous. Isoprothiolane (max. concentration 8.49 μg L(-1)), fenobucarb (max. 2.32 μg L(-1)), and fipronil (max. 0.41 μg L(-1)) were detected in almost all analyzed water samples (98 % of all surface samples contained isoprothiolane, for instance). Other pesticides quantified comprised butachlor, pretilachlor, propiconazole, hexaconazole, difenoconazole, cypermethrin, fenoxapro-p-ethyl, tebuconazole, trifloxystrobin, azoxystrobin, quinalphos, and thiamethoxam. Among the studied water sources, concentrations were highest in canal waters. Pesticide concentrations varied with cropping season but did not diminish through the year. Even in harvested rainwater or purchased bottled water, up to 12 different pesticides were detected at concentrations exceeding the European Commission's parametric guideline values for individual or total pesticides in drinking water (0.1 and 0.5 μg L(-1); respectively). The highest total pesticide concentration quantified in bottled water samples was 1.38 μg L(-1). Overall, we failed to identify a clean water source in the Mekong Delta with respect to pesticide pollution. It is therefore urgent to understand further and address drinking water-related health risk issues in the region.
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel
2012-11-21
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.
NASA Astrophysics Data System (ADS)
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel
2012-11-01
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.
Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery
NASA Astrophysics Data System (ADS)
Hurkat, Pooja; Jain, Aviral; Jain, Ashish; Shilpi, Satish; Gulbake, Arvind; Jain, Sanjay K.
2012-11-01
Major research issues in oral protein delivery include the stabilization of protein in delivery devices which could increase its oral bioavailability. The study deals with development of oral insulin delivery system utilizing biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and modifying its surface with Concanavalin A to increase lymphatic uptake. Surface-modified PLGA nanoparticles were characterized for conjugation efficiency of ligand, shape and surface morphology, particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro drug release. Stability of insulin in the developed formulation was confirmed by SDS-PAGE, and integrity of entrapped insulin was assessed using circular dichroism spectrum. Ex vivo study was performed on Wistar rats, which exhibited the higher intestinal uptake of Con A conjugated nanoparticles. In vivo study performed on streptozotocin-induced diabetic rats which indicate that a surface-modified nanoparticle reduces blood glucose level effectively within 4 h of its oral administration. In conclusion, the present work resulted in successful production of Con A NPs bearing insulin with sustained release profile, and better absorption and stability. The Con A NPs showed high insulin uptake, due to its relative high affinity for non-reducing carbohydrate residues i.e., fucose present on M cells and have the potential for oral insulin delivery in effective management of Type 1 diabetes condition.
Zhang, Li; Liang, Shuli; Zhou, Xinying; Jin, Zi; Jiang, Fengchun; Han, Shuangyan; Zheng, Suiping
2013-01-01
Glycosylphosphatidylinositol (GPI)-anchored glycoproteins have various intrinsic functions in yeasts and different uses in vitro. In the present study, the genome of Pichia pastoris GS115 was screened for potential GPI-modified cell wall proteins. Fifty putative GPI-anchored proteins were selected on the basis of (i) the presence of a C-terminal GPI attachment signal sequence, (ii) the presence of an N-terminal signal sequence for secretion, and (iii) the absence of transmembrane domains in mature protein. The predicted GPI-anchored proteins were fused to an alpha-factor secretion signal as a substitute for their own N-terminal signal peptides and tagged with the chimeric reporters FLAG tag and mature Candida antarctica lipase B (CALB). The expression of fusion proteins on the cell surface of P. pastoris GS115 was determined by whole-cell flow cytometry and immunoblotting analysis of the cell wall extracts obtained by β-1,3-glucanase digestion. CALB displayed on the cell surface of P. pastoris GS115 with the predicted GPI-anchored proteins was examined on the basis of potential hydrolysis of p-nitrophenyl butyrate. Finally, 13 proteins were confirmed to be GPI-modified cell wall proteins in P. pastoris GS115, which can be used to display heterologous proteins on the yeast cell surface. PMID:23835174
A regional coupled surface water/groundwater model of the Okavango Delta, Botswana
NASA Astrophysics Data System (ADS)
Bauer, Peter; Gumbricht, Thomas; Kinzelbach, Wolfgang
2006-04-01
In the endorheic Okavango River system in southern Africa a balance between human and environmental water demands has to be achieved. The runoff generated in the humid tropical highlands of Angola flows through arid Namibia and Botswana before forming a large inland delta and eventually being consumed by evapotranspiration. With an approximate size of about 30,000 km2, the Okavango Delta is the world's largest site protected under the convention on wetlands of international importance, signed in 1971 in Ramsar, Iran. The extended wetlands of the Okavango Delta, which sustain a rich ecology, spectacular wildlife, and a first-class tourism infrastructure, depend on the combined effect of the highly seasonal runoff in the Okavango River and variable local climate. The annual fluctuations in the inflow are transformed into vast areas of seasonally inundated floodplains. Water abstraction and reservoir building in the upstream countries are expected to reduce and/or redistribute the available flows for the Okavango Delta ecosystem. To study the impacts of upstream and local interventions, a large-scale (1 km2 grid), coupled surface water/groundwater model has been developed. It is composed of a surface water flow component based on the diffusive wave approximation of the Saint-Venant equations, a groundwater component, and a relatively simple vadose zone component for calculating the net water exchange between land and atmosphere. The numerical scheme is based on the groundwater simulation software MODFLOW-96. Since the primary model output is the spatiotemporal distribution of flooded areas and since hydrologic data on the large and inaccessible floodplains and tributaries are sparse and unreliable, the model was not calibrated with point hydrographs but with a time series of flooding patterns derived from satellite imagery (NOAA advanced very high resolution radiometer). Scenarios were designed to study major upstream and local interventions and their expected impacts in the Delta. The scenarios' results can help decision makers strike a balance between environmental and human water demands in the basin.
Sorption of lead ions on diatomite and manganese oxides modified diatomite.
Al-Degs, Y; Khraisheh, M A; Tutunji, M F
2001-10-01
Naturally occurring diatomaceous earth (diatomite) has been tested as a potential sorbent for Pb(II) ions. The intrinsic exchange properties were further improved by modification with manganese oxides. Modified adsorbent (referred to as Mn-diatomite) showed a higher tendency for adsorbing lead ions from solution at pH 4. The high performance exhibited by Mn-diatomite was attributed to increased surface area and higher negative surface charge after modification. Scanning electron microscope pictures revealed a birnessite structure of manganese oxides, which was featured by a plate-like-crystal structure. Diatomite filtration quality was improved after modification by manganese oxides. Good filtration qualities combined with high exchange capacity emphasised the potential use of Mn-diatomite in filtration systems.
Gold and Iron-Gold Nanoparticles for Intracellular Tracking and in Vivo Medical Applicatons
NASA Astrophysics Data System (ADS)
Fu, Wei
2005-03-01
We have fabricated Au and Fe-Au nanoparticles for potential use in ex vivo experiments such as intracellular tracking, as well as a variety of in vivo medical applications. In order to improve their targeting potential, circulation time and flexibility, gold NPs were surface modified using a hetero-bifunctional poly(ethylene glycol) (PEG, MW 1,500) spacers. A coumarin-PEG-gold NP complex was formed and cell viability studies and optical fluorescence experiments were carried out demonstrating the use of these surface-modified gold NPs for drug delivery, gene therapy and cell trafficking experiments. Fe-Au nanoparticles were also fabricated and show significant contrast enhancement in MRI studies through a substantial reduction of the T2 relaxation time.
NASA Astrophysics Data System (ADS)
Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei
2016-01-01
The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.
CEV Trajectory Design Considerations for Lunar Missions
NASA Technical Reports Server (NTRS)
Condon, Gerald L.; Dawn, Timothy; Merriam, Robert S.; Sostaric, Ronald; Westhelle, Carlos H.
2007-01-01
The Crew Exploration Vehicle (CEV) translational maneuver Delta-V budget must support both the successful completion of a nominal lunar mission and an "anytime" emergency crew return with the potential for much more demanding orbital maneuvers. This translational Delta-V budget accounts for Earth-based LEO rendezvous with the lunar surface access module (LSAM)/Earth departure stage (EDS) stack, orbit maintenance during the lunar surface stay, an on-orbit plane change to align the CEV orbit for an in-plane LSAM ascent, and the Moon-to-Earth trans-Earth injection (TEI) maneuver sequence as well as post-TEI TCMs. Additionally, the CEV will have to execute TEI maneuver sequences while observing Earth atmospheric entry interface objectives for lunar high-latitude to equatorial sortie missions as well as near-polar sortie and long duration missions. The combination of these objectives places a premium on appropriately designed trajectories both to and from the Moon to accurately size the translational V and associated propellant mass in the CEV reference configuration and to demonstrate the feasibility of anytime Earth return for all lunar missions. This report examines the design of the primary CEV translational maneuvers (or maneuver sequences) including associated mission design philosophy, associated assumptions, and methodology for lunar sortie missions with up to a 7-day surface stay and with global lunar landing site access as well as for long duration (outpost) missions with up to a 210-day surface stay at or near the polar regions. The analyses presented in this report supports the Constellation Program and CEV project requirement for nominal and anytime abort (early return) by providing for minimum wedge angles, lunar orbit maintenance maneuvers, phasing orbit inclination changes, and lunar departure maneuvers for a CEV supporting an LSAM launch and subsequent CEV TEI to Earth return, anytime during the lunar surface stay.
NASA Technical Reports Server (NTRS)
Bubenheim, David; Potter, Christopher; Zhang, Minghua; Madsen, John
2017-01-01
The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern to Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant in the Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they are improving decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.
Seismic stability of the Duwamish River Delta, Seattle, Washington
Kayen, Robert E.; Barnhardt, Walter A.
2007-01-01
The delta front of the Duwamish River valley near Elliott Bay and Harbor Island is founded on young Holocene deposits shaped by sea-level rise, episodic volcanism, and seismicity. These river-mouth deposits are highly susceptible to seismic soil liquefaction and are potentially prone to submarine landsliding and disintegrative flow failure. A highly developed commercial-industrial corridor, extending from the City of Kent to the Elliott Bay/Harbor Island marine terminal facilities, is founded on the young Holocene deposits of the Duwamish River valley. The deposits of this Holocene delta have been shaped not only by relative sea-level rise but also by episodic volcanism and seismicity. Ground-penetrating radar (GPR), cores, in situ testing, and outcrops are being used to examine the delta stratigraphy and to infer how these deposits will respond to future volcanic eruptions and earthquakes in the region. A geotechnical investigation of these river-mouth deposits indicates high initial liquefaction susceptibility during earthquakes, and possibly the potential for unlimited-strain disintegrative flow failure of the delta front.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Ming-Hung; School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; Haung, Chiung-Fang
In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples.more » The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mandeep; Thanh, Dong Nguyen, E-mail: Dong.Nguyen.Thanh@vscht.c; Ulbrich, Pavel
2010-12-15
Single-phase {alpha}-MnO{sub 2} nanorods and {delta}-MnO{sub 2} nano-fiber clumps were synthesized using manganese pentahydrate in an aqueous solution. These nanomaterials were characterized using the Transmission Electron Microscope (TEM), Field Emission Scanning Electron Microscope (FE-SEM), Powder X-ray diffraction (XRD) and the Brunauer-Elmet-Teller nitrogen adsorption technique (BET-N{sub 2} adsorption). The structural analysis shows that {alpha}-MnO{sub 2} (2x2 tunnel structure) has the form of needle-shaped nanorods and {delta}-MnO{sub 2} (2D-layered structure) consists of fine needle-like fibers arranged in ball-like aggregates. Batch adsorption experiments were carried out to determine the effect of pH on adsorption kinetics and adsorption capacity for the removal of As(V)more » from aqueous solution onto these two types of nanoadsorbents. The adsorption capacity of As(V) was found to be highly pH dependent. The adsorption of As(V) onto {alpha}-MnO{sub 2} reached equilibrium more rapidly with higher adsorption capacity compared to {delta}-MnO{sub 2}. -- Graphical abstract: {alpha}-MnO{sub 2} (2x2 tunnel structure) nanorods and {delta}-MnO{sub 2} (2-D layered structure) nano-fiber clumps were synthesized in a facile way in an aqueous solution and characterized by TEM, FE-SEM, XRD and BET-N{sub 2} adsorption techniques. The structural analysis shows that {alpha}-MnO{sub 2} is needle shaped nanorods and {delta}-MnO{sub 2} consists of 2-D platelets of fine needle-like fibers arranged in ball-like aggregates. Further batch experiments confirmed that both nanoadsorbents are potential candidates for the adsorption of As(V) with a capacity of 19.41 and 15.33 mg g{sup -1} for {alpha}-MnO{sub 2} and {delta}-MnO{sub 2}, respectively. The presence of As3d peak in XPS study indicates that arsenic on the surface of nanoadsorbents is in the stable form of As(V) with a percentage of arsenate onto {alpha}-MnO{sub 2} is 0.099% as compared to 0.021% onto {delta}-MnO{sub 2}, clearly indicating the higher adsorption of As(V) in case of {alpha}-MnO{sub 2} as compared to {delta}-MnO{sub 2}, which is in good agreement with the adsorption studies results. Display Omitted« less
Effectiveness of Different Urban Heat Island Mitigation Methods and Their Regional Impacts
NASA Astrophysics Data System (ADS)
Zhang, N.
2017-12-01
Cool roofs and green roofs are two popular methods to mitigate urban heat island and improve urban climate. The effectiveness of different urban heat island mitigation strategies in the summer of 2013 in the Yangtze River Delta, China is investigated using the WRF (Weather Research and Forecasting) model coupled with a physically based urban canopy model. The modifications to the roof surface changed the urban surface radiation balance and then modified the local surface energy budget. Both cool roofs and green roofs led to lower surface skin temperature and near-surface air temperature. Increasing the roof albedo to 0.5 caused a similar effectiveness as covering 25% of urban roofs with vegetation; increasing roof albedo to 0.7 caused a similar near-surface air temperature decrease as 75% green roof coverage. The near-surface relative humidity increased in both cool roof and green roof experiments because of the combination of the impacts of increases in specific humidity and decreases in air temperature. The regional impacts of cool roofs and green roofs were evaluated using the regional effect index. The regional effect could be found in both near-surface air temperature and surface specific/relative humidity when the percentage of roofs covered with high albedo materials or green roofs reached a higher fraction (greater than 50%). The changes in the vertical profiles of temperature cause a more stable atmospheric boundary layer over the urban area; at the same time, the crossover phenomena occurred above the boundary layer due to the decrease in vertical wind speed.
Farrell, K.M.
2001-01-01
This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions - vertical (x), lateral (y), and down-the-basin (z). A flood basin fills in as landforms vertically (x) and laterally accrete (y), and prograde down-the-basin (z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution. ?? 2001 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Farrell, K. M.
2001-02-01
This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions — vertical ( x), lateral ( y), and down-the-basin ( z). A flood basin fills in as landforms vertically ( x) and laterally accrete ( y), and prograde down-the-basin ( z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution.
Spatial proximity and sequence localization of the reactive sulfhydryls of porphobilinogen synthase.
Markham, G. D.; Myers, C. B.; Harris, K. A.; Volin, M.; Jaffe, E. K.
1993-01-01
The zinc metalloenzyme porphobilinogen synthase (PBGS) contains several functionally important, but previously unidentified, reactive sulfhydryl groups. The enzyme has been modified with the reversible sulfhydryl-specific nitroxide spin label derivative of methyl methanethiosulfonate (MMTS), (1-oxyl-2,2,5,5-tetramethyl-delta 3-pyrroline-3-methyl)methanethiosulfonate (SL-MMTS) (Berliner, L. J., Grunwald, J., Hankovszky, H. O., & Hideg, K., 1982, Anal. Biochem. 119, 450-455). EPR spectra show that SL-MMTS labels three groups per PBGS subunit (24 per octamer), as does MMTS. EPR signals reflecting nitroxides of different mobilities are observed. Two of the three modified cysteines have been identified as Cys-119 and Cys-223 by sequencing peptides produced by an Asp-N protease digest of the modified protein. Because MMTS-reactive thiols have been implicated as ligands to the required Zn(II), EPR spectroscopy has been used to determine the spatial proximity of the modified cysteine residues. A forbidden (delta m = 2) EPR transition is observed indicating a through-space dipolar interaction between at least two of the nitroxides. The relative intensity of the forbidden and allowed transitions show that at least two of the unpaired electrons are within at most 7.6 A of each other. SL-MMTS-modified PBGS loses all Zn(II) and cannot catalyze product formation. The modified enzyme retains the ability to bind one of the two substrates at each active site. Binding of this substrate has no influence on the EPR spectral properties of the spin-labeled enzyme, or on the rate of release of the nitroxides when 2-mercaptoethanol is added.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8382991
Application of Simulated Annealing and Related Algorithms to TWTA Design
NASA Technical Reports Server (NTRS)
Radke, Eric M.
2004-01-01
Simulated Annealing (SA) is a stochastic optimization algorithm used to search for global minima in complex design surfaces where exhaustive searches are not computationally feasible. The algorithm is derived by simulating the annealing process, whereby a solid is heated to a liquid state and then cooled slowly to reach thermodynamic equilibrium at each temperature. The idea is that atoms in the solid continually bond and re-bond at various quantum energy levels, and with sufficient cooling time they will rearrange at the minimum energy state to form a perfect crystal. The distribution of energy levels is given by the Boltzmann distribution: as temperature drops, the probability of the presence of high-energy bonds decreases. In searching for an optimal design, local minima and discontinuities are often present in a design surface. SA presents a distinct advantage over other optimization algorithms in its ability to escape from these local minima. Just as high-energy atomic configurations are visited in the actual annealing process in order to eventually reach the minimum energy state, in SA highly non-optimal configurations are visited in order to find otherwise inaccessible global minima. The SA algorithm produces a Markov chain of points in the design space at each temperature, with a monotonically decreasing temperature. A random point is started upon, and the objective function is evaluated at that point. A stochastic perturbation is then made to the parameters of the point to arrive at a proposed new point in the design space, at which the objection function is evaluated as well. If the change in objective function values (Delta)E is negative, the proposed new point is accepted. If (Delta)E is positive, the proposed new point is accepted according to the Metropolis criterion: rho((Delta)f) = exp((-Delta)E/T), where T is the temperature for the current Markov chain. The process then repeats for the remainder of the Markov chain, after which the temperature is decremented and the process repeats. Eventually (and hopefully), a near-globally optimal solution is attained as T approaches zero. Several exciting variants of SA have recently emerged, including Discrete-State Simulated Annealing (DSSA) and Simulated Tempering (ST). The DSSA algorithm takes the thermodynamic analogy one step further by categorizing objective function evaluations into discrete states. In doing so, many of the case-specific problems associated with fine-tuning the SA algorithm can be avoided; for example, theoretical approximations for the initial and final temperature can be derived independently of the case. In this manner, DSSA provides a scheme that is more robust with respect to widely differing design surfaces. ST differs from SA in that the temperature T becomes an additional random variable in the optimization. The system is also kept in equilibrium as the temperature changes, as opposed to the system being driven out of equilibrium as temperature changes in SA. ST is designed to overcome obstacles in design surfaces where numerous local minima are separated by high barriers. These algorithms are incorporated into the optimal design of the traveling-wave tube amplifier (TWTA). The area under scrutiny is the collector, in which it would be ideal to use negative potential to decelerate the spent electron beam to zero kinetic energy just as it reaches the collector surface. In reality this is not plausible due to a number of physical limitations, including repulsion and differing levels of kinetic energy among individual electrons. Instead, the collector is designed with multiple stages depressed below ground potential. The design of this multiple-stage collector is the optimization problem of interest. One remaining problem in SA and DSSA is the difficulty in determining when equilibrium has been reached so that the current Markov chain can be terminated. It has been suggested in recent literature that simulating the thermodynamic properties opecific heat, entropy, and internal energy from the Boltzmann distribution can provide good indicators of having reached equilibrium at a certain temperature. These properties are tested for their efficacy and implemented in SA and DSSA code with respect to TWTA collector optimization.
Modular Approach to Launch Vehicle Design Based on a Common Core Element
NASA Technical Reports Server (NTRS)
Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.; Baysinger, Mike
2010-01-01
With a heavy lift launch vehicle as the centerpiece of our nation's next exploration architecture's infrastructure, the Advanced Concepts Office at NASA's Marshall Space Flight Center initiated a study to examine the utilization of elements derived from a heavy lift launch vehicle for other potential launch vehicle applications. The premise of this study is to take a vehicle concept, which has been optimized for Lunar Exploration, and utilize the core stage with other existing or near existing stages and boosters to determine lift capabilities for alternative missions. This approach not only yields a vehicle matrix with a wide array of capabilities, but also produces an evolutionary pathway to a vehicle family based on a minimum development and production cost approach to a launch vehicle system architecture, instead of a purely performance driven approach. The upper stages and solid rocket booster selected for this study were chosen to reflect a cross-section of: modified existing assets in the form of a modified Delta IV upper stage and Castor-type boosters; potential near term launch vehicle component designs including an Ares I upper stage and 5-segment boosters; and longer lead vehicle components such as a Shuttle External Tank diameter upper stage. The results of this approach to a modular launch system are given in this paper.
How Many Ultra-Low Delta-v Near Earth Objects Remain Undiscovered? Implications for missions.
NASA Astrophysics Data System (ADS)
Elvis, Martin; Ranjan, Sukrit; Galache, Jose Luis; Murphy, Max
2015-08-01
The past decade has witnessed considerable growth of interest in missions to Near-Earth Objects (NEOs). NEOs are considered prime targets for manned and robotic missions, for both scientific objectives as well as in-situ resource utilization including harvesting of water for propellant and life support and mining of high-value elements for sale on Earth. Appropriate targets are crucial to such missions. Hence, ultra-low delta-v mission targets are strongly favored. Some mission architectures rely on the discovery of more ultra-low delta-v NEOs. In fact the approved and executed NEO missions have all targeted asteroids with ultra-low LEO to asteroid rendezvous delta-v <5.5 km/s.In this paper, we estimate the total NEO population as a function of delta-v, and how many remain to be discovered in various size ranges down to ~100m. We couple the NEOSSat-1 model (Greenstreet et al., 2012) to the NEO size distribution derived from the NEOWISE survey (Mainzer et al., 2011b) to compute an absolute NEO population model. We compare the Minor Planet Center (MPC) catalog of known NEOs to this NEO population model. We compute the delta-v from LEO to asteroid rendezvous orbits using a modified Shoemaker-Helin (S-H) formalism that empirically removes biases found comparing S-H with the results from NHATS. The median delta-v of the known NEOs is 7.3 km/s, the median delta-v predicted by our NEO model is 9.8 km/s, suggesting that undiscovered objects are biased to higher delta-v. The survey of delta-v <10.3 km/s NEOs is essentially complete for objects with diameter D >300 m. However, there are tens of thousands of objects with delta-v <10.3 km/s to be discovered in the D = 50 - 300 m size class (H = 20.4 - 24.3). Our work suggests that there are 100 yet-undiscovered NEOs with delta-v < 5:8 km/s, and 1000 undiscovered NEOs with v < 6.3 km/s. We conclude that, even with complete NEO surveys, the selection of good (i.e. ultra-low delta-v) mission targets is limited given current propulsion technology. Visiting the full range of NEO sub-types will likely require improved propulsion systems.
NASA Astrophysics Data System (ADS)
Wu, Yuanpeng; Guo, Meiling; Liu, Guanfei; Xue, Shishan; Xia, Yuanmeng; Liu, Dan; Lei, Weiwei
2018-04-01
In this study, the surface modification of boron nitride nanosheets (BNNSs) with poly 2-acrylamido-2-methyl- propanesulfonate (PAMPS) brushes is achieved through electron transfer atom transfer radical polymerization (ARGET ATRP). BNNSs surface was first modified with α-bromoisobutyryl bromide (BIBB) via hydroxyl groups, then PAMPS brushes were grown on the surface through ARGET ATRP. Polyelectrolyte brushes modified BNNSs were further characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses (TGA), x-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The concentraction of water-dispersion of BNNSs have been enhanced significantly by PAMPS and the high water-dispersible functional BNNSs/PAMPS composites are expected to have potential applications in biomedical and thermal management in electronics.
An Investigation of the Effects of Self-Assembled Monolayers on Protein Crystallisation
Zhang, Chen-Yan; Shen, He-Fang; Wang, Qian-Jin; Guo, Yun-Zhu; He, Jin; Cao, Hui-Ling; Liu, Yong-Ming; Shang, Peng; Yin, Da-Chuan
2013-01-01
Most protein crystallisation begins from heterogeneous nucleation; in practice, crystallisation typically occurs in the presence of a solid surface in the solution. The solid surface provides a nucleation site such that the energy barrier for nucleation is lower on the surface than in the bulk solution. Different types of solid surfaces exhibit different surface energies, and the nucleation barriers depend on the characteristics of the solid surfaces. Therefore, treatment of the solid surface may alter the surface properties to increase the chance to obtain protein crystals. In this paper, we propose a method to modify the glass cover slip using a self-assembled monolayer (SAM) of functional groups (methyl, sulfydryl and amino), and we investigated the effect of each SAM on protein crystallisation. The results indicated that both crystallisation success rate in a reproducibility study, and crystallisation hits in a crystallisation screening study, were increased using the SAMs, among which, the methyl-modified SAM demonstrated the most significant improvement. These results illustrated that directly modifying the crystallisation plates or glass cover slips to create surfaces that favour heterogeneous nucleation can be potentially useful in practical protein crystallisation, and the utilisation of a SAM containing a functional group can be considered a promising technique for the treatment of the surfaces that will directly contact the crystallisation solution. PMID:23749116
Hsueh, Hsiao-Ting; Lin, Chih-Ting
2016-05-15
Surface potential is one of the most important properties at solid-liquid interfaces. It can be modulated by the voltage applied on the electrode or by the surface properties. Hence, surface potential is a good indicator for surface modifications, such as biomolecular bindings. In this work, we proposed a planar nano-gap structure for surface-potential difference monitoring. Based on the proposed architecture, the variance of surface-potential difference can be determined by electrical double layer capacitance (EDLC) between the nano-gap electrodes. Using cyclic voltammetry method, in this work, we demonstrated a relationship between surface potential and EDLC by chemically modifying surface properties. Finally, we also showed the proposed planar nano-gap device provides the capability for cardiac-troponin T (cTnT) measurements with co-existed 10 µg/ml BSA interference. The detection dynamic range is from 100 pg/ml to 1 µg/ml. Based on experimental results and extrapolation, the detection limit is less than 100 pg/ml in diluted PBS buffer (0.01X PBS). These results demonstrated the planar nano-gap architecture having potentials on biomolecular detection through monitoring of surface-potential variation. Copyright © 2015 Elsevier B.V. All rights reserved.
Surface phonons and elastic surface waves
NASA Astrophysics Data System (ADS)
Büscher, H.; Klein-Heßling, W.; Ludwig, W.
Theoretical investigations on the dynamics of the (001), (110) and (111) surfaces of some cubic metals (Ag, Cu, Ni) will be reviewed. Both, lattice dynamical and continuum theoretical results are obtained via a Green's function formalism. The main attitude of this paper is the comparison of our results with experiments and with results obtained via slab-calculations. The calculation of elastic surface waves has been performed using a modified surface-green-function-matching method. We have used two different approaches of calculation the bulk Green's function (a) using the spectral representation and (b) a method, what works on residues. The investigations are carried out using shortrange phenomenological potentials. The atomic force constants in the first surface layers are modified to describe surface phonon anomalies, observed by experiments. In the case of Ag (100) and Ag(110) we conclude that the detection of odd symmetry shear modes by Erskine et al. [1 a, b] was not very accurate.
Drexler, J.Z.; De Fontaine, C. S.; Deverel, S.J.
2009-01-01
Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 5580 of the original peat layer on the farmed islands has been lost due to land-surface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 29005700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface. ?? 2009 The Society of Wetland Scientists.
High-throughput real-time quantitative reverse transcription PCR.
Bookout, Angie L; Cummins, Carolyn L; Mangelsdorf, David J; Pesola, Jean M; Kramer, Martha F
2006-02-01
Extensive detail on the application of the real-time quantitative polymerase chain reaction (QPCR) for the analysis of gene expression is provided in this unit. The protocols are designed for high-throughput, 384-well-format instruments, such as the Applied Biosystems 7900HT, but may be modified to suit any real-time PCR instrument. QPCR primer and probe design and validation are discussed, and three relative quantitation methods are described: the standard curve method, the efficiency-corrected DeltaCt method, and the comparative cycle time, or DeltaDeltaCt method. In addition, a method is provided for absolute quantification of RNA in unknown samples. RNA standards are subjected to RT-PCR in the same manner as the experimental samples, thus accounting for the reaction efficiencies of both procedures. This protocol describes the production and quantitation of synthetic RNA molecules for real-time and non-real-time RT-PCR applications.
ERIC Educational Resources Information Center
Lunsford, Suzanne K.; Speelman, Nicole; Stinson, Jelynn; Yeary, Amber; Choi, Hyeok; Widera, Justyna; Dionysiou, Dionysios D.
2008-01-01
This article describes an undergraduate laboratory for an instrumental analysis course that integrates electroanalytical chemistry and infrared spectroscopy. Modified electrode surfaces are prepared by constant potentiometric electrolysis over the potential range of 1.5-1.8 V and analyzed by cyclic voltammetry and infrared spectroscopy. The…
NASA Astrophysics Data System (ADS)
Garma, Rey Jan D.
The trade between detector and optics performance is often conveyed through the Q metric, which is defined as the ratio of detector sampling frequency and optical cutoff frequency. Historically sensors have operated at Q ≈ 1, which introduces aliasing but increases the system modulation transfer function (MTF) and signal-to-noise ratio (SNR). Though mathematically suboptimal, such designs have been operationally ideal when considering system parameters such as pointing stability and detector performance. Substantial advances in read noise and quantum efficiency of modern detectors may compensate for the negative aspects associated with balancing detector/optics performance, presenting an opportunity to revisit the potential for implementing Nyquist-sampled (Q ≈ 2) sensors. A digital image chain simulation is developed and validated against a laboratory testbed using objective and subjective assessments. Objective assessments are accomplished by comparison of the modeled MTF and measurements from slant-edge photographs. Subjective assessments are carried out by performing a psychophysical study where subjects are asked to rate simulation and testbed imagery against a DeltaNIIRS scale with the aid of a marker set. Using the validated model, additional test cases are simulated to study the effects of increased detector sampling on image quality with operational considerations. First, a factorial experiment using Q-sampling, pointing stability, integration time, and detector performance is conducted to measure the main effects and interactions of each on the response variable, DeltaNIIRS. To assess the fidelity of current models, variants of the General Image Quality Equation (GIQE) are evaluated against subject-provided ratings and two modified GIQE versions are proposed. Finally, using the validated simulation and modified IQE, trades are conducted to ascertain the feasibility of implementing Q ≈ 2 designs in future systems.
Kuo, Che-Hung; Chang, Hsun-Yun; Liu, Chi-Ping; Lee, Szu-Hsian; You, Yun-Wen; Shyue, Jing-Jong
2011-03-07
Self-assembled monolayer (SAM)-modified nano-materials are a new technology to deliver drug molecules. While the majority of these depend on covalently immobilizing molecules on the surface, it is proposed that electrostatic interactions may be used to deliver drugs. By tuning the surface potential of solid substrates with SAMs, drug molecules could be either absorbed on or desorbed from substrates through the difference in electrostatic interactions around the selected iso-electric point (IEP). In this work, the surface of silicon substrates was tailored with various ratios of 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS), which form amine- and thiol-bearing SAMs, respectively. The ratio of the functional groups on the silicon surface was quantified by X-ray photoelectron spectrometry (XPS); in general, the deposition kinetics of APTMS were found to be faster than those of MPTMS. Furthermore, for solutions with high MPTMS concentrations, the relative deposition rate of APTMS increased dramatically due to the acid-base reaction in the solution and subsequent electrostatic interactions between the molecules and the substrate. The zeta potential in aqueous electrolytes was determined with an electro-kinetic analyzer. By depositing SAMs of binary functional groups in varied ratios, the surface potential and IEP of silicon substrates could be fine-tuned. For <50% amine concentration in SAMs, the IEP changed linearly with the chemical composition from <2 to 7.18. For higher amine concentrations, the IEP slowly increased with concentration to 7.94 because the formation of hydrogen-bonding suppressed the subsequent protonation of amines.
NASA Astrophysics Data System (ADS)
Ucar, Taner; Merter, Onur
2018-01-01
A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom (MDOF) system is approximated by using the modal energy-decomposition. Energy-based base shear coefficients are verified by means of both pushover analysis and nonlinear time history (NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.
State transition of a non-Ohmic damping system in a corrugated plane.
Lü, Kun; Bao, Jing-Dong
2007-12-01
Anomalous transport of a particle subjected to non-Ohmic damping of the power delta in a tilted periodic potential is investigated via Monte Carlo simulation of the generalized Langevin equation. It is found that the system exhibits two relative motion modes: the locked state and the running state. In an environment of sub-Ohmic damping (0
NASA Technical Reports Server (NTRS)
Berger, Pascal; Sayir, Ali; Berger, Marie-Helene
2004-01-01
The interaction between hydrogen and various high temperature protonic conductors (HTPC) has not been clearly understood due to poor densification and unreacted secondary phases. the melt-processing technique is used in producing fully dense simple SrCe(0.9)Y (0.10) O(3-delta) and complex Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskites that can not be achieved by solid-state sintering. the possibilities of ion beam analysis have been investigated to quantify hydrogen distribution in HTPC perovskites subjected to water heat treatment. Nuclear microprobe technique is based on the interactions of a focused ion beam of MeV light ions (H-1, H-2, He-3, He-4,.) with the sample to be analyzed to determine local elemental concentrations at the cubic micrometer scale, the elastic recoil detection analysis technique (ERDA) has been carried out using He-4(+) microbeams and detecting the resulting recoil protons. Mappings of longitudinal sections of water treated SrCeO3 and Sr(Ca(1/3)Nb(2/3))O3 perovskites have been achieved, the water treatment strongly alters the surface of simple SrCe(0.9)Y(0.10)O(3-delta) perovskite. From Rutherford Back Scattering measurements (RBS), both Ce depletion and surface re-deposition is evidenced. the ERDA investigations on water treated Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskite did not exhibit any spatial difference for the hydrogen incorporation from the surface to the centre. the amount of hydrogen incorporation for Sr3Ca(1+x)Nb(2+x)O(9-delta) was low and required further development of two less conventional techniques, ERDA in forward geometry and forward elastic diffusion H-1(p,p) H-1 with coincidence detection.
Application of Jason-2/3 Altimetry for Virtual Gauging and Flood Forecasting in Mekong Basin
NASA Astrophysics Data System (ADS)
Lee, H.; Hossain, F.; Okeowo, M. A.; Nguyen, L. D.; Bui, D. D.; Chang, C. H.
2016-12-01
Vietnam suffers from both flood and drought during the rainy and dry seasons, respectively, due to its highly varying surface water resources. However, the National Center for Water Resources Planning and Investigation (NAWAPI) states that only 7 surface water monitoring stations have been constructed in Central and Highland Central regions with 100 station planned to be constructed by 2030 throughout Vietnam. For the Mekong Delta (MD), the Mekong River Commission (MRC) provides 7-day river level forecasting, but only at the two gauge stations located near the border between Cambodia and Vietnam (http://ffw.mrcmekong.org/south.htm). In order to help stakeholder agencies monitor upstream processes in the rivers and manage their impacts on the agricultural sector and densely populated delta cities, we, first of all, construct the so-called virtual stations throughout the entire Mekong River using the fully automated river level extraction tool with Jason-2/3 Geophysical Research Record (GDR) data. Then, we discuss the potentials and challenges of river level forecasting using Jason-2/3 Interim GDR (IGDR) data, which has 1 - 2 days of latency, over the Mekong River. Finally, based on our analyses, we propose a forecasting system for the Mekong River by drawing from our experience in operationalizing Jason-2 altimetry for Bangladesh flood forecasting.
A Versatile Method for Functionalizing Surfaces with Bioactive Glycans
Cheng, Fang; Shang, Jing; Ratner, Daniel M.
2011-01-01
Microarrays and biosensors owe their functionality to our ability to display surface-bound biomolecules with retained biological function. Versatile, stable, and facile methods for the immobilization of bioactive compounds on surfaces have expanded the application of high-throughput ‘omics’-scale screening of molecular interactions by non-expert laboratories. Herein, we demonstrate the potential of simplified chemistries to fabricate a glycan microarray, utilizing divinyl sulfone (DVS)-modified surfaces for the covalent immobilization of natural and chemically derived carbohydrates, as well as glycoproteins. The bioactivity of the captured glycans was quantitatively examined by surface plasmon resonance imaging (SPRi). Composition and spectroscopic evidence of carbohydrate species on the DVS-modified surface were obtained by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), respectively. The site-selective immobilization of glycans based on relative nucleophilicity (reducing sugar vs. amine- and sulfhydryl-derived saccharides) and anomeric configuration was also examined. Our results demonstrate straightforward and reproducible conjugation of a variety of functional biomolecules onto a vinyl sulfone-modified biosensor surface. The simplicity of this method will have a significant impact on glycomics research, as it expands the ability of non-synthetic laboratories to rapidly construct functional glycan microarrays and quantitative biosensors. PMID:21142056
NASA Astrophysics Data System (ADS)
Rambo, J. E.; Kim, W.; Miller, K.
2017-12-01
Physical modeling of a delta's evolution can represent how changing the intervals of flood and interflood can alter a delta's fluvial pattern and geometry. Here we present a set of six experimental runs in which sediment and water were discharged at constant rates over each experiment. During the "flood" period, both sediment and water were discharged at rates of 0.25 cm3/s and 15 ml/s respectively, and during the "interflood" period, only water was discharged at 7.5 ml/s. The flood periods were only run for 30 minutes to keep the total volume of sediment constant. Run 0 did not have an interflood period and therefore ran with constant sediment and water discharge for the duration of the experiment.The other five runs had either 5, 10, or 15-min intervals of flood with 5, 10, or 15-min intervals of interflood. The experimental results show that Run 0 had the smallest topset area. This is due to a lack of surface reworking that takes place during interflood periods. Run 1 had 15-minute intervals of flood and 15-minute intervals of interflood, and it had the largest topset area. Additionally, the experiments that had longer intervals of interflood than flood had more elongated delta geometries. Wetted fraction color maps were also created to plot channel locations during each run. The maps show that the runs with longer interflood durations had channels occurring predominantly down the middle with stronger incisions; these runs produced deltas with more elongated geometries. When the interflood duration was even longer, however, strong channels started to occur at multiple locations. This increased interflood period allowed for the entire area over the delta's surface to be reworked, thus reducing the downstream slope and allowing channels to be more mobile laterally. Physical modeling of a delta allows us to predict a delta's resulting geometry given a set of conditions. This insight is needed especially with delta's being the home to many populations of people and a habitat for various other species.
Heitzler, P; Simpson, P
1993-03-01
In Drosophila each neural precursor is chosen from a group of cells through cell interactions mediated by Notch and Delta which may function as receptor and ligand (signal), respectively, in a lateral signalling pathway. The cells of a group are equipotential and express both Notch and Delta. Hyperactive mutant Notch molecules, (Abruptex), probably have an enhanced affinity for the ligand. When adjacent to wild-type cells, cells bearing the Abruptex proteins are unable to produce the signal. It is suggested that in addition to the binding of Notch molecules on one cell to the Delta molecules of opposing cells, the Notch and Delta proteins on the surface of the same cell may interact. Binding between a cell's own Notch and Delta molecules would alter the availability of these proteins to interact with their counterparts on adjacent cells.
Cannabis constituents modulate δ9-tetrahydrocannabinol-induced hyperphagia in rats.
Farrimond, Jonathan A; Hill, Andrew J; Whalley, Benjamin J; Williams, Claire M
2010-05-01
The hyperphagic effect of Delta9-tetrahydrocannabinol (Delta9THC) in humans and rodents is well known. However, no studies have investigated the importance of Delta9THC composition and any influence other non-Delta9THC cannabinoids present in Cannabis sativa may have. We therefore compared the effects of purified Delta9THC, synthetic Delta9THC (dronabinol), and Delta9THC botanical drug substance (Delta9THC-BDS), a Delta9THC-rich standardized extract comparable in composition to recreationally used cannabis. Adult male rats were orally dosed with purified Delta9THC, synthetic Delta9THC, or Delta9THC-BDS, matched for Delta9THC content (0.34-2.68 mg/kg). Prior to dosing, subjects were satiated, and food intake was recorded following Delta9THC administration. Data were then analyzed in terms of hourly intake and meal patterns. All three Delta9THC substances tested induced significant hyperphagic effects at doses >or=0.67 mg/kg. These effects included increased intake during hour one, a shorter latency to onset of feeding and a greater duration and consumption in the first meal. However, while some differences in vehicle control intakes were observed, there were significant, albeit subtle, differences in pattern of effects between the purified Delta9THC and Delta9THC-BDS. All Delta9THC compounds displayed classical Delta9THC effects on feeding, significantly increasing shortterm intake whilst decreasing latency to the first meal. We propose that the subtle adjustment to the meal patterns seen between the purified Delta9THC and Delta9THC-BDS are due to non-Delta9THC cannabinoids present in Delta9THC-BDS. These compounds and other non-cannabinoids have an emerging and diverse pharmacology and can modulate Delta9THC-induced hyperphagia, making them worth further investigation for their therapeutic potential.
NASA Astrophysics Data System (ADS)
Chateauvert, C. Adam; Lesack, Lance F. W.; Bothwell, Max L.
2012-12-01
The Mackenzie River Delta is a lake-rich arctic floodplain that receives high inputs of dissolved organic matter (DOM) and suspended particulates from allochthonous and autochthonous sources, and may transfer carbon from dissolved to particulate phase via in situ formation of transparent exopolymer particles (TEP). TEP provides food for grazers, surfaces for bacteria, and increased potential for aggregation and sedimentation of organic matter. During open water 2006, we tracked TEP abundances in three Delta lakes representing gradients that include declining river-to-lake connection times, increasing levels of dissolved organic carbon (DOC), and declining chromophoric-DOM (CDOM). Unexpectedly, TEP abundances were highest immediately after the flood, when autochthonous autotrophic production was at a seasonal low and CDOM a seasonal high. Moreover, the lake with the strongest riverine influence and lowest levels of autochthonous autotrophic production had the highest mean TEP-carbon (TEP-C) concentrations among the lakes. The mean proportion of particulate organic carbon (POC) represented by TEP-C increased with increasing river connection time, and appears to represent a substantial proportion of POC in Mackenzie Delta Lakes. Unexpectedly, the TEP gradient was most strongly related to CDOM (river water source) rather than overall DOC. Variations in CDOM accounted for 53% of TEP-C variation among the lakes, indicating allochthonous matter was the most important source of TEP. DOC release from in situ macrophytes during periods of high photosynthesis may contribute to TEP formation in the lake with lowest riverine influence, but pH levels >9.5 driven by the high photosynthetic rates complicate the interpretation of results from this lake.
Fujii, Roger; Ranalli, Anthony J.; Aiken, George R.; Bergamaschi, Brian A.
1998-01-01
Water exported from the Sacramento-San Joaquin River delta (Delta) is an important drinking-water source for more than 20 million people in California. At times, this water contains elevated concentrations of dissolved organic carbon and bromide, and exceeds the U.S. Environmental Protection Agency's maximum contaminant level for trihalomethanes of 0.100 milligrams per liter if chlorinated for drinking water. About 20 to 50 percent of the trihalomethane precursors to Delta waters originates from drainage water from peat soils on Delta islands. This report elucidates some of the factors and processes controlling and affecting the concentration and quality of dissolved organic carbon released from peat soils and relates the propensity of dissolved organic carbon to form trihalomethanes to its chemical composition.Soil water was sampled from near-surface, oxidized, well-decomposed peat soil (upper soil zone) and deeper, reduced, fibrous peat soil (lower soil zone) from one agricultural field in the west central Delta over 1 year. Concentrations of dissolved organic carbon in the upper soil zone were highly variable, with median concentrations ranging from 46.4 to 83.2 milligrams per liter. Concentrations of dissolved organic carbon in samples from the lower soil zone were much less variable and generally slightly higher than samples from the upper soil zone, with median concentrations ranging from 49.3 to 82.3 milligrams per liter. The dissolved organic carbon from the lower soil zone had significantly higher aromaticity (as measured by specific ultraviolet absorbance) and contained significantly greater amounts of aromatic humic substances (as measured by XAD resin fractionation and carbon-13 nuclear magnetic resonance analysis of XAD isolates) than the dissolved organic carbon from the upper soil zone. These results support the conclusion that more aromatic forms of dissolved organic carbon are produced under anaerobic conditions compared to aerobic conditions. Dissolved organic carbon concentration, trihalomethane formation potential, and ultraviolet absorbance were all highly correlated, showing that trihalomethane precursors increased with increasing dissolved organic carbon and ultraviolet absorbance for whole water samples. Contrary to the generally accepted conceptual model for trihalomethane formation that assumes that aromatic forms of carbon are primary precursors to trihalomethanes, results from this study indicate that dissolved organic carbon aromaticity appears unrelated to trihalomethane formation on a carbon-normalized basis. Thus, dissolved organic carbon aromaticity alone cannot fully explain or predict trihalomethane precursor content, and further investigation of aromatic and nonaromatic forms of carbon will be needed to better identify trihalomethane precursors.
Boo, Chanhee; Lee, Jongho; Elimelech, Menachem
2016-08-02
We investigated the factors that determine surface omniphobicity of microporous membranes and evaluated the potential application of these membranes in desalination of low surface tension wastewaters by membrane distillation (MD). Specifically, the effects of surface morphology and surface energy on membrane surface omniphobicity were systematically investigated by evaluating wetting resistance to low surface tension liquids. Single and multilevel re-entrant structures were achieved by using cylindrical glass fibers as a membrane substrate and grafting silica nanoparticles (SiNPs) on the fibers. Surface energy of the membrane was tuned by functionalizing the fiber substrate with fluoroalkylsilane (FAS) having two different lengths of fluoroalkyl chains. Results show that surface omniphobicity of the modified fibrous membrane increased with higher level of re-entrant structure and with lower surface energy. The secondary re-entrant structure achieved by SiNP coating on the cylindrical fibers was found to play a critical role in enhancing the surface omniphobicity. Membranes coated with SiNPs and chemically modified by the FAS with a longer fluoroalkyl chain (or lower surface energy) exhibited excellent surface omniphobicity and showed wetting resistance to low surface tension liquids such as ethanol (22.1 mN m(-1)). We further evaluated performance of the membranes in desalination of saline feed solutions with varying surface tensions by membrane distillation (MD). The engineered membranes exhibited stable MD performance with low surface tension feed waters, demonstrating the potential application omniphobic membranes in desalinating complex, high salinity industrial wastewaters.
Impacts of seawater rise on seawater intrusion in the Nile Delta Aquifer, Egypt.
Sefelnasr, Ahmed; Sherif, Mohsen
2014-01-01
Several investigations have recently considered the possible impacts of climate change and seawater level rise on seawater intrusion in coastal aquifers. All have revealed the severity of the problem and the significance of the landward movement of the dispersion zone under the condition of seawater level rise. Most of the studies did not consider the possible effects of the seawater rise on the inland movement of the shoreline and the associate changes in the boundary conditions at the seaside and the domain geometry. Such effects become more evident in flat, low land, coastal alluvial plans where large areas might be submerged with seawater under a relatively small increase in the seawater level. None of the studies combined the effect of increased groundwater pumping, due to the possible decline in precipitation and shortage in surface water resources, with the expected landward shift of the shore line. In this article, the possible effects of seawater level rise in the Mediterranean Sea on the seawater intrusion problem in the Nile Delta Aquifer are investigated using FEFLOW. The simulations are conducted in horizontal view while considering the effect of the shoreline landward shift using digital elevation models. In addition to the basic run (current conditions), six different scenarios are considered. Scenarios one, two, and three assume a 0.5 m seawater rise while the total pumping is reduced by 50%, maintained as per the current conditions and doubled, respectively. Scenarios four, five, and six assume a 1.0 m seawater rise and the total pumping is changed as in the first three scenarios. The shoreline is moved to account for the seawater rise and hence the study domain and the seaside boundary are modified accordingly. It is concluded that, large areas in the coastal zone of the Nile Delta will be submerged by seawater and the coast line will shift landward by several kilometers in the eastern and western sides of the Delta. Scenario six represents the worst case under which the volume of freshwater will be reduced to about 513 km(3) (billion m(3) ). © 2013, National Ground Water Association.
Jaisi, Deb P.; Ji, Shanshan; Dong, Hailiang; Blake, Ruth E.; Eberl, Dennis D.; Kim, Jinwook
2008-01-01
River-dominated delta areas are primary sites of active biogeochemical cycling, with productivity enhanced by terrestrial inputs of nutrients. Particle aggregation in these areas primarily controls the deposition of suspended particles, yet factors that control particle aggregation and resulting sedimentation in these environments are poorly understood. This study was designed to investigate the role of microbial Fe(III) reduction and solution chemistry in aggregation of suspended particles in the Mississippi Delta. Three representative sites along the salinity gradient were selected and sediments were collected from the sediment-water interface. Based on quantitative mineralogical analyses 88–89 wt.% of all minerals in the sediments are clays, mainly smectite and illite. Consumption of SO42− and the formation of H2S and pyrite during microbial Fe(III) reduction of the non-sterile sediments by Shewanella putrefaciens CN32 in artificial pore water (APW) media suggest simultaneous sulfate and Fe(III) reduction activity. The pHPZNPC of the sediments was ≤3.5 and their zeta potentials at the sediment-water interface pH (6.9–7.3) varied from −35 to −45 mV, suggesting that both edges and faces of clay particles have negative surface charge. Therefore, high concentrations of cations in pore water are expected to be a predominant factor in particle aggregation consistent with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Experiments on aggregation of different types of sediments in the same APW composition revealed that the sediment with low zeta potential had a high rate of aggregation. Similarly, addition of external Fe(II) (i.e. not derived from sediments) was normally found to enhance particle aggregation and deposition in all sediments, probably resulting from a decrease in surface potential of particles due to specific Fe(II) sorption. Scanning and transmission electron microscopy (SEM, TEM) images showed predominant face-to-face clay aggregation in native sediments and composite mixtures of biopolymer, bacteria, and clay minerals in the bioreduced sediments. However, a clear need remains for additional information on the conditions, if any, that favor the development of anoxia in deep- and bottom-water bodies supporting Fe(III) reduction and resulting in particle aggregation and sedimentation.
NASA Astrophysics Data System (ADS)
Dunham, A.; Grall, C.; Mondal, D. R.; Steckler, M. S.; Rajapara, H.; Kumar, B.; Philibosian, B.; Akhter, S. H.; Singhvi, A. K.
2016-12-01
Channel migrations and river avulsions in deltaic river systems are mainly driven by differential changes of surface topography, such as the superelevation of channels due to sedimentation. In addition to such autocyclic processes, tectonic events, such as earthquakes, may also lead to avulsions from sudden uplift. The eastern part of the Ganges-Brahmaputra-Meghna Delta (GBMD) is underlain by the blind megathrust of the IndoBurma subduction zone. In this region we investigate a 100 km long sinuous abandoned channel of the Meghna River. Immediately south of the channel, it has been previously shown that the topography is slightly higher than on the rest of the Delta and there is an oxidized Holocene exposure surface. Part of the Titas River flows northward from this area into the abandoned channel belt, opposite of the southward flowing rivers of the delta. We provide results from a detailed investigation of this abandoned channel of the Meghna River using stratigraphic logs of hand-drilled wells, resistivity profiles, sediment analyses and OSL and C14 dating, The OSL ages to be presented constrain the possible date of the event. We employ numerical modeling to evaluate the hypothesis that the co-seismic uplift associated to an earthquake can trigger the channel migration. Our modeling approach aims to estimate the co-seismic uplift associated with potential seismic events using an elastic Coulomb's dislocation model. The geometry fault in our model is estimated using geologic and GPS constraints with standard elastic parameters (Young's modulus = 80 GPa; Poisson's ratio = 0.3). We explored different potential earthquakes geometries that involve the megathrust, a splay fault, or the megathrust terminating in the splay. The magnitude and distribution of co-seismic slip are also varied between a rupture length of 112.5km and 180km along a 225km long fault. We show that any class of models can produce the amount of uplift (1-2 m) necessary for triggering the river avulsion. Thus the avulsion could be due to a >M8 megathrust earthquake or a M7 splay fault rupture. In either case, the rupture cannot extend west of the abandoned channel to the current Meghna River, and thus did not rupture to the deformation front, where the megacity of Dhaka now lies.
Two-frequency /Delta k/ microwave scatterometer measurements of ocean wave spectra from an aircraft
NASA Technical Reports Server (NTRS)
Johnson, J. W.; Jones, W. L.; Weissman, D. E.
1981-01-01
A technique for remotely sensing the large-scale gravity wave spectrum on the ocean surface using a two frequency (Delta k) microwave scatterometer has been demonstrated from stationary platforms and proposed from moving platforms. This measurement takes advantage of Bragg type resonance matching between the electromagnetic wavelength at the difference frequency and the length of the large-scale surface waves. A prominent resonance appears in the cross product power spectral density (PSD) of the two backscattered signals. Ku-Band aircraft scatterometer measurements were conducted by NASA in the North Sea during the 1979 Maritime Remote Sensing (MARSEN) experiment. Typical examples of cross product PSD's computed from the MARSEN data are presented. They demonstrate strong resonances whose frequency and bandwidth agree with the surface characteristics and the theory. Directional modulation spectra of the surface reflectivity are compared to the gravity wave spectrum derived from surface truth measurements.
F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing
NASA Technical Reports Server (NTRS)
1996-01-01
This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.
F-16XL ship #1 CAWAP flight - alpha 5 degrees, altitude 10,000 feet
NASA Technical Reports Server (NTRS)
1996-01-01
The single-seat F-16XL (ship #1) makes another run during the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. This photo shows the aircraft gathering data at an altitude of 10,000 feet, with an angle of attack of 5 degrees. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.
F-16XL ship #1 - CAWAP outboard rakes #7 and inboard rack #3
NASA Technical Reports Server (NTRS)
1996-01-01
This photo shows the #7 outboard rake and the #3 inboard rake on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.
NASA Technical Reports Server (NTRS)
1996-01-01
The single-seat F-16XL (ship #1) makes another run during the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.
F-16XL ship #1 - CAWAP outboard rake #7
NASA Technical Reports Server (NTRS)
1996-01-01
This photo shows the #7 outboard rake on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.
F-16XL ship #1 wing close-up showing boundary layer detection Preston tubes
NASA Technical Reports Server (NTRS)
1995-01-01
This photo shows the boundary layer Preston tubes mounted on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.
DiFranco, Marino; Capote, Joana; Quiñonez, Marbella; Vergara, Julio L
2007-12-01
Two hybrid voltage-sensing systems based on fluorescence resonance energy transfer (FRET) were used to record membrane potential changes in the transverse tubular system (TTS) and surface membranes of adult mice skeletal muscle fibers. Farnesylated EGFP or ECFP (EGFP-F and ECFP-F) were used as immobile FRET donors, and either non-fluorescent (dipicrylamine [DPA]) or fluorescent (oxonol dye DiBAC(4)(5)) lipophilic anions were used as mobile energy acceptors. Flexor digitorum brevis (FDB) muscles were transfected by in vivo electroporation with pEGFP-F and pECFP-F. Farnesylated fluorescent proteins were efficiently expressed in the TTS and surface membranes. Voltage-dependent optical signals resulting from resonance energy transfer from fluorescent proteins to DPA were named QRET transients, to distinguish them from FRET transients recorded using DiBAC(4)(5). The peak DeltaF/F of QRET transients elicited by action potential stimulation is twice larger in fibers expressing ECFP-F as those with EGFP-F (7.1% vs. 3.6%). These data provide a unique experimental demonstration of the importance of the spectral overlap in FRET. The voltage sensitivity of QRET and FRET signals was demonstrated to correspond to the voltage-dependent translocation of the charged acceptors, which manifest as nonlinear components in current records. For DPA, both electrical and QRET data were predicted by radial cable model simulations in which the maximal time constant of charge translocation was 0.6 ms. FRET signals recorded in response to action potentials in fibers stained with DiBAC(4)(5) exhibit DeltaF/F amplitudes as large as 28%, but their rising phase was slower than those of QRET signals. Model simulations require a time constant for charge translocation of 1.6 ms in order to predict current and FRET data. Our results provide the basis for the potential use of lipophilic ions as tools to test for fast voltage-dependent conformational changes of membrane proteins in the TTS.
Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui
2018-02-23
Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.
Intrinsic and extrinsic uncoupling of oxidative phosphorylation.
Kadenbach, Bernhard
2003-06-05
This article reviews parameters of extrinsic uncoupling of oxidative phosphorylation (OxPhos) in mitochondria, based on induction of a proton leak across the inner membrane. The effects of classical uncouplers, fatty acids, uncoupling proteins (UCP1-UCP5) and thyroid hormones on the efficiency of OxPhos are described. Furthermore, the present knowledge on intrinsic uncoupling of cytochrome c oxidase (decrease of H(+)/e(-) stoichiometry=slip) is reviewed. Among the three proton pumps of the respiratory chain of mitochondria and bacteria, only cytochrome c oxidase is known to exhibit a slip of proton pumping. Intrinsic uncoupling was shown after chemical modification, by site-directed mutagenesis of the bacterial enzyme, at high membrane potential DeltaPsi, and in a tissue-specific manner to increase thermogenesis in heart and skeletal muscle by high ATP/ADP ratios, and in non-skeletal muscle tissues by palmitate. In addition, two mechanisms of respiratory control are described. The first occurs through the membrane potential DeltaPsi and maintains high DeltaPsi values (150-200 mV). The second occurs only in mitochondria, is suggested to keep DeltaPsi at low levels (100-150 mV) through the potential dependence of the ATP synthase and the allosteric ATP inhibition of cytochrome c oxidase at high ATP/ADP ratios, and is reversibly switched on by cAMP-dependent phosphorylation. Finally, the regulation of DeltaPsi and the production of reactive oxygen species (ROS) in mitochondria at high DeltaPsi values (150-200 mV) are discussed.
Sneed, Michelle; Brandt, Justin; Solt, Mike
2013-01-01
Extensive groundwater withdrawal from the unconsolidated deposits in the San Joaquin Valley caused widespread aquifer-system compaction and resultant land subsidence from 1926 to 1970—locally exceeding 8.5 meters. The importation of surface water beginning in the early 1950s through the Delta-Mendota Canal and in the early 1970s through the California Aqueduct resulted in decreased pumping, initiation of water-level recovery, and a reduced rate of compaction in some areas of the San Joaquin Valley. However, drought conditions during 1976–77 and 1987–92, and drought conditions and regulatory reductions in surface-water deliveries during 2007–10, decreased surface-water availability, causing pumping to increase, water levels to decline, and renewed compaction. Land subsidence from this compaction has reduced freeboard and flow capacity of the Delta-Mendota Canal, the California Aqueduct, and other canals that deliver irrigation water and transport floodwater. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation and the San Luis and Delta-Mendota Water Authority, assessed land subsidence in the vicinity of the Delta-Mendota Canal as part of an effort to minimize future subsidence-related damages to the canal. The location, magnitude, and stress regime of land-surface deformation during 2003–10 were determined by using extensometer, Global Positioning System (GPS), Interferometric Synthetic Aperture Radar (InSAR), spirit leveling, and groundwater-level data. Comparison of continuous GPS, shallow extensometer, and groundwater-level data, combined with results from a one-dimensional model, indicated the vast majority of the compaction took place beneath the Corcoran Clay, the primary regional confining unit. Land-surface deformation measurements indicated that much of the northern portion of the Delta-Mendota Canal (Clifton Court Forebay to Check 14) was fairly stable or minimally subsiding on an annual basis; some areas showed seasonal periods of subsidence and of uplift that resulted in little or no longer-term elevation loss. Many groundwater levels in this northern area did not reach historical lows during 2003–10, indicating that deformation in this region was primarily elastic. Although the northern portion of the Delta-Mendota Canal was relatively stable, land-surface deformation measurements indicated the southern portion of the Delta-Mendota Canal (Checks 15–21) subsided as part of a large subsidence feature centered about 15 kilometers northeast of the Delta-Mendota Canal, south of the town of El Nido. Results of InSAR analysis indicated at least 540 millimeters of subsidence near the San Joaquin River and the Eastside Bypass during 2008–10, which is part of a 3,200 square-kilometer area—including the southern part of the Delta-Mendota Canal—affected by 20 millimeters or more of subsidence during the same period. Calculations indicated that the subsidence rate doubled in 2008 in some areas. The GPS surveys done in 2008 and 2010 confirmed the high subsidence rate measured by using InSAR for the same period. Water levels in many shallow and deep wells in this area declined during 2007–10; water levels in many deep wells reached historical lows, indicating that subsidence measured during this period was largely inelastic. InSAR-derived subsidence maps for various periods during 2003–10 showed that the area of maximum active subsidence (that is, the largest rates of subsidence) shifted from its historical (1926–70) location southwest of Mendota to south of El Nido. Continued groundwater-level and land-subsidence monitoring in the San Joaquin Valley is important because (1) regulatory- and drought-related reductions in surface-water deliveries since 1976 have resulted in increased groundwater pumping and associated land subsidence, and (2) land use and associated groundwater pumping continue to change throughout the valley. The availability of surface water remains uncertain; even during record-setting precipitation years, such as 2010–11, water deliveries have fallen short of requests and groundwater pumping was required to meet the irrigation demand. Due to the expected continued demand for irrigation supply water and the limitations and uncertainty of surface-water supplies, groundwater pumping and associated land subsidence is likely to continue in the future. Spatially detailed information on land subsidence is needed to facilitate minimization of future subsidence-related damages to the Delta-Mendota Canal and other infrastructure in the San Joaquin Valley. The integration of subsidence, deformation, and water-level measurements—particularly continuous measurements—enables the analysis of aquifer-system response to increased groundwater pumping, which in turn, enables identification of the preconsolidation head and calculation of aquifer-system storage properties. This information can be used to improve numerical model simulations of groundwater flow and aquifer-system compaction and allow for consideration of land subsidence in the evaluation of water-resource management alternatives.
NASA Technical Reports Server (NTRS)
McMillin, S. Naomi; Bryd, James E.; Parmar, Devendra S.; Bezos-OConnor, Gaudy M.; Forrest, Dana K.; Bowen, Susan
1996-01-01
An experimental investigation of the effect of leading-edge radius, camber, Reynolds number, and boundary-layer state on the incipient separation of a delta wing at supersonic speeds was conducted at the Langley Unitary Plan Wind Tunnel at Mach number of 1.60 over a free-stream Reynolds number range of 1 x 106 to 5 x 106 ft-1. The three delta wing models examined had a 65 deg swept leading edge and varied in cross-sectional shape: a sharp wedge, a 20:1 ellipse, and a 20:1 ellipse with a -9.750 circular camber imposed across the span. The wings were tested with and without transition grit applied. Surface-pressure coefficient data and flow-visualization data indicated that by rounding the wing leading edge or cambering the wing in the spanwise direction, the onset of leading-edge separation on a delta wing can be raised to a higher angle of attack than that observed on a sharp-edged delta wing. The data also showed that the onset of leading-edge separation can be raised to a higher angle of attack by forcing boundary-layer transition to occur closer to the wing leading edge by the application of grit or the increase in free-stream Reynolds number.
Bräuer, A; English, M J M; Lorenz, N; Steinmetz, N; Perl, T; Braun, U; Weyland, W
2003-01-01
Forced-air warming has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with lower body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of six complete lower body warming systems. Heat transfer of forced-air warmers can be described as follows:[1]Qdot;=h.DeltaT.A where Qdot; = heat transfer [W], h = heat exchange coefficient [W m-2 degrees C-1], DeltaT = temperature gradient between blanket and surface [ degrees C], A = covered area [m2]. We tested the following forced-air warmers in a previously validated copper manikin of the human body: (1) Bair Hugger and lower body blanket (Augustine Medical Inc., Eden Prairie, MN); (2) Thermacare and lower body blanket (Gaymar Industries, Orchard Park, NY); (3) WarmAir and lower body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (4) Warm-Gard(R) and lower body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (5) Warm-Gard and reusable lower body blanket (Luis Gibeck AB); and (6) WarmTouch and lower body blanket (Mallinckrodt Medical Inc., St. Luis, MO). Heat flux and surface temperature were measured with 16 calibrated heat flux transducers. Blanket temperature was measured using 16 thermocouples. DeltaT was varied between -10 and +10 degrees C and h was determined by a linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, because similar mean skin temperatures have been found in volunteers. The area covered by the blankets was estimated to be 0.54 m2. Heat transfer from the blanket to the manikin was different for surface temperatures between 36 degrees C and 38 degrees C. At a surface temperature of 36 degrees C the heat transfer was higher (between 13.4 W to 18.3 W) than at surface temperatures of 38 degrees C (8-11.5 W). The highest heat transfer was delivered by the Thermacare system (8.3-18.3 W), the lowest heat transfer was delivered by the Warm-Gard system with the single use blanket (8-13.4 W). The heat exchange coefficient varied between 12.5 W m-2 degrees C-1 and 30.8 W m-2 degrees C-1, mean DeltaT varied between 1.04 degrees C and 2.48 degrees C for surface temperatures of 36 degrees C and between 0.50 degrees C and 1.63 degrees C for surface temperatures of 38 degrees C. No relevant differences in heat transfer of lower body blankets were found between the different forced-air warming systems tested. Heat transfer was lower than heat transfer by upper body blankets tested in a previous study. However, forced-air warming systems with lower body blankets are still more effective than forced-air warming systems with upper body blankets in the prevention of perioperative hypothermia, because they cover a larger area of the body surface.
Smith, Scott R; Seenath, Ryan; Kulak, Monika R; Lipkowski, Jacek
2015-09-15
Preparation of a nanoparticle modified gold substrate designed for characterization of hydrophilic self-assembled monolayers (SAMs) of 1-thio-β-D-glucose (TG) with electrochemical surface-enhanced Raman spectroscopy (EC-SERS) is presented. Citrate stabilized gold nanoparticles were deposited on a polycrystalline gold electrode and subjected to an electrochemical desorption procedure to completely remove all traces of adsorbed citrate. Complete desorption of citrate was confirmed by recording cyclic voltammetry curves and SERS spectra. The citrate-free nanoparticle modified gold electrode was then incubated in a 1 mg mL(-1) aqueous solution of TG for 16 h prior to being characterized by EC-SERS. The SERS spectra confirmed that at potentials more negative than -0.10 V vs SCE thioglucose forms a monolayer in which the majority of the molecules preserve their lactol ring structure and only a small fraction of molecules appear to be oxidized. At potentials more positive than -0.10 V, the oxidation of TG molecules becomes prominent, and at potentials more positive than 0.20 V vs SCE, the monolayer of TG consists chiefly of oxidized product. The SERS spectra collected in the double layer region suggest the SAM of TG is well hydrated and hence can be used for hydrophilic modifications of a gold surface.
Potentiation of kinin analogues by ramiprilat is exclusively related to their degradation.
Dendorfer, A; Reibetamann, S; Wolfrum, S; Raasch, W; Dominiak, P
2001-07-01
The potentiation of kinin actions represents a cardioprotective property of ACE inhibitors. Although a clear contribution to this effect is related to the inhibition of bradykinin (BK) breakdown, the high efficacy of potentiation and the ability of ACE inhibitors to provoke a B(2)-receptor-mediated response even after receptor desensitization has also triggered hypotheses concerning additional mechanisms of kinin potentiation. The application of kinin analogues with enhanced metabolic stability for the demonstration of degradation-independent mechanisms of potentiation, however, has yielded inconsistent results. Therefore, the relation between the susceptibility of B(2)-agonists to ACE and the potentiation of their actions by ACE inhibitors was investigated with the use of minimally modified kinin derivatives that varied in their degree of ACE resistance. The B(2)-agonists BK, D-Arg-[Hyp(3)]-BK, [Hyp,(3) Tyr(Me)(8)]-BK, [DeltaPhe(5)]-BK, [D-NMF(7)]-BK, and [Phe(8)psi(CH(2)-NH)Arg(9)]-BK were tested for degradation by purified rabbit ACE and for their potency in contracting the endothelium-denuded rabbit jugular vein in the absence and presence of ramiprilat. Purified ACE degraded D-Arg-[Hyp(3)]-BK and [Hyp,(3) Tyr(Me)(8)]-BK at 81% and 71% of BK degradation activity, respectively, whereas other peptides were highly ([DeltaPhe(5)]-BK) or completely ([D-NMF(7)]-BK, [Phe(8)psi(CH(2)-NH)Arg(9)]-BK) resistant. The EC(50) of BK-induced venoconstriction (1.15+/-0.2 nmol/L) was reduced by a factor of 5.7 in the presence of ramiprilat. Likewise, D-Arg-[Hyp(3)]-BK and [Hyp,(3) Tyr(Me)(8)]-BK were both significantly potentiated by a factor of 4.4, whereas the activities of the other agonists were not affected. Ramiprilat exerted no influence on the maximum contraction induced by any of the agonists. It is concluded that the potentiation of kinin analogues during ACE inhibition correlates quantitatively with the susceptibility of each substance to degradation by ACE. As such, no evidence of degradation-independent potentiating actions of ACE inhibitors could be obtained.
The Delta launch vehicle Model 2914 series
NASA Technical Reports Server (NTRS)
Gunn, C. R.
1973-01-01
Description of a new, medium-class Delta launch-vehicle configuration, the three-stage Model 2914. The first stage of this vehicle is composed of a liquid-propellant core which is thrust-augmented with up to nine strap-on solid-propellant motors. The second stage, recently uprated with a strap-down inertial guidance system, is now being modified to adapt the liquid-propellant descent engine from the Apollo Lunar Excursion Module. The third stage is a spin-stabilized solid-propellant motor. The Model 2914 is capable of injecting 2040 kg into low earth orbit, 705 kg into geosynchronous transfer orbit, or 455 kg into an escape trajectory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassett, J.M.
1988-01-01
Metal-aquatic biota interactions are important in both natural and engineered systems. In this study, the uptake of cadmium, strontium and lead by the unicellular green alga Chlorella (UTEX 252) was investigated. Variables included metal concentration, pH, and ionic strength. Data gathered included dry weights (mg/l), cell counts (cells/ml), electrophoretic mobilities (EPMs, {mu}m/sec/V/cm) of metal-free and metal-exposed cells, and metal uptake - difference in concentration in filtrate of cell-metal and cell-free metal solutions. Derived data included cell volumes and surface area, uptake on a {mu}M/m{sup 2} basis, {zeta}-potentials, diffuse layer potentials and charge densities. Typical uptake values were 1.1, 5.2, andmore » 6 {mu}M/m{sup 2} for Cd, Pb, and Sr, respectively, from solutions of pH 6, ionic strength 0.02M, and metal concentration 10{sup {minus}4} M. Cell EPMs were insensitive to metal; under certain conditions, however, (pM > 4, pH > 8), cadmium exposed cells exhibited a reversal in surface charge from negative to positive. The chemical equilibrium model MINEQL1 + STANFORD was used to model algal surface properties and metal uptake. Input data included site pK, density, and {Delta}pK, estimated from EPM-pH data. The model described surface properties of Chlorella (UTEX 252) as judged by a close fit of {zeta}-potentials and model-derived diffuse layer potentials. Metal uptake was modelled by adjusting site density and/or metal-surface site equilibrium constants. Attempts to model surface properties and metal uptake simultaneously were not successful.« less
Study of Perfluorophosphonic Acid Surface Modifications on Zinc Oxide Nanoparticles.
Quiñones, Rosalynn; Shoup, Deben; Behnke, Grayce; Peck, Cynthia; Agarwal, Sushant; Gupta, Rakesh K; Fagan, Jonathan W; Mueller, Karl T; Iuliucci, Robbie J; Wang, Qiang
2017-11-28
In this study, perfluorinated phosphonic acid modifications were utilized to modify zinc oxide (ZnO) nanoparticles because they create a more stable surface due to the electronegativity of the perfluoro head group. Specifically, 12-pentafluorophenoxydodecylphosphonic acid, 2,3,4,5,6-pentafluorobenzylphosphonic acid, and (1H,1H,2H,2H-perfluorododecyl)phosphonic acid have been used to form thin films on the nanoparticle surfaces. The modified nanoparticles were then characterized using infrared spectroscopy, X-ray photoelectron spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy were utilized to determine the particle size of the nanoparticles before and after modification, and to analyze the film coverage on the ZnO surfaces, respectively. Zeta potential measurements were obtained to determine the stability of the ZnO nanoparticles. It was shown that the surface charge increased as the alkyl chain length increases. This study shows that modifying the ZnO nanoparticles with perfluorinated groups increases the stability of the phosphonic acids adsorbed on the surfaces. Thermogravimetric analysis was used to distinguish between chemically and physically bound films on the modified nanoparticles. The higher weight loss for 12-pentafluorophenoxydodecylphosphonic acid and (1H,1H,2H,2H-perfluorododecyl)phosphonic acid modifications corresponds to a higher surface concentration of the modifications, and, ideally, higher surface coverage. While previous studies have shown how phosphonic acids interact with the surfaces of ZnO, the aim of this study was to understand how the perfluorinated groups can tune the surface properties of the nanoparticles.
Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding
NASA Astrophysics Data System (ADS)
Rosilo, Henna; McKee, Jason R.; Kontturi, Eero; Koho, Tiia; Hytönen, Vesa P.; Ikkala, Olli; Kostiainen, Mauri A.
2014-09-01
Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface-initiated atom-transfer radical polymerization of poly(N,N-dimethylaminoethyl methacrylate) and subsequent quaternization of the polymer pendant amino groups. The cationic polymer brush-modified CNCs maintained excellent dispersibility and colloidal stability in water and showed a ζ-potential of +38 mV. Dynamic light scattering and electron microscopy showed that the modified CNCs electrostatically bind cowpea chlorotic mottle virus and norovirus-like particles with high affinity. Addition of only a few weight percent of the modified CNCs in water dispersions sufficed to fully bind the virus capsids to form micrometer-sized assemblies. This enabled the concentration and extraction of the virus particles from solution by low-speed centrifugation. These results show the feasibility of the modified CNCs in virus binding and concentrating, and pave the way for their use as transduction enhancers for viral delivery applications.Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface-initiated atom-transfer radical polymerization of poly(N,N-dimethylaminoethyl methacrylate) and subsequent quaternization of the polymer pendant amino groups. The cationic polymer brush-modified CNCs maintained excellent dispersibility and colloidal stability in water and showed a ζ-potential of +38 mV. Dynamic light scattering and electron microscopy showed that the modified CNCs electrostatically bind cowpea chlorotic mottle virus and norovirus-like particles with high affinity. Addition of only a few weight percent of the modified CNCs in water dispersions sufficed to fully bind the virus capsids to form micrometer-sized assemblies. This enabled the concentration and extraction of the virus particles from solution by low-speed centrifugation. These results show the feasibility of the modified CNCs in virus binding and concentrating, and pave the way for their use as transduction enhancers for viral delivery applications. Electronic supplementary information (ESI) available: CNC surface chain fraction and degree of substitution after BriBBr modification, NMR spectra of the SI-ATRP reaction mixture at 0 and 120 min, conversion of the DMAEMA monomer during SI-ATRP, DLS size distribution profiles of CNCs and CNC-g-P(QDMAEMA), TEM images of NoV-VLPs and their complexes with CNC-g-P(QDMAEMA) at 0 mM NaCl. See DOI: 10.1039/c4nr03584d
Repeatability of short-duration transient visual evoked potentials in normal subjects.
Tello, Celso; De Moraes, Carlos Gustavo V; Prata, Tiago S; Derr, Peter; Patel, Jayson; Siegfried, John; Liebmann, Jeffrey M; Ritch, Robert
2010-06-01
To evaluate the within-session and inter-session repeatability of a new, short-duration transient visual evoked potential (SD-tVEP) device on normal individuals, we tested 30 normal subjects (20/20 visual acuity, normal 24-2 SITA Standard VF) with SD-tVEP. Ten of these subjects had their tests repeated within 1-2 months from the initial visit. Synchronized single-channel EEG was recorded using a modified Diopsys Enfant System (Diopsys, Inc., Pine Brook, New Jersey, USA). A checkerboard stimulus was modulated at two reversals per second. Two different contrasts of checkerboard reversal patterns were used: 85% Michelson contrast with a mean luminance of 66.25 cd/m(2) and 10% Michelson contrast with a mean luminance of 112 cd/m(2). Each test lasted 20 s. Both eyes, independently and together, were tested 10 times (5 times at each contrast level). The following information was identified from the filtered N75-P100-N135 complex: N75 amplitude, N75 latency, P100 amplitude, P100 latency, and Delta Amplitude (N75-P100). The median values for each eye's five SD-tVEP parameters were calculated and grouped into two data sets based on contrast level. Mean age was 27.3 +/- 5.2 years. For OD only, the median (95% confidence intervals) of Delta Amplitude (N75-P100) amplitudes at 10% and 85% contrast were 4.6 uV (4.1-5.9) and 7.1 uV (5.15-9.31). The median P100 latencies were 115.2 ms (112.0-117.7) and 104.0 ms (99.9-106.0). There was little within-session variability for any of these parameters. Intraclass correlation coefficients ranged between 0.64 and 0.98, and within subject coefficients of variation were 3-5% (P100 latency) and 15-30% (Delta Amplitude (N75-P100) amplitude). Bland-Altman plots showed good agreement between the first and fifth test sessions (85% contrast Delta Amplitude (N75-P100) delta amplitude, mean difference, 0.48 mV, 95% CI, -0.18-1.12; 85% contrast P100 latency delay, -0.82 ms, 95% CI, -3.12-1.46; 10% contrast Delta Amplitude (N75-P100) amplitude, 0.58 mV, 95% CI, -0.27-1.45; 10% contrast P100 latency delay, -2.05 mV, 95% CI, -5.12-1.01). The inter-eye correlation and agreement were significant for both SD-tVEP amplitude and P100 latency measurements. For the subset of eyes in which the inter-session repeatability was tested, the intraclass correlation coefficients ranged between 0.71 and 0.86 with good agreement shown on Bland-Altman plots. Short-duration transient VEP technology showed good within-session, inter-session repeatability, and good inter-eye correlation and agreement.
Wegmann, Markus; Michen, Benjamin; Luxbacher, Thomas; Fritsch, Johannes; Graule, Thomas
2008-03-01
The purpose of this study was to test the feasibility of modifying commercial microporous ceramic bacteria filters to promote adsorption of viruses. The internal surface of the filter medium was coated with ZrO(2) nanopowder via dip-coating and heat-treatment in order to impart a filter surface charge opposite to that of the target viruses. Streaming potential measurements revealed a shift in the isoelectric point from pH <3 to between pH 5.5 and 9, respectively. While the base filter elements generally exhibited only 75% retention with respect to MS2 bacteriophages, the modified elements achieved a 7log removal (99.99999%) of these virus-like particles. The coating process also increased the specific surface area of the filters from approximately 2m(2)/g to between 12.5 and 25.5m(2)/g, thereby also potentially increasing their adsorption capacity. The results demonstrate that, given more development effort, the chosen manufacturing process has the potential to yield effective virus filters with throughputs superior to those of current virus filtration techniques.
Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans
NASA Astrophysics Data System (ADS)
Xu, Juan; Ding, Gang; Li, Jinlu; Yang, Shenhui; Fang, Bisong; Sun, Hongchen; Zhou, Yanmin
2010-10-01
While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased ( p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.
Furuse, Adilson Y; Gordon, Kathryn; Rodrigues, Flávia P; Silikas, Nick; Watts, David C
2008-11-01
To evaluate the colour-stability and gloss-retention of silorane versus dimethacrylate composites exposed to accelerated aging from daylight radiation. Five disc-shaped specimens of photo-cured resin-composites were prepared and manually polished for each material (Filtek Silorane, Herculite XRV, Tetric Evoceram and QuiXfil). Colour and gloss were evaluated before and after periods (baseline, 24, 72, 120 and 192 h) of accelerated photo-aging in xenon light following ISO 7491:2000. Colour measurements were performed with a colourimeter according to the CIE-Lab colour-space. The colour change (DeltaE) for each time was calculated. The surface gloss was measured using a glossmeter. Results were evaluated using one-way ANOVA and Tukey tests (alpha=0.05). Correlations between logtime, DeltaE and gloss were evaluated using Pearson's correlation (alpha=0.05). Materials generally decreased in L and a and increased in b. The strong exception was Filtek Silorane which maintained a and b. DeltaE was found to be a positive linear function of logtime for all materials. Materials varied in the magnitude and rate of increase of DeltaE with logtime: QuiXfil>Tetric EvoCeram>(Filtek Silorane>or=Herculite XRV). DeltaE remained<3.3 for Filtek Silorane and Herculite XRV. Gloss was found to be a negative linear function of logtime. Gloss was maximal in the sequence: Filtek Silorane approximately Tetric EvoCeram>Herculite XRV>QuiXfil. Silorane gave the best overall performance in stability over time, compared to a set of representative dimethacrylate composites.
Fermi surface ridge at second and third Umklapp positron annihilations in Y Ba2Cu3O(7-delta)
NASA Astrophysics Data System (ADS)
Adam, G.; Adam, S.; Barbiellini, B.; Hoffmann, L.; Manuel, A. A.; Massidda, S.; Peter, M.
1993-06-01
Results of statistical noise smoothing of the electron momentum distribution obtained by two-dimensional angular correlation of the electron-positron annihilation radiation technique on untwinned YBa2Cu3O(7-delta) single crystals are reported. Two distinct signatures of the sheet of Fermi surface related to the CuO chains (the ridge) are resolved. The first occurs at second Umklapp processes, in agreement with previous evidence. The second one, identified for the first time, occurs at third Umklapp processes. Comparison with FLAPW calculations confirms this result.
Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft
NASA Astrophysics Data System (ADS)
Boozer, Charles Maxwell
A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.
Linking rapid erosion of the Mekong River delta to human activities.
Anthony, Edward J; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap
2015-10-08
As international concern for the survival of deltas grows, the Mekong River delta, the world's third largest delta, densely populated, considered as Southeast Asia's most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river's discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams.
Linking rapid erosion of the Mekong River delta to human activities
Anthony, Edward J.; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap
2015-01-01
As international concern for the survival of deltas grows, the Mekong River delta, the world’s third largest delta, densely populated, considered as Southeast Asia’s most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river’s discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams. PMID:26446752
NASA Astrophysics Data System (ADS)
Zhou, Liangyong; Liu, Jian; Saito, Yoshiki; Gao, Maosheng; Diao, Shaobo; Qiu, Jiandong; Pei, Shaofeng
2016-08-01
Since 1976, the main channel of the Yellow River (Huanghe) has been on the east side of the delta complex, and the river has prograded a broad new delta lobe in Laizhou Bay of the Bohai Sea. In 2012, extensive bathymetric and high-resolution seismic profiles were conducted and sediment cores were collected off the new delta lobe. This study examined delta sedimentation and morphology along a profile across the modern subaqueous Yellow River delta and into Laizhou Bay, by analyzing sediment radionuclides (137Cs, 210Pb and 7Be), sedimentary structure, grain-size composition, organic carbon content, and morphological changes between 1976 and 2012. The change in the bathymetric profile, longitudinal to the river's course, reveals subaqueous delta progradation during this period. The subbottom boundary between the new delta lobe sediment and the older seafloor sediment (before the 1976 course shift) was identified in terms of lithology and radionuclide distributions, and recognized as a downlap surface in the seismic record. The accumulation rate of the new delta lobe sediment is estimated to be 5-18.6 cm year-1 on the delta front slope, 2 cm year-1 at the toe of the slope, and 1-2 cm year-1 in the shelf areas of Laizhou Bay. Sediment facies also change offshore, from alternations of gray and brown sediment in the proximal area to gray bioturbated fine sediment in the distal area. Based on 7Be distribution, the shorter-term deposition rate was at least 20 cm year-1 in the delta front.
NASA Astrophysics Data System (ADS)
Passalacqua, P.; Hiatt, M. R.; Sendrowski, A.
2016-12-01
Deltas host approximately half a billion people and are rich in ecosystem diversity and economic resources. However, human-induced activities and climatic shifts are significantly impacting deltas around the world; anthropogenic disturbance, natural subsidence, and eustatic sea-level rise are major causes of threat to deltas and in many cases have compromised their safety and sustainability, putting at risk the people that live on them. In this presentation, I will introduce a framework called Delta Connectome for studying connectivity in river deltas based on different representations of a delta as a network. Here connectivity indicates both physical connectivity (how different portions of the system interact with each other) as well as conceptual (pathways of process coupling). I will explore several network representations and show how quantifying connectivity can advance our understanding of system functioning and can be used to inform coastal management and restoration. From connectivity considerations, the delta emerges as a leaky network that evolves over time and is characterized by continuous exchanges of fluxes of matter, energy, and information. I will discuss the implications of connectivity on delta functioning, land growth, and potential for nutrient removal.